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2 functional and sustainable protein isolate from lentils
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4 Krueger3, Clara Larissa Wriessnegger3, James A. O’Mahony1, Emanuele Zannini1, Elke K. Arendt1,4

5 1School of Food and Nutritional Sciences, University College Cork, Cork, Ireland

6 2Fraunhofer Institute for Process Engineering and Packaging, Giggenhauser Str. 35, D-85354 Freising, Germany

7 3IFEU - Institut für Energie- und Umweltforschung Heidelberg GmbH, Im Weiher 10, 69121 Heidelberg

8 4APC Microbiome Institute Ireland, University College Cork, Ireland

9 Corresponding author e-mail: e.arendt@ucc.ie; tel: +353 21 490 2064

10 Abstract

11 Isoelectric precipitation and ultrafiltration were investigated for their potential to produce protein products 

12 from lentils. Higher protein concentrations were obtained when ultrafiltration was used (>90%), whereas 

13 isoelectric precipitation resulted in higher contents of dietary fibre and some minerals (i.e., sodium and 

14 phosphorus). Differences in the functional properties between the two ingredients where found as the isoelectric 

15 precipitated ingredient showed lower protein solubilities over the investigated pH range (from 3 to 9) which can 

16 be linked to the slightly higher hydrophobicity values (2688.7) and total sulfhydryl groups (23.9 µM/g) found in 

17 this sample. In contrast, the protein ingredient obtained by ultrafiltration was superior with regard to its solubility 

18 (48.3%; pH 7), fat-binding capacity (2.24 g/g), water holding capacity (3.96 g/g), gelling properties (11%; w/w), 

19 and foam-forming capacity (69.6%). The assessment of the environmental performance showed that both LPIs 

20 exhibited promising properties and low carbon footprints in comparison to traditional dairy proteins.

21 Keywords

22 Lentil protein isolate, Ultrafiltration, Isoelectric precipitation Physicochemical properties, Protein 

23 functionality, Life cycle assessment. 
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24 1 Introduction

25 The expected continued growth of the global population to 9.6 billion people by 2050 is creating a need to 

26 identify and develop solutions for the provision of high-quality food [1, 2]. In addition, the high demand for 

27 healthy, sustainable and cost-effective food protein ingredients by consumers is driving the investigation of new 

28 and innovative protein sources [3, 4]. Agriculture is one of the main contributors to climate change, and cattle 

29 farming faces particular sustainability challenges [5]. The conversion factor of feed protein to milk protein is 

30 about 14%, while the remaining 86% is “lost” for human nutrition [6]. Plant-based protein ingredients can serve 

31 as an alternative to animal-derived protein, due to their contribution to environmental sustainability, their role in 

32 addressing food security challenges and their cost-effectiveness [7]. However, replacing animal-based protein 

33 ingredients with those of plant origin is not easy, as significant differences exist between ingredients from both 

34 sources in composition, taste, digestibility and techno-functional properties. Nevertheless, research is advancing 

35 and several plant ingredients have been applied in a wide range of products [8, 9].. For instance, using extrusion, 

36 soya protein was processed into a highly fibrous texture simulating that of meat [10]., In addition to soy, other 

37 plant-based proteins have been studied as meat replacers such as canola, rapeseed, wheat gluten, peas and beans 

38 [11]. bread quality and nutritional profile was improved with the addition of fermented faba bean [10], and sensory 

39 evaluation of a strawberry flavoured lupin-based yogurt-like product showed good acceptability sensory 

40 properties [11].

41 In that respect, legumes are gaining increased attention, as they contain high amounts of protein, typically 

42 ranging between 20 and 40%, and are rich sources of essential amino acids such as lysine [12, 13]. Traditionally, 

43 they are consumed as whole, split or milled products [14] and approximately 5,481,120 ha are harvested and 

44 6,315,858 tonnes of lentils are produced globally each year [15]. Lentil seeds are showing promising results for 

45 the preparation of protein flours, concentrates and isolates due to the lack of allergens and anti-nutritional 

46 compounds (e.g., isoflavones found in soya) and also as they are an affordable, sustainable and abundant raw 

47 material [16]. Various techniques and approaches such as wet fractionation (e.g., ultrafiltration and isoelectric 

48 precipitation) are used to separate and concentrate high levels of protein from other constituents [17, 18] in cereals 

49 and legumes. The physicochemical properties and functionality of these isolated protein ingredients are essential 

50 in the processing and formulation of food products, providing texture, taste and nutrition for a desirable and 

51 pleasurable product. These properties depend not only on the nature of the protein but also on the processing and 

52 isolation techniques used. Most studies focused on this subject have been conducted on dairy and soya [19, 20] 
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53 and increasingly also on legumes in recent years [21–25]. The results of these studies indicate that the methods 

54 applied for isolation affect the composition and the physicochemical characteristics of the extracted protein 

55 ingredients. Jarpa-Parra et al. [26] highlights the need to establish a deeper connection between the extraction 

56 conditions of lentil protein and their influence on lentil protein functionality.

57 The aim of this work was to produce novel lentil protein isolates using two different technological approaches 

58 and to study the techno-functional properties (e.g., solubility, emulsifying, gelling properties) and environmental 

59 sustainability (life cycle assessment) of the ingredients based on the same raw material. The results obtained in 

60 this study will provide much needed information about the sustainability of the two different approaches and 

61 potential applications of the resultant ingredients in the development of novel, healthy and sustainable food 

62 product formulations.
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63 2 Materials and Methods

64 2.1 Raw materials and chemicals

65 For extraction of lentil proteins, brown lentils of commercial quality (Lens culinaris cv. Itaca), provided by 

66 Agroservice Spa, San Severino Marche, Italy, were used as raw material. All chemicals used were purchased from 

67 Sigma-Aldrich (St Louis, Missouri, USA), unless otherwise stated.

68 2.2 Preparation of protein isolates

69 Lentil seeds were dehulled in an underrunner disc sheller (Streckel & Schrader GmbH, Germany) and the 

70 kernels and hulls were separated in an air classifier (Turboplex, Hosokawa Alpine AG, Augsburg, Germany). 

