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Abstract 

Published papers on atomic-scale simulation of the atomic layer deposition (ALD) 

process are reviewed.  The main topic is reaction mechanism, considering the 

elementary steps of precursor adsorption, ligand elimination and film densification, as 

well as reactions with substrates (particularly Si and SiO2) and CVD-like 

decomposition at the surface.  Density functional theory (DFT) is the first principles 

method generally applied to these mechanistic questions.  Analytical and stochastic 

models for growth rate and growth mode are also presented, some of which 

incorporate atomic-scale data.  The most popular subject for modeling is the ALD of 

oxides and nitrides, particularly the high-k dielectrics HfO2, ZrO2 and Al2O3, due to 

their importance in semiconductor processing.   

PACS: 68.43.-h, 68.43.Bc, 81.15.Aa, 81.15.Gh, 82.30.-b, 82.33.Ya 

1. Introduction  

Simulations provide a bridge between theory and experiment, exploiting the extraordinary 

computational power available today so as to carry out virtual experiments and test theories in 

complex scenarios.  This paper reviews how simulations have been brought to bear on the pulsed 

version of chemical vapour deposition (CVD) that is commonly called atomic layer deposition 

(ALD), and historically also atomic layer epitaxy.  The review only covers atomic-scale simulations 

of the ALD reactions, and not properties of the materials deposited by ALD, nor larger-scale 
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simulations of film growth or gas flow.  Computational studies of non-pulsed CVD and of crystal 

growth [1] are out of scope, as are surface science simulations that do not make conclusions specific 

to ALD.  For instance, although ALD has many parallels with heterogeneous catalysis, the huge body 

of modeling work in that field [2] cannot be covered in this short review.  

The role of a simulation within a scientific investigation can simply be to validate a model by 

showing agreement with experiment (and without validation a model is merely a sophisticated 

hypothesis).  It is better if a simulation can explain an experimental result by providing evidence for 

one model over another.  Best of all is if a simulation can predict results, narrow down experimental 

options and lead directly to new insights without experimental input – but of course such prediction 

requires a quantitative accuracy that can rarely be achieved.  Nevertheless, whatever the balance 

between computed and measured data, computational studies can be an efficient way to investigate 

novel processes and shorten process development times in the laboratory. 

In terms of subject matter and popularity, ALD simulations follow the same trend as ALD 

experiments, with most recent work motivated by the needs of the electronics industry, particularly 

the ALD of high-permittivity (“high-k”) dielectrics onto semiconductors as part of the gate stack in 

CMOS transistors.  Most of this review therefore covers the ALD of high-k oxides, both the reaction 

mechanisms themselves and how deposition takes place on semiconductor substrates 

(‘heterodeposition’).  Simulations of ALD chemistry for other materials such as nitrides, sulfides and 

metals are also considered.  A separate section reviews papers on the simulation of precursor stability.   

2. Methods of atomic-scale simulation 

Atomistic calculations, in which discrete atoms have explicit locations in space, are now established 

as an important adjunct to experiment [3].  The electronic structure is determined by approximately 

solving the quantum mechanical Schrödinger equation, which yields the wavefunction, energy, 

gradients etc., and hence gives access to atomic structure, reaction energetics at zero temperature and 

dynamics at finite temperatures.  The more accurate the approximate solution, the more demanding 

the computational load and the smaller the system that can be simulated.  The various methods of 

atomistic simulation thus form a hierarchy of accuracy versus cost and system size. Of these, first 
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principles (or ab initio) methods are distinguished by requiring no empirical fitting parameters, so that 

genuinely novel situations can be investigated.   

2.1. First principles methods 

Hartree Fock (HF) theory is the original ab initio technique, but today density functional theory 

(DFT) provides a higher level of accuracy at roughly the same computational cost [4],[5].  There is in 

fact a range of DFT approaches to approximately solving the electronic problem, but in this review we 

use the term ‘DFT’ as short-hand for Kohn-Sham calculations of the ground state using the local 

density approximation or generalized gradient approximation, often mixed with HF exchange (hybrid 

DFT).  Physically, the trick in these DFT calculations is to find the density of mutually-interacting 

electrons by computing non-interacting pseudo-electrons subject to a potential that partially accounts 

for electron correlation and exchange. 

DFT generally gives a good description of classical two-centre covalent bonds, non-classical multi-

centre bonds, metallic bonding in conductors, and polar/ionic bonding in semiconductors and 

insulators.  However, ‘self-interaction’ in the DFT density means that there are systematic but 

unpredictable errors in band gaps, defect levels, excited state properties, van der Waals (dispersion) 

interactions and curve-crossing at transition states.  For ALD, this means that DFT is highly accurate 

in determining changes in structure and bonding when organometallic molecules interact with various 

material surfaces, i.e. reaction mechanism, and an overview of these studies is given in Table 1.  

Computed properties such as vibrational spectra can help in the assignment of experimental data and 

thus provide direct evidence for mechanism [6],[7],[8].  On the other hand, volatility is difficult to 

simulate with DFT, because of the poor description of weak inter-molecular forces.  One approach is 

to compute the energetics of oligomerisation, as has been pursued for variously-substituted 

imidazolate ligands of strontium [9].  There is also an upper limit on the system size that can be 

simulated with DFT, although algorithmic and hardware advances mean that this limit is being pushed 

ever upwards: today, DFT is the method of choice for systems of 100-1000 atoms, occupying roughly 

one cubic nanometer.   
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The main source of uncertainty in first principles calculations is therefore the choice of model and its 

interpretation.  This review will include a brief assessment of various models for describing ALD.  

