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Abstract   

 Chronic Myeloid Leukaemia (CML) is a myeloproliferative disorder 

characterised by increased proliferation of haematopoietic stem cells in the bone 

marrow. CML results as a consequence of a reciprocal translocation between 

chromosomes 9 and 22, producing what is known as the Philadelphia chromosome 

(Ph). This translocation generates the chimeric protein Bcr-Abl, a constitutively 

active tyrosine kinase which induces oncogenesis in part by promoting increased cell 

survival and proliferation. Since the development of Bcr-Abl-specific tyrosine kinase 

inhibitors (TKIs) there has been a substantial improvement in the clinical treatment 

of CML. Unfortunately, residual disease and the development of TKI resistance has 

become an ever growing concern, resulting in the need for a greater understanding of 

the disease in order to develop new treatment strategies. Interestingly, constitutive 

expression of the Bcr-Abl in CML is known to produce elevated levels of Reactive 

Oxygen Species (ROS) which are known to influence a variety of cellular processes. 

Previous studies have demonstrated that NADPH oxidase (Nox) activity contributes 

to intracellular-ROS levels in Bcr-Abl-positive cells, having a positive effect on 

survival signalling. The objective of this study was to elucidate how Nox protein 

activity was influenced downstream of Bcr-Abl. It was also of interest to examine 

further how Nox-derived ROS influence CML disease phenotype and identify if 

there was a potential in targeting these proteins to improve CML treatment. 

 In the first part of this study, it was shown that inhibition of Bcr-Abl 

signalling, by either Imatinib or Nilotinib, led to a significant reduction in ROS 

levels which was concurrent with the Glycogen synthase kinase-3 (GSK-3) 

dependent, post-translational down-regulation of the small membrane-bound protein 

p22phox, an essential component of the Nox complex. Furthermore, siRNA 
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knockdown of p22phox in these cells established its importance in ROS production 

providing a link between Bcr-Abl signalling and ROS production through Nox 

activity. 

 Following on from this work, p22phox function and mediated ROS 

production was examined to establish how it affected cellular activity and influenced 

CML disease phenotype. This study identified p22phox to have a significant role in 

cellular proliferation, demonstrating its importance in G1/S phase cell cycle 

transition through a pRb-Cyclin E-dependant mechanism. Removal of p22phox 

expression was also demonstrated to significantly decrease cell viability while 

producing a minor effect on cell survival. Taken together this work identified the 

importance of p22phox-mediated Nox protein activity in CML disease phenotype. 

Furthermore, p22phox removal was demonstrated to make cells significantly more 

susceptible to Bcr-Abl-specific TKI treatment, while pharmacological silencing of 

Nox activity in combination with TKIs was demonstrated to produce substantial, 

synergistic increases in cell death through augmentation of apoptosis, demonstrating 

a significant improvement on TKI treatment alone.  

 In summary, this work identified p22phox protein maintenance as a possible 

mechanism by which Bcr-Abl signalling influences the production of Nox-derived 

ROS. Furthermore, this work also established the importance of p22phox function in 

CML disease phenotype while also demonstrating the potential of targeting Nox 

proteins in combination with Bcr-Abl inhibition. 
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1. Chronic Myeloid Leukaemia  

1.1 Classification of leukaemia 

 The term leukaemia is derived from the combination of the two Greek words, 

leukos (white) and haima (blood), referring to a spectrum of haematological 

neoplasms of the blood and bone marrow which are characterised by an abnormal 

accumulation of white blood cells. Accounting for approximately 3% of all cancers 

diagnosed each year, 12.8 out of 100,000 American adults were newly diagnosed 

with some form of leukaemia in 2013 and an estimated 310,046 people currently live 

with or are in remission from this disease in the United States alone (LLS, 2013; 

Howlader et al., 2013).  Leukaemia is broadly classified based on two parameters, 

the lineage of white blood cells affected, which can be either myeloid or lymphoid, 

as well as whether or not the onset or progression of the disease presents as chronic 

or acute.  Acute leukaemias demonstrate rapid accumulation of immature white 

blood cells, causing the disease to progress quickly. In contrast, chronic leukaemias 

are a group of long-term diseases, typically taking months or years to progress and 

are characterised by the excessive build up of relatively mature, but still abnormal, 

white blood cells.  

 

1.2 CML: A brief history 

 In 1845, pathologists Dr James Hughes Bennett of Edinburgh and Dr Rudolf 

Virchow of Berlin independently described a disease which was to become known as 

Chronic Myeloid Leukaemia (CML). Later work by two Philadelphia based 

cytogeneticists linked this disease to a consistent chromosomal abnormality, which is 

now known as the Philadelphia (Ph) Chromosome (Nowell and Hungerford, 1960). 

The Ph Chromosome was subsequently recognised as the product of a reciprocal 
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translation between chromosomes 9 and 22 (Rowley, 1972), which fused the ABL1 

proto-oncogene from chromosome 9 (Bartram et al., 1983) to the Breakpoint Cluster 

Region (BCR) gene on chromosome 22 (Groffen et al., 1984). This translocation, 

designated t(9;22)(q34;q11), generates the chimeric BCR-ABL1 gene thereby 

producing the Bcr-Abl oncoprotein (Shtivelman et al., 1985). Bcr-Abl is a 

constitutively active tyrosine kinase and has been identified as one of the key 

requirements for oncogenesis in CML (McLaughlin et al., 1987; Lugo et al., 1990).  

  

1.3 CML: A clinical perspective 

 CML has an incidence of 1-2 in 100 000 individuals, with approximately 

70,000 people currently living with the disease in the United States alone and a 

further 4800 newly diagnosed cases each year more commonly observed in adults 

with a median age of onset between 45-55years (LLS, 2013; Howlader et al., 2013). 

Interestingly, low levels of the BCR-ABL1 mRNA transcript can be detected in 

approximately 30% of healthy individuals, this occurrence increases with age 

however only a small percentage of these people will ever develop CML (Bierneux 

et al., 1995; Bose et al., 1998). Therefore, although Bcr-Abl expression is sufficient 

to transform haematopoietic cells (McLaughlin et al., 1987, Lugo et al., 1990), Bcr-

Abl alone may not be sufficient to induce CML in humans. It is suggested that 

immune response may eliminate Bcr-Abl expressing cells in these individuals 

(Posthuma et al., 1999) or further genetic abnormality may be required for disease to 

develop (Deininger et al., 2000; Ren, 2005). Indeed it has previously been predicted 

using epidemiological data that two further mutations in addition to Bcr-Abl may be 

necessary for CML to fully develop (Vickers, 1996). How these mutations arise is 

uncertain however epidemiologic studies have demonstrated that exposure to 
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ionizing irradiation increases the risk of acquiring CML, in these cases CML 

developed after a prolonged latent period (4–11 years on depending on the level of 

exposure) further suggesting that subsequent mutations may be necessary for 

development (Tanaka et al., 1989; Corso et al., 1995). It is interesting to note that 

theses epidemiology studies in part focused on CML development in survivors of the 

atomic bomb. 

 

Phases of Disease 

  Patients usually present in a chronic phase (CML-CP) which is characterised 

by an accumulation of functionally normal myeloid cells as well as an increased 

presence of the immature myeloid progenitor cells (also known as blast cells) in 

bone marrow, peripheral blood and extramedullary sites (Savage et al., 1997). 

Symptoms are mild at this stage and generally consist of splenomegaly, fatigue and 

weight loss. With effective treatment patients can remain in a CML-CP for several 

years maintaining a relatively good quality of life. Unfortunately, if treatment is or 

becomes ineffective the disease will progress to an accelerated phase presenting only 

for 4-6 months, with an increase in the frequency of progenitor cells detected rather 

than terminally differentiated mature cells (Calabretta and Perrotti, 2004). 

Subsequently the disease enters a blastic phase (CML-BP) which is also referred to 

as “Blast Crisis”. CML-BP is characterised by a considerable accumulation of 

progenitor cells and is associated with poor prognosis. Progression to CML-BP 

occurs after CML progenitors lose what is known as their terminal differentiation 

capacity, signifying that these cells will not differentiate into mature blood cells 

(Figure 1). Each stage of disease is determined through examination of different 

numbers of immature progenitors in peripheral blood or bone marrow, with 
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Figure 1. Haematopoiesis and its relationship to CML. Figure illustrates normal 

cellular haematopoiesis and identifies how it relates to CML. The CD34 and CD38 

surface markers are extensively used to define haematopoietic cell hierarchy, with stem 

cells being  CD34
+ 

CD38
-
, progenitor cells being CD34

+ 
CD38

+
 and matured cells 

expressing neither (Doulatov et al., 2012). This classification system is also used for 

CML cell hierarchy, with CD34
+ 

CD38
- 
used to identify Leukaemic Stem Cells (LSCs) 

which will be discussed later. 
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CML-CP defined by 0-15% blasts, accelerated phase with 16-30% blasts and CML-

BP with >30% blasts (Akel et al., 2000).  

 How progenitors lose their differentiation capacity is not entirely certain 

however it is known that additional molecular and cytogenetic changes occur in 50-

80% of patients that have progressed from chronic to accelerated and blast phases, 

demonstrating abnormalities in the genes for p53, pRb, c-MYC, p16
INK4A

 and RAS 

(Faderl et al., 1999). Additionally, Bcr-Abl activity itself may increase significantly 

as a result of gene amplification, increased promoter activity as well as other 

methods (Perrotti et al., 2010). Oxidative stress induced as a result of Bcr-Abl kinase 

activity is a major contributing cause to CML cell genomic instability and the 

subsequent genetic alterations which result, a factor which is strongly believed to 

influence disease progression (Nowicki et al., 2004; Rassool et al., 2007; 

Nieborowska-Skorska et al., 2012). As will be discussed, this increase in genomic 

instability is also considered to be the main contributing factor for the development 

of Bcr-Abl resistance to the tyrosine kinase inhibitors (TKI) used to treat CML 

patients (Koptyra et al., 2006; Sallmyr et al., 2008).  

 

1.4 Bcr-Abl 

Bcr-Abl Isoforms  

 Generation of Ph is not entirely uniform and shows predictable variance and 

as a result one of three Bcr-Abl isoforms can be formed, each with a different 

molecular weight which is determined based on the breakpoint position and 

subsequent number of sequences retained within the BCR gene following 

translocation. Breakpoints within the BCR gene during translocation localise to one 

of three regions, the first major breakpoint cluster region (M-bcr) encodes for a 
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210kDa protein (p210 Bcr-Abl) which is the hallmark of CML and can also be found 

in approximately a third of Ph-positive Acute Lymphocytic Leukaemia (ALL) 

patients (McLaughlin et al., 1987; Maxwell et al., 1987). Further upstream of the M-

bcr is the minor breakpoint cluster region (m-bcr) which encodes a 190kDa protein 

(p190 Bcr-Abl) and is detected in the remaining proportion of Ph-positive ALL cases 

as well as a minor number of CML cases (Kurzrock et al., 1987; Kantarjian et al., 

1991; Suryanarayan et al., 1991). The final breakpoint region, µ-bcr, results in a 

230kDa protein (p230 Bcr-Abl) which has been detected in Ph-positive Chronic 

Neutrophilic Leukaemia (Pane et al., 1996) as well as rare cases of CML (Wilson et 

al., 1997).  

 

ABL1 and BCR genes: Independent and combined properties 

 Studies which began more than 40 years ago in the Abelson murine 

leukaemia virus identified ABL1 as an oncogene (Abelson and Rabstein, 1970; Goff 

et al., 1980; Ben-Neriah et al., 1986). This gene and its family members encode for 

non-receptor tyrosine kinases which have demonstrated importance in linking 

extracellular stimuli to signalling pathways involved in cell growth, survival, 

invasion, adhesion and migration (Greuber et al., 2013). ABL1 and ABL2 make up 

the ABL gene family however ABL1 is the gene associated with the translocation, 

production and oncogenic potential of the BCR-ABL1 proto-oncogene (Bartram et 

al., 1983). The 145kDa Abl protein encoded by ABL1 is ubiquitously expressed and 

although predominantly nuclear, shuttles between the cytoplasm and nuclei of cells 

co-localising with F-actin and binding to chromatin respectively (Van Etten et al., 

1989; Van Etten et al., 1994). Although heavily implicated in CML, Abl activity has 

also demonstrated importance in the oncogenesis of solid cancers, particularly breast 
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cancer (Srinivasan and Plattner, 2006) and lung cancer (Lin et al., 2007) as well as 

prostate cancer (Drake et al., 2012) and melanoma (Ganguly et al., 2012).  

 The unique structure of the Abl protein is of great importance for its function. 

Alternative splicing of the first exon of the ABL1 gene produces the 1a and 1b 

isoforms of Abl (Shtivelman et al., 1985). Of the two isoforms, 1b is expressed at a 

higher level and contains a myristoylated N-terminal glycine, not present in 1a 

variant, which allows it to attach to the plasma membrane (Daley et al., 1992). 

Additionally, Abl has three Src-homology (SH) domains in its N-terminal region all 

of which are very important to mediate interactions with other proteins (Greuber et 

al., 2013). Intramolecular forces tightly regulate the catalytic activity of the Abl 

kinase, with the proteins N-terminal "cap", which contains its myristoylated tail and 

SH3 domain, important for auto-inhibition of function (Pluk et al., 2002). 

Additionally, in order to stabilise Abl in an active conformation phosphorylation of 

two tyrosine residues, Y412 and Y245, within a conserved regulatory motif known 

as its activation loop is required (Tanis et al., 2003). 

 As discussed, Abl activity is tightly regulated with multiple regulatory 

mechanisms, most of which are disrupted in the Bcr-Abl fusion protein. Indeed, 

regulation of Abl activity by its auto-inhibitory N-terminal "cap" is sterically 

abolished as a result of its fusion to the C-terminus of Bcr sequences, thereby 

increasing tyrosine kinase activity (Tanis et al., 2003). Bcr is a complex 160kDa 

protein containing several functional regions and is ubiquitously expressed across 

human tissues (Collins et al., 1987; Dhut et al., 1988). The independent function of 

Bcr in cells is still not fully understood however much is known of its function in 

respect to Bcr-Abl. Indeed, the N-terminus of Bcr contains a novel serine/threonine 

kinase domain, several important SH2 protein binding domains and an amino 
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terminal coiled-coil oligomerisation domain, all of which have been demonstrated to 

be important for Bcr-Abl-mediated transformation (Maru and Witte, 1991; 

Pendergast et al., 1991; McWhirter et al., 1993a). Activation of Bcr-Abl requires 

dimerization followed by successive trans- and auto- phosphorylation of the 

regulatory tyrosines found in the Abl domains activation loop (Smith et al., 2003). 

Interestingly, the coiled-coil domain of Bcr is essential for dimerisation and therefore 

activation of Abl tyrosine kinase. Furthermore, this domain of Bcr also promotes 

Bcr-Abl association with actin, which is essential for proper activation of 

downstream signalling pathways (McWhirter et al., 1993b; McWhirter and Wang 

1993). Finally, Bcr fusion brings new regulatory domains/motifs to Abl kinase 

inferring the ability for Abl to interact and phosphorylate new substrates. One 

important example of this involves the phosphorylation of Bcr on tyrosine residue 

177, which recruits Growth factor Receptor-Bound protein 2 (GRB2) (Pendergast et 

al., 1993). GRB2 is an important adaptor molecule and once recruited by Y177 

phosphorylation on Bcr, it allows Abl to phosphorylate and initiate the activation of 

the Ras pathway, which will be discussed later (Ma et al., 1997). This recruitment 

enhances the oncogenic ability of Abl kinase further contributing to Bcr-Abl 

pathogenesis. 

 

1.5 Mechanisms of Bcr-Abl oncogenesis 

 In many ways Bcr-Abl activity mimics growth factor stimulation, activating 

similar signalling pathways such as the PI3K/Akt, JAK/STAT and Ras-activated 

Raf/MEK/ERK pathways (Figure 2). Constitutive signalling from these pathways in 

haematopoietic stem and progenitor cells as a result of Bcr-Abl activity leads to an 

increase in proliferation which is accompanied by a decrease in apoptosis (Cortez et  
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Figure 2. Constitutive tyrosine kinase activity of Bcr-Abl mimics growth factor 

receptor activation. Growth factors (GF) and cytokines are known to induce signal 

transduction which activates a host of cellular signalling pathways including the 

PI3K/Akt, JAK/STAT and Ras activation of Raf/MEK/ERK1/2, all of which are also 

known to be activated downstream of Bcr-Abl. This figure represents a simplified 

schematic of the interplay between Bcr-Abl and GF/cytokine receptor signalling, 

described in detail in text. GF, Growth factor; P, Phosphorylation; MEK, MAPK/ERK 

kinase; SOS, Son of Sevenless; PIP2, Phosphatidylinositol bisphosphate; PIP3, 

Phosphatidylinositol 3,4,5-triphosphate; GRB2, Growth factor Receptor-Bound protein 

2; ERK, Extracellular Regulated Kinase; IL-3, Interleukin-3; GM-CSF, 

Granulocyte/Macrophage-Colony stimulating factor; JAK, Janus Kinase; STAT, Signal 

Transducers and Activators of Transcription; PDK1, 3-phosphoinositide-dependent 

protein kinase-1.  
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al., 1995), resulting in the exponential increase in myeloid cell numbers. 

Furthermore, these cells demonstrate reduced growth-factor dependence (Daley et 

al., 1988; Sirard et al., 1994) and increased motility with decreased adhesion to bone 

marrow stroma and extracellular matrix (Gordon et al., 1987), leading to premature 

release of immature myeloid cells into circulation. These events coupled with Bcr-

Abl induced genomic instability, drive disease progression (Sallmyr et al., 2008). 

 

Ras Signalling 

 Under normal conditions Ras signalling is involved in the transmission of 

extracellular signals, usually initiated by epidermal growth factor stimulation, which 

promote growth, survival and differentiation (Pylayeva-Gupta et al., 2010).  This 

pathway is well studied, with aberrant activation of Ras found in many human 

cancers (Pylayeva-Gupta et al., 2010). The potential of Bcr-Abl to activate Ras 

signalling is dependent on the phosphorylation of tyrosine 177 within the Bcr region, 

which allows for interaction with the adapter molecule GRB2, an important factor in 

the transformation of human haematopoietic progenitor cells (Pendergast et al., 

1993). Bcr-Abl binding to GRB2 enables the formation of complexes between 

GRB2, the guanine-nucleotide exchange factor Son of Sevenless (SOS) and GAB2 

(a scaffolding adaptor protein), thereby activating Ras signaling (Pendergast et al., 

1993; Sattler et al., 2002). Ras signalling has been shown to be a key requirement of 

Bcr-Abl-mediated transformation (Sawyers et al., 1995; Peters et al., 2001), while 

also being instrumental in the inhibition of apoptosis downstream of Bcr-Abl (Cortez 

et al., 1996). One of the main groups of proteins activated as a result of Bcr-Abl 

activity are the Extracellular Regulated Kinase (ERK) family of proteins (Cortez et 

al., 1997). Ras signalling downstream of Bcr-Abl is crucial in activation of ERK 
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signalling which is important for the induction of mitogenic and anti-apoptotic 

effects in CML (Chang et al., 2003).  

 

PI3K/AKT Signalling 

 The PI3k/Akt pathway is involved in a wide range of cellular functions that 

include proliferation, differentiation, inhibition of apoptosis and glucose metabolism 

(Engelman, 2009; Vanhaesebroeck et al., 2012). Activation of this pathway is 

normally downstream of growth factor receptor tyrosine kinases, with aberrant 

activity known to play a significant role in oncogenic signaling. Bcr-Abl activates 

this pathway by recruiting PI3K into a complex with the adapter proteins Crk, CrkL 

and Cbl, activating PI3K and initiating downstream signalling (Sattler et al., 1996). 

Furthermore, activation of Ras and recruitment of GAB2 has also been shown as 

important in PI3K activation (Sattler et al., 2002). Bcr-Abl induces the constitutive 

activation of PI3K signalling thereby increasing proliferation (Skorski et al., 1995) 

while also demonstrating the potential to transform haematopoietic cells (Skorski et 

al., 1997). Akt is a serine/threonine kinase activated downstream of PI3K and is 

known to activate and inactivate several downstream targets which have important 

anti-apoptotic and cell survival functions (Vanhaesebroeck et al., 2012). Akt activity 

downstream of Bcr-Abl signalling is essential in mediating the oncoproteins 

leukogenic effects by; inhibiting BAD, preventing apoptosis through continual 

activity of the anti-apoptotic BCL-2 proteins (Salomoni et al., 2000); activating 

mammalian target of rapamycin (mTOR) which promotes increased cellular growth 

and division in leukaemic cells (Mohi et al., 2004); up-regulating MDM2, which 

prevents cell cycle arrest and apoptosis through negative regulation of p53 (Trotta et 

al., 2003); and inhibiting FOXO transcription factors (FOXO1, FOXO3a, and 
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FOXO4) through their constitutive phosphorylation and cytoplasmic retention 

thereby preventing their effects on cell-cycle arrest and apoptosis (Jagani et al., 

2008). 

 

JAK/STAT Signalling 

 The Janus Kinase (JAK) proteins are a group of tyrosine kinases which 

activate the Signal Transducers and Activators of Transcription (STAT) family of 

transcription factors which are important in regulating immune response, 

proliferation, differentiation, cell migration and apoptosis in response to growth 

factor and cytokine signals, with their aberrant activation implicated in many 

myeloproliferative disorders including CML (Schindler et al., 2007). Bcr-Abl 

induces constitutive phosphorylation and activation of STAT1 and STAT5 through 

JAK2 kinase activity (Chai et al., 1997), which mediates the transcriptional 

upregulation of several proteins that contribute to Bcr-Abl pathogenesis, including 

the anti-apoptotic proteins Bcl-xl, Bcl-2, A1 and the serine/threonine kinase pim-1 

(Horita et al., 2000; Gesbert and Griffin, 2000; Nieborowska-Skorska et al., 2002). 

Indeed, STAT5 activation is important in transformation, enhanced growth and 

viability downstream of Bcr-Abl (de Groot et al., 1999; Sillaber et al., 2000). Studies 

in mouse models have demonstrated STAT5 to be an indispensible factor for 

induction and maintenance of Bcr-Abl–positive leukaemia (Ye et al., 2006; Hoelbl et 

al., 2010). Interesting, JAK/STAT pathways can be activated through autocrine 

signalling in early progenitor cells as a result of Bcr-Abl– induced secretion of 

growth factors such as IL-3 and GM-CSF (Jiang et al., 1999). This is suggested to 

play a role in promoting cell-cycle entry of primitive leukemic stem cells and 

progenitors during the CML-CP (Holyoake et al., 2002). Interestingly, similar 



14 

 

extrinsic signalling has also demonstrated involvement in Bcr-Abl-independent TKI 

resistance (Wang et al., 2007). Indeed, enhanced STAT5 levels have been 

demonstrated to reduce sensitivity to TKIs thereby inducing resistance (Warsch et 

al., 2011). 

 

1.6 CML treatment and the problems faced 

 For a long time allogeneic bone marrow transplantation remained the only 

curative option for CML, unfortunately this treatment was rarely feasible due to the 

later age of onset generally observed in CML patients coupled with the difficulty in 

finding a suitable donor. As such traditional chemotherapeutics such busulfan, 

hydroxyurea, cytarabine as well as interferon- (IFN) were routinely used (Silver 

et al., 1999). Treatment with IFN-based regimens remained the standard therapy 

for many years however the unique presence of Bcr-Abl expression in all CML cells 

and absence from normal cells made it the central focus in the development of 

therapeutic treatments (Deininger et al., 2005).  

 In the 1990s, a targeted rational drug design led to the development of the 

first clinically significant small-molecule tyrosine kinase inhibitor (TKI) STI571, 

which subsequently become known as Imatinib. In 1996, Druker et al. described the 

selective effects of this TKI on cells containing Bcr-Abl, resulting in the inhibition of 

cell growth. This study was the first demonstration of the potential of Imatinib as a 

treatment for CML. Imatinib works by inhibiting the tyrosine kinase activity of Bcr-

Abl through competitive binding of the ATP-binding site, preventing dimerisation, 

auto-phosphorylation and therefore kinase activation, inhibiting its effects on 

downstream substrates (Schindler et al., 2000; Nagar et al., 2002). A 5 year follow-

up study of newly diagnosed CML-CP patients treated with Imatinib demonstrated it 
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to extremely successful in the clinic with complete haematological response (CHR: 

Normalisation of blood counts and spleen size) and cytogenetic response (CCyR: no 

detection of Ph Chromosome) observed in 97% and 87% of patients respectively 

without progression to CML-BP in 93% of patients (Druker et al., 2006). The 

potential of Imatinib treatment for newly diagnosed patients in CMP-CL continued 

to be demonstrated in further 6 year (Hochhaus et al., 2009) and 8 year (Deininger et 

al., 2009) follow-up studies. Even more significantly patients who presented with 

CCyR for at least 2 years were projected to have the same life expectancy as the 

general population (Gambacorti-Passerini et al., 2011).  

 

Drug Resistance  

 Imatinib treatment was hailed as major advancement in CML treatment, 

demonstrating considerable improvements on the previous standard of IFN 

treatment (Druker et al., 2006; Hochhaus et al., 2009; Deininger et al., 2009). 

However, it was evident that Imatinib was not perfect. In the 8 year follow-up study 

it was demonstrated that 16% of patients had to discontinue treatment with Imatinib 

as a result of the drug being inadequately effective and a further 6% for adverse 

effects (Deininger et al., 2009). Furthermore, many patients, although initially 

demonstrating positive effects to treatment, became resistant to Imatinib treatment 

which was largely a result of point mutations in the kinase domain of Bcr-Abl 

disrupting TKI binding (Gorre et al., 2001; Branford et al., 2002; Shah et al., 2002). 

 As a result, large emphasis was directed to the development of alternative 

TKIs which circumvent known modes of Imatinib resistance (Quintás-Cardama et 

al., 2007; Bixby and Talpaz, 2011). Indeed, cystallographical analysis (Schindler et 

al., 2000; Nagar et al., 2002) which examined the interactions of Imatinib with Bcr-
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Abl led to the development of the more potent second generation inhibitors of Bcr-

Abl. These were Nilotinib, an Imatinib derivative (Weisberg et al., 2005) and 

Dasatinib, a dual Src and Abl TKI (Shah et al., 2004), both of which were effective 

in treating the majority of mutations which conferred resistance to Imatinib and were 

approved for first-line therapy of CML-CP in 2010. Still these drugs were not 

without their faults which led to the development of Bosutinib (Puttini et al., 2006), 

another Src/Abl inhibitor which binds Bcr-Abl in a unique manner, addressing Bcr-

Abl mutations which conferred resistance to Nilotinib and Dasatinib treatment 

(Redaelli et al., 2009; Khoury et al 2012).   

 Bosutinib is currently being examined as another potential first-line therapy 

(Cortes et al., 2011a; Khoury et al., 2012) however considering the trends observed 

in TKI treatment to date there is no doubt that resistance will develop toward this 

inhibitor requiring the need for more drugs. Indeed, the most problematic point 

mutation observed to date is the Bcr-Abl
T315I

 “gatekeeper mutation”, which is 

insensitive to all three of the clinically approved TKIs as well as Bosutinib (O’Hare 

et al., 2009). As a result there is great anticipation for the clinical approval of third 

generation Bcr-Abl TKIs, capable of targeting this mutation as a first line therapy 

and in patients who have relapsed due to this mutation. Two such drugs which are in 

clinical evaluation are Ponatinib (Huang et al., 2010) and DCC-2036 (Cortes et al., 

2011b). 

 These TKIs were all developed to overcome Bcr-Abl-dependent resistance as 

a result of point mutation and subsequent structural changes in the protein. 

Interestingly, it has been also observed that patients can exhibit resistance to TKI 

treatment without detectable mutations in the BCR-ABL1 mRNA transcript (Hughes 

et al., 2009; Garg et al., 2009). Indeed it has been demonstrated that there can be 
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clinical resistance to TKI treatment despite inhibition of Bcr-Abl activity (Hochhaus 

et al., 2002). This is referred to as Bcr-Abl-independent resistance and has been 

linked to the increased activity of various kinases and their associated pathways 

including  PI3K/Akt, Raf/MEK/ERK1/2, Src family of kinases and JAK/STAT 

(Donato et al., 2003; Burcher et al., 2005; Esposito et al., 2011; Gioia et al., 2011). 

This has presented a large obstacle for CML treatment, mounting much concern 

while prompting a revaluation of therapeutic approach. As a result, much focus has 

now been placed on the potential of targeting Bcr-Abl activity in combination with 

these effected pathways and others (Helgason et al., 2011, O’Hare et al., 2012). 

 

Residual disease: The leukaemic stem cell 

  In addition to the possibility of resistance developing there is also a necessity 

for continual, lifelong treatment with Imatinib to prevent disease reoccurrence. This 

was demonstrated in an unusual clinical study, The Stop Imatinib (STIM) trial, 

which examined the effects of Imatinib discontinuation in 100 patients that had 

exhibited a complete molecular response (CMR: Undetectable levels of BCR-ABL1 

mRNA transcript) for at least 2 years (Rousselot et al., 2007; Mahon et al., 2010). A 

30 month follow-up observed that 61 of these patients experienced molecular 

reoccurrence of BCR-ABL1 mRNA transcript with only 56 of these patients sensitive 

to repeat TKI treatment. Furthermore, a similar study which examined Nilotinib and 

Dasatinib discontinuation in patients demonstrated equivalent results (Rousselot et 

al., 2011). Interestingly, this reoccurrence is a result of the clonal expansion of a 

residual population of Bcr-Abl positive cells, referred to as leukaemic stem cells 

(LSCs) (Figure 1).  
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 CML LSCs express Bcr-Abl yet are resistant to TKI treatment and are 

therefore said to lack addiction to Bcr-Abl signalling (Hamilton et al., 2012). LSCs 

are suggested to be transformed haematopoietic stem cells (HSC) (Takahashi et al., 

1998) and as such exhibit self-renewal capacity providing a continual source of 

disease (Huntly et al., 2004). Furthermore, these cells reside in the bone marrow 

niche a factor which is believed to in part confer this lack of addiction to Bcr-Abl 

signalling (Weisberg et al., 2008). This niche presents as a cytokine-rich 

microenvironment ideal for residual disease to reside, this is due to the fact that high 

concentrations of stromal cell-derived factors such as granulocyte-macrophage 

colony-stimulation factor (GM-CSF) and interleukin-6 (IL-6) can provide LSCs cells 

with extrinsic protection from TKI treatment (Traer et al., 2012; Nair et al., 2012). 

Interestingly, co-culture of CML LSCs with mesechymal stromal-cells has also 

implicated the N-cadherin receptor and WNT--catenin signalling in TKI protection 

(Zhang et al., 2013).  In fact, three other major pathways have demonstrated 

involvement in LSCs survival; Hedgehog (Zhao et al., 2009), TGF-FOXO3A-BCL-

6 (Naka et al., 2010; Hurtz et al., 2011) and JAK2/STAT-PP2A (Neviani et al., 

2005; Samanta et al., 2009; Hantschel et al., 2012). 

