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ABSTRACT

The in vitro bioactivity of 5 kDa ultrafiltrationggmeate fractions of casein hydrolysates
produced using different enzymes were comparedeiRe\phase ultra-performance liquid
chromatography and gel permeation chromatograpbweth that the permeates had different
physicochemical properties (molecular mass ande#egf hydrolysis). The Flavourzyme®
permeate had the highest activity in the 2,2’-azis@3-ethylbenzothiazoline-6-sulphonic
acid) (ABTS) assay. Cellular antioxidant and immmuoolulatory assays showed that none of
the permeates exhibited in vitro antioxidant atgiwvhile all permeates significantly <

0.05) decreased interleukin-6 (IL-6) productiorCionA-stimulated Jurkat T cells at 0.50%
(w/v) and LPS-stimulated RAW264.7 cells at 0.05 8risD% (w/v). Three permeates,
obtained using Flavourzyme®, Flavorpro Whey anggiy, also significantlyR < 0.05)
decreased IL{1 production at 0.05% (w/v) in RAW264.7 cells. Westblot analysis

showed that all permeates significantly decrealseaxpression of the NkEB subunit, p65,

in RAW264.7 cells indicating that anti-inflammatagtivity may be associated with this

pathway.
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1. Introduction

Cardiovascular disease (CVD), in particular atheeossis, is associated with
elevated inflammation and oxidative stress. Druggduto treat these conditions may produce
unwanted side effects, therefore natural altereatte synthetic drugs are constantly sought
(Chakrabarti, Jahandideh & Wu, 2014). Bioactivetjolgs are small protein fragments that
have the potential to exert beneficial health éffé vivo (Urista, Fernandez, Rodriguez,
Cuenca & Jurado, 2011). Bioactive peptides, derfuaah the milk protein casein,
demonstrate numerous bioactivities such as antitgq&ve, opioid and antimicrobial
activity (Di Pierro, O’Keeffe, Poyarkov, Lomoling, FitzGerald, 2014; Kazlauskaite et al.,
2005; Nongonierma, O’Keeffe, & FitzGerald, 2016gRim, Aherne-Bruce, O’Sullivan,
FitzGerald, & O’Brien, 2009; Tang et al., 2015;viadi, Zhang, Lopez-Toledano, Clarke, &
Deth, 2016; Yamada et al., 2015). The enzymes nsétd generation of these peptides, as
well as the length and amino acid sequence ofabtant peptides influence the
bioactivities observed (Power, Jakeman, & FitzGEra013).

Casein hydrolysates with cellular antioxidant atfihave been reported in numerous
studies. Garcia-Nebot, Cilla, Alegria, and Barb@#l1) reported that
caseinophosphopeptides showed cyto-protectivetsfégminst HO.-induced oxidative
stress in Caco-2 cells. Xie, Wang, Ao, and Li (20Eported that an Alcalase® generated
hydrolysate protected HepG2 cells fronQainduced oxidative damage. Hydrolysis of
bovine casein glycomacropeptide with papain was r@ported to protect against®p-
induced oxidation in RAW264.7 cells, along withreasing the level of cellular antioxidant
enzymes (Cheng, Gao, Song, Ren, & Mao, 2015). mmattof Jurkat T cells with casein
hydrolysates generated using different mammalimtr bacterial enzymes has previously

been reported to increase cellular antioxidantlée(leahart et al., 2011; Phelan et al., 2009).
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More recently, the hydrolysis of casein using Prel®, generated a hydrolysate which
prevented HO.-induced DNA damage in U937 cells (Cermefio, Fitaikr& O'Brien,
2016).

Casein hydrolysates have also been studied faritheaunomodulatory and anti-
inflammatory potential. The tryptic hydrolysis adsein generated a hydrolysate with
immune enhancing effects in mouse macrophages g§Kskaite et al., 2005), whifecasein
and several peptides withfiacasein have been reported to decrease prolifaratimurine
spleen cells (Bonomi et al., 2011). Studies hase sported that the activity of N&B, one
of the major inflammatory signalling pathways, niegyreduced in cells exposed to casein
hydrolysates (Altmann et al., 2016; Malinowski, ilpt, Clawin-Radecker, Lorenzen, &
Meisel, 2014). The hydrolysis of casein using maitianabacterial or plant derived enzymes
has also been reported to have immunomodulatimgtsfon Jurkat T cells in other studies
(Cermeiio et al., 2016; Lahart et al., 2011; Phetaal., 2009). To the best of our knowledge,
no study has compared the cellular antioxidantaaridinflammatory activities of sodium
caseinate hydrolysates generated under the sandéions [hydrolysis time and
enzyme:substrate (E:S) ratio], using a range dkeplgtic preparations.

The aims of the present study were: (i) to genaaateexamine the physicochemical
characteristics of 5 kDa permeates of casein hysatés generated using seven different
proteolytic preparations, (ii) to compare the axitiant activity of the hydrolysates in vitro
and in HO,-challenged U937 cells; (iii) to determine cytotmty in RAW264.7 mouse
macrophages, Jurkat T cells and U937 lymphocytdgighto compare the
immunomodulatory activity of the 5 kDa permeateshef hydrolysates in RAW264.7

macrophages and Jurkat T cells.