The proposed model should be viewed as a hypothesis and the first principles simulation ensures that 

accurate structures and energies can be obtained for this hypothesis, without fitting to experiment. 

2.2. Activation energies 

It is commonly stated that ALD is driven by kinetics, rather than thermodynamics, appealing 

presumably to the irreversible loss of by-products into the stream of exhaust gases.  One could argue 

that certain reaction steps are reversible and thermodynamically controlled, such as the sampling of 

surface sites by frequently adsorbing/desorbing precursor molecules, and the densification of ad-

layers to match the contour of the substrate.  Nevertheless, the competition between slower side-

reactions and faster growth reactions is crucial for successful ALD, and hence much of the focus of 

atomic-scale simulations is on the activation energies for such reaction steps. 

Computing Gibbs free energies of activation to so-called ‘chemical accuracy’ (<5 kJ.mol-1) remains 

an embarrassing difficulty in atomic-scale simulation [5].  Such bond-making/-breaking can only 

sensibly be attempted with ab initio methods (e.g. HF or approximate DFT), thereby limiting the 

system size to <1000 atoms on today’s computer hardware.  Even so, error cancellation is poor when 

the wavefunction changes strongly at the transition state, so that chemical accuracy can only reliably 

be achieved by post-HF methods such as coupled cluster [10],[11] or configuration interaction [12], 

tractable for fewer than 100 atoms.   

There is therefore an unavoidable trade-off between the accuracy of the quantum mechanical solution 

and the veracity of the atomic model.  The latter depends on the number of atoms, the number of 

possible geometries, and how many alternative pathways can be tested.  For example, if the model 

contains just one H and one ligand, then the number of possible H-transfer pathways is clearly 

unrealistically low compared to actual ligands on an OH-covered surface.  In this sense, ergodicity 

(i.e. whether all relevant pathways can be sampled) is as big a problem as accuracy when computing 

activation energies.  In principle, all that is needed to sample more pathways with higher accuracy is 

computational brute force, which is now available in massively-parallel computers.  However 
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practical experience shows that ALD chemistries are so complicated that automated searches are 

rarely successful, and that the bias of the user in defining models is still a major constraint. 

 

Table 1: Overview of primary studies of ALD via atomic-scale (mostly DFT) simulation, ordered alphabetically by 
precursor formula. 

Precursors Product film Reference 
AlCl3 + H2O Al2O3 [12] , [13] 
AlMe3 + H2O Al2O3 [14], [15], [16], [17], [18], [19], [20], [21], [22], 

[23], [24], [25], [26], [27], [28], [29], [30], [31], 
[32], [33], [34], [35], [36], [37] 

AlMe3 + O3 Al2O3 [38], [39] 
AlMe2(OiPr) Al2O3 [40] 
BH3or BBr3 + NH3 BN [41] 
B(OMe)3 + POCl3 BPO4 [42] 
CF3R C [43] 
CdMe2 + H2S CdS [44] 
Co(allyl)(CO)3 Co [45] 
Co(amd) Co [46], [47] 
[Cu(amd)]2 + H2 Cu [48] 
Cu(-diketonate)2 Cu [49] 
Cu2Cl2 + H2 Cu [50], [51], [52] 
Cu(hfac)(vtms) Cu [53], [54], [55] 
[Cu(NiPr)2CNMe2]2 Cu [56] 
ErCp3 + O3 Er2O3 [57] 
GaCl3 + H2 GaAs [58] 
HfCl4 + H2O HfO2 [22], [23], [59], [60], [61], [62], [63], [64], [65], 

[36] 
Hf(Cp2CMe2) Me2 + O3, 
Hf(Cp2CMe2)(Me)(OMe) + O3 

HfO2 [66] 

Hf(NEtMe)4  HfO2 [67] 
Hf(NMe2)4 + NH3 HfN,  HfO2 [68], [69] 
HfX4 + H2O HfO2 [70] 
La(amd)3 + O3 La2O3 [6] 
LaCp3 + O3 La2O3 [57] 
LaX3 + O3 La2O3 [71] 
Mg(C5H5)2 + H2O MgO [72] 
Mo(tBuN)2(NR2)2 MoN [73] 
NH3 nitrides [74] 
Ni(amd) Ni [46], [47] 
Pb(thd)2 + H2S PbS [75] 
SiCl4 + H2O, SiClxHy SiO2 [76], [77], [78] 
SiH4 + NH3 Si3N4 [79] 
Si(OMe)4 + HfCl4 HfSiOx [80],[81] 
SnX4 + H2O SnO2 [70] 
Sr(RCp)2 SrO, SrTiO3 [82] 
Sr(-diketonate)2 SrO, SrTiO3 [82] 
Sr(imid)2 SrO, SrTiO3 [9] 
TaCl5 + H2O Ta2O5 [10] 
Ta(NMe2)5 + H2-plasma TaN, TaCN [69], [83] 
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3. Simulating reaction mechanism during homodeposition 

Unlike standard CVD, the steady state during a single ALD pulse is when the surface is saturated and 

no further net reaction occurs.  Instead, ‘steady-state’ is used here to refer to the constant growth rate 

that is achieved over cycles of product-on-product growth, which we may also term ‘homodeposition’ 

in order to distinguish it from the initial product-on-substrate cycles.  ALD process development is 

clearly dependent on understanding first the mechanism of homodeposition, and after that, the 

mechanism of deposition onto various substrates (section 4).  The aim is to identify the elementary 

chemical reactions that transform precursor molecules into product films (both ALD and non-ALD 

reactions), as well as those that lead to undesired by-products or impurities.  This knowledge should 

enable us to answer the key questions about a particular ALD process, namely, how does the surface 

become saturated in one pulse and how are these groups consumed during the next pulse?  

