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Abstract 
 

This PhD thesis concerns the computational modeling of the electronic and 

atomic structure of point defects in technologically relevant materials. 

Identifying the atomistic origin of defects observed in the electrical 

characteristics of electronic devices has been a long-term goal of first-principles 

methods. First principles simulations are performed in this thesis, consisting of 

density functional theory (DFT) supplemented with many body perturbation 

theory (MBPT) methods, of native defects in bulk and slab models of 

In0.53Ga0.47As. The latter consist of (100) - oriented surfaces passivated with 

Al2O3. Our results indicate that the experimentally extracted midgap interface 

state density (Dit) peaks are not the result of defects directly at the 

semiconductor/oxide interface, but originate from defects in a more bulk-like 

chemical environment. This conclusion is reached by considering the energy of 

charge transition levels for defects at the interface as a function of distance from 

the oxide. Our work provides insight into the types of defects responsible for the 

observed departure from ideal electrical behaviour in III-V metal-oxide-

semiconductor (MOS) capacitors. 

In addition, the formation energetics and electron scattering properties of 

point defects in carbon nanotubes (CNTs) are studied using DFT in conjunction 

with Green’s function based techniques. The latter are applied to evaluate the 

low-temperature, low-bias Landauer conductance spectrum from which 

mesoscopic transport properties such as the elastic mean free path and 

localization length of technologically relevant CNT sizes can be estimated from 

computationally tractable CNT models. Our calculations show that at CNT 

diameters pertinent to interconnect applications, the 555777 divacancy defect 

results in increased scattering and hence higher electrical resistance for electron 

transport near the Fermi level. 
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Chapter 1 
Introduction 
 
Over the past few decades, considerable scientific interest has been focused on 

alternative design strategies aimed at future complimentary metal-oxide-

semiconductor (CMOS) technologies which are anticipated to overcome the 

present limitations to Moore's law scaling [1], i.e. the reduction in device 

dimensions in order to increase functionality per unit area while simultaneously 

decreasing manufacturing costs, resulting in a doubling of performance every 18 

months. These strategies include proposals for novel nanoscale devices which 

could replace the present-day interconnects between transistors on an integrated 

circuit (IC), as well as the channel inside a metal-oxide-semiconductor field-

effect transistor (MOSFET) - the basic building block of processors and memory 

devices. Specifically, a large proportion of recent research has been focused on 

materials which present promising electrical characteristics such as carbon 

nanotubes (CNTs) and ternary III-V compounds. In reality, such device materials 

invariably exhibit crystalline defects which dramatically affect their optical and 

electrical properties. For example, consider the semiconductor channel in a 

MOSFET; surface preparation techniques, interfaces with oxides, dopant 

implantation, annealing for dopant activation, the resulting ultra-sharp doping 

gradients, as well as strain, lattice-mismatch, and various other processing 

techniques can all result in lattice sites that are miscoordinated relative to the 

bulk crystal, in many cases resulting in electrically active defects such as 

recombination centers or compensating defects. Thus a large effort has been 

undertaken to understand and control precisely the nature of defects in 

technologically relevant materials [2-5].  

In this thesis, the effect of crystalline disorder on the properties of such 

device materials is studied using computational models derived from first-

principles methods for calculating electronic structure and transport, namely 

density functional theory (DFT) supplemented with Green’s functions. Such 
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computational models provide an important complement to experiments used for 

defect characterization [6, 7] by aiding in the identification of defects 

responsible for observed measurements.  

In certain situations, defects are intentionally induced to modify or tune 

the salient chemical/electrical properties for the purposes of sensor applications; 

e.g. vacancies in CNTs significantly increase their sensitivity to certain gases [8]. 

Undesired defects, on the other hand, lead to degraded electrical properties 

which prevent the large-scale integration of the disordered material, e.g. 

electrically active defects in indium gallium arsenide (InGaAs). In both cases, a 

thorough understanding of the atomic-scale dependence of device properties on 

defects is crucial to utilizing the materials for nanotechnological applications 

most effectively.  

The structure of this thesis is as follows. In chapter 2, the motivation for 

this work is discussed, including the significance of defects with regard to device 

physics followed by the technological benefits and challenges associated with 

the materials studied. Chapter 3 contains a brief survey of first-principles 

methods and their use in atomic-scale defect characterization. This involves a 

background to the DFT formalism along with an outline of Green’s function 

techniques. Specifically, the different contexts in which Green’s functions can be 

applied are highlighted, such as the calculation of the electron self-energy via the 

퐺푊 approximation thereby yielding accurate bandgaps and defect levels, and the 

scattering problem for evaluating transport. The remaining chapters concern 

specific applications of these methods. In Chapter 4, the utility of the DFT+퐺푊 

approach for calculating bandstructures is tested on a simple 2-atom model of 

In0.53Ga0.47As in which the virtual crystal approximation is used for the cation 

sublattice. The DFT+퐺푊 approach is then extended to a more rigorous model of 

bulk In0.53Ga0.47As in the presence of native point defects. The transitions 

between defect charge states as a function of the Fermi energy can be used to 

identify the defect species responsible for the experimentally inferred density of 

interface states (Dit) derived from capacitance-voltage (CV) measurements. 

However, performing a direct comparison between defects calculated within a 3-
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dimensional periodic bulk simulation supercell and those measured in a MOS 

capacitor is incomplete without a consistent treatment of the 

semiconductor/oxide interface. To overcome this limitation, a surface model of 

In0.53Ga0.47As is presented in Chapter 5. Using the model of Robertson et al [9] 

for Al2O3 passivation of In0.53Ga0.47As, a stable surface termination is 

constructed which adheres to electron counting rules. This allows for a 

consistent comparison between defects in bulk- and surface-like environments. 

In Chapter 6, localized basis sets are used to study the transport properties of 

defective CNTs as a function of diameter and chirality. Our results are validated 

against a more rigorous formalism [7, 10, 11] in which the onset of strong 

Anderson localization upon the introduction of divacancies is shown. This 

validation allows us to estimate the localization length and other salient transport 

features in CNTs of more technologically relevant diameters. The conclusions 

and an overall summary of the thesis are given in chapter 7. 

Previous theoretical studies of defects in these device materials have 

either used methods that restrict the size of the system being modeled [11, 12] 

(in which CNT diameters larger than those of (10, 10) chirality were not studied) 

thereby preventing direct comparison with technologically relevant diameters, or 

use a model in which direct comparison with experiment is incomplete, for 

example computing properties of a bulk model which are then used to compare 

with oxide terminated surfaces [13]. In this thesis, first principles models of 

defects in InGaAs and CNTs are constructed and the electronic properties 

thereof evaluated, allowing for a comparison with, and extension of, previous 

computational studies using explicit, unparameterized computational methods 

for direct comparison to experiment. 
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Chapter 2 

Motivation 
 

2.1 Introduction 
 

This chapter starts with an account of the role atomic-scale defects play in 

nanoelectronic devices, and their characterization using a combination of 

experimental and theoretical methods. The following sections give an outline of 

the importance of the materials studied in this work, namely indium gallium 

arsenide (InxGa1-xAs) and carbon nanotubes (CNTs). The former represents an 

alternative to Si-based metal-oxide field effect transistors (MOSFETs) which is 

relatively compatible with existing CMOS technology. Carbon nanotubes, on the 

other hand, offer potentially tremendous improvements in IC performance, yet 

their large-scale integration poses a much more difficult challenge in terms of 

fabrication and processing. Thus, these potential device materials represent two 

ends of a spectrum of proposed solutions to continued Moore's Law scaling; 

short-term solutions which are readily adoptable to existing CMOS platforms on 

one end, and on the other end long-term solutions which likely require 

significant changes to the manufacturing process. While being less disruptive to 

the standard fabrication techniques, materials representing short-term solutions 

offer only incremental improvements in performance whereas materials 

corresponding to long-term solutions may open the gateway to “beyond-CMOS” 

technology platforms, once the problems associated with their large-scale 

integration are addressed. 

 

2.2 Device Physics and Defects 
 

The properties of crystalline solids change dramatically upon the 

introduction of defects and impurities. The idealized pure crystalline solid, with 

periodic boundary conditions which eliminate the disruption of symmetry at 
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surfaces, permits the theoretical derivation of, in principle, all intrinsic crystal 

properties. The latter are crucial to the determination of performance when 

employed in an electronic or photonic device. As real materials are never found 

with perfect crystallinity, but in fact contain interruptions to the regular pattern 

of lattice sites, for example interfaces with other materials, interfaces with 

vacuum, and defects, device performance can be significantly influenced by the 

lack of ideal crystallinity. 

As device dimensions shrink, the influence of defects on device 

performance further increases. The level of precision that is necessary when 

designing modern nanoelectronic devices and in maintaining desired 

performance is highlighted if one considers the number of transistors on a single 

microprocessor over the past few decades. The exponential increase in this 

number reflects the increasing functionality and decreasing cost per integrated 

circuit.  

 

 
Figure 2.1 - Graphical depiction of Moore's law; exponential increase in the number of 
transistors in a microprocessor over time. Taken from ref. [14]. 
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As the number of transistors on a single chip reaches the tens of billions, 

transistor miniaturization enters the atomic-scale regime - consider the 

International Technology Roadmap for Semiconductors (ITRS) prediction of 

sub-10nm MOSFET dimensions by 2018 [15] - with all the associated 

performance benefits of scaling and associated challenges related to the 

differences between a given material’s macroscopic and microscopic properties. 

To continue the ~50 year trend of device miniaturization, highly sophisticated 

fabrication and characterization techniques have been developed to achieve the 

atomistic level of control required by today’s nanoelectronic manufacturing 

standards [16, 17]. These developments reflect the fact that variations in a 

material at an atomic-scale are by no means irrelevant and in fact can have a 

large impact on the resultant device performance, particularly in the modern 

nanoelectronics era.  

 Atomic scale or “point” defects are isolated imperfections in a material’s 

crystal structure. These include native point defects such as missing atoms or 

vacancies, and atoms not occupying a lattice site or interstitials. Other common 

native defects include miscoordinated sites such as dangling bonds and dimers. 

Certain point defects such as antisites are specific to compound semiconductors 

and consist of atoms native to the material occupying the wrong lattice site; e.g. 

cations occupying anion sites or vice versa in III-V semiconductors. Foreign 

impurities on the other hand consist of species not native to the host material, 

which may or may not occupy a lattice site of the host crystal. In the context of 

transistor physics, point defects can play a significant role in electrical 

characteristics. For example, they can trap charge carriers at a semiconductor-

oxide interface, scatter electron waves propagating through a conductor, as well 

as pin the Fermi-level which hinders the effect of doping and/or gate voltage. All 

of these effects can be detrimental to the operation and reliability of MOSFETs 

as well as their interconnections. Therefore, a wide range of techniques exist for 

detecting the presence of defects and measuring their effect on device 

characteristics.  

 Point defects can be observed as distortions resulting in contrasts in high 
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resolution transmission electron microscopy (TEM) or scanning tunneling 

microscopy (STM) images. STM imaging performed by Ebert [18, 19] has 

revealed a wealth of information concerning defects on (110) oriented III-V 

compound semiconductor surfaces. Even certain aspects of the nature of bulk 

defects were inferred from those investigations. However, bulk defects remain 

difficult to observe and to identify experimentally; this is one area where 

computational modeling can make important contributions. Also, in ref. [19] 

Ebert concentrated on the (110) surface, i.e. nonpolar, III-V surfaces. For the 

(100) oriented III-V surface however, the polar nature of anion-cation bonds 

results in reconstructions that depend on whether the surface is anion or cation 

terminated. In either case electron-counting rules must be satisfied to ensure the 

Fermi level lies within the bandgap, possibly resulting in the creation of defects 

in the absence of a stable passivating oxide [9] such as Al2O3. To identify the 

nature of defects at the semiconductor-oxide interface in these cases, electrical 

properties can be measured and compared to results from atomistic 

computational modeling. Before discussing how the effect of defects may be 

analyzed experimentally, it is useful to discuss the MOSFET as an example and 

the impact defects can have on its operation.  

Consider the operation of a planar n-channel MOSFET, a cross-section of 

which is shown in figure 2.2. A metal electrode (gate) is deposited onto an 

insulating oxide, beneath which lies a p-type semiconductor which provides a 

channel for minority carrier conduction. The semiconducting channel lies 

between two highly doped n-type electrodes that are labelled source and drain. 

An electrostatic field resulting from an applied positive gate voltage attracts 

minority charge carriers from the semiconductor bulk to the 

semiconductor/oxide interface. As the voltage is increased, the carrier 

concentration at the semiconductor surface eventually becomes inverted relative 

to the p-type doped substrate and current flows through the channel from source 

to drain. 
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Figure 2.2 - General structure of an n-type MOSFET. Semiconductor is p-type, source 
and drain are (highly) n-type, so applying a positive voltage above a threshold to the 
gate creates a conducting channel of electrons underneath the oxide. 

 

The quality and operation of the MOS stack is crucial to the desired performance 

of the MOSFET. More specifically, the behaviour of the oxide-semiconductor 

layer should be controlled by the gate potential rather than by unwanted charges 

present at the semiconductor-oxide interface. In a semiconductor, the valence 

and conduction bands are separated by the bandgap Egap, and at 0 K all 

electronic states up to the valence band maximum (VBM) are filled and all 

conduction band states are unoccupied (even at room temperature, typically very 

few electrons are promoted to the conduction band in intrinsic silicon). In a 

MOSFET, minority carrier conduction along the semiconductor surface is 

generated by a bending of the band edges below the Fermi level (휀 ).  As the 

gate voltage Vgate is increased, the semiconductor conduction band minimum 

(CBM) eventually crosses 휀  and a thin layer of conducting electrons forms at 

the semiconductor-oxide interface, which may be described as a 2-dimensional 

electron gas.  

The performance of a MOSFET depends heavily on the absence of 

electronic states within the bandgap; for example, the fact that significant 

conduction occurs only above threshold, the mobility of the conducting channel, 

the lifetime of minority carriers, and the related rate of increase of current with 

Source Drain 

Gate 

Oxide 

Semiconductor 
substrate 

`` 

+ 

+ 
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respect to Vgate. Atomic-scale defects at the semiconductor surface can 

dramatically alter the electrical characteristics of a device as they can contribute 

a finite density of states within the bandgap of the semiconductor. Such 

“midgap” defects can provide charge carriers at energies lower than Egap and so 

offset the effect of the gate voltage, for example; in this situation, electrostatic 

control of the channel by the gate potential is degraded, which compromises 

subthreshold-slope (SS) and threshold voltage Vth stability. Midgap states can 

also “trap” minority carriers and reduce carrier mobility by scattering, which in 

turn reduces the current ON/OFF ratio.  

The specific electrical properties of defects depend on the position of 

their energy levels relative to the electronic band edges. “Shallow” defects have 

energy levels within a few 푘 푇 (푘  is Boltzmann’s constant, 푇 is temperature) of 

the conduction or valence band edges. These defects can donate/accept electrons 

at energy levels close to the band edges and these shallow defect levels are 

usually characterized by extended wavefunctions. Thus, they usually have a 

smaller effect on charge carrier mobility than deep defects. Deep level defects 

are represented by levels that are close to the center of a bandgap. They can be 

the result of a defect which produces extensive distortion of the lattice, and 

correspondingly exhibit localized wavefunctions. Deep level defects can be 

effective recombination centers. Consider the electron-hole recombination 

process (figure 2.4), which in the absence of midgap levels requires the emission 

of a photon (assuming a direct bandgap and neglecting Auger processes) with 

frequency f = Egap/h, where h is Planck’s constant. A midgap level provides a 

means for electrons and holes to recombine via Shockley-Read-Hall (SRH) 

recombination [20]. The energy loss of the conduction electron is either released 

as light or transferred to the lattice by a phonon. A deep defect level is 

considered as a “trap” that captures electrons and holes, reducing their lifetime. 
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Figure 2.4 - Illustration of electron-hole recombination with and without midgap 
defects. As the defect level approaches the center of the bandgap, SRH recombination 
rate approaches a maximum [20]. 

 
As the recombination rate 푈 (charge carrier recombination per volume per time) 

depends on the defect level 퐸  and the intrinsic Fermi level (i.e. center of 

bandgap) 퐸  as [21], 

푈	 ∝ exp
(퐸 − 퐸
푘 푇 																																							(2.1) 

 

then the closer the defect level is to midgap, the larger the recombination rate, 

with a maximum when 퐸 = 퐸 . Thus deep level defects are the most efficient 

recombination centers for SRH recombination.  

The nature of semiconductor defects in a MOSFET can be studied using 

a number of experimental methods developed in recent decades. A broad range 

of defect properties such as their concentration, density of states, and their 

influence on MOSFET performance, can be analyzed by comparing the 

measured and theoretical capacitance-voltage (CV) curves [6, 21]. The 

integrated density of interface states Dit can be inferred by measuring the 

hole hole 
Band-to-Band 
recombination 

SRH recombination 

CBM 

VBM 

Energy 

electron electron 

defect level 
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flatband and threshold voltages and comparing to the theoretical ideal [6]. The 

disagreement between measurement and theory can be used to study the nature 

of defects present at the semiconductor-oxide interface. The extraction of voltage 

shifts is illustrated by the following results recently published by Djara et al [6], 

who measured the CV characteristic of an n-channel MOSFET consisting of an 

Al2O3 gate oxide deposited onto an In0.53Ga0.47As substrate. This system will be 

considered in detail later in this thesis. 

 

 
Figure 2.5 - Measured and simulated CV response of a MOS stack, reproduced from 
[6]. Theoretical CV curve obtained from a self-consistent Poisson-Schrödinger solver. 
The inversion and accumulation regions are indicated below the voltage axis. The 
difference between experimental and theoretical curves highlights the impact of defects 
and is explained in the text. 

 
The presence of interface defects explains the difference between the 

experimental and theoretical CV curves; the capacitance measured at inversion is 

higher than the theoretical capacitance in the same region, which indicates the 

presence of extra states above the CBM, i.e. interface defect states resonant with 

the conduction band. A positive fixed charge in the oxide is also suggested by 

the difference in	푉  between theory and as measured. 

Inversion Accumulation 
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Electrical characterization techniques in general lack the ability to 

identify the atomic structure of the defect responsible for an observed deviation 

from ideal electrical behaviour. More specifically, defect levels from different 

species in different charge states can be located at similar places in a bandgap, 

and so an ambiguity exists that is particularly pronounced for compound 

semiconductors in the physical origin of the salient features of Dit profiles. It is 

precisely this ambiguity that ab-initio simulations can help address. Within this 

approach, ab-initio or first-principles methods are making increasingly important 

contributions to the understanding of defects in semiconductors, their influence 

on material properties, and their impact on device performance [2, 5, 7, 13, 22]. 

From these methods, essential information concerning the defect and host 

system can be calculated, such as charge densities, electrostatic potentials, 

electronic wavefunctions, density of states, relaxed atomic structures, and 

formation energies. The latter are highly relevant for a theoretical description; 

formation energies allow one to calculate the charge transition levels [5, 13, 23] 

of electrically active defects, which correspond to electron chemical potentials at 

which two charge states of a given defect center are equally likely to form. These 

thermodynamic quantities provide an important connection between first-

principles theory and experimental electrical data.  

Once the experimentally inferred Dit profile is obtained, atomistic 

modeling can be employed to help identify the defect(s). By deriving from first-

principles the self-consistent electronic structure and equilibrium geometries of a 

number of isolated defects incorporated into the semiconductor host, formation 

energies and hence charge transition levels can be evaluated and compared to 

values inferred from experiment; details of the calculation of these quantities can 

be found in chapter 3.  

Experimentally accessible fingerprints of defects can also be investigated 

by a first-principles account of electronic transport through a defective material. 

By calculating the electronic transmission probability, which directly relates to 

the low-temperature, linear-response conductance [24], through the defective (or 

scattering) region contacted to charge carrier reservoirs, the scattering of 
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electron waves by the defect can be quantitatively assessed. The results of such 

calculations could be directly compared to experimental transport spectroscopy 

data, allowing for the identification of a defect, or since the scattering cross 

section of the defect will depend on its arrangement within the host lattice, 

specific geometric properties of defects such as bonding arrangement and 

reconstruction can be distinguished by this approach. When the length of the 

conductor is reduced to below the elastic mean free path, interesting phenomena 

arises in the presence of defects such as the possibility of extended electron 

waves becoming localized by the disruption of the lattice periodicity. In this 

case, conduction becomes exponentially dependent on the characteristic 

localization length, which can also be inferred experimentally [7] and compared 

to theoretical predictions. A background on electron transport and its evaluation 

within an ab-initio framework is given in Chapter 3.  

To summarize section 2.2, as device miniaturization continues on into the 

atomic-scale regime, point defects have an increasingly significant impact on 

device performance. First-principles computational modeling can then play an 

important complementary role to the experimental methods employed to study 

defects in technologically relevant materials. In the following sections, an 

account of the motivation for the materials studied in this work will be given.  

 

2.3 Indium Gallium Arsenide 
 

To appreciate the importance of InxGa1-xAs and other III-V 

semiconductors it is instructive to consider some of the present-day limitations 

to continued Moore’s law scaling for transistors. In 1974, R. Dennard et al 

published their seminal paper on linear scaling which described techniques to 

minimize short-channel effects due to encroaching depletion layers from source-

channel and channel-drain p-n junctions. This allowed for improvements in 

transistor density, switching speed and power dissipation simultaneously through 

linear scaling [25]. They concluded that the key device parameters such as 
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dimension, operating voltage, and doping concentration should all be scaled by a 

constant factor. The table below, reproduced from [25], highlights the benefits of 

this scaling strategy; as a transistor shrinks in size, it can switch faster and 

dissipate less power, so by increasing transistor density, performance of the 

integrated circuit can increase without increasing power usage; this provides a 

technological basis for Moore’s law. 

 

Device or Circuit Parameter   Scaling Factor 

Device dimension tox, L, W 1/k 

Doping concentration Na k 

Voltage V 1/k 

Current I 1/k 

Capacitance ε(L×W)/tox 1/k 

Delay time VC/I 1/k 

Power dissipation VI 1/k2 

Power density VI/(L×W) 1 
 

Table 2.1 - Scaling results of Dennard et al. Gate oxide thickness, channel length, and 
width are denoted by tox, L, and W respectively. ε is the dielectric constant. Until recent 
years, k ~ 1.4 yielding 70% reduction in linear dimension, or ~2x increase in transistor 
density. This is sometimes referred to as “happy scaling”.  

 
Unfortunately, this scaling strategy relied on a number of key assumptions 

which are no longer valid at modern MOSFET dimensions. Scaling of the oxide 

thickness and consistent scaling of the threshold voltage Vth with the operating 

voltage are two examples. The latter assumption neglects the influence of sub-

threshold leakage on power consumption, which was a negligible effect in the 

micron-scale MOSFETs of the 1970s. Combining this with the fact that further 

reductions in operating voltage will compromise performance by reducing 

switching speed has recently forced the CMOS industry into a regime of 

“power-constrained scaling” [26, 27]. Power density cannot increase any further 
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without incurring unfeasibly large manufacturing and operating costs associated 

with packaging and cooling.  

An improvement would be a channel material with higher charge carrier 

mobility than Si, thereby allowing for a reduction in operating voltage without a 

slower switching speed. Compound semiconductors composed of elements from 

column III and column V of the periodic table exhibit such desirable electron 

mobilities. As discussed in the previous section, crystalline defects can create 

states inside the bandgap of the host semiconductor. Such defects can degrade 

key electrical properties such as minority carrier lifetime, subthreshold slope, 

and ON/OFF ratio, to which III-V compounds are prone.  

The lack of a stable native III-V oxide, in contrast to SiO2 for Si, has led 

to problems in this regard; direct oxidation of a III-V surface results in Fermi 

level pinning [28] resulting in the inability of the gate to control the electrostatic 

potential inside the semiconductor due to a large concentration of surface 

defects. Progress was made with atomic-layer-deposition (ALD) of Al2O3 for the 

gate oxide, yielding a III-V/high-k oxide interface with a manageable density of 

interface states (Dit). It has also been shown that increasing the indium 

concentration can improve transistor characteristics compared to GaAs [26, 29, 

30]. Meanwhile, recent computational studies indicate the interface states arising 

from As-dimers and corresponding group III dangling bonds - which contribute 

to midgap Dit in GaAs - lie well inside the conduction band of In0.53Ga0.47As [31, 

32]. This could explain the improvement in performance with increasing In 

content, as the lowering of the band gap with increasing In content may push 

defect states out of midgap, assuming the position of the defect level relative to 

the valence band edge does not change with In content [30]. In addition, gate-all-

around (GAA) In0.53Ga0.47As nanowire transistors [33], and In0.7Ga0.3As 

quantum well FETs [34] have in recent years been fabricated and in cases shown 

to perform better than their Si counterparts. While there are still many challenges 

to the large scale integration of III-V materials on a silicon platform such as 

minimizing defect densities at the high-k oxide interface, these findings result in 
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In0.53Ga0.47As based MOSFETs being currently considered the most promising 

of the III-V family for replacing silicon in n-type MOS transistors [26]. 

 

2.3.1 Recent Experimental Work 
 

Experimental electrical characterization of III-V based MOS capacitors 

has been performed by a number of research groups, including but not limited to 

refs. [35-38]. A recent work reported full gate capacitance measurements of the 

Al2O3/In0.53Ga0.47As system combined with Poisson-Schrödinger modeling to 

extract the interface state density across the semiconductor bandgap [6]. The 

results indicate the presence of defects giving rise to midgap states associated 

with a (net) neutral to positive (donor-like) charge transition, as well as neutral 

to negative (acceptor-like) interface traps with a Dit distribution extending into 

the conduction band. The donor-like feature of the interface trap density peaks at 

0.36 eV above the valence band edge with a peak height of ~1.5×1013 cm2 eV-1. 

It is not possible to distinguish the location of these traps as coming from either 

the semiconductor or oxide or both [6]. However, other groups have reported 

comparable Dit profiles using different high-k oxides [35, 38] suggesting that 

these defects are native to In0.53Ga0.47As. None of the experiments to date are 

capable of addressing the physical nature of the defects responsible for the 

observed measurements.  