71 Kernels were milled using an impact mill (UPZ, Hosokawa Alpine AG, Germany) to a mean particle size (D50) 

72 of 21 µm. For extraction of protein, lentil flour was suspended in water at pH 7.5 to extract the high molecular 

73 weight proteins. The insoluble dietary fibre and lentil starch were then separated from the soluble high molecular 

74 weight proteins by decanting. Lentil protein isolate (LPI) was recovered from the resulting protein extract either 

75 by isoelectric precipitation (IEP) or by ultrafiltration (UF), as shown in Figure 1. LPI-IEP was isolated from the 

76 aqueous protein extract by acid precipitation at pH 4.5, which coincides with minimum solubility of lentil proteins 

77 [27]. Subsequently, the precipitated proteins were separated in a disc separator and the sediment was neutralized 

78 with 3 M NaOH, pasteurised (65°C, 30 min) and spray dried (Tin: 180°C, Tout: 75°C) to obtain the protein isolate 

79 powder. LPI-UF was extracted at 50°C using a polysulfone membrane with a molecular weight cut-off of 10 kDa 

80 followed by diafiltration with demineralized water (retentate:water; 1:1.7) to enrich the protein content of the 

81 retentate. The resulting retentate was pasteurized (65°C, 30 min) and spray dried (Tin: 180°C, Tout: 75°C). The 

82 protein isolates were stored at room temperature until further analysis.

83 2.3 Compositional analysis

84 Total nitrogen content of the LPIs was analysed according to the Kjeldahl method (MEBAK 1.5.2.1) [28] 

85 using a nitrogen-to-protein conversion factor of 6.25. Fat content was measured following the Soxhlet method 

86 (AACC Method 30-25.01) [29]. Ash content was determined by dry ashing in a muffle furnace at 500°C for 5 h 

87 (AOAC 923.03) [30]. Moisture was determined by oven drying at 103°C for 5 h (AOAC 925.10) [31]. Total starch 

88 (AOAC Methods 996.11 and AACC Method 76-13.01) [32, 33] content was determined using an enzymatic kit 

89 (Megazyme, Bray, Co. Wicklow, Ireland). Minerals were analysed using inductively coupled plasma-optical 

90 emission spectrophotometry [34]. The soluble and insoluble fibre content of the samples was analysed in 

91 accordance with the AOAC method 991.43 [35].
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92 2.4 Protein profile analysis

93 Protein profile was assessed using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) 

94 using precast gels (Mini-PROTEAN TGX, Bio-Rad Laboratories, CA, USA) under non-reducing and reducing 

95 conditions as described by Alonso-Miravalles & O’Mahony [36]. The sample loading buffer contained 65.8 mM 

96 Tris-HCl (pH 6.8), 26.3% (w/v) glycerol, 2.1% SDS and 0.01% bromophenol blue. The running buffer (10x 

97 Tris/Glycine/SDS, Bio-Rad Laboratories, CA, USA) had a composition of 25 mM Tris, 192 mM glycine and 0.1% 

98 SDS (w/v), pH 8.3. The staining solution used was Coomassie Brilliant Blue R-250 (Bio-Rad Laboratories, CA, 

99 USA). The target final protein concentration was 1 mg/mL and 8 µLl of sample solution was loaded into each 

100 well of the gel and the gels were run at a constant voltage of 150 V. 

101 2.5 Protein secondary structure 

102 Information about secondary structure of the proteins was obtained using circular dichroism (CD) 

103 spectrophotometry (Chirascan, Applied Photophysics, Leatherhead, UK). Protein solutions of 1 mg/mL were 

104 prepared in 10 mM sodium phosphate buffer (pH 7) and solubilized overnight at 4°C using magnetic stirring at 

105 250 rpm. Subsequently, samples were filtered (0.25 μm) and the CD spectra was measured with a path length of 

106 0.1 mm in the range 180-260 nm at a bandwidth of 1 nm and spectral resolution of 1 nm and data acquisition rate 

107 of 1 point/s. The average of three spectra was obtained and a 5-point smoothing algorithm was applied.

108 2.6 Scanning electron microscopy

109 Protein powders were mounted on aluminium stubs using double-sided adhesive carbon tape, and sputter 

110 coated with a 5 nm layer of gold/palladium (Au:Pd = 80:20) using a Quorum Q150R ES Sputter Coating Unit 

111 (Quorum Technologies Ltd., Sussex, U.K.). The coated samples were loaded into a sample tube and examined 

112 using a JSM-5510 scanning electron microscope (JEOL Ltd, Tokyo, Japan), operated at an accelerating voltage 

113 of 5 kV.

114 2.7 Particle size distribution 

115 Particle size distribution of protein dispersions was measured using static laser light diffraction (Mastersizer 

116 3000, Malvern Instruments Ltd, Worcestershire, UK). For the preparation of samples, the protein isolate powders 

117 were mixed with ultrapure water at a concentration of 1% protein (w/v), pH adjusted to 7, and stirred overnight at 

118 4°C. The refractive index of protein was set at 1.45 [27] and the absorption and dispersant refractive indices used 

119 were 0.1 and 1.33, respectively. LPI dispersions, equilibrated at 22°C, were introduced into the dispersing unit 

120 using ultrapure water as dispersant until a laser obscuration of 12% was achieved.
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121 2.8 Hydrophobicity 

122 Surface hydrophobicity (S0) of protein particles was measured according to Hayakawa and Nakai [37] using 

123 1-anilino-8-naphthalenesulfonate (ANS) with slight modifications as described by Karaca et al. [16]. Protein 

124 solutions were serially diluted with 10 mM phosphate buffer (pH 7) ranging from 0.0006–0.015% (w/v). ANS 

125 (10 µLl; 8.0 mM in 0.1 M phosphate buffer, pH 7) were mixed with 2 mL of diluted sample and left in darkness 

126 for 15 min. Fluorescence was measured (λexcitation 390 nm, λemission 470 nm) and corrected by a blank measured 

127 without ANS. The results are presented as the slopes (R2 ≥ 0.98) of the absorbance versus protein concentration.