Quantitative answers to these questions yield predictions of growth rate, temperature dependence and 

pulse/purge durations, and help in choosing ligands and designing processes for new materials.  As 

shown in the following sections, many simulations have achieved these goals. 

In ideal ALD, precursors react only on the growing surface and not in the gas-phase.  The film growth 

reactions of a precursor for element M may therefore be written: 

Ta(tBuN)(NEt2)3 + NH3 TaN [84] 
TiCp2((NiPr)2CN(H)iPr) TiN, TiO2, 

SrTiO3 
[85] 

Ti(CpMe5)(OMe)3 + H2O TiO2 [86], [87] 
TiCl4 TiO2, TiN [88], [89], [90], [91] 
TiI4 + H2O TiO2 [92] 
Ti(NMe2)4 TiN, TiZrN, 

TiO2, SrTiO3 
[69], [93], [94], [95] 

Ti(OiPr)4 + H2O TiO2 [93] 
W(Me3CN)2(NMe2)2 WN, WCN [69] 
Zn(C2H5)2 + H2O ZnO [96] 
ZrCl4 + H2O ZrO2 [97], [98], [99], [100], [101], [102], [103], 

[104], [22], [65] 
Zr(Cp2CMe2)Me2 + O3, 
Zr(Cp2CMe2)(Me)(OMe) + O3 

ZrO2 [66] 

Zr(Cp)2(Me)2 ZrO2 [105], [106] 
Zr(MeCp)2(Me)(OMe) ZrO2 [107] 
Zr(NMe2)4  ZrO2, TiZrN [69], [108] 
YCp3 + H2O Y2O3 [109] 
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Equation 1 

gas-MLn  surf-(MLn)  surf-(MLx)  bulk-M, 

where MLn is a metal-containing precursor with n ligands L, ligands can be eliminated from the 

surface so that 0xn, and ‘bulk-M’ refers to the an atom in a local environment like that of the as-

deposited solid film.  The position of the equilibria between the steps in Equation 1 depends on the 

reaction energetics and on the availability of reagents and ligands during the pulse-purge cycle of 

ALD.  The first step is molecular adsorption.  The second step shows the nature of adsorption 

changing as ligands are eliminated.  The final ‘bulk’ status may not be reached until after many ALD 

cycles.  In a general sense, the whole sequence in Equation 1 is the reactive adsorption of a precursor 

onto the surface, along with the desorption of ligand remnants.  Describing the ALD reaction 

mechanism means describing each of the steps in Equation 1, and in particular, describing the various 

interactions between MLx adsorbates and the substrate or growing surface. 

Adsorption of the precursor molecule onto a substrate is the first stage in the chemical reactions of 

deposition.  There are numerous first principles computational studies of adsorption, both of 

organometallic complexes and of molecules like H2O, NH3 and O2 that are used as co-reagents in 

ALD, and it is not possible to review all these studies here.  This survey is instead limited to papers 

where computation of reaction steps leads to a conclusion about the mechanism of ALD (Table 1).  

As will be seen, most of these studies do consider molecular adsorption of organometallic precursor 

or co-reagent, and also the subsequent elimination of ligands.    

3.1. Mechanism of oxide ALD 

For the mechanism of oxide ALD, possibly the earliest quantum chemical study is that by Siodmiak, 

Frenking and Korkin on TaCl5+H2O [10].  The model consists of complexes totalling ten atoms or 

less, and despite the model being so small, reasonable reaction energies are obtained for adsorption, 

HCl elimination and etching.  Energy barriers for intra-ligand reaction pathways are also computed, 

even though these pathways are highly constrained relative to an actual surface.  

The next mechanism to be computed with DFT was the prototypical ALD system AlMe3+H2O 

(Me=CH3) by Widjaja and Musgrave [14].  An Al2 cluster model is used and tested against an Al4 
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cluster (up to 30 atoms), showing little non-local electronic effect on the reactions.  Adsorption of 

AlMe3 onto a surface hydroxyl group is found to form a Lewis acid-base adduct and a barrier was 

found for intra-cluster proton transfer producing CH4.  Calculations yield a similar energy profile for 

the corresponding H2O half-reactions.  A similar model is used to determine activation energies for 

kinetics, which are fed into continuum simulation of alumina ALD [19]. 

Widjaja and Musgrave follow a similar approach based on Hf4 or Hf8 clusters in their early study of 

HfO2 from metal-chloride precursors and H2O [60].  In both half-reactions, the zero-temperature 

energetics show strongly-favoured adsorption of the precursor molecule, but a barrier and overall 

energy cost for subsequent elimination of HCl, confirmed later in a periodic model.[61]  Inclusion of 

entropy effects at realistic ALD temperatures turns out to be decisive – reducing the adsorption free 

energy and making desorption of HCl more favourable, albeit still via a substantial barrier.  The 

results for ZrCl4 are nearly identical [97].  Similar results are obtained for AlCl3, along with 

consideration of a non-growth side-reaction [12].  Hydroxychloride side-products are also computed 

[13].  Since growth is a multi-step reaction in competition with side-reactions, it is not straightforward 

to correlate the computed energy minima and barriers with the experimental growth rate (e.g. the 

trend with increasing temperature).  Nevertheless, this case illustrates that endothermic reaction steps 

are not necessarily an obstacle to film growth in ALD, presumably because certain reaction steps are 

far from chemical equilibrium.  Calculating the activation and reaction energies for a single pathway 

has therefore no predictive power on its own. 

