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ABSTRACT 

The present work aims to provide insight on the role of phytohormone application in developing 

efficient practical defense strategies to improve plants tolerance under heavy metal 

contamination. For this purpose, pea (Pisum sativum L.) seeds were germinated in an aqueous 

solution of 200 µM CuCl2 up to the 3rd day and then continued to germinate in the presence of 

distilled water (stress cessation) or were subjected to following combinations: Cu + 1 µM IAA 

and Cu + 1 µM GA3 for 3 additional days. The results showed that copper excess induced 

oxidative stress in germinating seeds, which resulted in changes of the redox state of glutathione 

and cysteine, and proteomics revealed Cu-induced modifications of thiols (SH) and carbonyls 

(CO) (indicators of protein oxidation). However, application of IAA or GA3 in the germination 

medium after 3 days of Cu exposure alleviated toxicity on seedlings, despite the persistence of 

Cu up to 6th day. This improving effect seems to be mediated by a cell Cu accumulation decrease 

and a protein reduced status recovery, since phytohormones modulate thioredoxin/ferredoxin 

systems in favor of protecting proteins against oxidation. In addition, an IAA and GA3 

protective effect was evidenced by a cellular homeostasis amelioration resulting from the 

balance conservation between the regeneration and consumption processes of glutathione and 

cysteine reduced forms. The exogenous effectors also induced modifications of profiles of SH 

and CO, suggesting changes in the regulation and expression of proteins that could be involved 

in defense mechanism against Cu stress. 
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Abbreviations: CSH, reduced cysteine; CSS, oxidized cysteine; DTNB, 5,5’-dithio bis 2-

nitrobenzoic acid; Fdx, ferredoxin; FNR, ferredoxin-NADP oxidoreductase; FTSC, 

fluorescein-5-thiosemicarbazide; GPX, glutathione peroxidase;  GR, glutathione reductase; 

GSH, reduced glutathione; GSSG, oxidized glutathione; IAF, 5’-iodoacetamide fluorescein; 

NTR, NADPH-dependent thioredoxin  reductase;  Trx, thioredoxin 

 

Keywords: Heavy metal Phytohormones Redox homeostasis Stress alleviation 

 

1. Introduction 

 The functions of the components of redox status have been widely investigated in 

several plant systems, including seeds since they are considered as the sensor of the real 

physiological state in cells (Foyer and Noctor, 2005; Alkhalfioui et al., 2007). In addition, the 

regulation of the redox state of proteins, including the sulfhydryl groups of cysteine and 

methionine, is considered as a "switch" for the activity of several enzymes involved in specific 

signaling events(protein kinases, calcium signaling) and in cell cycle control (Alkhalfioui et al., 

2007). However, under stress conditions, notably exposure to heavy metals, the cellular redox 

state can shift the redox balance toward an oxidizing state (Rouhier et al., 2010), which may 

result in altering many physiological processes associated with normal growth and development 

(Janas et al., 2010).  

Copper is considered one of the toxic heavy metals that can affect one or more vital 

biochemical and physiological processes in plants and seedlings (Karmous et al., 2012; Chaoui 

et al., 2004; Chaoui and El Ferjani,2014). A delay in embryo growth has been often recorded 

after Cu exposure, and has been associated with many disorders of germinative metabolism 

(Karmous et al., 2012), as well as cellular oxidative state generation, mainly described by 

reactive oxygen species (ROS) over-production (Ahsan et al., 2007; Chaoui and El Ferjani, 
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2014). Enzymatic and non-enzymatic defense mechanisms are activated to limit the induced 

oxidative stress damage (Wang et al., 2004). Indeed, several roles of glutathione have been 

reported, mainly in redox state homeostasis, regeneration of other antioxidants (Foyer and 

Noctor, 2005) and phytochelatins, as well as heavy metals sequestration in plants (Yadav, 

2010). Likewise, GSH is implicated in the Asada-Halliwell cycle, exclusively existing in plants 

and essential for defense against oxidative stress (Foyer and Noctor, 2005).  In this process, 

reduced glutathione (GSH) is converted to its oxidized form (GSSG; Foyer and Noctor, 2011), 

and in turn, the GSH is regenerated by glutathione reductase (GR) activity using NADPH as an 

electron donor, maintaining the cellular redox homeostasis by keeping optimum GSH/GSSG 

ratio (Gill et al., 2013). This parameter can also be changed by the activity of glutathione 

peroxidase (GPX). Plant glutathione peroxidases are functional peroxiredoxins distributed in 

several cell compartments and regulated during biotic and abiotic stresses (Navrot et al., 2006). 