 The atomic structure of point defects on III-V semiconductor surfaces 

has been investigated in the recent past using scanning tunneling microscopy 

(STM). While these studies have revealed a large amount of useful information 

concerning III-V defects, identifying STM images with the atomic defect 

geometry can sometimes be questionable. For example, LaBella et al noticed 

that at large filled-state sample biases an electronic tip-sample convolution effect 

can hinder the imaging of trenches between As-dimer rows in GaAs (2×4) 

reconstructed surfaces [39]. Thus, simulations of the electronic structure can be 

very useful in this regard particularly when interpreting experimental findings. 

In the case of ref. [39], the combination of theory and data significantly 
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strengthened their conclusions regarding the mechanism behind the inability of 

the STM tip to image dimer trenches at large bias. 

 

2.3.2 Computational Modeling 
 

The field of first-principles computational modeling of defects in III-V 

materials is now several decades old [2]. Recent density functional theory (DFT) 

investigations include predictions of the stability and amphoteric nature of a 

range of native defects using hybrid functionals [40-42] in bulk and oxide-

terminated surface models [32], studies of bonding mechanisms [9], and defect 

states at III-V/oxide interfaces [43], as well as predictions of charge transition 

levels of defects in bulk Si [44] and III-V surface models [22] using 

DFT+MBPT (many-body perturbation theory) methods. The latter eliminate the 

parameterized nature of the hybrid-DFT calculated electronic structure. Also, 

recent studies by Guo and Robertson of the chemical trends of III-V/Al2O3 

interfaces [45] show that As dimers have antibonding states near the conduction 

band minimum of GaAs, while the same defect state is located well inside the 

conduction band of InAs. The authors use these findings to explain why 

In0.53Ga0.47As based devices undergo less Fermi-level pinning than GaAs based 

devices, which was also suggested previously [43]. The position of the acceptor-

like charge transition level of the As dimer calculated by Miceli and Pasquarello 

[32] is consistent with this explanation. Interestingly, in ref. [45] nitrogen is 

found to be an effective passivant as it destabilizes dimers and pushes their 

associated states deep into the semiconductor bands; this is a possible 

explanation of the reduction of Dit near the conduction band at 

In0.53Ga0.47As/high-k oxide interfaces after nitrogen forming gas anneals [46]. 

Once again, one can see examples of the important role played by computational 

modeling in the interpretation of experimental data.  

The calculations by Pasquarello and coworkers of bulk III-Vs [13, 40-42] 

indicate that the GaAs and AsGa antisites have transition levels that correlate with 

the observed Dit peaks from a range of experimental groups [37, 47, 48]. The 
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figure below shows the charge transition levels calculated using hybrid-DFT 

functionals [40-42], in which a fraction of non-local Fock exchange is 

incorporated into the exchange-correlation (XC) functional to correct the 

bandgap error inherent to DFT; i.e. the XC functional is parameterized to 

reproduce the experimental bandgap.  

 
Figure 2.6 – Reproduced from ref. [13]. Red markers denote calculated charge transition 
levels of native defects in GaAs (top) and In0.5Ga0.5As (bottom) using hybrid 
functionals. Blue markers indicate experimental results measured for GaAs (top) and 
In0.53Ga0.47As (bottom) from refs. [37, 47, 48]. 

 

This study consisted of calculating charge transition levels using formation 

energy expressions which reflect two limiting conditions of As-rich and Ga-rich 

growth. The energy to form a neutral defect center from a pristine bulk lattice [5] 

is given by 

 

																																											퐸 = 퐸 − 퐸 − 푛 휇 	,																																		(2.3) 
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where 퐸  and 퐸  are the total energies of a supercell containing the defect(s) 

and the pristine bulk, respectively. In the work of ref. [13], the two growth 

conditions are obtained by modifying the form of the chemical potential 휇  of 

added (푛 > 0) or removed (푛 < 0) species 푖 in the expression for the defect 

formation energy. For As-rich growth conditions, the total energy of the As4 

molecule is used to obtain the As chemical potential, while the equilibrium 

condition of GaAs,	휇 = 휇 + 휇  yields the Ga chemical potential. For Ga-

rich growth conditions, bulk Ga metal is used to obtain the Ga chemical 

potential, and the equilibrium condition with GaAs yields the As chemical 

potential.  By studying the formation energetics as a function of growth 

conditions, Komsa and Pasquarello suggest the AsGa antisite is favored [13]. 

As in any computational simulation, however, a few simplifying 

assumptions are made in these models. Firstly, defects calculated in a bulk 

model yield energy levels that can significantly shift when calculated along an 

oxide terminated surface. The termination of 3-dimensional periodicity by a 

surface results in a perturbation of the bulk charge balance and band bending 

towards the interface/vacuum. In addition, bonding coordination of the bulk is 

broken at the surface giving rise to new states in the band structure.  These and 

other effects can cause surface defect levels to move with respect to the bulk 

values, rendering a direct comparison between charge transition levels calculated 

in a bulk model and those measured near a surface or interface inadequate.  

Hybrid density functional calculations such as those carried out for the 

bulk simulations in ref [13] vary the amount of Fock-exchange until the 

experimental bandgap is recovered. The parameterization usually stops at this 

point and no other considerations are given to the remaining 퐸-k dispersion 

beyond the Γ-point or to the position of defect-induced midgap states [40-42, 

49]. The resulting electronic structure is assumed to be accurate once the band 

edges are corrected. It is believed that ab-initio calculations, which accurately 

describe the bandstructure without empirical corrections, may provide a more 

consistent or “even-handed” treatment of the electronic structure throughout the 

Brillouin zone. This is the motivation for our use of the 퐺푊 approximation 
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(퐺푊A), and in chapter 4 it is shown that this method makes a substantial 

difference compared to hybrid functional calculations when applied to midgap 

defect levels and their associated charge transition levels. The 퐺푊A is derived 

from many-body perturbation theory and provides a correction to the Kohn-

Sham (KS) eigenvalues. This correction is obtained from a first-order 

approximation to the self-energy	훴, i.e. truncating the expansion of 훴 in the 

Green’s function 퐺 and screened Coulomb interaction 푊 after the first term [50]. 

This correction to the KS eigenvalues tends to increase the separation between 

conduction and valence bands as a result of the detailed treatment of local field 

effects, as will be discussed in chapter 3. Thus, this method provides a 

framework for a consistent treatment of the electronic structure, as all states and 

eigenvalues included in the DFT simulation are included in the 퐺푊 correction, 

not just the band edges. The DFT+퐺푊 method has been successfully applied in 

the past to bulk and surface semiconductors including III-Vs [22, 51, 52], yet the 

method has not to date been applied to bulk In0.53Ga0.47As and oxide-terminated 

In0.53Ga0.47As surfaces in the presence of defects.  

 

2.4  Carbon Nanotubes 
 

Carbon nanotubes (CNTs) may be considered as monolayers of graphene rolled 

into a cylinder. Their electronic properties are highly dependent on diameter and 

chirality, the latter being defined by the axis of the graphene plane along which 

the tube is “rolled” up. CNTs belong to a class of nanoscale materials regarded 

as quasi-one-dimensional; increasing scientific and technological interest is 

being focused on such materials which can be attributed to their large aspect 

ratios, surface chemistry and quantum effects. These properties can be harnessed 

for device integration and multi-functional uses, e.g. in spintronic, nano-

electromechanical, and memristive devices [53, 54]. Their almost defect free 

structure and resulting ballistic conduction accounts for the intense effort in 

utilizing CNTs as ideal materials in nanoelectronics as both a transistor channel 
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material and as an interconnect [55, 56]. Despite these promising features many 

problems still exist with regard to their large scale integration. The lack of 

chirality control during CNT growth effectively precludes their 

manufacturability, and none of the proposed solutions to chirality separation 

achieve the purity required by very large scale integration (VLSI) standards [57]. 

These and other issues lead to the fact that CNTs are likely not to be utilized in 

VLSI applications in the near future. However, their exciting properties provide 

a unique “playground” for low-dimensional physics, and if manufacturing 

difficulties are overcome, CNTs could be expected to yield very large 

performance improvements over current Si-based devices [57]. 

As a transistor channel material, semiconducting CNTs offer a number of 

promising advantages over conventional semiconductor materials. Consider the 

figure below [57], which shows mobility versus bandgap for CNTs compared to 

standard semiconductors.  

 

 
Figure 2.7 – Carrier mobilities of semiconducting single-walled CNTs (SWNTs) versus 
bandgap, compared to other semiconductors. Reproduced from ref. [57]. 
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For standard semiconductor materials, mobility is limited due to the heavier 

effective mass of holes compared to electrons. On the other hand, the symmetry 

of the CNT bandstructure near the valence and conduction band edges equates to 

roughly similar mobilities for electrons and holes [58]. The correspondence of 

electron and hole mobilities in CNTs would avoid the necessity of different 

doping materials for n- and p-channel transistors. The high mobility of CNTs is 

related to a large mean free path for carrier scattering, resulting in nearly 

scattering-free or quasi-ballistic transport for typical nanotube lengths. In 

addition to desirable mobilities, the thin quasi-one-dimensional structure of 

CNTs offers another advantage over competing semiconductors. Electrostatic 

short channel effects (SCEs) plague conventional MOSFETs; as the channel 

length shortens, the channel potential becomes dependent not just on gate 

voltage but also on source-drain voltage (VSD) resulting in a drain current that no 

longer saturates with increasing VSD, as well as an increased OFF current. SCEs 

can be suppressed by increasing the channel doping concentration but this 

compromises mobility, and so a trade-off exists between mobility and SCE 

suppression. The electrostatic profile of the channel can also be improved by 

decreasing its thickness; therefore the quasi-one-dimensional structure of 

SWNTs means they are expected to be an ideal material for SCE suppression 

[59].  

Copper has been employed as the interconnect material of choice for 

VLSI architectures since 1997 due to its low resistivity and high thermal 

stability compared to aluminium. As dimensions continue to shrink however, 

interconnect current densities increase. If continued indefinitely, the Cu 

interconnect will eventually become unusable due to problems associated with 

high resistance and electromigration [60]. Interconnect resistivity rises with 

decreasing circuit dimensions due to increases in scattering from surface 

roughness and at grain-boundaries. This can have serious consequences for IC 

performance in terms of speed due to elevated interconnect delay. In addition to 

this, Cu has a tendency to diffuse through the surrounding dielectric and possibly 

into the transistor channels, disrupting the electrical properties. A barrier layer is 
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thus needed between Cu and the oxide, potentially increasing resistance as well 

as process complexity.  

CNTs are good candidates for mitigating all of these problems. Their 

outstanding thermal, mechanical, and electrical properties have attracted 

significant interest in their application as future interconnects. Stable current 

carrying capacities on the order of 1010 A cm-2 even at temperatures as high as 

250°C have been observed [61]. Such properties suggest that CNTs could be a 

reliable solution to the problems of electromigration associated with Cu 

interconnects, either by replacing Cu entirely or using Cu/CNT composites [62]. 

Ballistic transport could be a solution to scaled-down interconnects, alleviating 

the problems of surface and grain boundary scattering. Also, CNTs do not need 

barrier layers to prevent the diffusion of atoms between the transistors and 

interconnects.   

Regardless of the application, the low-dimensionality of CNTs results in 

a dramatic change of chemical and physical properties with the occurrence of 

structural defects. Defects have also been shown to modify the mechanical 

strength of CNTs [63]. The electronic response can be affected and tailored [64] 

either by the natural occurrence of defects or through their introduction at post-

processing, by using ion irradiation for example. Charge carriers in CNTs are 

strongly confined and propagation occurs predominantly along a tube axis. As a 

result, scattering at defects can be pronounced due to the small transverse 

surface area seen by the propagating charge carriers, resulting in a 

proportionately large scattering cross section. 

Previous transport studies of defective CNTs have shown that for 

sufficiently high defect densities the resistance increases exponentially with tube 

length [11, 65]. This occurs at device lengths greater than multiples of the mean 

free path associated with scattering from defects, and is a consequence of the 

fundamental effect of disorder on electron transport in low-dimensional systems; 

namely the metal-insulator transition due to Anderson localization [66]. These 

findings demonstrate the critical importance of defects in determining the 

conductivity of single-wall CNTs. 



24 
 

The most commonly observed defects in CNTs under ion irradiation are 

monovacancies and divacancies [67] leading to a reconstruction of the CNT 

bonding resulting from the removal of a single C atom or two neighboring C 

atoms, respectively. The latter have been found to be more stable relative to 

isolated monovacancy defects [12, 68]. A detailed investigation of the energetics 

of divacancy formation has determined the relative stabilities for different 

divacancy configurations [68]. In that work, explicit atomic-scale calculations 

from first-principles were applied to study nanotubes up to a maximum diameter 

of 1.4 nm. For larger nanotube radii, an empirical molecular mechanics 

Hamiltonian was used to describe the carbon bonds, with parameters fitted to the 

ab-initio results obtained from the smaller radii CNTs. Based on these 

approximations, a crossover between the so-called 585 (a reconstruction of the 

hexagonal bonding arrangement resulting in an octagon sandwiched between 

two pentagons) and 555777 (three pentagons interconnected with three 

heptagons) divacancy defects was predicted to occur at armchair tubes with 

diameters of approximately 4.0 nm.  

In this thesis, formation energetics and electron transport are analyzed as 

a function of CNT diameter and chirality. The methods for this study are 

described in chapter 3. The results, presented in chapter 6, suggest that the 

555777 defect indeed becomes more stable than the 585 configuration at large 

diameters. Regarding transport, we show that the localization length of the 

disordered system may be estimated by invoking the independent scattering 

approximation (ISA), whereby defects in an array are presumed to scatter charge 

carriers independently resulting in a simple expression relating the elastic mean 

free path to the localization length. 

 

To summarize section 2.4, the remarkable properties of CNTs make them one of 

the most important emerging research materials for both front-end and back-end 

electronics applications [57]. Their utilization, however, depends on a number of 

issues associated with processing and fabrication. For example, FETs with a 

CNT as the channel (CNTFETs) require the CNT to be uniformly coated by the 
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insulator, desirably a high-k oxide formed by ALD [57]. The chemical inertness 

of the CNT wall results in difficulty of absorption of ALD precursors, and so a 

functional layer is needed to modify the CNT surface appropriately. Before 

VLSI applications of CNTFETs can be realized, a functionalization technique 

which does not degrade electrical current is necessary. More basic fabrication 

problems also still exist, such as difficulties in separating metallic and 

semiconducting nanotubes. Most of the proposed chirality separating techniques 

do not yet achieve the purity required by modern VLSI standards [69-71], as 

well as possibly introducing transistor hysteresis and other contamination 

problems [72]. Clearly, materials which have greater compatibility with existing 

Si-based technology are much more likely to be utilized before CNTs. 

Nevertheless, due to their remarkable electrical properties CNTs constitute a 

promising candidate for future generations of VLSI circuits. 
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Chapter 3  
Theory and Methods 
 

3.1  Introduction 
 

This chapter describes the electronic structure approximations applied in this 

work for the purposes of modeling native defects in technologically relevant 

materials. The theoretical background is described at the beginning of this 

chapter, followed by an account of the computational methods. The latter 

involves describing the methods implemented in software developed [73-76] to 

perform first-principles atomistic calculations for materials and transport 

properties.  

Density Functional Theory (DFT) lies at the heart of the theoretical 

machinery employed in this work. The central idea behind DFT is that all ground 

state properties are functionals of the ground state electronic density. However, if 

one wishes for an accurate description of properties beyond the ground state 

(excited states), DFT typically needs to be supplemented with other methods. To 

this end, Green’s functions can be applied in different ways; for example within 

many-body perturbation theory (MBPT) Green’s functions can be used to 

approximate the “electron self-energy” via the 퐺푊 approximation (where 퐺 

represents a Green’s function and 푊 stands for the screened Coulomb 

interaction) allowing one to assess the response of a system to the addition or 

removal of an electron. Using this method, it will be demonstrated that one may 

obtain accurate defect levels involved in transitions between charge states, which 

in turn may be used to complement experimental data related to electrically 

active defects. Section 3.4 discusses Green’s functions in the context of MBPT 

and specifically, the utility of the 퐺푊 approximation in obtaining the 

quasiparticle energy spectrum.  

Electronic transport can also be evaluated using Green’s functions to 

calculate the quantum mechanical scattering matrix. In section 3.5, the relevant 
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concepts of electronic transport theory are discussed, including how the 

Landauer conductance spectrum may be computed using an approach which 

combines DFT with Green’s function methods. This provides a methodological 

basis for the results presented in chapter 6.  

The calculations of defect formation energetics using total energy 

differences are described in subsequent sections. Two techniques are used in this 

work: charge state formation energies for the case of In0.53Ga0.47As, and the 

formation energies of neutral point-defects for the case of CNTs. When 

considering charged defects, the supercell method results in a spurious Coulomb 

interaction between periodic images. Many previous studies of charged defects 

include an explicit correction term that is obtained by extrapolating the 

formation energy to negligible defect image interactions, which tends to be 

computationally expensive due to the large simulation cells required. The 

expressions for charge state formation used in this work benefit from a 

cancelling of the electrostatic interaction term, in other words an error 

cancellation. The correction turns out to be unnecessary for the charged defects 

in InxGa1-xAs to within the overall accuracy of the calculations. Once charge 

state formation energies are obtained, charge transition levels may be calculated. 

The compensation for DFT errors with the 퐺푊 approximation for the purposes 

of predicting charge transition levels has been successfully applied in the past, 

both to bulk solids [44] and III-V surfaces [22], and this technique is applied to 

determine charge transition energies in bulk In0.53Ga0.47As and near 

In0.53Ga0.47As/oxide interfaces. 

Section 3.8 describes methods for computing electronic transmission 

using Green’s functions in which DFT-determined matrices representing the 

electronic structure are used as a starting point. Once a transmission spectrum is 

calculated, the localization length of the disordered system may be estimated by 

invoking the independent scattering approximation (ISA). The ISA, which will 

be validated for the applications in this thesis, is described in this section.  
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3.2 Overview of First-principles Methods 
 

Following the development of quantum mechanics in the early 20th century, it 

was quickly realized that some of the difficulty associated with computing the 

energy and wavefunction of a molecule could be alleviated by a separation of the 

electronic and nuclear degrees of freedom  [77]  

 

휓 ≅ 휓 × 휓 	,																										(3.1) 

 

thereby permitting the solution of an electronic Schrödinger equation in which 

only the motion of electrons is taken into account. This is known as the Born-

Oppenheimer approximation, and is achieved by subtracting out the nuclear 

kinetic energy operator and inserting the nuclear positions as scalar parameters 

to the electronic Hamiltonian. The electrons still “feel” the Coloumbic 

interaction with the nuclei, but the latter are held at fixed positions. The validity 

of this approximation is rooted in the high ratio between nuclear and electronic 

mass, such that electrons are assumed to respond instantaneously to a change in 

the nuclear positions {푹 }. Calculation of the electronic energy eigenvalue for 

a range of {푹 } defines a potential energy surface (PES), such that minimizing 

the electronic energy with respect to the nuclear positions to obtain the 

equilibrium geometry is equivalent to finding the minimum on the PES. If the 

nuclear kinetic energy is ignored, the Hamiltonian of a system consisting of 

electrons (denoted by 푖, with mass 푚  and charge 푒) and ions (denoted by 푎) can 

be written in atomic units (ħ = 푚 = 푒 = 4휋휖 = 1) as 
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where 푁  is the number of electrons, 푁  is the number of nuclei, and 푍  is the 

atomic number. The Laplacian 훁  is taken with respect to the electronic 

coordinates		풓풊. The first term on the right-hand-side is the electronic kinetic 

energy operator 푇, and is followed, respectively, by the Coloumbic interaction 

between electrons	푉 , the attraction of electrons to ionic cores which is 

usually considered as a fixed, external potential energy	푉  acting on electrons, 

and the repulsion between ions 푉 . The latter can be regarded as an additive 

constant to the total energy for any point in the PES. Solution of the time-

independent many-electron Schrödinger equation 

 

퐻|휓⟩ = 퐸|휓⟩																																																					(3.3) 

 

yields the many-electron wavefunction, which for 푁  electrons must be anti-

symmetric with respect to an exchange of electron coordinates in order to satisfy 

the Pauli-exclusion principle  

 

휓 풓 ,풓 , … , 풓 = −휓 풓 ,풓 , … , 풓 	.																						(3.4) 

 

With the ground state wavefunction at hand, one can calculate ground state 

properties such as electron density (푛) and total energy (퐸) as expectation values 

of their respective operators [78], 

 

																																												푛(풓) =
⟨휓|푛(풓)|휓⟩
⟨휓|휓⟩ 																																																			 

 

																								= 푁
∫푑 푟 ∫푑 푟 …∫푑 푟 휓 풓, 풓 ,풓 , … , 풓

∫푑 푟 ∫푑 푟 …∫푑 푟 휓 풓 , 풓 , 풓 … ,풓
																(3.5) 

												 

		퐸 =
⟨휓|퐻|휓⟩
⟨휓|휓⟩ = 〈푇〉 + 〈	푉 〉 + 〈푉 	〉 + 푉 	.																						(3.6) 
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The ground state wavefunction 휓  corresponds to the state with the lowest 

energy, which can be determined by variationally minimizing the total energy 

with respect to all parameters of		휓({풓 }), with the constraints of anti-symmetry 

(equation	3.4) and orthonormality 

 

    			⟨휓|휓⟩ = 1	.																																																										(3.7) 

 

For an 푁 -particle system		휓			is a complex function in 3푁 -dimensional 

configuration space. With this in mind, one can appreciate that the space of 

possible wavefunctions, and thus the cost of calculating expectation values of 

observables grows extremely rapidly with the number of (interacting) particles 

[79]. This is the central problem of electronic structure theory; electrons form an 

interacting many-body system described by a wavefunction that depends not 

only on the individual positions of electrons, but also on all of their mutual 

interactions. As Walter Kohn pointed out in his Nobel lecture, wavefunction 

based methods are tractable for “sufficiently small  molecules” highlighting the 

application by James and Coolidge to H2 [80]. However, for practical 

calculations of realistic systems extreme difficulty is encountered when tackling 

the wavefunction “head-on”.  

The first step towards circumventing this issue and rendering 

computations tractable is to make the approximation that electrons are non-

interacting and form a homogenous gas. The Thomas-Fermi (TF) model [81, 82] 

constitutes an early attempt of applying this idea. This model shows how all 

terms in the Hamiltonian can be written as functionals of the density leading to 

the Thomas-Fermi expression for the total electronic energy, 

 

퐸 [푛] =
3ℎ

10푚
3

8휋

⁄

푑 푟	푛 ⁄ (풓) + 푑 푟 푉 (풓)푛(풓)

+
1
2 푑 푟푑 푟′

푛(풓)푛(풓 )
|풓 − 풓 | 																																																	(3.8) 
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The first term on the right-hand-side is the TF kinetic energy functional, the last 

term is known as the Hartree potential, which is the classical electrostatic 

interaction between electrons due to their mutual repulsion. 푉 (풓) is the 

external potential arising from the interaction of electrons with ionic cores. Due 

to the inaccuracy of the approximation to the kinetic energy functional and the 

neglect of any exchange or correlation between electrons, the TF model leads to 

qualitatively inaccurate conclusions, for example failing to reproduce binding 

and shell structures. It does, however, illustrate how properties of a system can 

be described as functionals of the density, which reduces the 3푁 -dimensional 

problem of wave-function based methods to a 3-dimensional problem in real 

space; thus the role of the wavefunction	휓 as the key variable is replaced by the 

electron density	푛(풓). The ability of this method to dramatically reduce the size 

of the many-electron problem prompted Hohenberg and Kohn to develop a 

theory in which the ground state electronic structure could be exactly described 

in terms of the electronic density. 

 

3.3 Density Functional Theory 
3.3.1 Hohenberg-Kohn DFT 
 

Modern density functional theory (DFT) began from the hypothesis that “a 

knowledge of the ground state density of n(r), for any electronic system (with or 

without interactions), uniquely determines the system” [79]. Starting with this 

idea, Hohenberg and Kohn proved two theorems which formed the basis of DFT: 

 

Theorem 1 states that for a system of interacting electrons moving in some 

external potential		푉 (풓), the ground-state electronic density 푛(풓) uniquely 

determines the external potential up to an additive constant. The immediate 

implication is that the Hamiltonian is fully determined (up to a constant), and 

consequently all properties derivable from the Hamiltonian through a solution of 

the Schrödinger equation are determined, given only the ground state electronic 
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density.  

 

Theorem 2, also known as the Hohenberg-Kohn variational principle states that 

since the total energy can be defined as a functional of the density, then it 

follows that the density that minimizes this functional is the ground state density 

of the system.  

 

Theorem 1 suggests a one-to-one correspondence between density and external 

potential, i.e. the Hohenberg-Kohn total energy functional can be defined for 

densities that can be generated by some external potential (this is known as “푉-

representability”). Theorem 2 provides the first step towards a useful calculation 

and follows from noting that all (electronic) contributions to the energy are 

uniquely determined once 푛(풓) is specified. Then each such contribution can be 

seen as a functional of	푛(풓), including the total energy functional  

 

퐸[푛] = 퐹 [푛] + 푑 푟 푉 (풓)푛(풓) + 푉 	,																											(3.9) 

 

where the Hohenberg-Kohn universal functional	퐹 [푛] contains all internal 

kinetic and potential energies of the interacting electron system. Consider a 

system in which the ground state density 푛 (풓) corresponds to an external 

potential	푉 , (풓). Thus, the total energy functional is the expectation value of 

the Hamiltonian 퐻  with wavefunction	휓 , 

 

퐸[푛 ] = 휓 퐻 휓 	.																																														(3.10) 

 

With Theorem 1 in mind, it follows that the ground state density 푛 (풓) is 

unique to the external potential	푉 , (풓), such that any other density, say 푛 (풓) 

corresponding to wavefunction	휓 , leads to an energy that is greater than 퐸[푛 ] 

since 
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퐸[푛 ] = 	 휓 퐻 휓 < 	 휓 퐻 휓 	.																												(3.11) 

 

Thus, if the universal functional 	퐹 [푛] is known, then by minimizing the total 

energy with respect to variations in the density, the exact ground state density 

and energy can be found. At this point, it should be noted that no prescription is 

given to find the exact		퐹 [푛] [78]. In practice, approximate functionals which 

have been constructed from the full many-body wavefunction that includes the 

effects of exchange and correlation between electrons need to be considered to 

develop accurate approximations to 퐹 .  