  

 Unfortunately although development of new TKIs can address drug 

resistance to a degree their use in eradicating residual disease is limited. Treating 

residual disease remains a challenge as replicating the entire effects of the bone 

marrow microenvironment in order to design potential therapeutics is difficult, 

extensively involving murine models which only exhibit CML-like disease. Co-

culture studies like those of Zhang et al., (2013) provide an interesting approach to 

develop further understanding in this area and identify possible targets for treatment. 
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Targeting essential pathways which infer Bcr-Abl insensitively to LSCs should make 

these cells susceptible to Bcr-Abl inhibition as a treatment. As such, much interest is 

now focused on the potential of Bcr-Abl inhibition combined in tandem with 

simultaneous inhibition of other critical pathways (Helgason et al., 2011; O’Hare et 

al., 2012). One such study which has demonstrated a substantial increase in LSC 

death through combination, this treatment utilised the inhibition of autophagy and 

Bcr-ABL via chloroquine and TKI treatment respectively (Bellodi et al., 2009). As a 

direct result of this study and others, the CHOICES (ChlorOquine and Imatinib 

Combination to Eliminate Stem cells) clinical trial commenced in the United 

Kingdom in 2013 to examine the potential of the combined use of chloroquine and 

Imatinib in treatment of CML patients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



20 

 

2. Reactive Oxygen Species (ROS) and Cellular Signalling 

2.1 Classification of ROS 

 Reactive Oxygen Species (ROS) are highly reactive oxygen derivatives 

broadly classified into two groups, radicals which possess unpaired valence shell 

electrons [e.g. the oxygen ions superoxide (O2
-

), peroxyl (RO2), hydroxyl (

OH) 

and alkoxyl (RO)] and non-radicals [e.g. hypochlorus acid (HOCl), ozone (O3), 

singlet oxygen (
1
O2) and hydrogen peroxide (H2O2)] which are easily converted into 

radicals as a result of their unstable O-O linkage thereby acting as oxidative agents 

(Bedard and Krause, 2007). Generation of ROS has long been regarded as a by-

product of oxygen consumption and cellular metabolism. Indeed, ROS are produced 

during aerobic respiration as a consequence of electron transport chain activity. 

During this process electrons are transported between the mitochondrial electron 

transport chain complexes I, II, III and IV, “leakage” of a single electron at anyone 

of these complexes has the potential of reducing free oxygen to produce O2
-

, which 

is rapidly neutralised by antioxidant systems such as superoxide dismutase (SOD) 

and peroxidases present in the mitochondria (Turrens, 2003).  

 Reduced levels of free radical scavenging enzymes, hypoxic conditions or 

damage to the mitochondria can result in the escape of ROS from the mitochondria, 

thereby increasing oxidative stress in the cell. In addition, albeit to a lesser extent 

systems other than the mitochondria are also known to contribute to endogenous 

ROS levels as a by-product of their normal function, these include cytochrome P-450 

(Gonzalez, 2005), xanthine oxidoreductase (Harrison, 2004), peroxisomes (Schrader 

and Fahimi, 2004) as well as other cellular elements (Bedard and Krause, 2007). 

Contrasting to these former sources, ROS can also be generated enzymatically in 
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response to various stimuli; the NADPH Oxidases (Nox) are an example of a system 

which produces ROS professionally and not as a by-product of function.  

 Regardless of the source, ROS can potentially interact with a vast number of 

biomolecules in the cell such as lipids, proteins, carbohydrates and even nucleic 

acids, therefore if allowed to accumulate to toxic levels these interactions can have 

detrimental effects on the function of these biomolecules, leading to induction of 

apoptosis (Simon et al., 2000). In fact, this unbiased reactivity of ROS has lead to 

their general acceptance as the key factor in the aging process (Beckman and Ames 

1998). In addition to these effects, exposure of DNA to ROS can cause double strand 

breaks or modification of bases through oxidation, both of these effects can disrupt 

the structure of DNA thereby effecting RNA transcription as well as potentially 

inducing mutations if not repaired (Cooke et al., 2003). Such effects on DNA can 

result in the induction of apoptosis in cells however these mutations may also have 

the potential of initiating oncogenesis. Indeed, many cancer types demonstrate an 

elevated ROS levels which has been linked to the generation of further genetic 

alterations thereby contributing to oncogenic phenotype and disease progression 

(Mitsushita et al., 2004; Wu, 2006; Yamaura et al., 2009; Weinberg and Chandel, 

2009; Hole et al., 2011). 

 Due to their abundance proteins are the most frequent biomolecules to be 

affected by oxidation and as a result are believed to be the main targets of ROS 

within cells (Davies, 2005). Fluctuations in ROS levels will therefore influence 

oxidative-modifications of proteins, the consequence of which being dependent on 

the concentration of ROS and species involved, while further being influenced by the 

individual biochemical and structural characteristics of each protein effected. This is 

down to the secondary and tertiary structures of a protein being affected by oxidative 
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induced changes in the charge, size, hydrophobicity or polarity of amino acids in its 

polypeptides, dictating protein stability and therefore activity. This is demonstrated 

in the fact that oxidation of amino acid side chains can cause inter- and intra-

molecular cross-linkages while it is also known that polypeptide backbones are 

susceptible to 

OH reactivity which can provoke protein fragmentation and 

degradation (Berlett and Stadtman, 1997). One of the most physiologically important 

and relevant ROS-mediated oxidative-modifications of proteins is observed in 

sulphur-containing amino acids such as cysteine and methionine. These amino acids 

have been demonstrated to be highly susceptible to oxidisation (Janssen-Heininger et 

al., 2008) but more significantly these oxidation events can be reversed by 

antioxidant mechanisms within the cell (Hoshi and Heinemann, 2001).  

 

2.2 Maintenance of ROS homeostasis 

Cellular Antioxidants 

 Considering the effects of ROS accumulation it comes as no surprise that 

cells have evolved various mechanisms for ensuring that oxidative stress is 

prevented or kept to a minimum. One such mechanism is observed within proteins 

themselves. As discussed, ROS readily react with methionine residues in proteins 

(Janssen-Heininger et al., 2008). This reaction forms methionine-sulfoxide thereby 

removing or scavenging the reactive species and preventing its potential to react with 

other biomolecules. Interestingly, most cells contain methionine sulfoxide reductases 

(MsrA/B), which catalyze the thioredoxin (Trx)-dependent reduction of methionine 

sulfoxide back to methionine (Lee and Gladyshev, 2011). It is suggested that this 

enzymatically-regulated cycling of methionine between oxidised and reduced states 

has evolved as a buffer against ROS, acting as an endogenous antioxidant in cells 
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(Luo and Levine, 2009). It is important to note however that methionine sulfoxide 

can be irreversibly hyperoxidised to form methionine sulfone (Stadtman et al., 

2003). 

 In addition to this system most cell types also express endogenous cellular 

antioxidant enzymes which prevent oxidative toxicity by scavenging and neutralising 

accumulated ROS. The glutathione (GSH) system is ubiquitously expressed and 

among the most active of these systems, important for cellular protection against 

ROS as well as electrophiles and xenobiotics. Interestingly GSH can act as an 

important indicator of a cells redox state, a fact which is frequently utilised to 

examine oxidative stress (Pastore et al., 2001; Piemonte et al., 2001). GSH reduces 

disulfide bonds formed as a consequence of cysteine oxidation, this process is vital 

for the recycling of glutharedoxins (Grx) another antioxidant which require GSH as a 

co-factor (Chen et al., 2009). In order to achieve its function GSH becomes oxidised 

forming GSSG, before GSH reductases reduce it back to GSH. 

 Trx is part of another antioxidant system which does not directly remove 

ROS, but instead supports other important antioxidant proteins by catalysing their 

reduction through cysteine thiol-disulfide exchange (Nordberg and Arner, 2001). 

Other important antioxidant mechanisms include the conversion of lipid 

hydroperoxides to alcohols and H2O2 to H2O by GSH peroxidases (Arthur, 2000), the 

catalytic conversion of O2
-

 to H2O2 achieved by SOD activity (McCord and 

Fridovich 1988) and the neutralisation of H2O2 by catalase activity (Chelikani et al., 

2004).  

 More recently peroxiredoxins (Prx), a family of peroxidases, have been 

described as another class of cellular redox scavengers, defined by their ability to 

reduce H2O2. Prx contain highly conserved cysteine residues which are sensitive to 
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oxidation by H2O2. Prx elicit their antioxidant effect through oxidation of these 

cysteine residues thereby neutralising cellular H2O2 (Rhee et al., 2012). Oxidation of 

these cysteine residues induces the formation of disulfide bonds, which are 

subsequently reduced by electron donation from cellular thiol thereby reverting Prx 

back to its reduced state. Uniquely, Prx cysteine residues are able to recover from 

hyper-oxidation to sulfinic acid. Reduction of this hyper-oxidation is slow requiring 

the ATP-dependent sulfiredoxins (Srx) but interestingly the presence of this function 

is believed to be a eukaryotic adaptation to facilitate H2O2-dependent signaling 

(Wood et al., 2003).  

 

2.3 ROS Signalling 

 Contradictory to the traditional view of ROS being toxic by-products of 

cellular function there has been a recent emergence of evidence to suggest that ROS 

actually play significant roles in a diverse range of cellular processes including cell 

survival (Naughton et al., 2009; Peshavariya et al., 2009), proliferation (Sturrock et 

al., 2006; Petry et al., 2006; Jeong et al., 2004; Peshavariya et al., 2009), insulin 

signalling (Mahadev et al., 2004), invasion (Deem and Cook-Mills, 2004), cell 

senescence (Colavitti and Finkel, 2005), angiogenesis (Ushio-Fukai, 2006), oxygen 

sensing (Lee et al., 2006), hormone synthesis (Pfarr et al., 2006), cell death (Kim et 

al., 2007), transformation (Laurent et al., 2008), regulation of transcription factors 

and gene expression (Li et al., 2010), differentiation (Xiao et al., 2009; Sardina et 

al., 2010), migration (Meng et al., 2008; Reddy et al., 2011), cytoskeletal 

remodelling (Lyle et al., 2009), regulation of cellular redox potential (Bedard and 

Krause, 2007) as well as cross-linking and protein folding (Santos et al., 2009). For 

all these processes the activity of H2O2 is most frequently cited in its involvement, 
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with many mammalian cell types producing H2O2 for the purpose of intracellular 

signalling in response to various stimuli.  

 H2O2 is distinct in its activity as a messaging molecule in that it does not bind 

effectors but rather oxidises critical residues. The best understood, and possibly most 

important method by which ROS such as H2O2 achieve regulation of cell function is 

by acting on redox-sensitive cysteine residues. Cysteine residues within the catalytic 

domains or active sites of various proteins demonstrate a low pKa value making 

them very susceptible to oxidisation (Rhee and Woo, 2011). Oxidation of these 

cysteines can be reversed by the antioxidant mechanisms previously discussed 

thereby circumventing permanent damage to the protein while still inhibiting its 

activity in the interim. This has been most successfully demonstrated through the 

inhibition of protein tyrosine phosphatases (PTPs) and the tumour suppressor PTEN 

as a result of growth factor stimulation (Rhee et al., 2005a; Rhee et al., 2005b; 

Tonks 2005; Corcoran and Cotter, 2013).  Furthermore, some serine/threonine 

phosphatases such as protein phophsatase-1 and -2A (PP1 and PP2A) also show 

susceptibility to oxidative inactivation (Rao and Clayton, 2002; O'Loghlen et al., 

2003). All of these phosphatases negatively control the phosphorylation state and 

activity of numerous signal transduction proteins and are therefore influential in the 

regulation of numerous cellular processes (Tonks, 2005; Corcoran and Cotter 2013). 

Thus, ROS signalling will decrease phosphatase activity, enhancing protein tyrosine 

or serine/threonine phosphorylation thereby having the potential to influence signal 

transduction. Indeed, it is believe that the activation of protein kinase activity alone 

downstream of some growth factor receptors is not sufficient for complete signal 

transduction, requiring concurrent inhibition of phosphatases by H2O2 (Sundaresan 

et al., 1995; Bae et al., 1997; Bae et al., 2000; Bokoch et al., 2009). 
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 Until recently it was still unclear how a toxic molecule such as H2O2 was able 

to selectively oxidise effector proteins such as phosphatases without inducing 

damage to other biomolecules within the cell. One explanation was that ROS 

production, by dedicated generators such as Nox proteins, was localised. It is now 

believed that the ability for ROS to regulate and influence signalling pathways and 

other processes with specificity is dependent on the localisation as well as the 

compartmentalisation of their production. Indeed, localisation of ROS production to 

different subcellular compartments of the cell allows for co-localisation with specific 

ROS targets, reducing the risk of off-target redox signalling (Terada, 2006). In 

complementation, ROS-scavenging systems are important in the 

compartmentalisation of the redox signalling, with Prx demonstrating a prominent 

role in achieving localised, spatial accumulation of H2O2 following stimulation. 

Indeed, Woo et al., (2010) demonstrated that during receptor mediated signalling, 

production of H2O2 is confined to discrete membrane sub-domains which contain 

Prx. This co-localisation of H2O2 and Prx was demonstrated to facilitate the 

inhibition of PTPs even with low concentrations of H2O2. Furthermore, these Prx 

were spatially restricted thereby insulating the rest of the cell from the potentially 

detrimental off-target effects of H2O2.The study provided an important insight into 

the potential specificity of ROS signalling.  

 It does not come as a surprise that such spatially defined, temporal and 

localised accumulation of ROS production is seldom achieved as a result of ROS 

generated as a by-product of cellular activity. In fact, of all the cellular processes 

influenced by redox signalling the Nox family of professional ROS generators are 

the most frequently cited source of H2O2. 
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3. NADPH Oxidases (Nox) 

3.1 Introduction to the Nox family 

 As discussed ROS generation in eukaryotic cells is a result of oxygen 

metabolism and can be produced by a variety of sources. However, in contrast to the 

majority of these sources where ROS are produced as by-products, the NADPH 

Oxidase (Nox) family of proteins primary function is to generate ROS through 

specific enzymatic activity. There are seven members of the Nox family. Nox2 

(originally named gp91phox) was the first identified member and has been 

extensively studied in host defence for its role in the ROS-mediated degradation of 

endocytosed bacterial pathogens in the phagosomes of phagocytic cells (Leto and 

Geiszt, 2006). Since its identification six additional homologs of Nox2 have been 

described, these are Nox1, Nox3, Nox4, Nox5, Duox1 and Duox2. Interestingly, the 

potential for these proteins to function beyond host defence was realised following 

their description in a variety of different non-phagocytic cell types such as 

fibroblasts (Meier et al., 1991) vascular smooth muscle cells (Griendling et al., 

1994), endothelial cells (Görlach et al., 2000), thyroid cells (De Deken et al., 2000), 

neurons (Serrano et al., 2003) and hepatocytes (Reinehr et al., 2005) to name but a 

few. Indeed, Nox protein activity in these cells types has been demonstrated to play 

important signalling roles in processes including but not limited to cell survival 

(Naughton et al., 2009; Peshavariya et al., 2009), proliferation (Sturrock et al., 2006; 

Petry et al., 2006; Jeong et al., 2004; Peshavariya et al., 2009), differentiation (Xiao 

et al., 2009; Sardina et al., 2010) and migration (Meng et al., 2008; Reddy et al., 

2011), with the list continually growing.  

 The Nox proteins are integral membrane proteins sharing several conserved 

structural features. The C-terminal tails of all these proteins contain a catalytic 
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subunit consisting of FAD and NADPH binding sites while the N-terminus is made 

up of six transmembrane domains and two heme groups which form a channel to 

allow successive transfer of electrons (Sumimoto, 2008). ROS production is 

achieved through the removal and transfer of an electron from an NADPH substrate 

to FAD, then heme, and finally to molecular oxygen, generating O2
-

 (Isogai et al., 

1995), which is rapidly converted to H2O2 by SOD. H2O2 is then capable of freely 

diffusing across membranes due to the activity of aquaporin channel proteins 

(Bienert et al., 2007). As discussed, once generated H2O2 has the potential to affect 

multiple cellular signalling events. 

 

3.2 Nox Activation and Signalling 

 Although the Nox proteins are structurally similar, each is activated by 

specific mechanisms and regulatory subunits (Figure 3). Furthermore, activation of 

each system is initiated as a response to a variety of stimuli, ranging from LPS and 

inflammatory mediators, a relic of their original microbicidal role, B and T cell 

receptor stimulation (Jackson et al., 2004; Richards and Clark 2009), the activity of 

oncoproteins such as Bcr-Abl (Naughton et al., 2009) as well as stimulation from 

growth factors such as Platelet-derived growth factor (PDGF), Thrombin, Tumour 

necrosis factor- (TNF-), Angiotensin II (Brown and Griendling, 2009). Indeed, 

growth factor mediated induction of tyrosine kinase activity has been extensively 

studied in respect to Nox protein activation and signalling events. 
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Figure 3. Regulation of Nox activation. Figure illustrates Nox activation downstream 

of growth factor (GF) receptor stimulation. (a) Activation of Nox1/Nox2/Nox3 requires 

kinase activity and subsequent phosphorylation (P) to induce the assembly of the Nox 

complex. (b) Nox4 is constitutively active, regulated transcriptionally or by the presence 

of p22phox. Poldip2 can also regulate Nox4 activity. (c)(i) Nox5 and DUOX1/2 

activation is heavily influenced by the interaction of intracellular calcium (Ca
2+

) levels 

with EF-hands on the N-terminal domains of each protein. (ii) In addition, Nox5 

activation can be influenced by C-terminal phosphorylation (P). TF, transcription factor. 
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Nox1, Nox2 and Nox3 

 There has been extensive study of the regulation of Nox in phagocytes. In 

this system the enzyme consists of two membrane-bound subunits, the catalytic core 

Nox2 and p22phox (Figure 3a). The p22phox protein is an integral partner for Nox2 

as well as Nox1, Nox3 and Nox4, being essential for activity through stabilising 

these proteins at the membrane (Ambasta et al., 2004; Ueno et al., 2005). Activity of 

the enzyme is regulated by three cytosolic proteins; p47phox, p67phox, p40phox, 

and the small Rho GTPase Rac2 (Lambeth et al., 2007; Groeger et al., 2009). After 

stimulation, p47phox undergoes a conformational change due to extensive 

phosphorylation at its autoinhibitory region mediated by the activity of various 

protein kinases (Akt, PKC, p38 MAPK, ERK and Pak) (Inanami et al., 1998; 

Bokoch et al., 2009). This in turn facilitates translocation of the 

p47phox/p67phox/p40phox complex to the membrane where p47phox interacts with 

p22phox (Lambeth et al., 2007; Groeger et al., 2009). Concurrently activation causes 

Rac2-GDP to be catalysed to Rac2-GTP by Guanine exchange factors (GEF), Rac2-

GTP can now bind p67phox at the membrane resulting in the production of O2
-

 

which is rapidly dismutated into H2O2. Two homologs exist in the Nox1 system for 

p47phox and p67phox, these are Nox organiser 1 (NoxO1) and Nox activator 1 

(NoxA1) respectively. In addition, Nox1 similarly to Nox2 requires p22phox and 

small g-protein Rac1 for activity (Cheng et al., 2006). Unlike p47phox, NoxO1 lacks 

an autoinhibitory region and therefore appears to be constitutively active (Cheng and 

Lambeth, 2004). Regulation of Nox3 is less well known, ROS generation requires 

p22phox and is enhanced by p67phox (or NoxA1) and p47phox (or NoxO1) (Ueno 

et al., 2005).  
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 Regulation of PDGF-dependent H2O2 production demonstrated in smooth 

muscle cells gave one of the first insights into growth factor-receptor induced ROS 

production (Sundaresan et al., 1995). PDGF induced PKC activity is documented to 

phosphorylate p47phox facilitating its translocation to the membrane activating 

Nox2 (Bokoch et al., 2009; Bae et al., 2011). Furthermore, PI3K activation and 

subsequent production of phosolipid phosphatidylinositol 3,4,5-triphosphate (PIP3) 

downstream of the PDGF-receptor has been shown to be essential for Nox1 mediated 

H2O2 production in hepatocellular carcinoma cells (Bae et al., 2000). This is 

achieved through Rac1 activation which results from PIP3 induced phosphorylation 

and activation of the guanine exchange factor βPix (Park et al., 2004). Furthermore, 

c-Src substrate proteins Tks4 (tyrosine kinase substrate with four SH3 domains) and 

Tks5 have been shown to be functional members of a p47phox-related organiser 

superfamily (Gianni et al., 2009). In this model Src-mediated phosphorylation of 

Tyr508 on Tks4 and of Tyr110 on NoxA1 induces protein interaction via the SH3 

domains of Tks4 and the proline rich region of NoxA1, generating Nox1-dependent 

ROS (Gianni et al., 2010; Gianni et al., 2011). Interestingly, Tks4 and Tks5 can 

mediate Nox1 and Nox3 ROS generation but are unable to activate Nox2.  

 

Nox4 

 Unlike Nox1, Nox 2 or Nox3, Nox4 requires only p22phox for activity 

(Figure 3b) (Ambasta et al., 2004). In addition to p22phox polymerase delta-

interacting protein (Poldip2) has been described as a novel regulator of Nox4 in 

smooth muscle cells stimulating activation through p22phox interaction (Lyle et al., 

2009), the molecular mechanism behind Poldip2 regulation of Nox4 however still 

remains to be determined. Evidence suggests that Nox4 is regulated at the level of 
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mRNA as opposed to post-translational protein modifications (Serrander et al., 

2007). Furthermore, composition of its C-terminal region is believed to be the cause 

of its constitutive activity (von Löhneysen et al., 2012). Insulin-like growth factor I 

(IGF-I), bone morphogenetic protein-2 (BMP-2), transforming growth factor-  

(TGF), and Toll-like receptor 4 (TLR4) are examples of growth factors and 

receptors which have been shown to activate Nox4 without engaging regulatory 

subunits (Lee et al., 2007;  Maloney et al., 2009; Liu et al., 2010; Mandal et al., 

2011; Edderkaoui et al., 2011). To date growth factor mediated activation of Nox4 

has only been shown to occur through the transcriptional regulation of either Nox4 

or p22phox. IGF-I receptor stimulation has been demonstrated to induce Nox4 

dependent ROS production in pancreatic cancer cells, in turn playing an important 

pro-survival role (Lee et al., 2007). The activation of Nox4 activity in this system is 

achieved through the transcriptional upregulation of p22phox, this is mediated by 

NF- downstream of the IGF-I receptor (Edderkaoui et al., 2011). Phosphorylation 

and activation of Akt after receptor ligand-binding was integral in activating NF- 

in this system. The role NF- plays in Nox regulation is not limited to p22phox and 

its activation has also been shown to be involved in the transcriptional upregulation 

of the Nox4 and Nox1 genes in smooth muscle cells downstream of TNF-α 

stimulation, indicating a more widespread influence on Nox regulation (Manea et al., 

2010). 

 

Nox5, Duox1 and Duox2 

 Nox5, Duox1 and Duox2 are unlike the other Nox proteins in so far as these 

proteins do not require p22phox for activity (Figure 3c). Activation is dependent on 

intracellular calcium levels, which bind EF-hands present in the N-terminal domains 
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of these proteins inducing a conformational change and subsequent ROS production 

(Banfi et al., 2001; Ameziane-El-Hassani et al., 2005). Therefore it is possible that 

any stimulus which increases intracellular calcium concentration could result in 

increased ROS production. Interestingly, phorbol 12-myristate 13-acetate (PMA) 

exposure has been shown to increase the sensitivity of Nox5 to calcium, which is 

mediated through PKC dependent phosphorylation of the Thr494 and Ser498 

residues on Nox5 (Jagnandan et al., 2007; Serrander et al., 2007b). This increased 

sensitivity of Nox5 to calcium circumvents the need for calcium levels to increase 

and as a result resting levels of this molecule are enough to activate ROS generation. 

This demonstrated a novel method of Nox5 regulation. Additionally, ERK1/2 

signalling has been shown to be important for phosphorylation of Ser498 on Nox5 

and preventing this phosphorylation significantly reduces the ability of Nox5 to 

generate O2
-

 (Pandey et al., 2011). PKC can activate Nox5 however it is evident 

from this study that downstream signalling via the ERK1/2 pathway is also essential. 

 

Nox signalling and disease 

 In 1995 Sundaresan et al., published one of the first demonstrations where 

growth factor receptor-mediated signalling generated H2O2 which acted as a 

secondary messenger necessary for signal-transduction. Subsequent studies 

demonstrated this ROS production to be dependent on Nox and their regulatory 

proteins (Bae et al., 2000; Park et al., 2004; Bokoch et al., 2009). Since these studies 

there has been increasing evidence of the influence Nox derived ROS have on signal 

transduction after the stimulation of a variety of different growth-factor receptors as 

well as downstream of oncoprotein activity. As discussed, tyrosine kinase activity is 

capable of initiating signal transduction cascades, which induce downstream effects 
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including the generation of ROS via activation of the Nox proteins. Therefore the 

potential for Nox proteins in signalling is evident when you consider the extensive 

list of growth factors which induce their activity. 

 ROS production as a result of Nox protein activation downstream of signal 

transduction is tightly regulated; this coupled with the previously discussed 

compartmentalisation of ROS production through the activity of antioxidant or ROS-

scavenging systems such as peroxiredoxins ensures the specificity of the Nox 

enzymes in signalling (Ushio-Fukai, 2009; Rhee et al., 2012). Unfortunately, 

deregulation and aberrant Nox activity does occur, leading to increased ROS 

production which is implicated in a host of diseases, such as acute renal failure (Nath 

and Norby, 2000), hypertension (Rey et al., 2002), cardiovascular disease (Heymes 

et al., 2003), diabetes (Etoh et al., 2003), ischemia leading to cerebral and 

myocardial infarctions (Hong et al., 2006; Meischl et al., 2006), retinal degeneration 

(Usui et al., 2009) as well as neurodegenerative disorders such as Alzheimer and 

Parkinson diseases (Gao et al., 2012). 

 Furthermore, considering the well established role for Nox proteins 

downstream of various signalling pathways it is of no surprise that their activity can 

be subject to de-regulation by aberrant tyrosine kinase activity as a result of 

oncogenic signalling. An ever growing body of literature has implicated Nox-derived 

ROS in the cellular transformation and maintenance of a substantial number of 

common cancer types such as prostate (Brar et al., 2003; Lim et al., 2005; Kumar et 

al., 2008; Huang et al., 2012a), colon (Fukuyama et al., 2005; Bauer et al., 2012), 

breast and ovarian (Desouki et al., 2005; Choi et al., 2010), bladder (Shimada et al., 

2009; Shimada et al., 2011; Huang et al., 2012b), pancreatic (Vaquero et al., 2004) 

and thyroid gland cancers (Weyemi et al., 2010) as well as melanoma (Brar et al., 
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2002; Yamaura et al., 2009), lymphoma (Lan et al., 2007; Hoffmann et al., 2010) 

and leukaemia (Kamiguti et al., 2005; Prata et al., 2008; Naughton et al., 2009). In 

these cases Nox proteins have been demonstrated to enhance oncogenesis through 

induction of increased genomic instability, angiogenesis, invasion, metastasis, cell 

growth and survival. Interestingly, in the case of CML a role for Nox-derived ROS 

has also been demonstrated to increase cell survival downstream of Bcr-Abl kinase 

activity, through augmentation of the PI3K pathway (Naughton et al., 2009). 

 

4. Objectives 

 ROS generation is now widely accepted as being important for a variety of 

cellular processes, mediating its effects in part by influencing signal transduction 

(Bae et al., 2011). One source of ROS which is gaining much attention is the Nox 

family of professional ROS generators, which have been implicated in the 

pathogenesis of a many different cancers types (Block and Gorin, 2012). 

Interestingly, Bcr-Abl signalling has previously been demonstrated to stimulate ROS 

production by increasing Nox protein activity, which was demonstrated to enhance 

cell survival by positively influencing the PI3K/Akt survival signalling pathway 

(Naughton et al., 2009). Although Naughton et al. (2009) established a link between 

Bcr-Abl signalling and Nox-derived ROS, how Bcr-Abl activity influenced the Nox 

proteins was not certain. In light of this, the objective of this study was to elucidate 

how the Nox proteins were activated downstream of Bcr-Abl in CML. It was also of 

interest to examine further how Nox-derived ROS influence CML disease phenotype 

and identify if there was a potential in targeting these proteins to improve CML 

treatment. 



36 
 

 

 

Chapter 2 

 
 

 

 

Materials and Methods 

 

 

 

 

 

 

 

 

 

 

 

 

 



37 
 

Chemicals and reagents 

Bcr-Abl inhibitors Imatinib Mesylate (STI-571) and Nilotinib (AMN-107) were 

from Selleck Chemicals (Munich, Germany). The ROS probe DCF (2',7'-

dichlorodihydrofluorescein diacetate; H2DCFDA) was from Molecular Probes (Life 

Technologies, Dublin, Ireland). The Nox inhibitor VAS2870 (3-benzyl-7-(2-

benzoxazolyl)thio-1,2,3-triazolo[4,5-d]pyrimidine) was from Enzo Life Sciences 

(Lausen, Switzerland). The Mitochondrial complex I inhibitor Rotenone was from 

Calbiochem (EMD Millipore, MA, USA). Bromodeoxyuridine (BrdU) was from BD 

Biosciences (Oxford, UK). FITC-conjugated Annexin V used for apoptosis detection 

was from IQ Products (Groningen, Netherlands). PKC412 and the GSK-3 inhibitor 

SB216763 (SB) were from Tocris (Bristol, UK). The PI3K and MEK inhibitors 

LY294002 (LY) and UO126 (UO) respectively were from Cell Signaling 

Technology (Boston, MA, USA). Diphenyleneiodonium chloride (DPI), the 20S 

proteasomal inhibitor Lactacystin (Lact), the chemotherapeutics Etoposide (Etop), 

Docetaxel (Doc), Cisplatin (Cis), Actinomycin (ActD) and Methotrexate (Met) were 

all from Sigma-Aldrich and unless otherwise stated all other chemicals and reagents 

were purchased from Sigma-Aldrich (Dublin, Ireland). In all cases, if not 

demonstrated, inhibitor concentrations were chosen based on their greatest effect 

with a negligible decrease in cellular viability 

 

Antibodies 

Primary antibodies used for immunoblotting, immunoprecipitation, co-

immunoprecipitation or immunofluorescence were; anti-Akt (#9272), anti-phospho-

Akt (ser473; #9276), anti-c-Abl (#2862), anti-ERK1/2 (#9102), anti-phospho-

ERK1/2 (Thr202/204; #9275), anti-GSK-3 (Rabbit #9315), anti-phospho-GSK-3 
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(Ser9; #9336S), anti-phospho-CrkL (Tyr207; #3181), anti-pRb (#9309), anti-Ki-67 

(#9129), anti-Cyclin E1 (#4129), anti--Catenin (#9562), anti-CDK2 (#2546), anti-

Cyclin D2 (#3741), anti-p21
WAF1/CIP1

 (#2947), anti-p27
KIP1

 (#3686), anti-Cyclin D3 

(#2936), anti-p18
INK4C

 (#2896), anti-Cyclin D1 (#2978), anti-CDK4 (#2906), anti-

CDK6 (#3136), anti-Beclin-1 (#3738), anti-LC3B (#3868), anti-phospho-STAT3(tyr 

750; #9131) anti-p53 (#2524), anti-STAT3 (#9132), anti-PARP (#9542) and anti-

Caspase-3(#9662) all from Cell Signaling Technology (Boston, MA, USA). Anti-

p67phox (#sc-15342), anti-DUOX1 (#sc-48858) and anti-p47phox (#sc-14015), anti-

p22phox (Rabbit #sc-20781; Mouse sc-130551) and anti-P57
KIP2

 (#sc-1037) all from 

Santa Cruz Biotechnology (Santa Cruz, CA, USA). Anti-Nox3 (#Ab82708), anti-

Nox1 (#Ab55831), anti-DUOX2 (#Ab65813), anti-RAC-2 (#Ab2244), anti-Poldip2 

(#Ab84865), anti-BrdU from Abcam (Cambridge, UK). Anti-GAPDH (#RGM2-

500) from Advanced Immunochemicals (Long Beach, CA, USA). Anti--Actin 

(#A5441) and anti-Nox5 (#HPA019362) both from Sigma-Aldrich (Dublin, Ireland). 