Scientists have been more interested in developing alternative ways and potential 

strategies to counteract the adverse effects of environmental stressors via the exogenous 

application of chemicals to improve plant tolerance, such as polyamines, brassinosteroids 

(Choudhary et al., 2012), nitric oxide (Hu et al., 2007), sulfur (Anjum et al., 2008), β-estradiol 

(Chaoui and El Ferjani,2014), progesterone (Genisel et al., 2013), salicylic acid (Belkhadi et 

al., 2010), calcium (Sakouhi et al., 2016) and organic acids (malate, oxalate, citrate and 

benzoate) (Gao et al., 2012).  

On these grounds, the aim of this investigation was to shed more light on the mechanism 

by which IAA and GA3 interact with the redox components in germinating pea seeds subjected 

to 200 µM CuCl2 treatment. The cysteine and glutathione contents were analyzed by HPLC, 

concomitant with the possible changes occurring within the accumulation profile of Cu in the 

two parts of the seedling and some enzyme activities involved in modulating the cellular redox 

homeostasis (Rouhier et al., 2008): thioredoxin (Trx), NADPH-dependent thioredoxin 
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reductase (NTR), ferredoxin (Fdx) and ferredoxin-NADP oxidoreductase (FNR). The activities 

of GPX and GR were also measured to estimate the recycling of glutathione (Mittler, 2002). 

The oxidation state of the proteins was studied by quantifying their contents in thiol and 

carbonyl indicators. Proteins CO and SH were labeled with specific substrates, and analyzed by 

one- and two-dimensional electrophoresis. 

 

2. Material and methods 

2.1. Germination and treatment conditions 

 Pea (Pisum sativum L. var. douce province) seeds were disinfected with 2% sodium 

hypochlorite for 10 min, then rinsed three times with distilled water, and germinated at 25°C in 

the presence of distilled water (control) or 200 µM CuCl2. At day 3, Cu was replaced by the 

following treatments; 1µM IAA and 1 µM GA3were applied in combinations with Cu: 

“Cu+IAA” and “Cu+GA3”, while“Cu+H2O” consisted in discarding completely Cu and 

carrying on germination with H2O (stress cessation). At day 6, the seedlings were harvested and 

separated into roots and shoots, weighed, then stored at -80°C until use. 

 

2.2.Copper content determination 

After wet digestion of the oven-dried seedlings (10 ml per 0.1 g dry weight) with an acid 

mixture (HNO3:HClO4, 4:1), Cu concentrations were determined by an atomic absorption 

spectrophotometer (Perkin Elmer). Sigma Diagnostic Standards (Copper Atomic Absorption 

Solutions, Sigma-Aldrich) were diluted in appropriate ranges with 0.1 N HNO3 (65% HNO3, 

Sigma-Aldrich, Analytical grade) and used for calibration. 

2.3.Glutathione and cysteine quantification 
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 Lyophilized samples were homogenized at 4°C in the presence of 0.2 M potassium-

phosphate buffer, pH 7.5 (Chwatko et al., 2014), and obtained homogenates were immediately 

subjected to derivation or reduction experiments. The derivation reaction was performed using 

1 mM DTNB (5,5’-dithio bis 2-nitrobenzoic acid prepared in 0.5 M K-phosphate buffer, pH 8; 

Katrusiak et al., 2001). After incubation at 4°C for 5 min, 7 M phosphoric acid was added to 

stop the reaction, and the homogenate was centrifuged at 12,000g for 10 min at 4°C. The 

obtained supernatant was filtered using a 0.45 μm filter and stored at -20°C in amber glass vials 

for HPLC measurements. For total glutathione and cysteine determination, a reduction of 

oxidized forms (GSSG and CSS, respectively) was performed with 10 mM DTT prior to the 

derivation reaction. GSSG and CSS concentrations were calculated as the difference in the 

contents of total and reduced forms (GSH and CSH, respectively). 

