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Summary 

The European Blue Growth strategy aims to expand the new maritime sectors of aquaculture, 

energy, biotechnology, coastal tourism and mineral mining. Growth of these sectors will 

increases pressure on the seas, particularly on those areas that are densely used by traditional 

sectors such as fisheries and transport. This has triggered interest in developing multiuse of 

space and multiuse platforms at sea. This paper assesses the feasibility of offshore mussel 

production project in wind farms by design and ex-ante evaluation of a mussel aquaculture 

system in the North Sea. A system for mussel cultivation in the Dutch Borssele offshore wind 

farm was designed, producing both mussel seed and consumption-sized mussels with semi-

submerged longlines. Based on the economic model and the risk assessment, this paper 

concludes that mussel aquaculture is an appealing commercial model for increased returns in 

offshore wind farms. The economic models shows that the internal rate of return and net 

present value are positive and based on the sensitivity analysis, it can be concluded that these 

results are robust. 
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1. Introduction 

The European Blue Growth strategy aims to expand the new maritime sectors of aquaculture, 

energy, biotechnology, coastal tourism and mineral mining (European Commission, 2012, 

2014). Some of these sectors are still small and claim little ocean space whilst others are 

expanding rapidly. The European Wind Energy Association reports growth of offshore wind 

installations in the EU of 1.6 GW or 110% from 2014 to 2015 and argues it will continue to 

develop rapidly (EWEA, 2016). This increases pressure on the seas, particularly on those seas 

that are densely used by traditional sectors such as fisheries and transport. Policy-makers have 

become interested in developing multiuse of space and multiuse platforms at sea (see for 

example Ministry of Infrastructure and Environment and Ministry of Economic Affairs, 

2015). 

Whilst the mussel sector is subject to various challenges, including marine acidification 

(Clements & Chopin, 2016) and adaptation to climate change (Rosa et al., 2012), the most 

imminent challenge to the Dutch sector is the development of new production processes with 

less impact on the Wadden Sea. For a long time, mussel seed was collected in the Wadden Sea 

area using bottom-trawling methods. Use of this method is now restricted (Smaal, 2002; Floor 

et al., 2016), forcing the sector to look for new ways to collect mussel seed (Jansen et al., 2016). 

Together with government authorities and civil society organisations, the mussel sector has set-

up a transition programme for mussel seed collection (Ministry of Economic Affairs et al., 

2014). 

Reduced availability of mussel seed has already limited the total production of the Dutch mussel 

sector. Total production in the Netherlands decreased from over 90 million kg in the mid-1990s 

to 56 million kg in 2010 (Guillen & Motova, 2013). The development of offshore wind farms 

can solve this problem by providing more space for mussel aquaculture away from other marine 

uses. Still, institutional and legislative restraints as well as economic aspects have been judged 
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important unresolved issues of multiuse of wind farms and mussel aquaculture (Michler-

Cieluch et al., 2009).  

The combination of mussel aquaculture in offshore wind farms has been studied in earlier 

research projects in the North Sea (Buck, 2017, Buck et al., 2008, Buck et al., 2010, 

Röckmann et al., 2015, Jansen et al., 2016). Following a participatory design process with 

various North Sea stakeholders, it was concluded that the most promising multiuse design for 

the North Sea basin comprised bottom-fixed offshore wind turbines and mussel aquaculture 

(van den Burg et al., 2016; Stuiver et al., 2016). This combination was evaluated by 

performing a social cost benefit analysis (Zanuttigh et al., 2016; Koundouri et al., 2016). A 

detailed business case for this multiuse combination is however lacking. A financial and risk 

assessment for such concept is needed to inform decision-makers on whether an attractive 

profit could be realisable from mussel cultivation in offshore wind farms.  

The objective of this paper is to review the feasibility of an integrated facility for offshore 

mussel production project in wind farms by design and ex-ante evaluation of a mussel 

aquaculture system in the North Sea. This evaluation includes a technical, financial and risk 

assessment. The findings are based on review of literature, analysis of market data and 

consultation with experts. This paper focuses on the wind farm Borssele (see Figure 1), 

located 12 miles offshore.  

<< Figure 1 here >> 

The next section summarises available knowledge on multiuse of offshore wind farms. After 

that, the methodology used is described. The paper continues with a description of the 

proposed design, a financial and risk assessment. After describing the feedback received from 

maritime experts, concluding remarks are drawn. 
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2. Background 

2.1 Biological conditions 

For successful offshore mussel culture a number of biological conditions need to be satisfied: 

sufficient availability of starting material (mussel seed), no excessive fouling or predation, 

parasites and diseases below the regulatory limits, toxic algae and toxic compounds below the 

regulatory limits, and no significant negative effects on the environment.  