Anti-Ubiquitin (#MAB1510), anti-Nox2 (#07-024), anti-phospho-STAT5 

(Tyr694/699; #04-886) and anti-p15
INK4B

 (#05-430) all from Millipore/Upstate 

Biotechnology (MA, USA). Anti-RAC-1 (#ARC03) from Cytoskeleton Inc (Denver, 

USA). Anti-GSK-3 (Mouse #610202) and anti-STAT5 (#610191) from BD 

Biosciences (Oxford, UK). Anti-Nox4 antibody was a kind gift from Dr JD Lambeth 

(Emory University School of Medicine, Atlanta, GA, USA). Secondary antibodies 

for western blotting were either peroxidase-conjugated (Dako, Stockport, UK) used 

for detection with enhanced chemiluminescence (GE Healthcare, Buckinghamshire, 

UK) or Li-Cor IRDye secondary antibodies (Li-Cor Biosciences, Nebraska, USA) 

used for detection with the Odyssey System. 
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Cell lines and culture conditions 

All cell lines were maintained in a humidified incubator at 37
o
C with 5% CO2 in full 

medium plus supplements. Full medium is Roswell Park Memorial Institute (RPMI) 

1640 (Sigma-Aldrich), 10% Fetal Bovine Serum (FBS) (Sigma-Aldrich), 1% 

penicillin/streptomycin (Sigma-Aldrich) and 2mM L-glutamine (Gibco, Invitrogen 

Corporation, Paisley, UK). All cell lines were maintained between 0.1-1.0x10
6 

cells/ml and were subcultured every 2-3 days. Cell counts were obtained using a 

haemocytometer under a light microscope and viable cells were determined by 

trypan blue exclusion. K562 and HL-60 cells were purchased from the DMSZ 

German Collection of Microrganisms and Cell Cultures (Braunschweig, Germany). 

The TonB.210 cell line was derived from the interleukin-3 (IL-3) dependent murine 

pro-B cell line BaF3 and contain a Doxycycline (Dox)- responsive promoter 

whereby Bcr-Abl p210 can be conditionally induced (kindly provided by George 

Daley, MIT, Cambridge, MA). TonB.210 cells were maintained in full medium plus 

1mg/ml G418 sulphate and 10% WEHI-conditioned medium (WEHI-CM) as a 

source of murine IL-3. For IL-3 starvation experiments, TonB.210 cells were washed 

twice in serum free medium (SFM) and resuspended in SFM for the indicated times. 

To induce Bcr-Abl p210 expression cells were incubated with 1μg/ml doxycycline 

hyclate for the indicated times. In all experiments cells were isolated and washed, 

unless otherwise stated, by centrifugation at 100 g for 5min.  

 

Measurement of Intracellular Reactive Oxygen Species 

As previously described (Naughton et al., 2009), ROS levels were determined using 

the cell-permeable fluorogenic probe 2,7-dichlorodihydrofluorescin diacetate 

(H2DCF-DA, cleaved to DCF intracellularly) (Molecular Probes, Life Technologies., 
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Dublin, Ireland). Following treatments, cells were washed in phosphate-buffered 

saline (PBS) before 50μM H2DCF-DA was then added to cells suspensions and 

incubated at 37
o
C in the dark for 15min. Following incubation samples were put on 

ice. Live cell populations were gated and changes in intracellular ROS levels were 

determined by recording the geometric mean fluorescent intensity of 10,000 events 

per sample counted in the FL-1 channel on a FACSCalibur (BD Biosciences Europe, 

Oxford, UK) flow cytometer using CellQuest Pro software. 

 

Western Blot Analysis 

Western Blotting was carried out as previously described (Naughton et al., 2009).  

Following treatments, whole cell lysates were prepared by washing cells in PBS and 

centrifuging at 100 g for 5min at 4
o
C. Cell pellets were then resuspended in RIPA 

lysis buffer (50mM Tris-HCl pH7.4, 1% NP-40, 0.25% sodium deoxycholate, 

150mM sodium chloride, 1mM EGTA, 1mM sodium orthovanadate, 1mM sodium 

fluoride, 200μM 4-(2-Aminoethyl) benzenesulfonyl fluoride hydrochloride (AEBSF) 

and cocktail protease inhibitors (Roche, Welwyn,  Hertforshire, UK). Samples were 

incubated for 30min with vortexing at 4°C, followed by centrifugation at 18,000 g 

for 15min at 4°C to remove cell debris. Protein concentrations were determined by 

Bio-Rad Protein Assay (Hemel, Hempstead, UK) using bovine serum albumin 

(BSA) as a protein standard. Equal amounts of protein samples (30-50μg per  lane) 

were diluted in 2X sample buffer (10% sodium dodecyl sulfate (SDS), 100mM 

dithiothreitol (DTT), glycerol, bromophenol blue, Tris-HCl) and resolved by SDS-

polyacrylamide gel electrophoresis (SDS-PAGE) and  transferred to nitrocellulose 

membranes (Schleicher & Schuell, Dassel, Germany). Membranes were blocked 

with 5% (w/v) BSA in Tris-buffered saline/0.1% Tween-20 (TBS/T) or 5% (w/v) 
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nonfat dry milk in TBS/T for 1hr at room temperature (RT) before being incubated 

overnight at 4
o
C with the appropriate antibodies diluted in blocking buffer. 

Membranes were washed in TBS/T before being incubated with either peroxidase-

conjugated (Dako, Stockport, UK) secondary antibodies and developed using 

enhanced chemiluminescence (GE Healthcare, Buckinghamshire, UK) or with Li-

Cor IRDye secondary antibodies (Li-Cor Biosciences, Nebraska, USA) to be 

examined with the Odyssey Infrared Imager system and Odyssey software (version 

2.1.12, Li-Cor  Biosciences, USA). Densitometric analysis was carried out using 

ImageJ software (http://rsbweb.nih.gov/ij/) (version 1.44, NIH, USA) and data are 

represented in bar charts, calculated as the ratio of the intensity of target bands 

quantified by densitometry factored by the densitometric measurements of loading 

control bands. 

 

cDNA Synthesis and Quantitative Real-Time Polymerase Chain Reaction  

Following treatments 5x10
6
 cells were harvested from each sample. Media was 

removed and total cellular RNA was isolated using the Isolate RNA mini kit (#BIO-

52043; Bioline Ltd, UK), according to the manufacturer’s protocol for eukaryotic 

cells. The concentration of RNA in each sample was determined in triplicate by 

spectrophotometric analysis using a Biophotometer (Amersham Biosciences). 500 ng 

of RNA was then run on a 1% agarose gel to check integrity. RNA was treated to 

remove any contaminating DNA using Amplification Grade DNase I kit (#AMP-D1; 

Sigma- Aldrich, Dublin, Ireland) as per manufacturer’s protocol. cDNA was then 

synthesised from 2 μg RNA using a cDNA Synthesis Kit (#BIO-65026; Bioline Ltd, 

UK). The reaction mix consisted of 1x Moloney Murine Leukaemia Virus Reverse 

Transcriptase (M-MLV RT) buffer, 25mM MgCl2, 40U/μl RNAse inhibitor, 
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200U/μl M-MLV Reverse Transcriptase, 50mM oligo (dT)18 primer mix and 10mM 

dNTPs or the equivalent volume of RNase-free water for the no reverse transcriptase 

control (NRT). The reaction was run at 42ºC for 1hr, followed by 99ºC for 10min, 

before being stored at 4ºC. Quantitative real-time polymerase chain reaction (qRT-

PCR) was used to determine the level p22phox expression, with β-Actin as a 

housekeeping gene for normalisation. Three technical replicates and one NRT 

control were used per sample for each gene. The qRT-PCR reaction was carried out 

on a DNA Engine Opticon 2.0 (MJ Research Inc., Waltham, USA), using Quantittect 

SYBR Green Sensimix kit and Quantitect Primer Assays (Qiagen, West Sussex, 

UK). Qiagen pre-designed primers were used for human p22phox 

(CYBA_QT00082481) and β-Actin (Actin_QT01680476). PCR parameters and 

data analysis was as described in Woolley et al. (2012). Briefly, 50ng cDNA 

template was combined with 10μl of 20x SYBR Green Sensimix and 2μl 10X primer 

in 20μl total reaction volume in a 96-well plate (Bio-Rad). The following PCR 

parameters were used for each primer set: denaturing at 95°C for 15min, followed by 

45 cycles of 94°C for 15sec, 56°C for 30sec and extension at 72°C for 30sec. RNA 

samples were analyzed in triplicate, and p22phox expression relative to β-Actin was 

obtained using the Ct-method. PCR products were then visualised by separation 

on a 2% agarose gel and staining with SYBR Safe gel stain (Invitrogen).  

 

Ubiquitination assay 

Following treatments, approximately 6x10
6
 cells were lysed in preboiled 1% SDS 

lysis buffer (with 10mM N-Ethylmaleimide (NEM;  a de-ubiquitinating enzyme 

inhibitor), 1mM sodium orthovanadate, 200μM AEBSF and cocktail protease 

inhibitors (Roche, Welwyn,  Hertforshire, UK)), vortexed briefly, boiled for 10min 
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(with intermittent vortexing) and sonicated for 3-6sec to shear DNA. Lysates were 

clarified by centrifugation at maximum speed (25,000 g) at 4°C for 10min. The 

supernatants were transferred to a cold eppendorf tube and protein concentration was 

determined as previously described. 1mg of lysate was immunoprecipitated 

overnight using Pierce Crosslink Immunoprecipitation Kit (#26147; Thermo Fisher 

Scientific, Dublin, Ireland) according to the manufacturer’s protocol, with 10μg of 

p22phox antibody crosslinked to Protein A/G agarose using disuccinmidyl suberate 

(DSS). 10mM NEM was included at all washing steps. The immunoprecipitates were 

resolved using SDS-PAGE, as described above separated by 10% SDS-PAGE, 

transferred to nitrocellulose membrane, which was pre-soaked in transfer buffer 

containing 20% methanol and transferred in the same buffer. Membranes were 

autoclaved for 15min prior to blocking to expose further ubiquitin moieties for 

detection, blocked in 5% BSA and probed with anti-ubiquitin and p22phox 

antibodies. 

 

Electroporation and Small Interfering RNA (siRNA) Transfection 

RNA interference in K562 cells was mediated by duplexes of 21-nucleotide RNA 

(Lonza, Berkshire, UK). Two different Ambion Silencer Select predesigned siRNA 

(Applied Biosystems, Warrington, UK) were used for silencing p22phox expression, 

these were siRNA ID-s3786 (siRNA(i)) and ID-s194372 (siRNA(ii)). Transfection 

with the scrambled siRNA Silencer Select Negative Control #1 (Negative) was used 

as a control. The transfection of siRNA used the Amaxa Nucleofactor device with 

the Amaxa cell optimisation kit V (Amaxa, Cologne, Germany) and followed the 

Amaxa guidelines for K562 cells using the electroporation programme X-001 with 

2x10
6
 cells and 300nM siRNA used per transfection. Electroporated control (Elect  
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Ctrl) referred to cells which were electroporated without siRNA. 

 

Live Cell Imaging 

Cells were electroporated with either negative siRNA or p22phox siRNA (as 

described) and plated in poly-d-lysine coated glass bottomed dishes (35 mm 

Petridishes with 14 mm microwells; MatTek Corporation, Ashland, MA, USA) for 

2hr. Cells were incubated in 50 μM H2DCF-DA for 1hr at 37
o
C in the dark. 

Following this incubation cells were rinsed and imaged live in growth medium using 

the Multiphoton Laser scanning microscope Flouview1000 MPE (Mason 

Technology) with an Infrared mode locked (femtosecond) red Ti:Sapphire Laser as 

previously described (Woolley et al., 2012). Cells stained with DCF were excited at 

488 nm and emissions collected at 530 nm. Images were acquired and visualised 

with an XLPLN 25xWMP water immersion objective (1.05 numerical aperture: 

Olympus Optical GmbH, Hamburg, Germany) and stored with an Olympus 

flouview1000 software (Mason Technology, Dublin, Ireland).  Images are 

represented as a single slice from a Z stack projection. During acquisitions, 

saturation levels were kept constant for DCF to allow direct comparison of ROS 

levels between negative siRNA treated cells and p22phox siRNA treated cells.  

 

Cell Death Measurements 

Cell death was assessed by propidium iodide (PI) (Sigma-Aldrich) uptake and 

analysis on a FACSCalibur flow cytometer (BD Biosciences Europe, Oxford, UK). 

Briefly, following treatments cells were washed and resuspended in PBS. PI (to give 

50μg/ml) was then added to cells immediately before analysis on the FL-2 channel. 
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Cell death was indicated by increased fluorescence in the FL-2 channel due to 

increased membrane permeability and uptake of PI. 

 

Co-Immunoprecipitation 

Co-Immunoprecipitation was carried out using the Pierce Crosslink Co-

Immunoprecipitation (Co-IP) Kit (#26149; Thermo Fisher Scientific, Dublin, 

Ireland) according to the manufacturer’s protocol. Briefly, 1mg of protein lysate 

from each sample was prepared and the protein of interest was immunoprecipitated 

overnight at 4
o
C using 10μg of the appropriate antibody crosslinked to Protein A/G 

agarose using DSS. Immunocomplexes were separated by SDS-PAGE as previously 

described, and transferred to nitrocellulose membrane to be probed with the 

appropriate antibodies to determine binding partners. 

 

CFSE Cell Proliferation Assay 

Carboxyfluorescein Diacetate Succinimidyl Ester (CFDA-SE) is non-fluorescent and 

highly membrane permeable, once inside a cell its acetate groups are rapidly 

removed by intercellular esterases producing the highly fluorescent and less 

permeable molecule Carboxyfluorescein Succinimidyl Ester (CFSE) (Quah et al., 

2007). CFSE covalently binds to intracellular molecules, via its succinimidyl groups 

making it highly stable within cells which results in it being retained for long periods 

of time while being evenly distributed between daughter cells following cell division 

(Quah et al., 2007). The level of CFSE fluorescence will half every time a cell 

divides therefore a higher level of fluorescence indicates reduced proliferation while 

a lower level of fluorescence indicates an increased rate of proliferation. This even 

distribution of CFSE fluorescence following cell division allows cell proliferation to 
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be monitored by flow cytometry. To stain with CFSE, the required number of cells 

were centrifuged at 100 g, resuspended in prewarmed PBS containing 5µM CFDA-

SE (Sigma-Aldrich) and incubated at 37
o
C for 15min in the dark. Cells were then 

centrifuged as before and resuspended in fresh prewarmed full medium. Cells were 

left to incubate at 37
o
C for a further 30min in the dark to ensure complete 

modification of the probe before being washed again and resuspended to 0.2x10
6
 

cells/ml in fresh prewarmed full medium. CFSE stained cells were incubated as 

normal at 37
o
C and kept in the dark for the duration of the experiment. To determine 

changes in proliferation rates, K562 cells were stained with CFSE 24hr before 

transfection to allow CFSE levels to stabilise. 24hr after staining parental population 

fluorescence was determined by recording the geometric mean fluorescent intensity 

of 10,000 events counted in the FL-1 channel on a FACSCalibur (BD Biosciences 

Europe, Oxford, UK) flow cytometer using CellQuest Pro software. Cells were then 

transfected with siRNA as previously described and CFSE fluorescence was 

recorded as before 24hr, 48hr and 72hr after transfection. Data was then fit using the 

Proliferation Wizard on a trial version of ModFit LT 4.0 (Verity Software House). 

 

BrdU Cell Cycle Assay 

Bromodeoxyuridine (BrdU) is an analogue of thymidine and is incorporated into 

DNA during synthesis, substituting thymidine, indicating cells which are actively 

replicating their DNA and provides accurate distinction of S phase population. As a 

result cell cycle distribution as determined by BrdU/PI will vary when compared to 

analysis of the cell cycle using PI alone. 24hr, 48hr and 72hr after each transfection 

cells were pulsed with 10µM BrdU (#550891; BD Biosciences) for 1hr before being 

centrifuged at 100 g for 5min and media was aspirated. To fix cells, while vortexing 
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gently, 70% ice cold ethanol was added to cells dropwise to a final concentration of 

1x10
6
 cells/100µl. Cells were then incubated for at least 20min at RT or at -20

o
C 

overnight. 100µl of each sample was transferred to a FACS tube (#352052; Falcon) 

and washed twice with 1ml of wash buffer (PBS with 0.5% BSA) and centrifuged at 

400 g for 5min. Media was aspirated and cells were resuspended in denaturing 

solution (2M HCl) for 20min at RT. Cells were washed as before and resuspended in 

0.5ml 0.1M sodium borate (Na2B4O7, pH 8.5), for 2min at RT to neutralize residual 

acid. Again cells were washed as before. Anti-BrdU antibody (Abcam) was diluted 

to 1/100 in dilution buffer (PBS with 0.5% Tween-20 and 0.5% BSA). Each sample 

was resuspended in 50µl of diluted antibody and incubated for 20min at RT before 

being washed using the dilution buffer as before. FITC-conjugated anti-Rat IgG 

antibody (# F1763; Sigma-Aldrich) was diluted to 1/200 in dilution buffer. Each 

sample was resuspended in 50µl of diluted secondary antibody and incubated for 

20min at RT. Cells were once again washed before all samples were finally 

resuspended pellet in 0.5ml PI (50µg/ml in PBS with 5µg RNase A; Sigma-Aldrich) 

and incubated for 30min at 37
o
C, protected from light. 20,000 events were analysed 

by flow cytometry measuring BrdU linked green fluorescence and PI linked red 

fluoresce from the FL-1 and FL-2 channels respectively of  a FACSCalibur (BD 

Biosciences Europe, Oxford, UK) flow cytometer using CellQuest Pro software. Cell 

were gated and analysed as described by Crane et al. (2011).  

 

Ki-67 Cell Cycle Assay 

Ki-67 is a nuclear protein expressed in proliferating cells and is absent in quiescent 

cells (Gerdes et al., 1983).  As a result Ki-67 is only expressed in cells cycling 

through G1, DNA synthesis (S), G2 or mitosis (M), but not in cells present in the 
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resting phase G0. Therefore is allows accurate distinction between G0 and G1 phase 

cells. At the indicated time-points following transfection cells centrifuged at 100 g 

for 5min and media was aspirated before being fixed by adding 70% ice cold ethanol 

to cells dropwise to a final concentration of 1x10
6
 cells/100µl while vortexing 

gently. Cells were then incubated for at least 20min at RT or at -20
o
C overnight. 

100µl of each sample was transferred to a FACS tube (#352052; Falcon) and washed 

twice with 1ml of wash buffer (PBS with 0.5% BSA) and centrifuged at 400 g for 

5min. Anti-Ki-67 antibody (Cell Signaling) was diluted to 1/400 in dilution buffer 

(PBS with 0.5% Tween-20 and 0.5% BSA). Each sample was resuspended in 50µl of 

diluted antibody and incubated for 20min at RT before being washed using the 

dilution buffer as before. Alexa Fluor488-conjugated anti-Mouse IgG (#A11001; 

Life Technologies) was diluted to 1/200 in dilution buffer. Each sample was 

resuspended in 50µl of diluted secondary antibody and incubated for 20min at RT. 

Cells were once again washed before all samples were resuspended  in 0.5ml PI 

(50µg/ml in PBS with 5µg RNase A; Sigma-Aldrich) and incubated for 30min at 

37
o
C, protected from light. 20,000 events was analysed by flow cytometry 

measuring BrdU linked green fluorescence and PI linked red fluoresce from the FL-1 

and FL-2 channels respectively of  a FACSCalibur (BD Biosciences Europe, Oxford, 

UK) flow cytometer using CellQuest Pro software. G0 population gating was 

determined based on secondary antibody only control. All cells with fluorescence 

above this population were designated as G1 phase cells.   

 

Immunofluorescence 

Following treatments, approximately 5x10
4
 cells were cytospun onto glass slides for 

2min at 500 rpm using a Shandon Cytospin 2 Cytocentrifuge. Cytospins were left to 



49 
 

air dry at RT for 1hr before being fixed with 3% paraformaldehyde. Slides were then 

washed in PBS twice (all washes were 5min each) before quenching with 50mM 

NH4Cl for 10min which was followed by three PBS washes. Cells were then 

permeabilised in PBS containing 0.2% BSA and 0.05% Saponin for 5min at RT. 

Following three further PBS washes cells were incubated with anti-Ki-67 antibody 

(Cell Signaling) at a dilution of 1/400 in 5% FBS/PBS for 2hr at RT, washed in 5% 

FBS/PBS three times and incubated with the secondary Alexa Fluor488-conjugated 

anti-rabbit antibody (#A11034; Life Technologies) at 1/200 in 5% FBS/PBS with the 

nuclear stain Hoescht at 1μg/ml  (Thermo Fisher Scientific, Dublin, Ireland) for 1hr 

at RT. Following these washes with PBS, coverslips were mounted onto the glass 

slides using Mowiol and dried overnight before imaging. Cells were visualised on a 

Leica DM LB2 fluorescence microscope (Leica, Nussloch, Germany) using a TRITC 

filter. Images of the cells were acquired by a Nikon Digital Sight DS-Fi1C camera 

(Nikon, Japan) using NIS-Elements software (version 3.0, Nikon, Japan). 

 

Examining electrophoretic mobility of pRb 

In the case of examining the electrophoretic mobility of pRb, western blotting was 

carried as described previously. Samples were prepared as normal and resolved on a 

6% SDS-polyacrylamide gel. As pRb is approximately 110kDa, samples were 

resolved by SDS-PAGE until just before this molecular weight had run off the gel. 

This provided enough separation to determine if pRb demonstrated any changes in 

molecular weight resulting from changes in phosphorylation status. 

MTS Conversion-based Cell Viability Assay 

Following treatments, cell viability was determined using the CellTiter 96 AQueous 

Non-Radioactive Cell Proliferation Assay (#G5421; Promega, WI, USA) which 
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utilised cellular MTS conversion assay. An MTS assay is a quantitative colourmetric 

assay based on the conversion of the tetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-5-

(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) to 

the coloured end product formazan. This conversion is dependent on enzyme activity 

found in metabolically active cells which directly relates to cell viability (Berridge et 

al., 2005). Manufacturer’s protocol was followed but in brief, 20µl of 

MTS/phenazine methosulfate (PMS; an electron coupling reagent) solution was 

added directly to each well of a 96-well plate containing 100µl of cells in full 

medium and incubated  as normal for 1hr at 37
o
C. For each experiment K562 cells 

were plated for each treatment in triplicate and at four separate cellular densities 

(0.005x10
6
, 0.01x10

6
, 0.015x10

6
, and 0.03x10

6
) to ensure accuracy. The absorbance 

of the resulting formazan solutions was measured using a SpectraMax340 plate 

reader (Molecular Devices, CA, USA) at 490nm wavelength in SoftMaxPro 

software. 

 

Analysis of the Levels of Apoptotic Cell Death 

To provide a more accurate demonstration of the effects of treatments on cell death 

levels and induction of cell death Annexin V binding assay was used. Annexin V 

binds to externalised phosphatidylserine (PS) which is an early indicator of 

apoptosis. Following treatments, cells were washed in ice cold PBS twice and 

resuspended in Annexin-binding buffer (10mM HEPES, 140mM NaCl, 2.5mM 

CaCl2, pH 7.4), approximately 1x10
6
 cells/100µl, at RT. 5µl of FITC-conjugated 

Annexin V was added to each 100µl cell suspension and incubated at RT in the dark 

for 15min. After this incubation a further 350µl of Annexin-binding buffer was 

added to each sample and samples were then placed on ice until analysis. 
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Immediately before analysis 50µl of PI (500µg/ml in PBS) was added to each 

sample. 10,000 events were then analysed per sample by flow cytometry measuring 

Annexin-V binding  and PI uptake in the FL-1 and FL-2 channels respectively of  a 

FACSCalibur (BD Biosciences Europe, Oxford, UK) flow cytometer using 

CellQuest Pro software. Fluorescence was compensated accordingly and quadrants 

were positioned based on positive apoptotic control allowing the determination of 

the percentage of viable cells (lower left quadrant), apoptotic cells (lower right 

quadrant), necrotic cells (upper left quadrant) and cell death by apoptosis (upper 

right quadrant). In combination studies cell viability was represented by the 

percentage of cells in the lower left quadrant. Combination treatments were analysed 

using CompuSyn Softerware (CompuSyn Inc. http://www.combosyn.com/) with the 

combined percentages of the upper right and lower right quadrants inputted, as 

described by Chou, T.C. (2012), for analysis. 

 

Propidium Iodide-based Analysis of the Cell Cycle 

PI is a DNA intercalating agent which fluoresces once bound allowing high through-

put analysis of cell cycle distribution determined by the intensity of PI fluorescence 

which directly correlates with the level of DNA content of cells. Following 

treatments cells were washed twice in PBS before being fixed by adding 70% ice 

cold ethanol to cells dropwise to a final concentration of 1x10
6
 cells/100µl while 

vortexing gently. Cells were then incubated for at least 1hr at RT or at -20
o
C 

overnight. 100 µl of each sample was transferred to a FACS tube (#352052; Falcon) 

and washed twice with PBS, centrifuged at 400 g for 5min. 1ml of PI (50µg/ml with 

5µg RNase A; Sigma-Aldrich) was added to each sample and incubated at 37
o
C for 

1hr in the dark.  Geometric mean fluorescent intensity of 20,000 events per sample 
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was recorded in the FL-2 channel on a FACSCalibur (BD Biosciences Europe, 

Oxford, UK) flow cytometer using CellQuest Pro software. Cell cycle distribution 

was then analysed and fit using the Cycle Analyser on a trial version of ModFit LT 

4.0 (Verity Software House). Sub G0/G1 and post G2/M (polyploidy) events were 

omitted from analysis and the final representation of data. 

 

Hematoxylin and Eosin Cell Staining 

Following treatment, approximately 5x10
4
 cells were cytospun onto glass slides for 

2min at 500rpm using a Shandon Cytospin 2 Cytocentrifuge. Cytospins were left to 

air dry at RT for 1hr before being fixed with 70% ice cold ethanol for at least 1hr. 

Slides were then washed in H2O (each wash consisted of 20 dips into fresh H2O) 

before being stained with Hematoxylin Gill No.2 (#GHS-2; Sigma-Aldrich Slide) for 

10min and washed again in H2O twice. For the bluing step, slides were placed in 

Scotts Tap Water substitute for 2min and washed in H2O twice. Cells were then 

counterstained with Eosin Y solution, aqueous (#HT1101; Sigma-Aldrich) for 4min 

before two further H2O washes. Cells were then dehydrated by being dipped into 

increasing percentages of ethanol, cleared with xylene before coverslips were 

mounted onto the glass slides using DPX mountant and dried overnight before 

imaging. Cells were visualised on a Leica DM LB2 microscope (Leica, Nussloch, 

Germany). Images of the cells were acquired by a Nikon Digital Sight DS-Fi1C 

camera (Nikon, Japan) using NIS-Elements software (version 3.0, Nikon, Japan). 

 

Statistical analysis 

Statistical significance between experimental and control groups was evaluated by 

Student’s t-test. P-values of <0.05 were considered significant. 



53 

 

 

 

Chapter 3 

 
 

 

Imatinib and Nilotinib inhibit Bcr-Abl-induced ROS 

through targeted degradation of NADPH oxidase 

subunit p22phox 

Leukemia Research, 2013; 37, 183-189 

 

 

 

 

  

 

 

 

 



54 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



56 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



57 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



58 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



59 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



60 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



61 

 

Supplementary Material 

 The publication entitled “Imatinib and Nilotinib inhibit Bcr-Abl-induced 

ROS through targeted degradation of NADPH oxidase subunit p22phox” 

demonstrated that increased ROS signalling via Bcr-Abl in K562 cells is in part 

Nox-derived and that inhibition of Bcr-Abl signalling leads to GSK-3 activation 

which potentially reduces intracellular ROS levels through targeted degradation of 

p22phox. This work established a link between Bcr-Abl signalling and ROS 

production through Nox activity. The following section contains supplementary data 

related to the work presented in that publication. 

 

 Figure 1 of Landry et al. (2013) demonstrated that inhibition of Bcr-Abl 

signalling reduces intracellular ROS levels which are in part Nox-derived. In order to 

establish this several pharmacological agents were used to treat K562 cells. Among 

these were the Bcr-Abl inhibitors Imatinib and Nilotinib and the Nox inhibitors DPI 

and VAS2870. To ensure that any effects on ROS levels observed in these 

experiments did not occur as a result of altered cell viability, cell death was assessed 

by propidium iodide exclusion following treatments. Figure S1 demonstrates that 

these treatments did not have any significant effect on cell viability. This indicated 

that any effects on ROS levels observed were due to the inhibition of signalling 

pathways in response to treatments and not due to an effect on cell viability. 
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Figure S1. Treatment of K562 cells with various compounds does not affect cell 

viability. K562 cells were treated with Imatinib (1µM, 16hr), Nilotinib (0.1µM, 16hr), 

DPI (10µM, 1hr) or VAS2870 (10µM, 1hr) and cell viability was analysed by propidium 

iodide exclusion. Results are expressed as mean ± SD and are representative of three 

independent experiments. 
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 Mitochondrial electron transport chain leakage has been previously 

demonstrated as one possible source of the increased ROS levels associated with 

Bcr-Abl expression (Sattler et al., 2000). ROS levels related to mitochondrial 

electron transport chain leakage in K562 cells was examined using Rotenone, a  

mitochondrial inhibitor which prevents the electron transfer from complex I to 

ubiquinone (Chance et al., 1963).  Rotenone treatment had a significant effect on the 

level of intracellular ROS in K562 cells and produced an average reduction of 

approximately 32% (Figure S2). This decrease in intracellular ROS level was 

comparable to the reductions associated with Nox protein inhibition by either DPI or 

VAS2870 treatment. These inhibitors produced average decreases of 43% and 35% 

respectively (Figure 1c). This study demonstrated that mitochondrial electron 

transport chain leakage contributes in part to the intracellular ROS levels of K562 

cells agreeing with the previous study by Sattler et al. (2000).  

 

Figure 2 of Landry et al. (2013) demonstrated that inhibition of Bcr-Abl 

signalling by TKI treatment resulted in the post-translational downregulation of 

p22phox. Interestingly, as demonstrated in Figure S3, the level of reduction in 

p22phox protein was directly proportional to the level of CrkL dephosphorylation in 

K562 cells following either Imatinib or Nilotinib treatment. CrkL phosphorylation 

status is frequently used to demonstrate the decrease in Bcr-Abl kinase activity 

following TKI treatment. This study further indicated the importance of Bcr-Abl 

kinase activity in the maintenance of p22phox protein levels. 
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Figure S2. Mitochondrial electron transport chain leakage contributes in part to 

the intracellular ROS levels of K562 cells. K562 cells were treated with Rotenone 

(1µM, 1hr). Intracellular ROS levels were measured by flow cytometric analysis of 

relative DCF fluorescence. Bar chart shows the mean relative DCF fluorescence of 

treated cells expressed as a percentage of the DMSO vehicle control. Results are 

expressed as mean ± SD and are representative of three independent experiments. 

Statistical analysis was carried out using the student t-test (P<0.05 is marked with *). 
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Figure S3. Reduction in p22phox protein level following Bcr-Abl inhibition is 

proportional to the level of CrkL dephosphorylation. Western blot analysis of 

p22phox protein levels and phosphorylation status (p-) of CrkL in K562 cells treated 

with Imatinib (1µM, 16hr) and Nilotinib (0.1nM, 16hr). Vehicle is DMSO control. 

