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ABSTRAT: Pure phase and europium doped ceria nanocrystals have been synthesized by a 

single step simple solvothermal process. Different spectroscopic, diffractive and microscopic 

techniques were used to determine the morphology, size, crystal structure and phase of all the 

samples. Electron energy loss spectroscopy (EELS) for elemental mapping confirmed that 

good solid solutions were formed and that the particles had a homogeneous distribution of 

europium. The defect chemistry was more complex than might be expected with the 

incorporation of each Eu3+ ion resulting in the production of an anion vacancy since the doping 

results in charge compensating (i.e. for Eu3+) anion vacancies as well as vacancies due to 

oxygen removal from the crystallite surface. Variations in nanoparticles dimension and lattice 

parameters were measured as a function of dopant concentrations and their variations 

explained. The band gap of the samples could be tailored by the doping.  The doped samples 

were found to be luminescent due to the substitution of Ce4+ ions in the cubic symmetric lattice 

by the dopant ions. The thermal stability of the fluorescence properties was also investigated. 
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1. INTRODUCTION 

Nanostructures of rare-earth cerium oxide (CeO2) have been widely investigated because of its 

multiple applications in areas such as catalysis,1 an electrolyte for solid oxide fuel cells,2 UV 

absorbent and UV filter materials,3 oxygen gas sensors,4 polishing materials,5 optical devices6 

and biomedicine.7 CeO2 has unique properties such as high refractive index, optical 

transparency, high dielectric constant, lattice expansion, stability at high temperature and 

mechanical robustness. It’s applications generally take advantage of the excellent redox 

properties and high oxygen storage capacity (OSC) of CeO2. This redox chemistry is, in part, 

related to the similar energy of the 4f and 5d electronic states and a low potential energy barrier 

to electron exchange between them.8 In principle, the different electron configurations possible 

can be determined by core and valence level spectroscopies.9 The properties of CeO2 are 

thought to be controlled by the nature of the oxygen vacancies because oxygen diffusion 

depends on the type, size, and concentration of those vacancies.10 Therefore, numerous 

investigations have been conducted to study the Ce3+ and O vacancy defect sites in CeO2 using 

techniques including x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), 

electron paramagnetic resonance (EPR), scanning tunnelling microscopy (STM), Raman 

spectroscopy and neutron scattering.  

There have been numerous attempts to optimize the physiochemical properties of CeO2 by 

inclusion of metallic cation dopants which can control the anion vacancy and Ce3+ cation 

concentrations.11 Doping can improve the sintering properties of CeO2, by stabilizing the CeO2 

surface area and crystallite size.12 Doping with divalent and trivalent dopants leads to formation 

of oxygen vacancies, and modification of oxygen mobility and ionic conductivity.13 

Unsurprisingly, this is reflected in changing the redox properties and oxygen storage capacity 

of the CeO2. CeO2 is a potentially important material in optical and optoelectronic applications 

but exhibits weak emission characteristics that limit its performance.14 Doping with lanthanide 



cations such as europium (Eu) can enhance the visible emission of CeO2 nanoparticles through 

an increase in the concentration of oxygen vacancies.15, 16 Europium is a convenient dopant 

since the ionic radius of the trivalent europium17 (0.1066 nm) is between that of Ce3+ (0.1143 

nm) and Ce4+ (0.097 nm) and this allows for extensive solubility in the CeO2 fluorite structure. 

The Eu3+/Eu2+ redox pair has a potential of about 0.36 V and is expected to create and stabilize 

the oxygen vacancies for low Eu3+/Ce atomic ratios.18 This property promotes charge transfer 

from oxygen ions through the lattice oxide and provides the material with high oxygen ion 

conductivity.19 If energy is transmitted from this charge transfer state to lanthanide ions 

characteristic emissions are expected to be observed.20 

As the morphological properties of CeO2, such as the particle size, shape and specific 

surface area, usually determine the performance, various synthetic methods, such as co-

precipitation,21, 22 microemulsion,23 flow,24 reverse precipitation,23 sol–gel processes25 and 

electrochemical routes,26 have all been used to prepare ultrafine CeO2 powder with controlled 

dimension. Several precipitants and surfactants have also been used to control the particle size 

and homogeneity such as ammonium hydroxide, urea and ammonium hydrogen carbonate. 

