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General abstract 

This study selected six geographically-similar villages with traditional and 

alternative cultivation methods (two groups of three, one traditional and two 

alternatives) in two counties of Henan Province, China—a representative area of the 

Huang-huai-hai Plain representing traditional rural China. Soil heavy metal 

concentrations, floral and faunal biodiversity, and socio-economic data were 

recorded. Heavy metal concentrations of surface soils from three sites in each 

village were analysed using Inductively Coupled Plasma Mass Spectrometry 

(ICP-MS, chromium, nickel, copper, cadmium, and lead) and Atomic Absorption 

Spectrophotometer (AAS, zinc). The floral biodiversity of four land-use types was 

recorded following the Braun-Blanquet coverage-abundance method using 0.5×0.5m 

quadrats. The faunal biodiversity of two representative farmland plots was recorded 

using 0.3×0.3m quadrats at four 0.1m layers. The socio-economic data were 

recorded through face-to-face interviews of one hundred randomly selected 

households at each village. Results demonstrate different cultivation methods lead to 

different impact on above variables. Traditional cultivation led to lower heavy metal 

concentrations; both alternative managements were associated with massive 

agrochemical input causing heavy metal pollution in farmlands. Floral distribution 

was significantly affected by village factors. Diverse cultivation supported high 

floral biodiversity through multi-scale heterogeneous landscapes containing niches 

and habitats. Faunal distribution was also significantly affected by village factor 

nested within soil depth. Different faunal groups responded differently, with Acari 

being taxonomically diverse and Collembola high in densities. Increase in manual 

labour and crop number in villages using alternative cultivation may positively 

affect biodiversity. The results point to the conservation potential of diverse 

cultivation methods in traditional rural China and other regions under social and 

political reforms, where traditional agriculture is changing to unified, large-scale 

mechanized agriculture. This study serves as a baseline for conservation in 
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small-holding agricultural areas of China, and points to the necessity of further 

studies at larger and longer scales. 
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Chapter 1 Review of agricultural management and its impact on 

biodiversity and soil properties 

1 Introduction 

Technological achievements in biological and chemical industries during the past 

fifty years have led to major changes in agriculture (Khush 1999; Grigg 2001; 

Evenson and Gollin 2003). This was characterized as the “Green Revolution”, and 

has helped to alleviate the rising pressure on food security imposed by the rapidly 

growing human population. The impact of this fast developing agri-industry on 

global ecosystems has attracted considerable attention since agriculture is 

fundamental to human survival and is likely to be one of the major contributors to 

global environmental change (Gall and Orians 1992; McLaughlin and Mineau 1995; 

Tilman et al. 2001; Lichtenberg 2002).  

 

One important negative impact of agricultural intensification is decline in 

biodiversity in farmland areas, which undermines vital ecosystem services and 

regulatory processes (Harlan 1975; Naeem et al. 1994; Hector 1998). Studies 

worldwide have shown that decline in biodiversity is linked to intensive agricultural 

practices (Gall and Orians 1992; Naeem et al. 1994; Matson et al. 1997; Krebs et al. 

1999; Evenson and Gollin 2003; Hutton and Giller 2003; Benton 2007). The 

structure and functions of agriculture, being human-dominated, are shifting towards 

a semi-artificial ecosystem heavily depended upon anthropogenic managements 

(Swift and Anderson 1993). Other factors such as: solar radiation, temperature, 

humidity, precipitation, and the extinction and re-colonization of species play 

weaker roles in agricultural regions. This increasing threat to biodiversity has led to 

the popular demand of sustainable agriculture which relies on natural ecosystems 

and is dependent on productivity and richness of species (Gall and Orians 1992; 

Swift and Anderson 1993; Altieri 1999). 
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Agricultural intensification can also affect ecosystem services, often negatively, such 

as: nutrient cycling, climate and water regulation (Power 2010). Biodiversity is at 

the centre of these processes (Naeem et al. 1994; Giller 1996; Altieri 1999; Hughes 

and Petchey 2001; Gardner et al. 2009). Decline in biodiversity and loss of 

ecosystem services is greater in tropical regions where agricultural expansion has 

taken over forest areas (Gibbs et al. 2010), which has increased the global 

greenhouse gas emissions (Friedlingstein et al. 2010). Conservation based 

agriculture has been adopted worldwide in response to such problems (Baveye et al. 

2011; Palm et al.). Recent studies have shown that conservation based agriculture 

can increase soil organic matter and water quality (Lal 2004; Baker et al. 2007; Palm 

et al. ; Stockmann et al. 2013), but data from small-holding regions are limited. 

Chinese agriculture has adopted some conservation based agricultural practices such 

as no-tillage or strip-tillage cultivation (Derpsch and Friedrich 2009). However, 

since these methods have been implemented mainly on large mechanized farms with 

high input levels (Derpsch and Friedrich 2009), its efficiency in agricultural regions 

with small-holding requires more empirical evidence. No-tillage cultivation has 

increased corn yield in the US (Ismail et al. 1994; Triplett and Dick 2008; Paul et al. 

2013), but only with increased inputs such as herbicide. The changes in Chinese 

agri-industry could promote the existence of large mechanized farms and more 

implementation of conservation agricultural practices Therefore studies of 

ecosystem services in rural China should be given more attention. 

 

Some traditional agricultural practices in developing countries, usually highly 

populated regions such as China, approach those required of sustainable agriculture. 

These practices generally involve more manual labour instead of agrochemical input. 

However, these traditional practices are threatened by increasing food demand of the 

ever-growing human population which is predicated to grow to 8.9 billion by 2050 

(47% increase from 6.1 billion in 2000) (Dept. of Economic and Social Affairs 

2004). High use of agrochemicals has been introduced in these areas to reach 

maximum yield, damaging its conservation potential.  
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In developed countries, trade-offs between agricultural production and biological 

conservation (Green et al. 2005) has been targeted by the introduction of alternative 

more environmental-friendly management with less agrochemical input, for example 

organic cultivation employing no agrochemical input and minimum tillage. This 

review evaluates the advantages and weaknesses of these alternative managements, 

and the changes necessary to implement such methods in high-demand agricultural 

regions.  

2 Review of effects of alternative agricultural management on biodiversity 

Agricultural soil is the habitat of plants and a diverse collection of organisms 

including fungi, bacteria and invertebrates, which contribute to the maintenance and 

productivity of agri-ecosystems. In farmland regions, floral1 species play a crucial 

role in maintaining the functions and structural stability of agricultural ecosystem 

(Altieri 1991; McLaughlin and Mineau 1995; Swanton and Murphy 1996), 

providing habitats and refuges for ground dwelling insects and pollinators (Hooper 

and Vitousek 1997; Altieri 1999; Brose 2003; Duffy 2009; Hawes et al. 2010). Soil 

fauna broadly refers to soil animal communities whose lifespan includes a specific 

period during which they reside in the soil and can affect various bio-chemical soil 

processes. These organisms include communities such as Protozoa, Platyhelminthes, 

Rotatoria, Nematomorpha, Mollusca, Annelida, Tardigrada, Arthropoda, and 

vertebrates Amphibia, Reptilia and Mammalia (Yin 2000). Soil fauna are an 

important part of soil ecosystems and its main ecological functions include 

bioturbation and organic decomposition. By actively producing soil nutrients, it is 

both directly and indirectly involved in the material and energy cycles of ecosystems. 

Along with other soil organisms, soil fauna help maintain productivity and the 

sustainable development of terrestrial ecosystems.  

 

Farmland biodiversity conservation has advanced with much effort. Well-established 

                                                 
1 This paper refers to farmland plants as non-crop species 
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examples of this include the EU’s Agri-Environmental Scheme (AES) (Yussefi and 

Willer 2007), the Conservation Reserve Program (Reichelderfer and Boggess 1988; 

Burke et al. 1995; Johnson and Clark 2001) in the USA, and the Australian Landcare 

Program (Curtis and de Lacy 1998; Lockie 1999). These methods attempted to 

conserve biodiversity through measures such as lowering agricultural intensity 

and/or inputs (conservation agriculture) (Hobbs 2007), using manure and biological 

control to replace agrochemicals (organic farming), and/or increasing landscape 

heterogeneity which benefits biodiversity by increasing potential habitats. In EU 

alone, the total area (converted and in-conversion) under the Agri-Environmental 

Scheme has increased from 4.3 million hectares in 2000, to roughly 7.6 million 

hectares in 2008 (Directorate General for Agriculture and Rural Development 2010).  

 

Since the implementation, researchers have examined their effectiveness in 

protecting biodiversity (Kleijn et al. 2001; Reidsma et al. 2006; Henle et al. 2008; 

Gabriel et al. 2010; Smith et al. 2010; Winqvist et al. 2012; Gabriel et al. 2013). 

These environmental-friendly management changes had mixed effects on 

biodiversity as species reacted both positively and negatively to changes in land 

management (Kleijn et al. 2001; Kleijn and Sutherland 2003; Feehan et al. 2005; 

Kleijn et al. 2006; Kleijn et al. 2011). Positive effects varied with field or crop types 

(Mäder et al. 2002; Bengtsson et al. 2005; Feehan et al. 2005; Hole et al. 2005; 

Blomqvist et al. 2009; Gabriel et al. 2013). In general, however, environmental 

friendly cultivation involves decreased agrochemical input and improved soil 

fertility and biodiversity. 

 

Responses of biodiversity to agri-environmental managements have been generally 

positive, but most studies were based on actual cases implemented specifically for 

conservation. This has limited relevance in intensive agricultural areas where 

adopting such measures on a large scale can be problematic. In China for example, 

state policy dictates that food self-sufficiency should be maintained above 90% and 

food crop self-sufficiency has long been maintained at 100% (National Development 
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and Reform Commision 2008). With current cultivated land area serving a growing 

population, food security goals can only be achieved through increasing crop yield 

per unit area. In 2011, Chinese corn (Zea mays) and winter wheat (hybridized 

Triticum species) yields were 5748kg/ha and 4909kg/ha (National Bureau of 

Statistics 2012a), as compared to the USDA figure of 9086kg/ha and 

3105kg/ha(National Agricultural Statistics Service 2013). Chinese yield must 

increase to meet the nation’s development goals and conservation efforts need to 

focus on methods coexisting with highly intensive agriculture. 

3 Review of agricultural impact on soil properties 

Hybridized crops have been widely adopted which rely heavily on the input of 

agrochemicals (e.g. fertilizers, pesticides and herbicides) which have drastically 

boosted the world’s agrochemical consumption (Matson et al. 1997). The usage of 

fertilizers worldwide has increased by 21.04% from 1980 to 2002 whilst at the same 

period, Chinese consumption has more than doubled (Food and Agriculture 

Organization 2013). In traditional agricultural areas where little industrial 

contaminations exist, agricultural input is the major source of heavy metal 

accumulation in soils. This contamination is derived from agrochemicals such as 

pesticide, herbicide, fertilizers, and irrigation using ground water supplies (Micó et 

al. 2006; Huang et al. 2007; Tang et al. 2010). 

 

Various studies point to the unsustainable nature of these extensive production 

methods (Pingali et al. 1994; Pimentel et al. 1995; Singh 2000; Lichtenberg 2002; 

Mann et al. 2009; Tang et al. 2010; Hodson 2013). However, there is less research 

comparing the impact of soil elemental concentration in alternative and traditional 

agricultural practices. Researchers have examined the possible nutrient benefits 

which followed the changes made in on-site managements such as: reduced nitrogen 

leaching related to changes in manure application (Rode et al. 2009) and increased 

nutrient efficiency by limiting mono-cropping and promoting regional production 

cycles (Granstedt 2000). While these changes would not directly affect heavy metal 
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concentrations in farmlands, higher efficiency in fertilizer usage could result in less 

overall input and, therefore, reduced risk of heavy metal pollution. 

 

Another change evident in agricultural management is phytoextraction capabilities 

of plant species—the ability of some plant species (e.g. maize and soybean) (Leita et 

al. 1993; Arthur et al. 2000; Murakami and Ae 2009) to absorb and transfer heavy 

metal elements from the soil and thereby reducing the heavy metal concentrations of 

the habitat. This low-cost, environmental-friendly method could indicate the benefit 

of maintaining high floral diversity in contaminated areas. 

4 Conservation theory and questions 

4.1 Main hypotheses in biodiversity conservation 

Current hypotheses involved in biodiversity conservation fall into two main 

categories (Kleijn et al. 2011). Firstly, the “land use-moderated conservation 

effectiveness hypothesis” (Kleijn and Sutherland 2003), which aims at boosting 

biodiversity through lowering land-use intensities (and disturbance frequencies) in 

extensively managed farmlands. Secondly, the “landscape-moderated conservation 

effectiveness hypothesis”, which is a larger scale approach to conservation aimed at 

balancing extinction and repopulation by adding to landscape heterogeneity 

(Tscharntke et al. 2005; Kleijn et al. 2011).  

 

These hypotheses may be used in selecting potential conservation sites and changes 

in planning management. However, they are not all-purpose remedies as local 

actions still need to incorporate domestic agricultural conditions, socio-economic 

factors, and case-specific goals balancing production requirements to maximize 

conservation efficiency.  

4.2 Scale of conservation planning 

Gabriel et al. (2010) indicated the necessity of incorporating various scale levels in 
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planning and evaluating biodiversity conservation actions. Because agriculture 

production generally covers a large area within a region, species responded 

differently to management efforts requiring different ecosystem conditions and 

ecological resources at various scales. Sedentary species, such as farmland insect 

and plant species, generally benefited from positive changes in management (Hald 

1999; Hole et al. 2005) while more mobile species, such as birds and some 

pollinators, likely responded to factors beyond the farmland (Benton et al. 2002; 

Chamberlain et al. 2010). In most developing countries with extensive agriculture 

practices, choosing the appropriate scale for farmland conservation affects not only 

the relevant plot or landscape factors involved in protecting biodiversity, but also the 

proper policy encouragements and regional acceptability. 

4.3 Sustainable agriculture under the changing climate 

Climate change may negatively affect agricultural production, especially wheat 

production in drought susceptible regions (Ortiz et al. 2008), such as China where 

food security is of the utmost importance (Piao et al. 2010). Agriculture is a main 

source of greenhouse gas emissions which contribute to global warming (Lal 2004). 

Future agricultural cultivation should not only adapt to the changing climate by 

ways of genetic modification and hybridization, but also actively reduce its negative 

effects. In east and south Asian regions such as China and India, farmlands 

comprising small-holdings face unprecedented challenges with the changing climate, 

social and political conditions (Lobell et al. 2008). Alternative cultivation practices, 

such as conservation through reduced tillage and rotation, should be tested and 

adopted to meet this growing issue. Recent studies have examined changes in 

agricultural greenhouse gas emissions in China (Thomson et al. 2006; Feng et al. 

2013; Ma et al. 2013), but there has been little research interest in differences caused 

by cultivation changes, or in the scenario of Chinese social reform. 

5 Chinese Application 

China has one of the largest agri-industries in the world. There is extremely strong 
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emphasis on agricultural production and much interest has been given to monitoring 

the response of agriculture to the series of social and political policy reforms, the 

latest of which is the Household Contract system (Hong and Tao 2002) and the fast 

growth of manufacturing and tertiary industries in rural areas. These resulted in a 

more fragmented agricultural landscape in rural areas (Li and Wang 2003).  

 

While agricultural intensification puts increasing pressure on agri-ecosystems, the 

lack of a national agricultural conservation plan or relevant policies and the drive for 

food security have prevented any systematic implementation of eco-friendly 

management plans in the country. Villages or large farms with organic management 

schemes (other than research sites) were either results of food-safety market demand 

(Sanders 2006) or historic remnants (Lo 1996). These examples, not unlike 

environmental-friendly agriculture management schemes in developed countries, 

have limited practical importance due to the increasing demand prominence of crop 

yield.  

 

These factors have stipulated research interest in relevant areas of ecology. The loss 

of diversity in flora (Chen et al. 1999b; Wu and Chen 2004) and fauna (Chen et al. 

1999a; Chen et al. 1999b; Lin et al. 2005; Du et al. 2010; Zhu et al. 2013) have been 

recorded in response to increased agricultural input, pollution and other human 

disturbances. Functional roles and ecosystem services of biodiversity in agricultural 

landscapes have been recognized (Wu et al. 1998), ****such as the effect of floral 

diversity in reducing pests and reducing chemical substances (Hou and Sheng 1999). 

Examples, where reduced tillage benefited fauna communities and micro-organisms 

in paddy fields (Gao et al. 2004), have been explored. Yet there remains a lack of 

acknowledgement of these issues. 

 

In modern China (post 1949), the basic unit in traditional agricultural practices 

changed from community to household due to the Household Contract System in the 

late 1970s (Lin 1992; Li and Wang 2003). Farmers within a village learn from each 
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other, so changes in cultivation are generally found between villages rather than 

within. Therefore, comparisons of environmental impact caused by cultivation and 

management differences are best done at the village scale. A representative example 

of alternative management schemes—village level specialization—is developing in 

rural areas. This is defined when a large number of households commit to a single, 

or a chain of production or services, making this the primary source of revenue (Li 

et al. 2009). At the end of 2010, China has 51486 specialized villages, with an 

average village income 15.56% higher than that of others in the country, and mean 

income of the participating households 25.82% higher than that of farmers in other 

villages (Ministry of Agriculture 2011). The central government has treated 

specialized-village growth as one of the main themes in rural development. Current 

research on specialized villages focused around its formation history, spatial 

extrapolation, and its response to geographical variability (Li et al. 2009). Due to 

lack of a conceptual framework in biodiversity protection in rural areas, no attention 

has been paid to the environmental impact of such changes in agricultural patterns. 

In Chinese traditional rural areas, specialized villages mostly focus on cash crop 

production with high input level. Whether or not these changes damage or benefit 

the agri-ecosystems, especially to the already threatened biodiversity levels, is 

unknown.  

 

These villages formed out of farmers’ need to maximize profit rather than any 

conservation scheme or policy. They are regulated by socio-economic factors 

including their living conditions (e.g. income level, residential condition), 

agricultural awareness (e.g. education level, conservation awareness), and 

cultivation behaviour (number and type of plots and crops, access to farmlands). 

These are the background regulators of local environment determining and working 

through direct factors such as agrochemicals levels. While biodiversity response to 

direct disturbance has been studied extensively (Chen et al. 1999b; Chen et al. 2000; 

Yue 2001; Wu and Chen 2004; Lin et al. 2005; Du et al. 2010; Zhou et al. 2012; Zhu 

et al. 2013), these underlying factors have been neglected (possibly due to difficulty 
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and uncertainty of small scale socio-economic data of villages). Attention should be 

given to this issue if effective conservation plans at the regional level are to be 

developed. 

 

Chinese social structure and culture have produced villages which vary in their 

development status and economical factors. Yet, the geographical layout of villages 

is similar—with plots of farmland distributed around or near a congregated 

residential area. The above socio-economic factors differ greatly between villages, 

and are therefore better explored at the village scale. Evaluating biodiversity 

differences at the village level also excludes confounding factors in smaller scales 

such as the spill-over effects or concentration responses (Kohler et al. 2008; Brudvig 

et al. 2009; Gabriel et al. 2010; Kleijn et al. 2011). Village area ranges from 69 to 

147 hectares, and species interference from spill-over effects is more likely to occur 

within village at the plot-level. This can also be concluded for concentration effects 

which alter species distribution mostly at the plot level.  

6 Rationale for own study 

Agricultural sustainability in the developing countries, such as China, faces 

unprecedented challenges. Semi-sustainable, traditional cultivation dominates 

agricultural areas, and policy levers and population demand put pressure and 

uncertainty on its development.  

 

Alternatives to traditional agriculture management, if not already in existence, 

should be developed to meet the ever-growing need for global conservation. This 

review points to the necessity of examining these alternative approaches—whether 

they were developed as sustainable agriculture or not—and evaluate their 

conservation potential. Monitoring the changes and causes related to the new 

management methods provides much needed insight of local conservation planning, 

which is the basis for any effective large scale actions or policy changes. 
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Furthermore, evaluation of differing systems of agricultural management is only 

useful when appropriate scales are selected for the analysis. Choosing the right scale, 

for both agricultural disturbances and ecosystem responses, eliminates confounding 

effects and ensures rigorous analyses. Chinese studies of agricultural management 

change and environmental impacts should start from the village scale to meet the 

domestic situations: household production differentiated at the village scale, with 

increasing yield pressure and reduced total available land area. 

 

Therefore, this project uses data for agricultural inputs, biodiversity, and soil at the 

village scale from selected, alternatively cultivated villages in traditional rural China, 

to examine their potentials for biodiversity conservation in the upcoming 

agricultural and social reform. I aim to examine the following aspects: (1) do these 

alternative methods have conservation relevance, are they valid approaches to 

regional biodiversity protection; (2) what contributing factors are important in 

affecting agricultural inputs associated with these alternative approaches; (3) what 

factors can be targeted for effective conservation planning, both in relation to 

policy-making and socio-economic processes. 
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Chapter 2 Study area and methodology 

1. Study area 

The agricultural ecosystems in the lower Yellow River basin result from historical, 

natural, and anthropogenic activities. Over the past fifty years, local people have 

been involved in massive exploitation of natural resources, which accelerated after 

1979 when the household responsive system was adopted in China (Hong and Tao 

2002). This policy change led to extensive exploitation of land resources (Li and 

Wang 2003), and significant changes in the local ecosystem structure and functions. 

Specifically, changes occurred in land uses, habitat/biological diversity, and 

ecosystem stability. An understanding of the changes and their causes is essential for 

informing further research of local ecosystem functions and underpinning the goal 

of protecting biodiversity and promoting sustainable development in the region.  

 

Chinese agricultural practices show significant temporal and spatial characteristics. 

Before 1978, the country’s farmlands were collectively owned and managed by the 

administrative villages and decisions were made by village leaders. This 

decision-making process resulted in rather simplified cultivation types and created 

unified landscapes. Following the implementation of the household responsive 

system in 1979, farmlands and user rights were divided into holdings and distributed 

equally to villagers. However, these allocated holdings were not distributed 

contiguously so one family might receive several spatially separate plots. This, plus 

the fact that households had greater control over cultivation selection and practices, 

resulted in a more diverse agricultural landscape, with influences from geographical 

elements, different market situations, and local policies (Li and Wang 2003). These 

highlight the necessity of analysing Chinese agricultural impact at local scales. 

 

Henan Province is located in the central-eastern region of China. It is the largest 

province in terms of agricultural population and total crop production, with a 
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substantially long history of agricultural land use. Its total crop yield has remained 

first place in China for more than a decade, with its 2012 crop yield—including 

main cereal types such as paddy rice, wheat (hybridized Triticum species) and maize 

(Zea mays)—reaching 56,386 million tonnes (National Bureau of Statistics 2012b).  

 

Yellow River is one of China’s main water systems and is unique in the world. The 

river body carries a substantial amount of suspended silt sediment acquired by 

erosion from The Loess Plateau, and this silt has been reshaping the structure of 

waterways. Historically, the Yellow River has had several major course alterations, 

each significantly changing the surrounding landscapes. Much of the nutrient rich 

soil in these regions was deposited in the last Yellow River course change in 1938, 

which act as a baseline for the development of local ecosystems. Currently, the local 

reaches of the Yellow River are confined by a series of levee-lined courses, because 

of the high sedimentation effect of the river, and gradual changes in the riverbed that 

are still ongoing. 

 

Agricultural practices in these regions result in diverse cultivation patterns. While 

traditional wheat/maize rotation (double-cropping) plays the major role, alternative 

methods are spreading. For example, some villages specialize in honeysuckle 

(Lonicera japonica) plantation, garlic (Allium sativum) plantation, or diverse 

vegetable production covering more than a dozen vegetable types.  

 

The selected study areas are located on both the north and south side of the Yellow 

River, within Fengqiu County, Xinxiang City and Zhongmou County, Zhengzhou 

City. Area selection was based mainly on agricultural intensity and soil-type maps 

(Station of Soil Fertilizers and Office of Soil Census 1995; Office of Soil Census 

2004).  

1.1 Village selection 

The village was chosen as unit of comparison for this study, rather than households, 
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to better reflect stability and representativeness in cultivation patterns.   
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Table 1 Brief description of the six sample villages 

a Representative crops 

b Income from crop production 

Socio-economic data correct for year 2010 

  

Villages Cultivation type 

Number of 

main harvests 

yearlya 

Population 

Total 

area 

(hectare) 

Per capita 

incomeb 

(RMB) 

Zhu-cun-pu 
Double (winter 

wheat/maize) 
Two 970 100 5000 

Dong-yang-si 
Double (winter 

wheat/maize) 
Two 804 120 4800 

Qian-gang Mono (honeysuckle) One 1500 93.33 8000 

Dong-ying Mono (garlic) One 1450 133.33 8000 

Chang-zhai Poly (vegetable) Multiple 1100 68.93 13000 

Wan-zhai Poly (vegetable) Multiple 872 147 12000 
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Figure 1 Map of the study area and location of the villages sampled 
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Study area selection was done in two steps. The first step was based mainly on 

agricultural intensity data at the county level and provincial soil-type maps. This 

step focused on village comparability. To ensure these villages have the same 

baseline, selection was focused on areas with the soil type mud-sand formation 

(similar to Fluventic Ustochrept of the USDA classification). This type was mainly 

formed after the 1938 river catchment change. Village pool was established by 

matching scanned soil type maps and village location maps. Also, villages have to 

be cultivation focused, with minimal non-agricultural influence present. As for 

extrapolation potentials, each village was carefully chosen to represent stable 

cultivation patterns of their respective type, with a minimum of ten years dedicated 

to the specific approach, this way they can represent the input and output conditions 

of their own kind.   

 

The second step was to choose individual villages. Specialization mainly comes in 

two forms, diverse and specified, plus one traditional village for comparison, each 

sample group should contain three villages in total. Considering the available 

workload and timeframe for fieldwork, I decided to select two groups of three 

villages. So with the pool identified, I visited the potential villages and interviewed 

village leaders and representative households, and witnessed first-hand what the 

cultivation status within each village was.  

 

Following these criterion, I selected six villages in the end, representing three types 

of cropping practices: (Table 1; Figure 1; see supporting document four for land use 

maps): Zhu-cun-pu and Dong-yang-si (Fengqiu County), representing traditional 

cultivation (winter wheat/maize double-cropping); Chang-zhai and Wan-zhai 

(Fengqiu County), representing diverse cultivation (vegetable and other cash crops 

poly-cropping with basic food crop production); and Qian-gang (Fengqiu County) 

and Dong-ying (Zhongmou County), representing specified cultivation (focusing on 

one cash crop with basic food crop production). However, because my selection 

prioritized comparable soil type and cropping type, I was not able to match all 
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villages in their total area. This was later dealt with by using mean biodiversity, soil 

data, and input for comparisons.  



 

21 
 

Table 2 Annual Agrochemical Inputs of the Six Villages including fertilizer, pesticide and herbicide 

(data summarized from social surveys) 

Villages Base fertilizer Additional fertilizer Pesticide Herbicide 

Zhu-cun-pu 

Compound 

750-2250 kg/ha×

time; manure 

7500-15000 kg/h

a×time 

Carbamide 

300-600 kg/ha×time, 

3-4 times 

Chlorpyrifos 

3.75-7.5 L/ha×time, 

1-2 times 

Acetochlor, 

Napropamide, 

Pendimethalin, 

etc. 1.5-7.5 L 

ha×time, twice 

Dong-yang-si 

Compound 

700-2200 kg/ha×

time; manure 

7000-12000 kg/h

a×time 

Carbamide 

300-500 kg/ha×time, 

3-4 times 

Chlorpyrifos 

3.75-7.5 L/ha×time, 

2-3 times 

Acetochlor, 

Pendimethalin, 

etc. 

2-9 L/ha×time, 

twice 

Dong-ying 

Compound 

375-750 kg/ha×ti

me; manure 

4500-37500 kg/h

a×time 

Carbamide 

225-525 kg/ha×time, 

twice; Ammonium 

bicarbonate 

300-525 kg/ha×time, 

once 

Beta-cypermethrin 

3-4.5 L/ha×time, 

2-6 times; 

Imidacloprid 

0.45-0.675 kg/ 

ha×time, 2-7 times 

None 

Qian-gang 

Compound 

450-1350 kg/ha×

time; manure 

2250-15000 kg/h

a×time 

Carbamide 

300-600 kg/ha×time, 

1-2 times; Nitric 

acid-phosphor 

compound 

150-600 kg/ha×time 

Chlorpyrifos 

3.75-7.5 L/ha×time/

ha, 2-4 times; 

Acetochlor, 

Pendimethalin, 

Dibutralin, etc. 

1.5-7.5 L/ha×ti

me, twice 

Chang-zhai 

Compound 

600-750 kg/ha×ti

me; manure 

22500-45000 kg/

ha×time 

Carbamide 

300-1200 kg/ha×time, 

1-2 times; Ammonium 

bicarbonate 

600-750 kg/ha×time, 2 

Organic phosphate 

(e.g. Omethoate) 

2.25-3 L/ha×time, 

2-4 times 

Dibutralin, 

Pendimethalin, 

etc. 

1.5-2.25 L/ha×ti

me, once 
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Wan-zhai 

Compound 

700-900 kg/ha×ti

me; manure 

17500-35000 kg/

ha×time 

Carbamide 

300-1000 kg/ha×time, 

3-4 times 

Beta-cypermethrin 

3-4 L/ha×time, 1-3 

times; Organic 

phosphate (e.g. 

Omethoate) 

2-3 L/ha×time, 1-2 

times 

Dibutralin, 

Pendimethalin, 

etc. 

2-3 L/ha×time, 

once 
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Fengqiu County is located at the North-eastern part of Henan Province. Zhu-cun-pu 

village is ten kilometres south-east of the county seat, one kilometre south to the 

country-level road. Traditional plantation in the village dates back to nearly one 

hundred years. Main crops are winter wheat (October to June next year) and maize 

(June to October) (Table 2). Soil species belongs to mud-sand formation (Liang-he 

soil of the Chao soil group) (general group similar to Fluventic Ustochrept of the 

USDA classification) (Soil Management Support Services 1992) (see supporting 

document four for land use map).  

 

Chang-zhai village is south of Zhu-cun-pu village, with same soil type and similar 

cultivation history. The village has been cultivating sweet potato (Ipomoea batatas) 

seedlings since the end of nineteenth century. During the 1980s market mechanisms 

began to control seedling cultivation. To maximize profits, farmers started 

poly-cropping multiple vegetable crops. Sweet potato seedlings in spring were 

followed by garlic (Allium sativum) intercropped with maize. Other examples such 

as celery (Apium graveolens), coriander (Coriandrum sativum) and spinach 

(Spinacia oleracea) were planted after garlic harvest. Diverse cultivation boosted 

village income using largely manual labour. The migrant working force in this 

village is among the lowest in the county (see supporting document four for land use 

map).  

 

Qian-gang village is 4km east of Zhu-cun-pu, with winter wheat and maize 

double-cropping rotation. In early 1990s it was introduced to honeysuckle (Lonicera 

japonica) cultivation. This species has high medicinal and market values, but 

requires more human labour and fertilizer input, and it is highly sensitive to 

herbicides (perish after exposure). Honeysuckle cultivation requires on average four 

fertilizer inputs (base-application and three additional ones) (Table 2). Pesticide 

input is concentrated in May and June, between six to seven times with 

3000-4500 ml (or 450-675 g solid equivalent) each time per hectares (see supporting 

document four for land use map).  
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Zhongmou county, one of the nation’s garlic production centres, is south-east of 

Zhengzhou City. Dong-ying village is east of the county, with the same soil type. 

The village converted focus to garlic cultivation over two decades ago, but before 

that it maintained a winter wheat and maize double-cropping rotation. Over 85% of 

the village’s farmland (Table 1) is dedicated to garlic cultivation. Garlic plantation 

requires three to four fertilizer inputs (base and additional) yearly with, on average, 

two pesticide inputs concentrated at March and April. Herbicide inputs are 

concentrated in September and October. Reduced frequency is made up by larger 

applications which can be as high as 7500 ml per hectare (see supporting document 

four for land use map).  

 

Dong-yang-si is to the west of Zhu-cun-pu village, with same cultivation and soil. 

The village had a higher percentage migrant work force (farmers moving to work in 

towns and cities leaving their own allocated farmland managed by the remaining 

family members). Therefore, general income is slightly higher than Zhu-cun-pu, but 

income from agriculture remained at the same level (see supporting document four 

for land use map). 

 

Wan-zhai village is also to the west of Zhu-cun-pu, with same soil type and 

vegetable poly-cropping methods similar to that of Chang-zhai village. This village 

started later in following Chang-zhai’s agricultural methods (see supporting 

document four for land use map).  

 

Due to inability to locate untouched forest patches in close proximity to the study 

villages for comparison (control), attempts were made to identify abandoned plots of 

land (either planted with trees or simply abandoned) as possible reference sites to 

compare diversity data.  
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2 Method and data 

Extensive field surveys were conducted to collect various data to better understand 

the local agricultural practices. These included plant species diversity, soil surveys 

(both soil chemical properties and soil fauna), and socio-economic interviews. 

 

During the interviews, test samples were collected at random sites in villages 

Zhu-cun-pu, Chang-zhai, Qian-gang and Dongying. These trials helped with 

coordinating and planning of later surveys.  

2.1 Floral data 

Plant species surveys were performed in summer of 2012 (August, coded 201208), 

spring and summer of 2013 (April, coded 201304 and August, coded 201308). Data 

collected represent changes in plant species diversity across years and across 

seasons (spring and late summer, Table S1a-c). Due to accessibility issues, villages’ 

records were coded in the order they were sampled in: 1, Zhu-cun-pu; 2, Chang-zhai; 

3, Qian-gang; 4, Dong-ying; 5, Dong-yang-si; 6, Wan-zhai. They were then 

reorganized into groups easier for recognition: traditional villages 1 Zhu-cun-pu and 

2 Dong-yang-si, specified villages 3 Qian-gang and 4 Dong-ying, diverse villages 5 

Chang-zhai and 6 Wan-zhai (will be referred to by village names for clarity). 
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Figure 2 Sampling methodology and quadrat representation (figures represent 

patterns instead of actual distances) 
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Surveys were performed using a wooden quadrat (with dimensions 50 cm×50 cm). 