2. Materials and methods
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2.1. Materials

Human Jurkat T cells, RAW264.7 mouse macrophagesiaman U937 lymphocytes
were purchased from the European Collection of Ahi@ell cultures (Salisbury, UK).
Foetal bovine serum (FBS) was purchased from logén (Paisley, Scotland, UK). Cell
culture plastics were supplied by Cruinn Diagnas{@ublin, Ireland). Sodium caseinate
(87.57% (w/w) protein) was from Arrabawn Co-op (@@pary, Ireland). Protease from
Bacillus licheniformigAlcalase® 2.4L), protease froAspergillus oryzaéFlavourzyme®z>
500 U g") and TPCK-trypsin were from Sigma-Aldrich (Wicklpweland). Prolyve 1000
was from Lyven Enzymes Industrielles (Caen, Fraaog) Flavorpro Whey, Promod 144MG
and Pepsin were all from Biocatalysts (Cefn Coed|ea, UK). All other cell culture
reagents and chemicals including concanavalin A&Jolipopolysaccharide (LPS) and

Trolox were purchased from Sigma-Aldrich, unledseotise stated.

2.2.  Generation of casein hydrolysates, determimatif the degree of hydrolysis and

ultrafiltration

Sodium caseinate, reconstituted at 10% (w/v) itilgid water, was equilibrated at 50
°C with gentle mixing for 1.5 h and the pH was a&tial to pH 7 (or pH 2 for peptic
hydrolysis). Enzymatic hydrolysis was carried osing a pH Stat (718 Stat Titrino,
Metrohm, Herisau, Switzerland) as previously désati(Spellman, McEvoy, O’Cuinn, &
FitzGerald, 2003). Hydrolysis was performed usiegen different proteolytic preparations
(Alcalase® 2.4L, Prolyve 1000, Flavourzyme®, FlguorWhey, Pepsin, TPCK-Trypsin and

Promod 144 MG) at industrially relevant E:S rati@23% for Alcalase® 2.4L, Prolyve 1000
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and Flavourzyme®, Flavorpro Whey and Promod 144 BIG3% for trypsin and 0.25% for
pepsin) for 4 h, except for the tryptic hydrolystitat was generated over 3 h.

Following hydrolysis, the enzymes were inactivdbgceating at 80 °C for 20 min.
Control samples were also included; (i) sodium icede was incubated at 50 °C without
enzyme and (ii) enzyme was incubated at 50 °C witBodium caseinate. These control
samples were also subjected to heating at 80 °€Canin after 4 h incubation. All samples
were freeze-dried (FreeZone 18L, Labconco, Kanstgs @SA) and stored at —20 °C until
use. The degree of hydrolysis (DH) of the hydralgsavas determined using the 2,4,6-
trinitrobenzenesulfonic acid (TNBS) method of Adiissen (1979) and as described by Le
Maux, Nongonierma, Barre, and FitzGerald (2016)cdfiltration (UF) fractions were
generated by passing the hydrolysate through a mamalhaving a nominal cut-off of 5 kDa
using a benchtop ultrafiltration system (Sartoflaipha, Sartorius AG, Goettingen,

Germany) as described by O'Keeffe and FitzGerdld4pand were freeze-dried as above.

2.3. Reverse phase ultra-performance liquid chragetphy and gel permeation high

performance liquid chromatography analysis of UFrpeates of casein hydrolysates

Freeze-dried hydrolysates/ultrafiltration permeatese reconstituted at 1 mg min
mobile phase A [0.1% trifluoroacetic acid (TFA)MS grade HO] and 7 yuL was separated
on an ACQUITY ultra-performance liquid chromatogmggUPLC) system (Waters, Milford,
Massachusetts, USA) at a flow rate of 0.2 pL hising an ACQUITY BEH 300 C18
column (2.1 x 50 mm, 14m; Waters, Dublin, Ireland). Mobile phase B wasX0.IFA in
80% ACN. Separation was achieved using a lineatigng 0—0.28 min 100% A; 0.28-45
min 100-20% A; 45-46 min 20—-0% A; 46—48 min 0% 849 min 0—-100% A; 49-51 min

100% A. Detector response was measured at 214 ehpegBneation high performance
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liquid chromatography (GP-HPLC) was performed a&viously described (Spellman,
O’Cuinn, & FitzGerald, 2009) with separation acl@éwthrough isocratic elution (mobile
phase: 0.1%TFA in 30% ACN at 1.0 mL rifjron a TSK G2000 SW column (600 x 7.5 mm
ID) connected to a TSKGEL SW guard column (75 xridrG ID) and the eluent was

monitored at 214 nm.

2.4. 2,2-azinobis(3-ethylbenzothiazoline-6-sulpba@cid) assay

The 2,2’-azinobis(3-ethylbenzothiazoline-6-sulptwacid) (ABTS") radical
scavenging assay was carried out as described ley &e(1999). The ABTSradical was
prepared by incubating ABTS solution (#jnwith potassium persulfate (2.454)) an
oxidizing agent, in a ratio of 1.0:0.5 (v/v) at 20 for 16 h in the dark. The radical was then
diluted using phosphate buffered saline (8,mpH 7.4) until an absorbance of 0.70 £ 0.02 at
a wavelength of 734 nm was achieved. Activity wgsorted based on a standard curve using
Trolox and expressed as pumol Trolox equivalentgpam of freeze-dried powder of
hydrolysate (FDP). The scavenging activity for esaimple was determined by three

independent experiments.