However, through all of the above methods, nanocrystalline CeO2 is more difficult and 

inconvenient to obtain; calcination is usually necessary for the crystallization of amorphous 

samples and/or the removal of the surfactants. It is also difficult to synthesize highly uniform 

and well-dispersed nanocrystalline CeO2 on the basis of the following reasons. Firstly, it is not 

easy to choose the appropriate precursor complexes and the crystalline temperatures for rare-

earth oxides are relatively high. Second, the agglomeration of nanocrystals is very common 

because the nanocrystals tend to decrease the exposed surface to lower the surface energy.27 

Solvothermal methods28, 29 that do not involve catalysts, surfactants or templates provides a 

more promising option for the large scale production of high purity nanoparticles as they are 

simple, fast and less expensive. Moreover, solvothermal method possesses advantages of being 



single step, low temperature, controlled composition and morphology as well as being less 

sensitive to particulate aggregation and producing crystalline nanocrystals.  

Interestingly, despite the wealth of work, in many cases, the understanding of the defect 

science in many systems is only poorly understood. The role of anion defects to charge 

compensate low valency cations in the CeO2 lattice is accepted but the role of dopants and their 

effect on neighbouring cerium cations is less clear and this paper reveals an interesting 

relationship. Here, different concentrations of europium ions were successfully introduced into 

the cubic phase CeO2 lattice using solvothermal techniques. In our previous work,30 a detailed 

study was carried out to investigate the defect structure and dynamics of Eu doped ceria 

nanoparticles by using positron annihilation spectroscopy. Here, this work is extended to study 

the defect chemistry by different spectroscopic techniques and EELS was used to study the 

concentration and distribution of the dopant ions. Additionally, the morphological and 

structural evolution and optical properties were correlated as a function of concentrations of 

europium doping as well as with further annealing.  

2. EXPERIMENTAL SECTION 

Materials. Europium (III) nitrate pentahydrate [Eu(NO3)3.5H2O, 99.999%], cerium (III) 

nitrate hexahydrate [Ce(NO3)3.6H2O, 99.999%], anhydrous ethanol (≥99.9%), absolute ethanol 

(≥99.8%) and 28% aqueous ammonia were purchased by Sigma-Aldrich and used as received. 

Synthesis of europium doped CeO2 nanoparticles. For the solvothermal synthesis of the 

CeO2 nanoparticles, a closed cylindrical Teflon lined stainless steel chamber with 45 ml 

capacity was used. 0.1 M (1.52 g) of Ce(NO3)3.6H2O and an  appropriate amount of ammonia 

(1-2 g) were dissolved in 35 ml of anhydrous ethanol in a Teflon bottle. This mixture was 

stirred for 5 min to which was added different concentrations of Eu(NO3)3.5H2O (0.3-50 

atom% relative to cerium). The solution was stirred for another 15 min with the formation of 

milky slurry. Subsequently, the closed Teflon chamber was transferred into a preheated oven 



and was subjected to solvothermal treatment at 180 °C for 12 h. Yellow precipitates were 

collected, washed with deionized water and absolute ethanol several times by centrifugation, 

followed by drying at 50 °C in air overnight. Samples with varying concentrations of europium 

are represented as CEEUX, where X = 0, 0.2, 0.8, 1.5, 3.9, 7.6, 13.9, 19.2, 24.6 and 29.2 are 

the determined atom % of Eu.  

Characterizations. Powder x-ray diffraction (XRD) patterns were recorded on a 

PANalytical MPD instrument using an Xcelerator detector and Cu Kα radiation source. Total 

reflectance x-ray fluorescence spectroscopy (TXRF) was performed to obtain the actual Ce:Eu 

atomic ratio of the samples using Bruker S2 Picofox instrument. Morphologies and sizes were 

studied by Transmission electron microscopy (TEM, JEOL JEM 2100) operated at a voltage 

of 200 kV. For TEM imaging, samples were dispersed in anhydrous ethanol by ultrasonication, 

coated on copper grids and dried. Elemental maps were obtained with a FEI Titan TEM 

equipped with a magnetic sector electron energy-loss spectrometer and an energy dispersive X 

ray detector. X-ray photoelectron spectroscopy (XPS) was carried out on a VSW Atomtech 

system (Al Kα radiation at 50 eV pass energy) instrument. For optical absorption 

measurements, powder samples were dispersed in ethanol and the absorption spectra were 

recorded with a spectrophotometer (Cary 50). Photoluminescence measurements were carried 

out at room temperature using 325 nm as the excitation wavelength with a luminescence 

spectrometer (Perkin Elmer LS 50 B). 