 

3.3.2 Kohn-Sham DFT 
 

Kohn and Sham subsequently introduced the idea of replacing the 

original many-body problem with an auxiliary system of non-interacting 

electrons [83]. This Ansatz allows for approximations to be developed for the 

exchange-correlation (XC) functional defined as the difference between the 

exact universal functional and a functional containing only kinetic and 

electrostatic (Hartree) potential terms [79] 

 

		퐸 [푛] = 퐹 [푛] − 푇[푛] + 	
1
2

푑 푟푑 푟
푛(풓)푛(풓 )

|풓 − 풓 | 	.															(3.12) 

 

Kohn and Sham made the approximation that the ground state density of the 

auxiliary non-interacting electron system is equal to that of the physical 

interacting system. This leads to a set of soluble independent-particle equations 

in which all the complicated many-body effects have been incorporated 

into	퐸 [푛]. Each of these equations obey a Schrödinger-like Kohn-Sham (KS) 

equation in which the auxiliary Hamiltonian contains a kinetic energy operator 

and an effective potential 푉 (풓) acting on the 푁 electrons 
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			퐻 = −
∇
2 + 푉 (풓)	,																																						(3.13) 

and 

       푉 = 푉 (풓) + 푉 (풓) + 	 푉 (풓)	.																					(3.14) 

 

The XC potential is defined as the functional derivative of the XC energy with 

respect to the density 

 

		푉 (풓) =
휕퐸 (풓)	
휕푛(풓) 		.																																							(3.15) 

 

Solutions of the KS equation define the KS orbitals	휑 , with corresponding KS 

eigenvalues	휀 . The ground state density corresponds to the lowest eigenvalues 

of the auxiliary Hamiltonian and has one electron per (spin) orbital, such that the 

ground state density can be written as the sum of squares of the KS orbitals 

 

				푛(풓) = 	 |휑 | 	,																																								(3.16) 

 

and the KS kinetic energy takes the form 

  

	푇 = −
1
2

⟨휑 |∇ |휑 ⟩	.																																		(3.17) 

 

This leads to a re-writing of the Hohenberg-Kohn energy into the KS total 

energy functional 

 

													퐸[푛] = 푇 [푛] + 푑 푟 푉 (풓)푛(풓) + 	
1
2 푑 푟푑 푟′

푛(풓)푛(풓 )
|풓 − 풓 | + 퐸 [푛]

+ 푉 		.																																																																																													(3.18) 
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Therefore, if the exact XC functional 퐸 [푛] is known, including the correction 

to the KS kinetic energy term, then the exact ground state density and total 

energy of the true many-electron system can be found by solving the KS 

equations for non-interacting electrons. The exact form of 퐸 [푛] remains 

unknown [78] but to the extent that reasonably approximate forms of 퐸 [푛] can 

be developed, then KS-DFT provides in many instances a reasonably accurate 

method for computing many-body ground state properties.  

By variationally minimizing the KS total energy functional, subject to the 

constraint of orthonormality of the KS orbitals, 

 

휑 휑 = 훿 																																																			(3.19) 

 

one arrives at a Schrödinger-like equation 

 

퐻 − 휀 휑 = 0																																													(3.20) 

 

where the KS eigenvalues 휀  are introduced as Lagrange multipliers to enforce 

the orthonormality constraints [78]. Equations (3.13), (3.14) and (3.20) are the 

well-known Kohn-Sham equations [78]. From these, the total energy and ground 

state density can be obtained once a self-consistent relationship between the 

density and potential is established. This involves iteratively solving the 

equations until the potential calculated from the density at a given iteration 

equals the potential used to construct the density via the next iteration of the KS 

equations. Within KS-DFT, this iterative or self-consistent process requires an 

evaluation of the XC energy. To this end it is useful to note that, in many cases, 

solids can be treated as close to the limit of a homogenous electron gas and 

within this limit, exchange and correlation effects can be considered local in 

character [78]. Hence, the XC energy can be written as an integral over space of 

the product of density and XC energy per electron	휀 [푛], 
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	퐸 [푛] = 푑풓 휀 [푛]푛(풓)																																							(3.21) 

 

where 휀 [푛] equals the XC energy per electron of a homogenous electron gas 

with density	푛; at every point inside the solid,	휀 [푛] is computed using the local 

density around that point. This is the local density approximation (LDA) for the 

XC functional. Ceperley and Alder computed 휀 [푛] for a range of densities in 

the homogenous electron gas using Quantum Monte Carlo techniques [84]. As a 

first approximation, LDA reproduces many measureable chemical properties 

accurately, especially if variations in the density are small compared to the Fermi 

wave vector	푘 = (3휋푛) /  [85], 

 

|∇푛(풓)|
푘 푛(풓) ≪ 1	.																																																		(3.22) 

 

3.3.3 Geometry Optimization 
 

A theorem derived independently by Hellman and Feynman shows that the force 

on a nucleus can be specified entirely in terms of its interaction with the 

surrounding charge density [86]. It can be shown [78] that this force theorem 

also holds in density functional calculations. Once the self-consistent total 

energy is evaluated, the forces on the nuclei can be computed from the derivative 

of the total energy with respect to nuclear coordinates [78]. The equilibrium or 

“optimized” geometry is thus the set of nuclear positions {푹 } that minimize 

these forces. In practice, a force may be computed once a self-consistent total 

energy is obtained, and this force can then be used to update the nuclear 

positions, which in turn yields a new KS self-consistency problem to be solved 

iteratively. Thus geometry optimization can be considered as an “outer loop” to 

the self-consistent solution of the KS equations.  
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3.3.4 The DFT Self-consistency Loop 
 

The KS equations discussed in section 3.3.2 are solved subject to the condition 

of consistency between the KS potential 푉  (equation (3.14)) and electron 

density (equation (3.16)). The iterative solution to the KS equations, as well as 

the outer geometry optimization loop, is shown schematically in figure 3.1. An 

initial approximation to the charge density initializes the loop; this consists of a 

linear combination of atomic orbitals (LCAO) approximating the KS orbitals 

which yields an electronic charge density. This is then used to calculate a new 

KS potential. The KS potential is inserted into a KS Hamiltonian which yields a 

Schrodinger-like KS equation. Matrix diagonalization in the LCAO basis then 

leads to the solution of the KS equation, yielding a new set of KS orbitals which 

can be used to construct a new charge density. The input and output densities are 

“mixed” through a linear combination which assists in convergence, and this 

generates a new input charge density [87, 88] for the next iteration. This process 

is iterated until the input and output densities of a given iteration differ by less 

than a user-specified threshold, at which point the system is considered “self-

consistent”. The total energy can be calculated at self-consistency and hence the 

ionic forces can be determined, which again can be compared to a force-

threshold. After calculating the force, the ionic coordinates are updated, typically 

using variants of the steepest descent method [78]. Once the force is minimized 

below the specified threshold, desired quantities such as the bandstructure and 

density of states can be obtained at the relaxed geometry. 
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푛(풓) 
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potential	푉 [푛(풓)] 

from density.  

 

−
∇
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No 
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structure, eigenvalues, density of states etc. 

Figure 3.1 - Schematic representation of the iterative solution of the 
KS equations, yielding a self-consistent electronic structure, which 
in turn is used to calculate the ionic forces. The procedure is iterated 
until a minimum energy configuration or “optimized geometry” is 
obtained. 

Yes 

Update ionic coordinates 
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3.3.5 Limitations to Approximate DFT 
 

Approximate DFT suffers from a number of weaknesses which lead to 

systematic errors in the computation of physical properties. There are two main 

sources of these limitations; self-interaction of electrons and the derivative 

discontinuity in XC functionals. Unlike in Hartree-Fock theory, within DFT the 

cancellation between the unphysical self-interaction term in the Hartree potential 

and the exchange interaction is only approximate. What remains is a spurious 

self-interaction term which causes the DFT eigenvalue magnitudes to be too 

large. Self-interaction-correction (SIC) can be incorporated into the LDA XC 

functional, for example through the parameterization by Perdew and Zunger 

[89], which leads to improvements. This correction alone, however, does not 

fully solve the problems of DFT and remains an ad hoc procedure.  

The derivative discontinuity in the XC functional upon the addition or 

removal of an electron (∆) can be defined as the difference between the exact 

quasiparticle (see section 3.4) bandgap		퐸 	and the bandgap obtained from KS 

eigenvalues 퐸   [90, 91].  

 

																											∆	= 퐸 − 퐸 	.																																								(3.23) 

 

In other words, interpreting KS eigenvalues as physical excitation energies is not 

formally justified, apart from the highest occupied orbital which can be shown to 

correspond to the ionization energy [91]. These shortcomings lead to consistent 

underestimation of bandgaps in semiconductors such as Si, GaAs, and Ge; the 

errors are even more severe for more complicated systems such as transition-

metal oxides. Thus, for an accurate treatment of sp-bonded systems such as the 

III-V semiconductors and CNTs studied in this work, an improvement over the 

electronic structure predicted by KS-DFT is required. Nevertheless, LDA-DFT 

often provides a good starting point for more accurate methods as the electronic 

structure obtained from DFT can be used as the input to more accurate methods. 
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The 퐺푊 approximation to the self-energy, derived systematically from many-

body perturbation theory, constitutes such a method and has been applied to 

various systems such as transition metals and semiconductors [51] with results in 

substantially better agreement with experiment than approximate DFT methods.  

 

3.3.6 Application 
 
3.3.6.1 The Supercell Method 
 

The most popular approaches to DFT calculations applied to solids, surfaces and 

interfaces utilize the supercell method [2, 92], by which translational symmetry 

is imposed on a unit cell of a crystal in 3 dimensions. In the absence of defects 

and vacuum, the supercell approach allows one to predict properties of an 

infinite bulk crystal, yielding experimentally testable predictions for pure crystal 

properties. When a defect is introduced the calculation remains periodic, but the 

periodicity no longer corresponds to the pristine crystal, possibly resulting in 

electronic states in the fundamental energy gap for the case of insulators or 

semiconductors. However, due to the periodic boundary conditions (PBC), 

sufficiently large simulation cells are required to avoid defect-defect interactions 

as required to understand the properties of isolated defects.  

 

3.3.6.2 Non-periodic systems 

 

The most obvious objection to the use of PBC is that Bloch’s theorem cannot be 

applied to a system that breaks translational symmetry, for example due to a 

defect or a surface. Bloch’s theorem, and the advantages thereof, can only be 

utilized if a periodic supercell is used. Point defects and surfaces are therefore 

still modeled computationally using the supercell method, as long as the periodic 

images are spaced sufficiently far apart that their interactions can be neglected. 

For surfaces, the amount of vacuum introduced into a supercell should be chosen 
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to ensure that slab faces do not interact. Key electronic properties such as the 

valence and conduction band edges should not change as a function of vacuum 

spacing. For point defects, interactions between periodic images should be 

minimized which can be ensured if the atomic geometries (bond lengths and 

bond angles) located between the periodic defects images maintain their bulk 

values. The supercells for these 2 cases are shown schematically in figure 3.5. 

The interaction between charged defects is discussed in section 3.6. 

 

 

  
 

Figure 3.5 - Schematic representation of a slab surface (a), and a vacancy defect in a 
bulk solid (b), modeled in the supercell approach. The blue lines depict the boundaries 
of the supercell. Modified from ref. [92]. 

 

 

 

 

 

(a) 

(b) 
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3.3.6.3 Plane waves versus localized orbitals  
 

In this thesis, both plane wave basis sets and localized numerical atomic orbitals 

(NAO) are applied to study different problems. The advantages and 

disadvantages of their use reflect computational demands of the specific 

application in this work. Localized orbitals provide a chemically intuitive picture 

of the electronic states within a material, which is reflected in their widespread 

use in computational chemistry. The localized nature of the orbitals results in a 

finite interaction range, yielding relatively sparse matrices which can be utilized 

to generate “low-order” scaling approaches in which the computational cost 

scales better than the cube of the number of basis functions [93]. The locality of 

NAOs also means they are appropriate for Green’s function based methods 

which treat the response of extended electronic states to a localized perturbation; 

such is the case when evaluating the transport properties of disordered CNTs. 

The requirement of non-interaction of the “leads” across the “scattering region” 

(see section 3.5) is easily satisfied by localized orbitals if a sufficiently large 

scattering region is specified. The desirable computational scaling of NAOs and 

their compatibility with the transport formalism are the primary reasons for 

choosing NAOs for the study of CNT vacancies. We wish to study electronic 

transport and formation energies of CNTs hosting vacancies in supercells 

consisting of up to 840 atoms (see chapter 6). Surprisingly, reasonable accuracy 

is maintained even with a minimal NAO basis set size. This is shown in chapter 

6 by a comparison between transmission spectra obtained for CNTs using single- 

and double-ζ, in agreement with a comparable study by Ohfuchi et al [94]. 

Localized orbitals are also well suited for systems containing a network of sp2-

hybridized carbon atoms [78]. 

Localized basis sets are not without their disadvantages, however. They 

are dependent on the chemical environment; while NAO optimization [95] can 

lead to high accuracy with a relatively small number of basis functions for a 

given system, the resulting NAO then becomes highly tailored to that specific 

problem, limiting the transferability compared to the highly transferable, 
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spatially unbiased nature of plane waves. Plane wave basis sets are thus well 

suited to studying the variation of material properties between, for example, the 

bulk crystal and an oxide-passivated surface [78]. They are also especially suited 

to periodic supercells as they allow for the easy implementation of simple and 

efficient algorithms based on Fast Fourier Transforms (FFT). Finally, the 

systematic improvement in accuracy as a function of plane wave basis set size is 

a big advantage over localized orbitals; the latter can suffer from inconvenient 

effects such as over-completeness, in which accuracy of the resulting electronic 

structure is not a monotonic function of basis set size (see [96], where this effect 

is observed in BCC iron). 

 

3.3.6.4 Pseudopotentials 
 

In order to account for the rapid oscillations of the valence electron 

wavefunctions inside the core region, and also to expand the wavefunctions of 

the tightly bound core electrons, an extremely large basis set would be required. 

This makes all-electron calculations very computationally inconvenient, and 

often intractable. It is possible, however, to circumvent this problem by 

exploiting the fact that most of the chemically relevant physical properties of a 

material are primarily dependent upon the outer valence electrons and are not 

strongly correlated with core electrons. The pseudopotential approximation [97] 

removes the core electrons and replaces them and the ionic core potential with a 

pseudopotential that acts on pseudo-wavefunctions rather than real valence wave 

functions. Pseudopotentials are generated using an all-electron atomic radial 

Schrödinger equation. They are constructed so that the pseudo-wavefunctions 

have no radial nodes inside the core region, but outside a certain “cutoff radius” 

(rc in figure below) the pseudo-wavefunctions and all-electron wavefunctions 

(and eigenvalues thereof) are equal. Increasing rc leads to less transferable, but 

also more rapidly convergent, pseudopotentials. 
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Figure 3.6 - Comparison of an all-electron potential and wavefunction (blue dashed 
curves) with a pseudopotential and pseudo-wavefunction (red solid curves). Note the 
lack of nodes of the pseudo-wavefunction inside rc, and the equivalence of the all-
electron and pseudo-quantities outside rc. After ref. [98]. 

 
In this work, norm-conserving LDA pseudopotentials are used for all 

calculations. The LDA form of the XC functional proposed by Perdew and 

Zunger [89] which contains partial self-interaction correction as implemented in 

the Quantum Espresso [99] code is used for the InGaAs studies. The 

parameterization of Ceperley and Alder [84] is used for the study of disordered 

CNTs within the localized orbital periodic DFT code, OpenMX [76]. 
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3.4 The 푮푾 Method 
3.4.1 Photoemission Spectroscopy 
 

Before considering the improvement of DFT-calculated properties via many-

body perturbation theory, it is instructive to discuss the study of electron energy 

levels as determined by photoemission (or inverse photoemission) experiments, 

and in particular their relation to the concept of quasiparticles. In any 

spectroscopic experiment, the sample is perturbed and the response to the 

perturbation is measured. In a photoemission experiment, the system absorbs a 

photon of energy ℎ푓 and an electron with kinetic energy 퐸  is ejected. Under the 

assumption that the ejected electron is decoupled from the system, energy 

conservation can be invoked to evaluate the energy level of the hole, the level 

that was occupied by the ejected electron. Since ℎ푓 and 퐸  are measured, 

photoemission experiments infer the occupied density of states, corresponding to 

the valence bandstructure. Taking the highest occupied state as an example, its 

energy can be inferred from 퐸 = ℎ푓− 퐸  where 퐸 	is the energy of the 

highest occupied orbital, or the top of the valence band in an insulator. For 

inverse photoemission experiments, an electron is injected from vacuum, falls 

into an unoccupied state, and subsequently a photon of energy equal to the 

kinetic energy 퐸  of the absorbed electron minus the unoccupied state energy 

relative to the vacuum level 퐸  is emitted, thus yielding information on the 

unoccupied density of states or conduction band.  
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Figure 3.2 - Illustration of the photoemission and inverse photoemission processes, and 
the corresponding density of states probed by each experiment. Occupied (unoccupied) 
bands are represented in blue (red). The Fermi level is denoted by 휀 . This figure also 
serves as a graphical definition of the electron affinity and ionization energies, the 
former being the energy required to bring an electron from the vacuum level to the 
lowest unoccupied orbital (LUMO), the latter being the energy required to take an 
electron from the highest occupied orbital (HOMO) and bring it to the vacuum level. 
Modifed from ref. [100]. 
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 In photoemission experiments, the electronic energy levels become affected by 

the presence of an extra electron or hole which leads to a reorganization of 

charges and new electronic wavefunctions. This is particularly important when 

using energy differences to calculate addition and removal energies [101]. Thus, 

for an accurate theoretical account of such experiments, the approximation of 

independent electrons needs to be replaced by quasiparticles which occupy 

levels that contain the effects of other particles. The Coulomb repulsion between 

electrons results in a “cloud” of negative charge depletion surrounding a given 

electron, and the ensemble consisting of that electron and the positive charge 

screening its interactions with other particles forms the quasiparticle. The 

evolution of this quasiparticle can in many cases be described by a one-particle 

Schrödinger equation [102] but the Hamiltonian requires an effective potential 

that deals with the complicated interactions of the additional electron or hole 

with the rest of the system.  

 

3.4.2 Quasiparticles and Green’s Functions 
 

Quasiparticles that interact weakly can often be used to describe the excitations 

of a system of strongly interacting particles [102]. As mentioned above, a bare 

electron inside a solid repels other electrons and becomes surrounded by a 

positively charged polarization cloud. In this instance, quasiparticles interact via 

a screened rather than the bare Coulomb potential. As quasiparticles are 

approximate eigenstates of the Hamiltonian, the quasiparticle lifetime is finite. 

The quasiparticle lifetime is inversely proportional to the imaginary part of a 

complex energy which arises due to the residual interaction between 

quasiparticles. This complex energy is the non-local, energy dependent, non-

Hermitian self-energy		훴. This in principle accounts for all exchange and 

correlation effects and describes the energy difference between the quasiparticle 

and the bare particle [102, 103]. The quasiparticle equation governs the 

behaviour of quasiparticles and disregarding spin degrees of freedom can be 

written as 
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	 −
1
2∇ + 푉 + 푉 Φ (풓) + 푑풓′ 훴(풓, 풓 ;퐸 )Φ (풓 ) = Φ 퐸 	.						(3.24) 

 

All terms inside the square brackets have been defined in the previous section, 

Φ  is the quasiparticle wavefunction, and 퐸  is the quasiparticle energy. The 

propagation of quasiparticles through space and time is described by the single 

particle Green’s function	퐺. From 퐺 one can obtain the quasiparticle excitation 

spectrum, life times, and expectation values of single particle operators in the 

ground state, such as the electronic density. Let |푁 ⟩ be the ground state of the 

푁-electron Hamiltonian, Θ(풓	푡) = 	 푒 Θ(풓)푒  the Fermion annihilation 

operator in the Heisenberg representation [102] (Θ(풓	푡) destroys an electron at 

point 풓 and time 푡), Θ (풓	푡) the Fermion creation operator, and 풯 the time 

ordering operator; 퐺 then reads [103]  

 

								퐺(풓	푡,풓 	푡 ) = 	−푖 푁 풯 Θ(풓	푡),Θ (풓 	푡 ) 푁 																					(3.25) 

																								=
−푖 푁 Θ(풓	푡)Θ (풓 	푡 ) 푁 ,				푡 > 푡′
푖 푁 Θ (풓′	푡′)Θ(풓	푡) 푁 ,				푡′ > 푡

 

 

If 푡 > 푡′ (푡′ > 푡), 퐺 describes the propagation of an electron (hole) added to 푁-

electron system described by	퐻, i.e. the 푁	푁+1 (푁	푁-1) electron addition 

(removal) process. A direct connection to experiment can be made by taking the 

imaginary part of		퐺, 

 

	퐴 = 	휋 |Im퐺(풓,풓 ; 퐸)|.																																					(3.26) 

 

This is the single-particle spectral function which is related to the photoemission 

spectrum. The quasiparticle energy and inverse lifetime are determined, 

respectively, by the position and width of peaks in the interacting spectral 

function to be defined below. The area under the peak evaluates the quasiparticle 

weight. The physical significance of the Green’s function becomes more 

apparent when it is expressed in terms of the quasiparticle wavefunctions and 
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energies. The quasiparticle wavefunctions satisfy a completeness relation [103] 

such that it is possible to introduce a complete set of eigenstates into the 

definition of 퐺 given above. Fourier transforming to energy space [102] then 

leads to the spectral representation of the Green’s function, of which 

quasiparticles can be identified as poles 

 

퐺(풓, 풓 ;퐸) =
Φ (풓)Φ ∗(풓′)

퐸 − 퐸 = 푑퐸
퐴(풓,풓 ;퐸 )
퐸 − 퐸′ 		.										(3.27) 

 

In practice an infinitesimal imaginary term is added to the denominator of the 

summation, and the contour integral runs infinitesimally below (above) the real 

energy axis for 퐸′ ≥ 휀  (퐸′ < 휀 ), where 휀  is the Fermi level. The integral 

defines the interacting spectral function		퐴(풓,풓 ; 퐸) = ∑ Φ (풓)Φ ∗(풓 )훿(퐸 −

퐸 ). As a starting point one can choose a suitable independent particle 

Hamiltonian, whose eigenfunctions are close to the quasiparticle wavefunctions, 

which allows for the evaluation of quasiparticle energies via first-order 

perturbation theory.  The Kohn-Sham formalism yields such a Hamiltonian 

퐻 = − ∇ + 푉 + 푉 + 푉  (see section 3.3.2) with KS orbitals 휑  as 

the corresponding independent particle eigenfunctions and KS eigenvalues		휀 . In 

this case, the independent particle Green’s functions 퐺 	and the independent 

particle spectral function 퐴 	can then be constructed via 

 

																						퐺 (풓, 풓 ;퐸) =
휑 (풓)휑∗ (풓 )

퐸 − 휀
풊

= 푑퐸
퐴 (풓,풓 ;퐸 )
퐸 − 퐸 		.									(3.28) 

 

퐺  and the self-energy 훴 can be used to construct the interacting Green’s 

function from the Dyson equation [103] 

 

퐺(풓, 풓 ;퐸)																																																																																																						 

											= 퐺 (풓, 풓 ; 퐸) 			+ 푑풓 풓 퐺 (풓,풓 ;퐸)훴(풓 ,풓 ;퐸)퐺(풓ퟐ, 풓 ;퐸)	.				(3.29) 
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Quasiparticle energies can be determined directly from the quasiparticle 

equation. The formal resemblance between equation (3.24) and the KS equation 

(equation (3.20)) provides a good reason for suggesting the use of the KS 

equation as a starting point for more accurate calculations beyond LDA-DFT 

[101]. Unlike KS DFT, however, quasiparticle wavefunctions and energies are 

actually physical and not just mathematical objects. Assuming ⟨휑 |Φ ⟩ ≅ 1 

(allowing for first-order perturbation theory) and letting 푉  equal the KS 

exchange-correlation potential, the quasiparticle energies can then be determined 

from [103] 

 

																																			퐸 ≅ 휀 + 푍⟨휑 |훴(휀 ) − 푉 |휑 ⟩	,																										(3.30) 

 

where the quasiparticle weight is [103]   

 

	푍 = 1−
휕훴 (퐸)
휕퐸

	
,																															(3.31) 

and 

 

		훴 (퐸) = ⟨휑 |훴(퐸)|휑 ⟩																																			(3.32) 

 

Most practical implementations compute quasiparticle energies using these 

equations. At this point however, it becomes necessary to find reasonable, in 

term of accuracy and computability, approximations to the self-energy.  

 

3.4.3 The 푮푾 Approximation of the Self-energy 

 

Hedin’s equations [104] are a set of integro-differential equations which, by 

connecting the interacting Green’s function		퐺, the self-energy		훴, the 

polarizability 푃, and the vertex function, allows for the introduction of a 

dynamically screened interaction		푊 to provide a formalism for the evaluation of 
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the self-energy when combined with the Dyson equation [103]. The 

determination of 훴 requires iteration of Hedin’s equations until	퐺	and	푊	are self-

consistent. This however, restricts the system size accessible due to 

computational expense. An approximation to the self-energy which balances 

accuracy with tractability is thus desired.  