2.5. Oxygen radical absorbance capacity assay

The oxygen radical absorbance capa@RAC) assay was performed according to
the method of Zulueta, Esteve, and Frigola (2008) modifications as described by
O’Keeffe and FitzGerald (2014). The final ORAC vedunvere expressed @sol of Trolox
equivalents per mg of FDP and were the mean xtdr&lard error of three independent

determinations.
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2.6. Cell culture

Jurkat T and U937 cells were maintained in Royak Réemorial Institute (RPMI)
medium supplemented with 10% (v/v) foetal bovineise(FBS). RAW264.7 cells were
grown in Dulbecco’s Modified Eagle’s Medium (DMEMypplemented with 10% (v/v)

FBS. All cell lines were cultured in an atmosphefr€O.-air (5:95, v/v) at 37 °C and were
maintained in the absence of antibiotics. The dbi&iDa permeates of the casein
hydrolysates were solubilised to a concentratiohQ8f6 (w/v) using distilled deionised water,
sterile-filtered using a low protein binding 0.2& Durapor&" millex filter unit (Merck

KGaA) and diluted with sterile DMEM.

2.7.  Cell proliferation assay

Jurkat T, U937 and RAW?264.7 cells were exposeddoeasing concentrations of the
different 5 kDa permeates (0.05 to 5.0%, w/v) féh2in 96 well plates in a final volume of
200 pL. Cell proliferation was measured using tHé,3-dimethylthiazol-2-yl)-2, 5-
diphenyltetrazolium bromide (MTT) assay (MTT | pfetation kit, Roche Diagnostics;

Burgess Hill, West Sussex, UK).

2.8.  Alkaline single cell gel electrophoresis (conassay

U937 cells were used to assess the DNA protecfieets of the 5 kDa permeates in

oxidant challenged cells. Cells were seeded anaityeof 1 x 18cells mL* and exposed to

the permeates (0.05%, w/v) for 24 h. DNA damage tias initiated by exposing cells to 80
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umol L't H,0, for 30 min at 37 °C after which DNA damage waseassd using the comet

assay as previously described (Phelan et al., 2009)

2.9.  Cytokine production in Jurkat T and RAW264Ifsc

Jurkat T cells were seeded at a density of 2>c&ls mL* and simultaneously
incubated with ConA (25ug nil) and the 5 kDa permeates (0.50 and 0.05%, wh34d.
Following incubation, the quantity of interleukitL)-6), interferon (IFN)y, IL-2 and IL-10
in the media was measured by enzyme-linked immubesb assay (ELISA) (eBioscience,
Insight Biotechnology Ltd, Wembley, UK). RAW264:élls were seeded at a density of 0.2
x 10° cells mL* and simultaneously incubated with LPS (dglmL™ for IL-6 and tumour
necrosis factor (TNF); 2 ug mL* for IL-1B) and the 5 kDa permeates (0.050% and 0.005,
w/v) for 24 h. Following incubation, the conterfiteach of the three cytokines (IL-6, IB-1
and TNFe) in the media was measured using ELISA kits. Abance was determined at
450 nm with a reference wavelength of 570 nm (\&am ™ Flash Multimode Reader,

Thermoscientific, Waltham, MA, USA).

2.10. Western blotting

RAW264.7 cells were seeded at a density of 8%c#ls per dish in 60 mm dishes
and allowed to adhere overnight. Cells were thenuated using LPS (0.ig mL™?) and
treated with the permeates (0.05%, w/v) for 24 fherthis treatment, the RAW264.7 cells
were washed using ice cold PBS and lysed using RiFfer containing protease (Halt
protease inhibitor, Sigma 78439) and phosphatdsbiiars (1 m1 NaVQ,, 2.5 M Na,O;P,

and 2 nm B-glycerophosphate). Cell lysates were then scrapddransferred to Eppendorf
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tubes and placed on ice for 20 min. Lysates wen&ibeged at 25,155 g for 1 h at 4 °C and

the supernatant transferred to fresh EppendorktuPetein concentration was determined

using the BCA method (Smith et al., 1985) and sasplere stored at —80 °C until Western
blot analysis.

Proteins were separated using a 10% sodium dodatphate polyacrylamide
electrophoresis (SDS-PAGE) gel and transferredpolwinylidene fluoride membrane. The
membrane was then blocked overnight at 4 °C usihgs€ey Blocking buffer with 0.1%
Tween-20. The following day, the membrane was wasiseng Tris-buffered saline-Tween-
20 (TBS-T) and incubated with mouse anti-p65 amtybovernight at 4 °C. Following
incubation, the membrane was again washed usingTT&%1 incubated for a further hour at
room temperature with Infrared-labelled goat antiuse secondary antibody (LI-COR Inc.).
Finally, the membrane was washed using TBS-T, fadid by TBS to remove any remaining
Tween-20. The Odyssey CIx Imager was used to vgaiptotein bands. Protein loading was

determined usin@-actin as a control.

2.11. Statistical analysis

Statistical analysis was determined by ANOVA folemhby Dunnett’s test or Tukey’s

post-hoc test using Prism 5.0 (GraphPad Inc. SegdiCalifornia, USA). Results are

expressed as mean = SE or mean + SD. Statistgrafisance wa$ < 0.05.