128 2.9 Sulfhydryl groups

129 Sulfhydryl groups were determined using Ellman’s reagent (5,5'-dithio-bis-(2-nitrobenzoic acid) according 

130 to the method of Van der Plancken et al. [38]. The protein samples were diluted to 2 mg/mL with 10 mM phosphate 

131 buffer (pH 7) for free sulfhydryl groups, while for total sulfhydryl groups a buffer containing 6 M urea and 0.5 M 

132 SDS was used. Ellman's reagent (80 µLl) was added to 2.5 mL of diluted sample and absorbance was measured 

133 at 412 nm after 15 min. For the reagent blank, the protein samples were replaced by the sodium phosphate buffer 

134 and mixed with 80 µL of Ellman's reagent. Sulfhydryl groups were quantified as follows:

135 (1) 𝜇𝑚 𝑆𝐻 𝑔 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 = (𝐴412 ― 𝐴412𝐵)·
1,000,000

𝜀 ·𝐶

136 where A412 is the absorbance at 412 nm, A412B is the absorbance at 412 nm for the blank, ε is the extinction 

137 coefficient, which was taken as 13,600 M-1 cm-1, and C is the protein concentration in mg/mL of the diluted 

138 sample.

139 2.10 Protein solubility

140 The solubility of proteins as influenced by pH, was determined by adjusting the pH of protein dispersions 

141 from 3.0 to 8.0 at 0.5 units intervals using 0.1 and 1 M HCl or NaOH. Protein samples (1% w/v) were hydrated at 

142 4°C. The pH was re-adjusted before measurements. Samples were centrifuged at 5,000 g for 30 min. The protein 

143 contents of the supernatants were analysed using the Kjeldahl method as described in Section 2.3. The results 

144 were expressed as % of the total protein content.

145 2.11 Zeta potential

146 The zeta potential of protein solutions at the same pH values as for protein solubility analysis were determined 

147 using a Zetasizer nano-Z (Malvern Instruments Ltd; UK). Samples were prepared as described for the protein 

148 solubility, excluding the centrifugation step, and diluted with ultrapure water to a concentration of 0.1% (w/v) and 
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149 pH was readjusted. The measurement was performed using an automatic voltage selection and zeta potential was 

150 calculated using the Smoluchowski model. Refractive and absorption indices of 1.45 and 0.001 were used, 

151 respectively.

152 2.12 Water holding capacity

153 Analysis of water holding capacity (WHC) of proteins was determined according to AACC method 56-30.01 

154 [39] with some modifications. Samples (1.000 g ± 0.005 g) were mixed with 30 mLl of distilled water using an 

155 Ultra-Turrax equipped with a S10N-5G dispersing element (Ika-abortechnik, Janke and Kunkel GmbH, Staufen, 

156 Germany) for 15 s and then shaken for 30 min at 1,000 rpm using a platform shaker (UNI MAX 1010, Heidolph, 

157 Schwabach, Germany). Subsequently, the mixture was centrifuged at 2,000 g for 10 min. WHC was expressed as 

158 grams of water retained per gram of protein isolate.

159 2.13 Fat absorption capacity

160 Fat absorption capacity (FAC) was determined following the method described by Boye et al. [13] with slight 

161 modifications. Powder (1 g) and sunflower oil (6 g) were weighted into a 15 mL centrifuge tube (Sarstedt, 

162 Nümbrecht, Germany), mixed with a vortex for 3 min and centrifuged at 4,000 g for 30 min. The oil was removed 

163 from the tube carefully and weighed again. FAC was expressed as grams of fat water retained per gram of protein 

164 isolate.

165 2.14 Foaming properties

166 Protein dispersions (20 mLl) with a protein concentration ranging from 0.1 to 3.3% (w/v) in ultrapure water 

167 were frothed using an Ultra-Turrax equipped with a S10N-10G dispersing element (Ika-Labortechnik, Janke and 

168 Kunkel GmbH, Staufen) at high speed for 30 s. The height of the sample (liquid and foam phase) was measured 

169 over 60 min. The foaming capacity was taken as sample expansion at 0 min, while foam stability was expressed 

170 as sample expansion after 60 min. Foam expansion was calculated according to the following equation:

171 (2) 𝐹𝑜𝑎𝑚 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 =
𝑆𝑎𝑚𝑝𝑙𝑒 ℎ𝑒𝑖𝑔ℎ𝑡 𝑎𝑓𝑡𝑒𝑟 𝑓𝑜𝑎𝑚𝑖𝑛𝑔 ― 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒 ℎ𝑒𝑖𝑔ℎ𝑡 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒 ℎ𝑒𝑖𝑔ℎ𝑡 ·100

172 2.15 Emulsifying properties 

173 Protein solutions (1%, w/v) were hydrated with ultrapure water using a magnetic stirrer at 250 rpm overnight 

174 at 4°C and pH 7. The next day samples were adjusted to room temperature and the pH was re-adjusted if necessary 

175 and pre-emulsions were prepared as follows: 20 mL of sunflower oil was added to 180 mL of 1% protein (w/v) 

176 solution and homogenized for 3 min at 10,000 rpm using an ultraturrax (T 25 digital Ultra-Turrax, Staufen, 
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177 Germany). Emulsifying activity (EAI) and stability (ESI) indices were determined using the method described by 

178 Pearce and Kinsella [40], with slight modifications. In brief, 250 µLl emulsion were taken from the bottom of the 

179 homogenized sample after 0 and 120 min and diluted (1:100, v/v) in 0.1% sodium dodecyl sulphate (SDS) 

180 solution. The absorbance at a wavelength of 500 nm was read using a spectrophotometer. EAI and ESI were 

181 calculated using the following equations:

182 (3) 𝐸𝐴𝐼 (𝑚2

𝑔 ) =
2 · 2.303 · 𝐴0  · 𝐷𝐹

𝐶 · 𝜃 · 10000

183 (4) 𝐸𝑆𝐼 (𝑚𝑖𝑛) =
𝐴0

𝐴0 ― 𝐴120
 · 12010

184 where DF is the dilution factor (100), C is the initial concentration of protein (0.01 g/mL), θ is the fraction of oil 

185 used to form the emulsion (0.1), and A0 and A120 are the absorbance of the diluted emulsion at 0 and 120 min, 

186 respectively.

