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Abstract

In this paper we present an exact solution to the governing equa-
tions for equatorial geophysical water waves which admits an under-
lying current.
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1 Introduction

In this paper we present an exact solution to the β−plane governing equations
for geophysical water waves which admit an underlying current. Geophysical
ocean waves are those which take into account the Coriolis effects on the fluid
body which are induced by the earth’s rotation, and the β−plane approx-
imation to the full governing equations applies in regions which are within
5◦ latitude of the equator [11, 13]. The wave solution which we construct in
this paper correspond to steady zonal waves, travelling in the longitudinal
direction with a constant speed of propagation c > 0, and which experience
the presence of a constant underlying current of strength c0.

Currents, such as the equatorial undercurrent (EUC), feature significantly
in the geophysical dynamics of the equatorial region [7, 11]. For instance,
the El Niño phenomena has recently been ascribed to the interplay between
currents in the ocean and atmosphere [20], and the model we present in this
paper is a first approach in incorporating the effects of a current into an
exact solution for the governing equations. Additionally, the equator has the
remarkable property of acting like a natural waveguide [12]. Accordingly,
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waves tend to be trapped in the equatorial region, and the waves which we
present below inherit this feature— the amplitude of the waves decay rapidly
in the meridional direction.

The approach we use to construct these waves is in the spirit of Gerstner’s
solution for the governing equations of two-dimensional gravity water waves,
with significant modifications to incorporate geophysical effects along the
lines of [6] . In 1802 Gerstner [14] found an explicit solution in Lagrangian
variables for the full water wave equations (the form of this solution was later
independently discovered by Rankine). Gerstner’s wave is truly remarkable
in the mathematical sense that it is one of only a handful of explicit solutions
to the full governing equation which have constructed [5]. Gerstner’s wave is
a periodic travelling wave with a specific vorticity distribution (see [2, 5, 17]
for a modern treatment of Gerstner’s wave). Although the prescription of
the flow is quite specific and rigid, remarkably this flow has been recently
adapted to describe a wide-variety of interesting, and physically varied, water
waves (cf. [5, 3, 23, 25], and particularly [6], where an exact solution to the
geophysical governing equations was first derived). We note that all fluid
particles follow closed trajectories in Gerstner’s wave, something which is
precluded for regular irrotational waves [4, 9, 10, 15, 16, 18, 19, 21, 22] and
which must be due to the underlying vorticity distribution.

The introduction of a current-like term into Gerstner’s formulation was
performed by Mollo-Christensen [24] in the study of billows between two flu-
ids. Here, we expand this formulation to admit the Coriolis effects of the
rotating earth— these effects feature significantly for such large scale phe-
nomena as currents. In particular, we find that the introduction of a steady
underlying current in the geophysical context has interesting implications for
the fluid motion, particularly in relation to the dispersion relation.

2 Governing equations

We take the earth to be a perfect sphere of radius R = 6378km, which
has a constant rotational speed of Ω = 73.10−6rad/s. Then g = 9.8ms−2

is the standard gravitational acceleration at the earth’s surface, and β =
2Ω/R = 2.28 · 10−11m−1s−1 is a parameter which will arise in subsequent
considerations [11, 13]. From the viewpoint of a rotating reference frame
with it’s origin at the earth’s surface, so that the {x, y, z}-coordinate frame
is chosen with z as the vertical variable, x as the longitudinal variable (in
the direction due east), and y is the latitudinal variable (in the direction due
north), then the governing equations for geophysical ocean waves are given
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by [13]

ut + uux + vuy + wuz + 2Ωw cosφ− 2Ωv sinφ = −
1

ρ
Px, (1a)

vt + uvx + vvy + wvz + 2Ωu sinφ = −
1

ρ
Py, (1b)

wt + uwx + vwy + wwz − 2Ωu cosφ = −
1

ρ
Pz − g, (1c)

together with the equation for mass conservation

ρt + uρx + vρy + wρz = 0 (2a)

and the equation of incompressibility

ux + vy + wz = 0. (2b)