GAPDH is shown as a loading control. Western blot is representative of three 

independent experiments. 
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HL-60 cells are an acute promyelocytic human leukaemia cell line and are 

routinely used as a Bcr-Abl negative control cell line for K562 cell studies. As 

demonstrated in Figure S4 HL-60 cells were treated with Imatinib to confirm that 

any effects noted in K562 cells following Imatinib treatment were a direct result of 

specific Bcr-Abl inhibition. Landry et al. (2013) demonstrated that Imatinib 

treatment significantly decreases ROS levels in K562 cells (Figure 1a). In contrast, 

Imatinib treated HL-60 cells demonstrated no reduction in ROS levels (Figure S4a). 

Additionally, Imatinib treatment of K562 cells resulted in a significant decrease in 

p22phox proteins levels (Figure 2a). No such reduction was noted in HL-60 cells 

after treatment (Figure S4b). This study demonstrated that both the reductions in 

ROS levels and p22phox protein levels in K562 cells following Imatinib treatment 

were due to the specific inhibition of Bcr-Abl signalling. 
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Figure S4. Imatinib treatment has no effect on the intracellular ROS levels or 

p22phox protein levels of the Bcr-Abl negative HL-60 cell line. (a) HL-60 cells were 

treated with Imatinib (1µM, 16hr). Intracellular ROS levels were measured by flow 

cytometric analysis of relative DCF fluorescence. Bar chart shows the mean relative 

DCF fluorescence of treated cells expressed as a percentage of the DMSO vehicle 

control. Results are expressed as mean ± SD and are representative of three independent 

experiments. (b) Western blot analysis of p22phox and Bcr-Abl protein levels in K562 

and HL-60 cells treated with Imatinib (1µM, 16hr). GAPDH is shown as a loading 

control. 

 



68 

 

Naughton et al. (2009) demonstrated that induction of Bcr-Abl expression 

increases the level of Nox-derived intracellular-ROS but never established a 

mechanism for this process. Following on from this work Landry et al. (2013) 

established that inhibition of Bcr-Abl signalling results in the degradation of the 

NADPH subunit p22phox which coincides with a reduction in intracellular ROS 

levels. From this work it was concluded that active Bcr-Abl signalling maintains the 

protein levels of p22phox, which subsequently regulates Nox activity. Furthermore 

as a result of this study it was hypothesised that induced Bcr-Abl expression may 

increase the protein levels of p22phox by inhibiting degradation.  In order to 

establish this p22phox protein levels needed to be examined following induction of 

Bcr-Abl signalling. TonB.210 cells are a derivative of the murine Interleukin-3 (IL-

3)-dependent pro-B cell line BaF3 and have inducible Bcr-Abl expression, controlled 

by a doxycycline (Dox)-dependent promoter. This cell line was utilised to determine 

if induction of Bcr-Abl expression had any effect on p22phox protein levels (Figure 

S5). Contradictory to the outlined hypothesis induction of Bcr-Abl expression 

following 48hr of Dox treatment demonstrated no significant increase in p22phox 

protein levels (Figure S5a).  

 The failure of Bcr-Abl induction to increase p22phox protein levels raised 

multiple questions into the mechanism of p22phox maintenance as outlined in 

Landry et al. (2013). As a result further examination was required in order to achieve 

a greater understanding of this process. Interestingly, in contrast to K562 cells 

TonB.210 cells are dependent on supplementation with the cytokine, IL-3. It is well 

established that signaling through IL-3/IL-3 Receptor (IL-3R) interaction activates a 

variety of signalling pathways including the Raf/MEK/ERK and PI3K/Akt pathways 

thereby promoting the survival, growth and differentiation of hematopoietic cells 
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(Steelman et al., 2004). As discussed previously and demonstrated in Figure 3 of 

Landry et al. (2013) the activity of both the Raf/MEK/ERK and PI3K/Akt pathways 

were demonstrated to be key in the maintenance of p22phox protein levels 

downstream of Bcr-Abl signalling in K562 cells. Therefore, IL-3 signalling in 

TonB.210 cells potentially has both these pathways activated prior to Bcr-Abl 

induction, preventing p22phox protein degradation. As a result subsequent induction 

of Bcr-Abl is unlikely to have an effect on p22phox protein levels  

 To determine if IL-3 signalling was having an effect on p22phox protein 

levels independent of Bcr-Abl signalling, both untreated and Dox treated TonB.210 

cells were starved of IL-3 for 6hr and p22phox protein levels were monitored (Figure 

S5b). To verify that downstream IL-3R signalling was effected by IL-3 removal, 

phosphorylation of ERK1/2 was examined. As demonstrated IL-3 removal in 

untreated cells produced a significant reduction in p22phox protein levels. 

Furthermore, IL-3 removal in cells expressing Bcr-Abl also demonstrated a decrease 

in p22phox protein levels however this reduction was less significant than that 

observed in untreated cells. This suggested that Bcr-Abl signalling was providing a 

protective effect on p22phox protein levels following IL-3 removal. Taken together 

this work established that IL-3 signalling has a role similar to Bcr-Abl in the 

maintenance of p22phox protein levels and thus provided an explanation for the lack 

of an increase in p22phox proteins levels following Bcr-Abl induction (Figure S5a).  

Finally it is noteworthy to point out that the prosurvial effect of IL-3 signalling has 

previously been linked to increased Nox-derived ROS production in the M07e 

human AML cell line (Maraldi T et al., 2009a; Maraldi T et al., 2009b). This work 

and the work presented here suggested an important role for p22phox not only in 

CML but potentially other blood-borne diseases influenced by IL-3 signalling. 
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Figure S5. IL-3 receptor signalling maintains p22phox protein levels similarly to 

Bcr-Abl signalling. (a) Western blot analysis of p22phox and Bcr-Abl protein levels in 

TonB.210 cells treated with doxycycline (Dox) (1µg/ml, 48hr). GAPDH is shown as a 

loading control. (b) Western blot analysis of p22phox, Bcr-Abl and phopho-ERK1/2 

protein levels in untreated and Dox treated (1µg/ml, 48hr) TonB.210 cells before and 

after IL-3 stravation (6hr). -Actin is shown as a loading control. Bar chart shows the 

mean relative p22phox protein levels of treated cells expressed as a percentage of the 

Untreated (+IL-3) control as determined by densitometry.  Results are expressed as mean 

± SD and are representative of three independent experiments. Statistical analysis was 

carried out using the student t-test (P<0.01 is marked with *). 
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 It was established in Landry et al. (2013) that activation of GSK-3 was 

required for the degradation of p22phox following Bcr-Abl inhibition (Figure 3). 

GSK-3 is highly cited for its role in targeted degradation of proteins.  In many cases 

GSK-3 kinase activity directly flags proteins for degradation through 

phosphorylation of serine or threonine residues (Grimes and Jope, 2001; Xu et al., 

2009). Once the role had been identified for GSK-3 in p22phox degradation it 

needed to be determined if GSK-3 was directly interacting with p22phox following 

Bcr-Abl inhibition and targeting it for degradation. To begin this study the earliest 

time-point at which p22phox protein levels decrease following Imatinib treatment 

needed to be established. Figure S6a demonstrates that p22phox protein levels start 

to lower by 4 hours and are still decreasing up to 8 hours after initial Imatinib 

treatment. 6 hours, a time-point between 4 and 8 hours of Imatinib treatment was 

identified as ideal for determining an interaction between p22phox and GSK-3 

prior to degradation as a high level of p22phox would still be available to interact 

with GSK-3. 

 To establish if there was a direct interaction between p22phox and GSK-3, 

GSK-3 was immunoprecipitated from untreated and Imatinib treated K562 cells 

(Figure S6b). Once separated and membrane transferred, GSK-3 immunorecipitates 

were immunobloted to determine if p22phox was co-immunoprecipitated with GSK-

3. Figure S6b demonstrated that p22phox did not co-immunoprecipitate with GSK-

3 which demonstrated that there was no direct interaction between these two 

proteins. Co-immunoprecipitation of -Catenin was checked as a positive control. 

Furthermore, the reverse immunoprecipitation of p22phox did not demonstrate any 

co-immunoprecipitation of GSK-3. This study suggested that the role GSK-3 was  
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Figure S6. GSK-3 does not directly interact with p22phox prior to degradation.  
(a) Western blot analysis of p22phox protein levels in K562 cells treated with Imatinib 

(1µM) for the indicated times. GAPDH is shown as a loading control. (b) 

Immunoprecipitation (IP) of GSK-3 or p22phox from whole-cell lysates of untreated or 

Imatinib treated (1uM, 8hr) K562 cells. Nitrocellulose membranes were immunoblotted 

(IB) for the presence of GSK-3, p22phox and -Catenin. 
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having on p22phox degradation in Figure 3 of Landry et al. (2013) maybe due to 

upstream effects of GSK-3 activation rather than a direct interaction. 

 

 As previously discussed p22phox is necessary for the activity of Nox proteins 

1, 2, 3 and 4, as a result p22phox has an essential role in intracellular ROS 

production (Ambasta et al., 2004; Ueno et al., 2005). Figure 4 of Landry et al. 

(2013) demonstrated this essential role through selective knockdown of p22phox 

which produced a significant decrease in ROS levels 24hr after transfection. Figure 

S7 demonstrates the same reduction observed in the intracellular ROS levels of K562 

cells 24hr after transfection. In addition to this time-point the ROS levels of K562 

cells 48hr and 72hr after transfection are also shown. 24hr after transfection 

significant reductions in the ROS levels of both the p22phox knockdown samples 

(siRNA(i) and siRNA(ii)) were observed when compared to cells transfected with 

negative control siRNA (Negative). However, by 48hr the reduction in ROS levels 

noted in siRNA(i) transfected cells had halved while siRNA(ii) transfected cells no 

longer demonstrated any significant reduction in ROS. Neither siRNA(i) or 

siRNA(ii) transfected cells demonstrated any significant reduction in ROS levels by 

72hr. 

 As demonstrated in Figure 4a and 4e of Landry et al. (2013), transfection of 

K562 cells with siRNA(i) resulted in an almost complete loss of p22phox protein for 

up to 72hr when compared to cells transfected with negative control siRNA. In 

contrast, cells transfected with siRNA(ii) were demonstrated at each time-point to 

have higher expression of p22phox relative to siRNA(i) transfected cells. Protein 

levels of p22phox siRNA(ii) transfected cells were also demonstrated to increase 

incrementally at each time-point. The gradual increase of p22phox protein levels in  
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Figure S7. Removal of p22phox expression reduces intracellular ROS from 24hr  
K562 were transfected with siRNA to target p22phox expression. Intracellular ROS 

levels were then measured by FACS analysis of relative DCF fluorescence 24, 48 and 

72hr following p22phox knockdown via siRNA. Bar chart shows the mean relative DCF 

fluorescence of p22phox knockdown cells as expressed as a percentage of the Negative 

control. Results are expressed as mean ± SD and are representative of three independent 

experiments. Statistical analysis was carried out using the student t-test (P<0.05 is 

marked with *, P<0.01 is marked with **). 
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siRNA(ii) transfected cells may explain why the ROS decrease lessened between 

time-points but does not provide an explanation for the return of intracellular ROS 

back to basal levels by 72hr. Additionally p22phox protein levels in siRNA(i) 

transfected cells remained reduced for the duration of the study therefore a consistent 

reduction in ROS levels would have been expected.  

 Homeostasis of the redox state in cells is pivotal for the maintenance of 

normal cell function and survival (D’Autréaux and Toledano, 2007; 

Circu and Aw, 2010).  It is likely that a compensatory mechanism is occurring to 

return the cells intracellular ROS back to basal levels. This is not unusual with 

multiple studies demonstrating increases in the activity or expression of alternative 

Nox proteins or their regulators to compensate for ROS decreases resulting from the 

targeted inhibition of another Nox protein (Yang et al., 2001; Maytin et al., 2004; 

Frantz et al., 2006). Additionally it is important to note that p22phox regulation is 

specific to Nox1, Nox2, Nox3 and Nox4 but has no regulatory role for Nox5, Duox1 

or Duox2. The ability of a Nox protein to generate ROS is limited to the availability 

of the substrate NADPH with activity of Nox5, Duox1 and Duox2 being highly 

dependent on NADPH levels (Behard and Krause, 2007). Therefore removal of 

p22phox and subsequent inhibition of Nox proteins 1 to 4 may increase availability 

of NADPH which could have a positive effect on Nox5, Duox1 or Duox2 activity 

thus explaining the noted return of intracellular ROS to basal levels.   

 

 The final study in Landry et al. (2013) examined K562 cells stained with the 

dye trypan blue to obtain viable cell counts (trypan blue negative) following 

p22phox knockdown (Figure 4d). This demonstrated that removal of p22phox 

significantly reduced K562 cell number, which directly correlated with the 
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expression levels of p22phox following knockdown (Figure 4e). Figure S8a 

demonstrates all recorded cell counts 0, 24, 48 and 72hr after transfection in the form 

of a line graph. 24hr after transfection the Negative, siRNA(i) and siRNA(ii) samples 

all demonstrated a lower cell count than that of the untreated cells. This was likely 

due to transfection via electroporation which can cause minor stress to cells 

producing short-term cell cycle retardation (Lepik et al., 2003). It is significant to 

note that at all time-points the Negative transfected cells maintained a higher cell 

count than either of the p22phox knockdown samples. The difference between cell 

counts became most noticeable 72hr after transfection with cells transfected with 

either siRNA(i) or siRNA(ii) showing significant reductions when compared to 

Untreated or Negative siRNA transfected cells. Cell counts 72hr after transfection 

are also illustrated as a bar chart in Figure 4d of Landry et al. (2013). 

 In addition to viable cell counts, the number of trypan blue positive cells 

were also recorded. Figure S8b demonstrates that there was no significant change in 

cell viability of the Negative, siRNA(i) and siRNA(ii) samples at any time-point. In 

contrast, untreated cells demonstrated a significant increase in the percentage of 

trypan blue positive cells by 72hr. This result was most likely due to nutrient 

depletion and/or overcrowding resulting in suboptimal growth conditions in the 

culture media by 72hr. As discussed the transfected samples had a lower cell number 

from 24hr onwards and as a result fewer nutrients would have be utilised providing 

cells with optimal conditions for a longer period. Figure S8 demonstrates that the 

number of K562 cells decreased following p22phox knockdown with no significant 

increase in cell death. This strongly suggested that the decrease in cell number 

observed was due to a reduction in cell proliferation. This demonstrated a potential 

role for p22phox in K562 and CML cell proliferation. 
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Figure S8. Removal of p22phox reduces cell number while having no effect on the 

level of cell death. (a) Viable cell counts of K562 cells determined by trypan blue 

exclusion 0, 24, 48 and 72hr following p22phox knockdown via siRNA. (b) Percentage 

of viable K562 cells determined by trypan blue exclusion 0, 24, 48 and 72hr following 

p22phox knockdown via siRNA. Results are expressed as mean ± SD and are 

representative of three independent experiments. Statistical analysis was carried out 

using the student t-test (P<0.05 is marked with *). 
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 In summary, this work demonstrated that a significant proportion of ROS in 

K562 cells was derived from Nox proteins and to a lesser extent mitochondrial 

electron transport chain leakage. Inhibition of Bcr-Abl signalling led to a significant 

reduction in ROS levels which was concurrent with the post-translational down-

regulation of the small membrane-bound protein p22phox, which is an essential 

subunit of the Nox complex. This down-regulation was dependent on GSK-3 

activity, which is inhibited downstream of the PI3K/Akt and Raf/MEK/ERK1/2 

pathways. How GSK-3 was involved in p22phox degradation was not elucidated, 

although it was shown that there was no direct interaction between these two 

proteins. In addition inhibition of p22phox with siRNA significantly affected ROS 

levels demonstrating the importance of p22phox for ROS generation and suggesting 

that down-regulation of p22phox protein levels following Bcr-Abl inhibition is in 

part responsible for the parallel reduction in ROS levels. Given the importance of 

p22phox for Nox-activity, this study provided a link between Bcr-Abl signalling and 

Nox-derived ROS. Interestingly, inhibition of p22phox by siRNA also resulted in 

decreased cell number with no significant increase in cell death suggesting a role for 

p22phox and therefore Nox activity in cell proliferation. 
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Abstract 

 Nox-derived Reactive Oxygen Species (ROS) production has been implicated 

in many different cellular processes, while being linked to a variety of diseases 

including cancer. After establishing a link between Bcr-Abl signalling and the 

generation of Nox-derived ROS through p22phox, it was of interest to determine 

how p22phox function and mediated ROS production affected cellular activity and 

influenced Chronic Myeloid Leukaemia (CML) disease phenotype. This study 

identified p22phox to have a significant function in cellular proliferation, 

demonstrating its importance in G1/S phase cell cycle transition through a pRb-

Cyclin E-dependent mechanism. Removal of p22phox expression was also 

demonstrated to significantly decrease cell viability while producing a minor effect 

on cell survival. Interestingly, p22phox removal was also demonstrated to make cells 

significantly more susceptible to Bcr-Abl tyrosine kinase inhibition via Imatinib. As 

a result, this work identified the importance of p22phox-mediated Nox protein 

activity in CML disease phenotype, demonstrating the potential of Nox inhibition as 

possible treatment for CML. 
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Introduction 

 Chronic Myeloid Leukaemia (CML) begins in a chronic phase (CML-CP), 

which is defined by an increase in the number of mature circulating myeloid cells. 

Unfortunately without effective therapy patient who present with CML-CP will 

inevitably progress to blastic phase (CML-BP), also known as blast crisis, where 

myeloid cells lose their terminal differentiation capacity resulting in a considerable 

accumulation of immature blasts. This progression is associated with poor prognosis. 

Bcr-Abl expression is required for the pathogenesis of CML, essential for the 

initiation, maintenance and progression of the disease and as a result has traditionally 

been the central focus in the development of therapeutic treatments (Deininger et al., 

2005). Indeed, small-molecule tyrosine kinase inhibitors (TKIs), such as Imatinib, 

which target Bcr-Abl activity have significantly improved CML prognosis (Druker et 

al., 2005). Unfortunately, even with Imatinib treatment residual disease persists and 

DNA mutation can lead to drug resistance. In recent years a large emphasis has been 

directed at the development of alternative TKIs which circumvent known modes of 

resistance (Quintás-Cardama et al., 2007; Bixby and Talpaz, 2011). This resulted in 

the development of several new drugs which targeted Bcr-Abl activity with greater 

efficiency yet they have failed to remove residual disease or the potential for drug 

resistance to develop. As a consequence the development of alternative strategies to 

better treat CML are still needed, making it important to identify other essential 

components which are involved in the pathogenesis of CML. 

 A number of studies have shown that induced or constitutive expression of 

Bcr-Abl increases the intracellular levels of Reactive Oxygen Species (ROS) (Sattler 

et al., 2000; Kim et al., 2005; Naughton et al., 2009). Although traditionally seen as 

harmful by-products of cellular metabolism, ROS and particularly hydrogen 
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peroxide (H2O2) are now generally recognised as important intracellular signalling 

molecules (Rhee et al., 2005a; Rhee et al., 2005b; Toledano et al., 2010; Bae et al.,  

2011).   This had lead to studies which have identified the involvement of ROS 

mediated signalling in multiple factors which define leukaemia disease phenotype 

including but not limited to cell survival and proliferation (Trachootham et al., 2008; 

Groeger et al., 2009; Verbon et al., 2012). Additionally Bcr–Abl-induced ROS can 

contribute to genomic instability, driving the development of drug resistance as well 

as progression to blast crisis (Nowicki et al., 2004; Rassool et al., 2007; Sallmyr et 

al., 2008). Indeed a role for ROS production in leukaemia development, progression, 

and maintenance is becoming more and more evident (Hole et al., 2011).  

 The NADPH Oxidase (Nox) enzyme family generate ROS as their primary 

function in cells while mitochondria produce ROS as a by-product of cellular 

respiration. Both systems are known sources of ROS in CML (Sattler et al., 2000; 

Kim et al., 2005; Naughton et al., 2009; Landry et al., 2013). In leukaemia Nox-

derived ROS have been demonstrated to be involved in a host of cellular activities 

driving disease phenotype by increasing survival, migration, proliferation and even 

differentiation  (Kim et al., 2005; Naughton et al., 2009; Sardina et al., 2010; Hole et 

al., 2011; Reddy et al., 2011). The coupling of these processes with genomic 

instability further contributes to the progression of this myeloproliferative disorder 

signifying the need to study ROS in order to better understand the pathogenesis of 

CML. 

 The work presented in Chapter 3 investigated elevated levels of intracellular-

ROS associated with Bcr-Abl signalling in CML. This work established a link 

between Bcr-Abl signalling and the generation of Nox-derived ROS through the 

regulation of p22phox protein levels. As discussed ROS signalling can potentially 
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play a significant role in the disease phenotype of cancers. In light of this the aims of 

this next study were to investigate p22phox to determine how its expression and 

influence on ROS levels affect disease phenotype. Particular attention was placed on 

cell proliferation, after work in Chapter 3 suggested that p22phox had an 

involvement in this process. In addition Nox-derived ROS has been repeatedly 

associated with cell proliferation (Jeong et al., 2004; Sturrock et al., 2006; Petry et 

al., 2006; Reddy et al., 2011). Furthermore, studies by Naughton et al. (2009) and 

others have demonstrated the importance of Nox-derived ROS in CML survival 

therefore focus was also placed on examining if there was a potential role for 

p22phox expression and ROS regulation in increased cell viability and survival in 

CML. As before K562 cells, which constitutively express Bcr-Abl, were used as a 

model for CML to perform these studies and elucidate a possible role for p22phox 

regulated ROS in CML disease phenotype.  
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Results 

An examination of the Nox protein subunit p22phox and its effect on cell 

proliferation 

 Nox protein activity and ROS production is known to be involved in cell 

proliferation (Jeong et al., 2004; Sturrock et al., 2006; Petry et al., 2006; Reddy et 

al., 2011). Studies in Chapter 3 identified the essential subunit for Nox protein 

activity, p22phox, as having a potential role in K562 cell proliferation. To further 

investigate and verify if p22phox and therefore Nox-derived ROS have a function in 

Chronic Myeloid Leukaemia (CML) proliferation, K562 cells were stained with 

Carboxyfluorescein Succinimidyl Ester (CFSE) and subsequently transfected with 

siRNA to target p22phox expression using the same method as described in Chapter 

3.  

 CFSE is fluorescent, highly stable within cells and retained for long periods 

of time while being evenly distributed between daughter cells following cell division 

(Quah et al., 2007). This even distribution and halving of CFSE fluorescence levels 

following division allows cell proliferation to be monitored by flow cytometry. 

Figure 1 demonstrates the level of CFSE fluorescence in K562 cells 24hr, 48hr and 

72hr after p22phox knockdown. It was immediately evident that electroporated 

samples had a higher level of CFSE fluorescence when compared to untreated cells, 

indicating a reduced rate of proliferation. It is important to note that the difference in 

fluorescence between untreated and transfected samples showed no significant 

increase following 24hr. This suggested that any effect electroporation had on 

proliferation ceased prior to the 24hr time-point. A comparable level of fluorescence 

was observed between the scrambled siRNA (Negative) transfected control cells and 

electroporated control (Elect Ctrl) cells. This demonstrated that the changes in CFSE 
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fluorescence were a result of electroporation rather than siRNA transfection.  As 

discussed in Chapter 3 electroporation can cause minor stress to cells, producing 

short-term cell cycle retardation. Further comparison of CFSE fluorescence 

suggested that at each time-point Negative transfected cells proliferated more than 

the p22phox knockdown samples (siRNA(i) and siRNA(ii)). Furthermore, siRNA(i) 

transfected cells demonstrated a higher and more significant level of fluorescence 

than that of cells transfected with siRNA(ii) at the 72hr time-point. It is important to 

note that no further increase in fluorescence was observed in the siRNA(i) 

transfected cells from 48hr to 72hr suggesting p22phox knockdown stopped 

effecting proliferation prior to the 48hr time-point. 

 Examining CFSE fluorescence of whole cell population is not fully 

quantitative as cells rarely divide synchronously. As a result this method can only 

demonstrate whether or not a treatment effects cell proliferation. Using software to 

analyse CFSE fluorescence it is possible to determine the number of cell divisions 

following treatment. This method can quantify proliferation providing a more 

accurate interpretation of the results. As before K562 cells were stained with CFSE 

and transfected with siRNA. 72hr after transfection CFSE fluorescence was analysed 

via flow cytometry and ModFit LT software was used to fit this data.  

This data is represented in Figure 2a which demonstrates the cell generational 

distribution of each sample 72hr after transfection. On average 85% of Untreated 

cells were in generation 5, which demonstrated that the majority of cells were in 

their 4
th

 division cycle. The degree to which electroporation effected proliferation 

was also demonstrated with the majority of Elect Ctrl or Negative cells having even 

distribution between generations 4 and 5, approximate averages of 50%/40% and 

49%/45% respectively. In addition to this both the p22phox knockdown samples  
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Figure 1. Removal of p22phox expression has a negative effect on K562 cell 

proliferation. (a) Histograms representing flow cytometric analysis of relative CFSE 

fluorescence 24, 48 and 72hr after p22phox siRNA transfection. Histograms compare 

Elect Ctrl to Untreated, Negative to Elect Ctrl and siRNA(i)/siRNA(ii) to Negative. (b) 

Bar chart shows the mean CFSE fluorescence of cells expressed as a percentage of the 

Negative siRNA control. Results are expressed as mean ± SD and are representative of 

three independent experiments. Statistical analysis was carried out using the student t-

test (P<0.05 is marked with *, P<0.01 is marked with **). 
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siRNA(i) and siRNA(ii), had average distributions of 72%/12% and 55%/33% 

respectfully between generations 4 and 5. Comparing these results to the control 

samples suggested removal of p22phox expression had an effect on cell proliferation. 

 In addition to cell generation distribution, the proliferation index of each 

sample was also determined using Modfit LT and relative proliferation was 

calculated by normalising each sample to the Negative control (Figure 2b). This data 

demonstrated that the proliferation rates of K562 cells were significantly reduced 

following removal of p22phox expression. Furthermore, transfection with siRNA(i) 

resulted in a greater decrease in proliferation relative to siRNA(ii) transfected cells. 

Taken together these studies demonstrated the relative effect p22phox expression 

had on proliferation, implementing Nox-derived ROS in K562 cell proliferation.  

 

Cell cycle distribution following the removal of p22phox expression  

 Having established a significant role for p22phox expression in K562 cell 

proliferation further examination was required to elucidate how exactly p22phox 

function was causing this effect. As before siRNA knockdown was used to target 

p22phox expression and the cell cycle distribution of K562 cells was determined 

through Bromodeoxyuridine (BrdU) incorporation and propidium iodide (PI) 

staining. This study demonstrated that K562 cells transfected with p22phox siRNA 

demonstrated a small but significant increase in the percentage of cells present in the 

G0/G1 stage of the cell cycle when compared to negative siRNA transfected control 

cells 24hr after transfection (Figure 3a). Furthermore, it was demonstrated at the 

24hr time-point that knockdown of p22phox expression using siRNA(i) had a more 

significant effect on  cell cycle distribution relative to transfection with siRNA(ii). 

By 48hr and 72hr however the significant increase in the percentage of G0/G1 cells 
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Figure 2. Expression of p22phox is important for the proliferation of K562 cells.   
(a) Histograms representing the distribution of cell generations 72hr after p22phox 

siRNA transfection as determined by ModFit LT. (b) Proliferation index was also 

determined using ModFit LT software and relative proliferation was calculated by 

normalising to Negative control. Bar chart shows the relative proliferation of samples 

72hr after p22phox siRNA transfection. Results are expressed as mean ± SD and are 

representative of three independent experiments. Statistical analysis was carried out 

using the student t-test (P<0.05 is marked with *). 
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was no longer observed. The effect noted at 24hr provided a possible explanation for 

the decreased levels of proliferation noted in K562 cells following p22phox 

knockdown. K562 cell cycle analysis and percentage distributions at each stage of 

the cell cycle following p22phox siRNA knockdown are demonstrated and 

quantified in Figure 3b. It is important to note that BrdU incorporation is more 

accurate at distinguishing S phase cells; as a result cell cycle distribution determined 

by BrdU/PI will vary when compared to analysis of the cell cycle using PI alone. 

 

Further analysis of the G0/G1 stage of the cell cycle following p22phox  

 As demonstrated 24hr after p22phox siRNA transfection of K562 cells there 

was a small but significant increase in the percentage of cells present in the G0/G1 

stages of the cell cycle. To provide a greater understanding of how the cell cycle was 

effected it first needed to be determined if the observed increase was due to a higher 

percentage of cells present in the G0 or G1 stages of the cell cycle. To establish this, 

protein expression of the proliferation marker Ki-67 was examined 24hr after 

transfection with p22phox siRNA. Ki-67 is a nuclear protein expressed in 

proliferating cells and is absent in quiescent cells (Gerdes et al., 1983).  As a result 

Ki-67 is only expressed in cells cycling through G1, DNA synthesis (S), G2 or 

mitosis (M), but not in cells present in the resting phase G0. Examination of Ki-67 

expression demonstrated that following removal of p22phox expression there was a 

significant increase in the percentage of cells in G1 rather than G0 when compared to 

the Negative siRNA control transfected cells (Figure 4a). As before cells transfected 

with siRNA(i) demonstrated a greater increase in cells present in G1 when compared 

to cells transfected with siRNA(ii). Immunofluorescence images detecting Ki-67 

protein expression cells further demonstrated no significant change in Ki-67 
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Figure 3a. Removal of p22phox expression significantly effects the cell cycle 

distribution of K562 cells for 24hr. Bar charts show the cell cycle distribution of K562 

cells 24hr, 48hr and 72hr after p22phox siRNA transfection. At each time-point K562 

cells were labelled with bromodeoxyuridine (BrdU) for 1hr, cells were fixed then 

incubated with an anti-BrdU antibody and stained with propidium iodide (PI) before 

being examined by flow cytometry to determine cell cycle distribution. Results are 

expressed as mean ± SD and are representative of three independent experiments. 

Statistical analysis was carried out using the student t-test (P<0.01 is marked with *, 

P<0.001 is marked with **). 

 

 



91 

 

 

 

 

Untreated Negative siRNA(i) siRNA(ii)

24hrs

48hrs

72hrs

FL2-H (PI)

F
L

1
-H

 (
B

rd
U

-F
IT

C
)

S

G0/G1

G2/M

0 500 1000
10⁰

10²

10⁴

0 500 1000
10⁰

10²

10⁴

0 500 1000
10⁰

10²

10⁴

0 500 1000
10⁰

10²

10⁴

0 500 1000
10⁰

10²

10⁴

0 500 1000
10⁰

10²

10⁴

0 500 1000
10⁰

10²

10⁴

0 500 1000
10⁰

10²

10⁴

0 500 1000
10⁰

10²

10⁴

0 500 1000
10⁰

10²

10⁴

0 500 1000
10⁰

10²

10⁴

0 500 1000
10⁰

10²

10⁴

Sample Stage 24hrs 48hrs 72hrs

Untreated G0/G1 24.1 ± 2.1 34.2 ± 2.2 44.3 ± 1.4

S 54.6 ± 2.6 50.8 ± 2.1 28.9 ± 12.7

G2/M 18.2 ± 3.7 12.5 ± 4.1 17.5 ± 3.7

Negative G0/G1 30.2 ± 1.6 25.6 ± 1.5 37.3 ± 7.9

S 44.8 ± 9.4 53.8 ± 3.9 43.9 ± 12.0

G2/M 21.4 ± 6.5 17.5 ± 4.2 14.3 ± 2.3

siRNA(i) G0/G1 36.0 ± 0.9 26.7 ± 0.8 36.6 ± 6.3

S 39.0 ± 8.0 52.3 ± 4.5 46.9 ± 4.3

G2/M 21.2 ± 6.4 17.6 ± 3.9 12.9 ± 1.8

siRNA(ii) G0/G1 34.6 ± 1.4 27.4 ± 1.7 32.5 ± 9.7

S 42.3 ± 7.2 53.1 ± 4.4 51.6 ± 6.7

G2/M 19.5 ± 5.0 16.2 ± 4.7 13.1 ± 2.6

Figure 3b. Removal of p22phox expression significantly effects the cell cycle 

distribution of K562 cells for 24hr. Dot plots are representative of the flow cytometric 

analysis of gated K562 cell populations used to determine cell cycle distribution 

following Bromodeoxyuridine (BrdU) incorporation and propidium iodide (PI) staining 

24hr, 48hr and 72hr after p22phox siRNA transfection.  Table contains the mean 

percentage of cells in each stage of the cell cycle 24hr, 48hr and 72hr after transfection 

as determined by BrdU incorporation and PI staining. Results are expressed as mean ± 

SD and are representative of three independent experiments. 
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Figure 4a. Percentage of K562 cells in G1 increases following the protein 

knockdown of p22phox. Bar chart shows the mean percentage of K562 cells present in 

the G0 and G1 phases of the cell cycle 24hr after p22phox siRNA transfection. At 24hr 

K562 cells were fixed then incubated with an anti-Ki-67 antibody and stained with 

propidium iodide (PI) before being examined by flow cytometry to determine G0/G1 

distribution. Cells were gated based on 2
o
 antibody only control for Ki-67. All values are 

expressed as mean ± SD and are representative of three independent experiments. 