The chromatographic separation was achieved using a reverse-phase column Agilent 

(USA), 1100 Series, connected to a UV-visible detector set at 330 nm (Katrusiak et al., 2001). 

A volume of 20 µL of extract was injected into Zorbax Eclipse Plus C18 column (5 µm, 4.6 x 

250 mm2). The mobile phase consisted of acetonitrile as mobile phase A and acidified water, 

adjusted to pH 3.5 with acetic acid, as mobile phase B at a flow rate of 1.2 mLmin-1. The 

proteins were eluted according to the following profile: 0-15 min, 10% A; 15-16 min, 100% A; 

16-20 min, 10% A. The identification of peaks was based on the comparison of retention times 

with those obtained with corresponding standards. The total and reduced forms of thiol 

compounds were quantified using calibration curves made from DTNB-derived glutathione and 

cysteine (Sigma) solutions. 

2.4. Enzyme assays 

 Protein extracts were obtained as the supernatants of the centrifugation (20,000g for 15 

min at 4°C) of fresh tissue homogenates prepared in 25 mM potassium-phosphate buffer pH 

7.0, containing 5 mM sodium ascorbate. 
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 GR (EC 1.6.4.2) activity was determined according to Foyer and Halliwel (1976), by 

measuring the rate of NADPH oxidation-decrease in absorbance at 340 nm(ε = 6.22 × 103 M-

1.cm-1). The assay mixture contained 0.2 mM NADPH, 0.5 mM oxidized glutathione (GSSG) 

in 50 mM phosphate buffer (pH 7.0) and enzyme extract.  

 GPX (EC 1.11.1.9) activity was measured according to Nagalashmi and Prasad (2001). 

The reaction mixture contained 50 mM phosphate buffer (pH 8.0), 100 mM NaCl, 1 mM GSH, 

2.5 mM H2O2, 0.5 mM NADPH, 1 U GR and enzyme extract. Oxidation of NADPH was 

followed by measuring the decrease in absorbance at 340 nm (ε = 6.22 × 103 M-1.cm-1). 

 Activities of Trx and NTR (EC 1.8.1.9) were measured in the reaction mixture: 50 mM 

Tris-HCl (pH 8.1), 100 µM DTNB and enzyme extract, containing 0.2 mM NADPH and 30 

µg/mL reduced Trx (NTR assay) or 15 mg mL-1 NADPH and 0.1 µM NTR (Trx assay) (Jacquot 

et al., 1994). The reduction of DTNB was determined by measuring the increase in the 

absorbance at 412 nm (ε = 13.6 × 103 M-1.cm-1).  

 Activities of Fdx and FNR (EC 1.18.1.2) were assayed according to Green et al. (1991). 

The reaction mixture contained 50 mM Tris-HCl (pH 7.8), 40 µM cytochrome C, 250 µM 

NADPH, 2 µM spinach leaf Fdx (FNR assay) or 0.1 µM FNR (Fdx assay) and the enzyme 

extract. The reduction of cytochrome C was monitored by the increase in absorbance at 550 nm 

(ε = 19.1 × 10-3 M-1.cm-1). 

 Protein concentrations in extracts were evaluated by the method of Bradford (1976), 

using bovine serum albumin as standard protein. 

2.5. Proteomic analysis of thiols and carbonyls 

 Extraction of proteins was performed by homogenization of samples in 10 mM Tris-

HCl, pH 7.2, containing 500 mM saccharose, 1 mM EDTA, 150 mM KCl and 1 mM PMSF. 
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After centrifugation at 20,000gfor 1 h at 4°C, supernatants were collected. Protein CO and SH 

were labeled with the respective substrates l mM fluorescein-5-thiosemicarbazide (FTSC) and 

0.2 mM 5’-iodoacetamide fluorescein (IAF). After incubation at 37°C for 150 min in the dark, 

proteins were precipitated with an equal volume of 20% TCA and centrifuged at 20,000g for 3 

min at 4°C. The obtained pellets were re-suspended and washed three times with 100% 

ethanol/ethyl acetate (1:1) and 96% acetone, respectively, for CO and SH assays, and were then 

re-suspended in 0.5 M Tris-HCl pH 6.8, 10% glycerol , 0.5% SDS  and bromophenol blue, then 

applied to 1D SDS-PAGE (12%, 120 V) (Laemmli, 1970) (Mini-PROTEAN system, Bio-Rad). 