Species accumulation curves were recorded at first to identify the appropriate 

number of quadrats for each land type. For patches of land (field, abandoned sites) a 

zigzagged pattern was followed (Figure 2) with random number of steps; and for 

strips of land (road, ditch) directionality was followed with random number of steps. 

Number of quadrats with which accumulation curves reached peak ranged from nine 

to fifteen. Generally fifteen to twenty quadrats were counted in each land type. 

 

Species data was recorded using the Braun-Blanquet cover-abundance scale 

(Braun-Blanquet 1932; Southwood and Henderson 2009): + for minimal presence; 

one for some shoots with less than 5% coverage; two for some shoots with 5% to 25% 

coverage; three for a moderate amount of shoots with 25% to 50% coverage; four 

for a large amount of shoots with 50% to 75% coverage; and five for background 

presence—large amount of shoots with over 75% coverage.  

 

Diversity indices were calculated for each site, including: number of taxa; coverage, 

mean coverage within sample sites based on a 0.25 m2 quadrat; Margalef’s Richness 

(Margalef 1958; Southwood and Henderson 2009), which accounts for sample size; 

Shannon-Wiener Diversity Index (SHDI) (Shannon 2001; Southwood and 

Henderson 2009); Simpson’s dominance index (Simpson 1949; Southwood and 

Henderson 2009); and evenness index Evar (Smith and Wilson 1996; Beisel et al. 

2003). (Table S2a-c) 

 

ANOSIM (Analysis of Similarities)—both one-way and two-way crossed were 

performed to test and compare the village type and land type factors (with 

Bray-Curtis dissimilarity as the measure of distance) (Clarke 1993). First a one-way 

analysis was performed on time factor to test if there was apparent separation of the 

data (Table S3a). Then two-way crossed analysis was performed with village type 

and land type factors for statistic comparison (Table S3b). 
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To best utilize benefits of non-Euclidean distance comparison measures (in this case 

diversity data), constrained ordination (redundancy analysis, RDA) was performed 

on Hellinger-transformed floral data (Legendre and Gallagher 2001; Legendre and 

Legendre 2012) based on factor village type, displayed with factor land type and 

grouped by time. Value along the plotted gradient (arrow) then roughly translate to 

increasing levels of input (from traditional to specified to diverse), so point positions 

(scaling=3) of sites can better reflect the subjected influence. 

 

Regression models were established for mean flora coverage and agricultural input 

factors. Data at the village level limited number of variables possible for linear 

regression (six villages, maximum five independent variables). Fertilizers (kg/ha, 

divided into four categories: compound, potassium, phosphorous, potassium) were 

separated from other variables for regression there were no interactions between the 

two groups. This resulted in two regression models: model one included pesticide, 

herbicide and general factors; model two included fertilizers (Table S4). Fit for 

regression models were tested with Q-Q plots and distribution histograms (Figure 

S1-4). 

2.2 Faunal data 

Soil surveys covering soil chemical properties and soil fauna were conducted in 

October 2011 and 2012. Two representative plots were selected based on 

face-to-face interviews with the village leaders and elder farmers—to identify which 

plots best represented the village’s cultivation status. Soil fauna samples were 

collected in two groups: the first was marked H for hand-picked. These samples 

were collected for each layer of soil in the sample site for a volume of 0.009 m3 

(using a 30 cm×30 cm quadrat, each layer was 10 cm deep, four layers in total. 

Specimens were stored in a small bottle filled with 75% ethanol solution on site. The 

second was marked T for funnel extraction. These samples were collected using soil 

sample rings with a volume of 7.854E-4 m3 (5 cm Ø, 10 cm length) and then 

extracted back in the lab using Tulgren Funnels (Southwood and Henderson 2009) 
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for twenty four hours (samples were left for a further twenty four hours to test 

extraction rate, which proved that twenty four hours were enough). Each sample was 

marked using five reference codes: Village-Field-Plot-H(T)-Layer; with Zhu-cun-pu 

Village as 01, Chang-zhai Village as 02, Qian-gang Village as 03, Dong-ying Village 

as 04, Dong-yang-si Village as 05, Wan-zhai Village as 06. They were then taken 

back to the lab for extraction and classification. Species classification followed the 

guidelines laid out by Yin Wenying (Yin et al. 1998; Yin 2000) (Table S5). 

 

Fauna abundance was classified into three categories: 1, rare group, species 

abundance not greater than the 10th percentile of all species; 2, common group, 

species abundance between the 10th and 90th percentile; 3, main group, species 

abundance not smaller than the 90th percentile. Diversity indices (similar to floral 

data) were also calculated for each site, layers (also referred to as depth) and in 

general, only for fauna data coverage is changed to density: number of specimens 

per cubic meters (Table S6).  

 

Partial ordination of fauna sample sites were performed (NMDS) (Legendre and 

Gallagher 2001; Legendre and Legendre 2012) using Bray-Curtis distance (Clarke 

1993), with 3 reduced dimensions and 200 iterations. Stress was tested by plotting 

ordination distance against observed dissimilarity (Figure S5). 

2.3 Soil chemical data 

Soil sample for chemical analysis were gathered in the same plots as fauna species 

(three per village). Thirty surface soil pre-samples were collected with a shovel (a 

thin slice going down twenty centimetres) while walking zigzag patterns in the plots 

similar to floral survey (Figure 2); these thirty pre-samples were then crushed, 

mixed together, and reduced to one kilogram using the quartering method (ISO 

2006). All sites were GPS coordinated for future reference. 

 

These samples were then taken back into the laboratory and spread on a flat surface, 
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while multiple random scoops of 200 g were taken and then grinded and screened 

using No. 100 (0.15 mm) sieves. The soil digestion (element extraction) was 

conducted following the Chinese national standard GB/T 17141-1997 (1997) using 

HCL-HNO3-HF-HCLO4 with hot plate heating, integrating blank, parallel and 

national standard soil samples for quality control (see supporting document for 

details). The elements Cr, Ni, Cu, Cd, and Pb in the sample solutions were analysed 

using a Thermo X Series2 ICP-MS (Inductively Coupled Plasma Mass Spectrometry) 

of the Thermo Fisher Scientific, USA; Element Zn was analysed using AA-6601F 

Atomic Absorption Spectrophotometer (AAS) of the Shimadzu Corporation, Japan. 

Machine recovery inner-control elements were also added in the analytical process 

(using elements Rh and In standard solutions) for quality control—overall control 

recovery rates were between 90%-107%, parallel sample errors≤3%. 

2.4 Social-economic data 

Extensive social surveys were carried out from August to October in 2011. One 

hundred households were randomly selected with help from village leaders in each 

village. Social economic data covered all aspects related to agricultural practice, 

including: cultivation (e.g., number of plots, size of plots, crop types); agriculture 

input (e.g., fertilizers, agrochemicals); spatial characteristics (e.g., distance from 

plots; distance from roads); household status (e.g., income, living condition); 

education (e.g., level, environmental awareness). Data was pre-processed by 

referring to county production records to remove ineffective entries which involved 

households with data (from questions) strongly contradicting those visually 

observed or gathered from village norms. 
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Chapter 3 Heavy metal contamination as affected by different 

cultivation types in Chinese traditional rural areas 

Abstract: Agriculture intensification increases soil pollution in farmlands. 

Environmental-friendly management methods have been developed and evaluated 

based on their conservation potentials but this has not been the case in intensive 

agricultural regions in China. I selected six villages with three types of management 

schemes, analysed soil concentrations of heavy metal elements, chromium, nickel, 

copper, cadmium, lead and zinc of surface soil samples collected from representative 

farmlands in order to assess the effects of cultivation changes on soil heavy metal 

concentrations. Results show that given the same high input/output background, 

different managements clearly have different effects on heavy metal concentrations. 

Traditional cultivation has the lowest concentrations and therefore, is better in terms 

of sustainability. Villages with alternative managements had higher concentrations, 

especially with high eco-toxicity elements such as cadmium. After adjusting the 

potential ecological risk assessment indices, cadmium had the highest, 

single-element potential risk and the biggest contribution to the total potential risk in 

the area. Potential for alleviating heavy metal pollution can be found in diverse 

villages but requires the support of long-term, empirical evidence. The results point 

to possible conservation benefits of diverse cultivation management. 

Key words: cultivation type; soil pollution; heavy metal; potential ecological risk 

1 Introduction 

Technological innovations in biological and chemical sectors have improved the 

efficiency of agri-industry over the past fifty years (Khush 1999; Evenson and 

Gollin 2003), simultaneously causing unprecedented impact on the ecosystem 

structure and functions in agricultural regions (Tilman et al. 2001). Being closely 

related to human livelihood, agricultural soil properties are vital because they affect 

the human health and safety.  
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Heavy metal pollution problems in agricultural soils are caused by excess build up 

of high eco-toxicity elements such as: mercury (Hg), cadmium (Cd), lead (Pb), 

chromium (Cr), and the metalloid element arsenic (As). Moderate eco-toxicity 

elements such as copper (Cu) and nickel (Ni) may also be involved. These elements 

pose higher threat because they are more resilient to biodegradation and leaching 

effects, and are more likely bio-concentrated (Hodson 2013). Hence, these elements 

have attracted research attention (Facchinelli et al. 2001; Micó et al. 2006; Hodson 

2013). The background element status of agricultural soils come from their soil 

parent materials (Brady and Weil 1996). They are then affected by human cultivation 

such as the application of agrochemicals (e.g. fertilizers, pesticides, herbicides) 

(Nicholson et al. 2003; Alloway 2013); non-agricultural direct input such as local 

industrial run off and nearby traffic and transportation conditions (Pagotto et al. 

2001; Ma et al. 2007; Wei and Yang 2010). Non-agricultural environmental sources 

include atmospheric fallout and ground water pollutions (Davis and Birch 2011; 

Schreck et al. 2012; Alloway 2013). Since agricultural input is the main source of 

heavy metal contamination and the most direct for control efforts, understanding its 

influences on heavy metal pollution in farmland regions, warrants much attention. 

 

China has one of the largest agri-industries in the world (Food and Agriculture 

Organization 2013) with extremely strong emphasis on agricultural production 

which has caused severe environmental consequences (Xu et al. 1992). 

Agri-industry characteristics shifted due to the series of social and political policy 

reforms, the latest of which is the Household Contract system (Hong and Tao 2002) 

and the fast growth of manufacturing and tertiary industries in rural areas. The 

industrial development attracted human labour to non-agricultural jobs, leaving 

fewer people available in farmlands and, hence, agricultural production turned to 

rely heavily on agrochemical input. These factors increase the necessity of pollution 

research in Chinese rural areas (Huang et al. 2007; Tang et al. 2010; Wei and Yang 

2010).  
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In China, specialized pattern of agriculture at the village level represent a current 

trend of changes in agricultural management still based on the household production 

unit formed in the last three decades (Lin 1992; Li and Wang 2003). This change is 

made when a large number of households in a village commit to a single or chain of 

production or services, making it the primary source of revenue (Li et al. 2009). 

Current research focuses on these specialized villages include its formation, spatial 

expansion, and response to geographical elements (Li et al. 2009). However, little 

attention has been paid to the environmental impact of such changes in agricultural 

patterns, despite the fact that specialized villages mostly focus on cash crop 

production with high input levels. By taking soil samples from representative 

villages with these management schemes and analysing their heavy metal contents, I 

try to answer the following questions: 

1. Do changes in village scale agricultural practices affect levels of heavy metal 

contents? Are the soils in question exposed to ecological risks? 

2. If so, how are these influences formed? 

3. What are the main agricultural-input factors involved? 

4. What changes would the development of alternative cultivation methods bring 

upon the regional heavy metal pollution status? 

2 Area and methods 

Henan province, having traditionally been focus of agriculture, has led China’s 

wheat and grain yield for more than a decade (National Bureau of Statistics 2012c). 

Its agricultural practices are typified by the Huang-Huai-Hai alluvial plain with the 

traditional rotation of winter wheat (Triticum aestivum) and maize (Zea mays). This 

system has the longest history in Chinese agriculture and, in the recent decades, has 

involved higher agrochemical inputs. The forces of the market economy also pushed 

for the development of specialized villages, where village level production involving 

a large number of households. Specialized villages can be found in two forms: 

diverse cultivation utilizing farmland potentials leading to an increase in per area 
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revenue through extensive intercropping involving different cash crops (mostly 

vegetables). Others may involve raising village scale production potential by 

extensive mono-cropping. Both methods increase income revenue but their 

cultivation patterns involve different levels of agrochemical, irrigation and manual 

labour input which caused different effects on the surrounding environment.  

2.1 Village selection 
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Fig. 1 Map of study area and location of the villages sampled 
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Six villages were selected within Fengqiu County, Xinxiang City and Zhongmou 

County, Zhengzhou City, Henan Province (Figure 1), located on both the north and 

south side of the Yellow River, representing three cultivation types. 

 

Henan Province is located in the central-eastern region of China, the largest province 

of agricultural population and total crop production. Its total crop yield has remained 

the highest in China for more than a decade, with its 2012 crop yield, including main 

cereal types such as paddy rice, wheat and maize, reaching 56,386 million tonnes 

(National Bureau of Statistics 2012b). The productivity and diversity of agriculture 

in Henan make it suitable for analysing agricultural disturbances on the 

environment.  

 

This study chose sites in rural areas along the Yellow River in Henan Province. 

Villages were the unit of study. In comparison with households, which are the basic 

production unit of Chinese agriculture, villages better reflect stability and 

representativeness in cultivation patterns. Two groups of three villages (traditional, 

specified and diverse) were chosen: Zhu-cun-pu and Dong-yang-si (Fengqiu 

County), representing traditional cultivation; Chang-zhai and Wan-zhai (Fengqiu 

County), representing diverse cultivation; and Qian-gang (Fengqiu County) and 

Dong-yin (Zhongmou County), representing specified cultivation. (refer to Chapter 

two for village selection details) 

2.2 Sample collection and processing 

Thirty surface soil samples were collected with a shovel (0-20cm) while walking 

zigzag patterns in the plots; these samples were then crushed, mixed together, and 

reduced to one kilogram (for each plot) using quartering method (ISO 2006). All 

sites were GPS coordinated for future reference. Villages were coded in the order 

they were sampled: 1, Zhu-cun-pu; 2, Chang-zhai; 3, Qian-gang; 4, Dong-ying; 5, 

Dong-yang-si; 6, Wan-zhai (will later be referred to by village names for clarity). 
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Samples were then taken back into the laboratory, dried and sieved (0.15 mm) (see 

Chapter two). Soil digestion (element extraction) was conducted following the 

Chinese national standard GB/T 17141-1997 (1997) using HCL-HNO3-HF-HCLO4 

with hot plate heating (see Supporting document one). The elements Cr, Ni, Cu, Cd, 

and Pb in the sample solutions were analysed using a Thermo X Series2 ICP-MS 

(Inductively Coupled Plasma Mass Spectrometry) of the Thermo Fisher Scientific, 

USA. Zinc was analysed using AA-6601F Atomic Absorption Spectrophotometer 

(AAS) of the Shimadzu Corporation, Japan. Blank and parallel samples were added 

in the analytical process (using elements Rh and In standard solutions) for quality 

control—control recovery rates were between 90%-107%, parallel sample 

errors≤3%. 

2.3 Analytical comparison 

A common way of evaluating elemental contamination in soils is the potential risk 

index proposed by Hakanson (1980). It was a diagnostic tool developed for 

contamination assessment and control of marine sediment systems in Scandinavian 

environments. The index was formed by three major parts: the degree of 

contamination, the toxicity factor (T) and potential ecological risk factor for 

individual elements (E). Its main function was to examine heavy metal 

contamination conditions and assess where relevant studies should be prioritized. 

The original design had both individual indices (E) and joint index (RI) based on 

eight sediment heavy metal pollutants: 

RIj = �Eji
n

i=1

= �Ti
n

i=1

× Cji = �Ti
n

i=1

× cji cri⁄  

Where:  RIj is the joint ecological risk index of site j; Eji is the individual potential 

ecological risk index for element i in site j; Ti  is toxicity factor for element 

i—based on Hakanson’s research (1980) which set TCd=30, TPb=TCu=TNi=5, TCr=2，

TZn=1; Cji is the pollution factor of element i at site j; cji is the concentration of 

element i at site j; cri  is the concentration of element i in the reference sample.  
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Because only six elements are listed in this research, the potential ecological risk 

levels need to be reassigned. The lowest level of E is the multiplication of 

non-polluted index (C=1) and the highest elemental toxicity factor (T) in the 

research, which in this case TCd=30, so E=30 (level one). The remaining levels are 

multiplied by a factor of two. The lowest level of RI is the multiplication of 

non-polluted index (C=1) and the sum of all elements in the research (in this case 

48), so RI=48 (round up to 50) with the remaining levels  multiplied by a factor of 

two (Hakanson 1980). (Table 1) 
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Table 1 Potential Ecological Risk classification adopted in present paper based on 
Hakanson (1980) 

 

Ea RIb Potential risk  

Hakanson’ Here Hakanson’s Here level 

＜40 ＜30 ＜150 ＜60 Mild 

40-80 30-60 150-300 60-120 Moderate 

80-160 60-120 300-600 120-240 Strong 

160-320 120-240 ≥600 ≥240 Very strong 

≥320 ≥240 - - Extreme 

a Individual potential ecological risk 

b Joint potential ecological risk 
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Soil reference samples are needed to better understand the risk levels of study sites. 

Different standards and scales were generally chosen in response to differences with 

research goals and region such as using soil heavy metal background concentrations 

from local to global scales (Chen et al. 1991; Holmgren et al. 1993; Ma et al. 1997; 

Chen et al. 2004; Fan et al. 2011) or sampling local control sites (Jia et al. 2009). 

This research excluded most non-agricultural disturbances to farmland soil by 

carefully implementing a range of criteria e.g. considering only management 

schemes that came into being at approximately the start of 1990s, and using the soil 

background element concentration of the province for comparisons (Henan Province 

data, A/surface layer minimal observations; Table 2) (Wei et al. 1990). These data 

were collected at the end of 1980s and form a baseline of heavy metal 

concentrations in agricultural soils for the region. 
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Table 2 Soil element background concentrations in Henan Province (Wei et al. 1990) 

 

Element 
Min 

(mg/kg) 

First 

quartile 

(mg/kg) 

Median 

(mg/kg) 

Third 

quartile 

(mg/kg) 

Max 

(mg/kg) 

Meana 

(mg/kg) 

St. Dev.* 

(mg/kg) 

Crb 25 53.5 62.9 71.3 109.8 63.8 13.25 

Ni 6 22.5 25.8 29 80.5 26.7 5.69 

Cu 5.5 16.4 19 22.3 67.5 19.7 4.8 

Zn 34.3 50.7 57.3 65.8 221.5 60.1 15.3 

Cd 0.039 0.062 0.074 0.084 0.276 0.074 0.0167 

Pb 12.5 16.5 19.1 21.8 38.5 19.6 4.62 

a Arithmetic mean and standard deviation 

b Including Cr (III and VI)  
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3 Results 

3.1 Surface soil heavy metal contents 

Surface heavy metal concentration showed no consistent pattern in individual 

villages, except for a general increase associated with agricultural practices 

compared with baseline values (Table 3). Zinc in traditional villages had values 

lower than that of the background, suggesting lower risk and/or the possible lack of 

sample points during background surveys. The high eco-toxicity element, Cr, was 

higher in specified villages, and Cd was higher in diverse villages with 

concentrations six-fold over those of traditional villages. Comparison over village 

types (agricultural systems) displayed higher concentrations in specified (chromium, 

zinc, cadmium, lead) and diverse (chromium, copper, zinc, cadmium) village types. 

However, compared with highly increased level of agrochemical use (Chapter two), 

specified and diverse cultivations did not appear to have dramatically changed the 

heavy metal concentrations of farmland soils. Surface soil properties of all villages 

complied with the nation’s soil environmental standards (State Bureau of 

Environmental Protection and State Bureau of Quality Technical Supervision 1995) 

type II classification for general farmland, with soil sample pH range 7.75-8.73. Soil 

heavy metal concentrations were slightly higher than other agricultural regions. 

(Wang et al. 2006; Jia et al. 2009) 
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Table 3 Surface Soil Heavy Metal Mean Concentrations in the Sample Sites (mg/kg) 

Villages Cr Ni Cu Cd Pb Zn 

1 31.29 18.87 14.28 0.12 28.17 24.02 

2 40.36 15.76 16.11 0.75 21.56 47.36 

3 44.03 15.86 10.83 0.15 25.83 39.79 

4 54.03 17.84 6.79 0.70 32.63 36.74 

5 47.14 16.60 8.29 0.09 20.63 28.09 

6 42.40 18.56 13.23 0.62 23.04 34.07 

Traditional* 39.22 17.74 11.29 0.11 24.40 26.05 

Specified* 49.03 16.85 8.81 0.43 29.23 38.27 

Diverse* 41.38 17.16 14.67 0.68 22.30 40.72 

Background 25 6 5.5 0.039 12.5 34.3 

* Averaged over two villages 

Background refers to heavy metal concentrations used for comparison (Wei et al. 1990) 
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Specified cultivation appeared to have some impact on heavy metal concentrations, 

especially with chromium, zinc and cadmium in Dong-ying (Table 3), likely 

attributed to the high agrochemical demand (Chapter two) of garlic mono-cropping. 

Herbicide reduction caused by honeysuckle sensitivity seemed to have reduced the 

level of cadmium in Qian-gang, but some other elemental concentrations were still 

higher than those of traditional villages, likely made up by large amounts of 

pesticide. Diverse cultivation involves larger amounts of agrochemicals (Chapter 

two), but there were no other issues regarding toxic metals (high toxicity ones) other 

than cadmium. 

3.2 Potential ecological risk evaluation of surface soils 

  



 

45 
 

 

Table 4 Potential Ecological Risk indices of sample sites 
 

 Element Zhu-cun-pu Dong-yang-si Qian-gang Dong-ying Chang-zhai Wan-zhai 

Ea 

Cr 2.50 3.77 3.52 4.32 3.23 3.39 

Ni 15.73 13.83 13.22 14.87 13.13 15.47 

Cu 12.98 7.54 9.85 6.17 14.65 12.03 

Cd 92.31 69.23 115.38 538.46 576.92 476.92 

Pb 11.27 8.25 10.33 13.05 8.62 9.22 

Zn 0.70 0.82 1.16 1.07 1.38 0.99 

RIb 135.49 153.46 617.94 577.95 103.44 518.02 

a Individual potential ecological risk 

b Joint potential ecological risk 
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Results show that element cadmium has the highest potential risks in all villages 

(Table 4) and especially with diverse villages and specified Dong-ying (contributed 

to 93% of the total risk RI for Chang-zhai, 93% for Dong-ying, and 92% for 

Wan-zhai). This could be attributed to agrochemical input (Chapter two). Cadmium 

potential ecological risks in the three villages exceeded the maximum standard and 

classified as extremely strong; its potential risks for the rest three villages are strong. 

All other elements are in the mild category. Diverse villages had the highest RIs. 

The lower RI in Qian-gang could be caused by lack of herbicide input due to 

honeysuckle sensitivity (Chapter two). Traditional villages had the lowest RIs, with 

Zhu-cun-pu at moderate risk and Dong-yang-si at mild risk. 

 

The comparisons of RIs clearly indicate a rise of heavy metal pollution in relation to 

specified and diverse specialization but this effect could be reduced by the selection 

of specific cash crops. This increases soil contamination by heavy metals and 

threatens local agriculture sustainability. 

4 Discussion 

The lower RIs in traditional villages points to the sustainable nature of conventional 

cultivation methods. This is under pressure from the policy changes involving the 

release of agricultural labour, increase of yield requirements and permission of land 

circulation (trading of farmland). Under such conditions, even fewer people would 

be left in rural areas (less than 100 million) to manage China’s 120 million hectares 

of farmland. Extensive monoculture would likely replace the current traditional 

villages by grouping circulated lands into big plots, eliminating non-field landscapes 

in the vicinity, and applying agrochemicals at the larger scale. These features of 

extensive monoculture will damage ecosystem properties even more. Whether or not 

these changes cause more heavy metal pollution than the alternative methods in rural 

areas remains to be tested.  

 

Both alternative methods increased metallic elements in the soil. These elevated 
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individual risks of some metals (such as cadmium) and the total RIs of the villages. 

Elements such as cadmium and copper can be found in many fertilizers, pesticides, 

and herbicides either as part of the main component or in residual trace amount 

(Zhou et al. 2000; Alam et al. 2003). The general study region is agriculturally 

focused with minimal industry presence, but it is still influenced by atmospheric 

heavy metal deposits from vehicle exhausts, tyre residuals and, especially, ground 

water which is the source of irrigation in all Huang-huai-hai alluvial plain 

agricultural regions and is threatened with heavy metal pollution (Ministry of 

Environmental Protection et al. 2013).  

 

When comparing conservation potential of the alternative methods of agricultural 

production, diverse cultivation’s poly-cropping could be beneficial in reducing 

concentrations. Increased floral diversity (Chapter four) has the potential to reduce 

heavy metal pollution damage in agricultural lands through the phytoextraction 

capabilities of plant species (Bhargava et al. 2012). Phytoextraction of Cu elements 

by maize and paddy rice, and abilities of Fabaceae species (e.g. soybean, Glycine 

max) to absorb Zn elements (Murakami and Ae 2009) and Cd elements (Leita et al. 

1993; Arthur et al. 2000), may play a role in this regard. Hence, the high variety of 

crop types found in diverse cultivation fields (including Poaceae, Fabaceae and 

Brassicaceae) could lower agrochemical residues. Specified mono-culture systems, 

depending on market values, could be based on cash crops that are sensitive to 

agrochemicals thereby reducing input (village Qian-gang), but this effect is unstable 

and larger scale adoptation of it would have similar effects to that of any extensive 

monoculture. 

5 Conclusion 

Heavy metal concentration in agricultural soils is related to changes made in 

cultivation and management. In Chinese traditional cultivation there is a 

close-to-sustainable production system resulting from centuries of balancing inputs 

and productivity. Changes induced by new agricultural policies, urbanization and 
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market economies threaten the existence of the latter sustainable practices. Larger 

scale production might result in more agrochemicals input, with damage to 

ecological factors such as biodiversity, reducing regulatory functions in natural 

ecosystems. 

 

Diverse cultivation, on the other hand, promotes small and large scale landscape 

heterogeneity (Chapter four) and supports potentially higher biodiversity in 

farmlands. Its impact on heavy metal concentrations in soils is higher than that of 

traditional cultivation but this damage is likely to be alleviated through changes in 

agrochemical inputs (i.e. using more manure instead of industrial fertilizers) and 

heavy metal phytoextraction by more arable weed species. The high economic 

revenue created by diverse cultivation systems is especially appealing for farmers 

and, therefore, requires minimal policy levers to be widely implemented. This could 

create much needed species and habitat conservations in a region that is possibly 

shifting towards a highly monotonic landscape. 

 

Specified cultivations can do just as much damage to the soil properties as diverse 

cultivations depending on the crop type and individual requirements, but it is even 

more of a mono-culture than traditional cultivation and low in diversities (Chapter 

two). Its limitations (high demand in manual labour and agrochemicals, and 

potential market saturation) make it less likely to be implemented on a large scale. 

Longer ecological impact of specified cultivation awaits further analysis. 

 

This study compared soil element concentrations at village level. A historical record 

of soil element concentration in this region is lacking so that temporal responses in 

heavy metal concentrations to agricultural practices could not be quantified. These 

results, however, can serve as a baseline for future studies. As policy levers 

drastically change the pattern of agri-industry in China, agricultural practices should 

be planned in such a way that regional biodiversity can be maintained while meeting 

high production targets. Conservation and production studies are required on both 
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small (village) and large (regional) scales. 
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Chapter 4 Diverse cultivation benefits floral diversity in Chinese 

rural areas 

Abstract: Agricultural practices affect biodiversity, especially flora communities 

which play important roles in ecosystem stability. Studies focused on 

environmentally friendly agriculture schemes have found mixed effects on 

biodiversity by these conservation efforts. However, these practices in agriculturally 

intensive areas in developing countries such as China where food production is a 

priority have not been closely examined. This study integrated floral distribution and 

agricultural inputs in six geographically similar villages with traditional and 

alternative cultivation methods in a Chinese traditional rural area in an attempt to 

determine their effects on biodiversity using similarity analyses and linear regression 

models. Village type significantly affected floral distribution (p<0.001) and the 

influence was more effective at the village scale compared with individual land 

types. Diverse cultivation was related to increased floral diversity, likely due to 

heterogeneity created by abundant crop types, and high manual labour input 

balancing agrochemical requirements. Spatial replication of such methods is 

recommended to produce definite results regarding optimal effects. Long-term 

empirical evidence is required to demonstrate sustainable effects. In high demand 

agricultural regions, diverse cultivation might prove to be a unique way of 

preserving biodiversity. 

Key words: agriculture, floral diversity, management schemes, diverse cultivation 

1 Introduction 

Agricultural practices2 are the most basic and fundamental human activities greatly 

affecting biodiversity worldwide (Tilman et al. 2001; Benton 2007; Sutherland et al. 

2009). Conservation actions such as European Union’s Agri-Environmental 

Schemes, US’s Conservation Reserve Program and Australia’s Landcare Program 
                                                 
2 This paper defines agriculture only as the cropping practices on farmlands. It does not include forestry, 
aquaculture (pond fishery) or pastoral (grazed livestock) production.  
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(Curtis and de Lacy 1998; Johnson and Clark 2001; Directorate General for 

Agriculture and Rural Development 2010)  represent ways to tackle this issue 

through adopting alternative environmentally friendly methods such as organic 

farming. Since their implementation, researchers have examined the effectiveness of 

such actions based on their ability to protect biodiversity (Kleijn et al. 2001; Henle 

et al. 2008; Gabriel et al. 2010; Smith et al. 2010; Winqvist et al. 2012; Gabriel et al. 

2013).  

 

Alternative farming methods have mixed effects on biodiversity. Species react both 

positively and negatively to changes in land management (Kleijn et al. 2001; Kleijn 

and Sutherland 2003; Feehan et al. 2005; Kleijn et al. 2006; Kleijn et al. 2011). 

Positive effects may manifest differently with variation in field or crop types 

(Bengtsson et al. 2005; Feehan et al. 2005; Hole et al. 2005; Blomqvist et al. 2009; 

Gabriel et al. 2013). Plants, and solitary animal species such as most farmland 

insects, benefit from changes in management practices (Hald 1999; Hole et al. 2005); 

Mobile species, such as birds and some pollinators, likely respond to factors other 

than those related to the farmlands (Benton et al. 2002; Chamberlain et al. 2010). As 

such, farmland conservation should incorporate multiple management scales on a 

case-specific basis (Gabriel et al. 2010). 

 

In farmland regions, floral3 species play a crucial role in maintaining the functions 

and structural stability of agricultural ecosystems (Altieri 1991; McLaughlin and 

Mineau 1995; Swanton and Murphy 1996). Plants provide necessary habitats and 

refuges for ground insects and pollinators (Hooper and Vitousek 1997; Altieri 1999; 

Brose 2003; Duffy 2009). As agriculture intensifies, ecological regulations by 

natural environmental elements (such as plants) have been replaced slowly by 

anthropogenic regulators such as agrochemicals. This has increasingly affected 

farmland ecosystems and endangered the natural habitat of plant species (Matson et 

al. 1997; Butler et al. 2007) 

                                                 
3 This paper referrers to farmland plants as non-crop species 
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Floral response to agri-environmental management has been extensively studied 

(Hole et al. 2005; Blomqvist et al. 2009; Hawes et al. 2010), but most are based on 

cases of environmental friendly management practices implemented specifically for 

conservation. This has limited importance in agricultural areas where food 

production is paramount, such as China, where adopting such measures can be 

problematic due to decreased yields (Seufert et al. 2012). Therefore, conservation 

efforts in these regions need to focus on alternative means of cultivation. 

 

China has one of the largest agricultural productions in the world (Food and 

Agriculture Organization 2013). There is extremely strong emphasis on agricultural 

production but much interest has been attached to monitoring the response of 

agriculture to a series of social and political policy reforms, the latest of which being 

the Household Contract system (Hong and Tao 2002). This contracts 

collectively-owned farmland to individual households, based on capita and the fast 

growth of manufacturing and tertiary industries in rural areas. These reforms result 

in a more fragmented agricultural landscape in rural areas (Li and Wang 2003). 

Current agriculture development in China involves the formation of specialized 

villages with most households in a village committed to one or a chain of production 

type, making this the primary source of revenue (Li et al. 2009). At the end of 2010, 

China has 51486 specialized villages, with an average village income 15.56% higher 

than others in the country whilst that of participating households is 25.82% higher 

than farmers in other villages (Ministry of Agriculture 2011). These villages often 

choose high value cash crops involving large amount of input. Therefore, this calls 

into question the environmental impact of such management, especially that on the 

already threatened floral diversity. 

 

Chinese studies have focused on the ecological functions and services of floral 

diversity in agricultural landscapes (Wu et al. 1998; Chen et al. 2000) but 

insufficient attention has been paid to comparing biodiversity with regard to 



 

53 
 

management changes, likely due to lack of a national farmland conservation plan. 

By obtaining detailed data at the village level, this research examines how 

socio-economic factors and on-site cultivation practices affect floral diversity in the 

study area. In doing so, I try to answer the following questions: 

1. Do changes in village scale agricultural practices affect floral species 

distribution? 

2. If so, how are they affecting floral diversity within and between villages? 

3. What are the main agricultural-input factors affecting floral diversity? 

4. What changes would the development of alternative cultivation methods bring 

upon the regional floral diversity conditions? 

2 Area and methods 

Six villages were selected within Fengqiu County, Xinxiang City and Zhongmou 

County, Zhengzhou City, Henan Province (Figure 1), located on both the north and 

south side of the Yellow River, representing three main types of newly formed 

cultivation types. 