The coverage-dependence of water adsorption and surface acidity is added to the picture in cluster 

calculations by Deminsky et al. [100] (confirmed later in a periodic model [101]) and the authors note 

that “the mechanism and kinetics of the ALD process cannot be interpreted even qualitatively without 

taking into account stereochemical effects, in particular, the effects of surface coverage on the 

reactivity of chemisorbed surface species.” 

The AlMe3+H2O mechanism is investigated by Elliott and Greer using a periodic model [15].  The 

model imposes crystallinity and so the most stable surface of the most stable crystalline polymorph of 

alumina is chosen as the substrate.  However amorphous alumina is grown in ALD, which exhibits 

lower coordination numbers and it has not yet been proven whether the use of a crystalline model 



9 
 

negatively affects the simulation results.  The energy obtained for Lewis adduct formation agrees with 

that from the cluster model [14] but, from the various pathways investigated, proton transfer is found 

to occur most readily from a neighboring hydroxyl group.  Substantial release of energy is seen to 

accompany increases in Al-O coordination at the surface as the CH4 by-product desorbs, in contrast to 

the reluctance of HCl to desorb in the cases above. 

An alternative alumina process is AlMe3+O3, which is perhaps a model reaction for other ALD 

reactions with O3 or O2-plasma, but the reaction mechanism is much more complex.  Ab initio 

molecular dynamics show that O radicals insert into metal-ligand bonds, ultimately transforming Al-

CH3 into Al-OH [38].  However, formate intermediates are detected with in situ IR, as confirmed by 

DFT assignments of the bands [39].  DFT-assigned spectra are also used to identify decomposition 

products for La(amd)3+O3 [6].  Extensive computations of surface intermediates during 

homodeposition from LaCp3 and ErCp3 (Cp=C5H5) are relevant for the corresponding oxide ALD 

processes with O3 [57].  The La precursor is found to undergo surface-catalysed decomposition 

whereas C5H6 elimination is favoured for Er, partly due to the level of distortion in the oxide 

substrates, and this explains why Er2O3 growth is successful but La2O3 is not. 

Sulfides have many similarities with oxides and so similar adsorption and elimination reactions are 

computed for CdS homodeposition from CdMe2+H2S.[44]  The calculated reaction barriers for the 

ALD half reactions suggest that elevated temperatures are required for the film growth. 

Once reaction mechanism and associated kinetics are understood, modelling can also help in the 

design of improved processes.  For instance, a DFT study of the effect of various Lewis bases in 

catalysing the ALD of SiO2 from SiCl4+H2O reveals the dependence of growth temperature on pKa 

and on the steric bulk of the catalyst [76]. 

Because ALD depends on self-saturating surface reactions in the metal precursor pulse, it can be 

shown that the growth rate depends linearly on the degree to which ligands are eliminated during this 

pulse [18].  This motivates using the reaction energy for elimination [71] or the metal-ligand bond 

energy [82] as a simple metric for ALD growth rate (and perhaps even for the ALD growth 

temperature), allowing computational screening of a wide variety of ligands.  Both of these screening 

studies investigate large, basic metal cations (La [71] and Sr [82]), where the steric demand of the 
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ligand must be balanced against its reactivity and the resulting trends agree well with experiment (e.g. 

unreactivity of -diketonates).  For this purpose, a cluster model is quick and efficient, as the 

influence of the surface is entirely neglected.  The results agree well with experiment  In a similar 

vein, cluster models rationalize the elimination of protonated ligands from Ti(NMe2)4 versus Ti(OiPr)4 

[93], from Zr(MeCp)2(Me)(OMe) [107] and from Zr(Cp)2(Me)2 [110].  Such a simple approach is 

successful because ligand elimination (often termed ‘ligand exchange’) is known to be an important 

element of the mechanism of oxide ALD. 

Another important element is revealed by Olivier et al., who examine the tendency for Hf and Sn 

cations in oxide films to aggregate and increase their coordination number to oxygen, which they term 

‘densification’ [70].  Based on this, the authors highlight the role of water as a co-reagent for oxide 

ALD, not only in providing reactive OH, but also in allowing densification via OH or O.  

Densification is important in ALD for the following reason.  To be volatile, the metal centre in an 

ALD precursor molecule must be kept from aggregating with metal centers in neighboring molecules, 

which is achieved via the coordination of bulky ligands. By contrast, the product film should be a 

dense solid, with highly-coordinated metal atoms (bonded either to other metal atoms or to oxygen, 

sulfur etc.).  As indicated in Equation 1 above, precursor adsorption and film growth therefore 

involves the change from low to high coordination of the constituent atoms.  Zydor and Elliott have 

simulated the effect of ligand bulk in Ti(CpMe5)(OMe)3+H2O, and thus explain the experimentally-

observed lack of ALD as due to the inability of the hindered Ti centre to densify to the substrate [86], 

[87].  To date, the importance of densification as an element of ALD growth has not been widely 

recognized, although in hindsight, many of the published studies mentioned above show exothermic 

reactions correlating with increases in coordination number. 