3. RESULTS 

Dopant ion concentration by TXRF. The presence and the actual concentrations of 

europium ions in the cerium oxide powder was confirmed by TXRF (see supporting 

information) and summarized in Table 1. In all samples, the actual incorporation of europium 

concentration was found to be lower than that added during synthesis. This is normal and is 

explained by lower solubility of the europium cations in basic conditions. 



Structural characterization by XRD. Crystal structures of the as-prepared samples were 

determined from the XRD patterns shown in Figure 1a. XRD patterns exhibit x-ray diffraction 

peaks which can be indexed to a cubic fluorite phase (JCPDS no. 04-0593) of ceria. The 

strongest XRD peak for all the samples was ascribable to the (111) plane of cubic CeO2. The 

relative peak intensity of the remaining lattice planes varied with the change in doping 

concentrations. The existence of higher order features indicates good solid solutions were 

formed throughout the composition range. The broad nature of the peaks reveals the 

nanocrystalline nature of the samples. The patterns did not show any extra peaks, indicating 

that the samples are good solid solutions and there is no secondary phase indicative of europium 

oxides. The crystallite size was estimated from XRD peak broadening using the Scherrer 

equation, 

0.9

cos
d



 
      Eq. 1 

 where d is the crystallite size, λ is the wavelength of Cu Kα radiation, β is the full-width at 

half maximum (FWHM) of the diffraction peak and θ is the diffraction angle. Figure 1b(i) 

shows the variation of crystallite size with doping concentrations. A sharp decrease in the 

crystallite size was observed with increasing the doping concentration up to 7.6 % and becomes 

almost constant with further doping. The decrease in crystallite size suggests that the dopant 

introduces significant lattice strain (the ionic radius of Eu3+ (0.107 nm) is about 10 % larger 

than that of Ce4+ (0.097 nm)31) and this reduces ion transport and sintering as noted previously 

for doped CeO2.
32 The measured lattice parameter of undoped CeO2 was found to be 0.542 nm 

somewhat higher than that reported for bulk CeO2 (0.541 nm) but may be due to lattice 

expansion due to the presence of anion vacancies resulting from the preparation.23 Figure 1b(ii) 

shows the variation of lattice parameters with doping concentrations. An initial decrease in the 

lattice parameter was observed with increase in europium doping up to 1.5 % but increases 

upon further doping. The expansion of the lattice with increasing dopant concentration is 



consistent with the substitution of the smaller Ce4+ ions by the larger Eu3+ ions. Similar trend 

was reported due to incorporation of another trivalent dopant Gd3+ in ceria as the ionic radius 

of Gd3+ is 0.1053 nm, higher than that of Ce4+ ions.33, 34 The increase in lattice parameter is 

mirrored by the decrease in crystallite size almost exactly confirming the relationship of these 

two effects. The relationship of both parameters is not linearly dependent on the dopant 

concentration but, rather, tends towards a limiting value. This is not consistent with a random 

substitution of CeO2 cations with europium cations and suggests this is at least a locally ordered 

arrangement. The small but reproducible decrease in the lattice parameter at low dopant 

concentrations is consistent with a surface-tension type effect at very small crystallite sizes as 

discussed by us previously.23 It is asserted that as the crystallite size decreases very rapidly at 

low dopant concentration, the lattice contraction due to surface tension exceeds the small 

expansion due to europium addition. Indeed, the measured strain does appear to increase with 

europium loading as shown in Table 2. Table 2 summarizes the variation of crystallite size, 

lattice parameters and lattice strains with europium concentrations. 

The as-synthesized samples were annealed at different temperatures to study structural 

evolution. Figure 1c shows illustrative XRD patterns of CEEU7.6 annealed at different 

temperatures. As above, only the fluorite structure was present in all scans suggesting good 

solid solutions were formed at all temperatures. The existence of small amounts of europium 

could be dispersed at the surface of CeO2. The XRD reflections peak widths and the 

background signal reduce as the calcination temperature is increased consistent with grain 

coarsening. Table 2 summarizes the variation of crystallite size, lattice parameters and lattice 

strains for sample CEEU7.6 annealed at different temperatures. 