187 2.16 Gelation characteristics 

188 2.16.1. Least gelling concentration

189 The least gelling concentration (LGC) is defined as the lowest concentration required to form a self-

190 supporting gel. The LGC test was performed according to the method of Sathe et al. [41] with some modification. 

191 LPI dispersions ranging from 6 to 16% (w/v) were prepared in 0.01 M phosphate buffer at pH 7.0. These 

192 suspensions were heated in 15 mL test tubes (Sarstedt, Nümbrecht, Germany) in a water bath at 90°C for 30 min, 

193 after which they were cooled rapidly under running water and stored at 4°C overnight. LGC was determined 

194 visually as the minimum concentration of protein at which the contents of the tube did not flow.

195 2.16.2. Texture profile analysis 

196 Texture profile analysis (TPA) of the LPI gels was performed using a TA.XT Plus™ texture analyser (Stable 

197 Microsystems Ltd., Crawley, UK) to determine their mechanical properties. Protein gels (25%; w/v) were 

198 prepared by heating LPI dispersions as described above. Gels were cut into small cylinders of 8.2 mm in diameter 

199 and 8.0 mm in height. The gel pieces were compressed twice to 30% of their original height at a constant speed 

200 of 0.3 mm/s using a cylindrical probe with 20 mm diameter. The TPA parameters of hardness, cohesiveness, 

201 adhesiveness, gumminess and springiness were calculated according to the definitions of Bourne [42].

202 2.17 Life cycle assessment
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203 Environmental performance of LPIs was examined by means of life cycle assessment (LCA) using Umberto 

204 5.5 software. LCA is carried out as an attributional cradle-to-gate LCA and includes the individual processes 

205 associated with LPIs shown in Figure 1. Impact assessment methods are based on Umweltbundesamt Berlin [43].

206 2.18 Statistical analysis

207 All analyses were carried out in triplicate, with exception of analyses of fibre and minerals, which are 

208 performed following a validated method and therefore analysed just once and reported without standard deviation. 

209 The other data generated was subjected to student’s T-test to determine statistically significant differences (p < 

210 0.05) between mean values for the different samples, at a 95% confidence level. The statistical program used was 

211 Excel (Microsoft Office 365 ProPlus, version 1809).
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212 3 Results and Discussion

213 3.1 Compositional analysis

214 The macro- and micro-nutrient composition of the LPIs is shown in Table 1. The protein content of LPI-UF 

215 (93.7%) was significantly higher (p < 0.05) than that obtained for LPI-IEP (85.1%). The reason for this higher 

216 protein content can be explained by the ultrafiltration process, where specific pore sized membranes are used 

217 leading to higher protein levels in the final ingredient [25]. Additionally, by diafiltration more soluble substances 

218 (e.g. sugars, minerals) permeate the membrane thereby further purifying the protein. (4.49%). Regarding the fat 

219 content, no significant differences (p < 0.05) were found between LPI-UF (4.40%) and LPI-IEP (4.49%). The ash 

220 content for LPI-IEP (5.46%) was significantly higher than for LPI-UF (3.51%) which was expected since, with 

221 the former approach, NaOH and HCl are used to solubilize and precipitate the proteins [17]; this can be seen in 

222 the determined sodium content of LPI-IEP. Interestingly, high values of magnesium and calcium were obtained 

223 in LPI-UF. An explanation for these high values might be the retention of these minerals in the retentate along 

224 with the protein during the UF process. These differences in the mineral profile can play an important role in the 

225 functionality of these protein ingredients such as the solubility, emulsifying and gelling properties [44]. For 

226 example, in dairy proteins, especially caseins, calcium plays an important role in determining their gelation 

227 behaviour, facilitating linkages between proteins [45]. Also, other authors have studied the role of calcium on 

228 gelation properties of a soya drink, finding coagulation of soya proteins when the ionic calcium concentration was 

229 increased [46, 47]. The fibre content, mostly soluble dietary fibre, was higher in the LPI-IEP (1.8%) than in LPI-

230 UF (<0.1%). A reason for the higher fibre content in LPI-IEP could be that a part of the fibres were precipitated 

231 together with the protein and/or were only partially removed by the centrifugation step; the lower protein content 

232 of LPI-IEP is an indicator of this.

233 3.2 Structural properties

234 3.2.1 SDS-PAGE

235 SDS-PAGE analyses under non-reducing and reducing conditions of the two LPIs are shown in Figure 2. 

236 Both samples showed similar protein profiles, with several common bands under non-reducing and reducing 

237 conditions. Proteins with molecular weight (MW) of ~50, ~37 and ~20 kDa under non-reducing conditions were 

238 observed. The bands at MW ~50 kDa may correspond to vicilin subunits, which composes a 7S trimeric protein, 

239 one of the major globulins, together with legumin found in many pulses. Each trimer of vicilin has a MW of 150 

240 kDa without disulphide bridging [48]. The bands at 37 and 25 kDa correspond to the acidic and basic subunits of 
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241 legumin, in accordance with previous studies [49, 50]. Legumin, an 11S globulin, is an hexameric protein formed 

242 by subunits with MW ~60 kDa, which consist of an acidic (~40 kDa) and a basic (~20 kDa) subunit linked by 

243 disulfide bonding [14, 24]. Under reducing conditions, similar profiles were observed, although bands at 37 and 

244 25 kDa were slightly more intense, with the disappearance of some high MW bands at ~50 kDa. This can be 

245 correlated with the dissociation of legumin into its acidic (MW ~40 kDa) and basic (~20 kDa) subunits by the 

246 dissociation of the disulphide bond when a reducing agent (DTT) is applied.

247 3.2.2 Secondary structure

248 Furthermore, far-UV CD spectroscopic measurements were performed to gain information about the 

249 secondary structure of LPIs. Amide groups are optically active and absorb circular polarized far-UV light. 