The 퐺푊 approximation results from setting the vertex function arising in 

Hedin’s equations to unity and is defined by the following equations [103] 

 

	훴(ퟏ,ퟐ) = 푖퐺(ퟏ,ퟐ)푊(ퟏ ,ퟐ),																																(3.33) 

푊(ퟏ,ퟐ) = v(ퟏ,ퟐ) + 푑ퟑ푑ퟒ	푊(ퟏ,ퟑ)푃(ퟑ,ퟒ)v(ퟒ,ퟐ),													(3.34) 

	푃(ퟏ,ퟐ) = −푖퐺(ퟏ,ퟐ)퐺(ퟐ,ퟏ).																																(3.35) 

 

Here, a compact form of the space-time arguments is used e.g.		ퟏ 

represents	풓 , 푡 , and	ퟏ = ퟏ + 푖0 , 0 > 0 is an infinitesimal. The bare 

Coulomb interaction is denoted by	v. The energy dependence of the self-energy 

comes from 푊 which gives rise to energy dependent correlation effects [101, 

103]. A description of 푊 in terms of the dielectric matrix and polarizability is 

now given.  

Density fluctuations and many-body effects lead to screening in solids or 

local-field effects which can be accounted for by the inverse dielectric 

matrix		휀 . The screened interaction 푊 is related to 	휀 (풓,풓 ;퐸) as  

 

		푊(풓, 풓 ; 퐸) = 푑풓 휀 (풓, 풓 ;퐸)v(풓 , 풓 )	,																		(3.36) 

 

where 퐸 represents energy (the conjugate variable obtained after Fourier 

transforming from the time domain). The off-diagonal elements of the reciprocal 

space representation of the dielectric matrix 휀퐆퐆 ,(풒;퐸) account for the 

screening due to local fields, i.e. screening in the presence of an inhomogeneous 

density distribution [103]. The dielectric matrix can be calculated from the 
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irreducible polarizability 푃 by 

 

휀(풓, 풓 ;퐸) = 훿(풓 − 풓 ) − 푑풓 v(풓,풓 )푃(풓 ,풓 ;퐸)	.													(3.37) 

 

The random phase approximation allows for a determination of the polarizability 

from independent-particle wavefunctions and eigenvalues [102, 103]  

 

					푃(풓, 풓 ; 	퐸) = 휑∗(풓)휑 (풓)휑∗ (풓 )휑 (풓 )
,

푓 (1− 푓 )
휀 − 휀 + 퐸 + 푖Δ

+
푓 (1 − 푓 )

휀 − 휀 − 퐸 + 푖Δ
	,																																																																	(3.38) 

 

where 휑  and 휀  are respectively, the LDA-DFT eigenfunctions and eigenvalues 

as in section 3.3, and 푓 	is the Fermi distribution function determining the 

occupation of state	푎. The thrust of this section is that knowledge of the LDA 

spectrum can be used to evaluate the self-energy; by using the	휑 	and 휀  to 

obtain		푃, the dielectric matrix and in turn the screened interaction can be 

calculated, enabling the calculation of 훴 [52, 103]. 

 

 3.4.4 Qualitative Features of the Electronic Self-

energy 
 

In the 퐺푊 approximation, the self-energy, which is a function of the single-

particle Green’s function and the inverse dielectric function, can be decomposed 

in two parts; the exchange (푒푥) and correlation (푐표푟푟) contributions 

 

훴(퐸) = 훴 (퐸) + 훴 (퐸)	.																																	(3.39) 

 

The exchange contribution arises from the Coulomb interaction and anti-
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symmetry of the many-electron wavefunction; it is essentially the Hartree-Fock 

exchange for electrons. The correlation contribution accounts for the effect of 

self-energy beyond the Hartree-Fock approximation. It can be expressed using 

the independent particle Green’s function [103]. A more physically intuitive way 

of expressing the components of the self-energy is to adopt the Coulomb-hole 

plus screened exchange (COHSEX) approximation, in which the real part of the 

self-energy is divided into the two terms 

 

푅푒	훴(풓, 풓 ;퐸) = 훴 (풓, 풓 ; 퐸) + 훴 (풓, 풓 ; 퐸).																		(3.40) 

 

Here, the first term on the right hand side arises from the poles of the screened 

interaction; in analogy to the spectral representation of the Green’s function, a 

spectral function can also be used to express 푊 [103]. The second term arises 

from the poles of the Green’s function. In the static limit of this approximation, 

the interpretation of each term becomes clear: 훴  is simply the Hartree-Fock 

exchange in which the Coulomb term is replaced by a statically screened 

interaction (the energy argument of 푊 is set to 0) 

 

					훴 (풓,풓 ) = − 휑 (풓)휑∗(풓 )푊(풓, 풓 ; 0) 	,																		(3.41) 

  

and the Coulomb-hole term equals the interaction energy of the quasiparticle 

with the surrounding Coulomb-hole, where the latter arises from to the 

rearrangement of electrons due to the additional particle [51, 103] 

 

훴 (풓,풓 ) =
1
2 훿

(풓 − 풓 )[푊(풓, 풓 ; 0)− v(풓,풓 )]		.											(3.42) 

 

While the static COHSEX approximation has well-known failures (e.g. 20% 

overestimation of the self-energy in Si [51, 103]) it serves as an intuitive 

illustration of the various contributions to the self-energy.  
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In order to describe the qualitative features of the self-energy, Hybertsen 

and Louie [105] plotted both the Coulomb hole term and screened exchange in 

the (110) plane of Si. Their results show that the screened interaction is 

anisotropic and dependent on charge inhomogeneity. The build-up of charge 

along a Si-Si bond means that an electron added to this region will undergo more 

screening of the Coulomb interaction than an electron added to an interstitial 

region, for example. As a result, valence electrons which are mostly localized to 

the bond experience a deeper potential well than the conduction electrons 

localized to the vicinity of interstitial regions, leading to an enhanced separation 

of the band edges. Thus local field effects act to increase the bandgap compared 

to LDA [103, 105].  

 

3.4.5 Strengths and Limitations 
 

The 퐺푊 approximation, corresponding to the first iteration of Hedin’s equations, 

has been shown to exhibit a number of weaknesses in certain systems; 

particularly systems with strongly interacting/correlated particles, such as 3d or 

4f materials. For example, s to d orbital promotion energies for Mn, Fe, Co, Ni, 

and Cu are overestimated by up to ~3eV [103]. Also, nearly degenerate single 

and double core holes lead to a breakdown of the quasiparticle picture and in 

turn incorrect predictions of core-level spectra [106], hence the attribution of 

strongly correlated electron or hole pairs to the failure of the 퐺푊 approximation. 

For alkali metals, satellites in the photoemission spectra are also poorly 

reproduced by the 퐺푊 approximation; since 푊 represents the coupling of 

electrons to single plasmon excitations, the multiple plasmon excitations of 

alkali metals surpass the range of applicability of the 퐺푊 approximation [51]. 

Spin interactions in transition metals are also problematic since there is no spin 

dependence in 푊 as there is only purely Coulombic screening.  

Despite these shortcomings, the 퐺푊 approximation systematically 

improves the DFT eigenvalues of many bulk and surface models of 

semiconductors and insulators to which it has been applied [51], [103]. Much of 



55 
 

this improvement over DFT can be attributed to the anisotropic screening 

discussed in the previous section; local fields result in a self-energy that varies in 

strength from point to point in the unit cell, which in turn leads to more accurate 

relative positions of the band edges [51, 105]. In summary, the self-consistent 

Kohn-Sham orbitals and eigenvalues can be used as the starting point to build 

the Green’s function, the dielectric response, the screened interaction, which 

yields the self-energy within the 퐺푊 approximation and ultimately the 

quasiparticle eigenvalue spectrum. These a posteriori implementations of the 

퐺푊 method have been shown to be highly successful in terms of agreement with 

experiment for “prototypical” semiconductors and insulators including but not 

limited to bulk Si, Ge, GaAs, and diamond [103], [51] as well as their surfaces 

[22, 52].  

 

3.5 Electronic Transport from the 

Green’s Function Method 
 

The scattering properties of carbon nanotubes (CNTs) are investigated in this 

thesis by evaluating electron transport in the presence of carbon vacancies. The 

electron transmission probability through a central scattering region, which is in 

contact with semi-infinite electron reservoirs or “leads” on either side is 

evaluated using the Green’s function method applied to systems near 

equilibrium. The periodicity of the leads allows for the description of electrons 

far from the scattering region in terms of Bloch wavefunctions propagating 

along the lead axis or transport direction. For directions perpendicular to the lead 

axis, confinement results in a quantization of the electron momentum such that 

only a discrete number of channels are available for conduction; the number of 

channels is proportional to the width of the confinement, i.e. the dimensions of 

the leads perpendicular to the transport direction. Each channel has a probability 

푇 of scattering into the lead on the opposite side of the central region. The 
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transmission spectrum 푇(퐸) is calculated as a trace over a matrix product 

involving a Green’s function. In this context, the Green’s Function essentially 

plays the role of the scattering matrix [24], which relates the incoming and 

outgoing electron states.  

 

3.5.1 The Scattering Matrix 
 

Consider the case of 1-dimensional leads each containing 2 transverse channels 

or modes; electrons, represented by extended plane waves and originating from 

each lead, encounter the non-periodic scattering region including the conductor 

which contains the defect or scatterer and are thus scattered with a finite 

probability of both being reflected back into the respective lead and transmitted 

through the central region to the lead on the other side [24]. A schematic of this 

process is shown below. 

 

 
Figure 3.3 - Scattering of electron waves by a two conductance channel region 
connected to leads on either side; the leads act as electron reservoirs. 푨	(푩) and 푫	(푪) 
correspond to amplitudes of incoming (outgoing) waves. Modified from ref. [24]. 

 

The relation between amplitudes of incoming and outgoing modes can be 

described by the scattering matrix		S. If 푟 and 푡 correspond to reflection and 

transmission coefficients of a mode incoming from the left lead, then 푆 can be 

defined as 

		푆 = 푟 푡′
푡 푟′

	,																																																(3.43) 

 

퐴  

퐴  

퐵  

퐵  

퐶  

퐶  

퐷  

퐷  Scattering 
Region 

(Conductor) 
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where 푟 (푟′) and 푡 (푡′) are 푁	 × 	푁 matrices (where 푁 equals the number of 

modes in each lead, 푁 = 2 in figure 3.3) corresponding to the reflection and 

transmission amplitudes of an incoming mode from the left (right) lead. For a 

more detailed description of the scattering matrix, see ref. [24]. The left and right 

lead modes 휑 ,  are linear combinations of normalized plane waves 

multiplied by a column vector 휒 	which describes the 푛  mode’s sub-bands 

[107] 

 

	휑 (푥) = 휒
퐴
푣

exp(푖푘 푥) +
퐵
푣

exp(−푖푘 푥) 	,																(3.44) 

	휑 (푥) = 휒
퐶
푣

exp(푖푘 푥) +
퐷
푣

exp(−푖푘 푥) 																(3.45) 

 

where 푣 , 푘 , 푥, and are, respectively, the group velocity [24], wave vector, and 

position along the lead axis. For a given mode, 퐴	(퐵) and 퐷	(퐶) correspond to 

amplitudes of incoming (outgoing) waves, as in figure 3.3. Normalization of the 

plane waves ensures unitarity of the scattering matrix i.e. 푆 푆 = 1, which in turn 

ensures current conservation and satisfaction of the sum rule for conductance 

when describing conductance in terms of transmission [24]. By bearing in mind 

the definition of the scattering matrix and the lead wavefunctions, the relation 

between outgoing and incoming mode amplitudes can be expressed as [107] 

 

																																	|푂푢푡⟩ = 푆|퐼푛⟩ 	→

⎝

⎜
⎜
⎛

퐵
⋮
퐵
퐶
⋮
퐶 ⎠

⎟
⎟
⎞

= 푆

⎝

⎜
⎜
⎛

퐴
⋮
퐴
퐷
⋮
퐷 ⎠

⎟
⎟
⎞
	.																															(3.46) 

 

The scattering matrix can be determined from the Green’s function once a 

relationship between the Green’s function and wavefunctions is obtained [107]. 

Transmission and reflection coefficients can then be calculated, which in turn 
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allows for the calculation of the transmission spectrum as 

 

	푇(퐸) = 푡푟푎푐푒(푡 푡)	.																																													(3.47) 

 

3.5.2 Calculation of the Green’s Function 
 

A schematic of the system geometry studied using the Green’s function method 

is shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Two conditions are imposed when calculating the Green’s function for such a 

system; each lead repeat cell or principal layer interacts only with nearest-

neighbor cells, and the conductor region interacts only with the L0 and R0 

principal layers. The employment of localized basis functions allows for 

adherence to these conditions if sufficiently large lead principal layers are 

chosen. Once these conditions are satisfied, the system Hamiltonian 퐻 takes on a 

block tridiagonal form (the main diagonal contains the 푁	 × 	푁 Hamiltonians of 

each region, the upper and lower diagonals account for their interactions; 푁 is 

the number of basis functions) and the entire system’s Green’s function can be 

 
L1

 
 

L0 Conductor R0 

Scattering  Region 

R1 

Figure 3.4 - Schematic illustration of the system geometry of which the 
transmission spectrum is calculated using Green’s functions. The left (L) 
and right (R) leads are repeated periodically in their respective directions as 
indicated by the dashed lines. The scattering region consists of the central 
region containing the scatterer (conductor) and a copy of the principal layer
of each lead. 



59 
 

expressed as 

 

퐺(퐸) = (퐸풪 − 퐻) 	.																																			(3.48) 

 

Here, 퐸 is a complex energy and	풪 is the overlap matrix. Figure 3.4 depicts an 

open system connected to leads that extend to infinity in their respective 

directions, and therefore calculating 퐺 involves inversion of an infinite matrix 

[24]. What is needed is a way to truncate the matrix without ending up with a 

closed system with fully reflecting boundaries. To this end, one may express the 

Green’s function of the scattering region 퐺  using an effective energy-dependant 

term which arises from the interaction of the leads with the conductor; this is the 

self-energy due to the leads		Σ( , ). This self-energy describes the interaction of 

the scattering region with the semi-infinite leads, and should not be confused 

with the electron self-energy in section 3.4 which describes the single electron 

interactions beyond the mean field approximation. By expressing 퐺   in this way, 

the entire effect of the semi-infinite leads is taken into account without 

approximation [24, 76, 108], 

 

퐺 (퐸) = (퐸풪 − 퐻 − Σ (퐸)− Σ (퐸)) 																				(3.49) 

 

	Σ( , )(퐸) = 퐸풪 ( , ) − 퐻 ( , ) 퐺( , )(퐸) 퐸풪( , ) −퐻( , ) 	.					(3.50) 

 

where alternating order of the subscripts for 풪 and 퐻 implies Hermitian 

conjugation. 푆 denotes the scattering region and 퐺( , ) are the lead surface 

Green’s functions, calculated by direct inversion of the corresponding lead 

Hamiltonian and overlap matrices, 

 

		퐺( , )(퐸) = 퐸풪 , −퐻 , 	.																														(3.51) 

 

With 퐺  at hand, the transmission spectrum 푇(퐸) or equivalently the Landauer 
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conductance spectrum in units of	2푒 ℎ⁄  can be calculated from [24] 

 

	푇(퐸) = 푇푟[Γ 퐺 (퐸) Γ 퐺 (퐸)]	.																																(3.52) 

 

The function Γ , = 푖 Σ( , )(퐸)− Σ( , )(퐸) 	describes the coupling of lead 

modes to electronic states inside the conductor. 

 

3.5.3 Localization 
 

Anderson localization refers to the lack of diffusion or “trapping” of waves when 

propagating through a disordered medium. As a result of interaction with 

randomly distributed defects, electronic wavefunctions are no longer extended as 

in a pristine lattice but may become localized and the material exhibits 

significant deviations from Ohm’s law [109]. Under such conditions the system 

is said to be in the strong Anderson localization regime of electron transport. It is 

useful to explain how this relates to the diffusive and ballistic regimes. Each 

regime is distinguished from others in terms of the length of the conductor L 

relative to various characteristic lengths of a given material. All lengths 

considered here are greater than the de Broglie wavelength of electrons. The 

various transport regimes can be described as 

 

 Ballistic – When L is less than the phase relaxation length Lθ (i.e. no 

phase-breaking processes such as electron-phonon or electron-electron 

interactions), and less than the elastic mean free path	휆, and the 

localization length	휉, electrons may propagate ballistically through the 

conductor, without scattering. In this case the resistance reaches the 

lower quantum limit of ℎ 2푒⁄  per channel and originates entirely from 

the interfaces between the conductor and the contacts, assuming a much 

larger number of transverse modes in the contacts [24]. 
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 Diffusive – Ohmic behaviour is recovered when L is greater than 

Lθ,	휆	and	휉. Elastic and inelastic collisions dominate the transport process 

such that electronic momentum is randomized between scattering events. 

In this regime, transport can be described entirely in terms of a semi-

classical model [110].  

 

 Anderson localization regime – Strong Anderson localization dominates 

transport when 휉 < L < Lθ. In the presence of a large number of defects, 

electrons become localized to a region of the order of 휉 as a result of 

interaction with the random potential of defects. The resultant resistance 

increases exponentially with L [109].  

 

Beenakker has shown that in the absence of magnetic fields or spin-orbit 

coupling a linear relationship exists between the localization length and the 

mean free path [111] 

 

	휉 = (푁 + 1)휆		,																																																(3.53) 

 

where 푁  is the number of channels. In section 3.8, an approximation which 

yields a linear relationship between the elastic mean free path and distance 

between defects is described, thus relating the localization length to the defect 

density for a 1-dimensional conductor. This follows from the assumption that 

scatterers in series do not interact, leading to an estimation of the elastic mean 

free path by considering only a single scatterer. This independent scattering 

approximation (ISA) will be used to study the strong Anderson localization 

regime in defective carbon nanotubes (chapter 6). As 휉 exceeds 100 nm for 

typical defect densities in CNTs, which is evidenced by experiments and 

previous theoretical approaches [7, 11], studying the strong Anderson 

localization regime in a purely ab-initio framework seems at first intractable. 

However, the ISA provides a means to overcome this problem. To conclude this 

section, the problem of computing electrical conductance at nanometer scale 
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dimensions is reduced to a wave-scattering problem via utilization of the Green’s 

function, which can be evaluated from the self-consistent Hamiltonian and 

overlap matrices obtained from the output of a (localized-orbital-based) DFT 

calculation. The implementation of these ideas for the study of defective CNTs is 

discussed in section 3.8.  

 

3.6 Charge Transition Levels 
 
 
Point defects in semiconductors typically give rise to states inside the 

fundamental gap of a material. Measuring these levels experimentally or 

measuring the levels which correspond to transitions between charge states of 

the defect center is a widely used method of defect characterization. Such charge 

transition levels can also be calculated from first-principles. Thus the 

combination of experimental and theoretical results allows for insight into the 

possible atomic structures of a defect.  

The definition of a thermodynamic charge transition level ε /  is the 

Fermi level position where energetically competing charge states have equal 

formation energy. The formation energy of charge state	푞, relative to another 

charge state	푞 , is given by 

 

																															퐸 (푞 푞⁄ ) = 	퐸 푞,푅 – 	퐸 푞 ,푅 + 	푞Δε 	,																(3.54) 

 

where 퐸(푞,푅 ) is the total energy of a supercell containing a single defect in 

charge state 푞 with the supercell geometry relaxed to the configuration of the 푞th 

charge state, denoted by	푅 . In the final term Δε  is the Fermi level position with 

respect to the valence-band maximum (VBM), and accounts for the transfer of 

electrons to and from a charge reservoir. The slope of 퐸 (푞/푞 ) will be given 

by the coefficient of the Δε  term, i.e. the final charge state in the 푞   푞 

addition/removal process as the Fermi level is swept from the valence to the 

conduction band. The linear dependence of 퐸 	on the Fermi level can be used 
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to extract the charge transition level	ε / ; 퐸 	can be plotted against Δε  for 

different charge states, and the position of the Fermi level at which the 퐸  

lines cross as a function of Δε 	corresponds to the charge transition level, 푞   

푞.  

 
Figure 3.7 - Generic plot of formation energies (퐸 ) of positive (green line), neutral 
(blue line), and negative (red line) charge states of a given defect center, versus Fermi 
level position (Δε ). Charge transition levels correspond to values of the Fermi level at 
which the most stable charge state (i.e. the lowest formation energy) changes. Here, the 
positive to neutral (ε / ) and neutral to negative (ε / ) transitions are shown. 

 

As their name suggests, charge transition levels involve calculations with 

different numbers of electrons occupying the defect level. Thus the well-known 

deficiencies of DFT, namely the lack of derivative discontinuity of the XC 

functional with respect to particle number, and an inappropriate treatment of the 

electron self-interaction are exacerbated when computing charge transition 

levels. For example, the underestimation of the fundamental gap which arises 

from the above-mentioned weaknesses, can lead to a qualitatively wrong picture 
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in which charge transition levels resonate with the host bands, whereas 

experiment, and more rigorous theoretical approaches would indicate they lie 

within the bandgap [44]. In order to overcome these problems, a new 

computational approach has been developed in recent years [22, 44], which 

combines many-body perturbation theory with DFT. This leads to a correction to 

the Kohn-Sham levels obtained from the electron self-energy calculated within 

the 퐺푊 approximation.  

To overcome the shortcomings of DFT, the formation of charged defects 

can be decomposed into 2 major contributions: the energetic cost of adding an 

electron, and the energy change arising from the relaxation of surrounding atoms 

upon addition of the electron. This is achieved by rewriting equation (3.54). Let 

퐸 푞,푅  be the energy of a simulation cell with charge state 푞 but with atomic 

positions optimized for charge state	푞 . Adding and subtracting 퐸 푞,푅  and 

grouping all terms appropriately yields 

 

	퐸 (푞 푞⁄ ) = 	퐸 푞,푅 	– 	퐸 푞 ,푅 + 	퐸 푞,푅 		– 		퐸 푞,푅 + 	푞Δε  

																															= 	퐴 푞, 푞 ,푅 + 	훥 푅 ,푅 , 푞 + 	푞Δε 			.																									(3.55) 

 

The first term 퐴 represents the energy to add an electron, neglecting the 

rearrangement of surrounding atoms	퐸 푞,푅 	– 	퐸 푞 ,푅 . The second term 훥 

arises from the relaxation of atoms in the presence of the extra charge, which in 

DFT translates to a re-minimization of the total energy	퐸 푞,푅 		– 		퐸 푞,푅 .  

Notice that the charge state of the energy terms in 훥 do not change; in 

charged supercells, a finite spurious interaction between periodic images exists 

that is typically accounted for by an electrostatic correction term in the 

formation energy. Makov and Payne proposed a correction for the spurious 

Coulomb interaction which takes the form of a Madelung-like energy with a 

third order term to account for the delocalized part of the defect charge 

distribution and its interaction with periodic images considered as a screened 

array of point-charges [112].  The correction is often obtained from an 
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extrapolation of the formation energy of the charged cell to infinite supercell 

volume [4], which requires a large computational effort. The fact that the 훥 term 

in equation (3.55) contains an energy difference between cells in the same 

charge state suggests that much of the error due to spurious electrostatics may 

cancel in this term. In chapter 5 we investigate this suggestion by plotting the 

total energies 퐸 푞,푅  and 퐸 푞,푅 	versus a linear expression of the cell 

volume. Our results indicate that these electrostatic interactions are practically 

negligible compared to elastic interactions between periodic images of defects, 

and the error due to elastic interactions is also very small in the cells we use to 

calculate the 훥 term. 

The representation of		퐸 (푞 푞⁄ )	given by equation (3.55)		can be 

illustrated by use of configuration coordinate diagrams. 

  
Figure 3.8 - Formation energy as a function of atomic configuration for different charge 
states. The process outlined by steps to 4 depicts the neutral charge state of a given 1 
defect center formed from the positive, which in turn is used to form the negative 
charge state by adding an electron to the neutral. In each case the atomic positions are 
relaxed following the addition of charge. Modified after ref. [44]. 

As 훥 can be computed without changing the number of electrons, the problem of 
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a discontinuous XC functional with respect to electron number does not apply, 

and DFT can be used to accurately calculate	훥. The opposite is true of	퐴, such 

that the merit of this formalism can be seen in the identification of where 

approximate DFT is best applicable and where it is not. The 퐺푊 approximation 

is used to calculate	퐴. For electron addition (푞   푞  – 1) the vertical transition 

corresponds to the electron affinity of the defect; in this case the electron is 

absorbed from the surrounding reservoir into the defect level [113]. Figure 3.8 

represents the formation of a charge state by addition of an electron and 

subsequent atomic relaxation, e.g. the formation of a negative charge state from 

the neutral state (푞	 =		–1, 푞 	=	0 in equation	(3.55)), or neutral from a positive 

state (푞	 =	0, 푞 =		+1 in equation	(3.55)).   

It is also possible to form charge states by removal of electrons. In this 

case it is assumed that the vertical electron removal energy (퐼) of 푞 to 푞  equals 

the negative of the vertical addition energy (−퐴) of  푞  to	푞. This is depicted in 

figure 3.9. As can be seen, the relaxation energy terms are equal in magnitude. 

For electron removal (푞 		푞 + 1), a downward vertical transition would 

correspond to the ionization energy of the defect, where the removed electron is 

transferred from the defect level to the electron reservoir.  

 
Figure 3.9 - Configuration coordinate diagram depicting the formation of a positive 
charge state from the neutral state (left). The energy to remove an electron from the 
neutral state in the neutral configuration (downward vertical transition on the left) is 
assumed to be equal to the negative of the energy to add an electron to the positive 
charge state in the neutral atomic configuration (upward vertical transition on the right).  
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The charge state formation energy can thus be re-expressed in terms of the 

energy to remove an electron plus the energy associated with the subsequent 

relaxation of atoms due to the added hole,   

 

퐸 (푞 푞⁄ ) 		= 	퐸 푞’,푅 ’ – 	퐸 푞,푅 + 	푞’훥휀 					 

																											= 	퐸 푞 ,푅 	– 	퐸 푞,푅 + 	퐸 푞 ,푅 		– 		퐸 푞 ,푅 + 	 푞 Δε 							

= 	퐼 푞 , 푞,푅 + 	훥 푅 ,푅 , 푞 + 	푞 Δε 																																(3.56) 

 

where	퐼 푞 ,푞,푅 = 	 −퐴 푞, 푞 ,푅 = −[퐸 푞,푅 – 	퐸 푞 ,푅 ]. Hence, in this 

case the charge state 푞  is formed from	푞. In this work, the neutral charge state 

(formed from the positive charge state) and negative charge state (formed from 

the neutral) formation energies are calculated using equation	(3.55), with the 

formation process described by figure 3.8. The positive charge state formation 

energies are calculated using equation	(3.56), with the process described by 

figure 3.9. 