Composition and Oxidation state determination by XPS. XPS was used to study 

composition and valence states of the undoped and doped samples. The recorded XPS spectra 

were charge-corrected with respect to an adventitious C 1s signal at 285 eV. Representative 



survey spectra of the CEEU0 and CEEU7.6 samples reveal the presence of cerium, oxygen and 

carbon as well as europium for the doped samples (Figure 2a). There is a significant carbon 

content which is typical of adventitious carbon arising from atmospheric exposure. No other 

significant contamination was detected. The Ce3d photoelectron spectra of cerium compounds 

can be used to identify cerium valence states but the spectra are complicated because of final 

state effects involving hybridization of the Ce4f orbitals with O2p orbitals and fractional 

occupancy of the valence 4f orbitals.35 Because of these effects, electron transfer from O2p to 

Ce4f orbitals can occur during photoemission giving rise to the appearance of multiple 

oxidation states. Thus, the Ce 3d5/2 photoelectron spectrum has three principle features (for 

each spin-orbit doublet) in the case of CeO2 and two for Ce2O3.
36 In this way, a mixed valence 

sample can contain ten peaks altogether for overlapping Ce 3d5/2 and Ce 3d3/2 spin-orbit 

bands.37 These peaks are usually described by nomenclature developed by Burroughs et al.38 

U, U//, U/// and V, V//, V/// (note states labelled U or V refer to 3d3/2 and 3d5/2 respectively) are 

characteristic of Ce(IV)3d final states; while U0, U
/ and V0, V

/ refer to Ce(III) 3d final states. 

The high binding energy doublet V////U/// at 898.2 eV and 916.4 eV are assigned to a Ce(IV) 

final state of 3d94f0O2p6. Doublets V///U// at 888.4 eV and 907.6 eV were attributed to the 

hybridization state of Ce(IV)3d94f1O2p5, and doublets V/U at 882.3 eV and 901.1 eV 

correspond to the state of Ce(IV)3d94f2O2p4. Doublets V//U/ and V0/U0 are due to a mixture of 

Ce(III)3d94f2O2p4 and Ce(III)3d94f1O2p5 configurations at 886 eV, 904.6 eV and 880.3 eV, 

899.2 eV respectively.39 By comparison to previous work it can be concluded that the Ce3d 

spectrum for the undoped sample indicates it is essentially a stoichiometric CeO2 structure 

(Figure 2b). The Ce3d photoelectron spectra for the doped samples exhibits features which can 

be assigned to the presence of Ce(III) states (Figure 2b). Most obvious is an increased intensity 

at around 886 eV and 904 eV (marked with arrows in Figure 2b) and a reduction in relative 

peak intensity for the feature around 918 eV. It is clear that these contributions increase with 



dopant concentration. Figure 2c is curve-fitted data for the Ce3d spectrum of sample CEEU7.6 

and is consistent with a mixed valence CeO2 material. Other materials gave similar data. Curve-

fitting of the spectra from the samples allows quantification of the atomic% of Ce(III)40 using 

Equation 2 and is summarized in Table 2 for all the samples.  

3 0 0

0 0

[ ]
U U V V

Ce
U U V V U U U V V V
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

             
   Eq. 2 

From the data provided in Table 2, it is seen that the concentration of Ce3+ increases linearly 

with europium addition. Indeed, if the actual europium concentration is compared to the 

measured Ce3+ concentration, it can be seen that around one Ce3+ cation is created for every 

Eu3+ addition through the formation of oxygen vacancy (V0
••). This is somewhat unexpected. 

Indeed, according to results gathered in Table 2, highest Ce3+ contents are found for highest 

strain values.  

Using Kröger–Vink notation the generally accepted mechanism for dissolution of a trivalent 

lanthanide oxide such as europium oxide into ceria can be described by the equation: 

  2
'

32 222 CeOVEuOCeOEu OCe

x

OCe
x  ••

  Eq. 3 

where, Eu′Ce signifies a dopant substitution (of a cerium cation) and V0
•• an oxygen vacancy. 