Statistical analysis was performed using Students’s t-test (*P<0.05).  
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Figure 4b. Percentage of K562 cells in G1 increases following the protein 

knockdown of p22phox.  (i) Immunofluorescence of Ki-67 protein in K562 cells 24hr 

after p22phox siRNA transfection. (ii) Dot plots are representative of the flow cytometric 

analysis of gated K562 cell populations used to determine G0/G1 distribution following 

Ki-67 protein detection and propidium iodide (PI) staining 24hr after p22phox siRNA 

transfection. Cells were gated based on 2
o
 antibody only control for Ki-67. 
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verifying that K562 cells remained proliferating following p22phox knockdown 

(Figure 4b(i)).  Figure 4b(ii) demonstrates the flow cytometric analysis used to 

determine the distribution of cells between G0 and G1 phases 24hr after transfection 

with p22phox siRNA. The increase observed in G1 phase cells was comparable to 

the increase previously determined by BrdU incorporation and PI staining (Figure 3). 

 

The protein levels of CDKs and Cyclins involved in G1 phase progression 

following targeted knockdown of p22phox 

 Cyclin dependent kinases (CDKs) are vital for the progression through all 

stages of the cell cycle and are tightly regulated by the binding of cyclins, proteins 

which are sequentially synthesized and destroyed in turn driving the cell cycle via 

CDK regulation (Massagué, 2004; Hochegger et al., 2008; Malumbres and Barbacid, 

2009). As demonstrated p22phox knockdown suggested an involvement for p22phox 

and Nox-derived ROS in progression through the G1 phase of the cell cycle. To 

understand how p22phox function may be involved in this process siRNA was once 

again used to target p22phox expression in K562 cells. Each transition of the cell 

cycle is regulated by a specific subset of CDKs and Cyclins, therefore the protein 

levels of the Cyclins and CDKs known to be active and important during the G1 

phase were examined 24hr after transfection. Following this study it was identified 

that cells with p22phox protein knockdown demonstrated a significant reduction in 

the protein levels of Cyclin E and CDK2 when compared to the Negative transfected 

control cells (Figure 5). No significant change was observed in any of the other 

proteins examined. Interestingly the activity of CDK2, regulated by Cyclin E 

binding, is essential for G1/S transition (Hochegger et al., 2008). This provided an 

explanation for the increased percentage of cells in G1 after p22phox knockdown. 
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Figure 5. CDK2 and Cyclin E protein levels are significantly decreased following 

removal of p22phox expression. Western blot analysis of Cyclin E, CDK2, p22phox, 

Cyclin D2, Cyclin D3, Cyclin D1, CDK4 and CDK6 expression in K562 cells 24hr after 

p22phox siRNA transfection. GAPDH and -Actin are shown as loading controls. Bar 

chart shows the mean relative Cyclin E and CDK2 protein levels of K562 cells 24hr after 

transfection determined by densitometry and expressed as a percentage of the Negative 

siRNA transfected control cells.  Results are expressed as mean ± SD and are 

representative of three independent experiments. Statistical analysis was carried out 

using the student t-test (P<0.05 is marked with *). 
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An examination of cell cycle inhibitory protein levels following targeted 

knockdown of p22phox 

 In addition to the CDKs and Cyclins which drive cell cycle progression there 

is an extensive array of inhibitory proteins which regulate the cell cycle at every 

stage, inhibiting progression if a problem arises. In normal cells the activity of CDKs 

is regulated by two families of inhibitors: the INK4 proteins which include p16
INK4A

, 

p15
INK4B

, p18
INK4C

 and p19
INK4D/Arf 

and the Cip/Kip family, consisting of 

p21
Cip1/WAF1

, p27
Kip1

 and p57
Kip2 

(Malumbres and Barbacid, 2005). In addition to 

these proteins, the activity of retinoblastoma protein (pRb) and p53 also have key 

regulatory roles in the cell cycle (Vousden and Lu, 2002; Giacinti and Giordano, 

2006). To continue this study focus was directed towards these inhibitory proteins 

with the aim of achieving a greater understanding of how p22phox function affects 

the cell cycle and provides a possible explanation for the reductions observed in 

Cyclin E and CDK2 protein levels following p22phox knockdown. Interestingly it is 

well established that K562 cells lack p53, p15
INK4B

, p16
INK4A

 and p19
INK4D/Arf

 

expression (Law et al., 1993; Ogawa et al., 1994; Otsuki et al., 1995; Vonlanthen et 

al., 1998; Delgado et al., 2000). Indeed p53, p15
INK4B

, p16
INK4A

 and p19
INK4D/Arf

 

were not detected when examined by western blotting in the K562 cells used for 

these studies. 24hr after transfection with p22phox siRNA there was no significant 

change observed in the protein levels of any of the INK4 or Cip/Kip family members 

known to be expressed in K562 cells (Figure 6a). In addition to these proteins pRb 

was also examined. Interestingly pRb activity is heavily controlled by its 

phosphorylation state, being active when hypophosphorylated and inhibited if 

hyperphosphorylated (Giacinti and Giordano, 2006). Changes in K562 cell pRb 

phosphorylation following transfection with p22phox siRNA was determined by 
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examining the protein’s electrophoretic mobility. As demonstrated in Figure 6b, 

pRb’s electrophoretic mobility increased in p22phox knockdown cells 12hr after 

transfection which suggested a decrease in pRb phosphorylation and subsequent 

increase in pRb activity. Furthermore 24hr after transfection pRb proteins levels 

were noted to significantly decrease following dephosphorylation. Active pRb 

prevents the progression of cells from G1 to S phase by inhibiting Cyclin E 

transcription, thereby preventing CDK2 activation (Harbour et al., 1999). These 

results provided an explanation for the effects noted on Cyclin E and CDK2 while 

furthermore demonstrating the reason for the increased percentage of cells noted in 

the G1 phase following p22phox knockdown.  

 

The effect of p22phox expression and function on cell viability 

 Homeostasis of the redox state is pivotal for the maintenance of normal cell 

function and survival in cells, as a result even small changes in ROS levels can 

significantly affect cell viability (D’Autréaux and Toledano, 2007; Circu and Aw, 

2010). Removal of p22phox by siRNA was demonstrated in Chapter 3 to result in a 

marked reduction in ROS levels thereby effecting redox levels. To further this study 

a MTS assay was utilised to determine what effect p22phox function had on cell 

viability. An MTS assay is dependent on the enzyme activity found in metabolically 

active cells which directly relates to cell viability (Berridge et al., 2005). Figure 7 

demonstrates relative absorbance of cells treated with MTS 24hr, 48hr and 72hr after 

transfection. This study showed that cells transfected with p22phox siRNA had a 

significantly reduced viability when compared to Negative control cells 24hr and 

48hr after transfection. As with previous experiments siRNA(i) transfection 

demonstrated the greatest effect. Furthermore, there was no significant effect on 
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Figure 6. pRb becomes hypophosphorylated and decreases following knockdown of 

p22phox expression. (a) Western blot analysis of p27
Kip1

, p22phox, p57
Kip2

, p18
INK4C 

and p21
Cip1/WAF1 

expression in K562 cells 24hr after p22phox siRNA transfection. 

GAPDH is shown as a loading control. (b) Western blot analysis of pRb
 
expression in 

K562 cells 12hr and 24hr after p22phox siRNA transfection. Ponceau is shown as a 

loading control.  Bar chart shows the mean relative pRb protein levels of K562 cells 

24hr after transfection determined by densitometry and expressed as a percentage of the 

Negative siRNA transfected control cells.  Results are expressed as mean ± SD and are 

representative of three independent experiments. Statistical analysis was carried out 

using the student t-test (P<0.05 is marked with *, P<0.01 is marked with **). 
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viability by 72hr in cells transfected with siRNA(i) or siRNA(ii). Regardless the 

noted effects on viability at 24hr and 48hr still suggested that p22phox and Nox-

derived ROS have a significant and important role on K562 cell viability. 

 

Analysis of apoptotic cell death following targeted knockdown of p22phox 

 Due to the MTS assay results and the known link between ROS signalling 

and increased cell survival focus was placed on establishing if the decrease noted in 

K562 cell viability and ROS levels following p22phox knockdown was accompanied 

by an increase in apoptotic cell death. To determine the percentage of apoptosis and 

death 24hr, 48hr and 72hr after p22phox siRNA transfection K562 cells were stained 

with PI/Annexin V and analysed by flow cytometry. Interestingly, 24hr after 

transfection removal of p22phox expression produced a small but significant 

increase in the percentage of apoptotic and dead cells when compared to cells 

transfected with Negative control siRNA (Figure 8a). This increase was noted in 

both the siRNA(i) and siRNA(ii) transfected samples 24hr after transfection. 

However, 48hr after transfection only the siRNA(i) transfected cells demonstrated a 

significant increase in apoptotic cell death and by 72hr no effect was noted. 

Percentage of viable cells (lower left quadrant), apoptotic cells (lower right 

quadrant), necrotic cells (upper left quadrant) and cell death by apoptosis (upper 

right quadrant) following p22phox siRNA knockdown are demonstrated and 

quantified in Figure 9b. 
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Figure 7. Removal of p22phox significantly reduces cell viability up to 48hr. Bar 

chart shows the mean Absorbance at 490nm of K562 cells treated with MTS 24hr, 48hr 

and 72hr after siRNA transfection. Results are expressed as a percentage of the Negative 

siRNA control. Results are expressed as mean ± SD and are representative of four 

independent experiments. Statistical analysis was carried out using the student t-test 

(P<0.05 is marked with *, P<0.005 is marked with **). 
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Figure 8. Removal of p22phox expression produces a small but significant increase 

in apoptotic cell death. (a) Bar chart demonstrates the combined percentages of K562 

cells staining positive for Annexin V, propidium iodide (PI) or both 24hr, 48hr and 72hr 

after siRNA transfection. At each time-point K562 cells were incubated with Annexin V-

FITC and then stained with PI immediately before flow cytometric analysis. (b) Dot 

plots are representative of the flow cytometric analysis of K562 cells following Annexin 

V and PI staining. Quadrants were positioned based on positive apoptotic control and 

demonstrate percentage of viable cells (lower left quadrant), apoptotic cells (lower right 

quadrant), necrotic cells (upper left quadrant) and dead cells by apoptosis (upper right 

quadrant). All results are expressed as mean ± SD and are representative of two 

independent experiments. Statistical analysis was carried out using the student t-test 

(P<0.05 is marked with *, P<0.01 is marked with **, P<0.005 is marked with ***). 
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Analysis of autophagic cell death following targeted knockdown of p22phox 

 Following examination of apoptosis attention was then drawn to autophagy 

as a mechanism of survival and cell death in CML. Indeed stress to CML cell models 

through Bcr-Abl inhibition or even treatment with other chemotherapeutics is known 

to induce autophagy (Crowley et al., 2010). Furthermore ROS signalling and Nox 

activity have been demonstrated to be integral in autophagy regulation (Scherz-

Shouval and Elazar 2011). Therefore it needed to be determined if the noted decrease 

in ROS levels following p22phox knockdown in K562 cells produced an effect on 

autophagy levels. To determine if autophagy was affected in K562 cells the 

autophagic protein markers LC3B and Beclin were examined following p22phox 

knockdown. Figure 10 demonstrates that no significant change in either LC3B or 

Beclin was noted 24hr or 48hr after transfection with p22phox siRNA. These results 

suggested that removal of p22phox expression alone had no effect on autophagy in 

K562 cells.  

 

Analysis of p22phox mediated ROS levels and their effect on cell survival 

signalling 

 ROS are known to act as secondary signalling molecules enhancing cell 

survival largely through inhibition of phosphatase activity which can negatively 

regulate survival signalling through dephosphorylation (Trachootham et al., 2008; 

Groeger et al., 2009; Corcoran and Cotter, 2013). Bcr-Abl signalling increases cell 

survival mainly through the activation of three major survival pathways, the 

JAK/STAT, Raf/MEK/ERK and PI3K/AKT pathways (Steelman et al., 2004), all of 

which can be affected by redox signalling (Sattler et al., 1999; Torres, 2003; 

Naughton et al., 2009). Work in Chapter 3 demonstrated that removal of p22phox  
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Figure 9. Changes to p22phox expression levels has no effect on autophagy in K562 

cells. Western blot analysis of Beclin, LC3B and p22phox
 
expression in K562 cells 24hr 

and 48hr after p22phox siRNA transfection. GAPDH is shown as a loading control. 
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expression resulted in a marked decrease in intracellular ROS levels for up to 48hr 

after transfection.  As a result it was questioned if p22phox knockdown would have 

any effect on K562 cell survival signalling due to decreased ROS levels. To 

determine this phosphorylation of key proteins in these three survival pathways were 

examined 24hr and 48hr after transfection (Figure 9). Interestingly although Figure 8 

demonstrated an increase in apoptotic cell death and there is a known connection 

between redox signalling and these pathways, no consistent or significant change 

was demonstrated in the phosphorylation status of any of the proteins examined. 

These results suggested that the decrease in ROS levels may not have been large 

enough to cause a significant effect. 

 

The therapeutic potential of p22phox knockdown combined with Bcr-Abl 

inhibition. 

 As discussed small-molecule tyrosine kinase inhibitors (TKIs), such as 

Imatinib, which target Bcr-Abl activity have fundamentally improved CML 

prognosis. Unfortunately due to the development of drug resistance and the 

persistence of residual disease alternative treatment methods still need to be 

developed to better treat CML. One strategy which is gaining more and more 

prowess is pharmacological silencing of Bcr-Abl combined with the simultaneous 

inhibition of other crucial targets (O’Hare et al., 2012). Studies in this chapter have 

demonstrated the importance of p22phox function and ROS regulation in the 

proliferation of K562 cells. Additionally removal of p22phox expression 

significantly decreased K562 cell viability and to a lesser extent increased apoptotic 

cell death. These results suggested that p22phox expression may be important for 

disease phenotype in K562 cells and identified it as a potential target for CML 



105 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

24hrs

- p22phox

- p-GSK-3β (ser9)

- ERK1/2

- p-Akt

- p-ERK1/2

- Akt

- GSK-3β

- STAT3

- STAT5

- p-STAT5

- p-STAT3

- GAPDH

- -Actin 48hrs

- p22phox

- p-GSK-3β (ser9)

- ERK1/2

- p-Akt

- p-ERK1/2

- Akt

- GSK-3β

- STAT3

- STAT5

- p-STAT5

- p-STAT3

- GAPDH

- -Actin

Figure 10. Removal of p22phox expression has no significant effect on the 

phosphorylation status of important cell survival pathways. Western blot analysis of 

STAT3, Akt, GSK-3, STAT5, ERK1/2 and p22phox
 
expression and/or phosphorylation 

status (p-) in K562 cells 24hr and 48hr after p22phox siRNA transfection. GAPDH and 

-Actin are shown as loading controls. 
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therapy. However it is also evident from this work that p22phox inhibition alone 

does not demonstrate a significant enough effect to suggest it as sole treatment for 

CML. As a result focus was directed towards the potential of targeting p22phox and 

therefore Nox-activity in combination with Bcr-Abl inhibition. To examine this 

K562 cells were transfected with p22phox siRNA(i) and 24hr later were treated with 

Imatinib for 48hr before the level of apoptotic cell death was determined using 

Annexin V/PI staining. Treatment of p22phox knockdown cells with Imatinib 

resulted in a significant two-fold increase in apoptotic cell death when compared to 

Negative transfected cells treated with Imatinib (Figure 11a). Percentage of viable 

cells (lower left quadrant), apoptotic cells (lower right quadrant), necrotic cells 

(upper left quadrant) and cell death by apoptosis (upper right quadrant) following 

p22phox siRNA knockdown and Imatinib treatment are demonstrated and quantified 

in Figure 11b. This work demonstrated the therapeutic potential of targeting Nox 

activity in combination with Bcr-Abl inhibition to treat CML. 
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Figure 11. Removal of p22phox expression in combination with Imatinib treatment 

synergistically increases cell death. 24hr after K562 cells were transfected with 

p22phox siRNA 100nM of Imatinib was added for 48hr. Following treatment K562 cells 

were incubated with Annexin V-FITC and then stained with Propidium Iodide (PI) 

immediately before flow cytometric analysis.  (a) Bar chart demonstrates the combined 

percentages of K562 cells staining positive for Annexin V, propidium iodide (PI) or both. 

(b) Dot plots are representative of the flow cytometric analysis of K562 cells following 

Annexin V and PI staining. Quadrants were positioned based on positive apoptotic 

control and demonstrate percentage of viable cells (lower left quadrant), apoptotic cells 

(lower right quadrant), necrotic cells (upper left quadrant) and dead cells by apoptosis 

(upper right quadrant). All results are expressed as mean ± SD and are representative of 

three independent experiments. Statistical analysis was carried out using the student t-

test (P<0.05 is marked with *). 
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Discussion 

  Bcr-Abl expression is the primary cause of pathogenesis in CML and as a 

result it has been the main target for therapeutic development (Deininger et al., 

2005). The development of drugs like Imatinib has greatly improved CML prognosis 

but unfortunately residual disease persists with a high probability of drug resistance 

developing (Druker et al., 2006). These obstacles have increased the need to identify 

other essential components which are involved in the pathogenesis of CML, which 

will provide a better understanding of the disease facilitating the development of 

alternative treatment strategies. In Chapter 3 a link was established between Bcr-Abl 

signalling and Nox-derived ROS through regulation of the protein levels of p22phox, 

a membrane-bound protein essential for full activity of Nox proteins 1, 2, 3 and 4 

(Ambasta et al., 2004; Ueno et al., 2005). Nox protein activity has been linked to a 

host of cellular activities, from cell survival to proliferation, activities which drive 

disease phenotype and pathogenesis in leukaemia (Kim et al., 2005; Naughton et al., 

2009; Hole et al., 2011; Reddy et al., 2011). As a result of the possible significance 

of Nox-derived ROS in disease, the aim of this study was directed towards the role 

p22phox expression may play in CML. In these studies K562 cells, a CML cell line 

with constitutive Bcr-Abl expression, were used as a model in conjunction with 

siRNA to study the effects of p22phox expression on disease phenotype. In each case 

siRNA transfection was used to remove p22phox expression to determine if p22phox 

regulation of Nox-derived ROS had any effect on the cellular processes examined.  

 One particular cellular process p22phox function was linked to in Chapter 3 

was proliferation. Interestingly numerous studies have demonstrated a role for Nox-

derived ROS in cell proliferation with some studies drawing a direct link to an 

importance in p22phox expression (Jeong et al., 2004; Sturrock et al., 2006; Petry et 
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al., 2006; Reddy et al., 2011). Following on from the preliminary work in Chapter 3, 

a role for p22phox in proliferation was verified using CFSE, which provided an 

accurate and detailed representation of the affects of p22phox knockdown on K562 

cell proliferation (Figure 1 and Figure 2). It is of interest to note that the effect 

p22phox knockdown had on cell proliferation ceased prior to 48hr (Figure 1), 

therefore the reduction noted in proliferation index at 72hr (Figure 2b) was likely a 

result of decreased proliferation prior to 48hr. Furthermore, although it was 

demonstrated that p22phox protein levels remain reduced up to 72hr after 

transfection (Landry et al., 2012 Figure 4a and 4e) the corresponding ROS decrease 

is no longer observed past the 48hr time-point (Chapter 3, Figure S6). This suggests 

that the rate of proliferation decreased for the same duration of time as ROS levels 

were observed to be decreased. Although initially used to examine cell viability in 

this study, MTS conversion assays are also frequently used to assess cell 

proliferation (Berridge et al., 2005). Indeed, MTS conversion following p22phox 

knockdown demonstrated a reduction comparable to that of the decrease observed in 

proliferation following assessment of CFSE fluorescence (Figure 7). A significant 

decrease in MTS conversion was not observed past the 48hr time-point which 

corresponded further with both the CFSE and ROS results. These data coupled with 

the cited role for Nox-derived ROS in cell proliferation established the importance of 

p22phox-mediated ROS production on K562 cell and as a result CML proliferation.  

 Downstream signalling of Bcr-Abl drives CML cell proliferation by 

positively regulating cell cycle progression (Steelman et al., 2004). Expression of 

p22phox was demonstrated to affect proliferation therefore determining how the cell 

cycle status of K562 cells was affected was the next focus. Use of a BrdU 

incorporation followed by subsequent examination of the Ki-67 proliferation marker 
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established there was a small but significant increase in the percentage of cells in the 

G0/G1 stage of the cell cycle 24hr after siRNA transfection (Figure 3 and Figure 4). 

Furthermore the increase noted in G0/G1 was mostly due to an increase in the 

percentage of cells in G1 rather than G0 (Figure 4a). For both the BrdU and Ki-67 

assays the increase of cells in G1 at 24hr was too minor to suggest a halt in the cell 

cycle. The high percentage of cells present in S and G2/M phases was indicative that 

the cell cycle was still progressing therefore a slowdown or delay through this 

portion of the cell cycle may be a more likely explanation for the significant increase 

in G1 cells. Interestingly, a delay in G1 phase progression due to the inhibition of 

Nox activity has been observed previously. A study by Venkatachalam et al. (2008) 

demonstrated that G1 phase progression in fibroblasts was significantly retarded 

following inhibition of Nox proteins by DPI treatment. The work by Venkatachalam 

et al. (2008) provided validation that G1 to S phase transition can be significantly 

retarded following Nox inhibition which was achieved here through the removal of 

p22phox expression. 

 Progression through each of the four cell cycle stages is dependent on the 

activation of particular CDKs through the binding of relevant cyclin proteins 

(Hochegger et al., 2008; Malumbres and Barbacid, 2009). Concentrations of cyclin 

subunits oscillate, being sequentially synthesized and destroyed at particular points 

in the cell cycle in turn driving progression via CDK regulation (Hochegger et al., 

2008; Malumbres and Barbacid, 2009). Each phase of the cell cycle is regulated by a 

specific CDK bound to the appropriate cyclin. Expression of Cyclin E followed by 

its binding and activation of CDK2 is pivotal in the progression of cells from G1 into 

S phase (Massagué, 2004; Hochegger et al., 2008). Rather significantly reductions in 

the protein levels of both Cyclin E and CDK2 were demonstrated following p22phox 
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knockdown (Figure 5). Interestingly there is a direct correlation between the level of 

Cyclin E expression and the length of time it takes a cell to transition through G1/S 

(Ohtsubo et al., 1995). Here Cyclin E levels were demonstrated to be reduced rather 

than depleted. A reduction in the presence Cyclin E will therefore decrease the level 

of active CDK2 present in the cell providing a possible explanation for the 

slowdown in G1 transition which was demonstrated following p22phox knockdown.  

 Cyclin E expression is dependent on transcription by the E2F transcription 

factors which are negatively regulated by active retinoblastoma protein (pRb) 

(Giacinti and Giordano, 2006). In actively proliferating cancer cells CDKs 

hyperphosphorylate and deactivate pRb preventing its inhibition of E2F transcription 

factors thereby ensuring transition of cells out of G1 and into S phase (Giacinti and 

Giordano, 2006; Malumbres and Barbacid, 2009). Here it was demonstrated that pRb 

becomes hypophosphorylated 12hr after p22phox siRNA transfection and protein 

levels are subsequently decreased by 24hr (Figure 6). As stated hypophosphorylation 

activates pRb, this suggested that the decreases in Cyclin E protein levels could be a 

result of E2F transcription factor inhibition. Furthermore the reduction of pRb 

protein levels 24hr after transfection was also interesting. As previously discussed 

removal of p22phox expression produced a significant increase in the percentage of 

cells in G1 phase however this increase was only observed at the 24hr time-point. 

Contradictory to this ROS levels remain significantly reduced up to 48hr after 

transfection which suggested that this effect on the cell cycle was not directly related 

to the ROS reduction. However, the noted decrease in pRb protein levels at the 24hr 

time-point provided a possible explanation for there being no effect on the cell cycle 

distribution following 24hr, as any decrease in pRb protein levels, regardless of 

phosphorylation status, would still reduce its cell cycle inhibitory affects. It is 
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unknown what may have produced the decrease in pRb protein levels however its 

degradation is linked to the activity of cell cycle inhibitory proteins p21 and p27 

(Broude et al., 2007). However, neither of these proteins demonstrated a significant 

change following removal of p22phox expression. 

 pRb activity is known to be positively regulated by phosphatase activity, with 

both the Protein Phosphatase 1 (PP1) and Protein Phosphatase 2A (PP2A) groups of 

serine/threonine phosphatases implicated in its dephosphorylation (Kolupaeva and 

Janssens, 2013). PP1 has been identified as the major pRb cell cycle related 

phosphatase, capable of inducing cell cycle arrest in G1 by a pRb-dependent manner 

(Berndt et al., 1997). What is of further interest is that the activity of both PP1 and 

PP2A is negatively and reversibly regulated by ROS-induced oxidative inactivation 

(Rao and Clayton, 2002; O’Loghlen et al., 2003). Furthermore work by Naughton et 

al. (2009) has implemented Nox-derived ROS in the inhibition of PP1 activity 

downstream of Bcr-Abl signalling. In light of this information it was purposed that 

the reductions in ROS levels following p22phox knockdown could potentially 

increase phosphatase activity due to reduced inhibition by ROS-induced oxidation. 

This increase in phosphatase activity has the potential to hypophosphorylate pRb, 

resulting in its activation and the inhibition of the E2F transcription factors early in 

G1 phase which will reduce Cyclin E expression and thereby slow the transition 

from G1 to S phase. Taken together this provides a possible explanation for the 

effect noted on cell proliferation following removal of p22phox expression 

demonstrating the importance of Nox-derived ROS in cell proliferation.  

 

 As previously discussed removal of p22phox expression caused a significant 

decrease in cell viability (Figure 7) which was concurrent with ROS reductions 
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suggesting the importance of p22phox regulated ROS in cell viability. Further 

examination of K562 cells following p22phox knockdown demonstrated a small but 

significant increase in cell death and apoptosis which also remained increased up to 

and including the 48hr time-point (Figure 8). Further evaluation of cellular survival 

mechanisms demonstrated that removal of p22phox expression had no significant 

effect on K562 cell autophagy levels (Figure 9). Furthermore phosphorylation of key 

proteins involved in the JAK/STAT, Raf/MEK/ERK and PI3K/AKT pathways 

demonstrated no significant change following removal of p22phox regulated ROS 

(Figure 10). Even small changes in the level of ROS can alter the redox state of cells 

thereby affecting many cellular processes, potentially decreasing cell viability 

(D’Autréaux and Toledano, 2007; Circu and Aw, 2010). In addition, ROS are known 

to act as secondary signalling molecules with the ability to enhance cell survival 

(Rhee et al., 2005a; Rhee et al., 2005b; Trachootham et al., 2008; Groeger et al., 

2009; Toledano et al., 2010; Bae et al.,  2011). As a result it was believed that any 

effect on ROS levels in K562 cells would significantly affect overall cell survival 

and viability. 

 Removal of p22phox expression did reduce cell viability however only a 

minor increase was observed in the level of cell death and apoptosis. It is important 

to note that examination of viability was obtained using an MTS assay which is 

dependent on enzyme activity found in metabolically active cells (Berridge et al., 

2005) and as such this assay does not directly correlate with cell death. Levels of cell 

death are heavily affected by cell survival signalling yet no significant changes were 

noted in the pathways examined following p22phox knockdown. Interestingly 

reductions in pRb proteins levels have been linked with increased cell death and 

apoptosis, which provides a possible explanation for the small but significant 
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increase noted following p22phox knockdown (Classon and Harlow, 2002; Harbour 

et al., 2000; Broude et al., 2007). Furthermore, Nox protein activity and ROS 

signalling is known to be involved in autophagy, however mitochondrial derived 

ROS are believed to be the more important regulatory source of ROS in this process 

(Scherz-Shouval and Elazar, 2011). This may explain why no significant effect was 

noted on autophagy following p22phox knockdown.  

 Previous studies have demonstrated the importance of redox signalling in the 

JAK/STAT, Raf/MEK/ERK and PI3K/AKT pathways (Sattler et al., 1999; Torres 

2003; Naughton et al., 2009) therefore it was unexpected that there was no 

significant effect on these pathways following p22phox knockdown. Work by 

Naughton et al. (2009) demonstrated the relevance of Nox-derived ROS in 

PI3K/AKT pathway activity downstream of Bcr-Abl in CML. As a result it was 

believe that the reduction in ROS levels noted following p22phox knockdown would 

have significantly affected activation of this pathway. As there was no significant 

change in this pathway it may suggest the reductions in ROS levels from p22phox 

knockdown were not significant enough to cause an effect. Work in Chapter 3 

demonstrated that the only expressed Nox proteins dependent on p22phox function 

in K562 cells are Nox2 and Nox4 (Landry et al., 2013, Figure 3a). In the study by 

Naughton et al. (2009) Nox4 was identified as an important source of ROS 

downstream of Bcr-Abl. Direct knockdown of Nox4 expression in this study 

produced a far more significant decrease in ROS levels when compared to the 

decrease noted in this study following p22phox knockdown. Interestingly, Nox4 

demonstrates a reduced basal activity independent of p22phox expression (Ambasta 

et al., 2004) which may suggest why Nox4 knockdown has a greater effect on ROS 

levels. Furthermore this basal activity may explain why no significant, consistent 
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reduction was noted in PI3K/AKT pathway signalling in K562 cells following 

p22phox knockdown. 

 Studies in this chapter demonstrated the importance of p22phox-mediated 

ROS production in the proliferation and viability of K562 cells. These studies in 

K562 cells suggested that p22phox expression may be important for CML 

pathogenesis however it was evident that p22phox inhibition alone does not 

demonstrate a significant enough effect to suggest it as sole treatment for CML. 

Combining p22phox removal with Imatinib treatment significantly increased the 

potential of p22phox targeting as a possible therapy for CML treatment (Figure 11). 