 

Henan Province is located in the central-eastern region of China, and is the province 

with the greatest agricultural population and total crop production. Its total crop 

yield has remained the highest for more than a decade with its 2012 crop yield, 

including main cereal types such as paddy rice, wheat and maize, reaching 56,386 

million tonnes (National Bureau of Statistics 2012b) thus making Henan very 

suitable for analysing agricultural disturbances on the environment.  
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Figure 1 Map of the study area and location of the villages sampled  
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2.1 Floral survey 

Vegetation surveys were conducted in two consecutive years: 2012 summer 

(August), 2013 spring (April, coded 201304), and 2013 summer (August, coded 

201308). Due to accessibility at the time, villages were coded in the order they were 

sampled: 1, Zhu-cun-pu; 2, Chang-zhai; 3, Qian-gang; 4, Dong-ying; 5, 

Dong-yang-si; 6, Wan-zhai (will later be referred to by village names for clarity and 

comparison). 

 

Surveys used a wooden quadrat (with dimensions 0.5 m×0.5 m), and recorded plant 

species using the Braun-Blanquet cover-abundance scale (Braun-Blanquet 1932; 

Southwood and Henderson 2009). Classification was based on the species 

catalogues of Henan Province (Ding and Wang 1998). Data covered four land types 

in rural villages: farmland (farm-plots with representative crops, e.g. wheat/maize 

for traditional), roadside (dirt access roads within farmlands), ditch (old irrigation 

ducts or field boundary ditches), and abandoned (uncultivated plots or patches 

planted with trees). Farmland plots and abandoned sites were surveyed in a zigzag 

pattern. Roadsides and ditches were surveyed while walking random number of 

steps (using randomly generated numbers) along selected roads. Number of quadrats 

was predetermined using species accumulation curves. 

2.2 Floral statistics 

Diversity indices were calculated for each site, including: number of taxa; coverage, 

mean coverage within sample sites based on a 0.25 m2 quadrat; Margalef’s Richness 

(Margalef 1958; Southwood and Henderson 2009), which accounts for sample size; 

Shannon-Wiener Diversity Index (SHDI) (Shannon 2001; Southwood and 

Henderson 2009); Simpson’s dominance index (Simpson 1949; Southwood and 

Henderson 2009); and evenness index Evar (Smith and Wilson 1996; Beisel et al. 

2003). Measure of species evenness Evar was selected to reflect changes of main 

floral species groups across sites, while being less sensitive to the changes in the 

rare and sometimes dominant species (Smith and Wilson 1996; Beisel et al. 2003), 
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which in this case consisted of only three types of species and therefore highly 

susceptible to change.  

 

Where xs and xt are the number of individuals in species s and t respectively, and S 

is the total number of species in the particular sample. 

2.3 Analysis of similarity and ordination 

ANOSIM (Analysis of Similarities) with both one-way and two-way crossed design 

were performed to test and compare the village type and land type factors (with 

Bray-Curtis dissimilarity as the measure of distance) (Clarke 1993). A one-way 

analysis was performed based on factor time (2012summer, 2013spring, 

2013summer) to test if there was apparent separation of the data. Then two-way 

crossed analysis was performed with village type and land type for comparison. 

 

To best utilize benefits of non-Euclidean distance comparison measures, constrained 

ordination (redundancy analysis, RDA) was performed on Hellinger-transformed 

floral data (Legendre and Gallagher 2001; Legendre and Legendre 2012) based on 

the factors village type and land type, grouped by time. The increase along the 

gradient (arrow in the figure) roughly translates to increasing levels of input (from 

traditional to specified to diverse), so point positions (scaling=3) of sites can better 

reflect the subjected influence. 

2.4 Data modelling 

Regression models were calculated to analyse response of floral composition various 

agricultural inputs. Generalized linear model options were tested first using residual 

analysis, to ensure whether results were normally distributed. The classical linear 

model was chosen after this initial analysis. Due to a high frequency of empty cells 

(zeros in data) in sample sites, floral data averaged over land types were used as 

dependent variables. Species number did not contain enough variance across 
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samples, and, therefore, failed to produce significant model results. Floral coverage 

was selected instead to represent dynamic changes of plant species growth 

conditions. Independent variables included: pesticide (litres per ha, including major 

types such as chlorpyrifos, omethoate, and beta-cypermethrin) herbicide (litres per 

ha, including major types such acetochlor, napropamide, and dibutralin), manual 

labour (man-hours per ha), agricultural machinery (hours per ha, including irrigation, 

tillage, and harvest machines), and fertilizers (kg/ha, compound, nitrogen, phosphor, 

and potassium) (Table S4). Pesticide and herbicide showed interactions during initial 

assessment, and their interaction was included as an independent variable in the 

model. Fertilizer inputs were not observed to be related to other independent 

variables, so they were analysed using a second regression model. Fit of regression 

models were tested by normal Q-Q plots and distribution histograms (Figures S1-4) 

with Jarque-Bera statistics (Jarque and Bera 1980; Jarque and Bera 1987). 

3 Results 

3.1 Flora statistics 

The samples contained 105 plant species in total, belonging to 86 genera and 34 

families. Of those, 52 species were only found in the summer, six in the spring. 

Three families were also exclusive to spring: namely, Plantaginaceae, Brassicaceae, 

and Caryophyllaceae.  

 

Nineteen species dominated the various types of land in the villages; 20 species 

were found to be in the main group; and 61 in the rare group. The dominant group 

overlapped highly with the main and therefore were analysed together (Table 

S1a-S1c). Compositae, which was only found in summer, had the highest number of 

species. 

 

The species Humulus scandens was the most abundant in the overall mean coverage 

of all six villages, followed by: Eleusine indica (L.) Gaertn., Cucumis melo L. var. 

agrestis Naud., Amaranthus retroflexus L., Setaria viridis (L.) Beauv., Cardamine 
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lyrata, Polygonum hydropiper L., and Cynodon dactylon (L.) Pers. Humulus 

scandens flourishes in ditches and abandoned fields in all sample seasons. Eleusine 

indica dominates roadsides and fields in the summer, with only two records in 

spring 2013. Cucumis melo grows only in the summer in fields and field-adjacent 

roadsides, demonstrating a rather high tolerance to the frequent disturbance. 

 

Floral abundances were higher in abandoned sites and ditches and lower in field and 

roads. This trend was less pronounced in specified and diverse villages than 

traditional villages. Exceptionally, Dong-yang-si had more diversity in the fields 

than road and abandoned sites (ditch was not present), probably attributed to the 

farmers being reluctant to put in much work as there were a high percentage of 

villager migrant working for a better pay. Specified and diverse villages did not 

display increased floral diversity in any single land types, but the overall diversities 

of villages were higher than that of traditional villages (Table 1). 
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Table 1 Seasonal (spring and summer) taxonomic difference (number of species) 

between villages  
 

Time Zhu-cun-pu Dong-yang-si Qian-gang Dong-ying Chang-zhai Wan-zhai 

Spring 32 27 30 9 35 21 

Summer 49 51 50 35 47 64 

Total 67 56 58 39 67 67 
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The highest differences of species coverage (e.g. species Eleusine indica, Setaria 

viridis, Humulus scandens) occurred in 2013 between villages. Broad-leaved species 

(e.g. Polygonum aviculare of the family Polygonaceae) showed some variation 

between different types of villages being higher in traditional, and lower in diverse 

systems (Tables S2a-c). However, this was not apparent for other families such as 

Fabaceae and Brassicaceae which were more sensitive to agricultural disturbance. 

This suggests a slightly reduced level of agrochemical disturbance in diverse 

villages. 

3.2 Differences in floral distribution 

One-way ANOSIM showed significant global results and further pair-wise tests 

showed significant separation between groups 2012 and 2013spring (0.643), and 

2013spring and 2013summer (0.714). 2012 and 2013summer had high similarities. 

 

Two-way ANOSIM results based on factors village type and land type showed 

significant global statistic (0.536) between land types in summer data. Pair-wise test 

of land types revealed significant dissimilarities (number in brackets) in a 

descending order: field and abandoned (0.86), road and abandoned (0.747), field and 

ditch (0.73), road and ditch (0.479), field and road (0.358), ditch and abandoned 

(0.244) (P<0.05). Statistics of spring floral groups showed similar results but 

non-significant levels. (Table S3b) 

 

A significant global result was also observed for the effects of village type in 

summer data (p<0.001) though this was relatively smaller than the effects of land 

type. Pair-wise results of village types 1, 2 and 2, 3 showed significant differences: 

0.279 and 0.369 respectively. 
  



 

61 
 

 

 

Figure 2 Ordination plot (redundancy analysis, scaling = 3) of Hellinger-transformed floral data on 

village type; displayed by factor land type and grouped by time; Increase along the gradient (blue 

arrow) roughly translates to increasing levels of input (from traditional to specified to diverse). Figure 

shows distribution of 201208 and 201308 samples (blue and green points) more affected by land-type 

factor compared with 201304 samples; changes caused by village differences are more apparent in 

field and road land-types as is suggested by more dispersed points. 
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Visual representation of site distribution suggests that factor village type had more 

influence with field and road sample sites (Figure 2): with field sites more 

susceptible to change. Differences caused by village types were close to consistent 

across various land types. Distribution of abandoned sample sites were more 

grouped in all seasons, and falls on the left of gradient, which means abandoned 

sites were relatively resilient to changes caused by village types. Ditch sample sites 

are not as grouped; changes are present, although minimal. Separation of sample 

sites on the plot between summer and spring supported earlier findings. Village type 

also displayed higher influence on site distributions for summer groups. 

3.3 Modelling effects of agricultural practices on floral community 
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Table 2 Regression results of floral coverage with agriculture input (control 
variables excluded) 

 Model one Model two 

 Coverage 
Standardized 

coefficient 
Coverage 

Standardized 

coefficient 

Herbicide (L/ha) 
-46.76** 

(14.84) 

-47.23** 

(14.99) 
  

Pesticide (L/ha) 
-6.30** 

(2.07) 

-11.68** 

(3.84) 
  

Herbicide^Pesticide 
2.39** 

(0.77) 

13.10** 

(4.23) 
  

Manual labour 

(man×hour/ha) 

0.003* 

(0.001) 

-2.34* 

(1.06) 
  

Machinery (hour/ha) 
-0.34* 

(0.15) 

1.46* 

(0.55) 
  

Compound fertilizer 

(Kg/ha) 
  

0.008* 

(0.003) 

2.17* 

(0.98) 

Nitrogen fertilizer (Kg/ha)   
-0.11* 

(0.05) 

-36.76* 

(18.17) 

Phosphorous fertilizer 

(Kg/ha) 
  

0.23* 

(0.12) 

37.33* 

(18.37) 

Potassium fertilizer (Kg/ha)   
0.23* 

(0.12) 

8.08* 

(4.09) 

R2 0.5658 0.5658 0.1548 0.1548 

F 8.63** 8.63** 2.61* 2.61* 

Models 1and 2 contain different explanatory variables for the same dependent variables; coverage 

was the mean floral coverage for specific land types, std. coef. are standardized β values of coverage; 

* Significant at 0.05 level ** Significant at 0.01 level 

^ Interaction between two variables; for standardized coefficients, interaction were calculated after 

standardization; 
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Herbicide had the highest significant negative correlation with floral coverage. 

However, pesticides were also correlated negatively with coverage regardless of 

differences in active ingredients. The interaction between herbicide and pesticide 

(translates to partial derivatives of individual correlation coefficients) was 

significant, but this result is likely to be coincidental given the lack of theoretical 

basis, and the interaction of pesticides and herbicides may be a result of confounding 

due to general application methods. Manual labour input was significantly correlated 

with floral coverage increase and had a small standard covariance caused by 

coverage data being averaged over whole sample types. Machinery time input was 

negatively correlated with floral coverage. This model had a moderate goodness of 

fit (coefficient of determination 0.5658) representing variations in floral coverage 

differences. However, this might be a good representation of data variation given 

that regression was based on spatial data rather than temporal datasets. 

 

Phosphorous fertilizers had a significant positive correlation with floral coverage. 

Nitrogen fertilizers had a significant negative correlation. Potassium and compound 

fertilizers had significant but weaker positive correlations. Fertilizers accounted for 

only a small proportion of variations in floral coverage. These correlations do not 

imply direct causation, but the two models covered all main factors affecting floral 

differences in villages sampled so they indicate factors important for maintaining 

floral diversity amongst those actually observed. 

4 Discussion 

The considerable differences displayed in ANOSIM results between field/road and 

abandoned sites (Table S3b) suggests that abandonment (plots left uncultivated or 

planted with trees for timber) had large impacts on biodiversity, and created local 

diversity refuges as evident by increasing diversity and richness levels (Tables 

S2a-c). In traditional Chinese rural areas, agricultural landscapes tend to be 

mono-cultural yet fragmented (Zhang et al. 2004; Fu et al. 2006), limiting 

large-scale landscape factors that could be beneficial to biodiversity (Ewers and 
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Didham 2008; Gabriel et al. 2010; Banks-Leite et al. 2011) and reducing species rich 

sites with re-colonization capabilities. Abandoned sites and ditches, relatively, have 

the lowest disturbance levels in farmlands as they do not receive agrochemicals 

directly and were not subjected to constant manual interference. This results in high 

similarities between these two groups, and also made them possible sources for 

floral species in nearby patches. However, although some abandoned sites may exist 

for more than a year (such as Zhu-cun-pu), others do not (such as Dong-ying). 

Ditches were also poorly maintained and often absorbed by nearby plot owners for 

crop production.  

 

High similarities between field and road suggest spill-over of farmland disturbances 

and possibly of floral species (Brudvig et al. 2009; Gabriel et al. 2010). The high 

level of agro-chemical input in the farmland plots right next to the roads, which 

were mostly dirt paths maintained for access to the farmland and due to the high 

fragmentation of fields located in the mosaics of farmlands, affected not just the 

plots, but caused changes to the surrounding roads as well.  

4.1 Village factors affect floral distribution 

Village type had less but still significant influence on the distribution of floral 

species in sample sites compared to effects of land type, which is regarded as the 

main source of plant species diversity variations in farmlands (Marshall and Moonen 

2002; Roschewitz et al. 2005; Zihua et al. 2010; Fahrig et al. 2011). These 

influences, as expected, had the highest impact in fields (Figure 2). Its impact on the 

floral diversity in road sites point to the high level of spill-over of agricultural 

disturbances to the plot adjacent land types. It also explains the overall lack of 

diversity and richness in field and road sample sites (Tables S2a-c). Ditch sample 

sites, though often not far from farmland plots, were partly sheltered from the 

disturbances by their physical features. This also made their species composition 

unique: most ditch sites were dominated by Humulus scandens, a species, though 

common, rarely found in dominance in other land types. The floral distribution of 



 

66 
 

abandoned sites was almost completely unaffected by the village type. Since most 

abandoned sites were still under a moderate level of disturbance (limited grazing, 

fire, or occasional plantation), similarities among different villages likely points to 

the high rate of re-colonization in farmland areas.  

 

The differences between different land types across villages were consistent but 

quite small (Figure 2; Tables S2a-c, S3b). However, overall species richness was 

quite distinguishable between village types. The overall species number was highest 

in diverse villages in summer data and lowest in specified villages. This is probably 

due to the small species turnover between land types in traditional villages but this 

increased in specified villages due to the mono-cultural landscape features in 

comparison with higher rates of turnover in diverse villages. Diverse villages have, 

on average, lower species diversity in each land type, but higher total diversity on 

the village scale. 

 

The diverse cultivation method utilizes intercropping to its maximum potential, with 

up to a dozen crops planted in a single plot (supporting document two). Crops are 

regularly replaced with new ones when they mature, creating a highly diverse 

condition at the farmland scale. Plants benefit from the diverse factors at this level 

(Gabriel et al. 2010; Gabriel et al. 2013). This effect may not be evident at the small 

scale in individual land types but differences within plots collectively contributed to 

the overall diversity within the village. While traditional and specified villages have 

large numbers of similar plots creating a simple village-scale landscape, the 

landscapes in diverse villages contained more variation and complexity, which 

provide more resources and potential niches, supporting higher biological diversity 

levels (Bazzaz 1975; Dufour et al. 2006; Rundlöf et al. 2008).  

 

Though village scale factors in traditional Chinese rural areas are still quite small 

compared with general landscape elements that would influence biodiversity 

(Gabriel et al. 2010). The spatial replication of diverse villages within a particular 
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region may eventually reach such a threshold. The present results point to the 

potential of diverse cultivation method in promoting conservation. 

4.2 Agricultural input factors affecting floral diversity 

Pesticide and herbicide application and general factors accounted for a high 

proportion of observed variation in floral coverage. Regression results suggest that 

the benefits of diverse-cultivation in promoting plant species richness can largely be 

attributed to its relatively lower herbicide inputs and high levels of manual labour. 

Diverse cultivation restricts herbicide input because of unpredicted responses of 

different cash crops. With control using agrochemicals is replaced by manual labour. 

Specified cultivation is just as mono-cultural as traditional systems, which is 

associated with high use of agrochemicals (chapter two). 

 

Diverse cultivation has many features closely resembling traditional practices in 

comparison with other types of agricultural systems. They are mainly characterized 

by meticulous, plot-level management of crops and agrochemicals and is more likely 

to preserve some of the environmental-friendly features of traditional practices 

(Rosset et al. 1999; Altieri et al. 2012). Regardless of floral diversity in particular 

farm plots, overall diversity might still be maintained.  

 

The regression analyses show a correlation between reduced floral coverage and 

nitrogen fertilizer input similar to those found in grassland communities (e.g. Gough 

et al. 2000; Stevens et al. 2004; Crawley et al. 2005; Silvertown et al. 2006; Harpole 

and Tilman 2007; Mozumdera and Berrens 2007; Clark and Tilman 2008). This 

points to the possibilities of reduced niche dimensions caused by eutrophication in 

agricultural ecosystems in a similar fashion. Loss of plant species diversity has been 

widely observed in grassland areas where the deposition of nitrogen (and other 

nutrients) accumulates, even with increased primary productivity. Whether 

agricultural ecosystems display similar symptoms, is unknown. In grassland 

communities, this has been largely attributed to the reduction of light to understory 
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plant species (Hautier et al. 2009). During floral surveys, similar conditions were 

found in non-field land types. Vegetation patches with higher overstory plants (such 

as species from genera Artemisia, Chenopodium, etc.) usually had lower understory 

species (Cyperus, Digitaria, Humulus, etc.) cover, leading to lower coverage 

overalls. Patches without dominant overstory species were found to have high 

understory coverage and sometimes resulted in total coverage ratios above 100%. 

This occurs because patches with level-five coverage on the Braun-Blanquet scale 

rarely occur in high canopies. This suggests that in agricultural ecosystems, nutrient 

eutrophication may similarly reduce floral diversity, but whether or not light 

deprivation is the main cause, requires more empirical evidence. 

5 Conclusion 

In Rural China agricultural practices affect floral communities in the farmlands. 

Diverse cultivation promoted arable weed species diversity in the villages by 

balancing manual labour with carefully managed agrochemicals, and creating 

landscape heterogeneity both at small and larger scales. These reduce disturbance 

frequencies and intensities, and are likely to provide more niches for species and 

support higher diversity. At a larger scale, villages as such can serve as species 

refuges in a mono-cultural region. Also, the high economic revenue associated with 

this cultivation type is especially appealing for farmers and, therefore, requires 

minimal policy levers for adaptation in other areas. This could create much needed 

species habitat scattered in the general landscape to boost regional biodiversity.  

 

The traditional method of cultivation, resulting from a historical balance between 

production and environmental burden, is threatened by changes in agricultural 

policies, urbanization trends and market economies. Such examples include the rural 

land circulation and reallocation, which is one of the new policies in China 

introduced in 2009. It provides farmers with legal grounds to trade their farmland 

rights and obligations. This policy will drastically change agricultural practices in 

Chinese rural areas: first economic levers will transfer farmland from those who 
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prefer other means of income to those who continue in cultivation. Mass production 

with more agro-chemical input on homogeneous land will become optimal with less 

human labour required. This means mono-cropping over contiguous patches of 

fields with minimal alternative land types (e.g. margins, ditches, abandoned sites). 

Intensive monoculture reduces the overall patch/habitat heterogeneity and diversity, 

which will potentially reduce available habitats in a landscape. This could decrease 

local floral diversity even more. 

 

Specified villages’ monotonic context prevents this from having higher conservation 

importance. Its agrochemical input, depending on cash-crop types, could cause a 

decline in floral communities. However, due to some restrictions of cash crops, such 

as that demonstrated in Qian-gang, floral species could thrive in some circumstances. 

The long-term impact of this cultivation method needs to be investigated with more 

case studies. 

 

This study compared floral communities’ statistics in different villages in relation to 

differences in cultivation type and land use change. However, temporal comparisons 

and floral response to agricultural practices could not be established due to lack of 

historical data. Floral response to specific input factors and nutrient eutrophication 

in agricultural ecosystems require long-term empirical data to be fully understood. 

However, these results set up a baseline for similar analyses, especially when 

China’s new policy brings about dramatic changes in rural agricultural patterns. 

Agriculture management plans in such regions should take into account the abilities 

of these alternative schemes to contribute to conservation of biological diversity, 

both at small and large scales, to achieve sustainable farming. 
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Chapter 5 Agricultural management changes affecting faunal 

communities in Chinese rural areas 

Abstract: Agricultural intensification has affected faunal biodiversity in farmlands. 

Studies examining faunal responses to changes in agricultural management have 

found mixed effects, but the alternative farming schemes in high-demand agricultural 

regions have largely been overlooked. This study compares faunal communities from 

representative villages in Chinese traditional rural area to examine the impact of 

agricultural systems on faunal diversity. Using analysis of similarity and linear 

regression models, it was found that village (agricultural systems) type nested within 

soil depth, significantly affected floral distribution (p<0.001). Faunal groups 

responded to changes differently, with Acari being taxonomically diverse and 

Collembola with high densities. Agrochemicals mostly had negative effects on faunal 

communities whilst increase in manual labour possibly had positive effects which 

could reduce the level of agrochemicals used. If extensive monoculture thrives in the 

region, alternative management might represent a unique way of preserving fauna 

diversity. 

Key words: soil fauna, agricultural management, diverse cultivation, agricultural 

intensification 

1 Introduction 

Agricultural practice4 is one of the main factors affecting biodiversity condition in 

farmland regions (Gall and Orians 1992; Benton et al. 2002; Benton 2007; 

Sutherland et al. 2009). World conservation efforts have increased at the start of the 

21st century, but the decline in diversity has continued. The underlying basis of this 

decline has attracted worldwide attention (Benton et al. 2002; Kleijn et al. 2009; 

Kleijn et al. 2010; Kleijn et al. 2011).  

 
                                                 
4 This paper defines agriculture only as the cropping practices on farmlands. It does not include forestry, 
aquaculture or pastoral (grazed livestock) production.  
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Conservation of biodiversity in Chinese farming regions has been approached with a 

range of different measures, namely: enhancing farmland biodiversity by lowering 

overall intensity, and/or restricting agrochemical application and creating 

heterogeneity by adding extra features supporting biodiversity in agricultural 

landscapes. These steps have been widely used in some developed countries through 

voluntary or subsidized actions (Curtis and De Lacy 1996; Giller 1996; Curtis and de 

Lacy 1998; Johnson and Clark 2001; Abensperg-Traun et al. 2004), usually involving 

financial incentives. Attempts to understand these changes and their impact on the 

farmland biodiversity conditions have been well documented (Kleijn et al. 2001; 

Henle et al. 2008; Gabriel et al. 2010; Smith et al. 2010; Winqvist et al. 2012; 

Gabriel et al. 2013). Despite mixed effects (Kleijn et al. 2001; Kleijn and Sutherland 

2003; Feehan et al. 2005; Kleijn et al. 2006; Blomqvist et al. 2009; Kleijn et al. 2011; 

Gabriel et al. 2013), it is generally believed that alternative managements such as 

organic farming benefit biodiversity. Because agricultural production covers a large 

area, species requiring different ecosystem conditions and ecological resources, 

respond differently to management efforts. While most invertebrate species benefited 

from changes in management (Hald 1999; Hole et al. 2005); other species responded 

differently depending on their individual niches (Benton et al. 2002; Chamberlain et 

al. 2010). 

 

Soil fauna are resilient to environmental disturbances and can be found in large 

numbers in most soil types across different ecosystems (Giller 1996). Because of 

their importance in maintaining biological, physiological, and chemical processes in 

soil, the study of soil fauna response to agricultural disturbance is vital in protecting 

biodiversity and farmland ecosystems. 

 

Even though some studies indicate the conservation benefits of environmentally 

friendly management schemes, most focus on comparisons between traditional and 

specifically designed agricultural practices in low intensity farmlands (Kleijn et al. 

2001; Kleijn and Sutherland 2003; Zechmeister et al. 2003; Bengtsson et al. 2005). 
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The general application of such practices is limited in highly intensive agricultural 

regions such as China—notwithstanding the fact that these studies often produce mix 

results themselves. (Kleijn and Sutherland 2003; Kleijn et al. 2006; Blomqvist et al. 

2009) 

 

In China, the basic unit in traditional agricultural practices has been the household 

(Lin 1992; Li and Wang 2003). Farmers learn from each other within the village, so 

changes in cultivation occurred between villages rather than within. Therefore, 

comparisons of environmental impact caused by cultivation and management 

differences are best performed at the village scale. Village level specialization 

represents such change. This was created when a large number of households in a 

village committed to a single or chain of productions or services, making it the 

village’s primary revenue (Li et al. 2009). These changes emerged out of the need for 

elevated economic benefits for the farmers themselves and, therefore, reflect current 

trends. The main differences among villages are the farming practices characterized 

by their choice of cultivation, such as: type of crop, number of different crops in total, 

agrochemical input, irrigation and manual labour required for the crops in question. 

These changes in farming practices, while maintaining a relatively high output (yield 

and/or income), often involve higher input of agrochemicals. The evaluation of the 

impact of these chemicals on biodiversity, therefore, is crucial in managing 

conservation efforts in such regions. 

 

This paper identifies representative villages for these new management schemes, and 

by utilizing data from village level, examines how socio-economic factors and 

cultivation patterns affect faunal diversity in the study area. In doing so, I address the 

following questions: 

5. Do changes in village scale agricultural practices affect faunal species 

distribution? 

6. If so, how are they affecting faunal diversity within and between villages? 

7. What are the main agricultural-input factors affecting faunal diversity? 
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8. What changes will the development of alternative cultivation methods bring upon 

the regional faunal communities? 

2 Area and method 

Six villages were selected from Fengqiu County, Xinxiang City and Zhongmou 

County, Zhengzhou City, Henan Province (Figure 1), located on both the north and 

south side of the Yellow River, representing three main types of newly formed 

cultivation types (chapter two). 

 

Henan Province is located in the central-eastern region of China, and is the largest 

province of agricultural population and total crop production. Its total crop yield has 

remained the highest in China for more than a decade, with its 2012 crop yield, 

including main cereal types such as paddy rice, wheat and maize, reaching 56,386 

million tonnes (National Bureau of Statistics 2012b). These make it suitable for 

analysing agricultural disturbances on the environment where production is 

prioritized.   
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Figure 1 Map of the study area and locations of the villages sampled  
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2.1 Fauna sample collection 

Soil fauna samples were collected in 2012 in two groups. The first was marked H for 

hand-picked: samples were collected for each layer of soil in the site for a volume of 

0.009 m3 (0.3 m×0.3 m×0.1 m). The second method was marked T for funnel 

extraction. Samples were collected using soil sample rings with a volume of 

7.854E-4 m3 (0.05 m Ø, 0.1 m length) and then extracted using Tulgren Funnels 

(Southwood and Henderson 2009). Each sample was marked using five reference 

codes: Village-Field-Plot-H(T)-Layer; with Zhu-cun-pu Village as 01, Chang-zhai 

Village as 02, Qian-gang Village as 03, Dong-ying Village as 04, Dong-yang-si 

Village as 05, Wan-zhai Village as 06 (original sample coding). They were then taken 

back to the lab for extraction and classification. Extraction was done using Tulgren 

Funnel setup with 24hour duration (samples were left for a further 24 hours to ensure 

extraction rate, and proved that 24 hours was enough). Species identification 

followed the guidelines laid out by Yin Wenying (Yin et al. 1998; Yin 2000). 

2.2 Faunal statistics 

Faunal species abundance was classified into three categories: 1, rare group, species 

abundance not greater than the 10th percentile of all species; 2, common group, 

species abundance between the 10th and 90th percentile; 3, main group, species 

abundance not smaller than the 90th percentile (percentiles of site average numbers, 

see Table S5, S6 for details).  

 

Diversity indices were calculated for each site, layer (also referred to as depth) and in 

general, including: number of taxa; density, number of specimens per cubic meters; 

Margalef’s Richness (Margalef 1958; Southwood and Henderson 2009), which 

accounts for sample size; Shannon-Wiener Diversity Index (SHDI) (Shannon 2001; 

Southwood and Henderson 2009); Simpson’s dominance index (Simpson 1949; 

Southwood and Henderson 2009); and evenness index Evar (Smith and Wilson 1996; 

Beisel et al. 2003). The measure of species evenness Evar was selected to reflect 

changes of main faunal species groups across sites, while being less sensitive to the 
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changes in the rare groups (Smith and Wilson 1996; Beisel et al. 2003), which 

consisted of only three types of species and, therefore, highly susceptible to change.  

 

Where xs and xt are the number of individuals in species s and t respectively, and S is 

the total number of species in the particular sample. 

2.3 Ordination and analysis of similarity 

A Non-Metric Multidimensional Scaling (NMDS) (Legendre and Legendre 2012) of 

species and sample sites was performed to plot the distances with Bray-Curtis 

dissimilarity distances (Clarke 1993); the influence of village as a factor was 

investigated by fitting an ellipse hull with standard deviation of point scores.  

 

ANOSIM (Analysis of Similarities)—both one-way, two-way crossed and 

nested—were then performed to test and compare the influences of village and layer 

factors: layer was an individual factor, layer and village both treated as main factors, 

and village nested within layer as a joint factor (with Bray-Curtis dissimilarity as the 

measure of distance) (Clarke 1993).  

2.4 Data modelling 

Due to the high frequency of zeros in data cells in samples suggesting an 

over-dispersed (high turn-over rate of species across samples) condition of faunal 

species, analyses using data from selected faunal groups would likely diminish the 

effects of independent factors in regression models. Therefore, faunal data at the 

village level (species number and density) were used to model the effects of 

agricultural cultivation practices. Data (square root and log-transformed) were all 

tested to account for possible exponential responses to environment factors. 

Independent explanatory variables of agricultural input included agrochemicals: 

pesticide (litres per ha, including major types such as chlorpyrifos, omethoate, and 

beta-cypermethrin), herbicide (litres per ha, including major types such acetochlor, 
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napropamide, and dibutralin) and fertilizer (kg/ha, compound, nitrogen, phosphorus, 

and potassium); and the general variables including manual labour (man-hour/ha) 

and machinery (hour/ha, including irrigation and harvest) (Table S7). Irrigation was 

treated as an explanatory variable after showing collinearity with agrochemicals and 

agricultural machinery. Root transformed number of taxonomic units was used in the 

end as reference variables, as other indices did not return satisfactory results based 

on the number of significant explanatory variables found, and the total goodness of 

fit. 

 

Initially model two was chosen between the two models containing all twenty four 

observations (Tables S7 and S8). Model one had a lower Akaike’s information 

criterion (Yamaoka et al. 1978) but a higher Bayesian information criterion (Schwarz 

1978). Since following Akaike’s would possibly lead to including more 

non-significant variables, and a residual test for model two had a Jarque-Bera 

statistic of 1.14 (p=0.56), making it acceptable, therefore model two was chosen. 

Also, limited explanatory-variable entries available meant that the number of 

variables needed to be reduced. A test was done for combined variables manual 

labour, depth two and three, which returned a non-significant F=1.64 (p=0.22). In 

model two, while surface layer displayed differences, layer two and three were 

statistically similar to layer four (null hypothesis not rejected, Table S8); therefore 

these factors were excluded from the final version. Faunal data from layer one was 

taken out and modelled independently with the explanatory variables that remained.  

 

Fit of regression models were tested using Q-Q plots and distribution histograms 

(Figures S6-S11). Residuals of models meet the requirements. 

3 Results 

3.1 Faunal statistics 

In the study area of six villages, 8882 specimens were collected. Due to some of the 

specimens being too damaged to perform detailed classification, they were identified 
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as 109 families, 12 orders and 1 subclass: Helminthomorpha; belonging to 34 orders 

and 1 subclass.  

 

Most species were of phylum Arthropoda (arthropods), with a few belonging to phyla 

Annelida, Nematoda, and Gastropoda. Within arthropods, arachnids (e.g., acari, 

mites and tickes; spiders) and insects (e.g., beetles and flies) were most common. 

Collembola (springtails) had the highest density in most samples. Invertebrate 

pollinators such as those found in Homoptera (butterflies and moths), Hymenoptera 

(ants, bees, wasps and sawflies), and Lepidoptera (butterflies and moths) were scarce, 

likely due to the combined effect of high agrochemical input and the adaptations of 

self-pollinated crops (Table S5). 

 

Different taxonomic groups responded differently to village agricultural systems and 

layers (depth). Acari had the most taxa units, and higher diversity and density in 

specified villages. Beetles and flies were equally diverse, showing more units in 

traditional villages. General pollinators had the lowest diversity level and density and 

earthworms (mostly of the order Opisthopora) showed slightly higher diversity in 

diverse and specified villages. Collembola had the highest density level, even though 

its diversity was rather low, in all villages (Figure 2; Table S6). 