 

3.6.1 Application of the 푮푾 Method 
 

The 퐺푊 method, as implemented in the many-body theory code YAMBO [75], 

is employed to calculate the 퐴 term of the formation energy expressions above. 

In this method, a first order correction to the Kohn-Sham eigenvalues 퐸  are 

obtained via many-body perturbation theory 

 

																																							퐸 = 	 퐸 	+ 	 ⟨휑 |훴	– 	푉 |휑 ⟩																								(3.57) 

 

to yield quasiparticle levels 퐸 . As is typical of the 퐺푊 method applied to 

systems not involving strongly correlated d or f electrons, the quasiparticle 

weight 푍 (see section 3.4.2) is taken as unity [103]. The separation of the highest 

occupied and lowest unoccupied levels is taken as	퐴. In order to calculate this 

correction, the self-energy is required, which in turn requires a convolution of 
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the Green’s function		퐺 		and the screened Coulomb interaction		푊. The former 

is constructed using wave functions and band energies acquired from a self-

consistent LDA-DFT calculation, while the latter depends on the dielectric 

response function that takes into account the local field effects and the dynamics 

of the screened interaction. In this work, we utilize the plasmon pole 

approximation (PPA) [50, 75] to describe the frequency dependence of the 

inverse dielectric function 휀  required to calculate	푊. The PPA assumes the 

spectral function for the screened interaction to be a single narrow peak in 

frequency, corresponding to the plasmon frequency, and is thus justified if the 

imaginary part of the Fourier-transformed dielectric function is a peaked 

function in	휔. Fourier transforming from real space to a wave-vector basis using 

the following convention  

 

																								푊(풓, 풓 ;휔) = 푒 (퐪 퐆).풓

퐆,퐆 ,퐪

푊퐆,퐆 (퐪,휔)푒 퐪 퐆 .풓 	,										(3.58) 

 

leads to a simpler expression (compared to equation (3.36)) of the screened 

interaction in terms of the Fourier transformed dielectric function and Coulomb 

interaction 푣(퐪 + 퐆 ) given by 

 

																																					푊퐆,퐆 (퐪,휔) = 	 휀퐆,퐆 (퐪,휔)푣(퐪 + 퐆 )	.																					(3.59) 

 

Here, 퐪 is an arbitrary wave vector (not to be confused with the charge state 

symbol 푞 used previously) while 퐆 is a reciprocal lattice vector. The local fields 

arise from the off-diagonal 퐆 ≠ 퐆  elements. The connection back to DFT-

calculated quantities is made from the relation between the static (퐸 = 0) 

dielectric function	and the non-interacting polarizability	푃, as the latter is 

obtained from LDA wavefunctions and eigenvalues as in equation	(3.38) 

 

																										휀퐆,퐆 (퐪,퐸 = 0) = 훿퐆,퐆 − 푣(퐪 + 퐆)푃퐆,퐆 (퐪,퐸 = 0)	.									(3.60) 
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At this point, the PPA is employed to extend the dielectric function to finite 

frequencies. As stated above, the PPA assumes all the weight in the 

Im푊퐆,퐆 (퐪,퐸) is contained in a single peak at the plasmon frequency, thus the 

simplest form of the PPA is given by  

 

																																														Im	휀 (퐪,퐸) = 퐴 훿 퐸 − 퐸 	.																												(3.61) 

 

The parameters 퐴  and 퐸  are obtained from constraints imposed by the 

Kramer-Kronig relation for the static dielectric matrix and the f-sum rule [50, 

51]. The latter relates the imaginary part of the exact many-body dielectric 

function to the plasma frequency and the electronic density of the crystal [50]. In 

YAMBO, the single-pole function used to approximate 휀  is expressed as [75] 

 

					휀퐆,퐆 (퐪,퐸) ≈ 훿퐆,퐆 + 푅퐆,퐆 (퐪)[ 퐸 − Ω퐆,퐆 (퐪) + 푖0 				 

																																																	− 퐸 + Ω퐆,퐆 (퐪)− 푖0 ]																																	(3.62) 

 

for each set of momentum components {퐆,퐆 , 퐪}. The YAMBO parameters 푅퐆,퐆  

and Ω퐆,퐆  are obtained by forcing the approximation to reproduce the exact 

many-body dielectric function at the static limit (퐸 = 0), and at		퐸 = 푖퐸 , 

where 퐸  is defined in the input file [75]. For all calculations in this work, the 

default value of 퐸  = 1 Hartree is used.  

That the imaginary part of the inverse dielectric function exhibits a single 

peak with respect to frequency is observed for a number of common 

semiconductors and insulators [50]. In these cases the PPA is justified since the 

evaluation of the self-energy involves an integral over 휔 so the fine details of the 

energy/frequency dependence should not be critical. When applied to certain 

metals like Cu [114], the PPA tends to provide too simple a picture as the 

behaviour of 	휀퐆,퐆 (퐪,퐸) in such systems is very different to that of a single 

pole function. When the PPA breaks down, the dielectric function must be 

explicitly computed throughout the full frequency axis, leading to large increases 
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in computational time and memory. Fortunately, a single peak in the dielectric 

function is observed for In0.53Ga0.47As as studied in this thesis; both the bulk and 

surface models (presented in chapter 4 and 5, respectively) exhibit a single peak 

in the imaginary part of the inverse dielectric response function. This allows for 

the application of the 퐺푊 method to supercells containing >150 atoms.  

 

3.7 CNT Vacancy Formation 
 

In this section, our approach to calculating the formation energetics of 

monovacancies and divacancies in CNTs is presented. The formation energy	∆퐸 

of each defect is calculated by considering the difference between the energy of 

the pristine tube,		퐸  and the sum of the energy of the defective 

tube,		퐸 	 plus that of an isolated, non-interacting carbon atom or twice this, 

for divacancies,  

																																																∆퐸 = 퐸 − 퐸 																																							(3.63) 

 

where, 

				퐸 = 퐸 + 퐸  (for monovacancies), 

퐸 = 2퐸 + 퐸  (for divacancies). 

 

Although energetically the pristine structure is always more favorable, the 

formation energy allows comparison of the relative stability of defects. Equation 

(3.63) implies that the smaller the formation energy, the greater the stability of a 

specific defect. This relation was used previously to assess the relative stabilities 

of mono- and divacancies as a function of armchair CNT diameter [12]. 

However, fragmentation processes in materials such as C60 or larger fullerenes 

typically proceed by desorbing a carbon dimer [115], thus a more accurate 

measure of divacancy formation is to assume the dissociated state consists of the 

defect tube and a free C2 molecule. In this case, 퐸 	in equation (3.63) is 
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replaced by	퐸 + 퐸 , where 퐸  is the energy of the carbon dimer.  

To compare the energies associated with the orientation of the divacancy 

defects relative to the CNT axis, the quantity 푑∆	= |∆퐸 − ∆퐸 | is 

introduced; the monotonic reduction of this value as a function of tube diameter 

(see chapter 6) reflects the convergence to a graphene-like structure for larger 

CNT radii. We examined semiconducting and metallic CNTs of various sizes, 

allowing for the analysis of defect energetics as a function of CNT diameter and 

chirality. The formation energies and relative stabilities are tabulated for zigzag 

and armchair CNTs in chapter 6. A similar analysis was also performed for 

graphene. Where possible, the computational details (e.g., basis sets, supercell 

dimensions) for the relaxation of graphene, as well as for the single-point energy 

calculation after relaxing, were chosen similar to those of the CNTs. 

 

3.8 Electron Transport in CNTs 
3.8.1 DFT + Green’s Functions 
 

To assess electronic transport across defective nanotubes, the transport simulator 

TiMeS (Transport In MEsoscopic Systems) [73, 116] was used to calculate the 

electron transmission spectrum [12, 68, 117] which is proportional to the low-

temperature low-bias Landauer conductance [24, 118]. The transmission 

spectrum can also be used to extract the mean free path for impurity scattering of 

charge carriers, as applied previously [73]. Each CNT is 
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Figure 3.10 - Schematic partitioning of a CNT (chirality (10, 0) with a lateral divacancy 
shown here) into lead and scattering regions. The dots indicate the repetition of ideal 
principal layers in each lead. 

 

divided into 3 regions: a scattering region in the center which contains the 

defective supercell, and left and right pristine leads on either side which act as 

electrodes (Figure 3.10). Electronic states from the leads are scattered as they 

propagate through the nanotube structure. The framework underlying the TiMeS 

calculation of the quantum-mechanical scattering matrix from which transport 

coefficients can be extracted is based on a Green’s function implementation [24, 

117, 118]. The matrix representations of the Hamiltonians in the localized 

numerical atomic orbital (NAO) [96] basis for the relaxed structures are obtained 

from OpenMX, and these Hamiltonians are transferred to TiMeS [116]. For this 

step a single-point calculation was performed using a single-ζ basis set to reduce 

the computational cost in computing transport properties, allowing us to extend 

our study to larger CNT radii. It is shown in chapter 6 that the use of a double-ζ 

basis does not affect transport significantly as may be expected for the simple 

sp2 network of carbon nanotubes. For the single-point calculations in tubes of 

chirality (n, 0) and (n, n), the supercell contains 13 unit cells for n ≤ 10, and 7 

unit cells for n ≥ 20, with the central cell containing the defect.  

 

Scattering Region 
Right Lead Left Lead 
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3.8.2 Mean Free Path 
 

Once the transmission function 푇(퐸)		is obtained, the mean free path λ as a 

function of the distance between defects 푙  can be calculated from the following 

considerations. In a diffusive one-dimensional conductor, the transmission 푇	is 

proportional to the ratio of 휆 to the length of the conductor	퐿, and to a first 

approximation this ratio is effectively the transmission probability of each 

channel. For Nch channels, and assuming	퐿 >>	휆, the transmission probability can 

be approximated as [24] 

 

																																																												푇 ≅ 푁
휆
퐿		.																																																		(3.64) 

                                                   

Clearly, the resistance of such a conductor is proportional to the inverse of this, 

 

																																																														푅 = 푅
퐿
휆 	,																																																		(3.65) 

                                                 

where 푅 	is the contact resistance, 

 

																																																										푅 =
ℎ

2푒 푁 		.																																													(3.66) 

            

According to the ISA, the resistance due to defect scattering will simply be the 

sum of the individual resistances of each defect, so that, assuming each defect 

has the same “scattering” resistance	푅 , the total resistance is 

 

																																																푅 = 푅 + 푅
퐿
푙 ≈ 푅

퐿
푙 	.																																						(3.67) 
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Here,	퐿 푙  = number of defects, and we are assuming	푅 ≪ 	푅  implying a 

diffusive regime for transport. Expressions (3.65) and (3.67) can be equated to 

solve for the mean free path    

 

																																																																				휆 =
푅
푅 푙 		,																																														(3.68) 

 

where the scattering resistance is given by [119] 

 

																																																					푅 =
ℎ

2푒 푇 −
ℎ

2푒 푁 		,																																(3.69) 

 

and 푇 is the transmission. In chapter 6, 휆 is plotted against a range of values of 

푙 	for all CNTs considered, and where possible, we show that this relationship 

can yield an experimentally verifiable relationship between the localization 

length and the defect density. The value used for the transmission in equation 

(3.69)	is 푇 휀 	for metallic tubes and 푇(퐸 + 0.3	푒푉)	for semiconducting 

tubes, where 휀  is the Fermi level and 퐸  is the conduction band minimum. 

 

 

 

 

 

 

 

 

 

 

 

 



75 
 

Chapter 4 
Bulk InGaAs 
 

4.1 Introduction 
 

In this chapter simulations of native point defects in bulk In0.53Ga0.47As 

are presented. A number of methods exist for the modeling of the atomic 

structure of compound semiconductors. We first employ a computationally 

convenient approach which neglects short-range cation disorder. This allows us 

to evaluate the efficacy of the 퐺푊 approximation in describing the bulk 

In0.53Ga0.47As electronic structure. Following this, a more realistic model of bulk 

In0.53Ga0.47As is given in which the cations are randomly distributed. Defects are 

then introduced into this explicit model and calculations of thermodynamic 

transition levels of energetically competing defect charge states are performed. 

These calculations involve a combination of DFT and the MBPT-derived 퐺푊 

approximation. The results of our defect calculations agree semi-quantitatively 

with previous methods involving hybrid density functionals, although important 

differences are found and these previous calculations are extended to new cases. 

 

4.2 Electronic Structure  
4.2.1 The Virtual Crystal Approximation 

 

Application of the supercell method to the study of disordered alloys, in which 

large cells are utilized in order to mimic the distribution of local atomic 

arrangements of the alloy constituents, can be computationally demanding. A 

computationally convenient technique is to employ the virtual crystal 

approximation (VCA), in which the periodic crystal is constructed from a 

primitive unit cell containing one or more “virtual” or “averaged” atoms. This 

method has been applied to the study of electronic structure [120], atomic 
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structure and thermodynamics [121], and dielectric properties [122]. In the 

VCA, the virtual atoms are described by pseudopotentials which linearly 

interpolate between those of the alloy constituents, such that the resulting virtual 

pseudopotential achieves the desired alloy proportion. For example, the VCA-

description of bulk In Ga As replaces the individual In and Ga 

pseudopotentials with a virtual “In Ga ” pseudopotential 

 

																																														푉 = x푉 + (1 − x)푉 			,																															(4.1) 

 

which is then placed in a zinc blende primitive unit cell along with	As and 

periodic boundary conditions are imposed. This unit cell is then treated in the 

usual first-principles pseudopotential approach, i.e. the Kohn-Sham (KS) 

equations are solved with the 푉 (풓) term of the Kohn-Sham potential 

containing contributions from	푉  and	푉 . The purpose of the application 

of the VCA in this work is to demonstrate the qualitative features of the 

electronic structure calculated from the DFT+퐺푊 method. Specifically, the 

convergence of the quasiparticle gap with respect to YAMBO input parameters is 

achieved and subsequently the bandstructure is calculated, showing the 

qualitative agreement of the energy-momentum dispersion throughout the 

Brillouin Zone (BZ) with previous work based on empirical pseudopotentials. 

Quantitative comparisons show that our DFT+퐺푊 approach yields on average 

better agreement with a hybrid-DFT study than with the empirical 

pseudopotential method, although in general the overall agreement is good 

between all three methods.  

 

4.2.1.1 Numerical Details 

 

A 2-atom model of bulk In0.53Ga0.47As is generated using the VCA by linearly 

mixing the local and non-local parts of the In and Ga pseudopotentials using 

equation	(4.1). Norm-conserving pseudopotentials utilizing the Perdew-Zunger 
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form of LDA [89, 123] are employed for In, Ga, and As. These In and Ga 

pseudopotentials are used to generate the virtual InxGa1-x pseudopotential with x 

= 0.53. The use of these pseudopotentials results in 8 electrons per cell, 3 from 

‘In0.53Ga0.47’ and 5 from As. Zinc blende symmetry and periodic boundary 

conditions are imposed, and the lattice constant set to the experimental value of 

5.87 Å [124]. The ground state electronic structure for the resulting VCA model 

of ‘In0.53Ga0.47As’ is self-consistently calculated using the Quantum Espresso 

code [99]. Plane wave basis sets are used to expand the electronic wavefunction, 

with a kinetic energy cutoff of 60 Rydbergs. The self-consistent wavefunctions 

generated by Quantum Espresso are used as the input to YAMBO [75]. Initially, 

the convergence of the quasiparticle gap is studied with respect to calculation 

parameters including the number of unoccupied states, plane wave basis set size, 

size of dielectric response matrix, and number of points in the FFT grid. For all 

calculations of the 퐺푊 correction, all bands included in the DFT run are 

included in the dielectric function, and in the correlation part of the self-energy 

[75]. The convergence tests also include the k-point grid which is increased to 

16x16x16, at which point the quasiparticle gap changes by less than 1 meV 

compared to 12x12x12. 12x12x12 k-points are used to plot the quasiparticle 

bandstructure.  

 

4.2.1.2 Results and Discussion 
 

The LDA-DFT bandgap is significantly underestimated at 0.34 eV, compared to 

the low-temperature experimental value of 0.82 eV [125]. This underestimation 

is attributed to the limitations of DFT discussed in section 3.3. Upon correcting 

the KS eigenvalues with the 퐺푊 method, the HOMO-LUMO gap dramatically 

increases. The plasmon pole approximation (PPA) is used to describe the 

dynamical effects of the 퐺푊 approximation. The validity of the PPA is 

determined from a plot of the imaginary part of the inverse dielectric function 

versus energy, as described in the work of Hybertsen and Louie [50]. Using the 

DFT parameters mentioned in the previous section, along with 46 unoccupied 
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bands in the dielectric response function and neglecting local fields (no off-

diagonal elements in the dielectric matrix), the real and imaginary parts of the 

dielectric matrix are plotted as a function of energy as shown in figure 4.1.  

 

 
Figure 4.1 - Real and imaginary parts at the Γ-point component (퐆 = 퐆 = ퟎ) of the 
inverse dielectric function, obtained from the VCA model of bulk In0.53Ga0.47As, plotted 
as a function of energy. 

 

The single large peak in the spectrum of the dielectric function allows for an 

extension of the static dielectric matrix to finite frequencies using the PPA [50]. 

Hence, the PPA remains valid for In0.53Ga0.47As even when the short range order 

of the cation sublattice is neglected.  Using a plasmon-pole approximated 

dielectric function to calculate the self-energy, the resulting difference between 

highest occupied and lowest unoccupied 퐺푊-corrected DFT states is highly 

overestimated compared to the experimental value. This corresponds to 

including dynamical effects via the PPA, but with an inadequate description of 
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local fields. Adequate convergence is obtained once the size of the dielectric 

matrix 휀퐆,퐆  is increased to 181 × 181 where each element corresponds to a 

reciprocal lattice vector. Increasing 휀퐆,퐆  to 259 × 259 results in less than 1 meV 

change in the bandgap relative to 181 × 181, see figure 4.2. Numerical 

convergence is also achieved with respect to all other YAMBO calculation 

parameters, including the FFT integration mesh. Increasing the number of 

unoccupied states from 46 to 56 results in less than 1 meV difference to the 퐺푊	

bandgap relative to the converged value, and a similarly negligible change in the 

bandgap is observed upon increasing the plane wave cutoff energy to 120 

Rydbergs.  

 

Figure 4.2 - Bandgap calculated from GW-corrected DFT states (Egap,qp), versus the size 
of the dielectric matrix. 

 
Using 56 unoccupied states, 1728 (72) k-points in the (irreducible) BZ, and 181 

× 181 elements in 휀퐆,퐆 , the 퐺푊-corrected bandstructure was plotted using a k-
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path interpolated from the uniform grid. The YAMBO code follows the 

interpolation procedure of ref. [126].  

 
Figure 4.3 - Bandstructure calculated from GW-corrected Kohn-Sham states using a 2-
atom VCA model of In0.53Ga0.47As. The GW-corrected bandgap at Γ is 0.92 eV. 

 

The converged 퐺푊-corrected 0 K Γ-point bandgap is 0.92 eV, which somewhat 

overestimates the experimental value of 0.82 eV [125], but is in much better 

agreement with experiment than the uncorrected DFT bandgap of 0.34 eV. In 

addition, this is a comparable level of accuracy as that obtained for 

semiconductors (diamond, Si, Ge, and LiCl) studied by Hybertsen and Louie 

[50], more recent studies of bulk Si by Rinke et al [44], and bulk GaAs and InP 

calculations reported by Hedström, Schindlmayr and Scheffler [22]. A small 

overestimation of the low temperature experimental bandgap using a DFT+퐺푊 

approach is a reoccurring theme throughout these works, and is on the order of a 
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few tens to 100 meV.  In addition, recent studies of graphene nanoribbons within 

the 퐺푊	approximation report accuracies in the quasiparticle energies of 0.1 eV-

0.2 eV [127, 128]. Our results are well within the lower limits of this range of 

error.  

 

 
Figure 4.4 - Bandstructure of In0.53Ga0.47As calculated from an empirical 
pseudopotential formalism. Private communication from M. Fischetti [129]. 

 

Comparing with a bandstructure calculated by M. Fischetti (figure 4.4, 

unpublished) who used empirical pseudopotentials, we find overall qualitative 

agreement in the dispersion of occupied and unoccupied states. To quantitatively 

assess the comparison, we compare our satellite valley energy separations at 

high symmetry points (L and X) to those calculated using empirical 

pseudopotentials, shown in table 4.1 below. Satellite valleys are important 

figures of merit which play a role in the build-up of electron concentration at the 
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semiconductor surface as a function of gate voltage in MOS devices. They are 

also used as input device parameters in empirical transport simulations [130].  In 

addition to our DFT+퐺푊 results, we also include satellite valleys obtained from 

a hybrid functional calculation applied to bulk In0.53Ga0.47As. The Heyd-

Scuseria-Ernzerhof (HSE) hybrid functional is employed [131]. When the 

proportion of Hartree-Fock exchange, denoted a, is set to 0.27, a Γ-point 

bandgap of 0.92eV is obtained, i.e. reproducing our DFT+퐺푊 result.  

 

Γ/eV   L/eV X/eV Method 
0.73 
0.92 

  1.49 
1.64 

1.98 
1.96 

Fischetti (empirical pseudopotentials) [130] 
This work (퐺푊+DFT) 

0.92 
0.82 

  1.77 
1.68 

2.05 
1.99 

This work (hybrid-DFT, a = 0.27) 
This work (hybrid-DFT, a = 0.24) 

 

Table 4.1 - High symmetry satellite valley energy separations relative to the VBM 
obtained from M. Fischetti who used empirical pseudopotentials, and compared to our 
values obtained using a DFT+퐺푊 approach and hybrid functionals. 

 

Using a = 0.27 in order to investigate the difference of the satellite valley 

energies between the DFT+퐺푊 and hybrid functional schemes, we find better 

agreement between DFT+퐺푊 and hybrid-DFT than with the empirical 

pseudopotentials for the L-valley. The X-valley values are closer for all three 

methods, and for both satellite valleys hybrid-DFT yields the highest estimate 

amongst all these approaches. To investigate the effect of parameterizing the 

hybrid-DFT calculation to fit DFT+퐺푊, a was also adjusted to reproduce the 

low temperature experimental bandgap 0.82 eV (a = 0.24); in this case, the X-

valley decreases by 60 meV compared to a = 0.27, and again the L-valley is 

closer to the DFT+	퐺푊 value than to the empirical pseudopotential value. 

Regarding the 퐺푊-corrected bandgap, it is interesting to note that the 

VCA approach has led to larger bandgaps relative to explicit tight-binding 

models in previous studies [120, 132]. Such findings suggest that the difference 

between the 퐺푊-corrected bandgap calculated using the VCA and the 

experimental value may not be entirely due to the 퐺푊	approximation. In fact, 
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we find a lowering of the bandgap when the individual cations are taken into 

account, as shown in the next section. In any case, a large improvement over 

DFT in the description of the electronic structure is obtained using the 퐺푊 

approximation. Considering the slightly larger DFT+퐺푊-calculated bandgaps 

relative to experiment commonly reported in the literature [22, 44, 50] and the 

fact that the VCA method also tends to overestimate the bandgap, our results 

seem to be well within the accepted limits of accuracy and significantly improve 

the DFT bandstructure. This gives us confidence to move onto systems 

consisting of an explicit description of the cation arrangement in which point 

defects may be studied.  

 

4.2.2 A 64-Atom Supercell Model 
4.2.2.1 Numerical Details 
 

We use norm-conserving pseudopotentials utilizing the Perdew-Zunger form of 

LDA [89, 123]. A kinetic energy cutoff of 60 Rydbergs is used for the plane 

wave basis set. 2x2x2 k-point meshes are used for geometry optimization. To 

facilitate comparison with recent experimental results [6], an alloy proportion of 

53 % In and 47 % Ga is desired. This was achieved by randomly distributing 17 

In and 15 Ga in a 64-atom supercell. In order to compare with the VCA study of 

the previous section, atomic geometries are relaxed at the experimental lattice 

constant. This will allow for an investigation of the importance of explicitly 

taking into account the distribution of indium and gallium sites. Quantum 

Espresso implements a Quasi-Newton optimization algorithm [78], which is 

utilized here for all geometry relaxations. Regarding the iterative loop for 

calculating a self-consistent electronic structure, the charge density mixing 

scheme mentioned in section 3.3.4 is used.  
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4.2.2.2 Results and Discussion 
 

Figures 4.4 and 4.5 show the convergence of the GW-corrected gap calculated at 

the Γ-point, Egap,qp, as a function of the number of unoccupied bands and 

dielectric matrix size, respectively. Both the dielectric matrix and the correlation 

part of the self-energy (Coulomb-hole self-energy term in the static limit) require 

a summation over unoccupied states. Compared to the 2-atom VCA study, a 

much larger number of unoccupied states are required to achieve adequate 

convergence. This is attributed to the larger number of occupied states (128) in 

the 64-atom case, which leads to a much larger band summation in the 

evaluation of the self-energy operator [51]. 

 

 
Figure 4.4 - Bandgap calculated from GW-corrected DFT states (Egap,qp), versus the 
number of unoccupied states used to calculate the self-energy.  
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Figure 4.5 - Bandgap calculated from GW-corrected DFT states (Egap,qp), versus the 
number of elements (reciprocal lattice vectors) used in the dielectric matrix.  

 

As expected, the primary effect of correcting DFT with the 퐺푊 approximation is 

a shifting upwards in energy for conduction band states and a lowering of energy 

for valence band states. The bandgap from LDA-DFT is 0.31 eV for the 64-atom 

cell, while the converged 퐺푊-corrected bandgap Egap,qp = 0.83 eV is in excellent 

agreement with the low temperature experimental bandgap of 0.82 eV [125]. 