As discussed small-molecule tyrosine kinase inhibitors (TKIs), such as Imatinib, 

which target Bcr-Abl activity have fundamentally improved CML prognosis yet due 

to the development of drug resistance and the persistence of residual disease 

alternative treatment methods still need to be developed to better treat CML. It was 

concluded from this work that p22phox removal in a way weakens cells, priming 

Bcr-Abl inhibition to produce a substantially greater effect on cell death. These 

studies demonstrated the clinical potential of targeting p22phox and therefore 

inhibiting Nox proteins in combination with Bcr-Abl inhibition.  
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Abstract 

 Since the development of Bcr-Abl specific tyrosine kinase inhibitors (TKIs) 

there has been a substantial improvement in the clinical treatment of Chronic 

Myeloid Leukaemia (CML). Unfortunately, residual disease and the development of 

TKI resistance has become an ever growing concern, resulting in the need for a 

greater understanding of the disease in order to develop new treatment strategies. 

Previous work identified p22phox function to have a significant involvement in 

cellular processes key for CML pathogenesis while identifying the potential of 

combined Nox and Bcr-Abl inhibition in the improvement of CML treatment. 

Continuing on from this work pharmacological silencing of Nox activity was 

examined in combination with Bcr-Abl TKIs. These combinations were synergistic, 

producing substantial increases in cell death through augmentation of apoptosis, 

demonstrating a significant improvement on TKI treatment alone. It was concluded 

from this work that Nox protein inhibition may prime cells for Bcr-Abl inhibition 

thereby producing a substantially greater effect on cell death. This demonstrated the 

clinical potential of targeting Nox proteins in combination with Bcr-Abl inhibition, 

however it was evident that better, more specific inhibitors of Nox protein activity 

would be required if such a treatment was ever to be implemented. 
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Introduction 

 Reactive Oxygen Species (ROS) were once believed to be harmful by-

products of cellular activity but now ROS and particularly hydrogen peroxide (H2O2) 

are generally recognised as important intracellular signalling molecules (Rhee et al., 

2005a; Rhee et al., 2005b; Toledano et al., 2010; Bae et al.,  2011).   ROS are 

produced in eukaryotic cells by several sources, however the mitochondrial electron 

transport chain and NAPDH Oxidases (Nox) are the two major sources implicated in 

cancer.  The Nox proteins primary function is to produce ROS. Therefore unlike 

mitochondrial electron transport chain leakage, Nox-derived ROS production is not a 

by-product of its normal function. There are seven members of the Nox family and 

they are Nox1, Nox2, Nox3, Nox4, Nox5, Duox1 and Duox2. Interestingly, Nox 

proteins and their regulators have been implicated in most of the common cancer 

types which includes but are not limited to cancers of the prostate (Brar et al., 2003; 

Lim et al., 2005; Kumar et al., 2008; Huang et al., 2012a), colon (Fukuyama et al., 

2005; Bauer et al., 2012), breast and ovaries (Desouki et al., 2005; Choi et al., 

2010), bladder (Shimada et al., 2009; Shimada et al., 2011; Huang et al., 2012b), 

pancreas (Vaquero et al., 2004) and thyroid gland (Weyemi et al., 2010) as well as 

melanoma (Brar et al., 2002; Yamaura et al., 2009), lymphoma (Lan et al., 2007; 

Hoffmann et al., 2010) and of particular interest to these studies leukaemia 

(Kamiguti et al., 2005; Prata et al., 2008; Naughton et al., 2009). In these cases Nox 

proteins have been demonstrated to enhance oncogenesis through induction of 

increased genomic instability, angiogenesis, invasion, metastasis, cell growth and 

survival. This highlights the importance of Nox proteins and ROS generation in the 

development and maintenance of many cancers.  
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 The activity of Nox proteins is not limited to oncogenesis, in fact Nox-

derived ROS have demonstrated involvement in many other diseases such as 

Ischemic stroke, Alzheimer’s Disease, Parkinson’s Disease, Crohn’s disease, several 

cardiovascular diseases and diabetes to name a few (Bedard and Krause, 2007). 

Interestingly, several clinical studies have examined the potential of antioxidant 

therapies as a way of inhibiting the effects of increased ROS levels generated from 

Nox activity (Vivekananthan et al., 2003; Kris-Etherton et al., 2004; Bjelakovic et 

al., 2007; Altenhöfer et al., 2012). Unfortunately these studies demonstrated minimal 

success with some treatments even being deleterious. It is believed that a more 

effective method would be to specifically target Nox proteins to prevent ROS 

generation which has resulted in extensive interest in the development and 

characterisation of novel Nox inhibitors as therapeutics (Altenhöfer et al., 2012; 

Cifuentes-Pagano et al., 2012; Krause et al., 2012). 

 Previous work investigated elevated levels of intracellular-ROS in CML, 

establishing a link between Bcr-Abl signalling and the generation of Nox-derived 

ROS through the regulation of p22phox protein levels (Landry et al. 2013). p22phox 

is a membrane-bound protein essential for the full activity of Nox proteins 1, 2, 3 

and 4 (Ambasta et al., 2004; Ueno et al., 2005). Additional studies established an 

involvement for p22phox in cell proliferation and viability suggesting an importance 

for this protein in CML pathogenesis. This work identified Nox proteins as a 

potential therapeutic target which was further emphasised after removal of p22phox 

expression via siRNA was combined with Imatinib treatment, producing a 

synergistic two-fold increase in cell death (Chapter 4, Figure 11). Small-molecule 

tyrosine kinase inhibitors (TKIs), such as Imatinib, which target Bcr-Abl activity 

have fundamentally improved CML prognosis yet due to the development of drug 
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resistance and the persistence of residual disease alternative treatment methods still 

need to be developed to better treat this disease. A large amount of research is now 

focused on the targeting of Bcr-Abl along with simultaneous inhibition of other 

crucial targets (O’Hare et al., 2012).  

 Work in previous chapters has demonstrated the potential of Nox proteins as 

one possible target for combined CML treatment. Unfortunately these previous 

studies have utilised siRNA to remove p22phox and inhibit Nox activity. Safe and 

effective ways of delivering siRNA to patients are currently being investigated 

however these methods are not fully tested or optimised and are therefore not 

feasible approaches at present (Gavrilova and Saltzman, 2012). As such traditional 

pharmacological silencing of targets still remains the best approach for therapy. In 

light of this the aims of this next study were to investigate the potential of Nox 

protein inhibitors in the treatment of CML when combined with Bcr-Abl inhibition. 

Furthermore, as discussed Nox activity is implicated in a many cancers therefore the 

potential of Nox inhibition is not just limited to CML treatment. As a result Nox 

inhibition as a combined therapy with other chemotherapeutics was investigated to 

establish its potential as a treatment for a broader spectrum of cancers. As with 

previous studies K562 cells, which constitutively express Bcr-Abl were used as a 

model to perform these studies. 
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Results 

DPI, an inhibitor of Nox proteins: Determination of optimal concentrations and 

characterisation of the effects of treatment  

 The iodonium-derivative and flavoprotein inhibitor diphenylene iodonium 

(DPI) is the most commonly used and cited compound utilised to inhibit Nox activity 

(Bedard and Krause, 2007). DPI inhibits Nox activity by interfering with electron 

transport thereby preventing ROS generation (O’Donnell et al., 1993). Studies in 

Chapter 3 utilised DPI along with another Nox inhibitor, VAS2870, to demonstrate 

that an extensive proportion of endogenous ROS levels in K562 cells were Nox 

protein derived (Chapter 3, Figure 1). As a result of this work coupled with the 

highly cited use of DPI to inhibit Nox proteins this next study followed on from the 

results of Chapter 4 and focused on establishing whether or not the inhibitory 

activity of DPI could be utilised to increase the effectiveness of Bcr-Abl inhibition 

when treating CML. 

 To begin the effects of DPI treatment on K562 cells at varying concentrations 

was examined over 48hrs. Previous work with DPI did not require cells to be treated 

for extended periods of time therefore this examination was to characterise how this 

drug effected cells over long periods and to identify ideal concentrations for 

subsequent combination studies with other drugs. To do this K562 cells were treated 

with a low to high range of DPI concentrations and were examined after initial 

treatment in intervals of 1hrs, 2hrs, 4hrs, 8hrs, 16hrs, 24hrs and 48hrs. As this study 

was focused on the potential of Nox protein inhibition as a possible therapeutic, it 

was important to examine how varying concentrations of DPI affected endogenous 

ROS levels in K562 cells over time. Treatment of K562 cells with DPI at all 

concentrations resulted in comparative decreases in endogenous ROS levels within 



122 

 

the first hour of treatment (Figure 1a(i)). With the exception of 100nM all other 

concentrations demonstrated a reduction in ROS levels for the entire duration of the 

study (up to 48hrs). It is important to note that the decreases observed in ROS levels 

directly correlated with DPI concentration. K562 cells treated with lower 

concentrations of DPI (100nM to 1µM) demonstrated a minimal increase in cell 

death while considerable levels of cell death were observed with concentrations of 

2µM or higher following the 16hrs time-point (Figure 1a(ii)). Furthermore, 

depending on the concentration of DPI treatment variable effects were noted on cell 

cycle distribution. Lower concentrations of DPI (100nM to 500nM) were observed 

to induce an increase in the percentage of cells present in G0/G1 however at higher 

concentrations of DPI (2µM or higher) there was a steady shift with a large increase 

of cells in both the S and G2/M phases which was observed up to 48hrs (Figure 1b).  

 Work in Chapter 4 established that p22phox knockdown and subsequent 

inhibition of Nox-derived ROS produced an increase in the percentage of cells 

present in G1 due to a slowdown in transition to S phase (Chapter 4, Figure 3 and 

Figure 4). Furthermore, these studies established that inhibition of p22phox 

regulated Nox activity had a significant effect on cell viability but did not 

demonstrate a large increase in cell death (Chapter 4, Figure 7 and Figure 8). As a 

result concentrations of DPI below 2µM were believed to most suitable for 

subsequent studies with DPI as they induced effects in K562 cells similar to p22phox 

knockdown, a comparable increase in the percentage of cells in G0/G1 without 

having a substantial effect on cell death. As 100nM treatment did not decrease ROS 

levels below basal levels for the entire 48hrs duration 200nM, 500nM and 1µM were 

chosen. 
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Figure 1a. DPI: Determination of optimal concentrations and characterisation of 

the effects of treatment. K562 cells were treated with increasing concentrations of DPI 

(100nM, 200nM, 500nM, 1µM, 2µM, 5µM, 10µM, 20µM) and were examined at the 

indicated time-points (1hrs, 2hrs, 4hrs, 8hrs, 16hrs, 24hrs and 48hrs). (i) ROS levels: 

Intracellular ROS levels were measured by flow cytometric analysis of relative DCF 

fluorescence. The line graph demonstrates the mean relative DCF fluorescence of treated 

cells expressed as a percentage of the DMSO vehicle control (0hrs). (ii) Viability:  At 

each time-point treated cells were incubated with Annexin V-FITC and then stained with 

propidium iodide (PI) immediately before flow cytometric analysis. The line graph 

demonstrates the percentage of K562 cells staining negative for both Annexin V and PI. 

Viability of DMSO vehicle control cells represents 0hrs. Results are expressed as mean 

± SD and are representative of three independent experiments. 
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Figure 1b. DPI: Determination of optimal concentrations and characterisation of 

the effects of treatment. K562 cells were treated with increasing concentrations of DPI 

(100nM, 200nM, 500nM, 1µM, 2µM, 5µM, 10µM, 20µM) and were examined at the 

indicated time-points (1hrs, 2hrs, 4hrs, 8hrs, 16hrs, 24hrs and 48hrs). Cell cycle 

distribution: At each time-point treated cells were fixed then stained with propidium 

iodide (PI) before being examined by flow cytometric analysis. The bar chart 

demonstrates the cell cycle distribution of treated K562 cells as determined by ModFit 

LT software analysis 48hrs after treatment. Vehicle control is DMSO. Cell cycle 

distribution of treated cells at 48hrs is representative of earlier time-points. Results are 

expressed as mean ± SD and are representative of three independent experiments. 
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Imatinib: Determination of optimal concentrations and characterisation of the 

effects of treatment 

 As with DPI, before combination studies could commence the effects of 

Imatinib treatment on K562 cells at varying concentrations were examined over 

48hrs. Imatinib was used in previous chapters to study Bcr-Abl signalling through 

inhibition therefore these original studies were optimised to have minimal effect on 

cell death while inducing maximal inhibition. In contrast the aim of this study was to 

examine how varying concentrations of Imatinib induced cell death and as a result 

cells needed to be treated for extended periods of time to facilitate the identification 

of suitable drug concentrations for subsequent combination studies. In addition to 

cell death, cell cycle distribution was also examined to characterise and better 

understand the effects of the drug on K562 cells. 

 K562 cells were treated with a low to high range of Imatinib concentrations 

and were examined after initial treatment in intervals of 8hrs, 16hrs, 24hrs and 48hrs. 

All treatments with Imatinib induced some degree of cell death by 48hrs with higher 

concentrations demonstrating significant increases as early as 16hrs (Figure 2a). The 

extent of cell death directly correlated with Imatinib concentration. It is important to 

note that concentrations above 500nM induced a similar level of effect with near 

complete death of the cell populations. These concentrations were identified as too 

high to distinguish any additional increase in cell death that may arise if used in 

combination with another drug. Alternatively both 50nM and 100nM showed 

minimal effects on cell death and were believed to be too weak to be used for further 

examination. Examination of cell cycle distribution demonstrated that all 

concentrations of Imatinib induced an increase in the percentage of cells present in 

G0/G1 up to 48hrs (Figure 2b). Increases in the percentage of cells in S phase were  
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Figure 2. Imatinib: Determination of optimal concentrations and characterisation 

of the effects of treatment. K562 cells were treated with increasing concentrations of 

Imatinib (50nM, 100nM, 200nM, 500nM, 1µM, 2µM, 5µM, 10µM) and were examined 

at the indicated time-points (8hrs, 16hrs, 24hrs and 48hrs). (a) Viability:  At each time-

point treated cells were incubated with Annexin V-FITC and then stained with propidium 

iodide (PI) immediately before flow cytometric analysis. The line graph demonstrates 

the percentage of K562 cells staining negative for both Annexin V and PI. Viability of 

untreated cells represents 0hrs. (b) Cell cycle distribution: At each time-point treated 

cells were fixed then stained with propidium iodide (PI) before being examined by flow 

cytometric analysis. The bar chart demonstrates the cell cycle distribution of treated 

K562 cells as determined by ModFit LT software analysis 48hrs after each treatment. 

Vehicle refers to untreated cells. Cell cycle distribution at 48hrs is representative of 

earlier time-points. Results are expressed as mean ± SD and are representative of three 

independent experiments. 
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not observed prior to 48hrs.Taken together these examinations identified Imatinib at 

concentrations of 200nM and 500nM to be suitable for combination studies. Both 

produced distinctive affects on cell death and cell cycle distribution while still 

producing a large difference in their degree of potency, providing an ideal range. 

 

Imatinib and DPI: A study examining the effects of combined treatment on cell 

viability 

 After establishing suitable concentrations for DPI and Imatinib the next step 

was to treat K562 cells with combinations of these drugs. Each of the three chosen 

DPI concentrations were used to treat cells in combination with either of the two 

concentrations of Imatinib (200nM and 500nM). K562 cells were treated with these 

six separate drug combinations before cell death was examined 8hrs, 16hrs, 24hrs 

and 48hrs after initial treatment. Figure 3a clearly demonstrates that all three 

combinations which utilised Imatinib at 200nM induced a greater than two-fold 

increase in cell death when compared to Imatinib treatment alone. The effectiveness 

of a drug combination is generally determined based on whether a synergistic, 

additive or antagonistic effect is observed following treatment. The most accepted 

and highly cited method of determining whether a drug combination produces one of 

these three effects is through the calculation of a combination index (CI)  a method 

mathematically defined by Chou and Talalay in 1984 (Chou and Talalay, 1984; 

Chou 2007). Calculated CI values of < 1, = 1 or >1 indicate whether treatment with a 

drug combination is synergistic, additive or antagonistic respectively.  

 To determine the CI values for these six drug combinations the percentage of 

cell death observed at 48hrs as a result of individual drug treatments as well as 

combined drug treatments was analysed using CompuSyn software. Analysis 
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generated two values for each drug combination, CI and fraction affected (Fa). Fa is 

an assigned value between 0.01 and 0.99, representative of the level of cell death and 

the value inputted for analysis. Figure 3b illustrated this analysed data in the form of 

a Fa-CI plot along with a table containing the Fa and CI values for each combination. 

Data points below the line illustrated in a Fa-CI plot represent combinations which 

had a synergistic effect, the closer the point to the X-axis the greater the level of 

synergy. In this study all drug combinations produced CI values less than 1, with 

combinations containing higher concentrations of DPI demonstrating the lowest CI 

values. This work established that the combined treatment of DPI and Imatinib in 

K562 cells was synergistic. This result was interesting and highlighted the possible 

benefit of pharmacological Nox inhibition in combination with Imatinib as a 

potential treatment strategy for CML. 

 

Examination of the apoptotic pathway and cell morphology following combined 

treatment of cells with Imatinib and DPI 

 Annexin V is a recombinant protein that interacts strongly and specifically 

with phosphatidylserine residues which are externalised on the cell surface during 

early stages of apoptosis (van Engeland et al., 1998; Arur et al.,2003). The use of 

annexin V when examining cell viability following drug treatments established that 

the increase in cell death was a result of increased apoptosis. Due to this it was of 

interest to determine how combined DPI and Imatinib treatment affected the 

apoptotic process. Following initiation of apoptosis the cleavage and subsequent 

activation of the cysteine protease Caspase-3 is important for continuing the process 

of programme cell death (Elmore, 2007). Combined treatment with DPI at 200nM 

and Imatinib at 200nM demonstrated a distinct synergistic increase in cell death 
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Figure 3a. Combined treatment with both DPI and Imatinib synergistically 

decreases cell viability. K562 cells were simultaneously treated with both DPI and 

Imatinib (Imat) at varying concentration combinations (DPI + Imat respectively: 200nM 

+ 200nM, 200nM +500nM, 500nM +200nM, 500nM+500nM, 1µM + 200nM, 1µM + 

500nM) and were examined at the indicated time-points (8hrs, 16hrs, 24hrs and 48hrs). 

At each time-point treated cells were incubated with Annexin V-FITC and then stained 

with propidium iodide (PI) immediately before flow cytometric analysis. The line graph 

demonstrates the percentage of K562 cells staining negative for both Annexin V and PI. 

Viability of DMSO vehicle control cells represents 0hrs. Results are expressed as mean 

± SD and are representative of three independent experiments. 
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Figure 3b. Combined treatment with both DPI and Imatinib synergistically 

decreases cell viability. K562 cells were simultaneously treated with both DPI and 

Imatinib (Imat) at varying concentration combinations (DPI + Imat respectively: 200nM 

+ 200nM, 200nM +500nM, 500nM +200nM, 500nM+500nM, 1µM + 200nM, 1µM + 

500nM). At 48hrs treated K562 cells were incubated with Annexin V-FITC and then 

stained with propidium iodide (PI) immediately before flow cytometric analysis. Data 

was analysed using CompuSyn software to determine if the noted changes in K562 cell 

viability following combined treatment were synergistic (CI < 1), additive (CI = 1) or 

antagonistic (CI > 1). (i) A Fa-CI plot for all combinations as determined by CompuSyn 

software analysis at 48hrs. (ii) Table represents Fa and CI values for each combination. 
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when compared to single drug treatments. Following the treatment of K562 cells 

with this particular drug combination the levels of Pro-Caspase-3 were examined 

(Figure 4a). In addition to examining Caspase-3, poly (ADP-ribose) polymerase 

(PARP) a substrate of active Caspase-3 was also examined (Figure 4b). Following 

treatment for 48hrs, Pro-Caspase-3 protein levels were demonstrated to decrease in 

samples treated with Imatinib alone or with combined DPI and Imatinib (Figure 4a). 

This suggested an increased in cleaved Caspase-3 levels. Interestingly, although the 

decrease in Pro-Caspase-3 levels following combination treatment was marginally 

greater the difference was not significant. However, examination of PARP protein 

levels demonstrated a significantly greater increase in PARP cleavage in the samples 

treated with the drug combination versus Imatinib alone. 

 Following these studies morphological changes in K562 cells were examined 

48hrs after treatment. Various morphological changes such as cell shrinkage, nuclear 

condensation, plasma membrane blebbing and the formation of apoptotic bodies 

occur during apoptosis (Häcker, 2000).  To allow histological analysis cells were 

cytospun to slides, fixed and stained with hematoxylin and eosin following 

combination treatment. This study showed untreated, DMSO vehicle or DPI treated 

cells to have no noticeable changes in cell morphology (Figure 5). However, samples 

treated with Imatinib exhibited cells with some degree of morphological change 

while more significantly samples treated with the drug combination demonstrated a 

large number of dense purple fragments suggestive of condensed nuclear chromatin 

or apoptotic bodies as well as an excessive level of blebbing cells (Figure 5). Taken 

together these results demonstrated that combined treatment with DPI and Imatinib 

inhibiting both Nox and Bcr-Abl activity significantly increase the apoptotic process, 

further highlighting the potential for targeted Nox inhibition in CML treatment. 
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Figure 4. Combined treatment with both DPI and Imatinib results in a significant 

increase in PARP cleavage. K562 cells simultaneously treated with both Imatinib and 

DPI (200nM + 200nM respectively) for 48hrs. (a) Western blot analysis of Pro-Caspase 

3 protein levels. Bar chart shows the mean relative Pro-Caspase 3 protein levels of K562 

cells 48hrs after treatment as determined by densitometry and expressed as a percentage 

of the untreated control cells. (b) Western blot analysis of PARP protein levels. Bar chart 

shows the mean relative uncleaved PARP protein levels of K562 cells 48hrs after 

treatment as determined by densitometry and expressed as a percentage of the untreated 

control cells. Vehicle refers to DMSO control. -Actin is shown as a loading control.  

Results are expressed as mean ± SD and are representative of three independent 

experiments. Statistical analysis was carried out using the student t-test (P<0.05 is 

marked with *). 
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Figure 5. Histological analysis of cells treated with both Imatinib and DPI results in 

an increase in the number of apoptotic bodies. K562 cells simultaneously treated with 

both Imatinib and DPI (200nM + 200nM respectively) for 48hrs. Cells were cytospun 

onto slides, fixed and subsequently stained with haematoxylin and counterstained with 

eosin before being viewed under a light microscope. Arrows indicate cells with; 

shrinkage and nuclear condensation (a), plasma membrane blebbing (b) and apoptotic 

bodies (c). Images are representative of three independent experiments. 
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Nilotinib: Determination of optimal concentrations and characterisation of the 

effects of treatment 

 Nilotinib is a derivative of Imatinib and therefore another small molecule 

TKI developed to inhibit Bcr-Abl activity (Weisberg et al., 2005). Furthermore, 

Nilotinib binds Bcr-Abl with a higher affinity than Imatinib making it significantly 

more potent and giving it a lower IC50 value in comparison. Considering the level of 

synergy demonstrated following simultaneous Nox and Bcr-Abl inhibition via 

combined DPI and Imatinib treatment the aim of this study was to determine if this 

synergy would be replicated using a different Bcr-Abl inhibitor. This would confirm 

that the previous results were due to the specific effects of Bcr-Abl inhibition as 

opposed to any off target effects of Imatinib treatment. As with the previous drugs 

and for the same reasons, before combination studies could commence the effects of 

Nilotinib treatment on K562 cells at varying concentrations needed to be examined. 

 K562 cells were treated with a low to high range of Nilotinib concentrations 

and were examined after initial treatment in intervals of 8hrs, 16hrs, 24hrs and 48hrs. 

The effects of Nilotinib treatment were similar to those demonstrated following 

Imatinib treatment, albeit with the use of considerably lower concentrations. All 

treatments with Nilotinib induced some degree of cell death by 48hrs with higher 

concentrations demonstrating significant increases as early as 16hrs (Figure 6a). 

Furthermore, the extent of cell death directly correlated with the concentration of 

Nilotinib. Examination of cell cycle distribution demonstrated a similar pattern of 

concentration dependent G1 arrest as previously demonstrated with Imatinib 

treatment (Figure 6b). As with Imatinib increases in the percentage of cells in S 

phase at higher concentrations were not observed prior to 48hrs. Interestingly when 

examining cell death all concentrations above 10nM induced substantial levels of  
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Figure 6. Nilotinib: Determination of optimal concentrations and characterisation 

of the effects of treatment. K562 cells were treated with increasing concentrations of 

Nilotinib (1nM, 2nM, 5nM, 10nM, 20nM, 50nM, 100nM, 200nM) and were examined at 

the indicated time-points (8hrs, 16hrs, 24hrs and 48hrs). (a) Viability:  At each time-

point treated cells were incubated with Annexin V-FITC and then stained with propidium 

iodide (PI) immediately before flow cytometric analysis. The line graph demonstrates 

the percentage of K562 cells staining negative for both Annexin V and PI. Viability of 

DMSO vehicle control cells represents 0hrs. (b) Cell cycle distribution: At each time-

point treated cells were fixed then stained with propidium iodide (PI) before being 

examined by flow cytometric analysis. The bar chart demonstrates the cell cycle 

distribution of treated K562 cells as determined by ModFit LT software analysis 48hrs 

after treatment. Vehicle control is DMSO. Cell cycle distribution of treated cells at 48hrs 

is representative of earlier time-points. Results are expressed as mean ± SD and are 

representative of three independent experiments. 
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cell death making these concentrations too high to allow further analysis of effects if 

used in combination with another drug. Alternatively, although 1nM and 2nM 

treatments showed an effect on cell death, these were believed to be too weak to be 

used for further examination. As a result concentrations of 5nM and 10nM were 

chosen as suitable for combination studies. As with the previously examined drugs, 

these concentrations were chosen as both produced distinctive affects on cell death 

and cell cycle distribution while still producing a large difference in their degree of 

potency, providing an ideal range for treatment. 

 

Nilotinib and DPI: A study examining the effects of combined treatment on cell 

viability 

 Following the previous study the chosen concentrations of Nilotinib were 

used to treat K562 cell in combination with DPI. As before each of the three chosen 

DPI concentrations were used to treat cells in combination with either of the two 

concentrations of Nilotinib (5nM and 10nM) thereby making six separate drug 

combinations in total. As before cell death was examined 8hrs, 16hrs, 24hrs and 

48hrs after initial treatment followed by calculation of CI values. Figure 7a clearly 

demonstrates a very similar pattern to that observed following DPI and Imatinib 

treatment with all three combinations utilising the lower concentration of Nilotinib 

(5nM) inducing a greater than two-fold increase in cell death when compared to 

Nilotinib treatment alone.  

 As before CI values of the drug combinations were determined using 

CompuSyn software analysis.  Again as previously observed with Imatinib, all drug 

combinations here produced CI values less than 1, with the lowest values being 

produced from combinations containing the higher DPI concentrations (Figure 7b).  
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Figure 7a. Combined treatment with both DPI and Nilotinib synergistically 

decreases cell viability. K562 cells were simultaneously treated with both DPI and 

Nilotinib (Nil) at varying concentration combinations (DPI + Nil respectively: 200nM + 

5nM, 200nM + 10nM, 500nM + 5nM, 500nM + 10nM, 1µM + 5nM, 1µM + 10nM) and 

were examined at the indicated time-points (8hrs, 16hrs, 24hrs and 48hrs). At each time-

point treated cells were incubated with Annexin V-FITC and then stained with propidium 

iodide (PI) immediately before flow cytometric analysis. The line graph demonstrates 

the percentage of K562 cells staining negative for both Annexin V and PI. Viability of 

DMSO vehicle control cells represents 0hrs. Results are expressed as mean ± SD and are 

representative of three independent experiments. 
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Figure 7b. Combined treatment with both DPI and Nilotinib synergistically 

decreases cell viability. K562 cells were simultaneously treated with both DPI and 

Nilotinib (Nil) at varying concentration combinations (DPI + Nil respectively: 200nM + 

5nM, 200nM + 10nM, 500nM + 5nM, 500nM + 10nM, 1µM + 5nM, 1µM + 10nM) and 

were examined at the indicated time-points (8hrs, 16hrs, 24hrs and 48hrs). At 48hrs 

treated K562 cells were incubated with Annexin V-FITC and then stained with 

propidium iodide (PI) immediately before flow cytometric analysis. Data was analysed 

using CompuSyn software to determine if the noted changes in K562 cell viability 

following combined treatment were synergistic (CI < 1), additive (CI = 1) or 

antagonistic (CI > 1). (i) A Fa-CI plot for all combinations as determined by CompuSyn 

software analysis at 48hrs. (ii) Table represents Fa and CI values for each combination. 
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These results established that combined treatment of DPI and Nilotinib in K562 cells 

was highly synergistic. This confirmed that previous synergy observed with Imatinib 

treatment were likely due to specific Bcr-Abl inhibition coupled with DPI treatment. 

Furthermore this emphasised the potential of Bcr-Abl inhibition in conjunction with 

the use of Nox inhibitors again highlighting the potential of pharmacological Nox 

inhibition in combination with Bcr-Abl inhibition in CML treatment. 

 

VAS2870, an alternative Nox Inhibitor: Determination of optimal 

concentrations and characterisation of the effects of treatment 

 VAS2870 (3-benzyl-7-(2-benzoxazolyl) thio-1,2,3-triazolo[4,5-d]pyrimidine) 

is described as a novel and specific Nox inhibitor (Tegtmeier et al., 2005). As 

discussed studies in Chapter 3 utilised DPI along with another Nox inhibitor, 

VAS2870, to demonstrate that an extensive proportion of endogenous ROS levels in 

K562 cells were Nox protein derived (Chapter 3, Figure 1). As a result of the 

previous studies it was of interest to determine if Nox inhibition via VAS2870 

treatment combined with Bcr-Abl inhibition would produce the same level of 

synergy as demonstrated with DPI.  As before the effects of VAS2870 treatment on 

K562 cells was examined, however as the IC50 of VAS2870 had previously been 

established across various cells lines (ten Freyhaus et al., 2006; Stielow et al., 2006; 

Lange et al., 2009) a narrower range of concentrations was examined. 

 As VAS2870 is a Nox protein inhibitor the endogenous ROS levels of K562 

cells needed to be examined following treatment. Interestingly each of the three 

concentrations of VAS2870 (2µM, 5µM, 10µM) induced a decrease in endogenous 

ROS levels within 30mins of treatment (Figure 8a(i)). Of the three concentrations 

only cells treated with 10µM demonstrated a significant reduction in ROS levels for 
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the entire duration of the study (up to 48hrs). In fact 2µM and 5µM treated cells 

showed no significant decrease in ROS following 2hrs. Furthermore, 10µM 

treatment demonstrated a double dip reduction in ROS levels, initially at 30mins and 

another following 8hrs of treatment. As was the case with DPI, K562 cells treated 

with VAS2870 demonstrated no significant increase in cell death prior to 8hrs 

(Figure 8a(ii)). Treatment with VAS2870 at 2µM demonstrated no significant effect 

on cell death at any time point while cells treated with 5µM and 10µM exhibited 

substantial concentration dependent increases in cell death. Additionally, unlike DPI 

VAS2870 treatment at lower concentrations exhibited no significant change in the 

percentage of cells in G0/G1 but did induce an increase of cells in the G2/M phase 

following treatment with the higher 10µM treatment (Figure 8b). Treatment of K562 

cells with VAS2870 produced results which contradicted the work demonstrated in 

Chapter 4 regarding p22phox knockdown. Although these results were contradictory 

it was still decided to examine the potential of VAS2870 treatment combined with 

Bcr-Abl inhibition. As only three concentrations of VAS2870 were examined all 

three were used for the subsequent combination studies. 