 

Simpson’s dominance was slightly higher in specified and diverse villages. However, 

Evar, adjusting for rare and dominant species, showed a rather consistent evenness 

level with all villages. Since agrochemical input is high across the board, it likely 

reduced the number of individuals in the dominant and main groups of species in the 

farmland, diminishing the differences among various fauna groups, leading to a 

decline in dominance and more evenness in the area (Table S6). 
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Figure 2 Faunal distribution of different species groups by cultivation systems (x axis 1=traditional, 2=specified, 3=diverse) 

 and layers (1-4 as demonstrated in legends) 
Left figure (a) taxa distribution; right figure (b), density distribution 
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There were seven dominant families (units classified) in all samples (Table S6; 

numbers can be referred to Table S5 for taxa group names); twenty three in the main 

group (identification No. 1, 2, 3, 9, 15, 18, 26, 31, 35, 39, 42, 57, 59, 67, 70, 74, 80, 

90, 91, 92, 110, 111, 115; Table S5); thirty nine in the rare group (identification No. 

4, 10, 12, 19, 20, 30, 32, 39, 41, 43, 46, 54, 55, 56, 58, 63, 66, 74, 77, 79, 84, 86, 87, 

89, 90, 94, 95, 96, 97, 99, 100, 101, 103, 104, 108, 110, 117, 120, 121; Table S5). 

 

Dominant species units were found to be consistent between different layers and 

villages; species from the families Onychiuridae and Isotomidae from the order 

Collembola, and Zetorchestoid mites from the order Oribatida were widely 

dominant in various sample sites (Table S6; numbers can be referred to Table S5 for 

taxa names). Rare fauna group has the least overlap among different sample sites. 

Taxonomic differences (at the order level) exist mainly across villages, not layers of 

soil. 

 

Number of faunal taxa decreases with increasing soil depth in all villages (Table S6); 

this trend is less obvious in traditional villages (Zhu-cun-pu and Dong-yang-si) and 

more evident in specified and diverse villages (Chang-zhai and Wan-zhai). 

Margalef’s richness, which accounted for sampling effort, displays a similar pattern. 

Traditional villages hold lower species densities, which generally peak at layer three 

with the exception of village Dong-yang-si. This is likely due to the conditions of 

the field during sampling: Zhu-cun-pu was sampled after corn was harvested and 

Dong-yang-si was sampled at the same time frame but the corn fields were mostly 

untouched. Specified and diverse villages (aside from Dong-ying) had higher 

density in the surface layer, suggesting a relatively lower disturbance level. SHDI 

show higher levels in specified and diverse villages, and generally in mid layers 

within each village. Mean dominance is higher in traditional villages and lower in 

diverse villages. Evar differs little among layers within or among villages. The 

combination of richness and density data suggest that high input provides abundant 

resources in the surface soil supporting more diversity while the related disturbance 
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in traditional villages diminishes the overall numbers. Less resources in the deep 

layer support fewer numbers in both richness and density (Table S6).  

3.2 Controlling factors for faunal distribution 

 
Figure 3 Ordination (NMDS) plot of fauna species with fitted ellipse for village effects (suggest 

range of effect); Ellipse showing centred village factor influences 

(Square root transformation; Wisconsin double standardization; Bray-Curtis distance; dimensions=3, 

stress=0.1210, iterations=200; see Figure S7 for stress plot) 

Villages Zhu-cun-pu (01) and Qian-gang (03) overlap; Dong-ying (04) and Chang-zhai (05) overlap 
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Partial ordination (NMDS) of the species over sample sites showed inconsistent 

effects of village factors (Figure 3; see Figure S7 for ordination stress plot). The 

distribution of dominant and rare species groups (Tables S5, S6) among sample sites 

appeared unaffected by the village and depth factors. Distribution of main species 

displayed a slight trend towards the village factors, suggesting some influence.  
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Table 1 Comparison of ANOSIM results of faunal data with factors village and layer 
(one-way with layer, two-way crossed with both, and two-way village nested within 

layer) 
 

 One-way Two-way crossed Two-way nested 

Factor Layer Layer Layer 

Global statistic 0.504 0.438 0.975 

Significance level 0.1% 1.6% 0.1% 

Number ≥observed 0 15 0 

Log-transformed, Bray-Curtis Distance; All statistics based on 999 permutations 

Number ≥observed (matching significance) suggests observation not-rejecting the null 

Village factor not displayed individually for lack of significance 

Result show moderate global representation with first two analyses, and high global representation 

with nested analyses 
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The influence of layer (depth) as an individual factor and as a parallel factor with 

village was both significant, but the moderate global statistic (Table 1) suggested 

lower representation of all observed changes in the samples. The global statistic of 

two-way nested analysis, however, showed significant high representation of all 

observed changes (0.975) when incorporating village as a nested factor within layer. 

This suggested that village factor had an important role in influencing faunal 

distribution. 

3.3 Modelling fauna distribution with agricultural input 
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Table 2 Regression results of root faunal taxonomic units with non-fertilizer agrochemicals and 

general factors (two parts of explanatory variables for the same dependent variables) 

 Model I Model II 

 

Root 

taxonomic 

units 

Standardized 

coefficient 

Root 

taxonomic 

units 

Standardized 

coefficient 

Herbicide (L/ha) 
3.84* 

(0.10) 

24.83* 

(0.62) 
  

Pesticide (L/ha) 
0.43* 

(0.01) 

4.37* 

(0.13) 
  

Herbicide^Pesticide 
-0.19* 

(0.005) 

-6.28* 

(0.16) 
  

Manual labour 

(man×hour/ha) 

0.00015* 

(0.0000) 

0.38* 

(0.03) 
  

Compound fertilizer 

(Kg/ha) 
  

-0.002* 

(0.000) 

-3.65* 

(0.13) 

Nitrogen fertilizer (Kg/ha)   
0.018* 

(0.001) 

36.92* 

(2.39) 

Phosphor fertilizer (Kg/ha)   
-0.138* 

(0.009) 

-37.45* 

(2.48) 

Potassium fertilizer (Kg/ha)   
-0.034* 

(0.003) 

-7.42* 

(0.58) 

R2 0.9999 0.9999 0.9998 0.9998 

F 1840.87* 1840.87* 1136.52* 1136.52* 

* Significant at 5% level ** Significant at 1% level 

^ Interaction between two variables; standardized coefficient are standardizations of coverage β 

values; for interactions, values were calculated after standardization; 

Numbers in brackets are standard deviations 
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Regression results (Table 2) suggest that joint interaction between herbicide and 

pesticide is significantly correlated with the explanatory variable root number of 

fauna taxonomic units. Manual labour also significantly correlated positively with 

root number of fauna taxonomic units. Most fertilizers, except nitrogen ones, had 

negative correlations (Table 2).  

4 Discussion 

Overall results were similar to empirical data collected in other long-term cultivation 

farmlands such as in Shaanxi and Jilin Provinces, and the Xinjiang Uygur 

Autonomous Region (Lin et al. 2010), but different from data collected at 

experimental sites where less disturbance led to increased soil faunal diversity, 

especially Oligochaeta species (Lin et al. 2005). 

 

Since early site selection used parameters excluding soil type, which is considered 

one of the main confounding factors of faunal distribution (Irmler 2003), it can be 

assumed that the variations in faunal diversity between villages resulted mainly from 

cultivation differences. 

 

Village influence on the distribution of faunal species was more obscure (Figure 3) 

compared with that on floral species (refer to Chapter four). This is probably caused 

by complex interactions of agricultural input with various taxonomic groups both 

within plots and villages. Layer is a traditional factor affecting fauna communities, 

but this can only explain part of the observed trend in the data. The high global 

statistic of the nested analysis (Table 1) suggested that the variation in taxa 

abundance were caused by the combined influence of layer and village. 

4.1 Conservation benefits of alternative cultivation 

Faunal richness and density of all sites peaked in top soil layers (Table S6), likely 

due to the abundant resources brought about by agricultural input. Species in 

traditional villages displayed patterns typical in agricultural lands, i.e. decreasing 
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diversity with greater depth and higher density in middle layers (Baker 1998; Wang 

et al. 2002). By comparison, the faunal distribution in specified and diverse villages 

displayed high diversity and richness in the surface layer. Diverse villages also had 

slightly higher worm diversity, likely caused by the extensive use of organic 

fertilizers (animal manure) in farmlands. Diverse villages, unlike traditional and 

specified villages which require set intervals of tillage, had high level and frequency 

of disturbance such as harvesting, planting and removing arable weeds manually. 

These factors often affected faunal communities negatively (Berry and Karlen 1993; 

Czarnecki and Paprocki 1997; Bedano et al. 2006). Thus the diversity and density 

levels indicate that diverse villages have the potential to support more faunal species 

in its farmlands. Specified villages had the highest density of Collembola, which 

suggests a lower level of general disturbance (Heisler 1991). This is further 

supported by the elevated density of Collembola in specified villages which respond 

to soil disturbances (Heisler 1991). However, they failed to show advantages in 

species diversity except Acari. These findings point to a higher conservation 

potential of diverse villages.  

 

Diverse cultivation involves extensive intercropping, creating a highly diverse 

plot-scale landscape. Between-plot differences also contributed to the overall 

diversity within the village. Therefore, the landscapes in diverse villages contained 

higher complexity, providing more resources and potential niches, supporting higher 

diversity levels (Anderson 1977; Giller 1996). The abundance in arable weed 

species in diverse villages (Chapter four) likely also contributed in a similar fashion. 

These small scale factors in rural areas, although not yet apparent in their influences 

on biodiversity, can be of high conservation importance when spatial replication of 

such methods is set in motion.  

4.2 Input factors affecting fauna distribution 

Faunal distribution patterns in the sample sites resulted from joint interactions 

between village and soil depth. Therefore, final regression using data from all layers 
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and villages was likely affected by stochastic factors. Regression results using top 

layer data suggest that manual labour might have contributed to increased faunal 

diversity. This might be caused by reduced agrochemical input balanced by manual 

labour as households with abundant labour tend to substitute purchasing 

agrochemicals with human management such as weed and pest removal. Fertilizers 

usually had negative effects on taxa diversity; possibly because increased nutrients 

led to higher competition and dominance of few highly resilient species. In 

comparison, traditional villages had higher evenness amongst taxa both within and 

across sample land types, but with less turn-over. Therefore the total number of 

species in the entire landscape is less than that of villages with high manual labour 

(Table S6). 

 

High representativeness of both models is most likely a result of chance given the 

small observation pool and cross-sectional nature of dataset.  

5 Conclusion 

Faunal communities reacted differently to changes in village level, agricultural 

management with increased density, dominance and variability between different 

soil layers in diverse agricultural systems. The effects were inconsistent among the 

seven major fauna groups. The positive effect of manual labour (Table 2) suggests 

that conventional methods might help maintain faunal diversity in agricultural 

regions. Unfortunately, even traditional cultivation involves massive agrochemicals 

(Chapter two) to compensate for reduced labour due to migrant working 

opportunities elsewhere. This will be aggravated by the changing agricultural policy 

aiming at releasing labour from Chinese rural areas. If so, these alternative methods 

with high labour requirements represent a chance at maintaining diversity levels 

with their high income as incentives. 

 

In agricultural regions with similar conditions, long-term exposure to agrochemicals 

has already decreased faunal diversity. Results here suggest that this effect is 
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stronger in rural areas in the Huang-huai-hai plain. The resulting lack of variation 

the in faunal data collected here is the main factor limiting the construction of a 

model to account for this important change. This could be countered by increasing 

the number of village samples. Further analysis should focus on establishing spatial 

as well as temporal replication of comparable villages in rural areas. Identifying 

faunal responses to environmental variables is better performed focusing on 

individual or a set of faunal taxa with important ecological functions supporting 

agricultural ecosystems, such as earthworms or belowground pollinators (larvae). 

Even though main crops in China do not require the effect of these species, they are 

important in a larger landscape and serve to maintaining a healthier ecosystem. 
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Chapter 6 Socio-economic factors affecting agricultural input levels 

in rural China 

Abstract: This paper compares alternative cultivation schemes in rural China, 

where traditional agricultural practices are exposed to policy and social changes. 

Agricultural input factors (e.g. pesticide, herbicide, fertilizers) were modelled with 

socio-economic factors covering household status, factors of production, income 

structure, and farmers’ behaviours (decision made) to determine the factors 

influencing agricultural input levels in rural China. Results show that fewer plots 

(less land fragmentation), higher crop number and percentage of cash-crop income 

are positively associated with the increase in most agricultural input factors. Under 

national development goals, rural China is likely to be homogenized with large-scale 

mono-cropping dominating most of the fields. Alternative cultivation systems are 

likely to be replicated at small scales. Farmers are susceptible to advertisements and 

promotions, but most cultivation practices in terms of decisions on crops and 

management are made based on village level leadership. Short-term conservation 

plans in the region can target individual farmers’ behaviour while long-term plans 

need to focus on rural leadership capacities.  

Keywords: agricultural input, conservation, socio-economic factors, household 

1 Introduction 

Agricultural practices have greatly affected farmland ecosystems (Tilman et al. 2001; 

Evenson and Gollin 2003), in particular, species biodiversity, ecological functions 

and ecosystem services. Changes brought forward by growing population and food 

security are affecting the current balance between production and environmental 

concerns in most traditional agricultural regions in both developed and developing 

countries (Gall and Orians 1992). In some developed countries, 

environmental-friendly agricultural management schemes have been introduced to 

alleviate such problems (Curtis and de Lacy 1998; Johnson and Clark 2001 ; Yussefi 
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and Willer 2007). In spite of beneficial and negative reports of effects (Hole et al. 

2005; Kleijn et al. 2011), these programs have generally reported enhanced 

biodiversity in response to changes made in on-site managements (Tuomisto et al. 

2012). Research programs in developing countries which focus on sustainable 

agriculture, such as experimental sites in India and Ethiopia coordinated by the 

CIMMYT (International Maize and Wheat Improvement Centre, see CIMMYT 

website) (Frédéric Baudron 2013) lack strong biodiversity goals due to lack of a 

systematic themes promoting biodiversity conservation. The environmental impact 

of agricultural development in these regions warrants more attention. 

 

Recent studies have explored the role of socio-economic factors in influencing 

cultivation practices, especially agrochemical inputs (amount and cost). Household 

differences caused by behavioural variations can lead to different input levels 

(Grossman 1992; Burleigh et al. 1998; Huang et al. 2008), and positive associations 

with agrochemicals have been found for farmland size, lower economic status, 

education levels, capital and distance between farmlands and household residents 

(Khanna 2001; Bekele and Drake 2003; Rahman 2003). Negative associations have 

been found between agrochemical input levels and crop price (Khanna 2001). Input 

levels are also affected by regional agrochemical policies, advertisements, technical 

assistance and farming experiences (Thrupp 1990; Mbaga-Semgalawe and Folmer 

2000). However, whether these effects are still present and/or significant in affecting 

agrochemical input in villages in China with different managements is unknown. 

 

Chinese agri-industry retains most of the major characteristics of a developing 

country. High demand, small production scale, fragmented landscapes, and 

increasing pressure from socio-economic changes are apparent (Xu et al. 1992; Li 

and Wang 2003), but also contains peculiarities such as the basic unit in traditional 

agricultural practices which has been the household due to the Household Contract 

System (Lin 1992; Li and Wang 2003) ever since the end of 1970s. Changes in 

cultivation patterns occur at the village scale, however, and a good representation of 
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this is village level specialization where a large number of households commit to a 

single or chain of production or services, making it the village’s primary source of 

revenue (Li et al. 2009). Specialized agricultural income was considerably higher, 

therefore, this system has attracted attention and support from the Chinese 

government (Ministry of Agriculture 2011). 

 

While researchers have examined the formation specialized villages and explored 

the possibilities of its spatial expansion (Li et al. 2009), much less has been done on 

understanding the environmental impact of these villages in relation to changes in 

agrochemical inputs. These alternative management schemes are not formed on 

conservation plans or policy but rather from market mechanisms, and the 

socio-economic factors of the households. The latter include living conditions (e.g. 

income level, residential condition), agricultural awareness (e.g. education level and 

conservation awareness), and cultivation behaviour (number and type of plots and 

crops, access to farmlands). These may affect agrochemical inputs. As 

agri-industries change in China and other regions, it is important to ascertain the 

main factors that support future agri-conservation planning in these areas. This study 

examines the factors influencing agricultural input levels in rural China by 

modelling village scale agricultural input data and detailed household 

socio-economic data. We attempt to identify factors of significance in conservation 

planning under the current policy and social reforms in China. 

2 Study Area and Methods 

2.1 Study area 

Six villages were selected within Fengqiu County, Xinxiang City and Zhongmou 

County, Zhengzhou City, Henan Province (Figure 1), located on both the north and 

south side of the Yellow River, representing three main types of newly formed 

cultivation types. Henan Province is located in the central-eastern region of China. 

Its total crop yield has been the highest in China for more than a decade, with its 

2012 crop yield, including main cereal types such as paddy rice, wheat and maize, 
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reaching 56,386 million tonnes (National Bureau of Statistics 2012b).   
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Figure 1 Map of the study area and locations of the villages sampled 
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2.2 Theoretical framework of the study 

 
Figure 2 Theoretical framework of this study 
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Households have been the basic units of agricultural production in China ever since 

late 1970s (Lin 1992; Li and Wang 2003). They directly influence cultivation 

methods and input choices which are, in turn, influenced by household 

socio-economic and behavioural factors (Figure 2).  

 

In a market economy, household choices are rationalized by profit (Figure 2) but, 

due to indirect participation and asymmetric information available, which is the case 

in most developing countries, rationalization is based on a limited set of internal and 

external factors (Figure 2). Internal factors support and limit agricultural choices, 

which include capital, labour, available farmland and geographical resources. 

External factors stimulate and steer agricultural choices. These include changes in 

culture and policy, accessibility of information, technology, subsidies and related 

products such as agrochemicals. While they collectively affect household choices, 

the latter occasionally supersedes the former. On this basis, the socio-economic 

questionnaires in this study collected the following groups of data (see Supporting 

document three for social survey questionnaires). 

 

Household status: in Chinese rural areas, household owners are the decision makers. 

Their age, gender and education etc. affect cultivation behaviours. For instance, age 

can have controversial effects, being older could limit labour intensity and 

household-owner’s ability to take in new information making cultivation more 

conservative. On the other hand, old age could translate to more experience in both 

farming and acceptance of change, making them more adaptive (Li et al. 2009). 

Educational status functions by bridging gaps between household owners and 

current developments (e.g. market trends).  

 

Household factors of production: This includes farmland, labour, and capital. 

Farmland is the most crucial factor in agriculture. Its quality directly affects crop 

types and yields, fertilizer requirement and income. The spatial distribution of plots 

translates to accessibility, which limits fertilizer and irrigation input. Labour 
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availability determines all input levels. There is a trade-off between labour and 

agrochemicals as abundant labour leads to a manual approach to tillage and 

management which reduces chemical inputs, whereas lack of labour is compensated 

by use of more chemicals. Hence, this factor regulates changes in agricultural 

management. Household capital, like labour, limits a household’s ability to adopt 

new crop types and agrochemicals. 

 

Agricultural income structure: Agricultural income can be divided into food 

(wheat and maize in this case) and cash crop incomes. The ratio of food crops to 

cash crop income represents a household’s cultivation focus, and thus is the major 

factor that separates villages according to their cultivation types. 

 

Behavioural characteristics: This includes farmers’ agri-environmental awareness, 

food-safety consciousness, and attitude towards adopting new schemes. Current 

legal and policy frameworks in China place little emphasize on the farmers’ 

responsibility in maintaining the environment. Farmers are the sole decision making 

body in this regard. For example, their choices of which kind of pesticide (cheaper 

but damaging or vice versa) will have considerable impact on the environment. Due 

to lack of higher education and access to current market information, most farmers 

in rural China base their decisions on others people’s experiences and opinions. This 

makes them susceptible to all forms of promotions and/or advertisements. Local 

regulations and policies pertinent to agriculture (e.g. land circulation, food safety, 

and agricultural subsidies) can also influence cultivation decisions. 

2.3 Data collection and analysis 

Socio-economic data were collected in the form of social questionnaires (supporting 

document three). Face-to-face interviews of individual households were carried out 

in August and September 2011. One hundred households were randomly selected in 

each village matching pre-determined criteria (household cultivation pattern matches 

the village type). Data covering all aspects of agricultural practice were collected 
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during the interviews. This includes cultivation (e.g., number of plots, size of plots, 

crop types); agriculture input frequency and amount/volume (e.g., fertilizers, 

agrochemicals, irrigation); spatial characteristics (e.g., distance from plots; distance 

from roads); household status (e.g., income, living condition); education (e.g., level, 

environmental awareness) (supporting document three). Data were pre-processed 

and rid of ineffective entries afterwards—questionnaires within which considerable 

inconsistencies were found (e.g. inconsistencies between income level and living 

status). 

2.4 Variable selection 

The major dependent variables in the dataset include pesticides (litres per ha, 

including major types such as chlorpyrifos, omethoate, and beta-cypermethrin); 

herbicides (litres per ha, including major types such acetochlor, napropamide, and 

dibutralin); fertilizers (kg/ha): compound, nitrogen, phosphorous and potassium; 

irrigation (hours of irrigation pumping/ha), agricultural machinery (hours/ha), and 

human labour (man-hours/ha). Irrigation and machinery showed confounding 

patterns when tested: irrigation showed collinearity with all agrochemicals 

(especially with fertilizers), this was caused by the farmers’ way of applying 

agrochemicals when irrigating to save time. Machinery (mainly pumps for irrigation) 

was problematic for similar reasons. Because of these reasons, irrigation and 

agricultural machinery have been excluded from the final modelling process. Rather, 

their effect will be represented by the village dummy variables (as they are basically 

caused by cultivation differences). To establish comparability and eliminate 

differences between different kinds (brands and types) of agrochemicals, pesticide 

and herbicide were transformed to emergy (available energy) units (Odum et al. 

2000; Odum and Odum 2000). All four fertilizers were grouped together and 

transformed to total emergy units based on their specific types. 

2.5 Model estimation 

Model was estimated based on selected variables to determine the effects of 
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different factors in agricultural input: 
𝑖𝑛𝑝𝑢𝑡𝑖 = 𝛽0 + 𝛽1𝐸𝑑𝑢𝑖 + 𝛽2𝐻𝑜𝑢𝑠𝑖 + 𝛽3𝑃𝑒𝑟𝑙𝑎𝑛𝑑𝑖+𝛽4𝑃𝑙𝑜𝑡𝑛𝑢𝑚𝑖+𝛽5𝐶𝑟𝑜𝑝𝑛𝑢𝑚𝑖 

                         +𝛽6𝐶𝑎𝑠ℎ𝑝𝑒𝑟𝑖 + 𝛽7𝐸𝑛𝑣𝑑𝑢𝑚𝑖+𝛽8𝐶ℎ𝑔𝑑𝑢𝑚𝑖 + 𝛽9𝑉𝑖𝑙𝑙𝑑𝑢𝑚𝑖 + 𝑢𝑖 
where inputi is the agricultural input (agrochemicals, manual labour) of household i. 

Table 1 lists the independent variable definitions. 
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Table 1 Independent variable definitions (abbreviations used in the model, data unit 

and definition of categorical variables) 
 

Variable explanation 

(abbr.) 
Definition 

Edu 
Education level of the household owner: 1—uneducated; 2—elementary; 

3—secondary; 4—higher 

Hous 
Household living status (house type): 1—rammed earth; 2—brick; 3—brick-concrete; 

4—concrete 

Perland 
Household farmland per capita (categorical): 1—larger than 0.067 ha; 0—smaller 

than 0.067 ha 

Plotnum Household total number of plots 

Cropnum Household total number of crops 

Cashper Percentage of cash-crop income (in total cultivation income) 

Envdum Presence of environmental promotions: 1—present; 0—absent 

Chgdum Household willingness to change cultivation patterns: 1—yes; 0—no 

Villdum Village dummy variable: 1 if household is of a particular village 
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Household living status (categorical) was used to represent the economic conditions 

instead of per capita income levels. This was because interviewees tended to mask 

their true level of income by giving lower numbers (concluded based on general 

comparison and village level census data). Due to cultural reasons, residential 

construction has long been linked to social status in rural areas, so using this factor 

better reflected actual conditions. Cash-crop income percentage was calculated 

through gathering plot number, crop types and average produce prices. 

3 Results and discussion 

3.1 Characteristics of the villages 
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Table 2 Socio-economic description of the villages sampled (geographical, social 

and economic characteristics influential on agricultural input levels) 

Village 
Zhu-cun-pu 

(traditional) 

Dong-yang-si 

(traditional) 

Qian-gang 

(specified) 

Dong-ying 

(specified) 

Chang-zhai 

(diverse) 

Wan-zhai 

(diverse) 

Distance from 

county seat (km) 
5 4 6 13 5 5 

Crop type Traditional Specified Diverse 

Household number 228 190 310 285 230 192 

Population 952 804 1500 1450 927 872 

Average education 

levela 
2.46 2.42 2.44 2.72 2.64 2.62 

Average income 

(Chinese RMB) 
5929 5860 9599 15259 11555 9932 

Arable land (ha) 114 120 93.33 133.33 68.93 147 

Plot number per 

capita 
2.378 2.168 1.797 1.875 2.123 2.014 

Land per capita 

(ha) 
0.097 0.149 0.069 0.104 0.069 0.168 

Average number of 

crops 
3.044 2.946 2.864 3.036 6.099 5.974 

Cash crop 

percentage (total 

agricultural 

income) 

30.78% 30.58% 53.68% 90.80% 87.76% 85.35% 

Fertilizer input 

(seJb/ha) 
9.329E16 9.473E15 3.822E15 1.373E16 2.155E16 5.592E15 

Manual labour 

(man hour/ha) 
971.097 1041.512 4216.995 1268.027 3188.798 3012.411 

Pesticide input 

(L/ha) 
8.288 22.3 29.006 18.270 15.718 19.02 
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Herbicide input 

(L/ha) 
2.588 3.138 0.908 10.909 3.335 3.133 

Percentage willing 

to change 
68.9% 67% 13.56% 20.45% 25% 29% 

Percentage 

participated in 

promotions 

71.11% 72.24% 64.41% 63.64% 50% 52.35% 

a Categorical variable: 1 uneducated; 2 elementary; 3 secondary; 4 high-school; 

b Emergy (solar equivalent Joules); 

All data calculated from sampled households included in regression models 
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Zhu-cun-pu and Dong-yang-si are both traditional villages (Table 2). Their wheat 

and maize double-cropping remained unchanged; but manual labour was substituted 

with agrochemicals and mechanization. Conventional food crops (now hybridized 

species) are less susceptible to diseases and pests and, therefore, require relatively 

less pesticide input (Huang et al. 2002). Higher percentages of households in both 

villages showed interest in changing cultivation patterns including crop types and 

total area of farmland plots. 

 

Chang-zhai and Wan-zhai are diverse villages poly cropping vegetables such as 

sweet potato, garlic, onion, etc. Chang-zhai has the lowest per capita arable land in 

all sample villages and one of the highest cultivation intensities in the region. 

Wan-zhai started following Chang-zhai’s examples a decade ago. Most households 

sampled were content with their income level and were reluctant, therefore, to 

change cultivation patterns (current environmental law does not support direct 

intervention). 

 

Qian-gang and Dong-ying villages specialize in honeysuckle and garlic plantation 

respectively. Honeysuckle plantation, due to its unique medicinal use—traditionally 

used to prevent and/or treat fever, headache, cough, etc. (Song et al. 2001)—is 

supported by local pharmaceutical companies. Garlic produced in Dong-ying village 

is mostly exported from of the east coast of China. Income in these two villages, 

however, fluctuated with market values but was quite high, so farmers were less 

likely to change cultivation patterns.  

 

3.2 Factors influencing agrochemical and manual labour input 
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Table 3 Regression results of agricultural input levels as explained by 
socio-economic variables (each input utilizes an individual model) 

Variable Model 1 

(Pesticide) 

Model 2 

(Herbicide) 

Model 3 

(Fertilizer) 

Model 4 (Manual 

labour) 

Edu -0.028 

（1.138） 

0.222 

(0.415) 

-0.565 

(0.613) 

-38.972 

(151.890) 

Hous 0.278 

（1.184） 

-0.264 

(0.432) 

0.308 

(0.638) 

-209.423 

(158.001) 

Perland -0.993 

（2.473） 

0.223 

(0.902) 

-2.579* 

(1.332) 

-241.070 

(185.752) 

Plotnum -4.510*** 

（1.391） 

-0.501 

(0.508) 

-2.719*** 

(0.750) 

-157.999 

(185.752) 

Cropnum 3.289*** 

（0.779） 

0.627** 

(0.284) 

2.019*** 

(0.420) 

211.695** 

(104.025) 

Cshper 0.026 

（0.050） 

-0.041** 

(0.018) 

0.027 

(0.027) 

19.614*** 

(6.740) 

Envdum 5.560** 

（2.158） 

1.523* 

(0.788) 

0.732 

(1.163) 

8.143 

(288.048) 

Chgdum 3.875 

（2.711） 

-1.642* 

(0.989) 

-0.597 

(1.461) 

-113.791 

(361.878) 

N 317 317 317 317 

R2 0.214 0.300 0.357 0.274 

adjR2 0.186 0.275 0.333 0.248 

F 7.589 11.909 15.412 10.493 

***, **, * represent significance at 0.01, 0.05, and 0.1 level respectively 

Individual models were established for each four of the input categories 

Standard deviations within brackets 

Variables were described in table one  
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Household status: education level displayed non-significant relationships with all 
input factors. This differs from studies where education influenced agricultural 
sustainability (e.g. Phillips 1994; Thiam et al. 2001; Van Passel et al. 2009; 
Picazo-Tadeo et al. 2011). In rural China where villages are the collective bodies of 
agricultural production, and farmers learn from each other thereby reducing the 
effect of educational differences within villages. Between village differences are too 
small to display any significant impact (Table 3). Village level specialization has 
been found to arise out of leadership capacities of individual farmers with access to 
new technology or up-to-date information (Li et al. 2009). Village leadership plays a 
vital role in determining collective choices (e.g. crop types, irrigation, machinery 
input). Conservation strategies aiming at household level actions may achieve a 
better outcome by working through village leaders rather than wide-scale 
agri-environmental promotions. 
 
Household factors of production: household living status displayed non-significant 
correlations with all agricultural input levels. However, its effect on agrochemicals 
coincided with early assumptions in this study. Richer households more likely 
participated in cash crop cultivations, and cash crops require large amounts of 
fertilizer and pesticide input (chapter two). Descriptive statistics show that 
households made of concrete structures (type four) have an average cash-crop 
income percentage of 74.94%. This number drops to 64.91% for brick-concrete 
households, 66.57% for brick households, and 46.09% for rammed earth households 
(houses built using raw materials such as earth and gravel). 
 

Arable land per capita results display similar characteristics. Lack of arable land was 

the most important reason for intensive mono-culture as farmers attempted to exploit 

their production potentials to the maximum. Therefore, households with less than 

0.067 ha per capita were more likely to have participated in cash crop cultivation, 

which resulted in more fertilizer, pesticide and manual labour input. 

 

The negative relations displayed by plot number per household (with three 

significant correlations) reflect Chinese rural conditions since the adoption of 

Household Responsibility System. As collective farmland was broken up and 

divided, yet not continuously, to farmers in the village, household plots could easily 

be separated by being at totally different locations of the village. Households with 

more fragmented plots, therefore, were less likely to have participated in labour 

intensive cash crop production. Households with more connected plots, with better 

accessibility to cultivation, irrigation and fertilizers were more willing to develop 



 

107 
 

cash crop production. In this case, allowing rural land circulation could reduce 

farmland fragmentation and create more unified plots. 

 
Agricultural income structure: household crop number was significantly 
positively correlated with input factors across the board. Descriptive statistics show 
that for every single increase of crop numbers (controlling for other variables), the 
associated pesticide increase was 3.289 L/ha, herbicide increase was 0.627 L/ha, 
fertilizer increase was 2.019E15 seJ/ha, and a manual labour increase of 211.695 
manhour/ha. Crops number, therefore, is the most important factor in agricultural 
input in the study area and likely a causal agent. Factors such as education level and 
farmland size, which were found to be affecting agrochemical input levels elsewhere 
(Khanna 2001; Bekele and Drake 2003; Rahman 2003), were not found to be 
significant in determining input levels. 
 

Percentage of cash-crop income was significantly correlated with the decrease of 

herbicide input and the increase of manual labour input. On average one percent 

increase in cash-crop income (controlling for other variables) was associated with a 

0.041 L/ha decrease in herbicide input, and a 19.614 manhour/ha increase in manual 

labour input. 

 

The number and type of cash crops, theoretically, should depend on market 

mechanisms. However, in rural China changes in these patterns were often observed 

at the collective scale (Li et al. 2009) as individual farmers may hesitate in venturing 

into new work patterns. Also, cash crop cultivation is labour intensive, and subject to 

risks (e.g. changing weather and resource prices). These factors may limit the wider 

adaptation of specified or diverse cultivation schemes. 
 
Behavioural characteristics: environmental promotion was a significant factor in 
only two of the input types. These correlations were positive in contrast with initial 
assumptions that conservation promotions would persuade farmers into using less 
agrochemicals or switching to less toxic ones. Interviews with local village leaders 
revealed that most environmental promotions in the region were advertisements 
supported by the agrochemical industries in promoting new chemicals. Real 
agri-environmental talks rarely attracted any audiences as farmers perceive they lack 
direct relevance to their lives. As a result, these promotion events more likely lead to 
high agrochemical input levels.  
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Household willingness to change cultivation patterns lacked significant correlations. 

However, this factor can predict agricultural changes when actual land circulation 

commences in the region. Traditional villages had on average 65.6% households 

willing to cultivate more land with only 4.4% wanting less. Diverse villages had 

only 36.0% households willing to cultivate more whilst 8.1% wanted less. Specified 

village had 54.35% households willing to cultivate more with 6.7% wanting less. 

Thus, land circulation would probably expand the area of traditional cultivation in 

the region. This effect may even spread beyond traditional village with the benefit of 

large-scale machinery, breaking down current boundaries and creating big farms 

similar to the USA, Brazil and many countries in Europe. In contrast, diverse 

cultivations with their labour intensive practices may prohibit large-scale spread. 