In this way, each Eu ion dopant replaces host cations (Ce4+) by Eu3+ and for every two Eu3+ 

and extends the lattice.  The substitution also results in the formation of an oxygen vacancy to 

satisfy charge neutrality. Note, that having an effective charge of opposite signs, oxygen 

vacancies and trivalent dopants can attract each other.  Chemically, this vacancy mechanism 

can be represented CeO2 + x/2Eu2O3 → Ce1−xEuxO2−x/2 where the resultant solid solution has 

a structure similar to that of fluorite (CeO2) apart from a distribution of anion vanacies. 

However, this does not reflect the formation of Ce3+ cations observed here and a more 

reasonable representation is given by: 

2
''

32 2/122222 OOVEuCeCeOEu x

OOCeCeCe
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  Eq. 4 



This shows that trivalent europium cation is accompanied by the production of a cerium 

trivalent cation (plus an additional vacancy for each of these and gas phase oxygen). In simple 

chemical terms the solid state solution can be written stoichiometrically as Ce1−xEuxO2−x. This 

implies that there is additional thermodynamic stability of defect clusters such as Eu3+-Vo-Ce3+ 

compared to Eu3+-Vo-Ce4+. Note that these are simple representations of what will actually be 

3D structural arrangements and are used for brevity here. The existence of this kind of defect 

clustering was reported for large to small (La or Lu) dopant incorporation into the ceria lattice 

in order to achieve electrostatic stabilization of the crystal.41, 42 This kind of vacancy 

agglomeration was also observed by us before30 which increases with increasing the dopant 

concentration. This higher content of vacancies at the surface for highly doped samples might 

decrease the reducibility of the compounds in order to preserve the equilibrium of reaction. 

This is evident from Table II which depicts the rate of formation of Ce3+ decreases with higher 

doping concentrations as proposed for Gd3+ dopant.33 Recent work by Nolan et al43 suggest 

that O- species may also be stable in doped CeO2 fluorite structures although there is no direct 

evidence for this mechanism here. 

Ceria-based nanopowders, are important for their surface redox capabilities and their 

general catalytic activity.44 Their surface redox capability possibly incorporates switching 

between Ce4+ and Ce3+ oxidation states through an ability to absorb and release oxygen by 

generating oxygen vacancies in the ceria lattice. The experiment was performed in a closed 

solvothermal chamber for which it can be considered that the concentration of oxygen in the 

atmosphere around the sample is orders of magnitude lower than the concentration of oxygen 

at the surfaces of CeO2 particles.45 This gradient of concentration might be the driving force 

for the oxygen removal from the surface of the particle which reduces Ce4+ into Ce3+.  

The possibility of oxidizing some of the Ce3+ ions to Ce4+ at higher temperatures is revealed 

in Figure 2d which shows the Ce3d spectra of the CEEU7.6 sample annealed at 500 °C, 700 



°C and 900 °C for 2 h. These data are also indicative of mixed Ce(III) and Ce(IV) valence 

states but at reduced concentration compared to the non-calcined form suggesting that the 

system has a well-defined redox chemistry. Table 2 describes that the concentrations of Ce3+ 

ions decreases with the increase in annealing temperature. It is suggested that some of the 

surface oxygen vacancies were oxidized by the high temperature exposure to atmospheric 

oxygen which transforms Ce3+ ions into Ce4+ ions. The particle sizes also increases with the 

increases in annealing temperature through particle agglomeration. Thus, the annealing step 

results an increase in particle sizes and changes in oxidation state.  

The valence state of europium is confirmed by Eu3d XPS spectrum. All samples gave 

similar spectra and representative Eu3d data are shown in Figure 2b (inset) for sample 

CEEU7.6. The two characteristic peaks at 1134 (3d5/2) and 1163 eV (3d3/2) correspond to the 

Eu3+ state. Previous work has shown that the binding energy shift of Eu3d features for Eu3+ 

and Eu2+ are around 10 eV46 and this assignment is rather clear. 

Morphological and compositional studies by TEM. TEM images of the undoped and 

doped CeO2 samples confirm the nanocrystalline nature of the samples. Figure 3a, b, c and d 

represent TEM micrographs for the CEEU0, CEEU0.8, CEEU7.6 and CEEU19.2 samples. 