250 Depending on their conformation, i.e., their secondary structure, characteristic CD spectra are obtained [51]. As 

251 shown in Figure 3, both LPIs exhibited a positive peak at 185 nm, and a broad negative peak with a minimum at 

252 208 nm, indicating a defined secondary structure of α-helix [51]. Only slight differences can be observed in the 

253 spectra. Similar spectra for lentil flour and isolated proteins using IEP were found by Aryee and Boye [52], 

254 indicating that secondary structure conformational changes were limited during the extraction of the proteins.

255 3.2.3 Scanning electron microscopy

256 Representative micrographs of the LPI powders are given in Figure 4. In general, a heterogeneous mixture of 

257 rounded particles with smooth, shrivelled, hollow and wrinkled surfaces were observed in both LPIs. These 

258 features are typical for spray dried powders and have been attributed to rapid evaporation of water during the 

259 spray-drying process [53–55]. Joshi et al. [24]) also observed similar folded and wrinkled surfaces in LPI powders 

260 obtained by spray drying. The sizes of the powder particles, as seen from the scale bars, were generally between 

261 10 and 50 µm. LPI-IEP and LPI-UF showed similar powder characteristics, although the LPI-IEP primary particles 

262 are in a closer arrangement than the LPI-UF particles where the powder particles seem more dispersed.

263 3.2.4 Particle size distribution

264 The particle size observations obtained by SEM can be correlated with the particle size distribution (PSD) 

265 determined using laser diffraction (Figure 5). Both LPIs showed a monomodal size distribution with a size range 

266 of 10 to 100 µm. The volume-weighted mean particle diameter (D4,3) values of LPI-UF and LPI-IEP were 32.8 

267 µm and 29.4 µm, respectively. The LPI-IEP also had significantly lower values for surface-weighted mean particle 

268 diameter (D3,2), D (50) and D (90) (Table 2). Similar profiles were observed by Crowley et al. [56]) in high-protein 
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269 (90%) milk protein concentrates after 24 h of rehydration, with particle sizes ranging from 10 to 100 µm, 

270 classifying them as large and poorly-dispersible particles.

271 3.2.5 Surface hydrophobicity

272 Hydrophobic groups exposed to the surface of the proteins enable hydrophobic interactions, and 

273 adsorption to interfaces; hence having an influence on many properties, such as emulsification and foaming [57]. 

274 These values are shown in Table 2. The LPI-IEP had a significantly higher surface hydrophobicity with a value 

275 of 2688 in comparison to LPI-UF with a value of 2411. However, the differences were not major, but significantly 

276 different, indicating that the extraction method had no major impact on the surface hydrophobicity of the proteins. 

277 Comparable studies found a value of 2200 for legumin-like proteins isolated from lentils [14], while Joshi et al. 

278 [58] found a considerably higher value of 568 determined for mg/mL, which translates to 5680 using the same 

279 protein concentration units as in this study. 

280 3.2.6 Sulfhydryl groups

281 Results of sulfhydryl groups measured as free and total are shown in Table 2. The concentration of free 

282 and total sulfhydryl groups were found to be higher for LPI-IEP, with 6.04 and 23.9 µmol/g protein, respectively, 

283 compared to 5.88 and 22.5 µmol/g protein, respectively for LPI-UF. Literature considering the sulfhydryl groups 

284 of lentil proteins is scarce and diverse; Li & Lee [59] reported disulphide contents of 0.31 µmol/g, and free 

285 sulfhydryl groups of 0.032 µmol/g, being considerably lower than the values found in this study. On the other 

286 hand, Ladjal-Ettoumi et al. [49] found comparable values; they reported 16.1 µmol/g and 31.0 µmol/g for free and 

287 total sulfhydryl groups, respectively. In both cases, the relatively low amount of free sulfhydryl groups indicated 

288 the formation of aggregates, being characteristic for globular proteins, and can be linked also to the relatively 

289 large particle size. In general, both LPIs showed similar values for hydrophobicity and also sulfhydryl groups. 

290 However, LPI-IEP showed a trend with significant difference (p < 0.05) to higher values, indicating a slightly 

291 more open structure with higher surface active groups.

292 3.3 Functional properties

293 3.3.1 Solubility and zeta potential

294 Both isolates showed similar solubility and zeta potential values across the pH range, as shown in Figure 6, 

295 achieving the highest solubility at acidic and alkaline pH values. Similarly, at the extreme low and high pH ranges, 

296 the lentil protein particles showed the highest positive and negative charge, respectively. LPI-IEP showed lower 

297 solubility values across the pH range compared with LPI-UF. This may be explained by the removal of soluble 
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298 proteins in the supernatant during the extraction process and, therefore, more insoluble protein fraction is present 

299 in LPI-IEP (Figure 1). High solubility values and positive charge (+ 30 mV) were observed at pH 3, followed by 

300 minimum solubility and a net charge of 0 mV for both isolates at pH 4.5, indicating that the isoelectric point was 

301 reached. Solubility was higher again at pH 6 and pH 6.5 for LPI-UF and LPI-IEP, reaching a value of 43% for 

302 both isolates at pH 7 and the surface charge decreased, reaching values between -20 and -30 mV. Karaca et al. 

303 [16], found similar values for surface charge (-22.6 mV) for LPI-IEP at pH 7. The highest solubility was obtained 

304 for the LPI-UF at pH 9, at 54.7%, while LPI-IEP reached 50.18%. LPI-UF showed also a higher solubility at 

305 acidic conditions with a value of 39.4% at pH 3.5. The LPI-IEP had lower solubility at lower pH’s, having a value 

306 of 11.9% at pH 3.5. The general profiles of the observed solubility and zeta potential curves are characteristic for 

307 lentil proteins, as previously reported by Boye et al. [13], who studied the solubility of different plant-based 

308 protein isolates finding high solubilities for lentil and pea proteins in comparison with chickpea. Lee et al. [60] 

309 analysed the protein solubility of commercial soya products including flours, concentrates and isolates and found 

310 generally lower solubility at low pH’s. Solubility is one of the most important properties of proteins, influencing 

311 for example the ability to form and stabilise foams, emulsions and gels. Although insoluble proteins can be used 

312 in meat preparations, highly soluble proteins provide the most versatility for substitution and extension of animal 

313 proteins [61]. 