Gels were scanned in a Typhoon Trio Scanner 9400 (Control v5.0 + variable Mode Imager-RA 

501: PRT<I/06/004, GE Healthcare, UK; excitation, 490-495 nm; emission, 515–520 nm). 

Quantity One Image analysis software (BioRad, Hercules, CA, USA) was used to analyze 

protein-associated fluorescence intensity. Colloidal Coomassie Brilliant Blue (CBB)G-250 

(Dyballa and Metzger, 2009) was used to stain the gels, and a calibrated densitometer GS-800 

(BioRad, Hercules, CA, USA) allowed to scan them, then measure and normalize the total OD. 

 For 2D gels, proteins were separated according to their pI (first dimension: isoelectric 

focusing), then according to their molecular weight (second dimension: SDS-PAGE). Proteins 

were first rehydrated in 5 M urea, 2 M thiourea, 2% CHAPS, 4% ampholyte (Pharmalyte 3-10, 

Amersham-Pharmacia Biotech, Little Chalfont, Bucks, UK), 1% Destreak reagent (Amersham-

Pharmacia Biotech), and bromophenol blue, and then immobilized in IPG strips (70×3×0.5 

mm),pH 3-10 and linear gradient (GE Healthcare Immobiline TMDry Strip IPG,  Bio-Sciences 

AB, Bio-Rad, Hercules, CA, USA), for the separation of a final volume of 125 μL. Proteins 

were focused on a Protean IEF Cell (Bio-Rad) for at least 15 h at room temperature, starting 

with a linear voltage increase until 250 V for 15 min, then 10,000 V for 2 h (50 µA/strip), 

followed by focusing at 20,000 V, and finally hold at 500 V. Strips were subsequently 

equilibrated for 20 min in equilibration buffer ; 6 M urea, 0.375 M Tris, 2% SDS, 20% glycerol,  
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2% DTT, pH 8.8, and then for 20 min in equilibration buffer containing 2.5% iodoacetamide. 

IPG strips were then loaded onto 12% SDS-PAGE (PROTEAN Plus Dodeca Cell Bio-Rad) for 

protein separation. Gels were scanned afterwards for fluorescence and then stained with CBB 

G-250 followed by densitometry scanning. Normalization of FTSC- and IAF-labeled protein 

spots and CBB-staining intensity was performed using Progenesis Same Spots Software (Ref: 

S/No.62605/3787; Nonlinear USA Inc/2530 Meridian Parkway/3rd Floor 

Durham/NC27713/USA) as per the manufacturer’s instructions. Fluorescence spots were 

normalized to protein intensity for the same gel revealing increased fluorescence.  

2.6. Statistical analysis 

 All experiments were performed at least in triplicate. Values are means ± SE of three 

technical and five biological replicates. Significance of differences was tested at p<0.05 using 

ANOVA test followed by Tukey’s test HSDp=0.05. Images of protein spots of 2D gels were 

subjected to Landmarking alignment (3D Gaussian distribution), and their intensities were 

corrected by background subtraction and normalized, then subjected to quantitative and 

qualitative analyses. One-way ANOVA followed by Tukey’s post hoc multiple comparison 

tests were performed using the software package Statistica 8.0. Statistically significant 

differences between all spots in 2D gel image were established at p<0.05 and assessed using 

the Student’s t-test. 

 

3. Results and discussion 

 One of the underlying causes of tissue injury following exposure of plants to heavy 

metals is the generation of oxidative stress, resulting in alterations within almost all cellular 

components, including proteins (Davie, 2001). Plant cells contain numerous proteins with 

disulfide reductase activity. Notably, Trx and Fdx can play a crucial role in plant responses to 
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stress due to their thiol redox property. Thus, in the present study, we investigated the possible 

changes occurring within the different components of the redox systems after the subsequent 

application of the phytohormones IAA and GA3 to the Cu-contaminated germinating medium 

of pea seeds in both root and shoot tissues. Our results showed a significant increase in the 

activities of Trx, NTR, Fdx and FNR in the presence of Cu (Fig. 1), which suggests (1) their 

contribution to maintain the reduced form of protein SH, but at the same time (2) a potential 

depletion of the cellular stock of reducing power (NADPH), notably by NTR and FNR activities 