3.2. Mechanism of nitride ALD 

Transition metal nitrides such as TiN and TaN are metallic and so of interest in thin film form as 

diffusion barriers.  The first DFT study of nitride growth is by Tanaka et al., computing TiCl4+NH3 

onto a cluster representing amorphous SiO2 [88]; following adsorption, surface reactions between 

adsorbates via both the Langmuir–Hinshelwood and Eley–Rideal mechanisms were considered.  In a 
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study of HfN growth from Hf(NMe2)4+NH3, it is found that the ALD mechanism is similar to that of 

HfO2 from H2O, although NH3 is computed to be less reactive than H2O and so O impurities could be 

a problem [68].  Thermal stability is a central question for transition metal amides/imides.  The 

adsorption and decomposition of a whole sequence of such precursors shows that breaking metal-

ligand bonds is the favoured pathway at low temperature, but also that C-H scission can lead to C 

impurities [69].  A comprehensive study of an amido/imido-Ta precursor with NH3 shows that 

ammonia is a more facile source of N than the ligand, but also identifies decomposition pathways that 

may operate at elevated temperatures (MOCVD) [84].  Thermodynamic modeling of TaN is carried 

out using literature values [111]. 

In the growth of silicon nitride from SiH4+NH3, the computed activation energies reveal why 

stoichiometric Si3N4 is favoured in ALD but a Si-rich material can be obtained in higher temperature 

CVD [79].  Boronitride growth has also been computed with DFT, although the radical intermediates 

that are postulated may be more relevant for CVD rather than ALD [41].   

3.3. Mechanism of metal or elemental ALD 

There is an extra layer of mechanistic complexity in the ALD of metals, since electrons must be 

transferred to metal cations during deposition in order to reduce them to the neutral product.  Of the 

elementary steps that are known for oxide ALD, only reductive elimination is a candidate for showing 

how this might occur, and so there is a need for other redox reaction steps to be considered. 

One of the earliest simulations of ALD is the investigation by Hirva and Pakkanen in 1989 of 

elemental silicon from silanes and chlorosilanes, in both radical and molecular mechanisms [78].  

While chemisorption to bare Si surfaces is computed to be favourable, releasing HCl from the surface 

is more difficult.  Although not a redox process, a related study by Mochizuki et al. considers GaAs 

growth from GaCl3+H2 using high level ab initio methods [58].  The deposition of elemental carbon 

as diamond from fluorinated compounds is simulated by Hukka et al., here focusing on radical 

pathways that may be more relevant for high-temperature CVD rather than ALD [43]. 

The ab initio simulation of metal ALD is pioneered in three papers by Mårtensson et al. that consider 

adsorption of Cu2Cl2 on a Cu (1 1 1) model surface [50], reaction with hydrogen [51] and barriers 
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[52].  Given the range of oxidation states available for Cu, disproportionation is one of the likely 

redox steps, but is computed here to be unfavourable for Cu(I)Cl.  The Cl ligands are found to 

eliminate via combination with surface-H.  The reduction potential of metals is emphasized in the 

method of Orimoto et al. for screening metal precursors, illustrated with DFT calculations on 

copper(II) -diketonates that compare well with measured values [49].  DFT is also used for explicit 

calculation of the reaction energy and barrier for reducing a Ta(V) precursor with H radicals, as a 

model for TaCN growth with H2/Ar plasma [83].  Care is needed in interpreting these results: because 

of the changing numbers of electrons in redox reactions, there is the possibility of poor error 

cancellation, leading to uncontrolled errors in the DFT energetics. 

Substrate effects – nucleation, adhesion and island growth – are crucial in metal ALD.  First 

principles dynamics give insights into Cu agglomeration and its temperature-dependence [112],[113],  

Poor adhesion of Cu films is attributed to spontaneous precursor decomposition during adsorption 

onto metals, but not onto nitrides, based on the example of Cu(hfac)(vtms) on Ti, Ta and W [53],[54].  

The adsorption of the same precursor onto Si is also computed and compared to experiments at a 

range of temperatures [55].  On a hydroxylated SiO2 substrate, chemisorption of Cu2(amd)2 is shown 

to proceed by elimination of amdH, followed by release of amidine during the H2 pulse, while transfer 

of ligands to the substrate can lead to contamination with C.  These conclusions are reached via the 

powerful combination of DFT and in situ IR spectroscopy [48].  Co films are found to nucleate better 

from Co(tBu-allyl)(CO)3 on H-terminated Si rather than on OH-terminated SiO2 substrates and this is 

rationalised via DFT energetics that show the Si-H surface to be a superior donor of H to the allyl 

group via Co, analagous with hydrosilylation catalysis [45]. 