There was no obvious particulate morphology change and all the samples were composed of 

small agglomerated crystallites with an irregular pseudo-spherical shape of uniform size 

distribution and a diameter between 5 to 10 nm, similar to that estimated from XRD. The mean 

diameters measured confirm a size decrease with increased europium concentration. Clearly 

visible lattice fringes suggest a high degree of crystallinity of the particles for all the samples. 

Analysis suggests the facets are (111) planes consistent with other work and known 

stabilities.47, 48 The measured interplanar distance is 0.32 nm corresponds to the (111) plane of 

fluorite cubic structure of CeO2. The SAED patterns shown in the inset of Figure 3 also indicate 



high degrees of crystallinity and are consistent with (111), (220) and (311) reflections from a 

fluorite phase. 

A highlight of this work was the use of high spatial EELS to demonstrate the location of Eu 

in these materials and confirm solid state solution. Figure 4a and b shows the dark field TEM 

image and Ce Lα, Eu Lα, O Kα elemental mapping of a nanoparticle of 4.5 nm in diameter for 

the sample CEEU7.6 and CEEU19.2 respectively. The image (red square box) represents the 

CeO2 nanoparticle which provides a reference to locate the area of the elemental map. The 

mapping was obtained as a pixel-by-pixel mapping of the integrated intensity of the EELS 

spectrum. The spectrum taken from few of the nanoparticles in different area was essentially 

the same. The elemental maps confirm the presence of Eu, Ce and O throughout the 

nanoparticle.22, 49 This results indicate that the Eu incorporation inside the ceria nanocrystal 

and not present as a free species within the powdered sample and suggest little surface 

segregation etc. Corresponding EDX spectrum also confirms an increase in the intensity of the 

Eu peak with the increment of doping concentrations.  

Optical properties. Absorption spectra of nanomaterials can provide useful analysis of 

nanophase oxide materials. Figure 5 shows the UV-Visible spectra of undoped and europium 

doped CeO2 nanoparticles. It can be seen that the absorbance peaks shifts towards higher 

wavelength (red-shift) with the increasing europium content, characteristic of electron-phonon 

coupling phenomenon50 and decreasing nanocrystallite sizes increase electron-phonon-

coupling coefficients. These effects derive from changes in the band structure with reduced 

dimension which modify the effective mass/mobility and lattice scattering of the carriers and 

result in a red-shift of the emission band.51 Theoretically, absorbance band edge shifts towards 

the shorter wavelength is demonstrated as a blue-shift. The size of the particle is readily 

influenced by the quantum confinement consequences. It is well known that decreasing size of 

materials increases with the electron-phonon-coupling coefficients. In certain systems, 



electron-phonon coupling could be strong enough to overcome the spatial confinement to 

determine the energy of excitons. It determines or modifies the effective mass of carriers and 

the style of carrier scattering by the lattice, leading to a red-shift of the emission band. It has 

also been suggested that the red-shift of the absorption bands observed in nanocrystalline CeO2 

can be explained by the formation of localized states within the band gap owing to oxygen 

vacancies and an increase of the Ce3+ ion concentration.52, 53 This phenomenon is related to the 

shift of absorbance band towards longer wavelength. Chowdhury et. al. and other authors 

reported the similar red shift in wavelength with the increase in Ce3+ concentration.52-54 The 

band gap of undoped and europium doped CeO2 samples are calculated from UV-Vis spectra 

and listed in Table 2.  

Photoluminescence (PL) spectroscopy is an effective method to determine the optical 

properties of materials and the defect chemistry associated with those properties.31, 55 Figure 6a 

shows the excitation spectra for emission at 608 nm of undoped and europium doped CeO2 

samples. CEEU0 does not show any emission peak around the excitation energy but well-

defined features around 466 nm characteristic of europium 4f-4f transitions56 were observed in 

all europium doped samples. Because the O2--Eu3+ charge transfer lies at much shorter 

wavelengths and CeO2 has a band gap around 3.3 eV (∼470 nm), the broad peak is related to 

mainly Ce4+-O2- charge transfer57 with some overlap with the intraconfigurational Eu 4f-4f 

transitions. As evident from Figure 6a, with increasing europium content the intra 4f6 transition 

bands of Eu3+ become generally stronger to a maximum of 19.2 % beyond which the intensity 

decreases due to a concentration quenching effect.58 Figure 6b describes the excitation spectra 

of CEEU7.6 with different annealing temperatures. The intensity of the peak at 466 nm 

increases with the annealing temperature because Ce4+-O2- charge transfer becomes 

predominant due to the formation of more Ce4+. 