Earlier studies showed that mussel growth occurs on the buoys throughout the Dutch 

Exclusive Economic Zone. Two surveys of shipping lane buoys were carried out in the Dutch 

part of the North Sea (Steenbergen et al., 2005; Kamermans et al., 2016) and results indicate 

that seed collection is possible. Growth potential is good as well: in a period of 15 months, 

mussels can grow to market size (Kamermans et al., 2016). Information on the presence of 

fouling organisms is available through biodiversity studies on oil and gas rigs and wind farms. 

Species such as the acidian Ciona intestinalis, which causes problems in Canadian mussel 

longline culture (McKindsey et al., 2007), were not observed (Van der Stap et al., 2016). 

Thus, fouling may be less of a problem than at near-shore locations. North Sea crabs occur at 

all depths on the piles, but densities are highest closer to the sea bed (Van der Stap et al., 

2016). Oil and gas rigs and turbine foundations have direct contact with the sea bed. This 

facilitates access for crabs and starfish. For mussel culture on longlines contact with the 

bottom is via anchor lines. This may reduce the presence of predators.  

2.2 Technical requirements 

The feasibility of offshore mussel and mussel seed production will depend on what production 

system is employed in the wind farms. The culture systems need to be able to resist the 

conditions in the North Sea. Based on available literature the following set of technical 

challenges for a successful offshore mussel farm were identified: 
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 The system structure should be fully able to withstand weather and use.  

 Loss of mussels falling off the ropes should be avoided.  

 It must enable a reliable and robust harvest method. 

Kamermans et al. (2011) carried out an inventory of existing offshore mussel culture systems 

and concluded that semi-submerged longlines anchored with concrete blocks are the most 

suitable system in the North Sea, with  high wave conditions (Langan & Horton 2003). A 

semi-submerged system has a horizontal longline at 10 m depth (illustrated in Figure 3). 

Waves move above the longline. The location needs to be deeper than 20 m to assure enough 

space below the longline for dropper ropes (mussel cultivation rope) and changes in water 

heights due to tides. These systems have been used in the French Mediterranean (Mille & 

Blachier, 2009), the South coast of England (personal communication John Holmyard), the 

Portuguese coast (personal communication Antonio Miguel Cunha), the East coast of the 

USA (Lindell et al., 2011), the Black Sea in Turkey (Karayucel et al., 2015) and in New 

Zealand (Cheney et al., 2010). The depth of submergence depends on the combinations of 

tides, wave heights and the total water depth.  

2.3 Synergies between wind and mussel aquaculture 

The economic feasibility of offshore mussel cultivation in the North Sea has been studied by - 

among others - Buck et al. (2010), Lagerveld et al. (2014), Griffin et al., (2015) and Jansen et 

al. (2016). All these studies discuss the potential synergy between these two sectors. Costs for 

mussel aquaculture include the deployment, fixation, maintenance and reeling of aquaculture 

installations and cultured organisms (Michler-Cieluch et al., 2009). Additional costs are made 

for control and regulation of harvesting operations as well as monitoring of the health of 

mussels, as part of the management of new farming grounds (Michler-Cieluch et al., 2009). 

Separate processing and distributing sectors may be involved in cultivators activities, and thus 
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must be paid, for instance to take care of grow-out of seeds until market size, transfer of seeds 

to licenced nearby cultivation spots, as well as onshore processing or marketing (Michler-

Cieluch et al., 2009 p 60). 

Wind farms and mussel aquaculture are likely to affect each other in one way or the other in 

multiuse arrangements - using ocean space for different purposes and activities (Michler-

Cieluch et al., 2009 p 60). Both sectors face the same constraints in terms of operation costs, 

limited accessibility (weather windows), distance to farm site, available working days, and 

difficult logistics for operation and management (Michler-Cieluch et al., 2009).  

In the MERMAID project, it was concluded that shared use of the physical infrastructure - 

e.g. the turbines' monopiles - is not desirable (Rockmann et al., 2015). The cost category with 

the greatest potential for reduction is the operation and management cost. Up to 50% of the 

charged maintenance labour costs are lost as waiting time: waiting for good weather 

conditions, certified personnel, transport, necessary tools and equipment (He et al., 2015). It is 

suggested that by combining wind energy and mussel aquaculture, these costs can be reduced. 