Here the variable φ represents the latitude, (u, v, w) is the velocity field of
the fluid, ρ is the density of the fluid, and P is the pressure of the fluid. The
β−plane approximation of the geophysical governing equations applies when
we a working in regions which are within 5◦ latitude of the equator. There,
the latitude φ is small and hence the approximations sinφ ≈ φ, cosφ ≈ 1 are
valid, resulting in the β−plane governing equations [13]

ut + uux + vuy + wuz + 2Ωw − βyv = −
1

ρ
Px, (2ca)

vt + uvx + vvy + wvz + βyu = −
1

ρ
Py, (2cb)

wt + uwx + vwy + wwz − 2Ωu = −
1

ρ
Pz − g. (2cc)

The boundary conditions for the fluid are given by

w = ηt + uηx + vηy on y = η(x, y, t), (2d)

P = P0 on y = η(x, y, t). (2e)

Here η represents the free-surface and P0 is the constant atmospheric pres-
sure. The kinematic boundary condition on the surface simply states that
all surface particles remain confined to the surface. Since we are interested
in waves which are trapped in the equatorial region, we stipulate in the fol-
lowing that the wave surface profile decays in the latitudinal directions away
from the equator. Finally, we assume the water to be infinitely deep, with
the flow converging to a uniform current rapidly with depth, that is,

(u, v) → (−c0, 0) as y → −∞. (2f)
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3 Lagrangian dynamics

In this section we define an exact solution of the β− plane governing equa-
tions (2). The solution represents steady waves travelling in the longitu-
dinal direction, which have a constant speed of propagation c > 0, in the
presence of a constant underlying current of strength c0. We adopt the
Lagrangian approach [1], whereby the Eulerian coordinates of fluid parti-
cles (x, y, z) are expressed as functions of the Lagrangian labelling variables
(q, r, s) ∈ (R, (−∞, r0),R), and time t, as follows:

x = q − c0t−
1

k
ek[r−f(s)] sin [k(q − ct)], (4a)

y = s, (4b)

z = r +
1

k
ek[r−f(s)] cos [k(q − ct)], (4c)

where r0 < 0 and k is the wavenumber. The function f(s) essentially de-
termines the decay of the particle oscillation as it moves in the latitudinal
direction away from the equator, and for the present construction we choose

f(s) =
cβ

2γ
s2, (5)

where
γ = 2Ωc0 + g. (6)

For notational convenience let us choose

ξ = k (r − f(s)) , θ = k(q − ct).

Then the Jacobian matrix of the transformation (4) is given by





∂x
∂q

∂y

∂q
∂z
∂q

∂x
∂s

∂y

∂s
∂z
∂s

∂x
∂r

∂y

∂r
∂z
∂r



 =





1− eξ cos θ 0 −eξ sin θ
fse

ξ sin θ 1 −fse
ξ cos θ

−eξ sin θ 0 1 + eξ cos θ



 . (7)

The determinant of the Jacobian is 1− e2ξ, which is time independent, thus
it follows that the flow defined by (4) must be volume preserving, ensuring
that (2b) holds in the Eulerian setting [1]. We further remark that, in order
for the transformation (4) to be well-defined, and to furthermore ensure that
our flow has the appropriate decay properties (in both the vertical and the
latitudinal directions), we stipulate that

r − f(s) ≤ r0 < 0. (8)
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We note that this relation forces the choice c > 0 for our flow. Bearing in
mind that we are seeking trapped equatorial waves, we take v ≡ 0 throughout
the fluid, and we calculate

u =
Dx

Dt
= ceξ cos θ − c0,

Du

Dt
= kc2eξ sin θ, (9a)

v =
Dy

Dt
= 0,

Dv

Dt
= 0, (9b)

w =
Dz

Dt
= ceξ sin θ,

Dw

Dt
= −kc2eξ cos θ, (9c)

where D/Dt is the material derivative. We can express (2c) as

Du

Dt
+ 2Ωw = −

1

ρ
Px,

Dv

Dt
+ βyu = −

1

ρ
Py,

Dw

Dt
− 2Ωu = −

1

ρ
Pz − g,

and inserting the terms from (9) in this gives us

Px = −ρ(kc2eξ sin θ + 2Ωceξ sin θ), (11a)

Py = −ρ(βs[ceξ cos θ − c0]), (11b)

Pz = −ρ(−kc2eξ cos θ − 2Ωceξ cos θ + γ). (11c)

Multiplying both sides of (11) by the Jacobian matrix (7) we derive the
following expression in terms of the Lagrangian variables




Pq

Ps

Pr



 = −ρ





(kc2 + 2Ωc− γ)eξ sin θ
fse

2ξ(kc2 + 2Ωc) + (βsc− fsγ) e
ξ cos θ − βsc0

−(kc2 + 2Ωc)e2ξ − (kc2 + 2Ωc− γ)eξ cos θ + γ



 , (12)

and so our next task is to determine a suitable expression for the pressure
function P for which (12) hold.