(Green et al., 1991; Jacquot et al., 1994). It has been assumed that the tolerance to heavy metal 

toxicity is more dependent on the availability of reduced cell metabolites, such as NAD(P)H, 

than on antioxidant enzymes capacity of plant tissues (Cuypers et al., 2000; Léon et al., 2002; 

Sakouhi et al., 2016). Such enhancement in activities of redox proteins agrees with their 

fundamental role in the protection of plants under abiotic stress (Rouhier et al., 2010), and 

notably the repair of damaged proteins (Arner and Holmgren, 2000). However, IAA or GA3 

were able to recover the activities of redox enzymes to nearly control values (Fig. 1). This 

ameliorating effect seems to occur as though we completely omit Cu and replace it with H2O 

(Cu+H2O experiment), which suggests that exogenous effectors were able to completely 

alleviate the negative effect of Cu, despite its persistence in the germination medium. This 

finding suggests the involvement of phytohormones in modulating the thiols status of proteins 

and reducing the intracellular oxidative stress damages, which might confer tolerance to pea 

seeds against Cu contamination.  

 Copper treatment drastically reduced glutathione levels, especially the reduced form (by 

71 and 82% as compared to respective controls in root and shoot; Fig.2A, C), leading to a 

substantial glutathione redox state disruption (Fig. 2B, D). GSH depletion could be associated 

with increased GPX activity (Fig. 3A) despite an enhancement in the reduced-form recycling 

capacity by GR activity (Fig. 3B). The imbalance in the GSH/GSSG ratio has been reported in 
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plants exposed to various environmental stresses, notably cold (Radyuk et al., 2009), Cd 

(Anjum et al., 2011) and Cu (Russo et al., 2008).The GSH depletion (Fig. 2) could be also 

attributed to (a) the biosynthesis of phytochelatins involved in Cu ions sequestration, (b) 

potential GSH conjugation to copper ions through the glutathione-S-transferase activity 

(Delalande et al., 2010) and (c) to the consumption of GSH by the ascorbate-glutathione cycle 

(Noctor and Foyer, 1998). Nevertheless, the introduction of IAA and GA3 into the germination 

medium restored glutathione contents (Fig. 2A, C) and GSH/GSSG balance (Fig. 2B, D) to 

levels similar to those of the control roots and shoots. The glutathione redox state protection, 

despite a slowing-down of the reduced form recycling via the GR activity (Fig. 3B), appears to 

be the result of the significant decrease in GPX activity when Cu was applied in combination 

with phytohormones (Fig. 3A). A similar IAA correction of GSH and GSSG contents has also 

been reported in response to cadmium stress in Trigonella foenum-graecum (Bashri and Prasad, 

2016), and the sensitivity of Arabidopsis thaliana seedlings to copper can even be regulated by 

auxin (Song et al., 2017). 

Cysteine is an important amino acid for its role as a precursor of many molecules 

involved in antioxidant defense, such as vitamins, cofactors and antioxidants, namely 

glucosinolates, thioninesand glutathione, and the implication of its redox status in cellular 

homeostasis is increasingly studied in the plant cell (Álvarez et al.,2012). The behavior of the 

oxidoreduction state of cysteine (Fig. 4) is similar to that of glutathione (Fig. 2). Late treatment 

with IAA or GA3 of Cu-stressed germinating seeds reversed the disruptive effect of heavy metal 

on cysteine levels and CSH/CSS ratio in the two parts of the seedlings (Fig. 4). The 

phytohormone’s protective effect on cysteine redox state significantly exceeded that of Cu 

suppression (Cu+H2O experiment versus Cu+IAA and Cu+GA3; Fig. 4B, D). Several lines of 

argument suggest the involvement of cysteine in the response of plants to abiotic stresses, 

including heavy metals: (i) Cd tolerance of transgenic tobacco plants is correlated to an over-
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expression of cysteine synthase (Kawashima et al., 2004), (ii) increased thiol biosynthesis of 

transgenic poplar expressing a wheat O-cetylserine (thiol) lyase enhances resistance to 

hydrogen sulfide and sulfur dioxide toxicity, and (iii) the exogenous application of cysteine to 

basil seeds and seedlings mitigated even the detrimental effect of cobalt stress (Azarakhsh et 

al., 2015). 