Although not specific to ALD, a DFT study of the growth mode of Pt onto SrTiO3 is also relevant 

[114].  There seem to be no DFT studies to date specifically devoted to noble metal ALD, despite the 

fact that open questions remain about the mechanism – perhaps this is because of the complexity of 

the redox mechanism relative to the Brønsted acid-base reactions of oxide ALD [115].  
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4. Simulating ALD onto silicon, silica and other substrates 

Some of the most exciting applications of ALD are in the controlled deposition of sub-nanometre thin 

films onto a substrate, which we term ‘heterodeposition’ to distinguish it from the steady-state 

‘homodeposition’ of section 3 above.  For the electronics industry, the substrate is often a 

semiconductor, although the actual surface may be oxidised or cleaned, and there is also interest in 

ALD onto porous dielectrics and metal electrodes.  Most non-electronics applications of ALD also 

depend on successful heterodeposition.  If heterodeposition can be fully understood, it opens up the 

potential for interface control at the atomic level, which is particularly important if the target films are 

just a few nanometres thick.  Of course, this level of understanding is still far off and relatively little is 

known at present about how ALD precursors interact with various substrates.  Table 1 includes a 

summary of the atomic-scale simulations to date. 

In terms of growth rate, heterodeposition has been classified as linear growth, inhibited growth or 

substrate-enhanced growth [116], followed by the transition to homodeposition or steady-state ALD.  

In the simplest case, substrate effects are limited to the earliest few ALD cycles, until a single 

monolayer of interfacial layer is formed, which is then followed by homodeposition.  Detection of the 

interface reactions is only possible if in situ monitoring of adequate sensitivity is employed.  The 

situation may be complicated if substrate and product mix to form a more extended inter-layer with its 

own distinct growth chemistry, as often the case when using an aggressive oxidising agent such as 

ozone.  Alternatively, the product may homodeposit onto islands that ripen into a closed layer only 

after many ALD cycles. 

One may envisage two chemical scenarios during heterodeposition.  One possibility is that the same 

ALD mechanism operates as in homodeposition, modified only by the different coverage of reactive 

species (e.g. hydroxyl groups) on the substrate.  Alternatively, non-ALD side-reactions may take 

place between precursor and substrate, either contributing extra product or etching the substrate away.  

First principles simulations clearly have a role to play in investigating what chemical interactions are 

possible between precursor and substrate.  The situation is complicated by the strong dependence of 

heterodeposition on the preparation history of the substrate.  
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The (1 0 0) surface of diamond-structured silicon is the substrate used in the electronics industry, and 

a popular atomistic model is consequently the Si9 cluster.  This consists of an Si2 surface dimer, on top 

of three (1 0 0)-oriented ‘layers’ of four+two+one Si atoms respectively.  The subsurface layers are 

terminated with twelve H atoms, to give roughly tetrahedral Si coordination and no dangling bonds.  

The atoms of the surface dimer have one dangling bond each (if bare) or can be bound to H 

(simulating the situation after HF cleaning) or OH (after washing with H2O).  Tests indicate that 

activation energies from Si9 are converged with respect to cluster size [20],[21], apparently due to the 

open structure of Si(1 0 0), since the same is not true for Si10 as a model for more densely-packed Si(1 

1 1) [20]. 

Modelling the ALD of elemental metals onto various substrates is outlined in section 3.3 above and 

the following sections concentrate on heterodeposition of compounds, mostly oxides. 

4.1. Heterodeposition of zirconia and hafnia 

Perhaps the earliest atomistic simulation of heterodeposition from two precursors is of B(OMe)3 and 

POCl3 onto silica [42].  However the most common subject is the ALD of high-k ZrO2 or HfO2 onto 

silicon-based substrates, because of its technological importance in nano-CMOS.  Brodskii et al. use 

periodic and cluster models to compute the reactions of ZrCl4 with hydroxylated silicon: elimination 

of HCl in the Zr-pulse is found to be endothermic, but subsequent hydrolysis of ZrCl2 fragments in 

the H2O pulse is slightly exothermic with a low activation barrier [102].  The adsorption of ZrCl4 onto 

various substrates is compared: onto bare, H-terminated hydroxylated [97] and hydrated [98] Si 

surfaces and onto hydroxylated Ge [99].  A common theme is the tendency of the HCl by-product to 

remain complexed and not desorb [103],[104].  A similar pathway for the formation of a HCl 

intermediate from adsorbed HfCl4 on Si(1 0 0) is computed by Estève [62] and on SiO2 by Dkhissi et 

al. [63].  Slower kinetics are predicted when Si(OMe)4 is introduced as co-precursor with HfCl4 for 

hafnium silicate heterodeposition [80],[81].   

Jeloaica et al. compare three common precursors (AlMe3, ZrCl4 and HfCl4) and find that they adsorb 

favourably on OH-terminated SiO2, show similar barriers to H-transfer, but differ in ligand 

elimination energetics [22].  Calculations are presented for the same three precursors on GaAs, 
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showing the inhibiting effect of passivation with sulfur [23], and for HfCl4 on hydroxylated GaAs 

[64].  Fenno et al. also compare Cl and Me ligands for ZrO2 and HfO2 heterodeposition, this time onto 

H-terminated Si, and also find CH4 elimination to be much more favourable than HCl elimination 

[65].  Contamination with H2O is predicted to lead to interfacial Si-O-Zr/Hf.  Switching to amide 

ligands [67], decomposition reactions are computed to result in interfacial Si-C bonds [69], or Si-N 

and Si-CN bonds [11], which are important insights that can guide precursor choice for specific 

interface properties. 