Replication is more likely to occur at the current village-scale and appear as patches 

in an otherwise uniform mono-cultured landscape. Specified cultivation is hard to 

predict; despite more than half of households wanting to cultivate more land, market 

saturation may prevent this. 

4 Conclusion 

Land fragmentation may have contributed initially to the creation of specialization 

in rural China. With the current policy and social reforms aiming at promoting 

urbanization, more agricultural labour will be absorbed into town and/or cities 

leaving abundant land resources for the remaining farmers. The results of this study 

suggest that when land circulation gradually concentrates arable land, the result will 

be a more homogeneous landscape with less crops types and manual labour input, 

and more efficient agrochemical use. Farmers with access to more land are less 

likely to adopt alternative, especially diverse, cultivation methods in these regions. 

However, with the right incentive and leadership, it is possible to promote 

alternative management schemes in the region but only at smaller scales. 

 

Although, the village and its collective resources ownership may slowly phase out 

under the new agricultural policies, the roles of village leaders in rural China will 
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probably remain. Lack of higher education throughout the country makes it hard to 

target individual farmers for large scale conservation planning at the current stage. 

Exposing rural leaders to sustainable ideas can be far more effective in introducing 

and expanding agri-environmental practices. 

 

This analysis also points to the urgent need for conservation campaigns and 

government measures to support them in rural China. The balance between 

production and nature achieved by historic agricultural practices in China has long 

been derailed by intensive agrochemical input. Excessive nutrient input in Chinese 

agriculture (Vitousek et al. 2009) is not only a regional issue, but also contributes to 

global environmental change. Producer level environmental awareness, therefore, is 

essential in any form of conservation action. Although major cultivation choices are 

consistent, farmers are still susceptible to all forms of advertising. Local authorities 

could reduce certain harmful outcomes by actively promoting environmentally 

friendly lower toxicity agrochemicals. However, to support longer-term conservation 

planning, agricultural input models on a time series need to be established to 

monitor changes associated with socio-economic differences. 
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Chapter 7 General discussion 

7.1 Main findings of the study 

This study concluded that agricultural ecosystems in rural China face unprecedented 

challenges to conservation. The historic remnant of traditional cultivation is 

threatened by agrochemical input, increasing food demand, and policy changes 

towards urbanization. Alternative agricultural managements, which independently 

arose out of land ownership status and market mechanisms, have mixed effects. 

Diverse cultivation can potentially support higher biodiversity through creation of 

highly diverse niches and habitats at various scales (Table 1, chapter 4; Tables S2a-c), 

but specified cultivation does not have similar benefits for biodiversity. Both 

alternative managements involve massive agrochemical input (Tables 1 and 2, 

chapter 2), which causes heavy metal pollution and contamination in farmlands 

(Tables 3 and 4, chapter 3).  

 

Current national policy and development plans dictate that excess agricultural labour 

(Carter et al. 1996) is released into towns and/or cities to boost the urbanization 

process. This would probably lead to relatively abundant land resources distributed 

to the remaining agricultural communities, reducing the incentives for alternative 

management schemes in rural areas. To enhance conservation actions in the region, 

policies should target farmers with leadership capacities in the region instead of 

actual producers. 

7.2 Conservation in high-intensity agricultural China 

7.2.1 Alternative cultivation schemes 

The Chinese agricultural sector faces the same challenges as most developing 

countries do. It is challenged by the demand for growing food security and national 

plans for development (mainly urbanization). Whether China has passed the Lewis 

turning point (Lewis 1954), where excess labour from subsistence sectors has been 

fully absorbed, thereby, causing wage increase, is still under debate (Cai 2010; 

Meiyan 2010; Minami and Ma 2010; Yao and Zhang 2010; Zhang et al. 2011; Cai 

2012). The nation’s policy promotes urbanization through releasing excess labour 
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from the agriculture sector which was estimated to be approximately 270 million 

people (Lv and Ding 1997), leaving less than 100 million managing more than 120 

million hectares of farmland. In this regard, large-scaled mono-cropping will 

eventually replace the traditional small-scale farming systems in most areas. This 

will leave only a few traditional, small-scale production villages scattered in the 

landscapes. This would lead to a steep reduction in landscape heterogeneity in 

farmlands. The negative environmental effects of such practices (Matson et al. 1997; 

Tilman 1999) will add to the already threatened biodiversity in farmland landscapes. 

 

Agricultural landscapes are human-dominated, but a balance between the needs of 

the people and the ecosystem has to be reached for any successful implementation of 

conservation plans. In high-demand agricultural regions such as China, food security 

has been given the utmost attention. Conservation, therefore, has to adjust to this 

reality. Although conservation based agriculture (e.g. no-tillage or strip-tillage farms) 

has been found to increase corn yield in the USA (Ismail et al. 1994; Triplett and 

Dick 2008; Palm et al.), and Chinese implementation of such practices has showed 

environmental improvement in farmlands (He et al. 2009), it is uncertain whether 

these practices can have similar effects on winter wheat and paddy rice which are 

food crops designated as 100% self-supporting for China (National Development and 

Reform Commision 2008). This will be especially challenging with reducing 

farmland and growing population. A meta-analysis by Seufert et al. (2012) concluded 

that organic cultivation yields were on average 25% lower than conventional ones. 

This deficit was even higher for developing countries (43%). There is little empirical 

evidence to suggest that shifting towards environmentally friendly agriculture will 

definitely reduce production (Seufert et al. 2012), but the lack of general organic 

farming techniques and high demand for certain crop types (especially wheat) in 

developing countries, could halt the progress of a large-scale conservation plans. 

 

However, adopting diverse cultivation and management schemes represents a real 

chance of tackling the conservation of biodiversity in agricultural ecosystems within 

the current economic and practical requirements and limitations. Diverse cultivation, 

as shown in the previous chapters, increases the potential to maintain a higher floral 

and faunal diversity in agriculture areas. It also increases heterogeneity at both 

farmland and landscape scale, and offers habitat and refuge for species at multiple 

levels. In a broader farm region perspective, diverse villages could be viewed as 
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islands of habitats in a monotonic sea of crops. Floral and soil faunal species in 

farmlands are generally sedentary (on the farmland scale) and could only re-colonize 

nearby farmlands, but diverse cultivation could be beneficial for other ambulatory 

species such as pollinators and birds (Gabriel et al. 2010). This study did not include 

high proportions of mobile species. The “landscape-moderated conservation 

effectiveness hypothesis” (Tscharntke et al. 2005; Tscharntke et al. 2012) and the 

“equilibrium hypothesis” (MacArthur 1967; Whittaker and Fernández-Palacios 2007), 

however, point to the possibilities that within a certain agricultural landscape, 

patches of diverse cultivation villages, while supporting higher species diversity, 

would promote interactions of more vagile species, thereby reducing the risk of these 

species going extinct completely. 

 

Socio-economic factors also benefit the general development of diverse villages. 

Diverse cultivation, compared with traditional, increased per capita agricultural 

income by more than 100% (Chapter 2). Notwithstanding other economic revenue 

(e.g. migrant work), this creates a strong incentive for farmers. This means that such 

implementation requires minimal policy levers and government facilitation, and will 

be met with minimal resistance. 

 

Specified cultivation, another type of specialization similar in input, lacks the 

potential to support high species diversity. Its crop choice depends highly on 

domestic markets and is subjected to fluctuations. It is also highly profitable 

compared with traditional cultivation and, therefore, likely to be adopted by farmers. 

Long-term monitoring is needed to evaluate the environmental impact and 

conservation consequences of such a scheme.  

 

Both types of specialization involved large quantities of agrochemical input, 

degrading soil conditions. Heavy metal accumulation in Chinese agricultural regions 

has been a long-standing issue (Qiu 2010; Tang et al. 2010). As agriculture 

intensifies, heavy metal pollution status could deteriorate even more. The effects of 

this due to leaching and accumulation of underground water, will spread beyond the 

boundaries of the villages. Diverse cultivation, in this regard, also offers a possible 

solution to alleviate the heavy metal pollution in farmland soils as increasing floral 

diversity to include species which could phytoextract the elements and, thus, 

decrease soil concentrations. More empirical data are needed to support the 
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application of such a process. As a matter of immediate concern, better soil 

properties in diverse villages could be sought after by more efficient agrochemical 

input. 

7.2.2 Critical leverage-factors for agri-sustainability 

Conservation in rural China has been limited by lack of state support, theoretical 

knowhow, and a general lack of ecological perception by the farmers. The 

“ecological high-value agriculture” at the heart of the nation’s development strategies 

(Zhao and Huang 2012), requires more emphasis on the environmental consequences 

of agricultural management, especially the knowledge and attitude of farmers.  

 

Chinese farmers are usually undereducated, and their attitude towards the 

environment largely comes from TVs, opinions of neighbours and village consensus. 

Direct indoctrination of sustainable practices will less likely lead to change and 

produce the desire results. Conservation planning in rural regions should engage 

rural leaders to set an example. Farmers are far more likely to copy successful 

changes in agriculture, be it organic management or government subsidized 

cultivation, than taking first steps on their own. Long-term strategies require 

longitudinal studies with relevant empirical data as well as broader socio-economic 

data for a better understanding of stakeholder interests. 

7.3 Shortcomings and future propositions 

This study is based on first-hand data (species diversity surveys, soil chemical 

samples, and face-to-face interviews). While this approach offers the best 

representation of actual agricultural practices in the study area, the limitations of 

such an approach such as the lack of village replication and shortage of historic data, 

limits its overall representativeness.  

 

Due to load of work, only two village-replication groups (three types in each group) 

were examined, though efforts were made during village selection to ensure 

comparability by satisfying multiple socio-economic and geographical criteria 

(Chapter 2). However, the analyses could not account for all stochastic elements 

involved e.g. effectiveness and impurities of agrochemicals, competence in farming. 

More replication is needed covering larger agricultural areas in a region to 
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adequately assess the environmental implications of specialized managements. 

Because most farmers have not received higher education, socio-economic data can 

only be gathered by face-to-face interview. A better selection of data and interview 

method will improve efficiency when a large number of villages is being sampled. 

Lack of systematic planning for conservation in China means there are insufficient 

historic data in this field, e.g. only record of flora in the region were from 1979-1998 

(Ding and Wang 1998) and these surveys were not focused on agricultural lands. As 

floral and faunal responses to cultivation are time-based, and soil element 

concentration is a cumulative process, quantifiable comparisons of environmental 

impact related to management changes are best analysed along a continuous time 

gradient. These two factors point to the necessity of a wider evaluation effort 

dedicated to monitoring the conservation properties of alternative managements in 

Chinese rural areas. These studies will offer vital knowledge of real-world, 

agri-environment capabilities in helping nation-wide agricultural conservation 

schemes come into being. 

 

 

 

 

 

  



 

115 
 

Bibliography 

Abensperg-Traun, M., Wrbka, T., Bieringer, G., Hobbs, R., Deininger, F., Main, B. Y., Milasowszky, N., 
Sauberer, N. and Zulka, K. P. (2004). Ecological Restoration in the Slipstream of Agricultural Policy in 
the Old and New World. Agriculture, Ecosystems & Environment 103(3): 601-611. 
Alam, M. G. M., Snow, E. T. and Tanaka, A. (2003). Arsenic and Heavy Metal Contamination of 
Vegetables Grown in Samta Village, Bangladesh. Science of The Total Environment 308(1–3): 83-96. 
Alloway, B. (2013). Sources of Heavy Metals and Metalloids in Soils. Heavy Metals in Soils. B. J. 
Alloway, Springer Netherlands. 22: 11-50. 
Altieri, M. A. (1991). How Best Can We Use Biodiversity in Agroecosystems. Outlook on Agriculture 
20(1): 15-23. 
Altieri, M. A. (1999). The Ecological Role of Biodiversity in Agroecosystems. Agriculture, Ecosystems & 
Environment 74(1–3): 19-31. 
Altieri, M. A., Funes-Monzote, F. R. and Petersen, P. (2012). Agroecologically Efficient Agricultural 
Systems for Smallholder Farmers: Contributions to Food Sovereignty. Agronomy for Sustainable 
Development 32(1): 1-13. 
Anderson, J. (1977). The Organization of Soil Animal Communities. Ecological Bulletins: 15-23. 
Arthur, E., Crews, H. and Morgan, C. (2000). Optimizing Plant Genetic Strategies for Minimizing 
Environmental Contamination in the Food Chain: Report on the Maff Funded Joint Jic/Csl Workshop 
Held at the John Innes Centre, October 21-23, 1998. International Journal of Phytoremediation 2(1): 
1-21. 
Baker, G. H. (1998). Recognising and Responding to the Influences of Agriculture and Other Land-Use 
Practices on Soil Fauna in Australia. Applied Soil Ecology 9(1–3): 303-310. 
Baker, J. M., Ochsner, T. E., Venterea, R. T. and Griffis, T. J. (2007). Tillage and Soil Carbon 
Sequestration—What Do We Really Know? Agriculture, Ecosystems & Environment 118(1): 1-5. 
Banks-Leite, C., Ewers, R. M., Kapos, V., Martensen, A. C. and Metzger, J. P. (2011). Comparing Species 
and Measures of Landscape Structure as Indicators of Conservation Importance. Journal of Applied 
Ecology 48(3): 706-714. 
Baveye, P. C., Rangel, D., Jacobson, A. R., Laba, M., Darnault, C., Otten, W., Radulovich, R. and 
Camargo, F. A. (2011). From Dust Bowl to Dust Bowl: Soils Are Still Very Much a Frontier of Science. 
Soil Science Society of America Journal 75(6): 2037-2048. 
Bazzaz, F. (1975). Plant Species Diversity in Old-Field Successional Ecosystems in Southern Illinois. 
Ecology: 485-488. 
Bedano, J. C., Cantú, M. P. and Doucet, M. E. (2006). Soil Springtails (Hexapoda: Collembola), 
Symphylans and Pauropods (Arthropoda: Myriapoda) under Different Management Systems in 
Agroecosystems of the Subhumid Pampa (Argentina). European journal of soil biology 42(2): 107-119. 
Beisel, J.-N., Usseglio-Polatera, P., Bachmann, V. and Moreteau, J.-C. (2003). A Comparative Analysis 
of Evenness Index Sensitivity. International Review of Hydrobiology 88(1): 3-15. 
Bekele, W. and Drake, L. (2003). Soil and Water Conservation Decision Behavior of Subsistence 
Farmers in the Eastern Highlands of Ethiopia: A Case Study of the Hunde-Lafto Area. Ecological 
Economics 46(3): 437-451. 
Bengtsson, J., AhnstrÖM, J. and Weibull, A.-C. (2005). The Effects of Organic Agriculture on 
Biodiversity and Abundance: A Meta-Analysis. Journal of Applied Ecology 42(2): 261-269. 
Benton, T. G. (2007). Ecology - Managing Farming's Footprint on Biodiversity. Science 315(5810): 
341-342. 
Benton, T. G., Bryant, D. M., Cole, L. and Crick, H. Q. P. (2002). Linking Agricultural Practice to Insect 
and Bird Populations: A Historical Study over Three Decades. Journal of Applied Ecology 39(4): 
673-687. 
Berry, E. C. and Karlen, D. L. (1993). Comparison of Alternative Farming Systems. Ii. Earthworm 
Population Density and Species Diversity. American Journal of Alternative Agriculture 8(1): 21-26. 
Bhargava, A., Carmona, F. F., Bhargava, M. and Srivastava, S. (2012). Approaches for Enhanced 
Phytoextraction of Heavy Metals. Journal of Environmental Management 105: 103-120. 
Blomqvist, M. M., Tamis, W. L. M. and de Snoo, G. R. (2009). No Improvement of Plant Biodiversity in 
Ditch Banks after a Decade of Agri-Environment Schemes. Basic and Applied Ecology 10(4): 368-378. 
Brady, N. C. and Weil, R. R. (1996). The Nature and Properties of Soils, Prentice-Hall Inc. 
Braun-Blanquet, J. (1932). Plant Sociology. The Study of Plant Communities. Plant sociology. The 
study of plant communities. First ed. 



 

116 
 

Brose, U. (2003). Bottom-up Control of Carabid Beetle Communities in Early Successional Wetlands: 
Mediated by Vegetation Structure or Plant Diversity? Oecologia 135(3): 407-413. 
Brudvig, L. A., Damschen, E. I., Tewksbury, J. J., Haddad, N. M. and Levey, D. J. (2009). Landscape 
Connectivity Promotes Plant Biodiversity Spillover into Non-Target Habitats. Proceedings of the 
National Academy of Sciences 106(23): 9328-9332. 
Burke, I. C., Lauenroth, W. K. and Coffin, D. P. (1995). Soil Organic Matter Recovery in Semiarid 
Grasslands: Implications for the Conservation Reserve Program. Ecological Applications 5(3): 
793-801. 
Burleigh, J., Vingnanakulasingham, V., Lalith, W. and Gonapinuwala, S. (1998). Pattern of Pesticide 
Use and Pesticide Efficacy among Chili Growers in the Dry Zone of Ne Sri Lanka (System B): 
Perception Vs Reality. Agriculture, ecosystems & environment 70(1): 49-60. 
Butler, S. J., Vickery, J. A. and Norris, K. (2007). Farmland Biodiversity and the Footprint of Agriculture. 
Science 315(5810): 381-384. 
Cai, F. (2010). Demographic Transition, Demographic Dividend, and Lewis Turning Point in China. 
China Economic Journal 3(2): 107-119. 
Cai, F. (2012). Is There a “Middle-Income Trap”? Theories, Experiences and Relevance to China. China 
& World Economy 20(1): 49-61. 
Carter, C. A., Zhong, F. and Cai, F. (1996). China's Ongoing Agricultural Reform, The 1990 Institute. 
Chamberlain, D. E., Joys, A., Johnson, P. J., Norton, L., Feber, R. E. and Fuller, R. J. (2010). Does Organic 
Farming Benefit Farmland Birds in Winter? Biology Letters 6(1): 82-84. 
Chen, H. M., Zheng, C. R., Tu, C. and Zhu, Y. G. (1999a). Heavy Metal Pollution in Soils in China: Status 
and Countermeasures. Ambio 28(2): 130-134. 
Chen, J., Wei, F., Zheng, C., Wu, Y. and Adriano, D. C. (1991). Background Concentrations of Elements 
in Soils of China. Water, Air, and Soil Pollution 57(1): 699-712. 
Chen, T. B., Zheng, Y. M., Chen, H. and Zheng, G. D. (2004). Background Concentrations of Soil Heavy 
Metals in Beijing. Environment Science 25(1): 117-122. 
Chen, X., Tang, J. J. and Wang, Z. Q. (1999b). The Impacts of Agricultural Activities on Biodiversity. 
Chinese Biodiversity 7(3): 234-239. 
Chen, X., Wang, Z. Q. and Tang, J. J. (2000). The Ecological Functions of Weed Biodiversity in 
Agroecosystem. Chinese Journal of Ecology 19(4): 50-52. 
Clark, C. M. and Tilman, D. (2008). Loss of Plant Species after Chronic Low-Level Nitrogen Deposition 
to Prairie Grasslands. Nature 451(7179): 712-715. 
Clarke, K. R. (1993). Non-Parametric Multivariate Analyses of Changes in Community Structure. 
Australian Journal of Ecology 18(1): 117-143. 
Crawley, M., Johnston, A., Silvertown, J., Dodd, M., De Mazancourt, C., Heard, M., Henman, D. and 
Edwards, G. (2005). Determinants of Species Richness in the Park Grass Experiment. The American 
Naturalist 165(2): 179-192. 
Curtis, A. and De Lacy, T. (1996). Landcare in Australia: Does It Make a Difference? Journal of 
Environmental Management 46(2): 119-137. 
Curtis, A. and de Lacy, T. (1998). Landcare, Stewardship and Sustainable Agriculture in Australia. 
Environmental Values: 59-78. 
Czarnecki, A. J. and Paprocki, R. (1997). An Attempt to Characterize Complex Properties of 
Agroecosystems Based on Soil Fauna, Soil Properties and Farming System in the North of Poland. 
Biological agriculture & horticulture 15(1-4): 11-23. 
Davis, B. S. and Birch, G. F. (2011). Spatial Distribution of Bulk Atmospheric Deposition of Heavy 
Metals in Metropolitan Sydney, Australia. Water, Air, & Soil Pollution 214(1-4): 147-162. 
Dept. of Economic and Social Affairs, P. D., UN (2004). World Population to 2300, New York: United 
Nations, Department of Economic and Social Affairs. 
Derpsch, R. and Friedrich, T. (2009). Global Overview of Conservation Agriculture No-Till Adoption. 
4th World Congress on Conservation Agriculture New Delhi, India. 
Ding, B. Z. and Wang, S. Y. (1998). Flora of Henan Province. Zhengzhou, Henan Science and 
Technology Press. 
Directorate General for Agriculture and Rural Development, E. C. (2010). An Analysis of the Eu 
Organic Sector. 
Du, X. L., Ma, J. H., Lv, C. H. and Li, W. J. (2010). Soil Animals and Their Responses to Soil Heavy Metal 
Pollution in Sewage Irrigated Farmland: A Case Study of the Sewage Irrigated Area of Huafei River, 
Kaifeng City. Geographical Research 29(4). 
Duffy, J. E. (2009). Why Biodiversity Is Important to the Functioning of Real-World Ecosystems. 
Frontiers in Ecology and the Environment 7(8): 437-444. 



 

117 
 

Dufour, A., Gadallah, F., Wagner, H. H., Guisan, A. and Buttler, A. (2006). Plant Species Richness and 
Environmental Heterogeneity in a Mountain Landscape: Effects of Variability and Spatial 
Configuration. Ecography 29(4): 573-584. 
Evenson, R. E. and Gollin, D. (2003). Assessing the Impact of the Green Revolution, 1960 to 2000. 
Science 300(5620): 758-762. 
Ewers, R. M. and Didham, R. K. (2008). Pervasive Impact of Large-Scale Edge Effects on a Beetle 
Community. Proceedings of the National Academy of Sciences of the United States of America 
105(14): 5426-5429. 
Facchinelli, A., Sacchi, E. and Mallen, L. (2001). Multivariate Statistical and Gis-Based Approach to 
Identify Heavy Metal Sources in Soils. Environmental Pollution 114(3): 313-324. 
Fahrig, L., Baudry, J., Brotons, L., Burel, F. G., Crist, T. O., Fuller, R. J., Sirami, C., Siriwardena, G. M. and 
Martin, J.-L. (2011). Functional Landscape Heterogeneity and Animal Biodiversity in Agricultural 
Landscapes. Ecology Letters 14(2): 101-112. 
Fan, W. H., Bai, Z. k., Li, H. F., Qiao, J. W., Xu, J. W. and Li, X. (2011). Potential Ecological Risk 
Assessment of Heavy Metals in Reclaimed Soils. Transactions of The Chinese Society of Agricultural 
Engineering 27(1): 348-354. 
Feehan, J., Gillmor, D. A. and Culleton, N. (2005). Effects of an Agri-Environment Scheme on Farmland 
Biodiversity in Ireland. Agriculture, Ecosystems & Environment 107(2–3): 275-286. 
Feng, J., Chen, C., Zhang, Y., Song, Z., Deng, A., Zheng, C. and Zhang, W. (2013). Impacts of Cropping 
Practices on Yield-Scaled Greenhouse Gas Emissions from Rice Fields in China: A Meta-Analysis. 
Agriculture, Ecosystems & Environment 164(0): 220-228. 
Food and Agriculture Organization, U. N. (2013). Faostat. 
Frédéric Baudron, C. (2013). Conservation Agriculture Demonstration Plot Opens in Ethiopia.   
Retrieved November 14, 2013, from http://blog.cimmyt.org/?p=11509. 
Friedlingstein, P., Houghton, R., Marland, G., Hackler, J., Boden, T. A., Conway, T., Canadell, J., 
Raupach, M., Ciais, P. and Le Quere, C. (2010). Update on Co2 Emissions. Nature Geoscience 3(12): 
811-812. 
Fu, B.-J., Hu, C.-X., Chen, L.-D., Honnay, O. and Gulinck, H. (2006). Evaluating Change in Agricultural 
Landscape Pattern between 1980 and 2000 in the Loess Hilly Region of Ansai County, China. 
Agriculture, Ecosystems & Environment 114(2–4): 387-396. 
Gabriel, D., Sait, S. M., Hodgson, J. A., Schmutz, U., Kunin, W. E. and Benton, T. G. (2010). Scale 
Matters: The Impact of Organic Farming on Biodiversity at Different Spatial Scales. Ecology Letters 
13(7): 858-869. 
Gabriel, D., Sait, S. M., Kunin, W. E. and Benton, T. G. (2013). Food Production Vs. Biodiversity: 
Comparing Organic and Conventional Agriculture. Journal of Applied Ecology 50(2): 355-364. 
Gall, G. A. E. and Orians, G. H. (1992). Agriculture and Biological Conservation. Agriculture, 
Ecosystems & Environment 42(1–2): 1-8. 
Gao, M., Zhou, B. T., Wei, C. F., Xie, D. T. and Zhang, L. (2004). Effect of Tillage System on Soil Animal, 
Microorganism and Enzyme Activity in Paddy Field. Chinese Journal of Applied Ecology 15(7): 
1177-1181. 
Gardner, T. A., Barlow, J., Chazdon, R., Ewers, R. M., Harvey, C. A., Peres, C. A. and Sodhi, N. S. (2009). 
Prospects for Tropical Forest Biodiversity in a Human-Modified World. Ecology Letters 12(6): 561-582. 
Gibbs, H., Ruesch, A., Achard, F., Clayton, M., Holmgren, P., Ramankutty, N. and Foley, J. (2010). 
Tropical Forests Were the Primary Sources of New Agricultural Land in the 1980s and 1990s. 
Proceedings of the National Academy of Sciences 107(38): 16732-16737. 
Giller, P. (1996). The Diversity of Soil Communities, the ‘Poor Man's Tropical Rainforest’. Biodiversity & 
Conservation 5(2): 135-168. 
Gough, L., Osenberg, C. W., Gross, K. L. and Collins, S. L. (2000). Fertilization Effects on Species 
Density and Primary Productivity in Herbaceous Plant Communities. Oikos 89(3): 428-439. 
Granstedt, A. (2000). Increasing the Efficiency of Plant Nutrient Recycling within the Agricultural 
System as a Way of Reducing the Load to the Environment—Experience from Sweden and Finland. 
Agriculture, Ecosystems & Environment 80(1): 169-185. 
Green, R. E., Cornell, S. J., Scharlemann, J. P. and Balmford, A. (2005). Farming and the Fate of Wild 
Nature. Science 307(5709): 550-555. 
Grigg, D. (2001). Green Revolution. International Encyclopedia of the Social and Behavioural Sciences. 
Pergamon, Oxford: 6389-6393. 
Grossman, L. S. (1992). Pesticides, Caution, and Experimentation in St. Vincent, Eastern Caribbean. 
Human ecology 20(3): 315-336. 
Hakanson, L. (1980). An Ecological Risk Index for Aquatic Pollution-Control - a Sedimentological 

http://blog.cimmyt.org/?p=11509


 

118 
 

Approach. Water Research 14(8): 975-1001. 
Hald, A. (1999). Weed Vegetation (Wild Flora) of Long Established Organic Versus Conventional Cereal 
Fields in Denmark. Annals of Applied Biology 134(3): 307-314. 
Harlan, J. R. (1975). Our Vanishing Genetic Resources. Science 188(4188): 617-621. 
Harpole, W. S. and Tilman, D. (2007). Grassland Species Loss Resulting from Reduced Niche 
Dimension. Nature 446(7137): 791-793. 
Hautier, Y., Niklaus, P. A. and Hector, A. (2009). Competition for Light Causes Plant Biodiversity Loss 
after Eutrophication. Science 324(5927): 636-638. 
Hawes, C., Squire, G. R., Hallett, P. D., Watson, C. A. and Young, M. (2010). Arable Plant Communities 
as Indicators of Farming Practice. Agriculture, Ecosystems & Environment 138(1–2): 17-26. 
He, J., Kuhn, N., Zhang, X., Zhang, X. and Li, H. (2009). Effects of 10 Years of Conservation Tillage on 
Soil Properties and Productivity in the Farming–Pastoral Ecotone of Inner Mongolia, China. Soil Use 
and Management 25(2): 201-209. 
Hector, A. (1998). The Effect of Diversity on Productivity: Detecting the Role of Species 
Complementarity. Oikos 82(3): 597-599. 
Heisler, C. (1991). Influence of Texture Damage by Mechanical Loads on Species Diversity of 
Springtails in Conventional Tillaged Arable Land (Collembola). Entomologia Generalis 16: 39-52. 
Henle, K., Alard, D., Clitherow, J., Cobb, P., Firbank, L., Kull, T., McCracken, D., Moritz, R. F. A., Niemela, 
J., Rebane, M., Wascher, D., Watt, A. and Young, J. (2008). Identifying and Managing the Conflicts 
between Agriculture and Biodiversity Conservation in Europe - a Review. Agriculture Ecosystems & 
Environment 124(1-2): 60-71. 
Hobbs, P. R. (2007). Conservation Agriculture: What Is It and Why Is It Important for Future 
Sustainable Food Production? Journal of Agricultural Science-Cambridge- 145(2): 127. 
Hodson, M. (2013). Effects of Heavy Metals and Metalloids on Soil Organisms. Heavy Metals in Soils. 
B. J. Alloway, Springer Netherlands. 22: 141-160. 
Hole, D. G., Perkins, A. J., Wilson, J. D., Alexander, I. H., Grice, P. V. and Evans, A. D. (2005). Does 
Organic Farming Benefit Biodiversity? Biological Conservation 122(1): 113-130. 
Holmgren, G., Meyer, M., Chaney, R. and Daniels, R. (1993). Cadmium, Lead, Zinc, Copper, and Nickel 
in Agricultural Soils of the United States of America. Journal of Environmental Quality 22(2): 335-348. 
Hong, L. and Tao, F. (2002). The Role of Path Dependency: The Establishment and the Progress of 
Household Responsibility Contract System. Modern Economic Science 24(2): 8-18. 
Hooper, D. U. and Vitousek, P. M. (1997). The Effects of Plant Composition and Diversity on Ecosystem 
Processes. Science 277(5330): 1302-1305. 
Hou, M. L. and Sheng, C. F. (1999). Effect of Plant Diversity in Agroecosystems on Insect Pest 
Populations. Chinese Journal of Applied Ecology 10(2): 245-250. 
Huang, J., Rozelle, S., Pray, C. and Wang, Q. (2002). Plant Biotechnology in China. Science 295(5555): 
674-676. 
Huang, J. K., Qi, L. and Chen, R. J. (2008). The Knowledge About Technology Information, Predilection 
for Running Risks and Peasants' Application of Pesticides. Management World 5: 71-76. 
Huang, S. S., Liao, Q. L., Hua, M., Wu, X. M., Bi, K. S., Yan, C. Y., Chen, B. and Zhang, X. Y. (2007). 
Survey of Heavy Metal Pollution and Assessment of Agricultural Soil in Yangzhong District, Jiangsu 
Province, China. Chemosphere 67(11): 2148-2155. 
Hughes, J. B. and Petchey, O. L. (2001). Merging Perspectives on Biodiversity and Ecosystem 
Functioning. Trends in Ecology & Evolution 16(5): 222-223. 
Hutton, S. A. and Giller, P. S. (2003). The Effects of the Intensification of Agriculture on Northern 
Temperate Dung Beetle Communities. Journal of Applied Ecology 40(6): 994-1007. 
Irmler, U. (2003). The Spatial and Temporal Pattern of Carabid Beetles on Arable Fields in Northern 
Germany (Schleswig-Holstein) and Their Value as Ecological Indicators. Agriculture, Ecosystems & 
Environment 98(1): 141-151. 
Ismail, I., Blevins, R. and Frye, W. (1994). Long-Term No-Tillage Effects on Soil Properties and 
Continuous Corn Yields. Soil Science Society of America Journal 58(1): 193-198. 
ISO (2006). Iso 11464: 2006 (E) Soil Quality -- Pretreatment of Samples for Physico-Chemical Analysis. 
Jarque, C. M. and Bera, A. K. (1980). Efficient Tests for Normality, Homoscedasticity and Serial 
Independence of Regression Residuals. Economics Letters 6(3): 255-259. 
Jarque, C. M. and Bera, A. K. (1987). A Test for Normality of Observations and Regression Residuals. 
International Statistical Review/Revue Internationale de Statistique: 163-172. 
Jia, L., Yang, L. S., Ou, Y. Z., Wang, W. Y., Li, H. R., Li, Y. H. and Yu, J. P. (2009). Assessment of the 
Potential Ecological Risk of Heavy Metals in the Farmland Soils in Yucheng City,Shandong Province. 
Jounal of Agro-Environment Science 28(11): 2270-2276. 