3. Results

3.1.  Physicochemical characterisation, degree afrblysis and in vitro antioxidant

assessment of casein hydrolysates

10
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The different proteolytic preparations producedrolbates having distinctly
different RP-UPLC (Fig. 1) and GPC (Fig. 2) pradildemonstrating the differing
specificities of the proteolytic preparations. Thgher specificity of TPCK-Trypsin and
pepsin resulted in a lower proportion of low molacumass (< 500 Da) peptides present in
these samples (Fig. 2) and in a lower DH (Tabllcalase®, Flavourzyme® and Prolyve
hydrolysis resulted in hydrolysates with the high@sportion of low molecular mass
peptides (< 500 Da) and the highest degree of yslso(~14-18%).

All 5 kDa permeates showed significantB/€ 0.05) higher antioxidant activity than
intact sodium caseinate or the full hydrolysatesath the ORAC and ABTSassays (data
not shown). There was no significaft<€ 0.05) difference in antioxidant activity betweée
different 5 kDa permeates when measured by the OR#s@y, while the 5 kDa UF permeate
of the Flavourzyme® hydrolysate had the highestiggtin the ABTS assay (Table 1);
significantly P < 0.05) higher than that of the 5 kDa UF permeéathe tryptic hydrolysate.
There was no correlation between the DH of the dlydates and the antioxidant activity (via

ORAC or ABTS assays) of the corresponding 5 kDa UF fractiorbi@ 1).

3.2.  Effects of casein hydrolysate 5 kDa permeattiecell proliferation in RAW264.7

mouse macrophages, human U937 lymphocytes and hiumieat T cells.

RAW?264.7 mouse macrophages were exposed to inogeasncentrations (0-5%
w/v) of the different 5 kDa permeates for 24 h. MhiET assay was then used to assess the
effect of each hydrolysate on cell proliferatidproliferation was generally unaffected by the
permeates up to a concentration of 1% (w/v) (Taplét a concentration of 5% (w/v), cell

proliferation declined significantly(< 0.05) in cells incubated with hydrolysate pertasa

11
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generated using Flavorpro Whey, trypsin and pepsinJurkat T cells, the 5 kDa permeates
obtained from hydrolysates generated using Protnggkin and pepsin significantly?(<

0.05) decreased cell proliferation at 5% (w/v), hhe Flavourzyme® hydrolysate permeate
significantly (P < 0.05) increased cell proliferation at this cortcation (Table 3). A similar
trend was seen with 5 kDa permeates in U937 CE#lblé 4). Concentrations of 0.050 and
0.005% (w/v) were, therefore, selected for bioattigssays involving RAW264.7 cells.
Non-cytotoxic concentration of 0.50 and 0.05% (witr)Jurkat T cells, and 0.05% (w/v) for
U937 were used for bioactivity assays ensuringdhatell viabilities remained greater that

85%.

3.3. Antioxidant activity of casein hydrolysate[@akpermeates

The comet assay was used to assess the DNA pvetettect of the 5 kDa permeates
against HO,-induced DNA damage in U937 cells. Tail DNA wasrgased to approximately
80% in U937 cells exposed ta® (80 umol L) for 30 min from a control level of
approximately 16% in untreated cells. Pre-inculmatibU937 cells with the different

permeates at 0.05% (w/v) for 24 h did not protetisagainst KHO,—induced DNA damage

(Fig. 3).

3.4.  Cytokine production in Jurkat T cells

Jurkat T cells were stimulated to produce cytokimgiag 25ug mL* ConA,
following which cytokine (IL-6, IFNy, IL-2 and IL-10) production was measured. IL-6
production was seen to decrease in cells exposi@ to kDa permeates (Table 5). All

hydrolysate permeates at 0.50% (w/v) producedrafgignt (P < 0.05) decrease in IL-6

12
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production compared with control values. No sigmifit < 0.05) effects were seen in IL-2,
IL-10 and IFNy production after exposure to the 5 kDa permeategtser 0.50 or 0.05%

(wWiv).

3.5.  Cytokine production in RAW264.7 cells

RAW264.7 cells were stimulated with LPS at @dlmL™ or 2ug mL™* and treated
with 5 kDa permeates for 24 h before cytokine asialyTable 6). At 0.05% (w/v), each of
the hydrolysate fractions caused a signific& (0.05) decrease in IL-6 production
compared with cells incubated with LPS alone. A08% (w/v), none of the hydrolysate
fractions caused significar? & 0.05) decreases in IL-6 production. Hydrolygagemeates
generated using Flavourzyme®, Flavorpro Whey ayyastn caused a significar® € 0.05)
decrease in ILf1 production in cells incubated with these samptés@50% (w/v). No
effect was seen in TN&-production after treatment with the 5 kDa permeateany

concentration.

3.6. NF«B protein expression in RAW264.7 cells

RAW264.7 cells were stimulated using @d mL™* LPS and treated with the 5 kDa
permeates at 0.050% (w/v) for 24 h in 60 mm disBetls were then lysed and cell lysates
were examined for protein expression of thedsubunit, p65. All hydrolysate fractions
caused a significanP(< 0.05) decrease in p65 protein expression cordpaith cells treated

with LPS alone (Fig. 4).