314 3.3.2 Foaming properties

315 Foaming is, in many product applications, a desired property of proteins, providing structure and 

316 stability. The foaming properties of LPIs, as a function of protein concentration, are shown in Table 3. The 

317 foaming capacity was low for both isolates at 0.1% (w/v) at 9.42 and 6.52% for LPI-UF and LPI-IEP, respectively. 

318 With increasing concentration, the foaming capacity increased, reaching 69.5 and 57.2% for 3.3 % (w/v) LPI-UF 

319 and LPI-IEP, respectively. Likewise, the foam stability increased from 0% for both LPIs to 44.9% and 39.1% for 

320 LPI-UF and LPI-IEP, respectively. The LPI-UF showed significantly better foaming properties at the high protein 

321 concentrations compared to the LPI-IEP. In addition, other studies found that protein isolates of various sources 

322 prepared by UF were superior to those obtained by precipitation, especially in terms of protein solubility and 

323 foaming characteristics [13, 62]. The results obtained show a high ability of lentil proteins to create foam with 

324 high stability, indicating its potential for application in food processing. Compared to other commercial proteins 

325 from potato (36.9%), pea (10.6%), carob (17.2%), lupin (13.9%) and soya (36.4%) analysed by Horstmann et al. 

326 [63] for their application in bread, both LPIs showed better foam capacities; even potato protein, known to have 
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327 good foaming ability, showed lower values. These results underline the great prospect of LPIs being used in 

328 bakery products, ice cream or other dairy formulations, where foaming properties are desired.

329 3.3.3 Emulsification properties

330 Proteins can act as emulsifiers by forming a film/skin around oil droplets dispersed in an aqueous medium, 

331 thereby stabilizing emulsions and preventing structural changes such as coalescence, creaming, flocculation or 

332 sedimentation [13]. The emulsifying activity (EAI) and emulsifying stability index (ESI) of LPI-UF and LPI-IEP 

333 are shown in Table 4. EAI and ESI are two indices often used to evaluate the emulsifying properties of proteins. 

334 ESI values were found to be higher for LPI-UF (63.8 min), compared to LPI-IEP (51.0 min). The EAI values were 

335 quite similar for both LPIs; however, higher values were found for LPI-IEP (16.5 m2/g) in comparison with LPI-

336 UF (14.3 m2/g). These higher values for LPI-IEP can be related to the higher surface hydrophobicity compared to 

337 LPI-UF. The EAI values were lower in comparison to other studies where different protein-to-fat ratios or high-

338 pressure homogenization were applied [13, 64]. For example, M. Joshi et al. [58] found that the EAI increased 3-

339 fold when the concentration of protein increased from 10 mg/mLl to 30 mg/mLl, whereas in this study the protein 

340 concentration was maintained at 10 mg/mLl. In addition, high pressure homogenization, as applied to cow’s milk, 

341 can help to unfold globulins (which are known for having high MW and compact structures) and enable them to 

342 migrate to the interface in order to form a stable emulsion [16]. These factors can be taken into consideration for 

343 further studies in order to enhance the emulsification properties.

344 3.3.4 Water holding and fat absorption holding capacity

345 Water holding and fat absorption holding capacity (WHC and FHAC) of proteins is an important 

346 functionality, since it influences structure, mouth feel and flavour retention of food formulations. The ability of 

347 protein to retain oil or water can be important in food applications, such as ground meat formulations, doughnuts 

348 and bakery products. Values are shown in Table 2. Significant differences were found for the WHC between the 

349 two different LPIs, showing a higher value of 3.96 g/g for the LPI-UF, compared to 2.60 g/g for LPI-IEP. 

350 Compared to other studies, both isolates showed a relatively high WHC; Boye et al. [13] reported values of 0.6 

351 and 2.7 g/g for protein concentrates isolated from several legumes. However, the authors found no considerable 

352 effect of the preparation method, possibly due to the comparatively low protein contents of their samples. 

353 Horstmann et al. [63], found values ranging from 0.0 g/g for a potato and soya, and up to 2.66 g/g for a pea protein 

354 ingredient. They associated the protein content to be negatively correlated with the WHC, i.e., other constituents 

355 affect the values to a substantial degree. In contrast, in this study it was found that a higher protein content 
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356 correlateds with a higher WHC. Results for FHAC showed also significantly higher values for LPI-UF (2.24 g 

357 oil/g protein) in comparison to LPI-IEP (2.09 g oil/g protein). The value obtained for LPI-UF is comparable to 

358 that obtained by Boye et al. [13] for red lentil protein with a FAC of 2.26 g oil/g protein. In addition, this author 

359 found the highest FAC value for LPI in comparison with yellow pea and kabuli chickpeas proteins.

360 3.3.5 Gelation characteristics

361 Heat induced gelation occurs when proteins aggregate to form a three-dimensional network. The ability to do 

362 so depends on the state and surface conformation of the proteins, e.g., free sulfhydryl groups, hydrophobicity, 

363 charge and correspondingly the electrostatic interaction between proteins, and their ability to associate to form a 

364 continuous network throughout the matrix [65]. LGC was measured as an indicator of the gelation capacity. The 

365 LPI-UF formed a gel, resisting flow when inverted, at a concentration of 11% (w/v), whereas for the LPI-IEP 16% 

366 was needed (Table 4). The lower concentration needed for a firm gel to be formed by the LPI-UF may be 

367 associated with the higher protein solubility, which is known to be an important factor in gel formation [24]. 

368 Likewise, Boye et al. [25] found that various legume proteins isolated by UF have lower LGC in comparison to 

369 IEP methods. They found comparable values, with 10% for LPI prepared by UF and 12% for isolates prepared by 

370 IEP. The LPI-UF also formed a much stronger gel, which is evident in the values obtained from the TPA test: the 

371 hardness for LPI-UF was three-fold higher than that of LPI-IEP. Likewise, gumminess and chewiness were also 

372 significantly higher for LPI-UF than for LPI-IEP gels. On the other hand, other parameters, such as adhesiveness, 

373 springiness, resilience and cohesiveness were not significantly different. The higher gelling properties of LPI-UF 

374 may be linked to the higher calcium levels, which has been shown to enhance hydrophobic coagulation of heat 

375 treated milk and soya proteins [46]. The ability to form strong gels upon heating is a desirable 

376 propertyfunctionality in bakery products:; when heat is applied to the dough, its viscosity increases , which gives 

377 stability to expanding gas cells, resultsing in a higher gas retention during baking and a higher desirable specific 

378 volume of the product is reached [66]. Furthermore, in non-traditional ways, also meat, yoghurt and cheese 

379 alternatives may be produced from heat-set gels, providingfacilitating to the product with a gel-like matrix.