For example, when a multi-purpose vessel sails out to transport a maintenance crew to and 

from the wind turbines, its crew can inspect the aquafarm installations feed the fish and 

maybe harvest fish/mussels, while the maintenance crew is busy carrying out the maintenance 

work. When tasks are finished, the maintenance crew boards the vessel again and the crew 

and harvest are taken ashore. Based on expert consultation, Lagerveld et al. (2014) expect a 

10% reduction in O&M costs can be realised through this multiuse. 
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3. Methodology 

The business case is constructed in a three-step process. In step 1, a design for mussel 

cultivation project in the Borssele offshore wind farm was made. This design was assessed 

from a financial and risk perspective in step 2. Step 3 comprised the discussion of preliminary 

findings at an advisory session with maritime experts. 

3.1 Business plan and risk assessment 

An economic model was developed to assess the financial feasibility. Projected costs and 

revenues were calculated for a commercial application with fully developed technologies. The 

work completion date for the proposed commercial project was assumed to be 2020, with 

final investment decision (FID) in 2016. The weighted average cost of capital (WACC) or 

discount value was assumed to be 8.9%, in line with what was used by the UK Government 

Department of Energy and Climate Change when assessing energy technologies.  

Input parameters for financial modelling were drawn from various sources including 

parameters on the costs of fixed offshore wind (BVG Associates (2015)) and costs of mussel 

cultivation (Buck et al., 2010; Lagerveld et al., 2014; and Jansen et al., 2016). Input 

parameters on the biomass growth were derived from van Stralen (2015). Input parameters for 

the value of products were drawn from a Dutch database on agriculture information 

(www.agrimatie.nl, last accessed 17-11-2016). 

3.2 Risk assessment  

A methodology was established to assess the individual and combined risks from offshore wind 

and aquaculture components of the multiuse combination (IEA. 2011, Renewable UK, 2014). 

A standard hazard ranking methodology was deployed with a risk matrix comprising the 

frequency (or likelihood) and consequence (severity of potential outcome) as shown below in 

Figure 2. Six categories were defined where all the risks would fall under depending on types 

http://www.agrimatie.nll/
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and nature of the hazards identified, including: a) operational, b) economic and political, c) 

financial, d) environment, e) socio-economic, and f) health & safety.  

<< Figure 2 here >> 

By considering and combining consequences and likelihoods a level of magnitude was then 

obtained (Consequence x Likelihood) for a particular risk hazard. Ranking of hazards was done 

by expert judgement, consulting researchers and companies involved in the MARIBE project. 

Risk mitigation measures to reduce exposure to the identified hazards were proposed leading 

in most cases to a reduction in likelihood or frequency parameters and hence a final score. The 

full risk assessment is presented as supplementary material to this article. Section 4.3 below 

identifies and discusses risks that are amplified by combining mussel aquaculture and offshore 

wind energy. 

2.4 Advisory session 

The MARIBE project organised an advisory session in June 2016 in which various concepts 

for multiuse of marine space where presented to, and discussed with, a panel of maritime 

experts. The advisory session maritime 13-member expert panel represented sectors including 

banking, financial services, multinational professional services, engineering procurement and 

construction services, naval architecture, research institutes, ocean energy and aquaculture, 

among others. Following the presentation, an extensive Q&A session with the panel focused 

on the strengths and weaknesses of the business plan. After presenting the business case, the 

panel was asked to comment on  the combinations technological feasibility, financial feasibility 

and risk assessment . Although remarks from the experts are presented below, the experts 

remain anonymous in this article. 
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4. Results 

4.1 Technological design 
 

<< figure 3 here >> 

The aquaculture system in this case study project concerns a culture system using simple 

structures such as ropes and frames (Christie et al., 2014). This shellfish production consists of 

semi-submerged longlines as shown in Figure 3. These lines are connected to the sea bottom 

through a mooring system. Installation time for this option is less than a week (He et al., 2015). 

Two anchors are used to which a double longline is attached with ropes (Figure 3). The locations 

of the anchors are marked with buoys. The longline is kept suspended at a certain depth below 

the surface by cylindrical floats. So called  “continuous looped droppers” are attached to the 

longline, as can be seen in Figure 3. The proposed system is independent of the infrastructure 

of the wind turbines. The dimensions of the system are presented in Table 1. 

<< table 1 here >>  

In the analysis presented, it is expected that by 2020, 5.5 million kg of mussel seed is collected 

annually offshore. To achieve this in a single commercial project, 98 ha of mussel aquaculture 

units are needed.  