4. Discussion

13
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It is recognised that utilisation of a variety ofadytical techniques is required to
capture differing pathways of antioxidant activithe ORAC assay measures the ability of
an antioxidant to prevent peroxyl radical oxidatadra fluorescent probe by means of
hydrogen atom transfer (HAT). In the ABTS assag, dhtioxidant present in the permeate
sample scavenges the ABTS radical cation (ABYBy means of electron transfer (Power et
al., 2013). In the present study, during initigbesimentation it was observed that
concentration of the low molecular mass peptideprooessing through a UF membrane
having a molecular mass cut-off of 5 kDa resultedn increase in the antioxidant activity as
measured by the ORAC assay. However, no furtheease in antioxidant activity was
achieved on further processing through a 1 kDa mangb(data not shown). Therefore, the 5
kDa permeates of each of the hydrolysates were fasedl other determinations.

Studies have reported that casein hydrolysateepss®on-cellular antioxidant
activity, mainly radical scavenging or electron dting ability. Alcalase® has been
frequently used to produce such hydrolysates (Ad,&013; Chen & Li, 2012; De Gobba,
Tompa, & Otte, 2014; Xie, Liu, Wang, & Li, 2014;&iWang, Jiang, Liu, & Li, 2015).
Alcalase® was also used in this study; howevesigoificant difference was seen in the
antioxidant activity of this hydrolysate compareiihihydrolysates produced by the other
enzyme preparations and, interestingly, Flavour®meduced a hydrolysate with higher
ABTS activity. This may be due to the presence lairger number of peptides below 500 Da
in the Flavourzyme hydrolysate.

No cellular antioxidant activity was observed wiitle hydrolysates in the present
study. Previously, Phelan et al. (2009) reported tlon-ultrafiltered casein hydrolysates
generated using commercial food-grade enzyme pagpas altered glutathione and catalase

(CAT) activity in Jurkat T cells, but did not preueH,O.-induced DNA damage in Caco-2
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cells. Cermenio et al. (2016) reported that a casginolysate, generated using Prolyve,
significantly P < 0.05) protected U937 cells fromy@-induced DNA damage. The 5 kDa
permeate of the Prolyve hydrolysate herein was rgése using similar conditions; however,
no cell protective effect was seen. Notably, tHeHydrolysate was used in Cermefio et al.
(2016) while our study used the 5 kDa permeatditmacthis may imply that the cell
protective effect was associated with higher mdkrcmass peptides. Xie et al. (2013) found
that casein hydrolysates produced using AlcalasetReosimulated gastrointestinal digestion
of casein showed significant protective effectshallenged HepG2 cells by reducing oxidant
induced cell death. A follow-on study reported ttiet Alcalase® hydrolysis of casein
produced hydrolysate fractions which enhanced as¢ahnd superoxide dismutase activity
and increased viability in ¥#D,-exposed HepG2 cells. The hydrolysate was fractezhbased
on charge and negatively charged fractions hade@raatioxidant activity (Wang, Xie, & Li,
2016). Results herein indicate that the enzymed dgknot affect antioxidant activity as
hydrolysate 5 kDa permeates with similar activitgresproduced in all cases.

In the present study, hydrolysates significantlgrdased pro-inflammatory cytokine
production (IL-6 and IL-f) in T cells and macrophages. Casein hydrolysatesluced using
combinations of TGase and Prolyve were previousbprted to significantly decrease IL-6
production in Jurkat T cells (Cermefio et al., 20Malinowski et al. (2014) also reported
that a tryptic hydrolysate of bovifiecasein had significant anti-inflammatory activity
kidney cells. In this case, casein was hydrolysedifh and the hydrolysate 1-5 kDa
permeate fractions exhibited significant anti-infl@atory activity in human kidney cells. It
was suggested that a group of large hydrophobitdespwere responsible for the anti-
inflammatory activity. The hydrolysis @fcasein using cod trypsin has also been reported to
have anti-inflammatory activity in kidney cells aladger peptides (> 5 kDa) were reported to

have higher activity compared with lower molecutass peptides (Altmann et al., 2016).

15



366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

The hydrolysis of sodium caseinate using a badtenzyme has also been reported to
reduce IL-8 production in TNE-stimulated Caco-2 cells, as well as downregulagegeral
pro-inflammatory cytokines expression in LPS-stiatetl colonic tissue. Activity was
reported to be highest in the 1 kDa retentateifvach this case (Mukhopadhya et al., 2014).
All the hydrolysates in the present study were @ ki@rmeates and had significant anti-
inflammatory activity, particularly those produceasing trypsin, Flavourzyme® and
Flavorpro Whey.

Two enzyme-only controls were generated based@hitih activity of the
corresponding hydrolysates and these controls s@eened for anti-inflammatory activity
in RAW264.7 cells to rule out reagent/enzyme relatetivity. Enzyme-only controls had
little anti-inflammatory activity (data not showrherefore it was determined that the
observed anti-inflammatory activity was due to liydrolysis of casein by these enzymes.
Flavourzyme® has previously been shown to genénadeolysates from brewer’s spent
grain that were capable of decreasing f-production in Jurkat T cells (McCarthy et al.,
2013a,b). Bamdad, Shin, Suh, Nimalaratne, and Sarf@@17) also reported that a
Flavourzyme® generated casein hydrolysate decreasedoxide production and TNE-
MRNA expression in RAW264.7 cells; however, thigiioyysate was produced using a
combined treatment of high hydrostatic pressureearaymatic digestion. To the best of our
knowledge, no other studies have previously repaatei-inflammatory activity with
Flavorpro Whey generated casein hydrolysates.