3.1 Homogeneous fluid

We now show that, for a fluid which has constant density ρ = ρ0 (and so
(2a) holds in a trivial sense), we can construct a suitable pressure function
for which (12) is satisfied, thereby proving that the flow which is prescribed
by the Lagrangian formulation (4) satisfies (2c). Let us take

f(s) =
β

2(kc+ 2Ω)
s2, (13)
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and so

fs =
β

(kc+ 2Ω)
s.

Now, for

P̃ = ρ
kc2 + 2Ωc

2k
e2ξ − ργr +

ργc0
c

f(s) + ρ
kc2 + 2Ωc− γ

k
eξ cos θ + P0 (14)

we have

P̃q = −ρ(kc2 + 2Ωc− γ)eξ sin θ

P̃s = −ρ(kc2 + 2Ωc)fse
2ξ − ρ(kc2 + 2Ωc− γ)fse

ξ cos θ − ρβsc0

P̃r = ρ(kc2 + 2Ωc)e2ξ − ργ + ρ(kc2 + 2Ωc− γ)eξ cos θ,

which matches the right hand side of (12). Since (2e) we require the pres-
sure to be time independent on the surface, we want there to be no terms
containing θ in (14) and therefore it follows that

kc2 + 2Ωc− γ = 0. (15)

Now, if c0 = c then (15) gives us c =
√

g/k, and the geophysical effects have
no bearing on the dispersion relation of the wave, which resembles that of
the standard Gerstner’s wave.

If c0 6= c we get

c =

√

Ω2 + kγ − Ω

k
, (16)

since we require c > 0 (see the discussion after (8)). This means that

c =

√

Ω2 + k(2Ωc0 + g)− Ω

k
. (17)

We notice that if c0 = − g

2Ω
then c = 0. This scenario is physically quite

implausible, and so from now on we assume that c0 > − g

2Ω
, and so γ > 0.

Since (15) also implies that kc+ 2Ω = γ/c, it follows that (5) matches (13),
and so (14) becomes

P = ργ

(

e2ξ

2k
− r +

c0
c
f(s)

)

+ P0 − ρg

(

e2kr0

2k
− r0

)

. (18)

Therefore the flow determined by (4) satisfies the governing equations (2c).
By considering the boundary conditions (2d) and (2e), we now investigate
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for which values of the current c0 this flow is hydrodynamically possible. Let
us denote

σ(r, s) :=
e2ξ

2k
− r +

c0
c
f(s) =

e2k[r−
cβ
2γ

s2]

2k
− r +

c0β

2γ
s2.

If, for each fixed s, there exists a unique solution r(s) ≤ r0 < 0 of the
equation

σ(r(s), s)−
e2kr0

2k
+ r0 = 0, (19)

then it follows that r(s) determines the free-surface of the fluid (where q is
a free-parameter of the surface) and so (2d) holds. Furthermore, it follows
from the form of (18) that (2e) is then also satisfied. Proving the existence
of such an r(s) will complete our analysis of the homogeneous flow.

Firstly, for s = 0, we have σ(r, 0) = e2kr

2k
− r, and so r(0) = r0. For s > 0,

we work as follows. We have limr→−∞ σ(r, s) = ∞, and also

σr(r, s) = e2k[r−
cβ
2γ

s2] − 1 < 0.

Hence σ is a monotonically decreasing function of r, and so the existence of
a unique solution of (19), for fixed s > 0, is equivalent to

lim
r↑r0

σ(r, s) =
e2k[r0−

cβ
2γ

s2]

2k
− r0 +

c0β

2γ
s2 <

e2kr0

2k
− r0. (20)

If c0 ≤ 0, it is easy to see that condition (20) holds for all s > 0, and so we
are done.