Seed can be collected once a year. Assuming a similar yield as in the Wadden Sea (average 

seed yield of 2.93 kg per m of rope; van Stralen, 2015) a seed yield of 75,008 kg per ha (on 

25,600 m longlines per ha) is expected (Table 2). In this case study, it is proposed not to re-

sock the mussels but thin them out. By thinning out, a proportion of the mussels remain on the 

line to grow to the next stage, while the harvested seed mussels and half-grown mussel can be 

transported to near shore culture areas for further growing. This allows delivery of several 

products at different times of the year: mussel seed 9 months after deployment, half-grown 
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mussels 15 months after deployment and consumption size mussels 21 months after 

deployment (Table 2).  

<< table 2 here >> 

4.2 Economic performance 

In the following section the results of the economic modelling are presented. Definitions of 

CAPEX, OPEX, DECEX and the product output are given in Appendix 1, followed by a list 

of the main assumptions in Appendix 2. A breakdown of costs is given in Appendix 3.  

Based on these input parameters, the economic performance of the modelled wind-mussel 

combination can be calculated (see Table 3). Results show that the modelled multiuse system 

has a positive investment return rate (IRR) of 10.8%.  

Total investment (CAPEX) in the system equals 1448 € m, of which 1390 € m is for the 

investment of offshore wind. The levelised costs for electricity generation are calculated to be 

136.11 €/MWh while the costs for mussel production are an estimated 909.67 €/tonne. The 

combination of offshore wind and mussel cultivation on 98 ha is expected to generate 367 

full-time jobs when in operation. 

<< table 3 here >> 

The sensitivity to a 5% and 10% change in CAPEX, OPEX, output, and revenues are 

presented in Table 4. In all scenarios, IRR and NPV remain positive. The increase/decrease in 

the revenues has the greatest impact on the economic performance but even a 10% reduction 

in revenues does not lead to an unattractive IRR. This sensitivity analysis shows that the 

economic performance of mussel aquaculture in offshore wind farm is robust and capable to 

withstand increases in costs or reductions in revenues.  

<< table 4 here >> 
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4.3 Risk assessment 

A total of 105 hazards were identified under six categories: (a) operational, (b) economic and 

political (c) financial, (d) environment, (e) socio-economic and (f) health and safety. Hazards 

were colour coded (risk matrix 1-25), depending on risk magnitude revealing 25 high (red), 

62 medium (orange) and 18 low (green) hazards before mitigation. After mitigation strategies 

were proposed as an academic exercise (i.e. no companies were involved during the risk 

appraisal) 39 medium and 66 low risks remained. The full risk assessment is available as 

supplementary material. In the following section, the focus is on the risks that were 

considered to be amplified in a multiuse setting. Risk are identified, assessed and a mitigation 

strategy is proposed (see Table 5). 

<< table 5 here >> 

Operational (all stages) 

At the preconstruction phase the main risks are associated with technical challenges (e.g. 

innovative mooring designs) and insurance (i.e. complexity, unproven nature of technologies 

combined/co-located, potentially destructive interaction with one another). These may increase 

the cost and delay the deployment of either of both sectors. Liaising with the insurance industry 

from an early stage to ensure their requirements are fully understood and investing in 

demonstration of new technologies and preparation of safety measures and risk based 

management can mitigated or avoid such risks. . 

During construction phase bad weather or no access to specialist installation vessels (i.e. 

competing with other sectors such as oil and gas) may cause higher installation costs and delays, 

missing allocated construction/installation time windows. This risk will need to be considered 

in the project planning stage. The aquaculture farm can be assembled in a shore-based sheltered 

area located close to the deployment location, which reduces the risk of running into bad 



 
 

12 
 

 

weather. Good connectivity and access to an established local supply chain of experienced 

contractors including specialist vessel operators will mitigate the risk and will enable 

aquaculture farm components to installation even at harsh conditions.  

During operational phase pollution issues may result in ceasing power production, higher costs 

and delays and implications to potential injured personnel/subcontractors. At extreme 

circumstances pollution (e.g. from leaked chemicals) from wind turbine components could 

destroy or contaminate nearby aquaculture or even fisheries industries resulting in liable losses. 

Aquaculture production may also be affected as a result of operational wind park emitted 

pollution (i.e. noise/vibration) resulting in reduced yields and consequently less revenue 

generated. Formulating mitigation measures requires better understanding of the pressures of 

the wind park, including wind park size and technology used, which may interfere with the 

physiological status, and thus growth and settlement. 

Insurance cover will transfer the aforementioned risks while the insurance sector involvement 

will ensure that the risk response measures are adequate for the scale of the intended operation. 

Employing an experienced environmental manager and team and monitoring of aquaculture 

stock with already established water monitoring techniques/regimes will ensure enough 

reaction time is available to all industries.  