To investigate the redox changes with respect to proteins, thiol (SH; Fig.5) and carbonyl 

(CO; Fig. 6) groups were analyzed by proteomics. Heavy metal-induced oxidative stress may 

result in damage to proteins, mainly oxidation of thiols and formation of carbonyls (Suzuki et 

al., 2010). Indeed, oxidative injury can trigger conformational changes, making protein thiols 

more reactive towards cationic groups and modifying their susceptibility to alkylation, either 

by increasing their exposure to the matrix or by decreasing side-chain pKa values (Lin et al., 

2002). Here, the comparison of dynamic responses towards Cu by 1Dproteomic analysis 

revealed significant changes in abundance of SH and CO groups of protein species (Figs. 5, 6). 

Interestingly, the protein SH profile showed a significant decrease under Cu stress (Fig. 5), 

suggesting the oxidation of protein thiols in both roots and shoots and the enhancement of CO 

groups formation (Fig. 6), which can induce many reactions including alkylation (Lin et al., 

2002) and glutathionylation (Hansen et al., 2009). Nonetheless, application of IAA and GA3 

showed a significant recovery in both parameters (Figs. 5, 6). 

The 2D-separation of proteins showed different spots after IAF or FTSC labeling and 

CBB staining (Fig. 7). In fact, Table1recorded the significant modifications occurring within 

SH and CO groups of proteins in roots and shoots of control (H2O) versus Cu treatment 

(H2O/Cu) and of Cu versus Cu+IAA and Cu+GA3 treated samples (Cu/Cu+IAA and 

Cu/Cu+GA3, respectively). The data showed that Cu toxicity induced many alterations within 

proteins. For example, in roots, 37 spots were significantly modified when revealed by FTSC 

(CO groups). However, the application of IAA and GA3 also exhibited important quantitative 
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changes as compared to treatment with Cu alone - notably, 36 spots (SH)and 32 spots (CO) in 

roots and shoots of Cu+GA3- and Cu+IAA-treated seedlings, respectively. These changes 

suggest that the application of phytohormones can modulate the Cu-induced alteration in 

proteins of redox status, which may result in protection against the toxicity of heavy metals. 

The proteomics approach is increasingly used to detect the modifications of protein thiols in 

response to oxidative stress (Lin et al., 2002). Indeed, Ahsan et al. (2009) and Printz et al. (2013) 

reported that heavy metals disrupt the availability of several proteins, including those that 

regulate the redox status. Modifications mainly concern the expression, abundance and 

regulation of proteins. For example, excess copper induced proteomic changes in germinating 

rice seeds (Ahsan et al., 2007), and proteomics also revealed alleviating effects of GA3 on salt-

stressed rice (Wen et al.,2010) and of IAA under manganese toxicity (Gangwar et al., 2011). 

The quantitative findings reported in this paper should be completed by qualitative analyses. 

Further work is needed to identify modified proteins by mass spectrometry. 

The appreciable positive effects of phytohormones on the Cu-stressed seedling redox 

state could be correlated with the reduction of heavy metal accumulation by almost 32% and 

45% in roots and shoots, respectively (Table 2). In agreement with our results, GA3 and IAA 

were reported to decrease heavy metal accumulation in Arabidopsis thaliana (Zhu et al., 2012), 

broad bean and lupin (Sharaf et al., 2009) and eggplant plants (Singh and Prasad 2015). In the 

green alga Chlorella vulgaris, auxins and gibberellin alleviated stress symptoms by inhibiting 

heavy metal accumulation (Piotrowska-Niczyporuk et al., 2012) and a greater accumulation of 

proline subsequent to IAA treatment in wheat seedlings exposed to Cd-stress was reported by 

Agami and Mohamed (2013). This suggests proline implication in the stabilization of 

macromolecules structures and functions under stress conditions. The mechanism by which 

phytohormones reduce metal accumulation is still unclear. Wang et al. (2013) suggested that 