Figure 7a, b shows the emission spectra of various europium doped and annealed CeO2 

samples for excitation at 466 nm. As seen in the higher wavelength excitation, with increasing 

Eu3+ concentration, there is an increase in intensity up to 19.2 % a further increase in dopant 

concentration decreases the Eu3+-Eu3+ distance, indicating an effective energy transfer between 

the neighbouring ions. Hence, the excited state is quenched, scattering the energy non-

radiatively and the emission intensity decreases. The emission spectra reveal a characteristic 

Eu3+ emission and can be assigned to various transitions 5D0-
7FJ (J=0, 1, 2 etc.) that reveal the 

local environment of the Eu3+ ion. The multiple peaks in the spectra are due to the splitting of 

the Eu3+ 4f shell. The Judd-Ofelt (J-O)59, 60 theory is the most useful method in the analysis of 

spectroscopic studies of lanthanide ions in different hosts. As per J-O theory, the emission lines 

are a cumulative effect of magnetic dipole (MD) transition and electric dipole (ED) transition, 

depending on the specific environment of Eu3+ in any matrix. According to the J-O theory, the 

ED transition (5Do-
7F2) centered at about 611 and 629 nm, is only allowed in the absence of 

inversion symmetry and is hypersensitive to the local electric field. On the other hand, the MD 

transition (5Do-
7F1) with emission at 591 nm is a magnetic dipole allowed transition, which is 

insensitive to the crystal environment. CeO2 has a cubic fluorite structure with every Ce ion 

surrounded by eight equatorial oxygen ions in Oh symmetry. The emission intensity of Eu3+ is 

very critical to its location in the lattice, that is, the type of environment around Eu3+ ions. 

When Ce4+ is replaced with Eu3+, the symmetry can be lowered or increased depending on the 

site occupied by the dopant. In the present case, the ED transition intensity was found to be 

higher, indicating that Eu3+ mainly occupies the lattice sites. The absence of any forbidden 

electric or magnetic dipole transitions also indicates a high symmetry Eu site suggesting simple 

substitution with fluorite Ce4+ sites.  

The emission intensity was found to increase with the increase in annealing temperature 

(Figure 7b). The temperature insensitivity of the form of the PL emission peaks confirms that 



Eu3+ ions occupy fluorite structure cation sites substitutionally at all temperatures. The 

similarity in the data also demonstrates that the interaction between the europium-dopant and 

oxygen vacancy resulting from charge compensation Eu3+–Ce4+ is neither enhanced nor 

diminished with the increasing temperature. However, the increase in intensity and narrowing 

of peaks is due to the more crystalline-like environment obtained at higher calcinations. 

4. CONCLUSIONS 

In summary, europium doped CeO2 nanoparticles have been successfully synthesized by a 

single step simple solvothermal process. The as-formed nanoparticles are highly crystalline 

and their sizes varied in the range of 3-9 nm depending on the europium concentrations. An 

increase in the measured lattice parameter was observed due to inclusion of the larger europium 

cations but at very small doping concentrations, lattice contraction was observed due to surface 

tension-type effects. The europium ion site occupancy through the substitution of Ce4+ ions in 

the cubic symmetric lattice was verified and found to be less compared to the dopant ion added 

during synthesis. The insertion of the rare earth cations in the CeO2 structure provokes an 

increase in the oxygen vacancies concentration through the promotion of the non-

stoichiometric condition of the cerium oxide, by the reduction of Ce4+ to Ce3+.  The crystal 

structure and spectroscopic analysis reveals almost similar concentrations for Ce3+ and Eu3+ 

suggest the europium species are mainly located in the lattice sites. The incorporation and 

homogeneous distribution of europium ions in the ceria nanoparticle is also confirmed. The 

band gap of the doped CeO2 nanocrystals were found to decrease with the doping due to the 

formation of localized states within the band gap owing to the increase in oxygen vacancies 

and Ce3+ concentrations. The PL spectra indicate the high symmetry europium ions substitution 

with Ce4+ which is not affected with the calcinations temperature. The high temperature 

calcinations reduce the defect density, increasing the crystallite size thereby increasing the 

degree of crystallization. The ability to tailor the ionization state of cerium and the oxygen 



vacancy concentration in CeO2 has applications in a broad range of fields, which include 

catalysis, biomedicine, electronics, and environmental sensing. 
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Table 1: Dopant concentration added in solution and actual concentration in solid measured 

by TXRF 

Sample Europium in solution 

(mol %) 