 

Imatinib and VAS2870: A study examining the effects of combined treatment 

on cell viability 

 Combined treatment of K562 cells with Imatinib and VAS2870 was carried 

out as per the protocol used for previous combination studies. Interestingly unlike 

combinations utilising DPI, there was no clear increase or enhancement of Imatinib 

potency when used in combination with VAS2870 following examination of cell 

death levels (Figure 9a). As a result examination of CI values was required to 

provide a better understanding of these results. After calculating the CI values it was  
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Figure 8a. VAS2870: Determination of optimal concentrations and characterisation 

of the effects of treatment. K562 cells were treated with increasing concentrations of 

VAS2870 (2µM, 5µM, 10µM) and were examined at the indicated time-points (30mins, 

1hrs, 2hrs, 4hrs, 8hrs, 16hrs, 24hrs and 48hrs). (i) ROS levels: Intracellular ROS levels 

were measured by flow cytometric analysis of relative DCF fluorescence. The line graph 

demonstrates the mean relative DCF fluorescence of treated cells expressed as a 

percentage of the DMSO vehicle control (0hrs). (ii) Viability:  At each time-point treated 

cells were incubated with Annexin V-FITC and then stained with propidium iodide (PI) 

immediately before flow cytometric analysis. The line graph demonstrates the 

percentage of K562 cells staining negative for both Annexin V and PI. Viability of 

DMSO vehicle control cells represents 0hrs. Results are expressed as mean ± SD and are 

representative of three independent experiments. 
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Figure 8b. VAS2870: Determination of optimal concentrations and characterisation 

of the effects of treatment. K562 cells were treated with increasing concentrations of 

VAS2870 (2µM, 5µM, 10µM) and were examined at the indicated time-points (30mins, 

1hrs, 2hrs, 4hrs, 8hrs, 16hrs, 24hrs and 48hrs). Cell cycle distribution: At each time-point 

treated cells were fixed then stained with propidium iodide (PI) before being examined 

by flow cytometric analysis. The bar chart demonstrates the cell cycle distribution of 

treated K562 cells as determined by ModFit LT software analysis 48hrs after treatment. 

Vehicle control is DMSO. Cell cycle distribution of treated cells at 48hrs is 

representative of earlier time-points. Results are expressed as mean ± SD and are 

representative of three independent experiments. 
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evident that out of the six drug combinations used the four utilising lower VAS2870 

levels (2µM and 5µM) induced an antagonistic effect while the two treatments using 

10µM demonstrated some degree of synergy. Indeed, some combination treatments 

produced CI values too high to be represented in the Fa-CI plot. This work indicated 

that the combined treatment of VAS2870 and Imatinib in K562 cells was variable. 

This was very interesting and highlighted that the use of VAS2870 in combination 

with Bcr-Abl may not be an ideal drug for these studies. 

 

Nilotinib and VAS2870: A study examining the effects of combined treatment 

on cell viability 

 Following the previous study which combined Imatinib and VAS2870 

treatment it was of interest to determine whether or not the use of Nilotinib in place 

of Imatinib would elicit an alternative result. Combined treatment of VAS2870 and 

Nilotinib was examined on K562 cells in the same manner as with previous 

combinations. As with combined Imatinib and VAS2870 treatment, there was no 

clear increase or enhancement of the level of cell death following combined 

treatment with VAS2870 and Nilotinib (Figure 10a). In fact the effect and pattern of 

cell death was very similar to the previous combination study with Imatinib.  

Similarly again, calculation of CI values demonstrated that only two of the six 

combinations were synergistic. With the exception of the VAS 2µM + Nil 10nM 

combination which demonstrated an additive effect the remaining three treatments 

were antagonistic. This work confirmed that treatment of VAS2870 in combination 

with Bcr-Abl inhibition in K562 cells produced variable results; further highlighting 

that VAS2870 may not be an ideal drug for CML treatment. 
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Figure 9a. Combined treatment with both VAS2870 and Imatinib can produce a 

synergistic or antagonistic effect on cell viability. K562 cells were simultaneously 

treated with both VAS2870 (VAS) and Imatinib (Imat) at varying concentration 

combinations (VAS + Imat respectively: 2µM + 200nM, 2µM + 500nM, 5µM + 200nM, 

5µM + 500nM, 10µM + 200nM, 10µM + 500nM) and were examined at the indicated 

time-points (8hrs, 16hrs, 24hrs and 48hrs). At each time-point treated cells were 

incubated with Annexin V-FITC and then stained with propidium iodide (PI) 

immediately before flow cytometric analysis. The line graph demonstrates the 

percentage of K562 cells staining negative for both Annexin V and PI. Viability of 

DMSO vehicle control cells represents 0hrs. Results are expressed as mean ± SD and are 

representative of three independent experiments. 
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Drug Combinations Fa Value CI Value

VAS 2µM + Imat 200nM 0.16685 2.83128

VAS 2µM + Imat 500nM 0.4347 1.70102

VAS 5µM + Imat 200nM 0.2153 2.65515

VAS 5µM + Imat 500nM 0.5278 1.40954

VAS 10µM + Imat 200nM 0.6601 0.76706

VAS 10µM + Imat 500nM 0.74675 0.79103

Figure 9b. Combined treatment with both VAS2870 and Imatinib can produce a 

synergistic or antagonistic effect on cell viability. K562 cells were simultaneously 

treated with both VAS2870 (VAS) and Imatinib (Imat) at varying concentration 

combinations (VAS + Imat respectively: 2µM + 200nM, 2µM + 500nM, 5µM + 200nM, 

5µM + 500nM, 10µM + 200nM, 10µM + 500nM) and were examined at the indicated 

time-points (8hrs, 16hrs, 24hrs and 48hrs).At 48hrs treated K562 cells were incubated 

with Annexin V-FITC and then stained with propidium iodide (PI) immediately before 

flow cytometric analysis. Data was analysed using CompuSyn software to determine if 

the noted changes in K562 cell viability following combined treatment were synergistic 

(CI < 1), additive (CI = 1) or antagonistic (CI > 1). (i) A Fa-CI plot for all combinations 

as determined by CompuSyn software analysis at 48hrs. (ii) Table represents Fa and CI 

values for each combination. 
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Figure 10a. Combined treatment with both VAS2870 and Nilotinib can produce a 

synergistic or antagonistic effect on cell viability. K562 cells were simultaneously 

treated with both VAS2870 (VAS) and Nilotinib (Nil) at varying concentration 

combinations (VAS + Nil respectively: 2µM + 5nM, 2µM + 10nM, 5µM + 5nM, 5µM + 

10nM, 10µM + 5nM, 10µM + 10nM) and were examined at the indicated time-points 

(8hrs, 16hrs, 24hrs and 48hrs). At each time-point treated cells were incubated with 

Annexin V-FITC and then stained with propidium iodide (PI) immediately before flow 

cytometric analysis. The line graph demonstrates the percentage of K562 cells staining 

negative for both Annexin V and PI. Viability of DMSO vehicle control cells represents 

0hrs. Results are expressed as mean ± SD and are representative of three independent 

experiments. 
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Drug Combinations Fa Value CI Value

VAS 2µM + Nil 5nM 0.15965 4.77546

VAS 2µM + Nil 10nM 0.45885 1.12332

VAS 5µM + Nil 5nM 0.17585 4.72414

VAS 5µM + Nil 10nM 0.40185 1.84797

VAS 10µM + Nil 5nM 0.61435 0.76209

VAS 10µM + Nil 10nM 0.6972 0.66701

Figure 10b. Combined treatment with both VAS2870 and Nilotinib can produce a 

synergistic or antagonistic effect on cell viability. K562 cells were simultaneously 

treated with both VAS2870 (VAS) and Nilotinib (Nil) at varying concentration 

combinations (VAS + Nil respectively: 2µM + 5nM, 2µM + 10nM, 5µM + 5nM, 5µM + 

10nM, 10µM + 5nM, 10µM + 10nM) and were examined at the indicated time-points 

(8hrs, 16hrs, 24hrs and 48hrs). At 48hrs treated K562 cells were incubated with Annexin 

V-FITC and then stained with propidium iodide (PI) immediately before flow cytometric 

analysis. Data was analysed using CompuSyn software to determine if the noted changes 

in K562 cell viability following combined treatment were synergistic (CI < 1), additive 

(CI = 1) or antagonistic (CI > 1). (i) A Fa-CI plot for all combinations as determined by 

CompuSyn software analysis at 48hrs. (ii) Table represents Fa and CI values for each 

combination. 

 



148 

 

Examination of the potential of using DPI as a Nox inhibitor in combination 

with alternative chemotherapeutic drugs 

 Having established the potential of DPI treatment when used in combination 

with either Imatinib or Nilotinib, it was of interest to determine if Nox inhibition via 

DPI could be used to increase the effectiveness of chemotherapeutic drugs which do 

not inhibit Bcr-Abl activity. The aim of this study was to provide a basis for studies 

which might examine the potential of combined Nox inhibition in the treatment of 

cancers other than CML. To do this the effects of multiple broad spectrum 

chemotherapeutic drugs each inducing cell death through a different mechanism of 

action were examined alone and in combination with DPI treatment.  

 Nox inhibition by VAS2870 was not chosen for this study due to the variable 

results it produced when used in the previous combination studies. Once again K562 

cells were used as a model for these studies. K562 cells express the oncogene Bcr-

Abl and are a well established model used in the study of leukaemias, CML in 

particular.  However, Bcr-Abl is the archetypical oncogene and induces its 

oncogenic effects through mechanisms similarly observed in many other cancers. As 

a result it was believed that K562 cells could be used as a model to provide an 

insight into how many other cancers may respond to Nox inhibition via DPI 

treatment in combination with the chosen chemotherapeutics. For each of these 

chemotherapeutics, the concentrations used in combination with DPI were chosen 

using the same criteria previously utilised in the Imatinib and Nilotinib studies. 

Furthermore examination of combined DPI and chemotherapeutic treatment was 

carried out for each drug using the same methods as before.  
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Cisplatin 

 Cisplatin (cis-Diammineplatinum(II) dichloride) is a broad spectrum anti-

neoplastic agent containing platinum. This agent elicits its cytotoxic effects by 

interacting with DNA to form DNA adducts, crosslinking DNA thereby inhibiting 

DNA repair and synthesis, suppressing RNA transcription, affecting the cell cycle 

and subsequently inducing apoptosis (Siddik, 2003). Frequently Cisplatin is wrongly 

designated as an alkylating agent due to its similar mode of action however it does 

not have an alkyl group.  

 Treatment of K562 cells with Cisplatin induced significant levels of cell 

death when used at the higher concentrations (Figure 11a). Furthermore treatment 

induced a substantial increase in the percentage of cells in S phase as well as a slight 

increase of cells present in G2/M phase while a reduction in G0/G1 was noted 

(Figure 11b).  Combination studies with Cisplatin and DPI treatment demonstrated 

interesting results. All treatments containing 20µM Cisplatin exhibited an 

antagonistic effect on cell death yet a considerable degree of synergy was noted in 

combinations utilising the higher level 50µM concentration of Cisplatin (Figure 12a 

and b). This suggested that higher levels of Cisplatin treatment would be required to 

induce the desired effect when combined with DPI. 
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Figure 11. Cisplatin: Determination of optimal concentrations and characterisation 

of the effects of treatment. K562 cells were treated with increasing concentrations of 

Cisplatin (500nM, 1µM, 2µM, 5 µM, 10µM, 20µM, 50µM, 100µM) and were examined 

at the indicated time-points (8hrs, 16hrs, 24hrs and 48hrs). (a) Viability:  At each time-

point treated cells were incubated with Annexin V-FITC and then stained with propidium 

iodide (PI) immediately before flow cytometric analysis. The line graph demonstrates 

the percentage of K562 cells staining negative for both Annexin V and PI. Viability of 

DMF vehicle control cells represents 0hrs. (b) Cell cycle distribution: At each time-point 

treated cells were fixed then stained with propidium iodide (PI) before being examined 

by flow cytometric analysis. The bar chart demonstrates the cell cycle distribution of 

treated K562 cells as determined by ModFit LT software analysis 48hrs after treatment. 

Vehicle control is DMF. Cell cycle distribution of treated cells at 48hrs is representative 

of earlier time-points. Results are expressed as mean ± SD and are representative of 

three independent experiments. 
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Figure 12a. Combined treatment with both DPI and Cisplatin can produce a 

synergistic or antagonistic effect on cell viability. K562 cells were simultaneously 

treated with both DPI and Cisplatin (Cis) at varying concentration combinations (DPI + 

Cis respectively: 200nM + 20µM, 200nM + 50µM, 500nM + 20µM, 500nM + 50µM, 

1µM + 20µM, 1µM + 50µM) and were examined at the indicated time-points (8hrs, 

16hrs, 24hrs and 48hrs). At each time-point treated cells were incubated with Annexin V-

FITC and then stained with propidium iodide (PI) immediately before flow cytometric 

analysis. The line graph demonstrates the percentage of K562 cells staining negative for 

both Annexin V and PI. Viability of DMSO vehicle control cells represents 0hrs. Results 

are expressed as mean ± SD and are representative of three independent experiments. 
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Drug Combinations Fa Value CI Value

DPI 200nM + Cis 20µM 0.19485 3.89129

DPI 200nM + Cis 50µM 0.8443 0.40434

DPI 500nM + Cis 20µM 0.2282 3.20397
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Figure 12b. Combined treatment with both DPI and Cisplatin can produce a 

synergistic or antagonistic effect on cell viability K562 cells were simultaneously 

treated with both DPI and Cisplatin (Cis) at varying concentration combinations (DPI + 

Cis respectively: 200nM + 20µM, 200nM + 50µM, 500nM + 20µM, 500nM + 50µM, 

1µM + 20µM, 1µM + 50µM) and were examined at the indicated time-points (8hrs, 

16hrs, 24hrs and 48hrs). At 48hrs treated K562 cells were incubated with Annexin V-

FITC and then stained with propidium iodide (PI) immediately before flow cytometric 

analysis. Data was analysed using CompuSyn software to determine if the noted changes 

in K562 cell viability following combined treatment were synergistic (CI < 1), additive 

(CI = 1) or antagonistic (CI > 1). (i) A Fa-CI plot for all combinations as determined by 

CompuSyn software analysis at 48hrs. (ii) Table represents Fa and CI values for each 

combination. 
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Docetaxel 

 Docetaxel is a semi-synthetic analogue of paclitaxel (Taxol), a compound 

originally isolated from the bark of the rare Pacific yew tree (Taxus brevifolia). Both 

drugs belong to a group of anticancer agents known as taxanes, which bind to and 

stabilise microtubules, inhibiting mitosis thereby arresting the cell-cycle and 

subsequently inducing apoptosis (Montero et al., 2005).  

 Treatment of K562 cells with Docetaxel at each of the concentrations 

induced significant levels of cell death (Figure 13a). It is interesting to note that the 

level of cell death directly correlated to the concentration of Docetaxel treatment.  

Furthermore treatment at all of the concentrations induced a substantial G2 arrest 

with negligible numbers of cells present in either G0/G1 or S phase (Figure 13b).  

Combination studies with Docetaxel and DPI treatment gave positive results with all 

treatments demonstrating a strong additive effect on cell death with one combination 

(DPI 1µM + Doc 2nM) demonstrating synergy (Figure 14a and b).  
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Figure 13. Docetaxel: Determination of optimal concentrations and 

characterisation of the effects of treatment. K562 cells were treated with increasing 

concentrations of Docetaxel (2nM, 5nM, 10nM, 20nM, 50nM, 100nM, 200nM, 500nM) 

and were examined at the indicated time-points (8hrs, 16hrs, 24hrs and 48hrs). (a) 

Viability:  At each time-point treated cells were incubated with Annexin V-FITC and 

then stained with propidium iodide (PI) immediately before flow cytometric analysis. 

The line graph demonstrates the percentage of K562 cells staining negative for both 

Annexin V and PI. Viability of DMSO vehicle control cells represents 0hrs. (b) Cell 

cycle distribution: At each time-point treated cells were fixed then stained with 

propidium iodide (PI) before being examined by flow cytometric analysis. The bar chart 

demonstrates the cell cycle distribution of treated K562 cells as determined by ModFit 

LT software analysis 48hrs after treatment. Vehicle control is DMSO. Cell cycle 

distribution of treated cells at 48hrs is representative of earlier time-points. Results are 

expressed as mean ± SD and are representative of three independent experiments. 
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Figure 14a. Combined treatment with both DPI and Docetaxel produces an 

additive effect on cell viability with some synergy. K562 cells were simultaneously 

treated with both DPI and Docetaxel (Doc) at varying concentration combinations (DPI 

+ Doc respectively: 200nM + 2nM, 200nM + 5nM, 500nM + 2nM, 500nM + 5nM, 1µM 

+ 2nM, 1µM + 5nM) and were examined at the indicated time-points (8hrs, 16hrs, 24hrs 

and 48hrs). At each time-point treated cells were incubated with Annexin V-FITC and 

then stained with propidium iodide (PI) immediately before flow cytometric analysis. 

The line graph demonstrates the percentage of K562 cells staining negative for both 

Annexin V and PI. Viability of DMSO vehicle control cells represents 0hrs. Results are 

expressed as mean ± SD and are representative of three independent experiments. 
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Figure 14b. Combined treatment with both DPI and Docetaxel produces an 

additive effect on cell viability with some synergy. K562 cells were simultaneously 

treated with both DPI and Docetaxel (Doc) at varying concentration combinations (DPI 

+ Doc respectively: 200nM + 2nM, 200nM + 5nM, 500nM + 2nM, 500nM + 5nM, 1µM 

+ 2nM, 1µM + 5nM) and were examined at the indicated time-points (8hrs, 16hrs, 24hrs 

and 48hrs). At 48hrs treated K562 cells were incubated with Annexin V-FITC and then 

stained with propidium iodide (PI) immediately before flow cytometric analysis. Data 

was analysed using CompuSyn software to determine if the noted changes in K562 cell 

viability following combined treatment were synergistic (CI < 1), additive (CI = 1) or 

antagonistic (CI > 1). (i) A Fa-CI plot for all combinations as determined by CompuSyn 

software analysis at 48hrs. (ii) Table represents Fa and CI values for each combination. 
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Etoposide 

 Etoposide is a semi-synthetic derivative of podophyllotoxin (podofilox), a 

substance originally extracted from the root of the plant Podophyllum peltatum. 

Etoposide is a potent anti-neoplastic agent eliciting its effects by binding to and 

inhibiting Topoisomerase II, resulting in the accumulation of DNA single- or 

double-strand breaks, the inhibition of DNA replication and transcription, followed 

by eventual apoptotic cell death (Nitiss, 2009).  

 All concentrations of Etoposide used to treat K562 cells induced significant 

levels of cell death by 48hrs (Figure 15a). It is interesting to note that the level of cell 

death induced by all concentrations below 5µM demonstrated comparable reductions 

while treatments of10µM and above induced levels of cell death which directly 

correlated with Etoposide concentration.  Furthermore treatment of K562 cells with 

lower concentrations of Etoposide (500nM, 1µM and 2µM) induced substantial 

increases in the percentage of cells present in G2/M phase while treatment with 

higher concentrations produced an increase in cells present in S phase (Figure 15b). 

All treatments induced a considerable reduction in the percentage of cells present in 

G0/G1. Combination studies with Etoposide and DPI treatment gave varied results 

with four of the six combinations demonstrating strong antagonism, while the 

combinations of DPI 200nM + Etop 20µM and DPI 1µM + Etop 20µM both 

demonstrated synergy (Figure 16a and b). 
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Figure 15. Etoposide: Determination of optimal concentrations and 

characterisation of the effects of treatment. K562 cells were treated with increasing 

concentrations of Etoposide (500nM, 1µM, 2µM, 5 µM, 10µM, 20µM, 50µM, 100µM) 

and were examined at the indicated time-points (8hrs, 16hrs, 24hrs and 48hrs). (a) 

Viability:  At each time-point treated cells were incubated with Annexin V-FITC and 

then stained with propidium iodide (PI) immediately before flow cytometric analysis. 

The line graph demonstrates the percentage of K562 cells staining negative for both 

Annexin V and PI. Viability of DMSO vehicle control cells represents 0hrs. (b) Cell 

cycle distribution: At each time-point treated cells were fixed then stained with 

propidium iodide (PI) before being examined by flow cytometric analysis. The bar chart 

demonstrates the cell cycle distribution of treated K562 cells as determined by ModFit 

LT software analysis 48hrs after treatment. Vehicle control is DMSO. Cell cycle 

distribution of treated cells at 48hrs is representative of earlier time-points. Results are 

expressed as mean ± SD and are representative of three independent experiments. 
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Figure 16a. Combined treatment with both DPI and Etoposide produces a 

significant antagonistic effect on cell viability with some synergy. K562 cells were 

simultaneously treated with both DPI and Etoposide (Etop) at varying concentration 

combinations (DPI + Etop respectively: 200nM + 5µM, 200nM + 20µM, 500nM + 5µM, 

500nM + 20µM, 1µM + 5µM, 1µM + 20µM) and were examined at the indicated time-

points (8hrs, 16hrs, 24hrs and 48hrs). At each time-point treated cells were incubated 

with Annexin V-FITC and then stained with propidium iodide (PI) immediately before 

flow cytometric analysis. The line graph demonstrates the percentage of K562 cells 

staining negative for both Annexin V and PI. Viability of DMSO vehicle control cells 

represents 0hrs. Results are expressed as mean ± SD and are representative of three 

independent experiments. 
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DPI 200nM + Etop 5µM 0.17815 5.40054

DPI 200nM + Etop 20µM 0.38975 0.71743

DPI 500nM + Etop 5µM 0.15825 8.60447

DPI 500nM + Etop 20µM 0.33715 1.47618

DPI 1µM + Etop 5µM 0.1993 3.69068

DPI 1µM + Etop 20µM 0.4065 0.58653

Figure 16b. Combined treatment with both DPI and Etoposide produces a very 

significant antagonistic effect on cell viability with some synergy. K562 cells were 

simultaneously treated with both DPI and Etoposide (Etop) at varying concentration 

combinations (DPI + Etop respectively: 200nM + 5µM, 200nM + 20µM, 500nM + 5µM, 

500nM + 20µM, 1µM + 5µM, 1µM + 20µM) and were examined at the indicated time-

points (8hrs, 16hrs, 24hrs and 48hrs). At 48hrs treated K562 cells were incubated with 

Annexin V-FITC and then stained with propidium iodide (PI) immediately before flow 

cytometric analysis. Data was analysed using CompuSyn software to determine if the 

noted changes in K562 cell viability following combined treatment were synergistic (CI 

< 1), additive (CI = 1) or antagonistic (CI > 1). (i) A Fa-CI plot for all combinations as 

determined by CompuSyn software analysis at 48hrs. (ii) Table represents Fa and CI 

values for each combination. 
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Actinomycin D 

 Actinomycin D is a polypeptide antibiotic isolated from a soil bacterium 

found in the genus Streptomyces. This antibiotic elicits its cytotoxic effects by 

binding DNA at transcription sites, preventing elongation of the RNA chain by RNA 

polymerase thereby inhibiting transcription and subsequent protein synthesis (Sobell 

1985). Furthermore this antibiotic is also suggested to affect the activity of 

Topoisomerase I and II (Koba and Konopa, 2005).  

 Treatment of K562 cells with Actinomycin D at each of the concentrations 

above 2nM induced significant levels of cell death (Figure 17a). As with the 

previous chemotherapeutics the level of cell death directly correlated to the 

concentration of treatment.  Interestingly treatment of K562 cells with Actinomycin 

D produced varying degrees of effect on cell cycle distribution over 48hrs. The 

highest concentrations of Actinomycin D (20nM and 50nM) induced an increase in 

the percentage of cells present in G0/G1 phase and a decrease in G/M, while 

treatments of 5nM and 10nM demonstrated the complete opposite result (Figure 

17b). Concentrations below these values produced no significant change to cell cycle 

distribution. Furthermore increases in the percentage of cells present in S phase were 

not observed prior to 48hrs. All six Actinomycin D and DPI combination treatments 

demonstrated additive effects (Figure 18a and b). While four of these demonstrated a 

strong additive effect, the DPI 200nM + ActD 5nM and DPI 500nM + ActD 5nM 

combinations demonstrated a minor level of antagonism. 
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Figure 17. Actinomycin D: Determination of optimal concentrations and 

characterisation of the effects of treatment. K562 cells were treated with increasing 

concentrations of Actinomycin D (0.2nM, 0.5nM, 1nM, 2nM, 5nM, 10nM, 20nM, 

50nM) and were examined at the indicated time-points (8hrs, 16hrs, 24hrs and 48hrs). 

(a) Viability:  At each time-point treated cells were incubated with Annexin V-FITC and 

then stained with propidium iodide (PI) immediately before flow cytometric analysis. 

The line graph demonstrates the percentage of K562 cells staining negative for both 

Annexin V and PI. Viability of DMSO vehicle control cells represents 0hrs. (b) Cell 

cycle distribution: At each time-point treated cells were fixed then stained with 

propidium iodide (PI) before being examined by flow cytometric analysis. The bar chart 

demonstrates the cell cycle distribution of treated K562 cells as determined by ModFit 

LT software analysis 48hrs after treatment. Vehicle control is DMSO. Cell cycle 

distribution of treated cells at 48hrs is representative of earlier time-points. Results are 

expressed as mean ± SD and are representative of three independent experiments. 
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Figure 18a. Combined treatment with both DPI and Acintinomycin D produces an 

additive effect on cell viability with a minor level of antagonism. K562 cells were 

simultaneously treated with both DPI and Actinomycin D (ActD) at varying 

concentration combinations (DPI + ActD respectively: 200nM + 5nM, 200nM + 10nM, 

500nM + 5nM, 500nM + 10nM, 1µM + 5nM, 1µM + 10nM) and were examined at the 

indicated time-points (8hrs, 16hrs, 24hrs and 48hrs). At each time-point treated cells 

were incubated with Annexin V-FITC and then stained with propidium iodide (PI) 

immediately before flow cytometric analysis. The line graph demonstrates the 

percentage of K562 cells staining negative for both Annexin V and PI. Viability of 

DMSO vehicle control cells represents 0hrs. Results are expressed as mean ± SD and are 

representative of three independent experiments. 
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DPI 200nM + ActD 5nM 0.2669 1.27724

DPI 200nM + ActD 10nM 0.45675 1.0356

DPI 500nM + ActD 5nM 0.2768 1.23062

DPI 500nM + ActD 10nM 0.44735 1.08088

DPI 1µM + ActD 5nM 0.30735 1.0672

DPI 1µM + ActD 10nM 0.45795 1.03606

Figure 18b. Combined treatment with both DPI and Acintinomycin D produces an 

additive effect on cell viability with a minor level of antagonism. K562 cells were 

simultaneously treated with both DPI and Actinomycin D (ActD) at varying 

concentration combinations (DPI + ActD respectively: 200nM + 5nM, 200nM + 10nM, 

500nM + 5nM, 500nM + 10nM, 1µM + 5nM, 1µM + 10nM) and were examined at the 

indicated time-points (8hrs, 16hrs, 24hrs and 48hrs). At 48hrs treated K562 cells were 

incubated with Annexin V-FITC and then stained with propidium iodide (PI) 

immediately before flow cytometric analysis. Data was analysed using CompuSyn 

software to determine if the noted changes in K562 cell viability following combined 

treatment were synergistic (CI < 1), additive (CI = 1) or antagonistic (CI > 1). (i) A Fa-CI 

plot for all combinations as determined by CompuSyn software analysis at 48hrs. (ii) 

Table represents Fa and CI values for each combination. 
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Methotrexate 

 Methotrexate is a chemical analogue of folic acid which induces the 

inhibition of dihydrofolate reductase at a high affinity, preventing the synthesis of 

purines and pyrimidines due to the subsequent depletion of tetrahydrofolates 

(Abolmaali et al., 2013). Without purines and pyrimidines many metabolic processes 

are interrupted, most importantly DNA and RNA cannot be synthesised inducing cell 

cycle arrest and apoptosis of cells.  

 Treatment of K562 cells with Methotrexate at all concentrations induced 

some degree of cell death however the level of death observed was significantly 

lower than with any of the previously studied chemotherapeutics (Figure 19a). 

Furthermore all concentrations of Methotrexate at or above 100nM induced a 

substantial increase in the percentage of cells present in G0/G1 accompanied by a 

significant decrease of cells present in G2/M (Figure 19b). Interesting treatment with 

20nM and 50nM increased the percentage of cells present in S phase. Rather 

significantly all Methotrexate and DPI combination treatments produced a 

synergistic effect on cell death (Figure 20a and b). With the exception of one of these 

combinations (DPI 1µM + Met 1µM 2nM) calculated CI values were the lowest of 

all the previous combination studies carried out demonstrating a high potential for 

combined Methotrexate and Nox inhibition in cancer treatment. 
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Figure 19. Methotrexate: Determination of optimal concentrations and 

characterisation of the effects of treatment. K562 cells were treated with increasing 

concentrations of Methotrexate (20nM, 50nM, 100nM, 200nM, 500nM, 1µM, 2µM, 

5µM) and were examined at the indicated time-points (8hrs, 16hrs, 24hrs and 48hrs). (a) 

Viability:  At each time-point treated cells were incubated with Annexin V-FITC and 

then stained with propidium iodide (PI) immediately before flow cytometric analysis. 

The line graph demonstrates the percentage of K562 cells staining negative for both 

Annexin V and PI. Viability of DMSO vehicle control cells represents 0hrs. (b) Cell 

cycle distribution: At each time-point treated cells were fixed then stained with 

propidium iodide (PI) before being examined by flow cytometric analysis. The bar chart 

demonstrates the cell cycle distribution of treated K562 cells as determined by ModFit 

LT software analysis 48hrs after treatment. Vehicle control is DMSO. Cell cycle 

distribution of treated cells at 48hrs is representative of earlier time-points. Results are 

expressed as mean ± SD and are representative of three independent experiments. 
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Figure 20a. Combined treatment with both DPI and Methotrexate synergistically 

decreases cell viability. K562 cells were simultaneously treated with both DPI and 

Methotrexate (Met) at varying concentration combinations (DPI + Met respectively: 

200nM + 50nM, 200nM + 1µM, 500nM + 50nM, 500nM + 1µM, 1µM + 50nM, 1µM + 

1µM) and were examined at the indicated time-points (8hrs, 16hrs, 24hrs and 48hrs). At 

each time-point treated cells were incubated with Annexin V-FITC and then stained with 

propidium iodide (PI) immediately before flow cytometric analysis. The line graph 

demonstrates the percentage of K562 cells staining negative for both Annexin V and PI. 

Viability of DMSO vehicle control cells represents 0hrs. Results are expressed as mean 

± SD and are representative of three independent experiments. 
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Figure 20b. Combined treatment with both DPI and Methotrexate synergistically 

decreases cell viability. K562 cells were simultaneously treated with both DPI and 

Methotrexate (Met) at varying concentration combinations (DPI + Met respectively: 

200nM + 50nM, 200nM + 1µM, 500nM + 50nM, 500nM + 1µM, 1µM + 50nM, 1µM + 

1µM) and were examined at the indicated time-points (8hrs, 16hrs, 24hrs and 48hrs). At 

48hrs treated K562 cells were incubated with Annexin V-FITC and then stained with 

propidium iodide (PI) immediately before flow cytometric analysis. Data was analysed 

using CompuSyn software to determine if the noted changes in K562 cell viability 

following combined treatment were synergistic (CI < 1), additive (CI = 1) or 

antagonistic (CI > 1). (i) A Fa-CI plot for all combinations as determined by CompuSyn 

software analysis at 48hrs. (ii) Table represents Fa and CI values for each combination. 
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Discussion 

 Since the development of Imatinib there has been a huge improvement in the 

treatment of CML. Unfortunately, Imatinib treatment does not completely eradicate 

the entire leukaemic cell population, leaving residual disease. As a result continued, 

lifelong treatment is required to avoid the risk of active disease re-establishing. 