An adaptive monitoring programme will need to be established that in an event of any chemical 

spill rapid action and elimination of risk will be undertaken. The aquaculture and wind farm 

will be located relative in a secure distance one to another to minimise any harm to each other. 

This distance will be agreed by mutual consent to ensure that cost reduction benefits can also 

be realised.  

Regarding issues of accelerated corrosion as a result of exposure to aquaculture activities, 

standard protection techniques are already in use in the offshore wind sector with sacrificial 
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anode blocks or impressed current cathodic protection becoming standard practice in 

foundation design for wind turbines. Maintenance and inspection regimes will be revisited to 

ensure that any adverse effects will be captured early and acted upon. 

Economic and Political 

The key economic and political risks identified relate to issues around market entry due to 

intense competition including against established sectors such as fossil fuels and nuclear vs 

offshore wind and fisheries vs aquaculture shellfish. Competition against other renewables or 

organic farming would add magnitude to the risk. The “organic farming” brand name could be 

compromised due to combination of aquaculture-shellfish with a wind park on “industrial” 

production setting. Mitigation requires support from authorities and certifiers. Climate change 

is a driver for national policies including renewables in energy mix; opportunity for market 

entry exists for a large number of competitors but this is not restrictive apart from the 

competition for grants during early stage technology development. Possibilities to get certified 

require early cooperation with private and public standard-setting agencies. 

Financial 

The scalability of aquaculture activities may be severely limited in order to comply with 

insurance requirements due to the close proximity of the two industries. Due to lack of 

benchmark data insurance implications need to be studied early on in the design phase and 

insurance sector requirements to be fully understood. The proximity of the two different sector 

activities will need to be considered with scalability in mind, and ensure future expansion for 

either or both sectors. 

Environment 

The adverse impacts on the environment can be amplified by the combination of activities due 

to cumulative and in-combination impacts. During construction and installation, operation and 
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maintenance, impacts on the physical environment as a result of offshore projects (and 

associated activities) is combined with impacts from other marine activities or users if the sea. 

A detailed environmental impact study, including ecosystem effects, needs to be undertaken to 

avoid these issues.  

Socio-economic 

The proposed activity can come with associated alterations to the marine historic environment 

through the use of manmade vessels, and offshore wind energy platform. The use of only proven 

technology (or technology with acceptable adverse effects levels) can mitigate these impacts. 

Knowledge of the surrounding waters – through baselines surveys and monitoring – is needed 

to ensure enough reaction time is available to industries to respond to environmental changes.  

Health & Safety  

Multiple Health and Safety risks are identified. Injuries can be caused by incident with 

geological features, including injuries as a result of vessel interaction during installation, cable 

lay or access (e.g. vessel grounding or capsizing), caused during foundation installation caused 

by gas pockets or equipment failure during pile refusal caused by geological features and as as 

a result of system interaction during installation (e.g. grounding or capsizing). Injury caused 

conflicting offshore operations and vessel interactions can be caused by vessel collision, by 

simultaneous operations (e.g. subsea and topsides) and by interference with other sea users. 

Dependent on the type of risk, mitigation strategies include conducting a full geological survey 

prior to installation, the development of adequate safety plans, targeting the prevention of 

simultaneous operations, and creation of a marine vessel exclusion zone in conjunction 

maritime authorities. Injury to divers during subsea operations include injury caused by 

entrapment, injury caused by falling objects, injury caused by decompression sickness and 

injury caused by use of tools underwater. Mitigating these risk requires divers to be fully 

certified, using a reputable dive company with an accident-free track record and ensuring that 
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this company produces and complies with a high-level safety plan for the work being 

undertaken. 

4.4 Feedback from the advisory session 

The discussion in the advisory sessions highlighted the strengths and weaknesses of mussel 

aquaculture in offshore wind farms and pointed at the difficulties of realising this combination 

in practice. The combination is generally considered to be technologically feasible; no major 

objections to the technology or concerns about the safety and reliability of the system were 

raised, “The project does not seem to involve a lot of technological development” (expert 2), 

“the technology is all in place” (expert 4). The technological feasibility was rated high (average 

8.4 on 1 to 10 scale).  

 

Financial performance is valued lower. Experts are particularly concerned with the unclear, or 

absent, benefits for the offshore wind farm operator. For safety reasons – and subsequent 

insurance premiums – they will be reluctant to allow other operators within their wind farms. 

It is not clear enough if they benefit from co-location: “Is there a direct benefit from co-

location?” (expert 5). Potential benefits can include the wave-dampening effect or restricted 

access to the park by unauthorised vessels but both need to be quantified to be taken into 

consideration. Lack of real-life experiences impacts on the experts’ assessment of the risks. 