4.2. Heterodeposition of alumina 

Halls and Raghavachari use DFT and the Si9 model to reveal why AlMe3 nucleates poorly on H-

terminated Si: both adsorption and elimination of CH4 are barely energetically favoured [25].  A side-

reaction leading to O incorporation is identified and the reaction pathway is computed [26].  By 

contrast, if hydroxyl groups are present after treatment with H2O, then both ALD half-reactions are 

computed to be thermodynamically favorable and kinetically uninhibited [27].  Indeed, many Lewis 

acidic metal precursors are found to adsorb favourably on OH-terminated SiO2 and the Si-OH groups 

are sufficiently acidic for subsequent elimination [22].  Treatment with O3 is shown to lead to Si-O-Al 

or Al-O-CH3 but not SiO2 [39].  Alternatively, a basic oxygen atom in the precursor [e.g. 

AlMe2(OiPr)] facilitates adsorption onto H-terminated Si [40].  More complex surface models are now 

becoming accessible to DFT calculations, as illustrated by a recent study of multiple AlMe3 on Si-OH 

that shows an increase in activation energies as the surface becomes saturated [24].   

For ALD of Al2O3 onto oxidised and clean Si3N4, DFT calculations have been used to complement 

layer-by-layer experimental characterisation of the film, thus revealing when heterodeposition is 

inhibited/enhanced due to the availability of surface protons (standard ALD reactions) and when 

AlMe3 is consuming the substrate (non-ALD reactions) [28].  These different modes of 

heterodeposition seem to affect the density and composition of the interfacial layer. 

There is interest currently in replacing Si with higher mobility materials for the transistor channel and, 

consequently, the ALD of high-k dielectrics onto Ge, GaAs etc. is being studied.  For AlMe3 onto 

GaAs, Lu et al. compute adsorption and elimination reactions with hybrid DFT and find similar 
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energetic trends as on other OH-terminated surfaces [29].  Ren et al. find that these reactions become 

less favoured when GaAs is passivated with sulfur [23].  Surface structures of AlMe3 fragments on 

InAs(0 0 1) and In0.53Ga0.47As(0 0 1) are computed with DFT and compared with scanning tunneling 

microscopy [30].  AlMe3 can remove native oxides from GaAs surfaces and DFT calculations point 

out the role of Ga-OH vs As-O in this process, as well as proposing a redox reaction [117].  Klejna 

and Elliott extend this to computing seven possible reaction pathways and find that arsenic oxides are 

predominantly reduced to gaseous As4 gas and solid GaAs, with C lost as C2H6 [31].  This illustrates 

that AlMe3 is a multi-purpose reagent for surface preparation, functioning as a Lewis acid (due to 

under-saturated Al), as a Brønsted base (CH3
– to CH4) and also as a reducing agent (CH3

+ plus two 

electrons).  DFT thus reveals that the mechanistic step of reduction takes place when CH3 migrates 

from surface-bound Al/As/Ga to O [31].   

Adsorption of AlMe3 onto H-terminated Ge is found to be more favourable than that onto Si-H, but 

still hindered, when compared with OH-terminated Si [32],[33].  Using Ge-SH as a model for sulfur-

passivated Ge, DFT shows favourable adsorption of AlMe3 and no removal of S [21]. 

Moving to C-based substrates, the ALD of Al2O3 onto the open edges of a graphene nanoribbon is 

studied with DFT for a range of temperatures and pressures, revealing selectivity for the zigzag edge 

during the H2O pulse [34].  For organic molecules, Al2O3 ALD onto self-assembled monolayers 

(SAMs) is computed to be favourable in terms of adsorption and elimination on amine- and hydroxyl-

terminations, but not on methyl-terminated molecules [35].  

4.3. Heterodeposition of titanium-based materials 

Titanium oxides and nitrides are important materials and their heterodeposition onto silicon-based 

substrates can easily be studied by extension of the models for hafnia and zirconia.  Hu et al. 

investigate TiCl4+H2O ALD onto various models of the SiO2 surface and find a strong dependence of 

the growth rate and morphology on coverage and arrangement of reactive groups [91].  This is 

contrasted with the TiI4+H2O process, where binding energies are computed to be higher and impurity 

levels to be lower [92].  On H-terminated Si, direct chlorination is found to be the kinetically favoured 
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reaction of TiCl4 [90].  High-temperature reactions of a Ti(III) precursor with SiO2 are also computed 

with DFT and found to agree with solid-state NMR [85].   

An early study of the adsorption of NH3 onto bare Si [74] is followed with simulation of reaction 

steps for heterodeposition of TiN on SiO2 from TiCl4+NH3 [88].  DFT simulations and IR spectra are 

integrated in a substantial study of TiN onto silicon from Ti(NMe2)4 by Rodriguez-Reyes et al., 

investigating also amides of other transition metals.[69]  The precursor is proposed to adsorb onto 

bare Si via N and then undergo N-Ti scission, based on a lower barrier relative to N-C scission [94].  

This leads in turn to weakening of C-H, which is consistent with data from temperature-programmed 

desorption [95].  Several decomposition pathways are computed to lead to Si-C bonds, explaining the 

high carbon content at the interface.  On an ammonia-saturated surface, the dominant reaction is 

found to be transamination, which again matches IR results [7]. 

Like heterodeposition onto Si, ALD onto SAMs also depends on their chemical termination.  

Amidotitanium precursors are computed to form adducts with amine-terminated SAMs, but H-bonds 

with thiol- or hydroxyl-terminated SAMs, while the amidozirconium analogues always form dative-

bonded adducts [108]. 