In the present study, while hydrolysate treatmestlted in a decrease in IL-6 and
IL-1B production, TNFe production was unaffected. Yak milk casein hydsatgs, produced
using Alcalase®, were reported to decrease theugtmh of IL-6, IL-13 and TNFe. in
macrophages (Mao, Cheng, Wang, & Wu, 2011). Hydwtls used in the study by Mao et

al. (2011) had significant in vitrantioxidant activity that may have contributedhe t
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enhanced anti-inflammatory response; IL-6 and lpfoduction in macrophages was
decreased by ~70% and 60%, respectively, in theysiy Mao et al. (2011) compared with
~55% and 30%, respectively, in our study. The diffggamino acid compositions of milk
from different species may also have affected dgtias reported by a study which reported
higher antioxidant activity in camel milk caseindnglysates compared with bovine milk
casein hydrolysates (Moslehishad et al., 2013).

The NF«B pathway is a major transcription pathway in ckfiked to inflammation
and chronic inflammatory diseases such as athemsts, inflammatory bowel disease and
cancer (Yamamoto & Gaynor, 2001). In the curremdgt the NF<B subunit p65 (also
known as RELA), which is involved in nuclear trasedtion and activation, was studied after
treatment with hydrolysate fractions in LPS-stimethRAW?264.7 cells. The anti-
inflammatory activity of all seven hydrolysate 5&permeates may be linked to NB-
activation as the protein expression of p65 waibitéd in all cases. Milk-derived
hydrolysates with anti-inflammatory activity haveepiously been reported to act through the
NF-xB pathway in different cell lines (Altmann et &016; Malinowski et al., 2014;
Marcone, Haughton, Simpson, Belton, & FitzGeralefl2 Nielsen, Theil, Larson, & Parup,
2012). To the best of our knowledge, our studyeésfirst to examine the molecular
mechanism behind the anti-inflammatory activitypoline casein hydrolysates in
macrophages. A study of rice protein hydrolysgtespared using trypsin, yielded similar
results to our study, where IL-6 and IB-&xpression in LPS-stimulated RAW?264.7 cells
were decreased after 24 h hydrolysate treatmenp@bdranslocation to the nucleus was also

decreased (Wen et al., 2016).

5. Conclusions
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The 5 kDa UF permeates of casein hydrolysates pemtlusing mammalian, plant,
fungal and bacterially-derived proteolytic prepeamas showed significant in vitro anti-
inflammatory activity in Jurkat T cells and RAW284nacrophages. These hydrolysate
permeates had a greater anti-inflammatory effedt. éhproduction in RAW264.7 cells
compared with Jurkat T cells. Three of the hydratggpermeates also significantly decreased
IL-1B production in RAW?264.7 cells and were produceagsither fungal or mammalian
derived enzymes. Based on the ability of the hydatle 5 kDa permeates to significantly
inhibit the expression of the NEB subunit, p65, our results also indicate that ams-
inflammatory activity may be dependent on the ®-inflammatory pathway. Future studies
on the in vivo anti-inflammatory activity of hydsalate permeates, generated using fungal or

mammalian derived enzymes, may be of interest.
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Figurelegends

Fig. 1. Reversed phase ultra-performance liquid chromapdgrarofiles of (a) sodium caseinate and
(b—h) casein hydrolysate 5 kDa permeates whererthgmatic preparations employed were: (b)

Alcalase&® 2.4L; (c) Flavourzyme®; (d) Prolyve 1000; (e) Fdapro Whey; (f) Promod 144MG; (g)

Trypsin; (h) Pepsin.

Fig. 2. Molecular mass distribution profiles of intact aawi caseinate and 5 kDa ultrafiltration
permeates of sodium caseinate hydrolysates gedewéte different enzymatic preparations using gel
permeation chromatographilt, < 500 Da;l, 1000-500 DdJl , 2000-1000 E&; , 5000-2D80

&4, 10,000-5,000 DE] , > 10,000 Da.

Fig. 3. The ability of 5 kDa ultrafiltration permeatessufdium caseinate hydrolysates (0.05%, w/v) to
protect against 0, induced DNA damage in U937 lymphocytes; H, ceiated with HO, only.

Tail DNA damage was measured using the comet assghgxpressed as a percentage relative to
hydrogen peroxide control values (untreated cdllg}a are means = SD of 2 independent

experiments; significance was measured using AN@Mawed by Dunnett’s test.

Fig. 4. Effect of 5 kDa ultrafiltration permeates of sadigaseinate hydrolysates (0.05%, w/v) on
NF-«B (p65) protein expression in RAW264.7 cells refatio cells treated with LPS alone (Control,
assigned at 100%); p65 protein expression wasss$@s LPS stimulated RAW264.7 cells by
Western Blot after 24 h sample treatment. The slatav one of three independent experiments,
which yielded similar results and are the mean& 13 independent experiments; significance was

measured using ANOVA followed by Dunnett’s testenoted? < 0.05.