Potential risks are acknowledged and risk mitigation strategies need to be developed in time. It 

is questioned “”Whether mussel farming will increase bio-fouling, a potential risk for wind 

farm operators (expert 11). 

 

The weakness of the combination lies somewhere else:  “No real or apparent technology 

problems – partnership issues and how to best work together need to be resolved for progress” 

(expert 1). There is no business committed to the development of this combination, despite the 
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positive social benefits and business case. The critical question is which actors can be expected 

to take the lead in further developing this combination. 

 

According to some experts, the wind sector is key. To initiate this combination one “Needs a 

wind farm developer on board.” (Expert 3). This will be challenging, given the fact that it is not 

clear what benefits they gain from the combination. The mussel sector is considered too small, 

lacking capital and human resources to invest in the development and experimentation with 

offshore technologies. If this combination is to take off, government intervention might be 

required. According to the experts, this can  take two forms. Governments can stimulate or 

oblige co-use of the wind farms: “Unless there is an imposition from government, I don’t think 

it is going to happen” (expert 7). Alternatively, the public benefits of this combination and 

contribution to food security justify strong government support, either for pilots or direct 

involvement: “This combination is potentially important and needs to be sold to government” 

(expert 9). 
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5. Concluding remarks 

Based on the economic model and the risk assessment, this paper concludes that mussel 

aquaculture is an appealing commercial model for increased returns in offshore wind farms. 

The economic models shows that the IRR and net present value are positive and from the 

sensitivity analysis  it can be concluded that these results are robust. Synergy between the two 

sectors is limited with only some shared vessel use and shared Operations and Maintenance 

activities foreseen.  

Earlier studies concluded that new vessels would be required for maintaining and harvesting 

the offshore mussel systems (Kamermans et al., 2016) and these extra costs are taken into 

account in the economic model. As for the aquaculture technology, the system is based on 

proven technologies, tested in other seas. The risks are well understood and expected to have 

low magnitude subject to well-developed mitigation strategies which are in place and 

supported by expert consultants, making it more likely that wind farm developers will be 

willing to accommodate multiuse.  

As of now, there is no mussel aquaculture taking place in the offshore wind farms. The 

critical question behind this business case then is which of the sectors is motivated and 

capable to realise multiuse in practice. Confirming the conclusion of Röckmann et al. (2015); 

the wind sector is not likely to take this initiative. The mussel sector is significantly smaller 

and it is questionable if they have the financial and organisational resources to take this step.  

Public involvement in testing and developing offshore mussel cultivation is justified as offshore 

mussel aquaculture comes with various socio-economic benefits. Next to efficient use of ocean 

space and a contribution to food security, mussel aquaculture contributes to a clean marine 

ecosystem. According to Lindahl et al. (2005), mussel aquaculture is a simple, flexible and cost-

effective measure to counter marine eutrophication, and thus, the added benefits of mussel 
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aquaculture for society are striking. The commercial mussel aquaculture can reduce societal 

costs of nutrient damage in sea water, stemming from, among others, organic fertiliser, food 

and human consumption, for which they are unrewarded.  

A full-scale system has not yet been tested in the North Sea conditions. This leads to 

uncertainty, which can be taken away once a system is deployed and monitored. Public support 

for a pilot mussel cultivation in offshore wind farms can generate the evidence required to 

convince a reluctant sector to go offshore and use of the full potential of the marine ecosystem.  
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Appendix 1 : Definitions  

Type Parameter Definition 

CAPEX Project up to FID Development and consenting work paid for by the developer up to the point of FID. 

Includes internal and external activities such as environmental and wildlife surveys, met mast (including 

installation) and engineering (pre FEED) and planning studies. 

Excludes: any reservation payments to suppliers. 

Project from FID to 

WCD 

Includes: 

• Further site investigations and surveys after FID 

• Engineering (FEED) studies 

• Environmental monitoring during construction 

•  Project management (work undertaken or contracted by the developer up to WCD) 

•  Other administrative and professional services such as accountancy and legal advice 

• Any reservation payments to suppliers 

Excludes:  Construction phase insurance and suppliers own project management 

Construction phase 

insurance 

Cover from start of construction until operation start. All construction risks & third party 

Turbine Payment to wind turbine manufacturer for the supply of the nacelle and its subsystems, the blades and hub, 

and the turbine electrical systems to the point of connection to the array cables. 