 

119 
 

Johnson, J. B. and Clark, R. T. (2001). Conservation Reserve Program. Farm Bill: Options and 
Consequences. 
Khanna, M. (2001). Sequential Adoption of Site-Specific Technologies and Its Implications for 
Nitrogen Productivity: A Double Selectivity Model. American Journal of Agricultural Economics 83(1): 
35-51. 
Khush, G. S. (1999). Green Revolution: Preparing for the 21st Century. Genome 42(4): 646-655. 
Kleijn, D., Baquero, R. A., Clough, Y., Díaz, M., De Esteban, J., Fernández, F., Gabriel, D., Herzog, F., 
Holzschuh, A., Jöhl, R., Knop, E., Kruess, A., Marshall, E. J. P., Steffan-Dewenter, I., Tscharntke, T., 
Verhulst, J., West, T. M. and Yela, J. L. (2006). Mixed Biodiversity Benefits of Agri-Environment 
Schemes in Five European Countries. Ecology Letters 9(3): 243-254. 
Kleijn, D., Berendse, F., Smit, R. and Gilissen, N. (2001). Agri-Environment Schemes Do Not Effectively 
Protect Biodiversity in Dutch Agricultural Landscapes. Nature 413(6857): 723-725. 
Kleijn, D., Kohler, F., Báldi, A., Batáry, P., Concepción, E. D., Clough, Y., Díaz, M., Gabriel, D., Holzschuh, 
A., Knop, E., Kovács, A., Marshall, E. J. P., Tscharntke, T. and Verhulst, J. (2009). On the Relationship 
between Farmland Biodiversity and Land-Use Intensity in Europe. Proceedings of the Royal Society B: 
Biological Sciences 276(1658): 903-909. 
Kleijn, D., Rundlöf, M., Scheper, J., Smith, H. G. and Tscharntke, T. (2011). Does Conservation on 
Farmland Contribute to Halting the Biodiversity Decline? Trends in Ecology & Evolution 26(9): 
474-481. 
Kleijn, D., Schekkerman, H., Dimmers, W. J., Van Kats, R. J. M., Melman, D. and Teunissen, W. A. 
(2010). Adverse Effects of Agricultural Intensification and Climate Change on Breeding Habitat Quality 
of Black-Tailed Godwits Limosa L. Limosa in the Netherlands. Ibis 152(3): 475-486. 
Kleijn, D. and Sutherland, W. J. (2003). How Effective Are European Agri-Environment Schemes in 
Conserving and Promoting Biodiversity? Journal of Applied Ecology 40(6): 947-969. 
Kohler, F., Verhulst, J., Van Klink, R. and Kleijn, D. (2008). At What Spatial Scale Do High‐Quality 
Habitats Enhance the Diversity of Forbs and Pollinators in Intensively Farmed Landscapes? Journal of 
Applied Ecology 45(3): 753-762. 
Krebs, J. R., Wilson, J. D., Bradbury, R. B. and Siriwardena, G. M. (1999). The Second Silent Spring? 
Nature 400(6745): 611-612. 
Lal, R. (2004). Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. 
science 304(5677): 1623-1627. 
Legendre, P. and Gallagher, E. (2001). Ecologically Meaningful Transformations for Ordination of 
Species Data. Oecologia 129(2): 271-280. 
Legendre, P. and Legendre, L. (2012). Numerical Ecology, Elsevier. 
Leita, L., De Nobili, M., Mondini, C. and Garcia, M. B. (1993). Response of Leguminosae to Cadmium 
Exposure. Journal of plant nutrition 16(10): 2001-2012. 
Lewis, W. A. (1954). Economic Development with Unlimited Supplies of Labour. The manchester 
school 22(2): 139-191. 
Li, X. and Wang, X. (2003). Changes in Agricultural Land Use in China: 1981–2000. Asian Geographer 
22(1-2): 27-42. 
Li, X. J., Luo, Q. and Fan, X. S. (2009). A Study on the Formation and Evolution of Specialized Rural 
Villages. CHINA SOFT SCIENCE 2: 71-80. 
Lichtenberg, E. (2002). Agriculture and the Environment. Handbook of agricultural economics 2: 
1249-1313. 
Lin, J. Y. (1992). Rural Reforms and Agricultural Growth in China. The American Economic Review: 
34-51. 
Lin, Y. H., Huang, Q. H., Liu, H., Peng, C., Zhu, P., Zhang, S. Q. and Zhang, F. D. (2010). Effect of 
Long-Term Cultivation and Fertilization on Community Diversity of Cropland Soil Animals. Scientia 
Agricultura Sinica 43(11): 2261-2269. 
Lin, Y. H., Yang, X. Y., Zhang, F. D., Gu, Q. Z., Sun, B. H. and Ma, L. J. (2005). Variation of Soil Fauna 
under Different Fertilizer Treatments in Loess Soil Croplands, Shaanxi Province. Biodiversity Science 
13(3): 188-196. 
Lo, C. (1996). Environmental Impact on the Development of Agricultural Technology in China: The 
Case of the Dike-Pond (‘Jitang’) System of Integrated Agriculture-Aquaculture in the Zhujiang Delta of 
China. Agriculture, Ecosystems & Environment 60(2): 183-195. 
Lobell, D. B., Burke, M. B., Tebaldi, C., Mastrandrea, M. D., Falcon, W. P. and Naylor, R. L. (2008). 
Prioritizing Climate Change Adaptation Needs for Food Security in 2030. Science 319(5863): 607-610. 
Lockie, S. (1999). The State, Rural Environments, and Globalisation:'Action at a Distance'via the 
Australian Landcare Program. Environment and Planning A 31(4): 597-611. 



 

120 
 

Lv, S. P. and Ding, H. (1997). Regional Economic Development and Transfering Excess Agricutural Labor. 
Chinese Journal of Population Science(4): 47-50. 
Mäder, P., Fließbach, A., Dubois, D., Gunst, L., Fried, P. and Niggli, U. (2002). Soil Fertility and 
Biodiversity in Organic Farming. Science 296(5573): 1694-1697. 
Ma, J. H., Li, J. and Song, B. (2007). Contamination and Spatial Distribution of Heavy Metals in the 
Soils of Different Operating Sections Along the Zhengzhou-Kaifeng Highway. Acta Scientiae 
Circumstantiae 27(10): 1734-1743. 
Ma, L. Q., Tan, F. and Harris, W. G. (1997). Concentrations and Distributions of Eleven Metals in 
Florida Soils. Journal of Environmental Quality 26(3): 769-775. 
Ma, Y. C., Kong, X. W., Yang, B., Zhang, X. L., Yan, X. Y., Yang, J. C. and Xiong, Z. Q. (2013). Net Global 
Warming Potential and Greenhouse Gas Intensity of Annual Rice–Wheat Rotations with Integrated 
Soil–Crop System Management. Agriculture, Ecosystems & Environment 164(0): 209-219. 
MacArthur, R. H. (1967). The Theory of Island Biogeography, Princeton University Press. 
Mann, R. M., Hyne, R. V., Choung, C. B. and Wilson, S. P. (2009). Amphibians and Agricultural 
Chemicals: Review of the Risks in a Complex Environment. Environmental Pollution 157(11): 
2903-2927. 
Margalef, R. (1958). Temporal Succession and Spatial Heterogeneity in Phytoplankton, University of 
California press. 
Marshall, E. and Moonen, A. (2002). Field Margins in Northern Europe: Their Functions and 
Interactions with Agriculture. Agriculture, Ecosystems & Environment 89(1): 5-21. 
Matson, P. A., Parton, W. J., Power, A. and Swift, M. (1997). Agricultural Intensification and Ecosystem 
Properties. Science 277(5325): 504-509. 
Mbaga-Semgalawe, Z. and Folmer, H. (2000). Household Adoption Behaviour of Improved Soil 
Conservation: The Case of the North Pare and West Usambara Mountains of Tanzania. Land Use 
Policy 17(4): 321-336. 
McLaughlin, A. and Mineau, P. (1995). The Impact of Agricultural Practices on Biodiversity. Agriculture, 
Ecosystems & Environment 55(3): 201-212. 
Meiyan, W. (2010). The Rise of Labor Cost and the Fall of Labor Input: Has China Reached Lewis 
Turning Point? China Economic Journal 3(2): 137-153. 
Micó, C., Recatalá, L., Peris, M. and Sánchez, J. (2006). Assessing Heavy Metal Sources in Agricultural 
Soils of an European Mediterranean Area by Multivariate Analysis. Chemosphere 65(5): 863-872. 
Minami, R. and Ma, X. (2010). The Lewis Turning Point of Chinese Economy: Comparison with 
Japanese Experience. China Economic Journal 3(2): 163-179. 
Ministry of Agriculture (2011). Chinese Specialized Villages Develop Steadily and Quickly. Agriculture 
Engineering Technology(9): 4-12. 
Ministry of Environmental Protection (1997). Soil Quality--Determination of Lead ，
Cadmium--Graphite Furnace Atomic Absorption Spectrophoto-Metry, China Environmental 
Monitoring Station. GB/T 17141-1997. 
Ministry of Environmental Protection, P. R. C., Ministry of Land and Resources, P. R. C., Ministry of 
Housing and Urban-Rural Development, P. R. C. and Ministry of Water Resources, P. R. C. (2013). 
Plans for Prevention of Underground Water Pollution in North China Plain. Beijing: 18. 
Mozumdera, P. and Berrens, R. P. (2007). Inorganic Fertilizer Use and Biodiversity Risk: An Empirical 
Investigation. Ecological Economics 62(3-4): 538-543. 
Murakami, M. and Ae, N. (2009). Potential for Phytoextraction of Copper, Lead, and Zinc by Rice 
(Oryza Sativa L.), Soybean (Glycine Max [L.] Merr.), and Maize (Zea Mays L.). Journal of Hazardous 
Materials 162(2): 1185-1192. 
Naeem, S., Thompson, L. J., Lawler, S. P., Lawton, J. H. and Woodfin, R. M. (1994). Declining 
Biodiversity Can Alter the Performance of Ecosystems. Nature 368(6473): 734-737. 
National Agricultural Statistics Service, U. (2013). Crop Production 2012 Summary U. S. D. o. 
Agriculture. 
National Bureau of Statistics, C. (2012a). Annual Yield of Main Crop Types. 
National Bureau of Statistics, C. (2012b, 2012/11/30). Report on Food Production of 2012 by the 
National Bureau of Statistics of China.   Retrieved 04/10, 2013, from 
http://www.stats.gov.cn/tjdt/zygg/gjtjjgg/t20121130_402855446.htm. 
National Bureau of Statistics, R. S. a. E. I. D. (2012c). China Rural Statistical Yearbook. Beijing: 428. 
National Development and Reform Commision, C. (2008). National Food Security and Long-Term Plan 
(2008-2020). Beijing. 
Nicholson, F., Smith, S., Alloway, B., Carlton-Smith, C. and Chambers, B. (2003). An Inventory of Heavy 
Metals Inputs to Agricultural Soils in England and Wales. Science of the Total Environment 311(1): 

http://www.stats.gov.cn/tjdt/zygg/gjtjjgg/t20121130_402855446.htm


 

121 
 

205-219. 
Odum, H. T., Brown, M. and Williams, S. (2000). Handbook of Emergy Evaluation. Center for 
Environmental Policy. 
Odum, H. T. and Odum, E. P. (2000). The Energetic Basis for Valuation of Ecosystem Services. 
Ecosystems 3(1): 21-23. 
Office of Soil Census, H. P. (2004). Henan Province Soil. Beijing, China Agriculture Press. 
Ortiz, R., Sayre, K. D., Govaerts, B., Gupta, R., Subbarao, G., Ban, T., Hodson, D., Dixon, J. M., Iván 
Ortiz-Monasterio, J. and Reynolds, M. (2008). Climate Change: Can Wheat Beat the Heat? Agriculture, 
Ecosystems & Environment 126(1): 46-58. 
Pagotto, C., Remy, N., Legret, M. and Le Cloirec, P. (2001). Heavy Metal Pollution of Road Dust and 
Roadside Soil near a Major Rural Highway. Environmental Technology 22(3): 307-319. 
Palm, C., Blanco-Canqui, H., DeClerck, F., Gatere, L. and Grace, P. (2013) Conservation Agriculture and 
Ecosystem Services: An Overview. Agriculture, Ecosystems & Environment DOI: 
http://dx.doi.org/10.1016/j.agee.2013.10.010. 
Paul, B. K., Vanlauwe, B., Ayuke, F., Gassner, A., Hoogmoed, M., Hurisso, T. T., Koala, S., Lelei, D., 
Ndabamenye, T., Six, J. and Pulleman, M. M. (2013). Medium-Term Impact of Tillage and Residue 
Management on Soil Aggregate Stability, Soil Carbon and Crop Productivity. Agriculture, Ecosystems 
& Environment 164(0): 14-22. 
Phillips, J. M. (1994). Farmer Education and Farmer Efficiency: A Meta-Analysis. Economic 
Development and Cultural Change 43(1): 149-165. 
Piao, S., Ciais, P., Huang, Y., Shen, Z., Peng, S., Li, J., Zhou, L., Liu, H., Ma, Y., Ding, Y., Friedlingstein, P., 
Liu, C., Tan, K., Yu, Y., Zhang, T. and Fang, J. (2010). The Impacts of Climate Change on Water 
Resources and Agriculture in China. Nature 467(7311): 43-51. 
Picazo-Tadeo, A. J., Gómez-Limón, J. A. and Reig-Martínez, E. (2011). Assessing Farming Eco-Efficiency: 
A Data Envelopment Analysis Approach. Journal of Environmental Management 92(4): 1154-1164. 
Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M., Crist, S., Shpritz, L., Fitton, 
L. and Saffouri, R. (1995). Environmental and Economic Costs of Soil Erosion and Conservation 
Benefits. Science 267(5201): 1117-1122. 
Pingali, P. L., Marquez, C. B. and Palis, F. G. (1994). Pesticides and Philippine Rice Farmer Health: A 
Medical and Economic Analysis. American Journal of Agricultural Economics 76(3): 587-592. 
Power, A. G. (2010). Ecosystem Services and Agriculture: Tradeoffs and Synergies. Philosophical 
Transactions of the Royal Society B: Biological Sciences 365(1554): 2959-2971. 
Qiu, H. (2010). Studies on the Potential Ecological Risk and Homology Correlation of Heavy Metal in 
the Surface Soil. Journal of Agricultural Science 2(2): P194. 
Rahman, S. (2003). Farm-Level Pesticide Use in Bangladesh: Determinants and Awareness. 
Agriculture, ecosystems & environment 95(1): 241-252. 
Reichelderfer, K. and Boggess, W. G. (1988). Government Decision Making and Program Performance: 
The Case of the Conservation Reserve Program. American journal of agricultural economics 70(1): 
1-11. 
Reidsma, P., Tekelenburg, T., Van den Berg, M. and Alkemade, R. (2006). Impacts of Land-Use Change 
on Biodiversity: An Assessment of Agricultural Biodiversity in the European Union. Agriculture, 
Ecosystems & Environment 114(1): 86-102. 
Rode, M., Thiel, E., Franko, U., Wenk, G. and Hesser, F. (2009). Impact of Selected Agricultural 
Management Options on the Reduction of Nitrogen Loads in Three Representative Meso Scale 
Catchments in Central Germany. Science of the Total Environment 407(11): 3459-3472. 
Roschewitz, I., Gabriel, D., Tscharntke, T. and Thies, C. (2005). The Effects of Landscape Complexity on 
Arable Weed Species Diversity in Organic and Conventional Farming. Journal of Applied Ecology 42(5): 
873-882. 
Rosset, M., Rosset, P. M. and Write, O. (1999). The Multiple Functions and Benefits of Small Farm 
Agriculture. in Policy Brief No 4, Washington DC: Institute for Food and Development Policy, Citeseer. 
Rundlöf, M., Bengtsson, J. and Smith, H. G. (2008). Local and Landscape Effects of Organic Farming on 
Butterfly Species Richness and Abundance. Journal of Applied Ecology 45(3): 813-820. 
Sanders, R. (2006). A Market Road to Sustainable Agriculture? Ecological Agriculture, Green Food and 
Organic Agriculture in China. Development and Change 37(1): 201-226. 
Schreck, E., Foucault, Y., Sarret, G., Sobanska, S., Cécillon, L., Castrec-Rouelle, M., Uzu, G. and Dumat, 
C. (2012). Metal and Metalloid Foliar Uptake by Various Plant Species Exposed to Atmospheric 
Industrial Fallout: Mechanisms Involved for Lead. Science of the Total Environment 427: 253-262. 
Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics 6(2): 461-464. 
Seufert, V., Ramankutty, N. and Foley, J. A. (2012). Comparing the Yields of Organic and Conventional 

http://dx.doi.org/10.1016/j.agee.2013.10.010


 

122 
 

Agriculture. Nature 485(7397): 229-232. 
Shannon, C. E. (2001). A Mathematical Theory of Communication. ACM SIGMOBILE Mobile 
Computing and Communications Review 5(1): 3-55. 
Silvertown, J., Poulton, P., Johnston, E., Edwards, G., Heard, M. and Biss, P. M. (2006). The Park Grass 
Experiment 1856–2006: Its Contribution to Ecology. Journal of Ecology 94(4): 801-814. 
Simpson, E. H. (1949). Measurement of Diversity. Nature. 
Singh, R. (2000). Environmental Consequences of Agricultural Development: A Case Study from the 
Green Revolution State of Haryana, India. Agriculture, Ecosystems & Environment 82(1): 97-103. 
Smith, B. and Wilson, J. B. (1996). A Consumer's Guide to Evenness Indices. Oikos 76(1): 70-82. 
Smith, H., Dänhardt, J., Lindström, Å. and Rundlöf, M. (2010). Consequences of Organic Farming and 
Landscape Heterogeneity for Species Richness and Abundance of Farmland Birds. Oecologia 162(4): 
1071-1079. 
Soil Management Support Services, U. S. (1992). Keys to Soil Taxonomy, Pocahontas Press. 
Song, L., Hong, X. and Ding, X. (2001). Dictionary of Modern Chinese Traditional Medicine. Beijing, 
People's Medical Publishing House. 
Southwood, T. R. E. and Henderson, P. A. (2009). Ecological Methods, Wiley. com. 
State Bureau of Environmental Protection, P. R. C. and State Bureau of Quality Technical Supervision, 
P. R. C. (1995). Environmental Quality Standard for Soils. Beijing. GB15618-1995. 
Station of Soil Fertilizers, H. P. and Office of Soil Census, H. P. (1995). Soil Species Book of Henan 
Province. Beijing, China Agriculture Press. 
Stevens, C. J., Dise, N. B., Mountford, J. O. and Gowing, D. J. (2004). Impact of Nitrogen Deposition on 
the Species Richness of Grasslands. Science 303(5665): 1876-1879. 
Stockmann, U., Adams, M. A., Crawford, J. W., Field, D. J., Henakaarchchi, N., Jenkins, M., Minasny, B., 
McBratney, A. B., Courcelles, V. d. R. d., Singh, K., Wheeler, I., Abbott, L., Angers, D. A., Baldock, J., 
Bird, M., Brookes, P. C., Chenu, C., Jastrow, J. D., Lal, R., Lehmann, J., O’Donnell, A. G., Parton, W. J., 
Whitehead, D. and Zimmermann, M. (2013). The Knowns, Known Unknowns and Unknowns of 
Sequestration of Soil Organic Carbon. Agriculture, Ecosystems & Environment 164(0): 80-99. 
Sutherland, W. J., Adams, W. M., Aronson, R. B., Aveling, R., Blackburn, T. M., Broad, S., Ceballos, G., 
Cote, I. M., Cowling, R. M., Da Fonseca, G. A. B., Dinerstein, E., Ferraro, P. J., Fleishman, E., Gascon, C., 
Hunter, M., Hutton, J., Kareiva, P., Kuria, A., MacDonald, D. W., MacKinnon, K., Madgwick, F. J., Mascia, 
M. B., McNeely, J., Milner-Gulland, E. J., Moon, S., Morley, C. G., Nelson, S., Osborn, D., Pai, M., 
Parsons, E. C. M., Peck, L. S., Possingham, H., Prior, S. V., Pullin, A. S., Rands, M. R. W., Ranganathan, J., 
Redford, K. H., Rodriguez, J. P., Seymour, F., Sobel, J., Sodhi, N. S., Stott, A., Vance-Borland, K. and 
Watkinson, A. R. (2009). One Hundred Questions of Importance to the Conservation of Global 
Biological Diversity. Conservation Biology 23(3): 557-567. 
Swanton, C. J. and Murphy, S. D. (1996). Weed Science Beyond the Weeds: The Role of Integrated 
Weed Management (Iwm) in Agroecosystem Health. Weed science: 437-445. 
Swift, M. and Anderson, J. (1993). Biodiversity and Ecosystem Function in Agricultural Systems. 
Biodiversity and Ecosystem Function, Springer: 15-41. 
Tang, W., Shan, B., Zhang, H. and Mao, Z. (2010). Heavy Metal Sources and Associated Risk in 
Response to Agricultural Intensification in the Estuarine Sediments of Chaohu Lake Valley, East China. 
Journal of Hazardous Materials 176(1): 945-951. 
Thiam, A., Bravo-Ureta, B. E. and Rivas, T. E. (2001). Technical Efficiency in Developing Country 
Agriculture: A Meta‐Analysis. Agricultural Economics 25(2-3): 235-243. 
Thomson, A. M., Izaurralde, R. C., Rosenberg, N. J. and He, X. (2006). Climate Change Impacts on 
Agriculture and Soil Carbon Sequestration Potential in the Huang-Hai Plain of China. Agriculture, 
Ecosystems & Environment 114(2): 195-209. 
Thrupp, L. A. (1990). Inappropriate Incentives for Pesticide Use: Agricultural Credit Requirements in 
Developing Countries. Agriculture and Human Values 7(3-4): 62-69. 
Tilman, D. (1999). Global Environmental Impacts of Agricultural Expansion: The Need for Sustainable 
and Efficient Practices. Proceedings of the National Academy of Sciences 96(11): 5995-6000. 
Tilman, D., Fargione, J., Wolff, B., D'Antonio, C., Dobson, A., Howarth, R., Schindler, D., Schlesinger, W. 
H., Simberloff, D. and Swackhamer, D. (2001). Forecasting Agriculturally Driven Global Environmental 
Change. Science 292(5515): 281-284. 
Triplett, G. and Dick, W. A. (2008). No-Tillage Crop Production: A Revolution in Agriculture! Agronomy 
Journal 100(Supplement_3): S-153-S-165. 
Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. and Thies, C. (2005). Landscape 
Perspectives on Agricultural Intensification and Biodiversity – Ecosystem Service Management. 
Ecology Letters 8(8): 857-874. 



 

123 
 

Tscharntke, T., Tylianakis, J. M., Rand, T. A., Didham, R. K., Fahrig, L., Batary, P., Bengtsson, J., Clough, 
Y., Crist, T. O., Dormann, C. F., Ewers, R. M., Frund, J., Holt, R. D., Holzschuh, A., Klein, A. M., Kleijn, D., 
Kremen, C., Landis, D. A., Laurance, W., Lindenmayer, D., Scherber, C., Sodhi, N., Steffan-Dewenter, I., 
Thies, C., van der Putten, W. H. and Westphal, C. (2012). Landscape Moderation of Biodiversity 
Patterns and Processes - Eight Hypotheses. Biological Reviews 87(3): 661-685. 
Tuomisto, H., Hodge, I., Riordan, P. and Macdonald, D. (2012). Does Organic Farming Reduce 
Environmental Impacts?–a Meta-Analysis of European Research. Journal of Environmental 
Management 112: 309-320. 
Van Passel, S., Van Huylenbroeck, G., Lauwers, L. and Mathijs, E. (2009). Sustainable Value 
Assessment of Farms Using Frontier Efficiency Benchmarks. Journal of environmental management 
90(10): 3057-3069. 
Vitousek, P. M., Naylor, R., Crews, T., David, M., Drinkwater, L., Holland, E., Johnes, P., Katzenberger, J., 
Martinelli, L. and Matson, P. (2009). Nutrient Imbalances in Agricultural Development. Science 
324(5934): 1519. 
Wang, B., Wang, Y. Z., Li, D. M., Gao, Y. F. and Mao, R. Z. (2006). Spatial Variability of Farmland Heavy 
Metals Contents in Qianan City. Chinese Journal of Applied Ecology 17(8): 1495-1500. 
Wang, Z. Z., Zhang, Y. M. and Xing, X. J. (2002). Effect of Change in Soil Environment on Community 
Structure of Soil Animal. Acta Pedologica Sinica 39(6): 892-897. 
Wei, B. and Yang, L. (2010). A Review of Heavy Metal Contaminations in Urban Soils, Urban Road 
Dusts and Agricultural Soils from China. Microchemical Journal 94(2): 99-107. 
Wei, F. S., Chen, J. S. and Wu, Y. Y. (1990). The Element Background Values of Chinese Soil. China 
Environmental Science Press, Beijing. 
Whittaker, R. J. and Fernández-Palacios, J. M. (2007). Island Biogeography: Ecology, Evolution, and 
Conservation, Oxford University Press. 
Winqvist, C., Ahnström, J. and Bengtsson, J. (2012). Effects of Organic Farming on Biodiversity and 
Ecosystem Services: Taking Landscape Complexity into Account. Annals of the New York Academy of 
Sciences 1249(1): 191-203. 
Wu, C. H. and Chen, X. (2004). Impact of Pesticides on Biodiversity in Agricultural Areas. Chinese 
Journal of Applied Ecology 15(2): 341-344. 
Wu, J. J., Li, Q. S. and Bian, Z. P. (1998). Researches and Application of Biodiversity and Its Mechanism 
in Improving Agroecosystem Properties and Efficiency. Chinese Journal of Ecology 17(4): 39-44. 
Xu, C., Chunru, H. and Taylor, D. C. (1992). Sustainable Agricultural Development in China. World 
development 20(8): 1127-1144. 
Yamaoka, K., Nakagawa, T. and Uno, T. (1978). Application of Akaike's Information Criterion (Aic) in 
the Evaluation of Linear Pharmacokinetic Equations. Journal of pharmacokinetics and 
biopharmaceutics 6(2): 165-175. 
Yao, Y. and Zhang, K. (2010). Has China Passed the Lewis Turning Point? A Structural Estimation Based 
on Provincial Data. China Economic Journal 3(2): 155-162. 
Yin, W. Y. (2000). Soil Animals of China. Beijing, Science Press. 
Yin, W. Y., Hu, S. H. and F., S. Y. (1998). Pictorial Keys to Soil Animals of China, Science Press, Beijing. 
Yue, T. X. (2001). Studies and Questions of Biological Diversity. Acta Ecologica Sinica 21(3): 462-467. 
Yussefi, M. and Willer, H. (2007). Organic Farming Worldwide 2007: Overview & Main Statistics. The 
World of Organic Agriculture-Statistics and Emerging Trends 2007: 9-16. 
Zechmeister, H. G., Schmitzberger, I., Steurer, B., Peterseil, J. and Wrbka, T. (2003). The Influence of 
Land-Use Practices and Economics on Plant Species Richness in Meadows. Biological Conservation 
114(2): 165-177. 
Zhang, Q. J., Fu, B. J., Chen, L. D., Zhao, W. W., Yang, Q. K., Liu, G. B. and Gulinck, H. (2004). Dynamics 
and Driving Factors of Agricultural Landscape in the Semiarid Hilly Area of the Loess Plateau, China. 
Agriculture, Ecosystems & Environment 103(3): 535-543. 
Zhang, X., Yang, J. and Wang, S. (2011). China Has Reached the Lewis Turning Point. China Economic 
Review 22(4): 542-554. 
Zhao, Q. G. and Huang, J. K. (2012). Agricultural Technology Development and Strategies toward 2020. 
Ecology and Environmental Sciences 21(3): 397-403. 
Zhou, H. B., Chen, J. L., Cheng, D. F., Liu, Y. and Sun, J. R. (2012). Effects of Ecological Regulation of 
Biodiversity on Insects in Agroecosystems. Plant Protection 38(1): 6-10. 
Zhou, Z. Y., Fan, Y. P. and Wang, M. J. (2000). Heavy Metal Contamination in Vegetables and Their 
Control in China. Food Reviews International 16(2): 239-255. 
Zhu, X. Y., Dong, Z. X., Kuang, F. H. and Zhu, B. (2013). Effects of Fertilization Regimes on Soil Faunal 
Communities in Cropland of Purple Soil, China. Acat Ecologica Sinica 33(2): 464-474. 



 

124 
 

Zihua, Z., Yun, S. H. I., Dahan, H. E., Jia, H., Yingshu, Z. and Ying, W. (2010). Population Dynamics of 
Wheat Aphids in Different Agricultural Landscapes. Acta Ecologica Sinica 30(23): 6380-6388. 
  



 

125 
 

Appendices 



 

126 
 

Table S1a 
201208 (August) record of floral species mean coverage of respective land types (villages in post-sample order, groups by style) 

 Village 1 1 1 1 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 

 Time 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 

No. Species field road ditch aba field road ab field road ditch ab field road ditch ab field road Ditc
h Ab field road ditch 