IAA reduced Al accumulation in wheat root apex by increasing efflux of malic acid, with high 
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binding capacity with rhizosphere active Al, and by increasing rhizosphere pH via the 

regulation of plant cell plasma membrane H+-ATPase activity. Moreover, Zhu et al. (2012; 

2013) showed that auxins enhanced the content of hemicellulose1, which contributed to the 

fixation of Cd2+ in the cell wall, thus reducing its translocation from roots to shoots, while GA’s 

protective effect against Cd injury resulted from the down-regulated cadmium transporter gene 

IRT1 expression.  Likewise, He et al. (2015) reported that GA3 caused Pb sequestration in cell 

walls, modifying its subcellular distribution. 

 

4. Conclusion 

 The data reported here show evidence that the protective effects of IAA and GA3 against 

Cu-induced alterations can be mediated by lowering heavy metal accumulation and by 

providing a thiols redox state correction, thereby, a suitable reducing environment to prevent, 

counteract or repair potential injuries from oxidation of sensitive cell sites, which may, 

ultimately, restore a normal growth of pea seedlings. Our findings also suggest that the 

phytohormones, although added after 3 days of copper exposure, induced almost total recovery 

in redox homeostasis by alleviating the damage of proteins. Proteomics may represent an 

innovative practical way of better understanding the improvement of plant tolerance to heavy 

metal stress through the supply of exogenous chemicals favorable for optimal growth. 
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Fig. 1. Activities of Trx (A), Fdx (B), NTR (C) and FNR (D) in pea seedlings germinated for 3 days in 

the presence of distilled water (H2O) or 200 µM CuCl2 and then replaced up to 6 days either by H2O or 

200 µM CuCl2 added combined with 1 µM IAA “Cu+IAA” or 1 µM GA3 “Cu+GA3”. Values ± SE (n=5) 

followed by a common letter for the same organ are not different at 0.05 level of significance, using 

ANOVA followed by Tukey’s test. 
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Fig. 2. Contents of reduced (GSH) and oxidized (GSSG) glutathione (A, B) and redox ratio 

(GSH/GSSG) (C,D) in pea seedlings germinated for 3 days in the presence of distilled water (H2O) or 

200 µM CuCl2 and then replaced up to 6 days either by H2O or 200 µM CuCl2 added combined with 1 

µM IAA “Cu+IAA” or 1 µM GA3 “Cu+GA3”. Values ± SE (n=5) followed by a common letter for the 

same parameter are not different at 0.05 level of significance, using ANOVA followed by Tukey’s test. 
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Figure 2 

 

 

Fig. 3. Activities of GPX (A) and GR (B) in pea seedlings germinated for 3 days in the presence of 

distilled water (H2O) or 200 µM CuCl2 and then replaced up to 6 days either by H2O or 200 µM CuCl2 

added combined with 1 µM IAA “Cu+IAA” or 1 µM GA3 “Cu+GA3”. Values ± SE (n=5) followed by 

a common letter for the same organ are not different at 0.05 level of significance, using ANOVA 

followed by Tukey’s test. 
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Fig. 4. Contents of reduced (CSH) and oxidized (CSS) cysteine (A, B) and redox ratio (CSH/CSS) (C,D) 

in pea seedlings germinated for 3 days in the presence of distilled water (H2O) or 200 µM CuCl2 and 

then replaced up to 6 days either by H2O or 200 µM CuCl2 added combined with 1 µM IAA “Cu+IAA” 

or 1 µM GA3 “Cu+GA3”.Values ± SE (n=5) followed by a common letter for the same parameter are 

not different at 0.05 level of significance, using ANOVA followed by Tukey’s test. 
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Fig. 5. Representative images of 1DE gels (A, B, D, E) of proteins (80 µg) in pea seedlings germinated 

for 3 days in the presence of distilled water (H2O) or 200 µM CuCl2, and then replaced up to 6 days 

either by H2O or 200 µM CuCl2 added combined with 1 µM IAA “Cu+IAA” or 1 µM GA3 “Cu+GA3”. 

