Title	Effect of strain and many-body corrections on the band inversions and topology of bismuth
Authors	König, Christian;Greer, James C.;Fahy, Stephen B.
Publication date	2021-07-15
Original Citation	König, C., Greer, J. C. and Fahy, S. (2021) 'Effect of strain and many-body corrections on the band inversions and topology of bismuth', Physical Review B, 104(3), 035127 (10pp). doi: 10.1103/ PhysRevB.104.035127
Type of publication	Article (peer-reviewed)
Link to publisher's version	10.1103/PhysRevB.104.035127
Rights	© 2021, American Physical Society. All rights reserved.
Download date	2024-04-20 05:42:25
Item downloaded from	https://hdl.handle.net/10468/11705
University College Cork, Ireland Coláiste na hOllscoile Corcaigh	

Supplemental Material: Effect of strain and many-body corrections on the band inversions and topology of bismuth

Christian König, ${ }^{1}$ James C. Greer, ${ }^{2}$ and Stephen Fahy ${ }^{1,3}$
${ }^{1}$ Tyndall National Institute, University College Cork, Lee Maltings, Cork T12 R5CP, Ireland
${ }^{2}$ Nottingham Ningbo New Material Institute and Department of Electrical and Electronic Engineering, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo, 315100, China
${ }^{3}$ Department of Physics, University College Cork, College Road, Cork T12 K8AF, Ireland (Dated: July 9, 2021)

We here present some more data which may be of interest to the reader. In particular we plot the fitted values for the internal displacement and show how it affects the main features of the electronic structure. The LDA results are also shown for comparison with the GGA. Furthermore, the remaining $\mathrm{G}_{0} \mathrm{~W}_{0}$ results for the overlap are included for completeness. Finally, the band structures of the expanded cells in Fig. 2 of the main text are provided in a separate file.

Figure 1. Plot of the internal displacement as a function of the hexagonal lattice parameters a_{h} and c_{h}. We show the value of $2 u$, i.e. the smallest distance between the two basis atoms along the trigonal axis. For $2 u=0.5$ there is no displacement of the atom from the middle of the cell. As we can see, under the assumption of constant volume, keeping u fixed is a good assumption.

Figure 2. The effect of the internal displacement on (a) the L gap and (b) the indirect T-L overlap is shown. The results for the experimental displacement of $2 u=0.46778$ are highlighted with a circle. The remaining two cell parameters a_{r} and α were not changed and we used their literature values for all calculations. We find that the optimized $2 u=0.47131$ is close to the experimental value and the minimum L gap and that a small variation, e.g. due to imperfect relaxation, is likely to increase the gap but otherwise does not have dramatic effects. The overlap on the other hand changes more dramatically. Approaching $2 u=0.5$ brings the structure closer to the cubic limit (although still $\alpha \neq 60^{\circ}$) and the L gap vanishes completely.

Figure 3. LDA results for the L gap and T-L overlap. There is no significant qualitative difference to the GGA.

Figure 4. Plot of the indirect overlap with $\mathrm{G}_{0} \mathrm{~W}_{0}$ corrections.