For c0 > 0, we can see explicitly that condition (20) will break down for
large enough values of s. However, we note that since we are working in the
equatorial region where the β−plane approximation is valid, the variable s
will be restricted de facto in its range of values. Hence, depending on the
size of the current c0 > 0, condition (20) may yet hold for s in this range.
To estimate the range of s where condition (20) holds, we remark that for a
solution of (19) to exist for s close to zero we must necessarily have

σs(r0, s) =
βs

γ

(

c0 − ce2k[r0−
cβ
2γ

s2]
)

< 0. (21)

For a given current c0 > 0, our solutions (4) are dynamically possible in a
range of s where (21) holds, and in particular it is necessary that

c0 < ce2kr0 . (22)
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Finally, when (21) holds, we have

(

r′(s)−
cβ

γ
s

)

e2k[r−
cβ
2γ

s2] − r′(s) +
c0β

γ
s = 0,

that is

r′(s) =
βs

γ

c0 − ce2k[r−
cβ
2γ

s2]

1− e2k[r−
cβ
2γ

s2]
< 0,

and so the even function s 7→ r(s) is decreasing. Finally, we note that the
form of the surface wave, for fixed values of s and t, is an upside down
trochoid, cf. [5, 6, 17].

3.2 Heterogeneous fluid

Remarkably, we can accommodate variable density by adapting our flow
slightly. Since ρ is no longer constant, we first ensure that (2a) is satisfied.
We observe that, for steady waves travelling in the longitudinal direction
with relative speed c, we have ρ(x, y, t) = ρ(x− ct, y), and so (2a) becomes

ρt + uρx + vρy + wρz = −cρx + ceξ cos θρx + ceξ sin θρz = 0. (23)

Therefore

ρq = ρx
∂x

∂q
+ ρy

∂y

∂q
+ ρz

∂z

∂q
= ρx(1− eξ cos θ)− ρze

ξ sin θ

= −
(u− c)ρx + wρz

c
= 0,

and the density ρ is independent of q. Let us prescribe the density function
by

ρ(r, s) = F

(

e2ξ

2k
− r +

c0
c
f(s)

)

, (24)

where F : (0,∞) → (0,∞) is continuously differentiable and non-decreasing.
Then we modify (18) slightly by defining

P = γF

(

e2ξ

2k
− r +

c0
c
f(s)

)

+ P0 − γF

(

e2kr0

2k
− r0

)

, (25)

where F ′ = F and F(0) = 0. Now all of the considerations of the preceeding
section follow, including the form of the dispersion relation and the function
f(s).
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3.3 Vorticity

We now calculate the vorticity of the flow prescribed by (4), which turns out
to be independent of the density formulation. The inverse of the Jacobian
(7) is given by





∂q

∂x
∂s
∂x

∂r
∂x

∂q

∂y
∂s
∂y

∂r
∂y

∂q

∂z
∂s
∂z

∂r
∂z



 =







1+eξ cos θ
1−e2ξ

0 eξ sin θ
1−e2ξ

−fs
eξ sin θ
1−e2ξ

1 fs
eξ cos θ−e2ξ

1−e2ξ

eξ sin θ
1−e2ξ

0 1−eξ cos θ
1−e2ξ






. (26)

Then we have





∂u
∂x

∂v
∂x

∂w
∂x

∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂z

∂v
∂z

∂w
∂z



 =





∂q

∂x
∂s
∂x

∂r
∂x

∂q

∂y
∂s
∂y

∂r
∂y

∂q

∂z
∂s
∂z

∂r
∂z









∂u
∂q

∂v
∂q

∂v
∂q

∂u
∂s

∂v
∂s

∂v
∂s

∂u
∂r

∂v
∂r

∂v
∂r





=
ckeξ

1− e2ξ





− sin θ 0 cos θ + eξ

fs(e
ξ − cos θ) 0 −fs sin θ

−eξ + cos θ 0 sin θ



 , (27)

and so the vorticity is

ω = (wy − vz, uz − wx, vx − uy) (28)

=

(

−s
kc2β

g

eξ sin θ

1− e2ξ
,−

2kce2ξ

1− e2ξ
, s
kc2β

g

eξ cos θ − e2ξ

1− e2ξ

)

. (29)

We note that since the current is constant, it does not impact on the vorticity
of the flow, and the prescription of the vorticity matches that of [6].
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