Comparing with the quasiparticle gap calculated using the VCA (0.92 eV), the 

importance of explicitly accounting for the differing cation potentials and 

positions becomes apparent.  
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4.3 Defects - VGa, GaAs and AsGa 
 

The purpose of this section is to discuss the study of native defects in bulk 

InGaAs. Native defects have been invoked in the past to explain the observation 

of midgap peaks in the distribution of interface states for In0.53Ga0.47As as 

determined by electrical spectroscopy. The exact nature of the defect(s) 

responsible for the peaks remains elusive, which motivates first-principles 

computational studies. In this work, the following defects are considered for the 

bulk simulation cell: two antisites, GaAs (Ga on an As site) and AsGa (As on a Ga 

site), and a Ga vacancy, denoted VGa. These defects have been previously studied 

using hybrid-DFT functionals [13, 41] in the bulk, and shown to exhibit charge 

transition levels lying within the bandgap. Here, we study the same defects to 

provide a comparison between hybrid functionals and the DFT+퐺푊 approach 

which is free of empirical parameterization. Following the introduction of 

defects, the 퐺푊	correction is used to evaluate the electron addition and removal 

energies of a range of charge states of each defect, yielding the charge transition 

levels using the formalism described in chapter 3. 

These calculations serve to “calibrate” the hybrid-DFT and DFT+퐺푊 

methods against each other, and to consider the calculations against what is 

known experimentally. This lays the groundwork for calculations which 

explicitly include a semiconductor/oxide interface and the effects on defects 

thereof considered in chapter 5.  

  

4.3.1 Methods 
 

Using the 64-atom model of bulk InGaAs described in section 4.2.2, full 

structural relaxation of the supercell plus atomic geometries is performed while 

maintaining a defect free cell. Relaxation of the lattice vectors for the defect free 

cell circumvents any possible errors due to non-equilibrium supercell volumes 

and unconverged supercell energies, as discussed in [5]. Following the full 
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structural relaxation of the pristine cell, point defects are then inserted and the 

atomic geometries re-optimized. This is repeated for each point defect, i.e. one 

defect per 64-atom cell. Carrying out this procedure for various charge states of 

each defect allows for the determination of formation energies as described in 

section 3.6. For charged simulation cells, Quantum Espresso applies a 

compensating background charge density; this prevents divergences due to 

Coulomb interaction between image charges arising from periodic boundary 

conditions and ensures well defined total energies. Regarding the numerical 

details of the DFT calculations and subsequent GW corrections, similar 

convergence criteria to the pristine case were applied to defective cells; 

specifically a 60 Rydbergs kinetic energy cutoff, 2x2x2 k-point meshes for 

geometry optimization, and 1772 unoccupied bands along with √N = 5041 

where N is the number of elements in the dielectric matrix used to calculate the 

self-energy for the 퐺푊 correction. This value of N was chosen based on the 

convergence of the bandgap of the pristine cell, see figure 4.5. 

 

4.3.2 Structural Properties 
 

Three point defects in the bulk simulation cell are studied separately, VGa, GaAs, 

and AsGa. In the following, displacements for neutral defects are measured 

relative to pristine cell, while displacements for charged defects are measured 

with respect to the relaxed neutral defects. Focusing on the Ga vacancy first, 

upon removal of a Ga atom the four surrounding As atoms relax by moving in 

towards the vacancy site by 0.5 Å on average. The tendency of surrounding 

anions to form weak bonds across a cation vacancy has been indicated by 

previous computational studies of III-Vs [133]. The structural effect of charging 

this defect by adding a single electron is a very slight (~0.01 Å displacement) 

further inward movement of the As atoms. Removing an electron from the 

neutral state and relaxing to bring the vacancy to a positively charged 

configuration results in a similar small degree of movement of the surrounding 
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As atoms, but in the opposite direction to relaxation found in the negative state. 

Looking to the GaAs antisite, which is bonded to two Ga and two In atoms, we 

find that the bonds between the neutral defect and the surrounding Ga atoms 

shorten by 0.08 Å relative to the unrelaxed substitutional site, that is relative to 

an As site in the pristine cell, while the bonds between the defect and the 

nearest-neighbor In atoms elongate by 0.04 Å relative to the unrelaxed position. 

Thus, the GaAs remains in a four-fold coordinated arrangement but moves to an 

off-center position with respect the non-defective As site (see figure 4.6 (b)). 

Charging the GaAs site to the positive state pushes the defect center up toward 

the surrounding Ga atoms (see figure 4.6) by 0.04 Å compared to the neutral 

position. Charging this antisite to the negative state results in a slight downward 

(see figure 4.6) movement of the defect center by 0.03 Å compared to the neutral 

position, in the opposite direction to the positive state relaxation. For the neutral 

AsGa antisite, the surrounding anion bonds undergo larger changes compared to 

the cation bonds of the GaAs antisite: an outward relaxation of 0.16 Å relative to 

the pristine bonds is found. Removing an electron causes the As-AsGa bonds to 

contract by 0.05 Å relative to the neutral case, while the defect center remains in 

the same position as the relaxed neutral charge state. This behaviour continues 

for the doubly charged state of the AsGa antisite; an average of 0.06 Å 

contraction of the anion-antisite bond lengths relative to the +1 state, and the 

AsGa defect center remains in the same position to within 0.01 Å. For all defects, 

we find that atoms located along atomic planes which bisect the spacing between 

periodic images of the defect center undergo displacements of less than 0.01 Å 

on average relative to the corresponding bonds in the pristine cell, indicating that 

the surrounding environment approaches that of an isolated point defect. The 

periodic supercells containing each neutral defect (highlighted) after relaxation 

are shown in figure 4.6.  
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Figure 4.6 - Relaxed atomic structures of neutral point defects in In0.53Ga0.47As. Blue, 
brown and, pink spheres represent In, Ga, and As, respectively. For (a), the As atoms 
surrounding the Ga vacancy are highlighted. For (b) and (c), the Ga antisite and the As 
antisite, respectively, are highlighted. Arrows indicate the direction of movement of 
atoms for relaxation due to positive (turquoise dotted) and negative (orange dashed) 
charges.  

 

 

(a) 

(b) 

(c) 
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4.3.3 Charge Transition Levels for Bulk Defects 
 

Charge transition levels of each defect were calculated as values of the Fermi 

energy in which charge states have equal formation energy, as outlined in 

chapter 3. We first discuss the recently published charge transition levels from 

Komsa and Pasquarello obtained within hybrid-DFT [13] for bulk defects. For 

the VGa, they calculate a neutral to negative transition, denoted here as ε0/-1, at 

~0.08 eV above the valence band maximum (VBM). They obtain a ε+1/0 

transition for the AsGa antisite ~0.74 eV above the VBM, while the ε+2/+1 AsGa 

transition lies close to midgap at ~0.42 eV above the VBM. The latter is ~0.15 

eV lower than the ε0/-1 transition for GaAs, while the ε+1/0 GaAs transition lies 

slightly above the ε0/-1 VGa transition from their hybrid-DFT calculations. In their 

work, a study of the defect formation energies as a function of approximated 

growth conditions is also performed [13], as described in section 2.3.2. Based on 

this study and on the proximity of the ε+2/+1 AsGa transition to the midgap Dit 

peak measured at InGaAs/oxide interfaces by electrical spectroscopy, they assign 

the AsGa antisite as the sole defect responsible for the observed measurements. 

We calculate the same defects within the DFT+퐺푊 approach and compare with 

these hybrid-DFT results; overall qualitative agreement is obtained.  

 A different approach to the calculation of charge transition energies is 

taken in this work (section 3.6). The formation energies at zero gate bias are 

calculated by adding two terms	퐴 + 훥. The former is the electron addition 

energy, while the latter is associated with the structural relaxation due to charge 

in the defect. We consider the formation of the neutral VGa first, obtained by 

adding an electron to the positive charge state of VGa, and subsequently relaxing 

the geometry of the simulation supercell. Taking the total energy difference 

between the neutral cell in its relaxed geometry and the neutral cell with the 

atomic positions fixed to those of the +1 charge state as the relaxation energy 

term 훥, we find 훥 = -0.01 eV (negative relaxation energy terms are expected 

when moving “downward” in the configuration coordinate diagram, see figure 

3.8). The DFT+퐺푊 approach yields a 퐺푊-corrected HOMO-LUMO separation 
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of 0.07 eV, bringing the formation energy of the neutral VGa defect to 0.06 eV. 

The -1 charge state is formed by adding an electron to the neutral defect. The 

DFT-calculated relaxation energy plus the GW correction to the electron addition 

energy brings 퐸 (푞 = -1) to 0.21 eV for the VGa defect. Both the charge state 

relaxation energies for this defect are relatively low, which is anticipated by the 

correspondingly small shift of atomic positions between each relaxed charge 

state.  

A brief explanation of the slope of 퐸 (푞,∆휀 ) now follows. For 

acceptor-like transitions in which, for example, a neutral defect acquires an 

electron from the surrounding bulk material or reservoir characterized by the 

Fermi level	휀 , the energy to form the bound state, or the work done in moving 

the electron from 휀  up to the lowest unoccupied defect level decreases with 

increasing	휀 . A similar line of reasoning explains why the formation energy of 

positive states (i.e. donor-like transitions from the neutral) increases with	휀 , and 

in general why the slope of 퐸 (푞,∆휀 ) is determined by the final charge state 

[113]. Plotting the formation energies against a linear scale which represents the 

change in		휀 		due to a gate bias as in figure 4.7 (pages 94-95), we see that charge 

transition levels can be expressed as 

 

																		ε / ’ =
퐸 (푞 ,∆휀 = 0)− 퐸 (푞, ∆휀 = 0)

푞 − 푞′
	,																				(4.2) 

 

since the transition occurs for the value of 	휀  at which the crossing of the 

energies occurs. For the VGa case	푞 = 0 and 푞’ = -1; hence, we find a charge 

transition between the neutral and negative states of VGa at 0.15 eV above the 

VBM. These findings suggest the neutral Ga vacancy exhibits acceptor-like 

behaviour in III-V materials, in qualitative agreement with previous 

computational studies [13, 41, 133].  

For the +1 charge state of the GaAs antisite in the relaxed configuration, 

an electron addition energy of 퐴 =	0.11 eV is obtained within the 퐺푊 
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approximation. Adding this to the structural relaxation energy of the neutral 

charge state results in 0.06 eV for the neutral formation energy of the GaAs 

antisite at zero gate bias. Forming the negative and positive charge states by 

adding and removing an electron to and from the neutral as described in section 

3.6, we find charge transition levels ε / 	and ε /  at 0.19 eV and 0.31 eV 

above the VBM, respectively.  

For the AsGa antisite the +1 and +2 states are both formed by successive 

removal of electrons starting from 푞 = 0. We find 퐺푊-corrected charge 

transition energies for AsGa slightly below midgap for the +2/+1 transition and 

close to the experimental conduction band edge for the +1/0 transition. The 

magnitude of 훥 reflects the degree of structural rearrangement between each 

charge state; the 훥 term averages at -97 meV for AsGa, while for GaAs the average 

is -49 meV. The values of all 퐺푊-corrected electron addition energies and the 

DFT-calculated relaxation energies are shown in tables 4.2 and 4.3. 

Defect q Rq     퐴 
VGa 0 R0 0.23 
 +1 R+1 0.07 

 
GaAs 0 R0 0.41 
 +1 R+1 0.11  

 
AsGa +1 R+1 0.28 

 

Defect q Rq     I 
GaAs 0 R0 -0.08  

 
AsGa 0 R0 -0.39 
 +1 R+1 -0.65 

 
Table 4.2 - Table (i) shows the electron addition energies (퐴) obtained using the GW 
approximation as described in section 3.6 and used to calculate the formation energies 
of neutral and negative charge states. Table (ii) shows the electron removal energies (퐼) 
obtained using the GW  approximation as described in section 3.6 and used to calculate 
the formation energies of positive charge states. Charge state is given by q, and Rq 
denotes the atomic configuration of the qth charge state. 

(i) 

(ii) 
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Defect 훥  (eV) 
VGa 퐸(푞 ,푅 ) −퐸(푞 ,푅 )  = -0.020 
 퐸(푞 ,푅 ) − 퐸(푞 ,푅 )  = -0.010 

 
GaAs 퐸(푞 ,푅 ) −퐸(푞 ,푅 )  = -0.045 
 퐸(푞 ,푅 ) − 퐸(푞 ,푅 )  = -0.050 
 퐸(푞 ,푅 ) −퐸(푞 ,푅 )  = -0.053 

 
AsGa 퐸(푞 ,푅 ) − 퐸(푞 ,푅 )  = -0.096 
 퐸(푞 ,푅 ) −퐸(푞 ,푅 )  = -0.086 
 퐸(푞 ,푅 ) −퐸(푞 ,푅 )  = -0.108 

 

Table 4.3 - Charge state relaxation energies calculated within DFT. The magnitude of 훥 
reflects the degree of structural relaxation. The values shown in this table are added to 
the electron addition (removal) energies of table 4.2 to obtain the formation energies of 
neutral and negative (positive) charge states. Note in all cases	훥 consists of total energy 
terms involving the same charge state. 

 
In order to investigate the calculated position of transition levels with respect to 

peaks in measured Dit for In0.53Ga0.47As/oxide interfaces [6], figure 4.7 presents 

the formation energies plotted against an energy scale set by the room 

temperature experimental bandgap 0.75 eV. The first graph represents the Ga 

vacancy, followed by the GaAs antisite, and finally the AsGa antisite. In figure 4.7 

the formation energy of each charge state is shown relative to the formation 

energy of the neutral charge state. Charge transition levels correspond to values 

of ∆휀  at which the slope of the lowest energy charge state changes. It appears 

that all defects studied here have at least one charge transition between 0.15 eV 

and 0.31 eV above the valence band edge. In particular, the AsGa antisite has a 

+2/+1 transition 0.28 eV above the VBM. Within the range of theoretical 

accuracy, this is consistent with the midgap peak of the measured Dit distribution 

[6, 35, 38, 47].  
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Figure 4.7 - VGa shown in (a), GaAs in (b), and (c) represents AsGa. For each defect, 푞-
state formation energies relative to neutral (푞 = 0) formation energy are plotted against 
the position of the Fermi level relative to the valence band edge. Encircled numbers 
denote charge state.  

 
Placing these values of ε / ’ on the graph reported by Komsa and Pasquarello 

[13], we can compare our results to the hybrid-DFT calculated quantities (figure 

4.8). Komsa and Pasquarello employ the HSE hybrid functional to treat 

exchange and correlation effects and correct the DFT bandgap error [13, 131]; it 

should be mentioned that the same functional was used in section 4.2.1 to 

compare satellite valleys calculated using HSE and DFT+퐺푊. Good agreement 

is obtained for transition levels near the valence and conduction band edges, 

although midgap levels are slightly lower compared to the hybrid-DFT results. 

Our bulk defect transition levels agree with hybrid-DFT results to within 0.1-0.2 

eV.  

+2 

+1 

0 

AsGa 

(c) 
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Figure 4.8 - Comparison of our DFT+GW calculated charge transition levels (pink, 
purple and turquoise lines for VGa, GaAs, AsGa, resp.) with transition levels calculated 
within hybrid DFT (reproduced from [13]). For the GaAs transition levels, the defect 
center is surrounded by 2 In and 2 Ga atoms, i.e. In0.5Ga0.5 NN (see text). 

 
We also investigated the effect of cation disorder on charge transition 

levels. For defects surrounded by cations, such as the GaAs antisite, the local In 

and Ga content could have an effect on formation energies [134] and hence 

charge transition levels. To examine the influence of local cation disorder, the 

atoms surrounding the GaAs antisite are replaced with either all Ga or all In, 

while the InxGa1-x content throughout the entire supercell is maintained at x = 

0.53. When the defect is surrounded by four Ga nearest neighbors (denoted as 

In0.0Ga1.0 NN from here on) the 0/-1 charge transition level relative to the VBM 

ε0/-1(GaAs)
 
– Ev where Ev is the valence band maximum increases to 0.37 eV 

compared to 0.31 eV when there are 2 In and 2 Ga nearest neighbors (In0.5Ga0.5 

NN). The ε+1/0(GaAs)
 
– Ev charge transition level moves much closer to the 

valence band, to 0.02 eV for In0.0Ga1.0 NN. These changes, relative to the case of 

In0.5Ga0.5 NN, occur mainly through a decrease by an average of 76 meV in the 

magnitude of the electron addition energies in the positive charge state, 퐴 푞 =

+1,푅  and 퐴 푞 = +1,푅 , while the electron addition energy of the 

neutral charge state 퐴 푞 = 0,푅  decreases by 32 meV. All the relaxation 

energies maintain their values to within 10 meV compared to the values for 

In0.5Ga0.5 NN.  When the GaAs antisite is bonded to 4 In atoms (In1.0Ga0.0 NN) 

the ε0/-1(GaAs)
 
– Ev transition level again increases by ~50-60 meV compared to 

the In0.5Ga0.5 NN case, to 0.37 eV. The +1/0 charge transition level ε+1/0(GaAs)
 
– 
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Ev = 0.16 eV for In1.0Ga0.0 NN which is 30 meV lower than the In0.5Ga0.5 NN 

case. While the 0/-1 charge transition level is very close for the two cases 

In0.0Ga1.0 NN and In1.0Ga0.0 NN, the latter exhibits a slightly increased value of 

퐴 푞 = 0,푅  (by 11 meV) compared to In0.5Ga0.5 NN, while the value of  

퐴 푞 = +1,푅  decreases by 58 meV relative to In0.5Ga0.5 NN and 퐴 푞 =

+1,푅  increases by 11 meV. Again, all relaxation energies for In1.0Ga0.0 NN 

change by less than 10 meV relative to In0.5Ga0.5 NN. The largest change in the 

charge transition levels of this defect as a function of local cation disorder occurs 

for the +1/0 transition level which is 0.02 eV above the VBM when bonding to 4 

Ga atoms, compared to 0.19 eV above the VBM when bonding to 2 In and 2 Ga. 

Local cation disorder seems to have a greater effect for donor-like transitions of 

GaAs, while the acceptor-like transitions change by less than 60 meV.  

These findings could have consequences for the donor-like feature of the 

experimental Dit which extends into the valence band (see figure 4.9 on page 

99). Local cation disorder can shift this donor-like transition state within a range 

of ~100-200 meV, yet always remain within the lower half of the bandgap (see 

figure 4.9). Therefore one could conclude that the Dit feature extending into the 

valence band may have broadening contributions from variable bonding 

arrangements of anion-situated defects due to the random cation alloy. 

 

4.3.4 Conclusions 
 

In this chapter, calculations of the pristine bulk InGaAs electronic structure were 

carried out using LDA-DFT supplemented by the 퐺푊 approximation which 

corrects for the intrinsic limitations of the LDA and the KS-DFT formalism. 

Using a two-atom VCA model to test the DFT+퐺푊 approach, good qualitative 

agreement is obtained for the bandstructure when comparing DFT+퐺푊 to 

empirical pseudopotential calculations, and reasonable quantitative agreement is 

obtained between hybrid-DFT and DFT+퐺푊, as compared to the position of the 

Γ, X and L satellite valleys. This provides a good preliminary comparison of the 
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efficacy of these methods for calculating charge transition levels, as satellite 

valleys play a significant role in the filling/emptying of states at the 

semiconductor surface as a function of gate voltage [130, 135]. Moving to a 

more sophisticated 64-atom model in order to explicitly account for the InGa 

random alloy sublattice, the small overestimation of the bandgap obtained using 

the VCA is largely eliminated and we find excellent agreement with the 

experimental low temperature bandgap. 

In the next section, structural and electronic properties of point defects 

are presented. To the best of our knowledge, this is the first application of the 

퐺푊 approximation to point defects in bulk In0.53Ga0.47As. We find semi-

quantitative agreement between our DFT+퐺푊 calculations and results obtained 

using hybrid functionals [13]. Good agreement is seen for the shallow charge 

transitions, while the deeper midgap transitions are lower with respect to the 

hybrid-DFT results by up to 0.16 eV. Thus, our results are largely consistent with 

the conclusion of ref. [13] in which the As antisite was assigned as the most 

likely physical origin of observed midgap Dit peak. However, a consistent 

comparison of our bulk results with a surface model, in particular a surface 

terminated with a high-k oxide will be used to explore this conclusion. Isolated 

As dimers have also been invoked [43] to explain observed interface state 

density profiles in GaAs; such a defect is not suitable for modeling in a bulk 

simulation cell, which further motivates a study involving a surface model.  

 All of the defects studied in this work exhibit charge transition energies 

in the vicinity of the experimental Dit feature which extends into the valence 

band. In addition, our calculations show that local alloying has a significant 

effect on defect levels. These results raise the question as to whether a range of 

different defects, including defects affected by bonding disorder due to the 

cation alloy, could be responsible for this part of the measured data. The charge 

transition levels calculated in this thesis are compared to the measured interface 

state density [6] in figure 4.9.  
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Figure 4.9 - Comparison of our DFT+GW calculated charge transition levels (green, 
purple, and turquoise lines for GaAs, VGa, AsGa, resp.) with experimentally inferred 
distribution of interface states. Experimental data and fits to data reproduced from [6]. 
For GaAs, solid lines denote In0.5Ga0.5 NN, dashed lines denote In0.0Ga1.0 NN, and dotted 
lines denote In1.0Ga0.0 NN. All charge transition levels are given with respect to Ev.  
 

The black curve is inferred from measurements [6] taken on an MOS stack 

containing an In0.53Ga0.47As-Al2O3 interface. While these measurements were 

unable to ascertain the nature of defects giving rise to the peaks, comparisons 

with other experimental works [35, 38] indicate they are independent of the 

deposited oxide and are thus likely associated with the substrate. What is still 

unclear however, is whether a single defect or multiple defects are responsible, 

and whether these defects are bulk-like or surface-like, i.e. far enough away 

from the oxide such that the local chemical environment can be considered as a 

bulk material, or close enough to the surface that the termination of bulk charge 

balance by bonding to the oxide has an effect on the transition levels. Moreover 
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for a given defect, what is the sensitivity of ε / ’ to proximity to the oxide 

interface? To investigate these issues we will present a computational study of a 

slab model consisting of (100) In0.53Ga0.47As passivated with Al2O3 (chapter 5).  
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Chapter 5 
InGaAs Surface Passivated with 
Al2O3 
 

5.1 Introduction 
 

The metal-oxide-semiconductor (MOS) capacitor consisting of an InGaAs 

semiconductor and a high-k oxide has been the subject of intense research in 

recent years [6, 30, 35, 47, 136]. The performance of MOSFETs is significantly 

affected by the presence of defects at the semiconductor-oxide interface, and the 

MOS capacitor is an ideal system for studying the sensitivity of MOSFETs to 

these interfacial defects [137]. These defects may consist of charge-trapping, 

recombination, as well as compensation centers. Thus, identifying the physical 

nature of such defects, both their electronic and atomic structure, is crucial to 

optimizing the electrical performance of devices and remains one of the goals of 

first-principles methods.  

 In this chapter, a model of the (100) oriented In0.53Ga0.47As surface 

passivated with Al2O3 is presented and utilized to calculate the experimentally 

detectable charge transition levels of point defects. Comparing with the results 

of chapter 4, this study provides a means to compare and relate properties of 

defects in a bulk chemical environment with those either within a few bond 

lengths from or bonding directly to the gate dielectric. Such a study is highly 

noteworthy since in MOS stacks the band edges relative to the Fermi level of the 

semiconductor can change when moving from the bulk to the surface. The 

bonding arrangement of the semiconductor bulk is terminated at the surface, and 

the surface termination by necessity depends on a large number of conditions: 

surface preparation techniques, cleavage orientation, the oxide material, post-

deposition processing, just to name the most significant influences. Hence, it is 

easy to appreciate that many important properties such as the distribution of 

defect states, their atomic structure, and of course the charge transition levels 
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can vary widely between a given defect located in the bulk or at the 

semiconductor/oxide interface. Assigning a particular charge transition level 

calculated in a bulk model to a measured Dit feature is thus incomplete without 

comparison to a semiconductor/oxide interface model.  

 

5.2 Passivation Mechanisms 
 

In contrast to Si or Ge, III-V compound semiconductors exhibit a polarity in 

their bonding arrangement; group V anionic species such as As exchange charge 

with group III cations such as Ga or In to achieve a charge balance within the 

bulk of the material. Cleaving along certain crystallographic planes such as 

(100) results in termination of the bulk structure with a monolayer of either 

cations or anions. Therefore these surfaces are polar in nature, and the excess 

negative or positive charge drives the creation of electrically active defects in 

order to return the Fermi level to within the bandgap [138]. In other words, for 

such semiconductors, polarity driven surface reconstruction occurs in the 

absence of a stable passivating material [9, 139]. Unlike Si which has 1 electron 

per sp3 hybrid orbital, the cations formally have 3/4 and the anions 5/4 of an 

electron per orbital. Complex reconstructions occur at (100) III-V surfaces as a 

result of these different electron occupancies.  

As discussed by Robertson and Lin, this surface reconstruction can be 

seen as an auto-compensation response to the electron-counting rule [9]. Using 

GaAs as an example, the electron-counting rule says that at (100) oriented 

surfaces all Ga dangling bonds must be completely empty, all As dangling bonds 

must be completely full, and defects will be created to establish a neutral 

surface, ensuring the Fermi level lies in the bandgap; e.g. if the surface “starts” 

with an excess of electrons, acceptor defects will be created to receive the excess 

electrons and bring the Fermi level out of the conduction band and into midgap. 

Robertson and Lin argue that this is the mechanism which drives the formation 

of gap states during the deposition and passivation processes. To achieve 
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insulating, abrupt interfaces with oxides, it is thus necessary to use an oxide with 

an electron count that corresponds to the monolayer that terminates the III-V 

surface.  