Includes: Delivery to nearest port to supplier, warranty, commissioning costs 

Excludes:  Tower, OMS costs, RD&D costs 

Support structure 

(including tower) 

Includes: Payment to suppliers for the supply of the support structure comprising the foundation (including any 

piles, transition piece and secondary steel work such as J- tubes and personnel access ladders and platforms) 

and the tower. Delivery to nearest port to supplier. Warranty 

Excludes: OMS costs, RD&D costs 

  Array cables Includes: • Delivery to nearest port to supplier, warranty 

Excludes: OMS costs, RD&D costs 

  

  

  

Mussel aquaculture 

system 

Including mooring, longlines, support lines, marker buoys, floating supports, new vessel including 599 kW 

motor, motor overhaul after 10 years, land facility, license 

Installation Includes: 

• Transportation of all from each supplier's nearest port 

• Pre-assembly work completed at a construction port before the components are taken offshore 

•  All installation work for support structures, turbines and array cables 
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•  Idem for aquaculture 

•  Commissioning work for all but turbine (including snagging post WCD) 

• Scour protection (for support structure and cable array) 

• Subsea cable protection mats etc., as required 

Excludes: 

• Installation of offshore substation / transmission assets 

Transmission build Supply, cable laying, and construction of transmission assets from where array cables enter the offshore 

substation.  

DECEX Decommissioning Includes: 

•  Planning work and design of any additional equipment required 

•  Removal of the turbine and support structure to meet legal obligations 

•  Includes further environmental work and monitoring 

•  Removal of the items used for aquaculture 

OPEX Operation and planned 

maintenance 

Starts once first turbine and aquaculture site is commissioned. Includes: 

•   Operational costs relating to the day-to-day control of the wind farm 

•  Condition monitoring 

•   Planned preventative maintenance, health and safety inspections 

•   Idem for aquaculture, including cleaning, monitoring, harvesting, transport to harbour 

•   Replacement of longlines, support lines, marker buoys in years 5, 10, 15. Including removal of old 

system 

Unplanned service Starts once first turbine is commissioned. Includes: 

•  Reactive service in response to unplanned systems failure in the turbine or electrical systems. 

Operations phase 

insurance 

Starts once first turbine is commissioned, taking the form of a new operational “all risks” policy and issues 

such as 

substation outages, design faults and collision risk become more significant as damages could result in wind 

farm outage. Insurance during operation is typically renegotiated on an annual basis. Includes aquaculture 

Transmission charges Includes: OFTO / Generation transmission use of system (G-TNUoS) charges. 

OPEX Other Fixed cost elements that are unaffected by technology innovations, including: 

•   Contributions to community funds. 

•  Monitoring of the local environmental impact of the wind farm. 

Gross AEP The gross AEP averaged over the wind farm life at output of the turbines. Excludes aerodynamic array losses, 

electrical array losses and other losses. Includes any site air density 



 
 

25 
 

 

Annual 

energy 

production 

  

  

  

  

  

adjustments from the standard turbine power curve. 

Wind farm availability Energy production loss throughout the project life time due to unavailability of the wind farm system. 

Accounts for improvements in early years and degradation in later years. 

Includes: Availability of wind turbines, structure and array cables, accounting for scheduled and unscheduled 

downtime. 

Excludes: Transmission availability on substation and to shore and wider grid. 

Aerodynamic array 

losses 

Typical wake losses within a 500MW wind farm, dependent on turbine rating. 

Electrical array losses Electrical array losses between the turbines and the offshore metering point for a typical 500MW wind farm. 

Excludes: Transmission losses. 

Other losses Lifetime energy loss from cut-in / cut-out hysteresis, power curve degradation, and power performance loss. 

Net energy production AEP averaged over the wind farm life at the offshore metering point at entry to offshore substation. 

Annual 

mussel 

production 

  

  

Mussel seed Mussel seed, about 6 months after settlement of larvae on ropes. Ready for transport to other areas for 

further growth 

Half-grown Mussels about 12 months old. Ready for transport to other areas for further growth 

Consumption mussels Mussels ready for consumption 
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Appendix 2: Assumptions 

Baseline costs and the impact of innovations are based on the following assumptions. 

Global assumptions 

 Real (2016) prices 

 Commodity prices fixed at the average for 2016 

 Exchange rates fixed at the average for 2011 (that is, for example, €1 = €1.18). For 

GDP-Euro exchange rate, this is in line with average exchange rate  second half 

of 2016. 