Gels were stained with IAF labeling (scanned with Typhoon 9400 scanner) (A, D) and with Coomassie 

G-250 (CBB) (scanned with GS-800 calibrated densitometer) (B, E). Levels of protein thiols in root (C) 

and shoot (F). Quantity one image analysis software was used to analyze protein-associated fluorescence 

intensity (arbitrary units, AU) by determining IAF/CBB ratio. Values shown are means of 3 individual 

measurements (±SE). Values ± SE followed by a common letter are not different at 0.05 level of 

significance using ANOVA test followed by the Student’s t-test. 
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Fig. 6. Representative images of 1DE gels (A, B, D, E) of proteins (80 µg) in pea seedlings germinated 

for 3 days in the presence of distilled water (H2O) or 200 µM CuCl2, and then replaced up to 6 days 

either by H2O or 200 µM CuCl2 added combined with 1 µM IAA “Cu+IAA” or 1 µM GA3 “Cu+GA3”. 

Gels were stained with FTSC labeling (scanned with Typhoon 9400 scanner) (A, D) and with Coomassie 

G-250 (CBB) (scanned with GS-800 calibrated densitometer) (B, E). Levels of protein carbonyls in root 

(C) and shoot (F). Quantity one image analysis software was used to analyze protein-associated 

fluorescence intensity (arbitrary units, AU) by determining (FTSC/CBB). Values shown are means of 3 

individual measurements (±SE). Values ± SE followed by a common letter are not different at 0.05 level 

of significance, using ANOVA test followed by Student’s t test. 
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Fig. 7. Profiles of proteins containing thiol and carbonyl groups in pea seedlings germinated for 3 days 

in the presence of distilled water (H2O) or 200 µM CuCl2 and then replaced up to 6 days either by H2O 

or 200 µM CuCl2 added combined with 1 µM IAA “Cu+IAA” or 1 µM GA3 “Cu+GA3”. Proteins (150 

µg) were labeled with IAF or FTSC and separated by 2D SDS-PAGE. Images show spots of interest in 

representative gels from colloidal Coomassie Brilliant G-250 (CBB) staining (scanned with GS-800 

calibrated densitometer) and IAF or FTSC labeling (scanned with Typhoon 9400 scanner; 800 PMT). 

Numbers correspond to identified spots whose change>1.5 fold with p<0.05 (see summary of significant 

quantitative changes in Table 1). 
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Table 1 

Summary of quantitative changes of proteins containing thiol groups (IAF labeling) and 

carbonyl groups (FTSC labeling) in roots and shoots of pea seedlings germinated for 3 days in 

the presence of distilled water (H2O) or 200 µM CuCl2 and then replaced up to 6 days either by 

H2O or 200 µM CuCl2added combined with 1 µM IAA “Cu+IAA” or 1 µM GA3 “Cu+GA3” 

(data from Fig. 7). 

__________________________________________________________________ 

Treatment H2O/Cu     Cu/Cu+IAA    Cu/Cu+GA3 

  _________________   _________________   ___________________ 

Revelation IAF (SH)  FTSC (CO)   IAF (SH)  FTSC (CO)   IAF (SH)  FTSC (CO) 

  ______________________________________________________________________________________ 

  Number of spots modified > 1.5 fold with p < 0.05 

Root  25     37    20       23    36       22 

Shoot  18     15    15       32    5       25 

_________________________________________________________________________ 
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Table 2 

Root and shoot copper content of pea seedlings germinated for 3 days in the presence of distilled 

water (H2O) or 200 µM CuCl2 and then replaced up to 6 days either by H2O or 200 µM CuCl2 

added combined with 1 µM IAA “Cu+IAA” or 1 µM GA3 “Cu+GA3”. Values are the averages 

of four individual measurements. Values ± SE (n=5) followed by a common letter in the same 

line are not different at the 0.05 level of significance, using ANOVA followed by Tukey’s test. 

 

Treatment Cu (µg/g DW) 

Root                                            Shoot 

H2O (Control) 

Cu 

H2O+Cu 

45.9±12.2a 

88.3±8.5b 

51.5±13.6a 

22.7±3.5a 

67.3±10.3b 

41,3±3.6c 

Cu+IAA 

Cu+GA3 

61.8±5.2a 

60.2±7.4a 

37.5±7.41c 

46.5±9.7c 
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