Following ref. [9], we find that the trivalent oxide Al2O3 exhibits this 

property; the electron count of the O layer in Al2O3 is the equivalent to that of 

the As layer in In0.53Ga0.47As, and the Al layer in Al2O3 has the same electron 

count as the cation layer in In0.53Ga0.47As. The remaining O dangling bonds can 

then be passivated with H, and a neutral, insulating, atomically abrupt interface 

with InGaAs can be achieved. We calculate relaxed slabs of As-rich (100) 

In0.53Ga0.47As passivated with the Al2O3 structure proposed by Robertson and 

Lin, an example of which is shown in figure 5.1 below (methods and numerical 

details are described in the next section). An As-rich model is selected for 

consistency with experimental conditions which are tuned to achieve As-rich 

(100) In0.53Ga0.47As [6, 30, 140]. To emulate the continuation of bulk charge 

transfer, we terminate the bottom As-terminated slab face with pseudo-

hydrogens consisting of noninteger nuclear charge of 0.75. 

 

 

 

 
Figure 5.1 - Relaxed slabs of (100) InGaAs passivated with Al2O3, consisting of 152 
atoms. 푥,	푦, and 푧 supercell directions are shown at the top. White, green, and red 
spheres indicate H, Al, and O. Pink, blue and brown spheres indicate As, In, and Ga. 
Grey spheres on the bottom are for pseudo-hydrogens with valence = 0.75.  
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The graph below compares the local density of states of the Al2O3 layer with that 

calculated by Robertson and Lin [9] for (100)GaAs:Al2O3; despite the 

comparison between different semiconductors, as well as different calculation 

methods (ultrasoft PBE-GGA and plane wave cutoff energy ~28 Rydbergs used 

by Robertson and Lin [9], we use norm-conserving PZ-LDA and 60 Rydbergs), 

our model also exhibits no states within the bandgap, in qualitative agreement 

with ref. [9]. 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.2 - DOS of one layer of Al2O3 bonding to (100) GaAs calculated by Robertson 
and Lin (bottom black curve of (a)) compared with our calculated DOS of one layer of 
Al2O3 bonding to (100)In0.53Ga0.47As (b). Overall qualitative agreement is obtained. Top 
graph (a) reproduced from ref. [9]. 
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5.3 Defects - As2, GaAs and AsGa 
 

This section describes the computational modeling of point defects incorporated 

into Al2O3 passivated (100) In0.53Ga0.47As. This work is an attempt to understand 

the atomic structure of defects giving rise to measured CV responses at InGaAs-

high-k oxide interfaces. Point defects native to InGaAs were chosen due to the 

experimental indication that the measured responses are independent of the 

oxide [6, 35, 38]. The As dimer, As2, provides a useful comparison with recent 

computational studies of InGaAs surfaces using hybrid-DFT [32]. Using the 

results of the previous chapter, the antisites allow for a comparison of transition 

levels between bulk-like and surface-like defects. Initially, defects were placed 

on the top monolayer and bonded directly to Al atoms at the surface. This 

resulted in charge transition levels resonating with the host bands. However, 

moving defects down from the interface by just a few monolayers results in a 

dramatic shift of the transition levels bringing them into the bandgap and much 

closer to the corresponding bulk transition levels.  

The size of supercells adopted here for the structural optimization of 

defects allows for the use of Zunger’s special quasi-random structures (SQS) 

[141, 142] to define the cation sublattice, leading to accurate defect properties 

such as atomic structure and energy differences. The 64 atom supercells used in 

the previous chapter are too small to adopt the special quasi-random structure 

while also maintaining a cation composition of 53% In and 47% Ga, thus a 

random configuration is chosen in that case. Fortunately, the 304 atom supercells 

used for the surface model allows for the adoption of SQS-8 while also 

maintaining the desired cation composition. Also, as described in chapter 3 the 

expression for charge state formation energies indicates that the error associated 

with electrostatic interaction of point defects may cancel; specifically, in the 

relaxation energy term 훥 which consists of differences between simulation cell 

energies involving the same charge state. We extrapolate the energies of charged 

cells to infinite defect separation to show that these interactions are practically 
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negligible compared to elastic effects, which in turn are minimized in the 

supercells used to calculate 훥. As in the case of bulk defects, the 퐺푊 

approximation is utilized here to calculate the electron addition energy required 

to obtain the charge state formation energy.  

 

5.3.1 Methods 
 

For the structural relaxation of point defects, we employ 304 atom supercells 

(208 InGaAs, 40 Al2O3, 24 H and 32 pseudo-H) in which periodic images of 

defects are separated by 16 Å in the	푥 and	푦 directions. Periodic images of slabs 

are separated by approximately 18 Å of vacuum equivalent to almost 13 

monolayers in the	푧 direction, while 13 monolayers of InGaAs separate each slab 

face (figure 5.1, page 103). These distances minimize the interaction between 

periodic images of defects while maintaining a reasonable computational 

expense. Relaxation of the atomic geometries plus the supercell is performed 

before inserting point defects in order to reduce errors due to spurious elastic 

effects [5]. Following the full structural relaxation of the pristine cell, point 

defects are inserted and the atomic geometries re-optimized. 

The approach of special quasi-random structures (SQS) developed by 

Wei, Zunger and co-workers [141] is utilized for the cation sublattice. The SQS 

method allows one to emulate as closely as possible the statistical correlations of 

an infinitely large random alloy of In0.53Ga0.47As for the cation distribution using 

a finite supercell. To achieve this, Zunger et al envisage a binary substitutional 

alloy with N sites occupied by one of two atoms, atoms A or B. Defining a 

configuration as one of the 2N
 distinct arrangements of this (sub)lattice, they 

calculate configurational averages of lattice properties to find those 

configurations whose properties best match those of the ensemble average of a 

random alloy distribution [141]. By stacking the (113) cation planes in the order 

of 2A1B2A3B (see figure 5.3, page 107 for clarification of notation) where A 

denotes In atoms and B denotes Ga, as shown in figure 5.3, the “SQS-8” 

configuration is achieved [141].  
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Figure 5.3 - InGaAs surface structure oriented to show the stacking arrangement of 
(113) cation planes. The latter are ordered as prescribed in the SQS-8 configuration 
[141]. A indicates In atoms and B indicates Ga atoms. Al2O3 and pseudo-hydrogen 
passivation are omitted for clarity.   

 

Norm-conserving pseudopotentials, the PZ-LDA form of the exchange-

correlation functional [89, 123], 60 Rydberg kinetic energy cutoff, and a 2x2x1 

mesh for the kx × ky × kz grid of k-points (vacuum in the z-direction) are used for 

the optimization of atomic positions within DFT. The 퐺푊 calculations involve 

1772 unoccupied states and 5041 elements in the plasmon-pole approximated 

dielectric response matrix	휀퐆,퐆 (퐪,퐸), and electron addition energies are 

calculated as the 퐺푊-corrected separation between highest occupied and lowest 

unoccupied states at the Γ-point. Due to the computational demand, 152 atom 

supercells (see figure 5.1) of half the width of the 304 atom cells were used to 

compute the 퐺푊-correction; smaller supercells for the electron addition energy 
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term have been used previously [22] when employing the 퐺푊-correction for 

both neutral and charged cells. The justification for the use of the smaller cell 

being the lack of electrostatic (Hartree) contributions to the self-energy 

correction 훴, i.e. the latter only involves exchange and correlation terms so the 

supercell size should not significantly affect 훴. 

 As was described in chapter 4 for the case of a bulk simulation cell, we 

also ensure the validity of the plasmon pole approximation (PPA) to the 

dielectric function for the case of the Al2O3 passivated (100) In0.53Ga0.47As 

surface. This is done by plotting the dielectric response as a function of energy 

[50] as shown in figure 5.4. The single peak of the imaginary part of the inverse 

dielectric function at the plasmon energy reveals the applicability of the PPA to 

this system [50]. 

 

 
Figure 5.4 - Real and Imaginary parts at the Γ-point component (G = G = 0) of the 
inverse dielectric function, obtained from the Al2O3 passivated (100) In0.53Ga0.47As 
surface model, plotted as a function of energy.  
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5.3.2 Results 
 

Before discussing the structural and charge transition properties of 

surface defects, we note that the charge state formation energies contain a term 

involving the energy difference between simulation cells that have the same 

charge state. Thus errors associated with electrostatic interactions may 

systematically cancel. This has been suggested in a review by Van de Walle and 

Neugebauer [5] in their discussion of the accuracy of charge transition levels. In 

order to investigate this suggestion, we take the GaAs defect at the -1 charge state 

as an example, and in figure 5.5 plot the difference in supercell energies 

훥 = 퐸(푞 ,푅 )− 퐸(푞 ,푅 ) versus the inverse of the square root of the 

supercell surface area 푆 / 	where 푆 = 푥 푦  and 푥  and 푦  are the 

dimensions of the supercell parallel to the surface plane. To this end four (100) 

In0.53Ga0.47As:Al2O3 supercells are constructed, consisting of 72, 114, 152, and 

304 atoms corresponding to the four data points on each graph of figures 5.5, 

5.6, and 5.7. The latter two are plots of the energy differences for the neutral cell 

relaxations		훥		 = 	퐸(푞 ,푅 )− 퐸(푞 ,푅 )			and			훥		 = 	퐸(푞 ,푅 ) − 퐸(푞 ,푅 ), 

versus		푆 / . In these cases the energy differences are between two uncharged 

cells so there is no spurious electrostatic component. 

 Comparison between figures 5.5, 5.6, and 5.7 reveals a qualitatively 

similar variation of the relaxation energy as a function of supercell size for all 

cases of charged and uncharged supercells. In fact, the neutral cell relaxation 

corresponding to a transition from the negative state (figure 5.6) yields the 

largest variation as a function of surface area. This indicates that the spurious 

Coulombic interactions between periodic defect images in charged supercells are 

negligible compared to elastic interactions. The latter are, within the 

computational constraints, minimized for the largest supercell due to the large 

separation (16 Å) between defect images. Given the accepted range of error of 

~100 meV for these types of calculations [3, 5, 32, 44], in addition to the typical 

error bar (~50-100 meV) of the experiments with which we are comparing our 
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results [47, 143], the large computational expense associated with extrapolating 

the energies of all charge states of all defects as performed here is unjustified. 

Therefore, as suggested by the recent literature [5] we omit the electrostatic 

correction term from the formation energy assuming a cancellation between the 

electrostatic components of the two total energies of the equally charged cells. 

Due to the lack of a significant impact of both Coulombic and elastic 

interactions for the largest surface area (corresponding to a 304 atom supercell), 

this supercell is adopted for the calculation of the relaxation energy term of the 

formation energies (see section 3.6) of all surface defects. The partitioning of 

formation energies into an electron addition (퐺푊) component and a geometry 

relaxation (DFT) component enables the use of like-charge cells for the latter 

term, resulting in a fortuitous cancellation of the charged defect-charged defect 

interactions within the periodic cells. 

 

 

 
 

Figure 5.5 - Energy difference 훥 = 퐸(푞 ,푅 )− 퐸(푞 ,푅 ) versus 푆 / . Variation 
in this value from the smallest to largest supercell is 68 meV. 
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Figure 5.6 - Energy difference 훥 = 퐸(푞 ,푅 )− 퐸(푞 ,푅 ) versus 푆 / . Variation in 
this value from the smallest to largest supercell is 85 meV. 

 

 
Figure 5.7 - Energy difference 훥 = 퐸(푞 ,푅 )− 퐸(푞 ,푅 ) versus 푆 / . Variation in 
this value from the smallest to largest supercell is 55 meV. 

 

 

 

 

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0
0.03 0.06 0.09 0.12 0.15

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0
0.03 0.06 0.09 0.12 0.15

푆 / 	(Å-1) 
훥 

  (
eV

) 

푆 / 	(Å-1) 

훥 
  (

eV
) 



112 
 

5.3.2.1 Structural Properties 
 

Focusing on the As dimer defect first, we create this defect using the model of 

Miceli and Pasquarello [32]. Displacing the oxide atoms in the (110) direction 

allows for the formation of two As-As and two Al-Al bonds. An O atom is 

inserted between both Al-Al bonds and one of the As-As bonds leaving a single 

As-As bond at the semiconductor-oxide interface (figure 5.8 (a). page 114). 

Relaxing this defect in the neutral charge state,	푞	 =	0, results in an As-As bond 

length of 2.56 Å. Charging to 푞	 =	-1 increases the As-As bond length to 2.98 Å. 

This is in good agreement with the work of Miceli and Pasquarello in which an 

As-As bond length of 2.56±0.01 Å for 푞	 =	0 was reported, which increased to 

2.95±0.03 Å after relaxing in the negative charge state [32]. Charging to 푞	 =	+1 

results in a small reduction to 2.54 Å in the As-As bond length compared to the 

푞	 =	0 case. Thus a much larger energy difference is expected for the neutral to 

negative relaxation 훥(푅 ,푅 ,푞 ) than the neutral to positive 

relaxation		훥(푅 ,푅 , 푞 ). 

Turning to the GaAs defect, we find that in the neutral charge state the 

defect moves up towards the oxide relative to the unrelaxed substitutional site 

with an tendency to move away from Al and towards the nearest OH group (see 

figure 5.8 (b)); the relaxed GaAs-OH and GaAs-Al separations are 2.12 Å and 

2.59 Å respectively, compared to the corresponding As-OH and As-Al distances 

which average to 3.42 Å and 2.42 Å, respectively. In analogy to the bulk Ga 

antisite, the surface Ga antisite moves towards the nearest Ga neighbor and away 

from the nearest In neighbor relative to the pristine As site. At variance with the 

bulk case however, the relaxed surface GaAs-Ga distance is 0.07 Å less than the 

corresponding surface As-Ga bond length with a 0.08 Å reduction in the 

corresponding bond length for the bulk GaAs case. The relaxed surface GaAs-In 

distance increases by 0.16 Å relative to the corresponding surface As-In 

separation compared to a 0.04 Å increase of the same bond length in the bulk 

case. Charging to 푞	 =	+1 results in a further contraction of the GaAs-OH 

distance to 2.09 Å, while the GaAs-Ga and GaAs-In separations both increase by 
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an average of 0.02 Å (1%) relative to the neutral case. Adding an electron to the 

neutral state to bring 푞 to -1 results in a GaAs-OH distance of 2.13 Å, a slight 

increase relative to 푞 = 0. The GaAs-Ga and GaAs-In separations both decrease by 

an average of 0.02 Å relative to 푞 = 0; i.e. the 푞 = -1 relaxation is almost the 

same magnitude but opposite direction compared to  푞 = +1. These relaxations 

occur mainly through a movement of the defect center towards OH and away 

from the cations for 푞	 =	+1, and away from OH and towards the cations for 

푞	 =	-1. 

 The surface AsGa is also qualitatively similar to bulk AsGa in terms of 

structural rearrangement (figure 5.8 (c)). The AsGa-As bonds are on an average 

0.12 Å greater than the pristine Ga-As bonds. Removing an electron and 

relaxing in the positive charge state results in 0.02 Å reduction in the AsGa-As 

bond lengths relative to 푞 = 0, and removing another electron to bring 푞 to +2 

yields a further 0.02 Å shortening of AsGa-As bond lengths relative to 푞 = +1. As 

these charged relaxations occur through a movement of the four surrounding 

anions and an accompanying local displacement of the oxide while the defect 

site remains more or less fixed, larger 훥 terms are expected for the As antisite 

than for the Ga antisite.  
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Figure 5.8 - Relaxed structures of neutral point defects in (100) InGaAs:Al2O3. Blue, 
brown and, pink spheres represent In, Ga, and As respectively. Red, white and green 
spheres represent O, H, and Al, respectively. For (a), the As atoms comprising the As 
dimer are highlighted in yellow. For (b) and (c), the Ga antisite and the As antisite, 
respectively, are highlighted in yellow. Arrows indicate the direction of movement of 
atoms for relaxation due to positive (turquoise dotted) and negative (orange dashed) 
charges. 

(a) 

(b) 

(c) 
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5.3.2.2 Charge transition levels 
 

In ref. [32] the ε /  charge transition level of an As dimer inserted into a (100) 

GaAs-Al2O3 interface in which up to 2 of the nearest neighbor Ga atoms are 

replaced by In was studied. The authors obtain a value of ε /  = 0.61 eV above 

the conduction band edge, which they find to be largely independent of the local 

In configuration [32]. Thus, they rule out the As2 defect as a candidate for 

midgap Dit. We calculate the	ε / 	and ε /  transition levels of this defect in a 

similar fashion to the bulk charge transition levels of chapter 4. Using the 퐺푊 

approximation we obtain an electron addition energy of the neutral charge state 

퐴(푞 ,푅 ) = 2.16 eV (table 5.1, page 120). Taking the energy difference 

between two negatively charged cells with atomic positions optimized to neutral 

and negative charge state configurations as the 훥 term (table 5.2, page 121), 

 

훥(푅 ,푅 , 푞 ) = 	퐸(푞 ,푅 )− 퐸(푞 ,푅 )		 

 

and adding this to the electron addition energy of the neutral state	퐴(푞 ,푅 ), we 

find 퐸 (푞 ) = 퐴(푞 ,푅 ) + 	훥(푅 ,푅 , 푞 ) = 1.87 eV ≡ formation energy 

of the negative charge state at zero gate bias. The neutral charge state is formed 

by adding an electron to the positive state and subsequently relaxing, yielding 

퐸 (푞 ) = 퐴(푞 ,푅 ) + 	훥(푅 ,푅 , 푞 ) = 0.38 eV. Taking the negative of 

the electron addition energy of the positive charge state in the atomic 

configuration of 푞 = 0, i.e. −퐴[푞 ,푅 ], as the electron removal energy of the 

neutral charge state, i.e. 퐼[푞 ,푅 ] (table 5.1) and adding this to the relaxation 

energy between the neutral and positive charge state configurations with 푞 fixed 

to +1 i.e. 훥(푅 , 푅 , 푞 ) (table 5.2) yields 퐸 (푞 ) = -0.34 eV. The +1/0 

charge transition level is obtained by taking the difference between 퐸 (푞 ) 

and 퐸 (푞 )	at zero gate bias 
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																		ε / =
퐸 (푞 , ∆휀 = 0)− 퐸 (푞 ,∆휀 = 0)

푞 − 푞 		, 

 

 yielding a positive to neutral charge transition level of ε / 	 − 퐸 =	0.71 eV 

where 퐸  is the valence band maximum (figure 5.10 (a), page 122). Taking the 

difference in formation energies between the negative and neutral charge states 

at zero gate bias  

 

ε / =
퐸 (푞 , ∆휀 = 0)− 퐸 (푞 ,∆휀 = 0)

푞 − 푞  

 

yields ε / − 퐸 	= 1.49 eV or 0.74 eV above the conduction band minimum, in 

reasonable agreement with ref. [32]. 

 The formation energies and charge transition levels of the other defects 

are calculated in a similar manner to that described above. For the GaAs antisite 

bonding to Al2O3, the relaxed positive charge state exhibits a	퐺푊-corrected 

electron addition energy of 0.56 eV (table 5.1). Relaxing in the neutral charge 

state and adding the total energy difference to 퐴(푞 ,푅 ) results in a formation 

energy of 퐸 (푞 ) = 0.52 eV at zero gate bias. Comparing this with the 

formation energy of the negative charge state reveals a neutral to negative 

charge transition level of ε / − 퐸  = 1.45 eV. Removing an electron from the 

neutral charge state, taking  −퐴(푞 ,푅 ) =		퐼(푞 ,푅 ) (table 5.1), relaxing in the 

positive state, and taking the difference between 퐸 (푞 ) and 퐸 (푞 ) at 

∆휀  = 0 results in ε / − 퐸  = 1.06 eV (figure 5.10 (b)). Thus, as in the case of 

the As dimer which is also bonding to Al2O3, this defect exhibits charge 

transition levels residing within the conduction band of In0.53Ga0.47As and does 

not display defect levels which could contribute to the experimental midgap Dit 

when bonding to the oxide.  

 Turning now to the AsGa antisite reveals the same qualitative picture as 

the GaAs antisite and the As dimer; defects in close proximity to the oxide, either 

bonding directly or up to one monolayer away from the oxide, do not exhibit 
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levels which correlate with the experimental distribution of midgap interface 

states. First, we note again that in qualitative agreement with [13] we find a 

+2/+1 charge transition level near midgap at ε / − 퐸  = 0.28 eV for the AsGa 

antisite located in a bulk simulation cell (see chapter 4). Comparing to the bulk 

case, the charge transition levels are shifted into the semiconductor host bands 

when the defect is in close proximity to the oxide. Specifically, ε / − 퐸  = 

1.27 eV while ε / −퐸  = -0.06 eV for the AsGa antisite near the oxide (figure 

5.10). It should be noted that this defect does not bond directly to Al2O3 in the 

As-terminated (100) In0.53Ga0.47As surface (see figure 5.8 (c)). The shifts in 

charge transition level between bulk- and surface-modeled AsGa are smaller than 

the charge transition level shifts for the bulk- and surface-modeled GaAs antisite 

(compare figure 5.10 on pages 122-123 with figure 4.7 on pages 94-95). The 

latter is bonding directly to Al and exhibits charge transition level shifts of 0.9-

1.0 eV between the bulk and surface models. The diagram below (diagram 5.1) 

shows the difference in charge transition levels for defects in bulk and surface 

models.  

 
Diagram 5.1 - Comparison of charge transition levels calculated in bulk In0.53Ga0.47As 
and in the Al2O3 passivated (100) In0.53Ga0.47As surface. The bulk bandgap calculated 
within DFT+GW (see section 4.2) is also shown. The graph on the left represents the 
experimentally inferred Dit distribution extracted by Djara et al [6]. 
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This behaviour prompts a quantitative investigation of the charge transition level 

as a function of distance from the oxide. The GaAs antisite is chosen as the test 

case for this investigation, as this allows for an analysis of the effect of bonding 

directly to the oxide, compared to an entirely bulk-like environment. Starting 

from the relaxed pristine cell, an As atom is exchanged for a Ga atom in the next 

As layer “down” from the oxide (see figure 5.9).  

 

 

 
Figure 5.9 – (a) GaAs antisite located on the atomic layer which binds to Al2O3. (b) GaAs 
antisite located 1 As layer “down” from the oxide. For (a) the antisite is bonding to 2 
Al, 1 In and 1 Ga, for (b) the antisite bonds to 2 Ga and 2 In (only 1 GaAs-In bond 
shown here). Blue, brown and pink spheres represent In, Ga, and As respectively. Red, 
white and green spheres represent O, H, and Al, respectively. The GaAs antisite defect is 
highlighted yellow in both (a) and (b). 

(a) 

(b) 
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Calculating the charge transition levels as described above, we note a significant 

reduction in the electron addition and removal energies (table 5.1) compared to 

values obtained when the antisite is bonding directly to Al2O3. The largest 

reduction of 1.73 eV occurs for the neutral charge state leading to a 

correspondingly large shift of the neutral to negative charge transition level, 

resulting in ε / − 퐸  = 0.2 eV for GaAs antisite formed in the 2nd As layer 

down from Al2O3 (figure 5.10, page 123). The latter is much closer to the 

corresponding charge transition level in the bulk case (0.31 eV, figure 4.7 (b) on 

page 94) compared to the value obtained when bonding to Al2O3. A large shift 

towards the valence band is also demonstrated by the positive to neutral charge 

transition level of the GaAs antisite not bonding to the oxide compared to the 

case when the defect is bonding to Al2O3. We calculate a value of ε / − 퐸  = 

0.08 eV for this case (figure 5.10). While these values are closer to the 

corresponding values in the bulk case (0.19 eV), we consider them too close to 

the valence band to explain the midgap Dit peaks [6, 35, 38, 47] observed in 

experiment (see figure 5.12, page 126). Our calculations do indicate however 

that bonding to the oxide plays a significant role in the position of defect states, 

particularly those close to or inside the valence and conduction bands.  
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Defect q Rq     퐴 
As2 0 R0 2.16 
 +1 R+1 0.39 
    
GaAs (a) 0 R0 2.01 
 +1 R+1 0.56 
    
AsGa +1 R+1 0.89 
    
GaAs (b) 0 R0 0.28 
 +1 R+1 0.07 

 

 
Defect q Rq     I 
As2 0 R0 -0.32  

 
GaAs (a) 0 R0 -0.52  

 
AsGa 0 R0 -0.37 
 +1 R+1 -0.45 
    
GaAs (b) 0 R0 -0.03 

 
Table 5.1 - Table (i) shows the electron addition energies (퐴) obtained using the GW 
approximation as described in section 3.6 and used to calculate the formation energies 
of neutral and negative charge states. Table (ii) shows the electron removal energies (퐼) 
obtained using the GW approximation as described in section 3.6 and used to calculate 
the formation energies of positive charge states. GaAs (a) refers to the antisite bonding to 
the oxide while GaAs (b) denotes the antisite placed in the next As layer “down” from 
the oxide. Charge state is given by q, and Rq denotes the atomic configuration of the qth 
charge state. The corresponding bulk values can be found in table 4.2, page 92. 