Tablel

Oxygen radical absorbance capacity (ORAC) andaiRe-bis(3-ethylbenzothiazoline-6-sulphonic

acid) (ABTS) radical scavenging activities of 5 kil afiltration permeates of sodium caseinate

hydrolysates generated with different enzymatiparations®

Enzyme Degree of hydrolysis ORAC value ABTS value
(%) (umol TE mg FDP)  (umol TE g FDP)

Alcalas&® 18.01+ 1.59 1.072+ 0.07 52.86+ 3.46"
Flavourzym® 14.43+ 0.6T 1.130+ 0.076 71.18+ 7.65

Prolyve 15.65+ 0.60" 1.120+ 0.088 58.38+ 3.48"
Flavorpro Whey — 12.86+ 0.89 1.154+ 0.007 67.59+ 4.9P*
Promod 144MG  5.23+ 0.42° 1.080+ 0.083 52.14+ 2.19*
Trypsin 7.21+0.72 1.080+ 0.04F 44.23+ 4.83"
Pepsin 2.31+ 0.61° 1.120+ 0.044 59.00+ 4.50"

 Abbreviations are: TE, Trolox equivalents; FDRgfre dried powder of hydrolysate The degree of

hydrolysis was calculated for the full hydrolysape®r to ultrafiltration. Data are the mearSEM of

3 independent experiments; values with differepesscript letters are significantly differentRak

0.05 within each assay.



Table?2

Effect of 5 kDa ultrafiltration permeates of sodieaseinate hydrolysates (0—5%, w/v) generated using

different enzyme preparations on proliferation iWR264.7 mouse macrophagés.

Enzyme Cell proliferation (% control) with 5 kDa ultrafitition permeates (%, w/v)
0.05 0.10 0.50 1.00 5.00

Alcalase® 109.8+ 6.7 116.8+6.5 122.2+7.2 120.0+7.6 87.0+10.5
Flavourzyme® 106.815.8 106.7+4.3 111.845.7 110.6x4. 74.0+16.8
Prolyve 107.745.5 107.7+7.0 109.545.6 109.3+6.1 8¥¥3.2
Flavorpro Whey 106.749.8 106.615.7 103.6+1.2 97.6+1 40.4+9.6*
Promod 144MG 99.5+3.1 99.2+4.0 92.0+£9.5 90.3+9.3 .9683.5
Trypsin 68.7+9.5 64.0+15.7 91.2+5.8 89.9+7.7 59.7%8
Pepsin 107.1+£3.5 107.1+6.7 112.3#5.0 110.8+8.2 BB

2RAW?264.7 mouse macrophages were seeded at a dehn8iy x 10 cells mL* and treated with

increasing concentrations (0-5%, w/v) of sample2fbh. Cell proliferation was determined using

the MTT assay and values are expressed as a pageartative to untreated cells. Data are the mean

+ SE of 3 independent experiments; an asterisktderatatistically significant difference (ANOVA

followed by Dunnett's tesP < 0.05) in cell proliferation, compared with urgted RAW264.7 cells.



Table3

Effect of 5 kDa ultrafiltration permeates of sodigaseinate hydrolysates (0-5%, w/v) on
proliferation in human Jurkat T celfs.

Enzyme Cell proliferation (% control) with 5 kDérafiltration permeates (%, w/v)
0.05 0.10 0.50 1.00 5.00
Alcalase® 89.3+7.5 84.0+10.4 77.949.1* 77.2+8.2* .3B4.3
Flavourzyme® 91.1+7.5 96.1+1.2 96.1+4.0 117.619.1* 242.8+12.4*
Prolyve 96.3+3.8 94.1+4.1 90.9+6.4 94.7+5.1 98.6+5.
Flavorpro Whey 95.1+2.8 92.7+1.8 90.0+1.6* 101.3+4. 102.0+7.7
Promod 144MG 98.3+5.9 94.5+5.8 81.6+1.3* 78.812.4* 83.814.4*
Trypsin 96.9+1.7 90.7+2.6 76.2+9.9* 79.0+3.6* 784
Pepsin 95.847.3 94.6+3.4 78.9+2.8* 77.8+2.4* 13.5%0

2Jurkat T cells were seeded at a density of 1>célls mL* and treated with increasing
concentrations (0-5%, w/v) of samples for 24 hl palliferation was determined using the MTT
assay and values are expressed as a percentdye ielaintreated cells. Data are the mean + SE of
independent experiments; an asterisk denotestiallis significant difference (ANOVA followed by

Dunnett’s testP < 0.05) in cell proliferation, compared with urgted human Jurkat T cells.



Table4
Effect of 5 kDa ultrafiltration permeates of sodigaseinate hydrolysates (0-5%, w/v) on

proliferation in human U937 lymphocytés.

Enzyme Cell proliferation (% control) with 5 kDa ultrafitition permeates (%, w/v)
0.05 0.10 0.50 1.00 5.00
Alcalase® 102.7+3.3 96.3+4.3 84.9+4.3 84.4+4.4 ¥8.8*
Flavourzyme®  107.0£7.0 101.2+2.0 94.6+3.6 103.8410. 159.445.3*
Prolyve 102.8+3.6 97.5+3.5 87.5+2.3 92.4+4.8 910141
Flavorpro Whey 95.3+3.1 97.6+£1.3 94.31£1.6 94.1+6.8 56.8+6.8*
Promod 144MG 101.5%6.6 89.148.3 87.6x£1.2 82.5+5.4 1.4%6.3*
Trypsin 99.4+5.0 94.2+2.7 85.8+2.5 80.6 £5.2 62.8*%9
Pepsin 93.7+4.4 94.6+1.9 83.1+3.9* 81.2+3.2* 12.2%0

2U937 lymphocytes were seeded at a density of 1>xdis mL* and treated with increasing
concentrations (0-5%, w/v) of samples for 24 hl pelliferation was determined using the MTT
assay and values are expressed as a percentdye ielaintreated cells. Data are the mean + SE of
independent experiments; an asterisk denotestwallis significant difference (ANOVA followed by

Dunnett’s testP < 0.05) in cell proliferation, compared with uratted human U937 cells.