380 3.4 Life cycle assessment

381 Environmental performance of LPI obtained by IEP and UF was examined by means of life cycle assessment 

382 (Table 5). Indicators such as aquatic eutrophication, photochemical oxidant formation, stratospheric ozone 

383 depletion, phosphorus use and land use showed lower potential environmental impacts for LPI-UF in comparison 

384 to LPI-IEP. For the remaining indicators studied, the ranking was switched. Especially the contribution of the 

Page 15 of 37

http://mc.manuscriptcentral.com/efrt

European Food Research and Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

16

385 lentil cultivation stage affects the outcome of these indicators. An overview on main contributors is exemplarily 

386 given in Figure 7 for four indicators - the remaining indicators followed one out of those four illustrated result 

387 contribution patterns. The higher the contribution of the lentil cultivation stage, the more important is the protein 

388 yield advantage from LPI-UF, as less lentil seeds were required per kg protein isolated. On the other hand, lower 

389 process energy was required for processing of LPI-IEP, which leads to lower potential environmental impacts for 

390 the remaining indicators including climate change. The net nitrogen benefit due to air nitrogen fixation by lentil 

391 plants (as they are legumes) in the growth phase is up to 20% of the total environmental impact depending on the 

392 indicator for both LPIs. 

393 Further, LPIs showed promising carbon footprints within the portfolio of soya-based and cow’s milk-based 

394 protein isolate food ingredients: The production of both LPIs potentially releases a quarter of carbon dioxide 

395 equivalents (3.5 to 4.2 kg CO2-e/kg) than caseinate or whey protein production (19 kg CO2-e/kg and 20 kg CO2-

396 e/kg, respectively) as examined in an attributional LCA by Thrane, Paulsen, Orcutt, & Krieger [67]. Compared to 

397 soya protein isolate, depending on the literature source chosen, LPIs showed similar [67] or up to 4-fold lower 

398 values [68] for their potential release of carbon dioxide equivalents.

399 The environmental impact profiles of LPIs were also compared with traditional cow’s milk protein as 

400 illustrated in Figure 8. Two different scenarios for the production of cow’s milk protein were taken into 

401 consideration: the environmental impact, high or low, of the milk protein was set up depending on the theoretical 

402 amount of protein that is fed to the cow i.e. cow feed per kg milk and share of concentrate versus silage feed 

403 components within the feed mix were the parameters set to low and high for those ranges. Indicator results of 

404 LPIs are lower (and thus favourable) or equal for all of the examined indicators except the land use indicator. The 

405 latter is related to comparatively high agricultural yields of feed crops in comparison with relatively low yields 

406 for lentils. It should be noted that feed crops have undergone long-time optimisation of agricultural practices in 

407 order to reach relatively high yields. Lentils on the other hand have not been cultivated in comparable amounts 

408 on global scale than animal feed crops. Therefore, related optimization might take place along with increased 

409 interest in lentils in the future. 

410 Overall, the environmental impact of both LPIs was lower, contributing e.g. to a reduction of greenhouse 

411 gases compared to cow’s milk protein.

412 4 Conclusion
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413 Various physical and functional properties of two LPI isolated by IEP and UF were investigated, indicating 

414 that they could contribute different desirable attributes to a wide range of food products. The results suggest that, 

415 in general, UF resulted in a product with better functional properties, such as higher protein solubility, WHC, 

416 greater gelling and foaming properties and emulsion stability. Differences in functional properties between the 

417 isolates under investigation were attributed to differences in the extraction methods, resulting in different 

418 compositions. Both isolates contained high levels of protein; however, LPI prepared by UF contained significantly 

419 higher values of protein, calcium and magnesium, whereas LPI prepared by IEP had higher levels of other minor 

420 constituents such as fibre, sodium and phosphorous. The life cycle assessment showed that the two main drivers 

421 for the environmental impact of LPIs were the cultivation stage and the protein isolation process. Overall, both 

422 LPIs exhibited promising environmental performance, especially if compared to traditional cow’s milk proteins. 

423 These favorablefavourable functional, nutritional and environmental properties of LPIs could be exploited in the 

424 preparation and development of diverse food products and may also be suitable for the substitution of soya or 

425 animal derived proteins. Further studies are required to investigate protein functionality and applicability of these 

426 in food systems as well as life cycle assessments of the food products thereof.
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Table 1. Macro- and micro-nutrient composition of lentil protein isolates obtained by 
ultrafiltration (LPI-UF) or isoelectric precipitation (LPI-IEP).

Values within a column that share a superscript are not significantly different from one another 
(p<0.05).

*N.D. = Not Detected

Composition [g/100 g] LPI-UF LPI-IEP
Protein 93.7 ± 0.34a 85.13 ± 0.76b

Fat 4.40 ± 0.13a 4.49 ± 0.37a

Starch *N.D. *N.D.
Moisture 5.63 ±0.02a 4.87 ± 0.08b

Ash 3.51 ±0.11a 5.46 ± 0.04b

Insoluble dietary fibre <0.1 <0.1
Soluble dietary fibre <0.1 1.8

Minerals [mg/kg]
Chlorine 2.0 2.4
Sodium 1300 11000
Zinc 57 48
Calcium 2200 710
Magnesium 2300 750
Iron 150 170
Phosphorous 6100 9400
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Table 2. Particle size distribution parameters of 1% (w/v) protein solutions, surface hydrophobicity, 
sulfhydryl groups, water and oil holding capacity of lentil protein isolates obtained by ultrafiltration (LPI-
UF) and isoelectric precipitation (LPI-IEP).