 Energy prices fixed at the current rate 

Synergy 

Based on the discussion on costs saving by sharing Operation and Maintenance facilities (see 

section 3.4), the following synergies are assumed: 

 Sharing vessels reduces costs for vessel (in CAPEX) for the mussel farm by 10% 

 Because the wind farm provides a more monitoring of the area for the mussel farmer, 

mussel farmers costs for insurance (in OPEX) are reduced 5%  

 Sharing environmental monitoring systems reduces this costs for the mussel farmer by 

10% (in OPEX) 

 Wind farm assumptions 

The general assumptions are 

 500MW wind farm, as part of a multi-gigawatt Round 3 zone 

 Turbines are spaced at nine rotor diameters (downwind) and six rotor diameters 

(across-wind) in a rectangle 

 A wind farm design is used that is certificated for an operational life of 20 years 
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 The lowest point of the rotor sweep is at least 22 metres above MHWS 

 The development and construction costs are funded entirely by the project developer, 

and 

 A multi-contract approach is used to contracting for construction. 

The meteorological regime assumptions are: 

 A wind shear exponent of 0.12 

 Rayleigh wind speed distribution 

 A mean annual average temperature of 10°C 

 The P90 energy yield is 11 per cent lower than P50 (in base case) 

 The tidal range of 4m and the Hs of 1.8m is exceeded on 15 per cent of the days over a 

year at Site Types A, B and C, and 25 per cent of the days at Site Type D, and 

 No storm surge is considered. 

 The turbine assumptions are: 

 The turbine is certified to Class IA to international offshore wind turbine design 

standard IEC 61400-3 

 The 8MW turbine has a169m diameter, and a specific rating of 354 W/m². 

The support structure assumptions are: 

 A four-legged piled jacket with a separate tower is used, and 

 Ground conditions are ”typical”, that is, most relevant to Round 3 zones, namely 10m 

dense sand on 15m stiff clay, only occasionally with locations with lower bearing 

pressure, the presence of boulders or significant gradients. 
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The array cable assumption is that a three core 33kV AC on fully flexible strings is used, 

that is, with provision to isolate an individual turbine. 

 The installation assumptions are: 

 Installation is carried out sequentially by the foundation, array cable, then the pre-

assembled tower and turbine together 

 A jack-up vessel collects components from the installation port for turbine installation 

 Two jack-ups are used for jacket installation and pre-piling, collecting components 

from the installation port, and 

 Array cables are installed via J-tubes, with separate cable lay and survey and burial. 

Decommissioning reverses the assembly process to result in installation taking one 

year. Piles and cables cut off at a depth below the seabed, which is unlikely to lead to 

uncovering. Environmental monitoring is conducted at the end. The residual value and 

cost of scrapping is ignored. 

 Operations, Maintenance and Service assumptions are: 

 Transmission charges for use of system are incurred as OPEX (the build is incurred as 

CAPEX), and 

 Access is by work boats and mother ships or accommodation platforms for Site Type 

D, while jack-ups are used for major component replacement. 
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Appendix 3: Input parameters  

CAPEX OPEX and DECEX 

Sector Item € m  Sector Item € m 

Wind Project Consenting and 

Development to FID 

71.7 Wind Operation, maintenance and service 

(planned & unplanned, figures relate 

to post-warranty cost) 

565.0 

Project management from FID 

to WCD 

16.1 Operating phase insurance 143.5 

Construction phase insurance 18.4 Transmission charges 89.7 

Turbine (exc. Tower) 541.2 Mussel Maintenance - cleaning 1.1 

Support structure (inc. tower) 257.4 Maintenance - monitoring 1.1 

Array cables 35.4 Maintenance - repairs 1.1 

Installation  137.2 Maintenance - unplanned service 1.1 

Transmission build 192.4 Harvesting - labour 4.4 

Construction contingency 119.8 Harvesting - fuel costs 23.5 

Mussel Project up to FID 0.7 Processing, packaging and storage 7.3 

Project from FID to WCD 0.7 Insurance 5.0 

Construction phase insurance 0.7 Material - longlines 15.0 

Moorings/ foundations 0.6 Material - support lines 2.3 

Infrastructure - longlines 5.0 Material - Marker buoys 0.3 

Infrastructure - support lines 0.8 Environmental monitoring 2.3 

Infrastructure - Marker buoys 0.1 Management 2.2 

Infrastructure - Floating 

supports 

1.6 TOTAL OPEX 864.8 

Installation of farm and 

moorings/foundations 

0.7 Wind Decommissioning wind farm 89.2 

New vessel 28.2 Mussel Decommissioning mussel farm 1.7 

Motor 3.0 TOTAL DECEX 90.9 

Land facility 11.7 
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License 0.2 

Construction contingency 5.7 

 TOTAL CAPEX 1,449.2 

 