Table5

Effect of 5 kDa ultrafiltration permeates of sodigaseinate hydrolysates (0.50 and 0.05%, w/v) e®, IEN-y, IL-2 and IL-10 production in Jurkat T

lymphocytes?
Sample Cytokine production (% control)

IL-6 IFN-y IL-2 IL-10

0.50% 0.05% 0.50% 0.05% 0.50% 0.05% 0.50% 0.05%
Control 100.0+0.0  100.0+0.0 100.0+40.0 100.0+0.0 00.0+.0.0 100.0+0.0 100.040.0000.0+0.0
Alcalase® 76.7£2.8*  87.8+2.9 91.0+3.9 97.5+2.8 31433.8 103.4+3.8 105.9+4.0103.8+2.9
Flavourzyme® 81.7+2.1*  87.9+2.1 89.1+3.9 94.2+2.4  101.7+4.7 101.7+4.7 111.243.3104.2+5.0
Prolyve 79.5#1.0*  92.8+4.1 94.2+3.2 100.3£1.5 085.9 95.0+5.9 102.745.1105.2+0.4
Flavorpro Whey 83.6+0.8*  92.0+2.0 103.6£3.6  106G.2+ 103.345.9 103.34#5.9 106.9+3.807.2+4.8
Promod 144MG 79.4+1.5*  99.9+3.2 93.5+2.6 103.8+#3.6 100.9+3.3 100.9+3.3 111.2+7.6.08.146.3
Trypsin 80.9+1.5*  102.7+4.1 88.8+2.7 105.7£3.5 6I7%8.4 116.7+8.4 116.046.1104.349.3
Pepsin 87.2+2.1*  102.2+2.6 97.2+1.4 110.0£7.6 2982 98.2+3.2 102.145.099.6+1.2

2Jurkat T cells were seeded at a density of 2%célls mL?*, stimulated with ConA (25g mL™) and treated with 0.50 and 0.05% (w/v) 5 kDa UFpsates

of sodium caseinate hydrolysates for 24 h. Cytokimeluction was measured using the enzyme-linkeaunosorbent assay (ELISA) and values were

expressed as a percentage relative to cells treatiedConA alone (control): IL-6 concentration, ¢ = 0.004 ng mL:; IFN-y concentration, control =
0.099 ng mL; IL-2 concentration, control = 0.147 ng fUL-10 concentration, control = 0.156 ng thiData are the mean + SE of 3 independent
experiments; an asterisk denotes statisticallyifsogimt difference (ANOVA followed by Dunnett’s te$ < 0.05) in cytokine production, compared with

Jurkat T cells treated with ConA alone.



Table6

Effect of 5 kDa ultrafiltration permeates of sodigaseinate hydrolysates (0.050 and 0.005%, w/\W).4h) IL-1 and TNFe production in RAW264.7
mouse macrophagés.

Sample Cytokine production (% control)

IL-6 IL-1B TNF-a

0.050% 0.005% 0.050% 0.005% 0.050% 0.005%
Control 100.0+0.0 100.0£0.0 100.0£0.0  100.0+0.0  00.0+0.0 100.0+0.0
Alcalase® 55.4+7.4* 100.7+21.1 78.8+5.3 118.4+7.8 109.845.1 114.545.2
Flavourzyme® 55.0+12.4* 82.1+7.1 74.7+8.2* 121.8:9 109.6x4.7 110.4+3.9
Prolyve 54.2+3.8* 87.2+13.3 77.6+4.1 107.4+13.9 04.B+4.8 110.6+3.3
Flavorpro Whey 47.2+8.9* 79.5+4.6 76.4+3.7* 1131245 107.5+5.1 112.4+4.7
Promod 144MG 58.4+12.0* 87.948.1 96.1+2.9 115.0813 108.1+5.6 109.4+4.0
Trypsin 60.3+9.8* 99.8+19.7 74.842.1*  105.1+16.7 112.4+6.0 114.0+4.9
Pepsin 55.7+4.0* 79.0£9.7 86.2+7.2 111.0+15.6 .06P0.8 104.7+3.4

2 RAW264.7 mouse macrophages were seeded at ayden8i2 x 10 cells mL*, stimulated with LPS (0.4ig mL™ or 2ug mL™") and treated with 0.050 and
0.005% (w/v) 5 kDa UF permeates of sodium caseimatieolysates for 24 h. Cytokine production was soeed using the enzyme-linked immunosorbent
assay (ELISA) and values were expressed as a pegeerelative to cells treated with LPS alone (@w)itIL-6 concentration, control = 0.219 ng fLIL-

1B concentration, control = 0.180 ng fILTNF-a concentration, control = 0.721 ng thiData are the mean + SE of 3 independent expetinen asterisk
denotes statistically significant difference (ANOV@&lowed by Dunnett’s tesP < 0.05) in cytokine production, compared with RA842Z7 mouse
macrophages treated with LPS alone.
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