Europium in solid 

(mol %) 

CEEU0.2 0.3 0.2 

CEEU0.8 1 0.8 

CEEU1.5 2 1.5 

CEEU3.9 5 3.90 

CEEU7.6 10 7.62 

CEEU13.9 20 13.94 

CEEU19.2 30 19.23 

CEEU24.6 40 24.58 

CEEU29.2 50 29.23 

 

 

 

 

 

 

 

 

 



Table 2: Variation of particle size, band gap, Ce3+ ions concentration, lattice parameter and 

strain measurements with different europium concentrations and annealed ceria nanoparticles 

 

Sample 

Europium in 

solid sample 

(mol %) 

Annealing 

temp. 

 (° C)  

Particle 

size 

(nm) 

Band 

gap 

(eV) 

% 

Ce3+ 

Lattice 

parameter 

a (Å) 

Strain 

(x10-3) 

CEEU0 Undoped  8.77 3.34 0 5.4201 1.65 

CEEU0.2 0.2  8.19 3.26 - 5.4195 1.68 

CEEU0.8 0.8  7.76 3.21 - 5.4188 1.75 

CEEU1.5 1.5  6.99 3.17 1 5.4171 1.91 

CEEU3.9 3.9  5.2 3.13 4 5.4289 3.26 

CEEU7.6 7.6  5.07 3.11 7 5.4301 3.49 

CEEU13.9 13.9  4.83 3.07 14 5.4328 3.98 

CEEU19.2 19.2  4.8 3.05 19 5.4332 4.06 

CEEU24.6 24.6  4.8 3.03 24 5.4335 4.58 

CEEU29.2 29.2  4.8 3.02 29 5.4338 5.07 

CEEU7.6-500 7.6 500 5.31 3.12 5 5.4270 2.89 

CEEU7.6-700 7.6 700 9.48 3.17 4 5.4249 2.29 

CEEU7.6-900 7.6 900 27.23 3.30 4 5.4211 1.81 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

Figure 1. (a) XRD spectra of undoped and Europium doped cerium oxide samples (b) 

Crystallite size [i] and lattice parameter [ii] variation with increase in Europium concentration. 

(c) XRD spectra of CEEU7.6 sample annealed at different temperatures. 
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Figure 2. (a) XPS survey spectra of CEEU0 and CEEU7.6 samples. (b) Ce 3d spectra of 

CEEU0, CEEU0.8, CEEU7.6 and CEEU19.2 samples. Inset shows the Eu 3d spectrum of 

CEEU7.6 (c) Cerium 3d spectra of CEEU7.6 (d) Ce 3d spectra of CEEU7.6 sample annealed 

at various temperatures. 
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Figure 3. TEM images of undoped and 

europium doped CeO2 nanoparticles (a) CEEU0 (b) CEEU0.8 (c) CEEU7.6 (d) CEEU19.2. 

(Inset shows corresponding SAED) 

 

 

 

 

 

 



 

Figure 4. Ce-L, Eu-L, O-K mapping of europium doped CeO2 and respective EDX spectrum 

recorded on a single nanoparticle in the marked box (a) CEEU7.6 (b) CEEU19.2. 

 

 

 

 

 

 

 

 

 

 

(a) (b)



 

 

 

 

 

 

 

 

 

 

 

Figure 5. UV-Vis absorption spectra of undoped and Europium doped CeO2 nanoparticles. 
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Figure 6. Excitation spectra with emission at 

608 nm for (a) as prepared samples (b) CEEU7.6 sample annealed at various temperatures.  
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Figure 7. Emission spectra with excitation at 466 nm for (a) as-prepared samples (b) CEEU7.6 

sample annealed at various temperatures. 
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