Furthermore, with continual treatment there is a high probability of drug resistance 

developing. To address these issues several novel TKIs specific for Bcr-Abl have 

been developed in recent years however they have failed to overcome these 

underlining issues (Quintás-Cardama et al., 2007; Bixby and Talpaz 2011). 

Treatments utilising Bcr-Abl inhibition via Imatinib in combination with 

chemotherapeutic agents have been studied as an approach to overcome these 

obstacles (Gu et al., 2005; Tseng et al., 2005; Giallongo et al., 2011; Bonifacio et 

al., 2012). Similarly rather than using broad spectrum drugs much research is now 

focused on the simultaneous targeting of Bcr-Abl in combination with pathways 

identified as important in CML maintenance and progression (Helgason et al., 2011; 

O’Hare et al., 2012).  

 Landry et al. (2013) established a link between Bcr-Abl signalling and the 

generation of Nox-derived ROS, while additional studies demonstrated an 

importance for these proteins in CML pathogenesis. Furthermore, inhibition of Nox 

activity significantly increased the effectiveness of Imatinib treatment, identifying 

Nox proteins as potential therapeutic targets in CML. Unfortunately these studies 

utilised siRNA to inhibit Nox activity, an approach not currently feasible for patient 

treatment (Gavrilova and Saltzman, 2012). This study set out to determine if 

pharmacological inhibition of Nox proteins demonstrated similar therapeutic 

potential when used in combination with Bcr-Abl inhibitors. As demonstrated, DPI 
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was used to inhibit Nox protein activity in combination with either Imatinib or 

Nilotinib (Figure 3 and Figure 7). Rather significantly these studies corresponded 

with the previous study whereby inhibition of Nox activity via p22phox knockdown 

significantly increased the effectiveness of Bcr-Abl inhibition (Chapter 4, Figure 11). 

Combined treatment demonstrated a substantial and synergistic increase in cell death 

through augmentation of apoptosis (Figure 4 and Figure 5). This further emphasised 

the importance of Nox activity in CML and demonstrated its potential as a 

therapeutic in CML treatments.  

 As discussed one of the major obstacles in the advancement of CML 

treatment is persistence of residual disease despite continual TKI treatment. 

Interestingly, CML leukaemic stem cells (LSCs), classified by expression of 

CD34
+
CD38

-
 surface markers, are capable of surviving independent of Bcr-Abl 

kinase activity and are believed to be the source of residual disease (Hamilton et al., 

2011). Interestingly, Nox-derived ROS is known to play important roles in 

haematopoiesis and hematopoietic growth factor signaling under normal conditions 

(Sattler et al., 1999; Zhu et al., 2005; Sardina et al., 2011; Hole et al., 2011). 

Furthermore, Nox protein activity has been identified as a major source of ROS in 

healthy CD34
+
CD38

- 
haematopoietic stem cells (HSCs) (Piccoli et al., 2007) while 

also being demonstrated as important in the preservation of the CD34
+
 cell 

population (Fan et al., 2007). Although these studies were carried out in HSCs they 

still highlight an important role for Nox activity, suggesting that deregulation of 

these processes through Nox inhibition could be therapeutically significant in the 

removal of LSCs and therefore residual disease in CML. Proper assessment of Nox 

inhibition on CML LSCs would have required examination of CD34
+
CD38

- 
cells 

obtained from CML patients, which was beyond the scope of this project. However 
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considering the effectiveness of combined Nox and Bcr-Abl treatment on K562 cells 

coupled with the established role for Nox proteins in HPCs, there is a strong degree 

of evidence to suggest the potential of Nox inhibition in eradicating residual disease 

when combined with Bcr-Abl inhibition. 

 In addition to residual disease, the development of resistance has become an 

increasing concern for CML treatment. It is well established that ROS are a key 

factor in development of genomic instability, which has been repeatedly highlighted 

for its role in the development of TKI resistance in CML as well as disease 

progression into Blast phase (CML-BP) (Nowicki et al., 2004; Koptyra et al., 2006; 

Rassool et al., 2007; Sallmyr et al., 2008; Slupianek et al., 2011; Chakraborty et al., 

2012; Nieborowska-Skorska et al., 2012). Furthermore, it is of interest to note that 

the generation of genomic instability has also been linked to Nox-derived ROS in 

other cancers (Weyemi et al., 2012a; Weyemi et al., 2012b). Taking this information 

into account the potential for Nox inhibitors in reducing the development of drug 

resistance when used in combination with Bcr-Abl TKIs is evident. Considering the 

effectiveness of DPI in combination with Bcr-Abl inhibition, coupled with the 

possible roles in reducing residual disease and the development of resistance, this 

work has identified great potential for the use of Nox inhibitors in the treatment of 

CML. 

 Both Imatinib and Nilotinib selectively inhibit Bcr-Abl by interacting with 

the ATP-binding site of the Abl kinase domain (Schindler et al., 2000; Nagar et al., 

2002; Weisberg et al., 2005). Therefore the similar degree of synergy demonstrated 

by both drugs when used in combination with DPI was to be expected. In contrast to 

this, the use of another Nox inhibitor, VAS2870, induced contrasting results to the 

combinations studies which utilised DPI. When used in combination with either 
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Imatinib or Nilotinib, lower concentrations of VAS2870 were actually shown to 

antagonise the effects of Bcr-Abl inhibition in K562 cells (Figure 9 and Figure 10). 

Though combinations with the higher 10µM treatments of VAS2870 did induce 

synergy, this still contradicted with DPI treatment which induced synergy at all 

concentrations. DPI and VAS2870 are both inhibitors of Nox activity and as a result 

these contradictory effects were not expected. 

 Examination of individual DPI and VAS2870 treatments on K562 cells did 

demonstrate differing results to begin with (Figure 1 and Figure 8). Work in Chapter 

3 and 4 characterised the effects of Nox inhibition through knockdown of p22phox. 

These studies established that removal of p22phox expression decreases ROS levels, 

which slows the progression of cells from the G1 phase of the cell cycle into S phase 

while inducing a minor effect on cell death via apoptosis. Considering changes in 

p22phox expression will only influence the activity of Nox proteins 2 and 4 in K562 

cells (Nox1 and Nox3 were not detected, Chapter 3, Figure 2), some degree of 

difference was to be expected between the effects of p22phox knockdown compared 

to treatment with inhibitors like DPI and VAS2870 which are known to effect the 

function of all of the Nox protein family members. Interestingly treatment of cells 

with lower concentrations of DPI had a minimal effect on the level of cell death 

while inducing a small increase in the percentage of cells present in the G0/G1 phase 

of the cell cycle thereby complementing p22phox knockdown results (Figure 1). 

Although lower concentrations were chosen for subsequent combination studies it is 

important to note that treatment of K562 cells with higher concentrations of DPI 

actually induced a G2/M phase increase while having a significantly greater effect on 

cell death (Figure 1). These results corresponded with a previous study by 

Venkatachalam et al. (2008) where G1 phase progression was demonstrated to be 
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significantly retarded following inhibition of Nox proteins by DPI treatment. 

Furthermore extended DPI treatment was also shown to produce an increase of cells 

present in the G2/M phase. 

 Treatment of K562 cells with VAS2870 did not demonstrate such 

comparative results. In contrast to DPI and p22phox knockdown studies, VAS2870 

treatment was demonstrated to induce an increase in G2/M phase cells, along with a 

substantial increase the level of cell death (Figure 8). Furthermore, only one of the 

three concentrations of VAS2870 (10µM) examined demonstrated a decrease in 

ROS levels for the full duration of treatment. Interestingly, of the concentrations 

examined 10µM was also the only concentration to be synergistic when combined 

with Bcr-Abl inhibition (Figure 9 and Figure 10). It could be suggested from this that 

the other concentrations may have been too low to inhibit Nox activity for the 

duration of treatment. Indeed, ROS levels following treatment with 2µM and 5µM 

had returned to basal levels within 2hrs suggesting that Nox proteins were no longer 

inhibited. However this did not explain why these concentrations of VAS2870 

antagonised the effects of Imatinib and Nilotinib. Interestingly treatments with 5µM 

and 10µM demonstrated two separate decreases in ROS levels (Figure 8). This 

second decrease coincided with a rapid increase in the levels of cell death. For the 

5µM treatment the increase was minimal however 10µM treatment induced a 

substantial increase on cell death. These treatments demonstrated greater levels of 

cell death than treatment with any concentration of DPI. 

 Examination of VAS2870 in several studies has lead to it being described as 

a specific Nox protein inhibitor (Wind et al., 2010; Altenhöfer et al., 2012; 

Cifuentes-Pagano, et al., 2012; Wingler et al., 2012). Indeed, all these studies give 

strong evidence for this conclusion however this does not explain the contradictions 
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noted here when VAS2870 treatment is compared to the effects of DPI or p22phox 

knockdown. Of these studies which describe VAS2870 as a specific Nox inhibitor 

none have examined its effects for extended periods of time. Interestingly, a recent 

study by Sun et al. (2012) demonstrated that although an inhibitor of Nox proteins, 

VAS2870 exerts significant off-target effects, most notably thiol alkylation. This 

study gave a likely explanation for the effects observed following treatment with 

higher concentrations and at later time-points. Furthermore, the off target affects of 

VAS2870 treatment may provide a reason for the antagonism demonstrated by lower 

concentrations of VAS2870 when used in combination with Bcr-Abl TKIs. 

 Like VAS2870, DPI is not without its problems as an inhibitor of Nox 

proteins. As discussed, DPI is a flavoprotein inhibitor extensively used to inhibit 

Nox activity, interfering with electron transport thereby preventing ROS generation 

(O’Donnell et al., 1993). Interestingly DPI is a nonspecific inhibitor of many 

different electron transporters, not only inhibiting all of the NOX isoforms, but also 

eliciting its effects to a lesser extent on cytochrome P-450 reductase (Prabhakar 

2000), nitric oxide synthase (Stuehr et al., 1991), xanthine oxidase (Doussière and 

Vignais, 1992) and even mitochondrial complex I (Li and Trush, 1998). Even in 

light of this DPI is still the most commonly cited compound utilised to inhibit Nox 

activity (Bedard and Krause, 2007). As previously discussed the mitochondria and 

Nox proteins are heavily linked to CML disease phenotype, while the other potential 

targets of DPI are not important sources of ROS under normal physiological 

conditions (Hole et al., 2011). Furthermore, DPI treatment in K562 cells induced 

effects very similar to that of targeted and specific inhibition of Nox protein activity 

through p22phox knockdown which is a further indication of its potential as a Nox 

inhibitor.  
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 As previously discussed although the activity of Nox proteins is heavily 

implicated in leukaemia (Kamiguti et al., 2005; Prata et al., 2008; Naughton et al., 

2009) it is also known to play key roles in the development of many other cancer 

types including but not limited to prostate (Brar et al., 2003; Lim et al., 2005; Kumar 

et al., 2008; Huang et al., 2012a), colon (Fukuyama et al., 2005; Bauer et al., 2012), 

breast and ovarian (Desouki et al., 2005; Choi et al., 2010), bladder (Shimada et al., 

2009; Shimada et al., 2011; Huang et al., 2012b), pancreatic (Vaquero et al., 2004) 

and thyroid gland cancers (Weyemi et al., 2010) as well as melanoma (Brar et al., 

2002; Yamaura et al., 2009) and lymphoma (Lan et al., 2007; Hoffmann et al., 

2010). Therefore, the potential of Nox inhibition is not just limited to CML 

treatment. Although the majority of research today focuses on the development of 

treatments targeting specific signalling events or processes in the cell, the reality is 

that treatment of many these cancers still rely on the use of harsh chemotherapeutic 

drugs. Furthermore many chemotherapeutic treatments also utilise drug 

combinations to overcome the effects of resistance in addition to increasing 

effectiveness.  As a result it was of interest to examine the effects of Nox inhibition 

when combined with several broad spectrum chemotherapeutic drugs.  

 There are five broad types of chemotherapeutics still used today to treat 

cancers each inducing its cytotoxic effects through a different mechanism. These are 

alkylating agents (or other similarly reactive compounds which bind DNA and 

induce crosslinking), anti-metabolites, anti-microtubule agents, Topoisomerase 

inhibitors and cytotoxic antibiotics. Cisplatin, Methotrexate, Docetaxel, Etoposide 

and Actinomycin D were respectively chosen to represent each type of 

chemotherapeutic and provide a broad insight into how their activity may be affected 

when combined with Nox inhibition. Interestingly each of the chosen 
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chemotherapeutics has been used to treat many cancers known to be influenced by 

Nox activity (Siddik, 2003; Montero et al., 2005; Koba and Konopa, 2005; Nitiss 

2009; Block and Gorin, 2012; Abolmaali et al., 2013).  

 Drug combinations are widely used to treat many cancers. Synergy between 

drugs increases the efficacy of the therapeutic effect, allowing dosages to be 

decreased maintaining the same efficacy to avoid toxicity while reducing the 

potential for development of drug resistance. Combined treatment of each of these 

chemotherapeutics with DPI gave varying results. Four out of the five 

chemotherapeutics studied demonstrated some degree of synergy with DPI treatment 

(Figure 12, Figure 14, Figure 16, Figure 18 and Figure 20). Both Docetaxel and 

Actinomycin D demonstrated additive effects. Interestingly Actinomycin D 

treatment also demonstrated a small level of antagonism however DPI treatment 

when used in combination with some concentrations of Cisplatin and Etoposide 

produced strong antagonistic effects. Conflictingly, as well as being involved in 

survival signalling, activation of some Nox proteins in response to certain stimuli is 

known to be involved in the induction of cell death (Bedard and Krause, 2007). This 

could suggest a reason why such strong antagonistic effects were noted in come 

treatments. Indeed it was subsequently discovered that the cytotoxicity of Cisplatin 

was dependent on ROS generation from both the Nox proteins and mitochondria 

(Kim et al., 2010; Itoh et al., 2011). However this still left the question as to why 

higher concentrations of these drugs demonstrated synergy when used in 

combination. Contradictory to these studies it has also been demonstrated that 

Cisplatin cytotoxicity can be enhanced through inhibition of Nox4 (Chang et al., 

2012). This may suggest concentration dependent effects of some of these 

chemotherapeutics. This coupled with the inhibitory effects of DPI may explain 
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some of the varied results observed between different concentrations of the same 

drug. 

 Out of all the chemotherapeutics examined in combination with DPI 

treatment, Methotrexate demonstrated the greatest potential. Combinations with 

Methotrexate induced a level of synergy greater than that observed with either 

Imatinib or Nilotinib (Figure 20). Indeed Methotrate has demonstrated its success in 

the treatment of multiple leukaemia’s (Abolmaali et al., 2013) and has even shown 

success in the treatment of CML in the past (Kanda et al., 1999). One interesting 

point is that individual treatments with Imatinib, Nilotinib and Methotrexate all 

induced significant G1 arrests following treatment (Figure 2, Figure 6 and Figure 

19). Whether or not this could provide a way of identifying potential combination 

partners for Nox treatment is uncertain. Regardless this study demonstrated a great 

potential for Nox inhibition in combination with this anti-metabolite. 

 While broadly identifying the clinical relevance of simultaneous inhibition of 

Nox and Bcr-Abl activity, these studies established a significant result in the 

improvement of this CML treatment. Nevertheless the off target effects of DPI make 

it a less than ideal drug for the study of Nox protein activity, highlighting the need 

for the development of more specific and better characterised Nox inhibitors. 

However considering the similarities demonstrated between DPI treatment and 

p22phox knockdown, DPI still demonstrates great potential as a Nox inhibitor and 

considering the results of VAS2870 treatment it is evident that until better Nox 

inhibitors are developed DPI remains the best available choice. Regardless of these 

factors these studies still provided the basis for future analysis of Nox inhibition as a 

potential therapeutic in cancer treatment. 
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 There is no doubt that the development of Imatinib has been a major triumph 

for the treatment of CML, continually demonstrating its significance in the clinic by 

inducing complete haematological response (CHR) as well as cytogenetic response 

(CCyR) in the vast majority of patients, while lowering the risk and rate of 

progression into Blast phase (CML-BP) (Druker et al., 2006; Hochhaus et al., 2009; 

Deininger et al., 2009). What’s more, since its clinical implementation many CML 

patients now can expect to have a life expectancy similar to that of the general 

population (Gambacorti-Passerini et al., 2011). Unfortunately, even with this high 

success rate there are still many patients for whom Imatinib treatment is inadequate 

or produces adverse effects, while resistant to Imatinib treatment through Bcr-Abl-

dependent or -independent means has demonstrated a significant problem for 

treatment (Deininger et al., 2009). A cyclic trend appears to be emerging of new 

Bcr-Abl tyrosine kinase inhibitors (TKIs) being developed to tackle this problem, 

only to induce a novel mechanism of resistance themselves, requiring the need to 

develop more drugs further perpetuating this trend (Quintás-Cardama et al., 2007; 

Bixby and Talpaz, 2011). At the stem of this problem is the necessity for continual, 

lifelong treatment with TKIs in order to prevent disease reoccurrence due to residual 

disease, thereby increasing the potential for this resistance to develop. It is evident 

that Bcr-Abl TKI treatment alone will only ever conceal or prolong the course of this 

disease, with the real solution for a complete treatment of CML requiring the 

removal of residual disease. This has presented a large obstacle for CML treatment, 

which has mounted much concern, prompting a re-evaluation of therapeutic 

approach and has demonstrated the need for a greater understanding of this disease 

in order to development alternative strategies for treatment. 
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 Bcr-Abl expression is one of the key requirements for oncogenesis in CML 

(McLaughlin et al., 1987; Lugo et al., 1990), achieving oncogenesis in many ways 

by mimicking the effects of growth factor stimulation in haematopoietic stem and 

progenitor cells thereby inducing disease phenotype. A number of studies have 

shown that induced or constitutive expression of Bcr-Abl increases the intracellular 

levels of Reactive Oxygen Species (ROS) (Sattler et al., 2000; Kim et al., 2005; 

Naughton et al., 2009; Reddy et al., 2011), which are traditionally seen as the key 

factors for genomic instability in CML cells, inducing the development of drug 

resistance as well as influencing disease progression (Nowicki et al., 2004; Koptyra 

et al., 2006; Rassool et al., 2007; Sallmyr et al., 2008; Nieborowska-Skorska et al., 

2012). However, these particular studies have also identified ROS production as a 

prerequisite for complete signalling activity downstream of Bcr-Abl, identifying 

them as intracellular signalling molecules, a concept which has now become widely 

accepted in all cell types (Rhee et al., 2005a; Rhee et al., 2005b; Toledano et al., 

2010; Bae et al.,  2011).    

 Naughton et al. (2009) demonstrated a link between this ROS production 

downstream of Bcr-Abl signalling and the professional ROS generators, the NADPH 

Oxidases (Nox). Considering Bcr-Abl activity in a way mimics growth factor 

stimulation it is therefore reasonable to expect it to activate Nox proteins, which are 

known to be heavily influenced by signalling cascades induced downstream of 

growth factor stimulation (Woolley et al., 2013). What is of significance is that Nox-

derived ROS have been demonstrated to be involved in a host of cellular activities in 

leukaemias, driving disease phenotype by increasing survival, migration, 

proliferation and even differentiation  (Kim et al., 2005; Naughton et al., 2009; 

Sardina et al., 2010; Hole et al., 2011; Reddy et al., 2011). Although a link between 
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Bcr-Abl activity and Nox-mediated ROS generation was established by Naughton et 

al. (2009), it was unclear how exactly Bcr-Abl was influencing this process.  

 Throughout this study the K562 cell line, which constitutively express Bcr-

Abl, were used as a CML model. In the first part of this study these cells were used 

to elucidate a possible novel mechanism of regulation of Nox-dependent ROS 

production downstream of Bcr-Abl signalling. This work established that specific 

inhibition of Bcr-Abl activity reduced ROS generation which coincided with the 

degradation of p22phox, a membrane-bound protein essential for full activity of Nox 

proteins 1, 2, 3 and 4 (Ambasta et al., 2004; Ueno et al., 2005). Consequently, 

p22phox was demonstrated to be an important mediator of ROS production 

downstream of Bcr-Abl signalling. Inhibition of GSK-3 downstream of both the 

PI3K/Akt and Raf/MEK/ERK signalling pathways, both of which are activated by 

Bcr-Abl, was identified to be pivotal for p22phox protein maintenance. These studies 

thereby established a link between Nox-derived ROS and Bcr-Abl activity through 

the maintenance of p22phox protein levels (Landry et al., 2013). Interestingly, such 

control of Nox activity downstream of tyrosine kinase activity is not unique and this 

method of p22phox degradation and has also been demonstrated on the 

reintroduction of von Hippel-Lindau tumour suppressor gene (VHL) into VHL-

deficient carcinoma cells (Block et al., 2007; Block et al., 2010) and upon inhibition 

of the FLT3-ITD oncogene in the Acute Myeloid Leukaemia (AML) MV-411 cell 

line (Woolley et al., 2012).  

 Further examination in K562 cells demonstrated a significant role for 

p22phox-mediated ROS production in cell proliferation. Rather significantly 

enhanced proliferation is a major contributory factor to CML disease phenotype 

demonstrating the importance of p22phox and Nox proteins in CML pathogenesis. 
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Numerous studies have also demonstrated such a role for Nox-derived ROS in cell 

proliferation with some studies drawing a direct link to an importance in p22phox 

expression and further highlighting the significance of these results in CML (Jeong 

et al., 2004; Sturrock et al., 2006; Petry et al., 2006; Reddy et al., 2011). Here 

p22phox-mediated ROS production was shown to influence cell proliferation by 

having a positive effect on the G1/S transition of the cell cycle, a role for which 

Nox-derived ROS has been previously highlighted (Venkatachalam et al., 2008). It 

was suggested that p22phox function mediated this effect by indirectly inhibiting 

pRb activity through oxidative inactivation of phosphatases known to be important 

for pRb activation, Protein Phosphatase 1 (PP1) and Protein Phosphatase 2A 

(PP2A).This was believed to influence Cyclin E proteins levels and therefore cell 

cycle progression (Rao and Clayton 2002; O’Loghlen et al., 2003; Kolupaeva and 

Janssens, 2013). Significantly, work by Naughton et al. (2009) has also implemented 

Nox-derived ROS in the inhibition of PP1 activity downstream of Bcr-Abl 

signalling. 

 In addition to having a positive role in cell proliferation, p22phox-mediated 

Nox-derived ROS was also identified in this study to be important in the overall 

viability of K562 cells with its removal demonstrating minor increases in the level of 

apoptotic cell death. Treatments utilising Bcr-Abl inhibition via Imatinib in 

combination with chemotherapeutic agents have been studied as an approach to 

overcome the known obstacles currently facing CML treatment (Gu et al., 2005; 

Tseng et al., 2005; Giallongo et al., 2011; Bonifacio et al., 2012). Similarly rather 

than using broad spectrum drugs much research is now focused on the simultaneous 

targeting of Bcr-Abl in combination with pathways identified as important in CML 

maintenance and progression (Helgason et al., 2011; O’Hare et al., 2012).  Although 
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only demonstrating a minor role in the overall survival of these cells this study still 

identified the importance of p22phox expression in CML pathogenesis. It was 

evident however that p22phox inhibition alone did not demonstrate a significant 

enough effect to suggest it as sole treatment for CML. Indeed, combining p22phox 

removal with Imatinib treatment significantly enhanced the effect of Imatinib 

treatment. It was concluded from this work that p22phox removal in a way weakens 

cells, priming Bcr-Abl inhibition to produce a substantially greater effect on cell 

death demonstrating the clinical potential of targeting Nox proteins in combination 

with Bcr-Abl inhibition. This potential was further established after DPI was used in 

combination with Imatinib and Nilotinib, demonstrating a substantial and synergistic 

increase in cell death through augmentation of apoptosis. Unfortunately, the off 

target effects of DPI make it a less than ideal compound for therapeutic use, 

highlighting the need for the development of more specific and better characterised 

Nox inhibitors. Regardless of this, these studies still provided the basis and 

reasoning for future analysis of Nox inhibition as a potential therapeutic in CML 

treatment. 

  

 Nox-derived ROS production can lead to increased genomic instability 

(Weyemi et al., 2012a; Weyemi et al., 2012b), a phenomena which can influence 

progression into Blast phase (CML-BP) as well as development of TKI resistance 

(Nowicki et al., 2004; Koptyra et al., 2006; Rassool et al., 2007; Sallmyr et al., 

2008; Slupianek et al., 2011; Chakraborty et al., 2012; Nieborowska-Skorska et al., 

2012). Therefore, considering the effectiveness of DPI treatment in combination with 

Bcr-Abl inhibition there is a potential for Nox inhibitors in reducing the 

development of drug resistance as well as lowering the chance of disease progression 
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if used in combination. However, as discussed it is evident that in order to truly cure 

CML, residual disease needs to be removed. Combination treatment is one approach 

which has received great interest in eradicating residual disease and the risk of 

reoccurrence, targeting critical pathways in LSCs in order to make these cells Bcr-

Abl dependent and therefore more susceptible to Bcr-Abl TKI treatment (Helgason 

et al., 2011; O’Hare et al., 2012). Although work here demonstrated the potential of 

combined Nox and TKI treatment in the more mature CD34
-
CD38

-
 K562 cell line, it 

did not examine the effects of Nox inhibition on LSCs directly. However, for reasons 

which will now be discussed this study still established the potential of Nox 

inhibition in enhancing TKI treatment and this work coupled with other studies 

identifies the possibility of Nox proteins as a target worthy of further examination in 

respect to the removal of the residual LSC fraction.  

 LSCs are believed to reside in the bone marrow niche, a factor which is 

believed to in part confer lack of addiction to Bcr-Abl signalling (Weisberg et al., 

2008). This growth factor and cytokine-rich microenvironment is believed to provide 

extrinsic protection from TKI treatment due to high concentrations of stromal cell-

derived factors (Traer et al., 2012; Nair et al., 2012). To date four major signalling 

pathways all activated by growth factor or cytokine stimulation are believed to be 

significant contributors to Bcr-Abl independence in LSCs, these are WNT--catenin 

signalling (Zhang et al., 2013), Hedgehog signalling (Zhao et al., 2009), TGF-

FOXO3A-BCL-6 (Naka et al., 2010; Hurtz et al., 2011) and JAK2/STAT (Neviani 

et al., 2005; Samanta et al., 2009; Hantschel et al., 2012). Indeed, as will be 

discussed all but one of these pathways, Hedgehog signalling, have demonstrated the 

requirement for Nox protein activity following stimulation in other systems. 
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 CML LSCs as well as progenitor cells have higher levels of intracellular 

ROS in comparison to their healthy counterparts (Nieborowska-Skorska et al., 

2012). This is interesting as one of the major characteristics of haematopoietic stem 

cells (HSCs) is quiescence (Doulatov et al., 2012) therefore it would be unexpected 

for these ROS increases in LSCs to be a result of increased metabolic activity but 

could rather be due to specific production resulting from increased cytokine and 

growth factor signalling. Indeed, many haematopoietic growth factors such 

granulocyte-macrophage colony-stimulation factor (GM-CSF), and interleukin-3 

(IL-3), stem cell factor (SCF) and thrombopoietin (TPO) trigger ROS production in 

human hematopoietic cells and are important in transduction of these growth factor 

signals (Sattler et al., 1999). Nox-derived ROS are known to play important roles in 

haematopoiesis and hematopoietic growth factor signaling under normal conditions 

with growth factors like GM-CSF demonstrated to increase Nox-derived ROS 

production, vital for contributing to myeloid cell growth (Sattler et al., 1999; Zhu et 

al., 2005; Sardina et al., 2012; Hole et al., 2011). Furthermore, Nox protein activity 

has been identified as a major source of ROS in healthy CD34
+
CD38

-  
HSCs (Piccoli 

et al., 2007) while also being demonstrated as important in the preservation of the 

CD34
+
 cell population (Fan et al., 2007).  

 Interestingly, early progenitor cells as a result of Bcr-Abl signalling can be 

induced to secrete growth factors such as IL-3 and GM-CSF, with this autocrine 

signalling activating the JAK/STAT pathways which are suggested to play a role in 

promoting cell-cycle entry of primitive leukemic stem cells and progenitors during 

the CML-CP (Jiang et al., 1999; Holyoake et al., 2002). Activation of JAK2 

signalling as a result of GM-CSF and IL-3 stimulation has been shown to be highly 

influential in Bcr-Abl TKI resistance in LSCs (Neviani et al., 2005; Samanta et al., 
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2009; Hantschel et al., 2012; Traer et al., 2012; Nair et al., 2012). Interestingly, 

Nox4-mediated inhibition of phosphatases has been demonstrated to be required for 

full activation of the anti-apoptotic JAK2/STAT pathway in pancreatic cells thereby 

promoting cell survival (Lee et al., 2007).  Work in Chapter 3 of this study also 

demonstrated the importance of IL-3 signalling in the maintenance of p22phox 

protein levels in the more primitive TonB.210 cells, emphasising the importance of 

Nox-derived ROS downstream of this cytokine. In addition to JAK/STAT, the 

WNT--catenin signalling has also been implicated in LSCs Bcr-Abl independence 

(Zhang et al., 2013).  Interestingly, Nox1 activation downstream of aberrant RAS 

activated Raf/MEK/ERK signalling, which is known to occur downstream of Bcr-

Abl activity, has also been shown to potentiate cell proliferation by positively 

influencing the canonical WNT–β-catenin-dependent signalling (Kajla et al., 2012; 

Rimerman et al., 2000). Finally, TGF stimulated signalling has been shown to 

induce the increased expression of Nox4, raising ROS levels required for full 

activation of downstream signalling (Liu et al., 2010). 

 These studies reinforce the broad influences of Nox-derived ROS and their 

significance in growth factor signalling, something which is very well established 

(Woolley et al., 2013). Considering the importance of Nox proteins in growth factor 

signalling and the importance of these signalling pathways in LSC TKI resistance, 

there is potential for Nox protein inhibitors to disrupt these important pathways 

which confer Bcr-Abl independence. This would make these cells more susceptible 

to further treatment with Bcr-Abl TKIs and could potentially eradicate the LSC 

fraction, removing residual disease and the potential for reoccurrence. Proper 

assessment of the potential of Nox inhibition in CML LSCs will require examination 

of CD34
+
CD38

- 
cells obtained from CML patients, however from what is known 
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deregulation of these processes through Nox inhibition could be therapeutically 

significant in the removal of LSCs and therefore residual disease in CML 

 Given the plethora of diseases and signalling processes in which Nox-derived 

ROS are implicated, there has been an ever growing pursuit in recent years for 

specific inhibitors (Wind et al., 2010; Altenhöfer et al., 2012; Cifuentes-Pagano et 

al., 2012). Despite this, however, lack of specificity and proper knowledge of 

mechanisms of action have hindered their use as therapeutics, something which was 

discussed in Chapter 5. Regardless, this study has highlighted Nox proteins as 

potential therapeutic targets in the treatment of CML and possibly other neoplasms. 

Indeed, Nox-derived ROS has been linked to a host biochemical and cellular 

processes important in the progression and maintenance of many cancers yet it 

should be emphasised that this area of cancer research is still only in its formative 

years with much research still required. However, considering the broad influence of 

these proteins, future studies of Nox-dependent redox signalling could represent the 

next major advancement in cell and cancer biology.  
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Inhibition of protein-tyrosine phosphatase 1B 

(PTP1B) mediates ubiquitination and degradation of 

Bcr-Abl protein.  

Alvira, D., Naughton, R., Bhatt, L., Tedesco, S., Landry, 

W.D., Cotter, T.G. 
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Redox-regulated growth factor survival signaling. 

Woolley, J.F., Corcoran, A., Groeger, G., Landry, W.D., 

Cotter, T.G.  

Antioxid. Redox. Signal., 2013; 19, 1815-27. 
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