LPI-UF LPI-IEP
Particle size distribution [μm]

D4,3 32.8 ± 3.21a 29.4 ± 0.64a

D3,2 23.3 ± 0.91a 18.1 ± 1.37b

Dv (10) 12.5 ± 0.26a 9.02 ± 0.24b

Dv (50) 26.9 ± 1.31a 19.0 ± 1.41b

Dv (90) 62.8 ± 9.03a 56.6 ± 5.81a

Surface Hydrophobicity 2411 ± 49.5a 2688 ± 92.8b

Free Sulfhydryl groups [µM/g protein] 5.88 ± 0.01a 6.04 ± 0.58a

Total Sulfhydryl groups [µM/g protein] 22.5 ± 0.15a 23.9 ± 1.42a

Water holding capacity [g water/g protein] 3.96 ± 0.2a 2.6 ± 0.11b

Fat binding holding capacity [g oil/g protein] 2.24 ± 0.16a 2.09 ± 0.23a

Values within a column that share a superscript are not significantly different from one another 

(p < 0.05).
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Table 3. Foaming properties of protein solutions of lentil protein isolates obtained by ultrafiltration (LPI-
UF) and isoelectric precipitation (LPI-IEP)

Values within a column that share a superscript are not significantly different from one another (p < 0.05).

Foam capacity
(%)

Foaming stability after 60 min (%)Protein concentration
(w/v)

LPI-UF LPI-IEP LPI-UF LPI-IEP
0.1 9.42 ±1.26a 6.52 ± 0.00b 0.00 ± 0.00a 0.00 ± 0.00 a

0.5 18.1 ± 1.26a 18.8 ± 1.26a 6.52 ± 5.75 a 5.80 ± 3.32 a

1.0 33.3 ± 2.51a 33.3 ± 11.2a 15.9 ± 4.53 a 12.3 ± 1.26 a

3.0 58.7 ± 9.48a 51.4 ± 6.28a 43.5 ± 5.75 a 31.8 ± 5.47 a

3.3 69.6 ± 3.77a 57.2 ± 5.47b 44.9 ± 1.26 a 39.1 ± 5.75 a
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Table 4. Gelling and emulsifying properties of protein solutions of lentil protein isolates obtained by 
ultrafiltration (LPI-UF) and isoelectric precipitation (LPI-IEP).

LPI-UF LPI-IEP
Emulsifying properties

Emulsifying activity [m2/g] 14.3 ± 1.22a 16.5 ± 0.03b

Emulsifying stability [min] 63.8 ± 6.70a 51.0 ± 0.96b

Least gelation concentration % [w/v] 11.0 ± 0.00a 16.0 ± 0.00b

Texture profile analysis of LPI gels
Hardness [mN] 2055 ± 114a 669 ± 20.2b

Adhesiveness [mN/s] -98.7 ± 9.02a -83.7 ± 1.53b

Springiness 0.47 ± 0.08a 0.32 ± 0.04a

Cohesiveness 0.30 ± 0.01a 0.30 ± 0.02a

Resilience 0.05 ± 0.01a 0.03 ± 0.00a

Gumminess 623 ± 53.7a 210 ± 4.36b

Chewiness 257 ± 83.1a 76.3 ± 7.09b

Values within a column that share a superscript are not significantly different from one another (p < 0.05).
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Table 5. Environmental impact profile of lentil protein isolates per kg isolate (PI), prepared by 
ultrafiltration (LPI-UF) and isoelectric precipitation (LPI-IEP)

LPI- IEP LPI-UF
Environmental impact potentials (LCA):

Climate Change [kg CO2-e/kg PI] 3.53 4.17
Aquatic Eutrophication [g PO4-e/kg PI] 111 103
Terrestrial Eutrophication [g PO4-e/kg PI] 1.57 1.77
Acidification [g SO2-e/kg PI] 14.5 18.2
Photochemical Oxidant Formation [g O3-e/kg PI] 2.22 2.17
Fine Particulate Matter [g PM2.5-e/kg PI] 11.9 14.9
Stratospheric Ozone Depletion [mg CFC11-e/ PI] 58.2 55.1

Additional indicators at the inventory level (LCI):
Phosphorus Use [g/kg PI] 245 229
Cumulative Energy Demand, non-renewable [MJ/kg PI] 45 59
Blue Water (process) [kg/kg PI] 42 49
Land Use [m2/kg PI] 57 53
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Figure 1. Preparation of lentil protein isolates from Lens culinaris cv. Itaca in pilot-scale.
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Figure 2. Representative sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) 
pattern of lentil protein isolates obtained by ultrafiltration (LPI-UF) and isoelectric precipitation (LPI-
IEP) under non-reducing (NR) and reducing (R) conditions. The first lane of the gel contains the 
molecular weight marker.
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Figure 3. Far-UV circular dichroism (CD) spectra (smoothened curve) of lentil protein isolates obtained 
by ultrafiltration ( ) or isoelectric precipitation ( ).
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Figure 4. Scanning electron micrographs of isoelectric precipitated (column 1) and ultrafiltrated (column 
2) lentil protein isolate powder ingredients. Magnification of row (a) 250, (b) 500 and (c) 1000. Scale bars 
10 µm.
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Figure 5. Particle size distribution of 1 % (w/v) ultrafiltrated ( ) or isoelectric precipited 

( ) lentil protein solutions obtained in deionised water at 25 °C.
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Figure 6. Protein solubility (a) and zeta potential (b) values at different pH ranges of lentil protein 
isolates obtained by ultrafiltration ( ) and isoelectric precipitation ( ).
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Figure 7. Contributions of main life cycle steps to environmental impact profiles of lentil protein isolates 
prepared by ultrafiltration (LPI-UF) and isoelectric precipitation (LPI-IEP). CED = Cumulative primary 
energy demand
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Figure 8. Comparison of environmental impact profiles of lentil protein isolates versus cow milk protein 
ranges, lentil protein isolates are prepared by ultrafiltration (LPI-UF) and isoelectric precipitation (LPI-
IEP). Highest result is set to 100%. dLUC = direct land use change
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