4.4. Heterodeposition of other oxides and sulfides 

The pyridine-catalysed deposition of SiO2 from an alternating sequence of SiCl4+H2O on a Si 

substrate is computed using MP2, which is a post-HF ab initio method for improved description of 

van der Waals forces [77].  Kang et al. consider the same system without catalysis using DFT and 

find that the standard mechanistic steps occur in both half-cycles: adsorption, elimination of HCl and 

movement to bridging sites [8].  The overall barrier matches the experimental value remarkably well.  

Reaction and activation energies for ALD steps onto hydroxylated Si are also computed for ZnO from 

Zn(C2H5)2+H2O [96], Y2O3 from Y(C5H5)3+H2O [109], and MgO from Mg(C5H5)2+H2O [72].  PbS 

growth is shown with DFT to be unfavourable on a methyl-terminated SAM, so that ALD takes place 

selectively on the areas not covered with SAM [75]. 

Simulations are now increasingly being reported of the mechanism of oxide ALD onto more complex 

substrates.  Popovici et al. compute that HfCl4 reactivity is enhanced on a Ti-OH substrate while 
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depositing hafnium titanate [59].  For hafnium aluminate, Nyns et al. use DFT calculations to show 

that changes relative to the respective binary oxides are due to different dehydroxylation behaviour of 

the ternary substrate [36].  The reactive adsorption of AlMe3 onto anatase-TiO2 surfaces is shown with 

DFT to produce atomically rough films [16] and to proceed only at defects and edges where water is 

adsorbed, explaining the experimentally-observed island growth [37].   

5. Thermal stability of ALD precursors  

The study of ALD must also include the study of low-temperature or surface-catalysed CVD.  CVD 

reactions are generally responsible for an upper limit to the ALD temperature window and associated 

impurity levels in homodeposition, [84] and can explain heterodeposition by certain precursors and 

resulting interfaces with substrates [7],[11],[69],[53],[54],[94],[95]. New ALD precursors should be 

designed so as to be thermally stable, minimising unwanted CVD-like decomposition during storage 

and delivery of the precursor.  As shown by the examples below, this is an area where ab initio 

simulation can contribute, although finding unknown decomposition reactions is much harder than 

confirming a known ALD mechanism. 

A DFT assessment of decomposition reactions of various amido/imido Mo precursors reveal why the 

di-isopropylamido complex is the least stable, as determined by calorimetry [73].  Calculations by 

Zydor and Elliott show that intramolecular -H transfer in Zr and Hf precursors M(MeCp)2(Me)2 

accounts for experimentally-observed decomposition and can be avoided by altering the ligands or 

increasing the electrophilicity of the metal [106].  The effect on electrophilicity is also calculated for 

related precursors with bridged cyclopentadienyl ligands [66].  Using DFT corrected for dispersion, 

the fragmentation modes of a Cu(I) guanidinate precursor are computed by Coyle et al. to be 

carbodiimide deinsertion and -H elimination, with the latter pathway agreeing with results from 

mass spectrometry and IR spectroscopy [56].  Migration of -H is also the focus of a first principles 

study of Co and Ni amidinate precursors, giving relative stabilities in agreement with experiment 

[46],[47].  
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6. Conclusion and outlook 

The main aspects of ALD chemistry that have been addressed by first principles atomic-scale 

modelling are growth reactions, substrate effects and precursor decomposition.  A wider range of 

issues, such as growth rate, film uniformity and reactor design, can be addressed by ‘multi-scale 

modelling’, i.e. using the atomistic results as inputs to other scales of simulation.  Nevertheless, many 

ambitious targets remain; for instance, there are no models to date that explicitly show how precursor 

chemistry and reactor conditions dictate nanomorphology.  Predicting precursor volatility is another 

open question for simulation. 

Simulations have mostly addressed the ALD of oxides and nitrides, with relatively little on metals and 

chalcogenides.  By far the most common subject to date has been computing reaction steps in the 

deposition of high-k dielectrics (HfO2, ZrO2, Al2O3) onto silicon-based substrates, clearly driven by 

the interest from the semiconductor industry that has propelled ALD into prominence over this period.  

A few simulations have considered inorganic ALD onto organic molecules, but there has been no 

modeling yet of the issues unique to molecular layer deposition. 

For mechanistic questions, density functional theory (DFT) is the method of choice and this is mostly 

used to compute reaction and activation energies for adsorption and ligand elimination from a single 

precursor molecule interacting with an idealised reactive surface.  The simulations reveal a palette of 

competing reactions, subject to fascinating stereochemical effects.  Recently, more attention is being 

paid to interactions between adsorbate fragments on the surface, leading to steps such as densification 

that can have a major influence on growth.  Detailed models of non-ALD decomposition reactions 

during heterodeposition onto various substrates are also emerging, opening up the potential for using 

ALD precursors to achieve atom-by-atom control of interfaces.  Nevertheless, an open challenge is 

the reliable simulation of redox reactions and plasma-based ALD processes. 

One of the strengths of DFT and other first principles approaches is that quantitative data (such as 

reaction energetics) can be obtained without fitting to experiment.  However, whether a single 

reaction step is endothermic or exothermic is not in itself evidence of whether it plays a role in 

deposition.  Only a series of simulations provide useful insights – e.g. assessing which decomposition 

reaction is most likely – and so the choice of model and its interpretation remains the greatest source 
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of uncertainty.  First principles results have turned out to be most powerful when they can add atomic-

scale explanation to experimental data, particularly in situ techniques such as IR spectroscopy.  More 

generally, simulations must aim to move beyond simply validating data already available from 

experiment, and instead explain, predict and contribute to innovations in ALD processing. 
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