1 Artemisia 
argyi             

0.03
2          

0.03
1  

2 Imperata 
cylindrica       0.11

1      
0.05

3     
0.09

7     0.02
8    

0.12
5  

3 Echinochloa 
crusgali            

0.00
8  

0.11
3   

0.22
6  

0.02
3  

0.04
0       

4 Bothriosperm
um chinense.       0.06

3                 

5 Ixeris 
sonchifolia       0.06

3                 

6 Polygonum 
aviculare  

0.03
3  

0.78
9  

0.09
5  

0.04
2  

0.06
7  

0.05
6    

0.15
6   

0.01
3    

0.15
6    0.36

0     
0.06

3   

7 Descurainia 
sophia      

0.03
3   0.06

3   
0.37

5            0.06
7  

0.03
1  

0.03
1  

8 Xanthium 
sibiricum   

0.23
8  

0.08
3          

0.03
2     0.36

0  
0.16

7  
0.11

1   
0.15

6  
1.37

5  

9 Plantago 
asiatica                        

10 Rumex 
dentatus                      

0.03
1  

11 Cirsium 
setosum. 

0.15
0  

0.07
9   

0.08
3  

0.33
3  

0.33
3  

0.06
3  

0.06
7  

0.37
5   

0.13
2      

0.04
7  

0.08
0   0.08

3  
0.06

7  
0.28

1  
0.40

6  

12 Oxalis 
pes-caprae           

0.23
7             

13 Calystegia 
hederacea 

0.16
7  

0.28
9   

0.01
4  

0.36
7  

0.27
8   0.06

7  
0.12

5   
0.03

9  
0.17

7  
0.16

9   
0.16

1  
0.17

4  
0.20

0  
0.08

3  
0.01

4  
0.50

0  
0.50

0  
0.15

6  

14 Rheum 
palmatum     

0.06
7                   

15 Kochia 
scoparia    

0.05
6          

0.08
1     0.08

0       

16 Rehmannia 
glutinosa     

0.11
1     0.10

0    
0.02

6   
0.03

2      0.25
0      

17 Euphorbia 
humifusa  

0.02
6   

0.04
2   0.16

7   0.25
0  

0.25
0   

0.03
9        0.16

7  
0.02

8  
0.06

7  
0.03

1   

18 Cynanchum 
thesioides 

0.01
7  

0.05
3   

0.02
8   0.05

6   0.10
0    

0.17
1             

19 Lepidium                     0.03  
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apetalum  1  

20 Stellaria 
media     

0.10
0                0.10

0    

21 Amaranthus 
retroflexus     

0.76
7  

1.02
8               1.33

3  
0.93

8  
0.21

9  

22 Rorippa 
globosa                        

23 Trigonotis 
peduncularis     

0.06
7   0.68

8         
0.06

5         

24 Setaria 
viridis 

0.75
0  

1.63
2  

1.09
5  

1.06
9  

0.73
3  

0.47
2   0.26

7    
0.72

4  
0.21

0  
0.37

1  
0.32

8  
1.33

9  
0.08

1  
0.48

0  
0.66

7  
1.13

9  
0.73

3  
0.40

6  
0.62

5  

25 Cynodon 
dactylon 

0.06
7  

0.73
7  

0.07
1  

0.02
8  

1.00
0  

2.33
3  

0.03
1  

0.10
0  

0.68
8  

0.20
0  

0.05
3   

1.17
7  

0.12
5  

1.22
6  

0.04
7  

0.76
0  

0.58
3  

0.05
6  

0.06
7  

1.31
3  

1.00
0  

26 Lycium 
chinense 

0.03
3  

0.10
5  

0.09
5  

0.02
8  

0.26
7  

0.13
9  

0.12
5     

0.07
9     

0.01
6   0.24

0  
0.33

3  
0.08

3    
0.06

3  

27 Broussonetia 
kazinoki    

0.05
6        

0.18
4         0.05

6    
0.03

1  

28 Bidens pilosa   
0.09

5  
0.25

0        
0.10

5         0.05
6     

29 Eragrostis 
pilosa                    0.03

3    

30 Youngia 
japonica     

0.13
3  

0.11
1               0.40

0  
0.03

1  
0.31

3  

31 Scutellaria 
baicalensis     

0.20
0                   

32 Chenopodiu
m glaucum 

0.06
7  

0.39
5  

0.16
7  

0.27
8  

0.23
3  

0.16
7  

0.15
6   

0.03
1  

0.13
3  

0.13
2   

0.08
1   

0.21
0  

0.15
1  

0.38
0  

1.91
7  

0.41
7  

0.23
3  

0.18
8  

0.09
4  

33 Tribulus 
terrester                  0.08

3      

34 
Equisetum 

ramosissimu
m     

0.03
3     

0.43
8           0.05

6     

35 Setaria 
glauca            

0.00
8  

0.03
2           

36 Bidens 
biternata   

0.09
5  

0.05
6        

0.02
6             

37 Helianthus 
tuberosus           

0.07
9             

38 Alternanthera 
philoxeroides                       

0.50
0  

39 Sonchus 
oleraceus                      

0.03
1  

40 
Capsella 

bursa-pastori
s       0.53

1   
0.25

0              
1.25

0  
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41 Chenopodiu
m album  

0.10
0   

0.11
9  

0.54
2  

0.06
7   0.37

5     
0.18

4  
0.04

0   
0.03

1  
0.32

3  
0.02

3  
0.36

0   0.30
6  

0.33
3  

0.03
1  

0.03
1  

42 Eclipta 
prostrata  

0.20
0  

0.02
6  

0.61
9  

0.19
4  

1.30
0  

0.83
3   0.06

7    
0.02

6  
0.03

2  
0.00

8  
0.03

1  
1.66

1  
0.30

2  
0.04

0  
0.25

0  
0.47

2  
1.13

3  
0.62

5  
1.00

0  

43 Calystegia 
sepium        0.06

7  
0.06

7     
0.01

6           

44 Salvia 
plebeia.         

0.06
3   

0.01
3            

0.18
8  

45 Aster 
albescens        0.03

3  
0.03

3   
0.02

6     
0.67

7         

46 Solanum 
nigrum 

0.05
0   

0.09
5  

0.05
6        

0.05
3     

0.22
6  

0.04
7      

0.06
3  

0.06
3  

47 Phragmites 
australis               

0.03
2        

0.34
4  

48 Humulus 
scandens  

0.36
8  

0.73
8  

0.47
2   0.61

1  
0.75

0   
0.06

3  
1.00

0  
1.00

0   
0.12

9   
0.16

1   0.28
0  

1.25
0  

1.72
2   

1.12
5  

1.00
0  

49 Portulaca 
oleracea                     

0.06
3   

50 Cucumis 
melo 

0.46
7  

0.34
2  

0.11
9   

0.43
3  

0.36
1   0.81

7  
0.81

7    
0.56

5  
0.66

1  
0.84

4   
1.14

0  
0.34

0  
0.29

2  
0.05

6  
1.16

7  
0.62

5  
0.09

4  

51 Digitaria 
sanguinalis 

0.06
7  

0.10
5    

0.33
3  

0.36
1   0.33

3    
0.05

3  
0.71

8  
0.45

2  
0.73

4  
0.32

3  
0.17

4  
0.04

0   0.05
6   

0.65
6  

0.06
3  

52 Datura 
stramonium  

0.21
1  

0.14
3                     

53 Phytolacca 
americana    

0.13
9                    

54 Lactuca 
tatarica 

0.03
3   

0.19
0         

0.05
3      

0.02
3    0.05

6     

55 Hemistepta 
lyrata     

0.23
3  

0.13
9  

0.12
5              0.13

3    

56 Eleusine 
indica 

0.58
3  

0.47
4  

0.38
1  

0.11
1  

0.63
3  

1.25
0   0.70

0  
0.06

3    
0.91

9  
0.93

5  
1.65

6  
0.09

7  
0.30

2  
0.98

0  
0.54

2  
0.09

7  
2.00

0  
1.81

3  
0.40

6  

57 Cynanchum 
auriculatum     

0.08
3                   

0.12
5  

58 Achyranthes 
bidentata                 0.08

0       

59 Veronica 
didyma     

0.33
3   0.15

6   
0.37

5  
0.06

7           0.26
7   

0.06
3  

60 Taraxacum 
mongolicum          

0.20
0              

61 Pharbitis nil  0.16
7  

0.28
9  

0.26
2  

0.05
6  

0.03
3    0.21

7    
0.02

6   
0.03

2    
0.02

3  
0.20

0   0.13
9   

0.03
1   

62 Rubia 
cordifolia    

0.05
6   0.08

3      
0.10

5            
0.06

3  

63 Abutilon 
theophrasti 

0.06
7  

0.10
5  

0.19
0  

0.19
4  

0.03
3  

0.11
1      

0.02
6   

0.14
5   

0.30
6   0.30

0  
0.16

7  
0.13

9  
0.06

7  
0.15

6  
0.03

1  
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64 Cyperus 
glomeratus                      

0.37
5  

65 Cyperus 
rotundus 

0.10
0  

0.28
9   

0.05
6  

0.16
7  

0.05
6   0.38

3     
0.82

3  
0.52

4  
0.85

9  
0.11

3  
0.55

8  
0.12

0  
0.08

3   0.73
3  

0.25
0  

0.65
6  

66 Ixeris 
denticulata 

0.01
7    

0.08
3     0.26

7  
0.26

7   
0.07

9         0.04
2  

0.06
7    

67 Duchesnea 
indica    

0.22
2                    

68 Ranunculus 
sceleratus                      

0.06
3  

69 Polygonum 
hydropiper                      

0.53
1  

70 Oenanthe 
javanica                      

0.09
4  

71 Galium 
bungei     

0.06
7                0.03

3    

72 Conyza 
sumatrensis   

0.14
3   

0.03
3  

0.02
8               0.16

7   
0.03

1  

73 Physalis 
alkekengi   

0.02
4  

0.08
3   0.02

8       
0.16

1  
0.01

6  
0.06

3      0.02
8  

0.06
7    

74 Rumex 
acetosa                      

0.09
4  

75 Cardamine 
lyrata                      

0.18
8  

76 Carex 
tristachya                

0.07
0        

77 Erysimum 
bungei.                       

78 Convolvulus 
arvensis    

0.01
4  

0.36
7  

0.44
4  

0.15
6  

0.03
3    

0.02
6   

0.03
2    

0.09
3    0.02

8  
0.10

0    

79 Acalypha 
australis 

0.10
0  

0.10
5  

0.14
3  

0.11
1  

0.30
0  

0.08
3  

0.18
8  

0.13
3  

0.13
3   

0.02
6  

0.15
3  

0.08
1  

0.03
1   

0.10
5  

0.08
0  

0.08
3  

0.08
3  

0.76
7  

0.28
1  

0.03
1  

80 Mazus 
japonicus                     0.20

0   
0.31

3  

81 Potentilla 
chinensis     

0.06
7                0.06

7    

82 Equisetum 
arvense                      

0.50
0  

83 Lagopsis 
supina     

0.76
7  

0.77
8  

0.31
3              0.26

7  
0.40

6  
1.37

5  

84 Amaranthus 
tricolor 

0.38
3  

1.39
5  

1.26
2  

0.48
6     0.43

3  
0.43

3   
0.19

7  
0.26

6  
0.87

1  
0.20

3   
1.04

7  
1.00

0  
0.66

7  
0.50

0   
0.03

1   

85 Typha 
orientalis                      

0.06
3  

86 Conyza 
bonariensis     

0.08
3        

0.19
7         0.05

6     



 

130 
 

87 Chenopodiu
m serotinum                        

88 Conyza 
canadensis   

0.02
4  

0.16
7        

0.23
7    

0.03
1  

0.38
7   0.08

0   0.02
8    

0.06
3  

89 Physalis 
minima   

0.09
5   

0.16
7                0.53

3  
0.03

1  
0.03

1  

90 Inula 
japonica                      

0.25
0  

91 Commelina 
communis 

0.01
7    

0.02
8        

0.05
3   

0.00
8           

92 Populus 
simonii                     

0.12
5   

93 Daucus 
carota                        

94 Vicia sepium     
0.03

3                   

95 Avena fatua          
0.06

3               

96 Leonurus 
artemisia       0.12

5             0.13
9     

97 Artemisia 
scoparia           

0.07
9     

0.16
1   0.04

0       
98 Silene gallica                        
99 Poa pratensis                       
100 Euphorbia 

helioscopia      
0.40

0  
0.02

8                  

101 Salsola 
collina  

0.18
4          

0.05
3     

0.03
2    0.25

0      

102 Galium 
aparine         

0.31
3               

103 Corydalis 
edulis            

0.14
5         0.11

1  
0.03

3    

104 Potamogeton 
crispus                      

0.12
5  

105 Aster 
subulatus                      

0.53
1  

a Abandoned sites 
Data represent per quadrat (0.25m2) mean coverage of respective land types with Braun-Blanquet index (0.5-minimal presence, 1-less than 5%, 2-5% 
to 25%, 3-25% to 50%, 4-50% to 75%, 5-over 75%); 
Dominant species for each type are marked in bold; 
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Table S1b 
201304 (April) record of floral species mean coverage of respective land types (villages in post-sample order, groups by style) 

 Village 1 1 1 1 2 2 2 3 3 3 3 4 4 5 5 5 5 6 6 6 

 time 201304 201304 201304 201304 201304 201304 201304 201304 201304 201304 201304 201304 201304 201304 201304 201304 201304 201304 201304 201304 

No. Name field road ditch aba field road ab field road ditch ab field road field road ditch ab field road ditch 

1 Artemisia argyi  0.267                   
2 Imperata cylindrica                 0.033     
3 Echinochloa crusgali   0.067                  
4 Bothriospermum 

chinense.       0.063              
5 Ixeris sonchifolia       0.063 0.100  0.133      0.200 0.286    
6 Polygonum aviculare   0.267 0.133   0.143  0.033 0.156      0.133    0.600 0.500 

7 Descurainia sophia  0.067 0.333 0.100  0.400 1.143 0.063 0.167 0.375      0.067    0.867 0.133 

8 Xanthium sibiricum                     
9 Plantago asiatica                 0.067     
10 Rumex dentatus   0.067             0.200     
11 Cirsium setosum.   0.133 0.133  0.071 0.063 0.600 0.375 0.933 0.133   0.133 0.133  0.238 0.200 0.133 0.500 

12 Oxalis pes-caprae                     
13 Calystegia hederacea 0.733 0.267   0.667 0.286  0.333 0.125 0.133 0.133  0.133 0.333 0.867 0.067 0.190 0.633 0.533 0.067 

14 Rheum palmatum                     
15 Kochia scoparia                     
16 Rehmannia glutinosa                      
17 Euphorbia humifusa                     
18 Cynanchum thesioides                     
19 Lepidium apetalum       0.071               
20 Stellaria media      0.071     0.067         0.200 

21 Amaranthus retroflexus                     
22 Rorippa globosa    0.467        0.067     0.667     
23 Trigonotis peduncularis  0.067  0.133  0.071 0.688 0.067   0.400    0.200 0.467 0.048  0.067  
24 Setaria viridis                  0.100 0.033  
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25 Cynodon dactylon 0.033 0.233 0.533   0.500 0.031  0.688 0.200   0.700   0.133   0.333  
26 Lycium chinense  1.200 0.067 0.733  0.214 0.125   0.467 0.533    0.200  0.548  0.200  
27 Broussonetia kazinoki                     
28 Bidens pilosa                     
29 Eragrostis pilosa                     
30 Youngia japonica                     
31 Scutellaria baicalensis                     
32 Chenopodium glaucum 0.333 0.533 0.133 0.333  0.429 0.156 0.200 0.031 0.133 0.167 0.133 0.500 0.067 0.400  0.190 1.000 0.267 0.367 

33 Tribulus terrester                     
34 Equisetum 

ramosissimum   1.133      0.438      0.067 0.467     
35 Setaria glauca                     
36 Bidens biternata                     
37 Helianthus tuberosus          0.333           
38 Alternanthera 

philoxeroides                      
39 Sonchus oleraceus                     
40 Capsella bursa-pastoris  0.467 0.267 0.200 0.067 0.643 0.531 0.200 0.250  0.600 0.033 0.467 0.267 0.867  0.333  0.333 0.867 

41 Chenopodium album  0.033 0.067  0.333   0.375 0.067   0.400   0.033 0.067     0.067 

42 Eclipta prostrata                      
43 Calystegia sepium     0.133 0.071               
44 Salvia plebeia.   0.067      0.063       0.067     
45 Aster albescens   0.900 0.067            0.067     
46 Solanum nigrum                     
47 Phragmites australis                0.067     
48 Humulus scandens  0.333 1.267 0.600   0.750  0.063 1.000 0.400    0.133 0.467 1.095  0.200 0.667 

49 Portulaca oleracea                     
50 Cucumis melo                     
51 Digitaria sanguinalis                  0.067  0.067 

52 Datura stramonium                     
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53 Phytolacca americana                     
54 Lactuca tatarica          0.200           
55 Hemistepta lyrata  0.067  0.200   0.125    0.067    0.133 0.133 0.333 0.067 0.067 0.067 

56 Eleusine indica      0.143   0.063            
57 Cynanchum auriculatum                      
58 Achyranthes bidentata                     
59 Veronica didyma  1.133    0.357 0.156 0.733 0.375 0.067 0.333    0.133 0.133   0.067 1.000 

60 Taraxacum mongolicum  0.400  0.467      0.200           
61 Pharbitis nil                      
62 Rubia cordifolia                     
63 Abutilon theophrasti                     
64 Cyperus glomeratus                     
65 Cyperus rotundus                     
66 Ixeris denticulata                     
67 Duchesnea indica    0.067                 
68 Ranunculus sceleratus   0.600             0.067     
69 Polygonum hydropiper                     
70 Oenanthe javanica                     
71 Galium bungei                     
72 Conyza sumatrensis                     
73 Physalis alkekengi                     
74 Rumex acetosa                     
75 Cardamine lyrata   1.133             1.000     
76 Carex tristachya                     
77 Erysimum bungei.  0.067                   
78 Convolvulus arvensis 0.167      0.156 0.433   0.067 0.033 0.300 0.033 0.533  0.048   0.200 

79 Acalypha australis       0.188              
80 Mazus japonicus                      
81 Potentilla chinensis              0.200 0.267      
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82 Equisetum arvense                     
83 Lagopsis supina    0.633 0.067 0.357 0.313    0.133      0.190 0.067  0.533 

84 Amaranthus tricolor                     
85 Typha orientalis                     
86 Conyza bonariensis                      
87 Chenopodium serotinum             0.167 0.333        
88 Conyza canadensis   0.200 0.067  0.071     0.400  0.067 0.133  0.133    0.133 

89 Physalis minima                     
90 Inula japonica                     
91 Commelina communis                     
92 Populus simonii                     
93 Daucus carota    0.200             0.067     
94 Vicia sepium                     
95 Avena fatua   0.067       0.063 0.600      1.600     
96 Leonurus artemisia       0.125              
97 Artemisia scoparia                     
98 Silene gallica       0.071  0.267             
99 Poa pratensis  0.067      0.133  0.133   0.067 0.600 1.200    0.533 0.067 

100 Euphorbia helioscopia       0.143          0.067     
101 Salsola collina                 0.095    
102 Galium aparine 0.067 0.067   0.067 0.214  0.200 0.313 0.067 0.333 1.300 0.200 0.167 0.133 0.133 0.048  0.067  
103 Corydalis edulis            0.267      0.071    
104 Potamogeton crispus                     
105 Aster subulatus                     
a Abandoned sites 
Data represent per quadrat (0.25m2) mean coverage of respective land types with Braun-Blanquet index (0.5-minimal presence, 1-less than 5%, 2-5% 
to 25%, 3-25% to 50%, 4-50% to 75%, 5-over 75%); 
Dominant species for each type are marked in bold; 
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Table S1c 
201308 (August) record of floral species mean coverage of respective land types (villages in post-sample order, groups by style) 

 village 1 1 1 1 2 2 2 3 3 3 3 4 4 5 5 5 5 6 6 6 

 time 201308 201308 201308 201308 201308 201308 201308 201308 201308 201308 201308 201308 201308 201308 201308 201308 201308 201308 201308 201308 

No. Name field road ditch aba field road ab field road ditch ab field road field road ditch ab field road ditch 

1 Artemisia argyi   0.429             0.136    0.033 

2 Imperata cylindrica       0.111 0.188    0.053      0.133   0.133 

3 Echinochloa crusgali                     
4 Bothriospermum 

chinense.                     
5 Ixeris sonchifolia                     
6 Polygonum 

aviculare   0.263  0.020  0.056   0.156      0.160    0.200  
7 Descurainia sophia          0.375            
8 Xanthium sibiricum   1.524            0.160 0.136    1.133 

9 Plantago asiatica                      
10 Rumex dentatus                    0.033 

11 Cirsium setosum. 0.225 0.053  0.080 0.200 0.333 0.125 0.067 0.375  0.105   0.069   0.233   0.433 

12 Oxalis pes-caprae           0.026          
13 Calystegia hederacea 0.225 0.421  0.040 0.500 0.278  0.250 0.125  0.092 0.034  0.483 0.240 0.273 0.033  0.200 0.167 

14 Rheum palmatum     0.067                
15 Kochia scoparia    0.080                 
16 Rehmannia glutinosa   0.105  0.160    0.100   0.053     0.136     
17 Euphorbia humifusa    0.040  0.167  0.117 0.117  0.026     0.045 0.033    
18 Cynanchum 

thesioides      0.056  0.100   0.158      0.333    
19 Lepidium apetalum                      
20 Stellaria media     0.100                
21 Amaranthus 

retroflexus     0.400 1.028              0.233 

22 Rorippa globosa                      
23 Trigonotis                     
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peduncularis 

24 Setaria viridis 0.825 1.421 0.810 1.320 0.533 0.472 0.438 0.267 0.267 2.750 1.724 0.241 0.400 0.017 0.440 0.409 0.500  0.200 0.400 

25 Cynodon dactylon 0.100 0.263 1.238  0.333 2.333 0.625 0.100 0.688 0.750 0.026 0.138 0.800 0.034 1.760 1.909 0.067  0.333 1.600 

26 Lycium chinense 0.025   0.040 0.333 0.139         0.080 0.182 0.033   0.067 

27 Broussonetia 
kazinoki                    0.033 

28 Bidens pilosa   0.048 0.560   0.313    0.079          
29 Eragrostis pilosa                     
30 Youngia japonica      0.111              0.267 

31 Scutellaria 
baicalensis     0.200                

32 Chenopodium 
glaucum 0.075 0.105 0.167 0.240  0.167 1.125  0.031 0.375 0.289  0.067 0.069 0.320 0.455 0.367   0.100 

33 Tribulus terrester                0.045     
34 Equisetum 

ramosissimum   0.048  0.033    0.438       0.136 0.133    
35 Setaria glauca                     
36 Bidens biternata   0.095 0.080                 
37 Helianthus tuberosus                     
38 Alternanthera 

philoxeroides                     0.267 

39 Sonchus oleraceus  0.211         0.026         0.033 

40 Capsella 
bursa-pastoris         0.250           0.833 

41 Chenopodium album  0.025   0.840       0.421  0.067 0.034 0.200  0.233   0.033 

42 Eclipta prostrata  0.225 0.632 0.429 0.160 0.600 0.833  0.033 0.033  0.132   0.224 0.080 0.773 0.133 0.400 0.333 1.033 

43 Calystegia sepium        0.033             
44 Salvia plebeia.         0.063           0.200 

45 Aster albescens                     
46 Solanum nigrum  0.211         0.053         0.033 

47 Phragmites australis   0.095             0.818    0.300 

48 Humulus scandens  0.579 1.524 0.160  0.611 1.063  0.063 2.750 0.579    0.080 1.114 2.367   2.200 

49 Portulaca oleracea                     
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50 Cucumis melo 0.625 1.105 0.381  0.233 0.361  1.117 1.117   1.690 2.133 2.000 0.880 0.023 0.067 2.400 1.667 0.100 

51 Digitaria sanguinalis 0.100  0.333 0.040 0.267 0.361  0.350   0.118 1.586 1.067 0.138 0.520  0.067  0.133 0.067 

52 Datura stramonium                     
53 Phytolacca 

americana    0.200                 
54 Lactuca tatarica              0.034       
55 Hemistepta lyrata      0.139               
56 Eleusine indica 0.825 1.211 0.286 0.060 0.600 1.361 0.063 0.583 0.063  0.079 1.690 1.800 0.397 0.740 0.159  0.800 3.000 0.700 

57 Cynanchum 
auriculatum     0.080                0.133 

58 Achyranthes 
bidentata                     

59 Veronica didyma     0.067  0.125  0.375           0.067 

60 Taraxacum 
mongolicum                     

61 Pharbitis nil  0.200 0.263 0.143 0.040    0.100 0.100  0.158    0.080  0.067    
62 Rubia cordifolia    0.200  0.083              0.067 

63 Abutilon theophrasti     0.033 0.111 0.125        0.180 0.045 0.067   0.033 

64 Cyperus glomeratus                    0.200 

65 Cyperus rotundus 0.075 0.026 0.143 0.160 0.333 0.417  0.367  0.250  0.414 0.433 0.690 0.600 0.341  0.467 0.800 0.767 

66 Ixeris denticulata    0.120    0.150   0.039      0.167    
67 Duchesnea indica                     
68 Ranunculus 

sceleratus                    0.033 

69 Polygonum 
hydropiper   1.095    0.875         0.091    0.500 

70 Oenanthe javanica                    0.100 

71 Galium bungei                     
72 Conyza sumatrensis   0.095   0.028              0.033 

73 Physalis alkekengi   0.024   0.028           0.033    
74 Rumex acetosa                    0.100 

75 Cardamine lyrata                    0.200 

76 Carex tristachya              0.069       
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77 Erysimum bungei.                     
78 Convolvulus 

arvensis     0.333 0.444  0.067   0.026   0.034       
79 Acalypha australis 0.075  0.048  0.267 0.083 0.313 0.100 0.100  0.171 0.103 0.033 0.190 0.120  0.067 0.200  0.033 

80 Mazus japonicus                     0.333 

81 Potentilla chinensis                     
82 Equisetum arvense                    0.533 

83 Lagopsis supina  0.158   0.067 0.444 0.063             1.267 

84 Amaranthus tricolor 0.300 0.500 0.429 0.220 0.067   0.217   0.211 0.069 1.133 0.638 0.480 0.045 0.167 0.667 0.267  
85 Typha orientalis                    0.067 

86 Conyza bonariensis    0.048 0.080   0.188    0.211     0.045 0.133    
87 Chenopodium 

serotinum    0.095        0.026      0.067    
88 Conyza canadensis    0.100       0.105    0.080  0.033   0.067 

89 Physalis minima  0.105  0.080 0.067             0.267  0.033 

90 Inula japonica       0.563         0.182    0.267 

91 Commelina 
communis  0.211  0.040   0.063    0.237          

92 Populus simonii                     
93 Daucus carota                      
94 Vicia sepium                     
95 Avena fatua          0.063            
96 Leonurus artemisia                 0.133    
97 Artemisia scoparia           0.079    0.040      
98 Silene gallica                      
99 Poa pratensis                     
100 Euphorbia 

helioscopia       0.028               
101 Salsola collina                0.136 0.100    
102 Galium aparine         0.313            
103 Corydalis edulis                  0.267    
104 Potamogeton crispus                    0.133 
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105 Aster subulatus       0.375             0.567 
a Abandoned sites 
Data represent per quadrat (0.25m2) mean coverage of respective land types with Braun-Blanquet index (0.5-minimal presence, 1-less than 5%, 2-5% 
to 25%, 3-25% to 50%, 4-50% to 75%, 5-over 75%); 
Dominant species for each type are marked in bold; 
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Table S2a 
201208 (August) floral summary statistics (calculated using mean coverage on the 

Braun-Blanquet index on respective land types) 
Statistics Village 

 Traditional Specified Diverse 
 Zhu-cun-pu Dong-yang-si Qian-gang Dong-ying Chang-zhai Wan-zhai 

Taxa       
Field 22 34 19 13 19 30 
Road 21 27 21 24 24 28 
Ditch 24 naa 5 13 18 48 

Abandoned 35 17 37 21 30 na 
Coverageb       

Field 3.633 10.167 4.433 4.081 4.430 11.733 
Road 8.000 10.444 5.375 6.032 6.920 10.281 
Ditch 6.500 na 1.600 5.094 7.833 15.063 

Abandoned 5.458 3.969 4.750 7.839 6.181 na 
Total       
SHDI       
Field 2.546 3.079 2.572 2.064 2.250 2.817 
Road 2.556 2.692 2.719 2.445 2.787 2.723 
Ditch 2.667 na 1.153 1.925 2.461 3.290 

Abandoned 2.996 2.463 2.988 2.478 2.546 na 
Total       

Simpson’s 
Dominance       

Field 0.109 0.060 0.098 0.153 0.153 0.082 
Road 0.106 0.099 0.080 0.115 0.079 0.088 
Ditch 0.100 na 0.431 0.190 0.118 0.050 

Abandoned 0.078 0.110 0.086 0.118 0.135 na 
Total       
Evar       
Field 0.120 0.211 0.196 0.184 0.141 0.243 
Road 0.279 0.242 0.217 0.122 0.228 0.204 
Ditch 0.203 na 0.348 0.220 0.385 0.186 

Abandoned 0.115 0.202 0.097 0.248 0.119 na 
Dominant 

species       

Field 
Setaria 
viridis (L.) 
Beauv. 

Eclipta prostrata 
(Linn.) Linn. 

Cucumis melo L. 
var. agrestis Naud. 

Eleusine 
indica (L.) 
Gaertn. 

Cucumis melo L. 
var. agrestis Naud. 

Eleusine 
indica (L.) 
Gaertn. 

Road 
Setaria 
viridis (L.) 
Beauv. 

Cynodon 
dactylon (L.) Pers. 

Cucumis melo L. 
var. agrestis Naud. 

Cynodon 
dactylon (L.) 
Pers. 

Chenopodium 
serotinum Linn. 

Eleusine 
indica (L.) 
Gaertn. 

Ditch 

Amaranthus 
tricolor L. 

 Humulus 
scandens (Lour.) 
Merr. 

Eleusine 
indica (L.) 
Gaertn. 

Chenopodium 
glaucum 

Xanthium 
sibiricum,  
Lagopsis 
supina 
 

Abandoned 
Setaria 
viridis (L.) 
Beauv. 

Humulus 
scandens (Lour.) 
Merr. 

Humulus 
scandens (Lour.) 
Merr. 

Eclipta 
prostrata 
(Linn.) Linn. 

Humulus 
scandens (Lour.) 
Merr. 

 

a Missing sample types 
b Per quadrat (0.25m2) mean coverage 
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Table S2b 
201304 (April) floral summary statistics (calculated using mean coverage on the 

Braun-Blanquet index on respective land types) 
Statistics Village 

 Zhu-cun-pu Dong-yang-si Qian-gang Dong-ying Chang-zhai Wan-zhai 
Taxa       
Field 7 6 14 5 10 7 
Road 18 19 14 9 17 15 
Ditch 18 na 14 naa 22 16 

Abandoned 13 17 17 na 14 na 
Coverageb       

Field 1.433 1.400 3.533 1.667 1.967 2.133 
Road 5.900 5.071 3.375 2.767 5.533 4.300 
Ditch 7.467 na 4.600 na 6.300 5.433 

Abandoned 3.967 3.969 4.500 na 3.714 na 
SHDI       
Field 1.393 1.370 2.353 0.783 1.993 1.406 
Road 2.468 2.560 2.338 1.969 2.412 2.373 
Ditch 2.448 na 2.286 na 2.496 2.406 

Abandoned 2.294 2.463 2.620 na 2.243 na 
Simpson’s 
Dominance       

Field 0.335 0.324 0.116 0.626 0.169 0.322 
Road 0.112 0.104 0.114 0.160 0.120 0.113 
Ditch 0.109 Na 0.130 na 0.123 0.110 

Abandoned 0.119 0.110 0.083 na 0.144 na 
Evar       
Field 0.173 0.237 0.242 0.217 0.192 0.255 
Road 0.266 0.231 0.219 0.340 0.278 0.251 
Ditch 0.329 na 0.309 na 0.199 0.290 

Abandoned 0.303 0.202 0.268 na 0.230 na 
Dominance 

species       

Field Calystegia 
hederacea Wall. 

Calystegia 
hederacea Wall. 

Veronica 
didyma Tenore 

Galium 
aparine Linn. 

var. 

Poa pratensis 
Linn. var. 
pratensis 

Chenopodium 
glaucum 

Road Lycium 
chinense Miller 

Descurainia 
sophia (L.) Webb 

ex Prantl 

Cynodon 
dactylon (L.) 

Pers. 

Cynodon 
dactylon (L.) 

Pers. 

Poa pratensis 
Linn. var. 
pratensis 

Descurainia 
sophia (L.) 

Webb ex Prantl 

Ditch 
Humulus 

scandens (Lour.) 
Merr. 

 
Humulus 

scandens (Lour.) 
Merr. 

 Avena fatua 
Linn. var. fatua 

Veronica 
didyma Tenore 

Abandoned Lycium 
chinense Miller 

Humulus 
scandens (Lour.) 

Merr. 
 

Capsella 
bursa-pastoris 
(Linn.) Medic. 

 
Humulus 

scandens (Lour.) 
Merr. 

 

a Missing sample types 
b Per quadrat (0.25m2) mean coverage 
 
  



 

142 
 

Table S2c 
201308 (August) floral summary statistics (calculated using mean coverage on the 

Braun-Blanquet index on respective land types) 
Statistics Village 

 Zhu-cun-pu Dong-yang-si Qian-gang Dong-ying Chang-zhai Wan-zhai 
Taxa       
Field 15 22 18 9 16 7 
Road 19 27 20 10 20 10 
Ditch 23 na 5 naa 23 47 

Abandoned 27 17 28 na 27 na 
Coverageb       

Field 3.925 5.633 4.117 5.966 5.121 5.200 
Road 7.842 10.583 5.108 7.933 7.240 7.133 
Ditch 9.524 Na 6.875 na 7.636 15.967 

Abandoned 5.240 6.625 5.303 na 6.033 na 
SHDI       
Field 2.266 2.825 2.443 1.620 2.002 1.599 
Road 2.540 2.722 2.578 1.882 2.535 1.734 
Ditch 2.582 na 1.254 na 2.522 3.198 

Abandoned 2.670 2.483 2.604 na 2.473 na 
Simpson’s 
Dominance       

Field 0.135 0.068 0.125 0.239 0.206 0.271 
Road 0.102 0.097 0.102 0.178 0.111 0.253 
Ditch 0.100 Na 0.336 na 0.119 0.059 

Abandoned 0.114 0.103 0.138 na 0.178 na 
Evar       
Field 0.204 0.228 0.188 0.436 0.171 0.816 
Road 0.346 0.258 0.204 0.605 0.289 0.628 
Ditch 0.268 na 0.969 na 0.215 0.192 

Abandoned 0.139 0.350 0.127 na 0.146 na 
Dominance 

species       

Field 
Eleusine 

indica (L.) 
Gaertn. 

Eclipta 
prostrata 

(Linn.) Linn. 

Cucumis melo L. 
var. agrestis 

Naud. 

Cucumis 
melo L. var. 

agrestis 
Naud., 

Eleusine 
indica (L.) 

Gaertn. 
 

Cucumis melo L. 
var. agrestis 

Naud. 

Cucumis melo L. 
var. agrestis 

Naud. 

Road 
Setaria 

viridis (L.) 
Beauv. 

Cynodon 
dactylon (L.) 

Pers. 

Cucumis melo L. 
var. agrestis 

Naud. 

Cucumis 
melo L. var. 

agrestis 
Naud. 

Cynodon 
dactylon (L.) 

Pers. 

Eleusine 
indica (L.) 

Gaertn. 

Ditch 

Xanthium 
sibiricum, 
Humulus 

scandens (Lour.) 
Merr. 

 

 

Setaria 
viridis (L.) 

Beauv., 
Humulus 

scandens (Lour.) 
Merr. 

 

 
Cynodon 

dactylon (L.) 
Pers. 

Humulus 
scandens (Lour.) 

Merr. 

Abandoned 
Setaria 

viridis (L.) 
Beauv. 

Chenopodium 
glaucum 

 

Setaria 
viridis (L.) 

Beauv. 
 

Humulus 
scandens (Lour.) 

Merr. 
 

a Missing sample types 
b Per quadrat (0.25m2) mean coverage 
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Table S3a 
One-way ANOSIM results of floral data based on factor time 

 Global Pairwise 

Factor  2012summer, 
2013spring 

2012summer, 
2013summer 

2013spring, 
2013summer 

Sample statistic 0.431 0.643 -0.013 0.714 

Significance level 0.1% 0.1% 62.9% 0.1% 

Number ≥observed 0 0 628 0 

All statistics based on 999 permutations 
Log(x+1) transformed floral data, Bray-Curtis Distance 

 
 
 
 
 

Table S3b 
Two-way ANOSIM results of floral data based on factors village type and land type 

 Globa
l Pairwise Globa

l Pairwise 

Factor Land 
type 

Field, 
road 

Field, 
ditch 

Field, 
abandone

d 

Road
, 

ditch 

Road, 
abandone

d 

Ditch, 
abandone

d 

Villag
e type 1, 3 1, 2 2, 3 

Sample 
statistic 0.536 0.358 0.73 0.86 0.479 0.747 0.244 0.246 0.097 0.279 0.369 

Significan
ce level 0.1% 1.5% 0.1% 0.1% 0.1% 0.2% 9.7% 0.1% 19.4

% 0.8% 0.2% 

Number 
≥observed 0 14 0 0 0 1 96 0 193 7 1 

Sample 
statistic 0.419 0.333a 0.5a 0.226a 0.637

a 1a 0b -0.009 -0.17
4c 0.197 0.086b 

Significan
ce level 1.8% 18.5

%a 
14.8
%a 37%a 3.7%

a 3.7%a 66.7b 52.9% 81.5
%c 

25.9%
b 

55.6%
b 

Number 
≥observed 17 5a 4a 10a 1a 1a 6b 528 66c 7b 15b 

Log(x+1) transformed floral data, Bray-Curtis Distance 
a Based on twenty seven permutations; 
b Based on nine permutations; 
c Based on eighty one permutations; 
If unspecified, based on 999 permutations;  
 
 
 
 
 
 
 



 

144 
 

Table S4 
Regression variables used for flora data (villages in post-sample orders—grouped by cultivation style) 

Village Mean coverage Land type* Time* Pesticide 
(L/ha) 

Herbicide 
(L/ha) 

Manual 
labor 

(man×hour
/ha) 

Machinery 
(hour/ha) 

Compound 
fertilizer 
(Kg/ha) 

Nitrogen 
fertilizer 
(Kg/ha) 

Phosphor 
fertilizer 
(Kg/ha) 

Potassium 
fertilizer 
(Kg/ha) 

1 8.0000 Road 2012 8.2900 2.5883 971.0961 47.8043 1196.3556 1441.3333 266.7911 73.7778 
1 6.5000 Ditch 2012 8.2900 2.5883 971.0961 47.8043 1196.3556 1441.3333 266.7911 73.7778 
1 3.6333 Field 2012 8.2900 2.5883 971.0961 47.8043 1196.3556 1441.3333 266.7911 73.7778 
1 5.4583 Abandoned 2012 8.2900 2.5883 971.0961 47.8043 1196.3556 1441.3333 266.7911 73.7778 
2 10.4444 Road 2012 22.3000 3.1384 1041.5124 51.3252 2341.1353 1391.1234 251.0928 68.3241 
2 10.1667 Field 2012 22.3000 3.1384 1041.5124 51.3252 2341.1353 1391.1234 251.0928 68.3241 
2 3.9688 Abandoned 2012 22.3000 3.1384 1041.5124 51.3252 2341.1353 1391.1234 251.0928 68.3241 
3 5.3750 Road 2012 24.1200 0.9083 4216.9953 23.5421 1396.3560 1063.0227 177.3333 200.5333 
3 4.7500 Abandoned 2012 24.1200 0.9083 4216.9953 23.5421 1396.3560 1063.0227 177.3333 200.5333 
3 4.4333 Field 2012 24.1200 0.9083 4216.9953 23.5421 1396.3560 1063.0227 177.3333 200.5333 
3 1.6000 Ditch 2012 24.1200 0.9083 4216.9953 23.5421 1396.3560 1063.0227 177.3333 200.5333 
4 6.0323 Road 2012 20.3000 10.9045 1261.8032 94.5452 3515.5056 1036.8539 101.8427 393.7079 
4 7.8387 Abandoned 2012 20.3000 10.9045 1261.8032 94.5452 3515.5056 1036.8539 101.8427 393.7079 
4 4.0806 Field 2012 20.3000 10.9045 1261.8032 94.5452 3515.5056 1036.8539 101.8427 393.7079 
4 5.0938 Ditch 2012 20.3000 10.9045 1261.8032 94.5452 3515.5056 1036.8539 101.8427 393.7079 
5 6.9200 Road 2012 18.3700 3.3232 3222.2890 60.5975 2937.5422 3378.4096 467.0843 196.8193 
5 7.8333 Ditch 2012 18.3700 3.3232 3222.2890 60.5975 2937.5422 3378.4096 467.0843 196.8193 
5 4.4302 Field 2012 18.3700 3.3232 3222.2890 60.5975 2937.5422 3378.4096 467.0843 196.8193 
5 6.1806 Abandoned 2012 18.3700 3.3232 3222.2890 60.5975 2937.5422 3378.4096 467.0843 196.8193 
6 15.0625 Ditch 2012 19.0200 3.1328 3012.4109 55.1254 2823.2352 3243.3532 451.3214 201.2414 
6 11.7333 Field 2012 19.0200 3.1328 3012.4109 55.1254 2823.2352 3243.3532 451.3214 201.2414 
6 10.2813 Road 2012 19.0200 3.1328 3012.4109 55.1254 2823.2352 3243.3532 451.3214 201.2414 
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1 5.9000 Road 201304 8.2900 2.5883 971.0961 47.8043 1196.3556 1441.3333 266.7911 73.7778 
1 7.4667 Ditch 201304 8.2900 2.5883 971.0961 47.8043 1196.3556 1441.3333 266.7911 73.7778 
1 1.4333 Field 201304 8.2900 2.5883 971.0961 47.8043 1196.3556 1441.3333 266.7911 73.7778 
1 3.9667 Abandoned 201304 8.2900 2.5883 971.0961 47.8043 1196.3556 1441.3333 266.7911 73.7778 
2 5.0714 Road 201304 22.3000 3.1384 1041.5124 51.3252 2341.1353 1391.1234 251.0928 68.3241 
2 1.4000 Field 201304 22.3000 3.1384 1041.5124 51.3252 2341.1353 1391.1234 251.0928 68.3241 
2 3.9688 Abandoned 201304 22.3000 3.1384 1041.5124 51.3252 2341.1353 1391.1234 251.0928 68.3241 
3 3.3750 Road 201304 24.1200 0.9083 4216.9953 23.5421 1396.3560 1063.0227 177.3333 200.5333 
3 4.5000 Abandoned 201304 24.1200 0.9083 4216.9953 23.5421 1396.3560 1063.0227 177.3333 200.5333 
3 3.5333 Field 201304 24.1200 0.9083 4216.9953 23.5421 1396.3560 1063.0227 177.3333 200.5333 
3 4.6000 Ditch 201304 24.1200 0.9083 4216.9953 23.5421 1396.3560 1063.0227 177.3333 200.5333 
4 2.7667 Road 201304 20.3000 10.9045 1261.8032 94.5452 3515.5056 1036.8539 101.8427 393.7079 
4 1.6667 Field 201304 20.3000 10.9045 1261.8032 94.5452 3515.5056 1036.8539 101.8427 393.7079 
5 5.5333 Road 201304 18.3700 3.3232 3222.2890 60.5975 2937.5422 3378.4096 467.0843 196.8193 
5 6.3000 Ditch 201304 18.3700 3.3232 3222.2890 60.5975 2937.5422 3378.4096 467.0843 196.8193 
5 1.9667 Field 201304 18.3700 3.3232 3222.2890 60.5975 2937.5422 3378.4096 467.0843 196.8193 
5 3.7143 Abandoned 201304 18.3700 3.3232 3222.2890 60.5975 2937.5422 3378.4096 467.0843 196.8193 
6 5.4333 Ditch 201304 19.0200 3.1328 3012.4109 55.1254 2823.2352 3243.3532 451.3214 201.2414 
6 2.1333 Field 201304 19.0200 3.1328 3012.4109 55.1254 2823.2352 3243.3532 451.3214 201.2414 
6 4.3000 Road 201304 19.0200 3.1328 3012.4109 55.1254 2823.2352 3243.3532 451.3214 201.2414 
1 7.8421 Road 201308 8.2900 2.5883 971.0961 47.8043 1196.3556 1441.3333 266.7911 73.7778 
1 9.5238 Ditch 201308 8.2900 2.5883 971.0961 47.8043 1196.3556 1441.3333 266.7911 73.7778 
1 3.9250 Field 201308 8.2900 2.5883 971.0961 47.8043 1196.3556 1441.3333 266.7911 73.7778 
1 5.2400 Abandoned 201308 8.2900 2.5883 971.0961 47.8043 1196.3556 1441.3333 266.7911 73.7778 
2 10.5833 Road 201308 22.3000 3.1384 1041.5124 51.3252 2341.1353 1391.1234 251.0928 68.3241 
2 5.6333 Field 201308 22.3000 3.1384 1041.5124 51.3252 2341.1353 1391.1234 251.0928 68.3241 
2 6.6250 Abandoned 201308 22.3000 3.1384 1041.5124 51.3252 2341.1353 1391.1234 251.0928 68.3241 
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3 5.1083 Road 201308 24.1200 0.9083 4216.9953 23.5421 1396.3560 1063.0227 177.3333 200.5333 
3 5.3026 Abandoned 201308 24.1200 0.9083 4216.9953 23.5421 1396.3560 1063.0227 177.3333 200.5333 
3 4.1167 Field 201308 24.1200 0.9083 4216.9953 23.5421 1396.3560 1063.0227 177.3333 200.5333 
3 6.8750 Ditch 201308 24.1200 0.9083 4216.9953 23.5421 1396.3560 1063.0227 177.3333 200.5333 
4 7.9333 Road 201308 20.3000 10.9045 1261.8032 94.5452 3515.5056 1036.8539 101.8427 393.7079 
4 5.9655 Field 201308 20.3000 10.9045 1261.8032 94.5452 3515.5056 1036.8539 101.8427 393.7079 
5 7.2400 Road 201308 18.3700 3.3232 3222.2890 60.5975 2937.5422 3378.4096 467.0843 196.8193 
5 7.6364 Ditch 201308 18.3700 3.3232 3222.2890 60.5975 2937.5422 3378.4096 467.0843 196.8193 
5 5.1207 Field 201308 18.3700 3.3232 3222.2890 60.5975 2937.5422 3378.4096 467.0843 196.8193 
5 6.0333 Abandoned 201308 18.3700 3.3232 3222.2890 60.5975 2937.5422 3378.4096 467.0843 196.8193 
6 15.9667 Ditch 201308 19.0200 3.1328 3012.4109 55.1254 2823.2352 3243.3532 451.3214 201.2414 
6 5.2000 Field 201308 19.0200 3.1328 3012.4109 55.1254 2823.2352 3243.3532 451.3214 201.2414 
6 7.1333 Road 201308 19.0200 3.1328 3012.4109 55.1254 2823.2352 3243.3532 451.3214 201.2414 

* Used as dummy control variables in the regression 
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Figure S1 Plotted residuals of floral coverage regression with non-fertilizer 

agrochemicals and general factors 

 
Figure S2 Residual histogram of floral coverage regression with non-fertilizer 

agrochemicals and general factors (Skewness =0.13; Kurtosis=3.59; JB=1.07, P=0.58, 
normal hypothesis not rejected) 
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Figure S3 
Plotted residuals (Q-Q plot) of floral coverage regression with fertilizers 

 
Figure S4 

Residual histogram of floral coverage regression with fertilizers (Skewness =0.52; 
Kurtosis=3.82; JB=4.48, P=0.11, normal hypothesis of residuals not rejected 
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Table S5 
Recorded mean faunal density (per m3) of sample sites (villages in post-sample orders—grouped by cultivation style) 

Order Group No. 01
L1 

02
L1 

03
L1 

04
L1 

05
L1 

06
L1 

01
L2 

02
L2 

03
L2 

04
L2 

05
L2 

06
L2 

01
L3 

02
L3 

03
L3 

04
L3 

05
L3 

06
L3 

01
L4 

02
L4 

03
L4 

04
L4 

05
L4 

06
L4 

Oribatida Otocepheoid 
mites 1   743  424    244

0 849   127  849 152
8   446  212    

Oribatida Anderemaeoid 
mites 2 141  743    141  477

5 424   127  116
7 

369
2 106  191  318 212   

Oribatida Oppioid mites 3 849  318 106 743  
127

3  573
0 106 212

2  191  286
5 

178
3 

297
1  382  212 212 106  

Psocomorph
a Hemipsocidae 4   19                      

Lepidoptera Hepialidae 5                   22      
Diptera Keroplatidae 6       11                  
Blattaria Eupolyphaga 7                         

Coleoptera Carabidae 8  154 37   406 12 49    311 22    212 141 33     225 

Isopoda Oniscidae 9 12                        
Hemiptera Pentatomidae 10            12             
Coleoptera Throscidae 11          106      382      106   
Homoptera Fulgoridae 12     19                    
Oribatida Macropyline 

oribatid mites 13     11                    
Oribatida Galumnoid mites 14                127         

Collembola Isotomidae 15 183
9  297

1 
365
00 

424
4  

171
18  774

6 
691
79 

594
2  

385
16  721

5 
317
04 

933
7  

162
34  636

6 
859
4 

103
98  

Geophilomo
rpha Geophilomorpha 16 74 12 37    25      33 83 37 22   11 37     

Collembola Neelidae 17   106                      
Coleoptera Polyphaga 18 12                        
Homoptera Delphacidae 19           19              
Coleoptera Geotrupidae 20  12   93 136      25 11      11 83   19  

Diptera Scatopsidae 21 141      141                  
Acariformes Raphignathoidea 22                       106  
Acariformes Tarsonemidae 23 71   37 231  141  212  318  266    955  64    106  

Diplura Parajapygidae 24                         
Araneida Liocranidae 25 37  56  93  12  19    22  19 67 19  22  19 19 19  
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Opisthopora Opisthopora 26 185  155
55 254 37  49  111

1  37  22  19  37  100   37   
Parasitiform

es Pachylaelapidae 27                127         
Coleoptera Cicindelidae 28                   64      
Hemiptera Anthocoridae 29                         

Julida Julidae 30  12    12  37      74      25     
Collembola Onychiuridae 31 283  191

0 
684
3 

291
97 

104
81 141  106 137

9 
129
45 354    

165
5 

279
6 71 64  19  

106
1  

Haplotaxida Acanthodrilidae 32     19                    
Parasitiform

es Parasitidae 33    106 106     106 212     255 106      106  
Diplura Japygidae 34    212   141   106      255   329  318 531 424  

Oribatida Ceratozetoid 
mites 35 127

3  955 318     212
2      106

1 
280
1 106  64  212    

Diptera Sciaridae 36   106  212                    
Diptera Therevidae 37   11                      

Coleoptera Scarabaeoidea 38 37 111 352  19 62  111 167   182 44 25 130   49 33 37 111   12 
Parasitiform

es Macrochelidae 39 71 106
1 106  106 183

9 71 261
7  318 424 240

5  
268

8  
140
1 424 169

8  
431

5   212 849 

Isopoda Armadillidiidae 40       62      22            
Coleoptera Elateridae 41        12     11  56  37   25 19  37  
Oribatida Nothroid mites 42 148

5 141 106
1 

222
8 318 261

7 71  201
6 

562
3 424 424   531 445

6 212 141 191 141 106 424  354 

Araneida Zoridae 43      12   19                
Oribatida Liacaroid mites 44     318      106              

Moniligastri
dae Moniligastridae 45 74  19 19 56  25   162 74  22  19 22 56        

Lepidoptera Lepidoptera 46                   22  19    
Isopoda Tylidae 47             22            

Oribatida Eremaeidae 48   212 212 212     318 106  127      127   212   
Araneida Agelenidae 49      160  37    99      74      49 

Oribatida Lohmannioid 
mites 50 141   424 637  141  106 382

0 955    106 178
3 318     106   

Oribatida Gymnodamaeoid 
mites 51 141                        

Acariformes Caeculidae 52          106   64         106   
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Diptera Plecia 53   56                      
Diptera Tabanidae 54 71     495 71 71 106     95      12     

Araneida Linyphiidae 55               19          
Hymenopter

a Hymenoptera 56             11            
Parasitiform

es Ascidae 57 137
9      

290
0  743  212  

191
0  106

1 382 531  
101

9  212  318  
Siphonapter

a Scraptiidae 58   19                      

Collembola Pseudanurophoru
s 59  354      920    71  

106
1      849    495 

Coleoptera Coccinellidae 60         11      11          
Araneida Gnapphosidae 61  71                       

Polydesmid
a 

Paradoxosomatid
ae 62   106             127 106    106    

Coleoptera Lucanidae 63      49      12             
Coleoptera Coleoptera 64    56        71             
Collembola Hypogastruridae 65     11                    
Psocomorph

a Sphaeropsocidae 66                   11      

Araneida Theridiosomatid
ae 67 12                        

Coleoptera LeiodidaeFlemin
g 68 71                        

Dermaptera Labiduridae 69                  71       
Acariformes Trombidiidae 70 12                        
Diplopoda* Helminthomorph

a 71   37      74    22  130    11  37    

Oribatida Oribatuloid 
mites 72    106                     

Oribatida Eremuloid mites 73    106                     
Archaeogna

tha Machilidae 74      12      12             
Lithobiomo

rpha Lithobiomorpha 75     19 71  71    141     19 71    37   
Diptera Aslidae 76                22         
Diptera Diptera 77 148 12 74 74  62 49  37   74 11    93 12   37 143 37  
Diptera Ephydridae 78   106  106                    
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Coleoptera Scydmaenidae 79   19 19     19                
Oribatida Zetorchestoid 

mites 80 283 141
47    275

9  
728

6   212 169
8  

318
3    304

2  212    226
4 

Araneida Salticidae 81   11                      
Hemiptera Cydnidae 82      11                   

Acariformes Microdispidae 83          106               
Opisthopora Microchaetidae 84     19  12      11            
Parasitiform

es Uropodoidea 85                 106        
Diptera Culicidae 86        12               125  

Stylommato
phora Fruticicolidae 87        71      12           

Scolopendra Scolopendra 88                         
Diptera Empididae 89          19   11  37          

Orthoptera Grylloidea 90       12                  
Aphelenchi

na Aphelenchoides 91  141    148
5  212    71  495    141  424    354 

Tubificida Enchytraediae 92  212    206
4  354    283  707    141  212    141 

Acariformes Eupalosellidae 93          106               
Coleoptera LathridiidaeEric

hson 94    19                     
Diptera Bolitophilidae 95   19           12           

Homoptera Aphidinae 96   19  19        11 12           
Coleoptera Histeridae 97    19                12     
Symphyla Scutigerellidae 98    106       106  64  106     424     
Coleoptera Chrysomeloidea 99      37 25       12           
Coleoptera PselaphidaeLatre

ille 100      25      12      25    19  12 

Hymenopter
a Formicidae 101  12 37    12 12 19   25  25 19     12 19  19 71 

Coleoptera Staphylinidae 102 157 12 546 74 355 647 320 37 236  125 95 546 320 19 22 19  44 83 19 106  12 
Thysanopter

a Thysanoptera 103     19                    
Araneida Pholcidae 104   19                      
Diptera Rhagionidae 105 71 71   106 71  212      71           
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Collembola Sminthuridae 106     11                    
Coleoptera Silphidae 107      25                   

Diptera Phoridae 108 37 25 19   25 12     37  37    37  37  19   
Diptera Mycetophilidae 109   531                      
Diptera Hesperinidae 110      12                   

Collembola Orchesellidae 111  424    219
3  637 106  106 120

3  
417

3  
369
2 424 169

8  
282

9 19  19 849 

Acariformes Stigmaeidae 112   212  318    212 212     212 127 106    106    
Diptera Dolichopodidae 113   212    12  318 106   75      64  106 19   

Oribatida Ptychoid oribatid 
mites 114                        495 

Acariformes Acariformes 115      240
5      268

8      707      141 

Opisthopora Lumbricidae 116 136 12 19 444  494  185 19 74 37 333  420  22 19 136 11 444  74 19 37 

Araneida Araneida 117     19                19    
Parasitiform

es Phytoseiidae 118    106      106   191   637   64      

Clitellata Clitellata 119   169
8 125 106

1  71  212 191
0 637    212 509 212    318  212  

Polyzoniida Hirudisomatidae 120   19                      
Araneida Trochanteriidae 121         19                

*Diplopoda is a class; 
Number refers to the order they were recorded/classified, also to specific taxa groups in the main text when numbers are used instead of names; 
Data are mean species density per metric meters averaged over two sample quadrats for each type; 
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Table S6 
Faunal summary statistics of villages and layers 

Statistics Village  
 Zhu-cun-pu Dong-yang-si Qian-gang Dong-ying Chang-zhai Wan-zhai Total 

Taxa        
L1 29 19 37 24 29 27 82 
L2 27 19 26 22 20 24 66 
L3 28 19 22 26 25 17 63 
L4 26 19 23 18 18 16 65 

Total 54 30 51 45 46 33  
Density        

L1 9246 16999 29067 48512 39122 28656 171603 
L2 23064 12943 28686 85243 25119 10638 185694 
L3 42514 13507 15885 57601 19326 8256 157088 
L4 19634 10216 8928 10976 13342 6361 69455 

Total 94458 53664 82565 20233 96908 53910  
Margalef's Richness        

L1 3.066 1.848 3.503 2.132 2.648 2.533 11.032 
L2 2.588 1.901 2.436 1.850 1.875 2.481 8.759 
L3 2.533 1.893 2.171 2.281 2.432 1.774 8.547 
L4 2.529 1.950 2.418 1.827 1.790 1.713 8.388 

Total 7.857 4.693 7.563 5.861 6.646 5.174  
SHDI        

L1 2.501 0.800 1.914 0.965 1.133 2.183 2.347 
L2 1.052 1.494 2.147 0.863 1.584 2.200 2.018 
L3 0.503 1.884 1.847 1.813 1.815 1.822 2.011 
L4 0.883 1.74 1.367 1.044 1.002 2.065 1.892 

Total 1.257 1.714 2.318 1.315 1.646 2.387  
Simpson’s 
Dominance        

L1 0.120 0.698 0.310 0.588 0.571 0.178 0.834 
L2 0.570 0.367 0.161 0.666 0.332 0.159 0.692 
L3 0.823 0.203 0.258 0.324 0.283 0.230 0.680 
L4 0.688 0.269 0.515 0.619 0.616 0.183 0.628 

Total 0.568 0.282 0.157 0.529 0.326 0.123  
Evar        
L1 0.030 0.037 0.029 0.027 0.028 0.025 0.025 
L2 0.037 0.031 0.024 0.021 0.023 0.030 0.023 
L3 0.042 0.029 0.028 0.019 0.027 0.029 0.022 
L4 0.037 0.031 0.036 0.033 0.033 0.029 0.024 

Total 0.031 0.025 0.025 0.021 0.024 0.021  
Dominance species        

L1 31 80 26 15 31 31 31 
L2 15 80 15 15 31 115 15 
L3 15 111 15 15 15 80 15 
L4 15 39 15 15 15 80 15 

Total 15 80 15 15 31 31  
Taxa refers to number of different species groups classified; 
Density refers to number of individuals per cubic metre 
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Figure S5 Sheppard plot (stress plot) of fauna NMDS results (Bray-Curtis distance; 

Reduced dimensions=3, stress=0.1210, iterations=200) 
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Table S7 
Regression variables for fauna data (villages in post-sample orders—grouped by cultivation style) 

Village Density 
(per m3) 

Number 
of units 

Layer
* 

Pesticide 
(L/ha) 

Herbicide 
(L/ha) 

Manual labor 
(man×hour/ha) 

Machinery 
(hour/ha) 

Compound 
fertilizer 
(Kg/ha) 

Nitrogen 
fertilizer 
(Kg/ha) 

Phosphor 
fertilizer 
(Kg/ha) 

Potassium 
fertilizer 
(Kg/ha) 

1 9246.35 29 1 8.2900 2.5883 971.0961 47.8043 1196.3556 1441.3333 266.7911 73.7778 
2 16998.9 19 1 22.3000 3.1384 1041.5124 51.3252 2341.1353 1391.1234 251.0928 68.3241 
3 29067.1 37 1 24.1200 0.9083 4216.9953 23.5421 1396.3560 1063.0227 177.3333 200.5333 
4 48512.3 24 1 20.3000 10.9045 1261.8032 94.5452 3515.5056 1036.8539 101.8427 393.7079 
5 39121.6 29 1 18.3700 3.3232 3222.2890 60.5975 2937.5422 3378.4096 467.0843 196.8193 
6 28656.3 27 1 19.0200 3.1328 3012.4109 55.1254 2823.2352 3243.3532 451.3214 201.2414 
1 23064.1 27 2 8.2900 2.5883 971.0961 47.8043 1196.3556 1441.3333 266.7911 73.7778 
2 12943.3 19 2 22.3000 3.1384 1041.5124 51.3252 2341.1353 1391.1234 251.0928 68.3241 
3 28686 26 2 24.1200 0.9083 4216.9953 23.5421 1396.3560 1063.0227 177.3333 200.5333 
4 85243 22 2 20.3000 10.9045 1261.8032 94.5452 3515.5056 1036.8539 101.8427 393.7079 
5 25119.5 20 2 18.3700 3.3232 3222.2890 60.5975 2937.5422 3378.4096 467.0843 196.8193 
6 10638 24 2 19.0200 3.1328 3012.4109 55.1254 2823.2352 3243.3532 451.3214 201.2414 
1 42513.9 28 3 8.2900 2.5883 971.0961 47.8043 1196.3556 1441.3333 266.7911 73.7778 
2 13506.8 19 3 22.3000 3.1384 1041.5124 51.3252 2341.1353 1391.1234 251.0928 68.3241 
3 15885 22 3 24.1200 0.9083 4216.9953 23.5421 1396.3560 1063.0227 177.3333 200.5333 
4 57600.9 26 3 20.3000 10.9045 1261.8032 94.5452 3515.5056 1036.8539 101.8427 393.7079 
5 19325.8 25 3 18.3700 3.3232 3222.2890 60.5975 2937.5422 3378.4096 467.0843 196.8193 
6 8255.71 17 3 19.0200 3.1328 3012.4109 55.1254 2823.2352 3243.3532 451.3214 201.2414 
1 19634 26 4 8.2900 2.5883 971.0961 47.8043 1196.3556 1441.3333 266.7911 73.7778 
2 10216 19 4 22.3000 3.1384 1041.5124 51.3252 2341.1353 1391.1234 251.0928 68.3241 
3 8927.7 23 4 24.1200 0.9083 4216.9953 23.5421 1396.3560 1063.0227 177.3333 200.5333 
4 10975.7 18 4 20.3000 10.9045 1261.8032 94.5452 3515.5056 1036.8539 101.8427 393.7079 
5 13342 18 4 18.3700 3.3232 3222.2890 60.5975 2937.5422 3378.4096 467.0843 196.8193 
6 6360.53 16 4 19.0200 3.1328 3012.4109 55.1254 2823.2352 3243.3532 451.3214 201.2414 

* Used as dummy control variable in the regression 
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Table S8 Initial regression results containing twenty four observations (four layers) 
 Root number 

of unit 
(model one) 

Root number 
of unit 

(model two) 

Standardized 
coefficient 

Pesticide (L/ha) 0.41** 

(0.14) 
0.29** 
(0.09) 

2.98** 
(0.91) 

Herbicide (L/ha) 3.59** 
(1.06) 

2.74** 
(0.76) 

17.74** 
(4.91) 

Pesticide^herbicide -0.18** 
(0.05) 

-0.13** 
(0.04) 

-4.48** 
(1.23) 

Manual labor 
(man×hour/ha) 

-0.00012 
(0.00011) 

__ __ 

Depth 1 0.76** 
(0.19) 

0.55** 
(0.16) 

1.09** 
(0.32) 

Depth 2 0.33 
(0.19) 

__ __ 

Depth 3 0.30 
(0.19) 

__ __ 

Constant -3.87 
(2.63) 

-1.58 
(0.1.90) 

__ 

R2 0.7042 0.6130 0.6130 
F 5.44** 7.52** 7.52** 

AIC 0.87 0.89  
SC 1.27 1.14  
JB 1.06(p=0.59) 1.16(p=0.56)  

* Significant at 5% level ** Significant at 1% level 
^ Interaction between two variables; for standardized coefficient, interaction 
calculated after standardization; 
Numbers in brackets are standard deviations; changes from model one to two reflect 
part of the variable selection process 

 
Figure S6 Plotted residuals (Q-Q plot) of fauna root number-of-unit regression with 

-.8

-.6

-.4

-.2

.0

.2

.4

.6

.8

-.6 -.4 -.2 .0 .2 .4 .6

Quantiles of RESID

Q
ua

nt
ile

s 
of

 N
or

m
al



 

158 
 

non-fertilizer agrochemicals and general factors using twenty four observations 

 
Figure S7 Residual histogram of fauna root number-of-unit regression with 

non-fertilizer agrochemicals and general factors with twenty four observations 
(Skewness =-0.08; Kurtosis=1.94; JB=1.16, P=0.56, normal hypothesis not rejected) 

 
Figure S8 Plotted residuals (Q-Q plot) of fauna root number-of-unit regression with 

non-fertilizer agrochemicals and general factors using six observations 

0

1

2

3

4

5

-0.6 -0.4 -0.2 -0.0 0.2 0.4 0.6

-.020

-.015

-.010

-.005

.000

.005

.010

.015

.020

-.03 -.02 -.01 .00 .01 .02 .03

Quantiles of RESID

Q
ua

nt
ile

s 
of

 N
or

m
al



 

159 
 

 
Figure S9 Residual histogram of fauna root number-of-unit regression with 

non-fertilizer agrochemicals and general factors with six observations (Skewness 
=-0.11; Kurtosis=2.88; JB=0.02, P=0.99, normal hypothesis not rejected) 

  
Figure S10 Plotted residuals (Q-Q plot) of fauna root number-of-unit regression 

with fertilizers using six observations 
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Figure S11 Residual histogram of fauna root number-of-unit regression with 

fertilizers with six observations (Skewness =-0.07; Kurtosis=1.32; JB=0.71, P=0.70, 
normal hypothesis not rejected) 
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Supporting document one 
Heavy metal element extraction method; part of the original document of Chinese 
government standard GB/T 17141-1997) 
 
Materials: (the Guaranteed Reagent level is equivalent to IUPAC level E) 
Hydrochloric acid (HCL): ρ = 1.19g/mL, guaranteed reagent; 
Nitric acid (HNO3): ρ = 1.42g/mL, guaranteed reagent; 
HNO3 1:1 solution: equal volume ratio solution of HNO3 and deionized water 
Hydrofluoric acid (HF): ρ = 1.49g/mL, guaranteed reagent; 
Lanthanum nitrate [La(NO3)·6H2O] solution: mass fraction 5%; 
 
Element extraction: weigh 0.2-0.5g (accurate to 0.0002g) soil samples and place in 
PTFE crucibles; wet with deionized water, then add 10mL HCL; heat at low 
temperature (approximately 100°C) on electric heating board under fume hood to 
break down samples preliminarily until about 3mL remain. Cool down samples, and 
then add 5mL HNO3, 5mL HF, 3mL HCLO4, close lid and heat at moderate 
temperature (180-200°C) for an hour. Open lid and continue heating to remove 
silicon—for better results stir occasionally. When white smoke starts to come out, 
close lid and continue heating until black organic carbon residues disappear on the 
side of crucibles; then open lid and heat until sample fluid show viscosity (depending 
on sample condition, repeat measure can be taken by adding 3mL HNO3, 3mL HF, 
and 1mL HCLO4). Remove crucibles and cool down; wash lid and inside walls with 
deionized water; and add 1mL 1:1 HNO3 solution to dissolve sample fluid. Then 
transfer sample fluid into 50mL volumetric flasks; add 5mL standard lanthanum 
nitrate solution to each flask, and add deionized water to correct volume at room 
temp (20°C), invert to thoroughly mix solution. 
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Supporting document two 
Figure representing a typical diverse cultivated field) 

 
1 Greenhouse, Indian lettuce (Lactuca indica) and chili pepper (Capsicum chinense) 
double-cropping 
2 Greenhouse, sweet potato (Ipomoea batatas) seedling and garlic (Allium sativum) 
seasonal rotation 
3 Greenhouse, garlic seedling, Chinese leaf (Brassica chinensis), cauliflower 
(Brassica oleracea)
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Supporting document three 
Social survey questionnaire 

Number:              City____ County____ Village____      Household leader:             Household type: Rich/Moderate/Poor  Time: 2011/   /    Interviewer:            

1. Basic information 
 Sex Age Education level Main source of income 

Interviewee     
Spouse     
Father     
Mother     

Children 
    
    
    

Others (specify)：     

Note  Calendar Year 1.Uneducated 2.Elementary 3.Middle school 
4.High School 5.Higher 1.Food crop 2.Cash crop 3.Livestock 4.Migrant work 5.Other(specify) 6.No income 

 
2. Economic status 

Main 
income Food crop (CNY) Cash crop (CNY) Livestock 

(CNY) 
Subsidies 

(CNY) 
Migrant work 

(CNY) 
House type (Rammed 

earth/Brick/Brick-concrete/Concrete) Other (specify) 

2010        
 
3. Land use 
Total plot number:                      Farmland per capita (mu):                                 increased/decreased farmland area in 2010:             (mu) 

 Plot 1 2 3 4 5 6 Note 

Basic 
info 

Size (mu)        

Cultivation type       Representative 
plots 

Tillage       If no-till, specify 
time 
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Cultivation duration       Year 

Distance to road (m)       Above county 
level 

Distance to 
residence(m)        

 

 Plot 1 2 3 4 5 6 Note 

Agricultural 
input in 

2010 

Seed       Type, amount, time 

Irrigation       Type (River/underground); 
amount, time 

Direct manual labour:1Tillage 2Seeding 
3Fertilizing 4Irrigation 5Weed removal 

6Pest removal 7 Harvest 
      Man-hour; time 

Indirect manual labour       Man-hour; time 

No-till percentage        

Manure       
Type 

(human/cattle/swine/avian); 
amount; time 

Machinery       
Type 

(tillage/seed/irrigation/harvest); 
amount(hours); time 

Electricity       Amount; cost (CNY, and time) 

Animal power       Type (cattle/horse); amount 
(hours); time 
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Fertilizer       Type; amount (kg); time 

Pesticide       Type; amount (L); time 

Herbicide       Type; amount (L); time 

 

 Plot 1 2 3 4 5 6 Note 

Production 
data 

2009 
yield       Main 

crops 

2010 
yield       Main 

crops 

2011 
yield       Main 

crops 

2010 
tillage       Main 

crops 

 

4. Household awareness 
① Is education important for cultivation? 1 Not   2Does not matter   3 Some   4 Very 

② Are you satisfied with current living status? 1 Strongly disagree   2Disagree   3 Does not matter   4 Agree   5 Strongly agree; any improvements needed:  
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③ Are you willing to change current cultivation status: 1 No   2 Yes          Specify: 

④ Are you satisfied with the environment (air, water, living): 1 Strongly disagree   2 Disagree   3 Does not matter   4 Agree   5 Strongly agree; any improvements needed: 

⑤ Do weed species affect cultivation: 1 Yes, negatively  2 No   3 Yes, positively   Should they be protected:  Yes/No 

⑥ Are  fauna (e.g. earth worms, bees) important for cultivation: 1 Strongly disagree  2 Disagree  3 Does not matter  4 Agree  5 Strongly agree;  Should they be protected: Yes/No 

⑦ Are there any environmental promotions/advertisements: Yes/No  If yes, how often does it happen: 1 More than one year  2 Yearly  3 Half a year  4 Quarterly  5 Monthly;    
what contents: 

⑧ Compared to raising yield, is environmental-friendly agriculture important: 1 Strongly disagree   2 Disagree   3 Does not matter   4 Agree   5 Strongly agree 

⑨ With agricultural income set at the score of 10, how important is sustainability:             environment:         future production:    

⑩ If land circulation is in place, what would you do: 1 Maintain current status  2 Cultivate less  3 Cultivate more  If 2 or 3, how much land (mu):       Crop type and reason: 
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Supporting document four  
Land use map of the sampled villages 

 
Map 1 Zhu-cun-pu village 

Village refers to residential areas 
Woodland was observed to be abandoned field 

Irrigated land refers to general cultivated farmland 
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Map 2 Dong-yang-si village 

Village refers to residential areas 
Water fields were absent during visits 

Irrigated land refers to general cultivated farmland 
Farming infrastructure refers to wells, power relays, etc. 
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Map 3 Qian-gang village 

Village refers to residential areas 
Woodland was absent during visits 

Irrigated land refers to general cultivated farmland 
Farming infrastructure refers to wells, power relays, etc. 
Transport infrastructure in this case is a county level road
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Map 4 Dong-ying village 

Village refers to residential areas 
Irrigated land refers to general cultivated farmland 

Farming infrastructure refers to wells, power relays, etc. 
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Map 5 Chang-zhai village 

Village refers to residential areas 
Irrigated land refers to general cultivated farmland 
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Map 6 Wan-zhai village 

Village refers to residential areas 
Irrigated land refers to general cultivated farmland 

Orchard was absent during visits 
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