 
 
 

(ii) 

(i) 
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Defect 훥  (eV) 
As2 퐸(푞 ,푅 ) −퐸(푞 ,푅 )  = -0.287 
 퐸(푞 ,푅 ) − 퐸(푞 ,푅 )  = -0.015 
 퐸(푞 ,푅 ) −퐸(푞 ,푅 )  = -0.018 
    
GaAs (a) 퐸(푞 ,푅 ) −퐸(푞 ,푅 )  = -0.037 
 퐸(푞 ,푅 ) − 퐸(푞 ,푅 )  = -0.041 
 퐸(푞 ,푅 ) −퐸(푞 ,푅 )  = -0.025 

 
AsGa 퐸(푞 ,푅 ) − 퐸(푞 ,푅 )  = -0.174 
 퐸(푞 ,푅 ) −퐸(푞 ,푅 )  = -0.181 
 퐸(푞 ,푅 ) −퐸(푞 ,푅 )  = -0.046 
    
GaAs (b) 퐸(푞 ,푅 ) −퐸(푞 ,푅 )  = -0.066 
 퐸(푞 ,푅 ) − 퐸(푞 ,푅 )  = -0.058 
 퐸(푞 ,푅 ) −퐸(푞 ,푅 )  = -0.041 

 

Table 5.2 - Charge state relaxation energies calculated within DFT. The magnitude of 훥 
reflects the degree of structural relaxation. The values shown in this table are added to 
the electron addition (removal) energies of table 5.1 to obtain the formation energies of 
neutral and negative (positive) charge states. GaAs (a) refers to the antisite bonding to Al 
while GaAs (b) denotes the antisite placed in the next As layer “down” from the oxide. 
Note in all cases	훥 consists of total energy terms involving the same charge state. The 
corresponding bulk values can be found in table 4.3, page 93. 
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Figure 5.10 - Formation energy versus Fermi level of defects bonding to or near the 
InGaAs/oxide interface. As dimer (As2) shown in (a), GaAs in (b), AsGa in (c), and (d) 
represents the GaAs antisite located in the 2nd As layer down from the oxide i.e. not 
bonding to the oxide. For each defect, 푞-state formation energies relative to neutral (푞 = 
0) formation energy are plotted against the position of the Fermi level relative to the 
VBM. Encircled numbers denote charge state. The blue dashed line indicates the 
position of the bulk CBM calculated within the DFT+GW approach (see section 4.2). 
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5.3.3 Conclusions 
 

This study applies first principle electronic structure methods to identify the 

physical origin of experimentally inferred midgap states of electrically active 

defects in III-V materials, specifically of capacitance-voltage derived Dit profiles 

at In0.53Ga0.47As/high-k oxide interfaces. To the best of our knowledge, this is the 

first application of the 퐺푊 approximation to point defects at (100) In0.53Ga0.47As 

surfaces passivated with Al2O3. Our calculations show that no defects bonding 

directly to the oxide give rise to charge transition levels which correlate with the 

observed midgap peaks in the interface state distribution [6, 35, 38, 47]. 

Acceptor-like (neutral when the defect state is unoccupied and negatively 

charged when occupied) transitions in the conduction band are observed 

however (see figure 5.11, page 125), which correlates with recent computational 

studies [31, 32] and agrees with recent experiments indicating that the measured 

increase of Dit into the conduction band originates from acceptor-like defects [6].   
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Figure 5.11 - DFT+GW calculated charge transition levels for InGaAs defects bonding 
directly to the oxide (except AsGa) compared with experimentally inferred Dit. 
Experimental data and fits to these data reproduced from [6]. All charge transition levels 
are given with respect to Ev. Pink, green, and turquoise lines represent As2, GaAs, and 
AsGa, resp. 

 
While the defects we have studied in our model of an In0.53Ga0.47As surface 

passivated with Al2O3 do not completely account for the donor-like midgap Dit 

peaks [6] observed in experiment, our calculations do indicate that bonding to 

the oxide plays a significant role in the position of defect levels. To show this, 

the GaAs antisite was placed in the next As layer down from the oxide allowing 

for an investigation of the effect of proximity to Al2O3 on the charge transition 

levels. Our calculations show that the charge transition levels shift by a large 

degree as a function of distance from the oxide, bringing them in much closer 

agreement with the levels calculated in the bulk (see figure 5.12, page 126), as 

could be anticipated from the local character of the bonding.  

+2/+1 +1/0 +1/0 0/-1 0/-1 +1/0 
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Figure 5.12 – DFT+GW	calculated charge transition levels for the GaAs defect bonding 
to 2 In and 2 Ga as a function of proximity to the oxide. Green lines indicate the charge 
transition levels of the GaAs antisite bonding directly to the oxide. Yellow lines 
correspond to the bulk values presented in chapter 4. Brown lines represent GaAs located 
in the next As layer down from the oxide. Experimentally inferred Dit shown for 
comparison and reproduced from [6]. All charge transition levels are given with respect 
to Ev. 
 

Interestingly, a sharp change in the properties of native defects in III-V 

semiconductors as a function of depth from the surface towards bulk-like 

properties has been noticed in previous computational works [133]. In fact, this 

work shows that defect levels and formation energies of sub-surface anion 

vacancies approach their bulk values when located below the second atomic 

layer down from the (110) surface of GaP. In a separate study, other researchers 

[144] noticed a change of 1.92 eV in the total energy of AsGa antisites in (110) 

GaAs, along with a 1.16 eV change in the defect energy levels as the defect is 

moved from the third layer below the surface to the surface layer. In ref. [144], it 

is argued that this abrupt change in the electronic structure occurs as a result of a 

change from bulk-like four-fold to three-fold coordination as the antisite is 

moved up to the surface layer. These works focus on defects at unpassivated 

surfaces, yet some similar behavior is found in our studies that include Al2O3 

+1/0 

0/-1 0/-1 

+1/0 

0/-1 

+1/0 
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passivation, as well as differing in the surface orientation. We find that when 2 

monolayers separate the defect from the oxide, charge transition levels of the 

GaAs antisite can change by as much as 1.25 eV relative to the case of bonding to 

Al2O3, while the corresponding charge transition levels in bulk differ by ~0.1 eV 

relative to the case when the defect is located in the next As layer down from the 

oxide. Combining our findings with the results of [133, 144], strong indications 

are provided that point defects in III-V materials return to bulk-like 

characteristics within only a few atomic layers from the surface, despite having 

very different properties when located at the surface/interface layer. With this in 

mind, and considering that our calculated charge transition levels for defects as 

close as possible to the oxide are all close to or inside the semiconductor host 

bands, the following conclusion can be drawn: the observed midgap Dit 

originates from point defects not bonding directly to the high-k oxide, but rather 

from defects located inside the semiconductor a few atomic layers or more from 

the insulator. In agreement with [13], the AsGa antisite in a bulk environment is a 

likely candidate for the midgap Dit peak (see figure 5.14, page 128). Considering 

the variation (~0.1-0.2 eV) in charge transition levels of the GaAs antisite with 

local cation disorder, in addition to the much wider variation as a function of 

distance from the oxide, we postulate that such differences in the local 

environment of point defects contribute to the Dit features extending into the 

semiconductor bands (see figure 5.13, page 128). Local cation disorder of anion-

situated bulk defects contribute to the Dit feature close to and extending into the 

valence band (see figure 5.13), while the peak in the conduction band arises 

from point defects bonding to or within two monolayers from the oxide.  
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Figure 5.13 - DFT+GW	calculated charge transition levels for the +1/0 charge transition 
of the GaAs antisite. Green line indicates the charge transition levels of the GaAs antisite 
bonding directly to the oxide. Solid, dashed, and dotted yellow lines correspond to the 
bulk values for the cases of bonding to 2Ga and 2 In, bonding to 4 Ga, and bonding to 4 
In, respectively. Brown line represents GaAs located 1 As layer down from the oxide. 
Graph of Dit shown for comparison and reproduced from [6]. Charge transition levels 
are given with respect to Ev.  
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Figure 5.14 - DFT+GW	calculated charge transition levels for the AsGa antisite. Solid 
turquoise lines represent the defect close to the oxide. Dotted vertical lines correspond 
to the bulk values. Experimentally inferred Dit shown for comparison and reproduced 
from [6]. All transition levels are given with respect to Ev.  

+2/+1 +2/+1 +1/0 +1/0 



129 
 

It is important to note that the red and blue colors of the experimental Dit curve 

(figures 5.11-5.14) correspond to amphoteric labels, where red indicates donor-

like (+/0) and blue indicates acceptor-like (0/-) charge transitions. These labels 

were inferred from a fitting between theoretical and experimental CV curves [6], 

and correspond to net charge transitions of the participating defects; they are the 

net result of a large number of defect centers all changing their charge states. 

Hence, there is no inconsistency in the assignment of a single, calculated charge 

transition of a single, particular defect to a feature of the experimental Dit which 

has a different amphoteric label. For example, the midgap Dit peak labelled as 

+1/0 could easily involve a +2/+1 charge transition introducing the possibility 

that the observed midgap states could arise from the presence of AsGa antisites. 
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Chapter 6 
Divacancies in Carbon Nanotubes 
and their Influence on Electron 
Scattering 
 

6.1 Introduction 
 
First-principles calculations are applied to study the formation energies of 

various divacancy defects in armchair and zigzag carbon nanotubes of varying 

diameter, and the electron transport properties for the corresponding structures. 

We investigate the relative stabilities of the 585 and 555 777 defects as a 

function of CNT radius from first-principles calculations, extending previous 

studies to CNTs with much larger radii than previously investigated. Our explicit 

ab-initio calculations confirm that the lateral 585 divacancy is the most stable 

defect in small diameter tubes, with the 555777 divacancy becoming more stable 

in armchair tubes larger than (30, 30); images of the defect structures which 

clarify the defect nomenclature are shown in figures 6.1 and 6.2 (pages 133 and 

134). Following the study of formation energies, the optimized structures are 

then used as inputs to a charge transport simulator [12, 116-118]. This allows us 

to calculate the transmission properties of charge carriers and obtain the 

scattering mean free path due to single defects. The scattering resulting from the 

introduction of the defects is calculated for a range of radii, chiralities and defect 

configurations. The strongest scattering is found for the 555777 divacancy 

configuration, which should be observable in electrical spectroscopy 

experiments. Using knowledge of the scattering contributions from individual 

defects, we apply an approximation (see section 3.8) that allows us to establish 

the localization length arising from multiple defects in much longer nanotubes 

and we are able to relate this to the resistivity of the nanotubes. We find that 

localization lengths increase with increasing diameter at fixed defect density, and 

can exceed 100 nm for typical defect densities. 
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6.2 Methods 
6.2.1 Geometry and Electronic Structure 
 

For total energy and electronic structure calculations, we use density functional 

theory (DFT) as implemented in the OpenMX code [76]. The method expresses 

Kohn–Sham molecular orbitals as a linear combination of numerical localized 

pseudo-atomic orbitals (NAOs) 

 

																																															휑 = 푐 , ,
,

휗 , (풓 − 푹 )																																					(6.1) 

 

The NAO basis functions 휗 are obtained by solving the Schrödinger equation for 

an atom in a slightly modified environment that gives a finite cutoff radius. In 

equation (6.1) 푐 , ,  is the expansion coefficient, 푖	is the site index,	훽 is the 

orbital index - which includes the quantum numbers l and m - and 휇 is the 

Kohn–Sham molecular orbital index. Norm-conserving, fully relativistic pseudo-

potentials and the corresponding basis sets used in all calculations are generated 

by the software package ADPACK [76, 95, 96]. In our calculations, the 

Ceperley-Alder form of the local density approximation (LDA) is used [84, 89]. 

A double-ζ NAO basis set with a cutoff radius of 1.85 Å is used to describe the 

carbon atoms. The basis set accuracy is numerically tuned via variational 

optimization [145] of the carbon basis set (s32p32), in which two optimized 

orbitals are generated from three primitive orbitals (for a full description of 

optimized NAO generation, see [95, 96]). A constant vacuum spacing of 13 Å in 

both directions perpendicular to the nanotube axis is maintained for all CNTs. 

Sampling in k-space is performed on a 4 × 1 × 1 k-point grid; 4 k-points are 

sampled in the direction corresponding to the CNT axis. 

Defective CNTs are constructed by either removing a single carbon atom 

(monovacancy) or two carbon atoms (divacancies) from otherwise pristine 

structures. The latter are constructed using thirteen unit cells for n ≤ 10, and 
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using seven unit cells for n ≥ 20 in tubes of chirality (n, n) and (n, 0). This 

indicates a distance between periodic images of defects of over 55 Å and 30 Å 

for zigzag tubes of n = 10 and n = 20, respectively, and over 32 Å and 17 Å for 

armchair tubes of n = 10 and n = 20, respectively. For all structures, we observe 

on average a difference of 0.01 Å in the bond lengths situated midway between 

defects, relative to corresponding bonds in the pristine tubes. The atomic 

configurations of both pristine and defective tubes are determined by calculating 

the forces between atoms and updating atomic positions using a steepest decent 

optimization method until the maximum force converges to less than 0.005 

eV/Å. 
 

6.3 Results 
6.3.1 Vacancy Formation 
 

In this section, we present an analysis of the formation energies of the 585 and 

555777 configurations [68]. The 585 divacancy consists of two pentagons on 

either side of an octagon, whereas the 555777 structure is formed by three 

pentagons and three heptagons. Divacancies are also classified as lateral or 

vertical, depending on the orientation relative to the tube axis of the pentagons 

formed as a result of the missing atoms. In figure 6.1, we indicate the various 

atomic arrangements for the largest studied CNTs for the relaxed atomic 

configurations. In figure 6.2 an example of the graphene supercell is shown. The 

results for graphene are included to compare with the nanotubes as the limiting 

case of zero curvature or infinite radius.  
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Figure 6.1 - Top three images show (30, 0) zigzag CNTs with: (a) monovacancy, (b) 
lateral and (c) vertical divacancies in the 585 configuration. The bottom four images 
show (30, 30) armchair CNTs with: (d) monovacancy, (e) lateral and (f) vertical 
divacancies in the 585 configuration, and (g) a divacancy in the 555777 configuration. 
All images show the central three unit cells extracted from the 13 (7) unit supercells for 
chiral vectors n ≤ 10 (≥ 20). 

(a) (b) (c) 

(d) 
 

(e) 
 

(f) 
 

(g) 
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Figure 6.2 - An example of a graphene cell with a divacancy defect (lateral relative to 
the zigzag direction, vertical relative to the armchair direction). 

The total energies of the defective tubes and the gas-phase carbon dimer were 

obtained from calculations performed on all structures after relaxing the 

geometries as prescribed in section 6.2.1. Spin polarization was included for the 

isolated carbon atom treated as a spin-unrestricted triplet state, while the carbon 

dimer and all CNTs were treated without spin polarization. This leads to a 

dissociation energy for C2 of 6.8 eV, which slightly overestimates the 

experimental bond strength of the carbon dimer of 6.4 eV as is typical of DFT-

LDA.  

The defect formation energies (see section 3.7) and relative stabilities for 

armchair and zigzag CNTs are presented in tables 6.1 and 6.2, respectively. The 

formation of lateral divacancies is more stable than the formation of vertical 

divacancies: ∆퐸 < ∆퐸  for all CNTs. Our results also indicate that 

each divacancy is always more stable than 2 isolated monovacancies in a given 

CNT. This demonstrates qualitative agreement with calculations on tubes with 

diameters up to (10, 10) [12], which were performed using a self-consistent 

implementation of the Harris functional [146]. Changing chirality by looking at 

zigzag CNTs reveals the same qualitative picture for the defect formation: lateral 

divacancies are energetically preferred over vertical divacancies. With increasing 

diameter the difference in formation energies between the lateral and vertical 

Armchair 

Zi
gz

ag
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divacancies decreases for both armchair and zigzag CNTs, as may be anticipated 

due to a reduction in bond strain with decreasing curvature. 

 

 (5, 5) (7, 7) (10, 10)   (20, 20) (30, 30) Graphene 

∆퐸  -7.86 -7.81 -6.05 -4.98 -1.41 0.0 

∆퐸  -11.11 -8.63 -7.78 -7.23 -0.79 1.20 

∆퐸  -7.14 -5.47 -5.41 -5.16 1.09 1.19 

∆퐸  -4.53 -4.44 -4.13 -3.61 -2.46 0.86 

푑∆  3.97  3.16  2.38  2.06  1.88 0.01a 

Table 6.1 - Defect formation energetics of the armchair CNTs, calculated using equation 
(3.63) (page 70) and then reported as the difference from the formation of a 
monovacancy in graphene. The last row gives	푑∆ i.e. the magnitude of difference in 
energy between lateral and vertical divacancies. All formation energies are in eV. 

 
 (10, 0) (20, 0) (30, 0) Graphene 

∆퐸  -7.58 -6.82 -2.82 0.0 

∆퐸  -11.05 -9.64 -1.84 1.20 

∆퐸  -6.36 -5.97 -0.27 1.19 

∆퐸     0.86 

푑∆  4.69  3.67  1.56 0.01a 

Table 6.2 - Defect formation energetics of the zigzag CNTs calculated using equation 
(3.63) and then reported as the difference from the formation energy of a monovacancy 
in graphene. For graphene, the defect name is given by its orientation relative to the 
tube axis of a CNT rolled up in the ‘zigzag-axis’ e.g. ∆퐸  = formation energy of 
the defect shown in figure 6.2. All formation energies are in eV.  
 
a Denotes the difference in energy of the lateral and vertical divacancies in graphene due to finite 
simulation cell effects. 
 
We now turn to the discussion of the formation energy of the 555777 divacancy. 

Amorim et al have previously estimated that 555777 divacancies are less stable 

than their 585 counterparts for (n, n) tubes with n < 30 and for (n, 0) tubes with n 

< 117 [68]. Their estimates of defect formation energies are not based on ab-
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initio calculations, but on a parameterized molecular mechanics model. To test 

the conclusions reached by Amorim et al, we calculate formation energies of 

555777 divacancies in armchair tubes. Studying the stability of this defect in 

(117, 0) zigzag tubes would not be possible given the computational resources at 

hand; hence, we consider this defect in armchair tubes only. As can be seen in 

table 6.1, the 555777 defect configuration becomes more stable than the 585 

configurations for n = 30, in agreement with the molecular mechanics estimate 

in ref. [68]. 

 

6.3.2 Transport Properties 
 

As stated in chapter 3, the transport simulator TiMeS [116] is used to calculate 

electronic transport through defective CNTs. A transport module [76] is also 

included in the OpenMX package. We find, however, that it is more memory 

intensive, thereby not allowing us to study large structures even within a single-ζ 

Hamiltonian representation. Nevertheless, we validated our transport 

calculations with TiMeS by comparing results for tubes of chirality (n, n) and (n, 

0) for n = 10, 20 with results obtained using the transport module of OpenMX. 

The comparison is shown in figure 6.3. All results are in excellent agreement.  

 

 
Figure 6.3 - This graph demonstrates the excellent agreement of our TiMeS transport 
calculations with results obtained from OpenMX for (10, 10) (left panel) and (20, 20) 
(right panel) CNTs with a lateral divacancy. The Fermi level is set to 0 eV. 
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Before discussing the conductance spectra for the largest defective CNTs, we 

show that the use of a double-ζ basis does not affect transport significantly, as 

may be expected for the simple sp2 network of carbon nanotubes. We justify the 

choice of minimal basis for the calculation of transport properties by showing 

that for CNTs the variation of the conductance is in fact reasonably small when 

going from single-ζ to double-ζ basis sets. This is shown in figure 6.4 and allows 

us to use the less computationally demanding single-ζ basis. This result agrees 

with work from Ohfuchi et al who tested the validity of using large basis sets for 

geometry optimization and then switching to single-ζ basis sets for NEGF-based 

transport calculations of CNTs bridged between graphene electrodes [94]. 

 

 
Figure 6.4 - Illustration of reasonably small discrepancy in transmission spectra 
between the two basis sets, using the (10, 0) CNT with a lateral divacancy. Notice the 
particularly good agreement in the conduction band. Both curves were obtained from 
TiMeS. The Fermi level is set to 0 eV.  

 
Figure 6.5 shows the conductance spectra for the (20, 0), (20, 20), (30, 0), and 

(30, 30) tubes each with various types of defects. First, we note that a small 

bandgap (40 meV) appears in the transmission spectrum of the (30, 0) tube. A 

simple zone-folding analysis of the electronic structure (i.e. mapping of the 

graphene band structure to that of a tubular lattice by folding the appropriate 

Brillouin zone boundaries) would predict metallic behaviour for the (30, 0) 

tubes, as (n – m)/3 is an integer.  
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Figure 6.5 - Conductance spectra for zigzag tubes (graphs (a) and (b) for (20, 0) and 
(30, 0) respectively) and armchair tubes (graphs (c) and (d) for (20, 20) and (30, 30) 
respectively). Note the greater amount of scattering for the 555777 configuration of the 
divacancy defect. The Fermi energy is 0 eV.  

 

The observed bandgap is likely due to curvature induced π-σ hybridization, 

which is not taken into account in the zone-folding scheme [147-151]. To 

investigate this effect, independent plane wave DFT calculations were performed 

using the Quantum Espresso package [99]. These calculations can be 

systematically converged in the plane wave basis. A kinetic energy cutoff of 100 

Rydbergs and a 4x1x1 grid of k-points were used. This eliminates the question as 

to whether the atomic orbitals used in this work give rise to a spurious bandgap 

due to basis set incompleteness. These parameters were used to calculate the Γ-

point gap of a pristine (30, 0) unit cell (equivalent to a lead principle layer (see 

section 3.5.2 page 58) used to calculate the transmission spectra of the (30, 0) 

(a) 

(c) 

(b) 

(d) 
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vacancies, see figure 6.5). A Γ-point gap of 46.4 meV was observed, compared 

to our OpenMX-calculated bandgap of 40.3 meV, in close agreement. Hence we 

conclude that the predicted bandgap is not a spurious effect arising from an 

incomplete basis set. The curvature induced bandgaps in (n/3, 0) tubes have been 

predicted to decrease with diameter and essentially vanish for tubes larger than 

(24, 0) [147-151]. The predictions are confirmed by experiment only up to (15, 

0) tubes. Our calculations, on the other hand, suggest the finite bandgap persists 

for larger radii than previously anticipated. 

Interestingly, the spectrum of the (30, 30) metallic CNT shows that 

significant resonant backscattering is generated by the divacancy in the 555777 

configuration. In particular, the transmission drops to almost 0.1G0 (G0 = 2e2/h) 

at ~125 meV below the Fermi level. We argue that this is a quantum interference 

effect, implying the formation of localized electronic states at the 555777 

complex which should be observable with transport spectroscopy. This is further 

evidenced by an analysis of the effect of the 555777 defect on the local density 

of states (DOS). The various contributions to the local DOS from each atom 

making up the 555777 divacancy is shown in figure 6.6. The atoms 

corresponding to the 555777 defect in the (30, 30) CNT are labelled in the insets 

of figure 6.6. The local DOS of selected atoms (‘S’ and ‘U’) and the average 

DOS over the defect region are shown in figure 6.6 (b). The local DOS of a 

carbon atom far from the defect is also plotted for comparison and is labelled as 

‘pristine’. These graphs show that the atoms associated with the 555777 defect 

make a significant contribution to the DOS near the Fermi level. Combining 

these data with the resonant scattering observed in the transmission spectrum in 

the same energy range, strong evidence is provided for the formation of 

localized electronic states at this defect. 
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Figure 6.6 - (a) LDOS due to each atom of the 555777 defect. Notice the significant 
contribution of the “S” and “U” atoms. (b) Comparison of the LDOS of defect atoms (as 
labelled in the inset) with atoms from a pristine section of a (30, 30) CNT. The Fermi 
level is set to zero. LDOS units are (eV)-1. 

 

Our observations confirm previous suggestions for small diameter tubes [68]. 

First, the variations in transmission spectra allow one to distinguish between the 

two types of divacancy defects using transport measurements as a function of 

diameter. Second, such large amounts of scattering would likely hinder 

(a) 

(b) 
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conductance (or at least would need to be taken into consideration) in 

applications involving large diameter CNTs, in which 555777 defect geometries 

become more stable than the 585 configuration. For example, wide CNTs are 

often considered as candidate interconnects due to the vanishing bandgaps with 

increasing diameter [152]. Hence our findings for the stability of the 555777 in 

large diameter CNTs coupled with a large scattering cross section indicates their 

importance for understanding electron transmission in these applications. Below, 

we elaborate further on the characteristic transport lengths due to scattering of 

charge carriers at vacancy defects in large diameter CNTs. 

The mean free path 휆 is estimated using the independent scattering 

approximation (ISA) described in chapter 3.  The ISA relates 휆 from a 

concentration of defects to the calculated scattering properties of independent 

impurities. As explained in section 3.8, this approximation leads to a linear 

dependence of 휆 with respect to the mean distance between defects		푙 , 

namely,	휆 = (푅 푅⁄ )푙  where 푅  and 푅  are the CNT contact resistance and the 

resistance of the isolated defect, respectively (see section 3.8.2). The defect 

concentration is expressed here through	푙 . In addition, the localization length in 

quasi-one-dimensional systems can in the absence of magnetic fields be written 

as 휉 = (푁 + 1)휆 = (푁 + 1)(푅 푅⁄ )푙  where 	푁  is the number of 

conducting channels [24, 111]. 

Interestingly, a linear relationship between 휆 (or	휉) and 푙  was also 

observed earlier using a more elaborate approach that accounts for interference 

effects from scattering between defects with a rigorous scattering formalism [7, 

10, 11]. Our starting point is to compare the previously obtained slopes of the 

localization length versus mean defect distance to our calculated (푁 +

1)(푅 푅⁄ ) estimate. This is shown in table 6.3.  
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Chirality 

This work. 

(푁 + 1)(푅 푅⁄ ) 

= 휉/푙  for lateral 

divacancy.  

Previous Reports. 

휉/푙  for lateral 

divacancy 

(5, 5) 3.40 5.1 [11] 

  5.2 [11] 

(7, 7) 6.78 6.4 [11] 

(10, 10) 9.61 4.1 [7] 

8.4 [11] 

Table 6.3 - Comparison between previous work and our results on the relation	휉 =
(푐표푛푠푡푎푛푡) × 푙 , where	휉,	푙  and 푁  are localization length, distance between defects, 
and the number of channels at the Fermi level, respectively. 푅  and	푅  are the contact 
and scattering resistances defined in section 3.8.2. 

 

The agreement justifies the ISA since interference effects between defects are 

expected to diminish in larger CNTs with similar defect concentrations. This 

allows us to extend the analysis to armchair and zigzag CNTs of much larger 

diameter and for the various types of vacancy defects. Our results are 

summarized in table 6.4. 
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Chirality Defect (푁 + 1)(푅 푅⁄ ) 

(10, 0) 

 

 

Monovacancy 

Vertical divacancy 

Lateral divacancy 

10.44 

6.79 

5.54 

(20, 0) Monovacancy 

Vertical divacancy 

Lateral divacancy 

19.88 

19.10 

18.69 

(30, 0) 

 

 

Monovacancy 

Vertical divacancy 

Lateral divacancy 

75.97 

24.96 

61.49 

(5, 5) 

 

 

Monovacancy 

Vertical divacancy 

Lateral divacancy 

555777 

9.03 

3.11 

3.40 

1.88 

(7, 7) 

 

 

 

Monovacancy 

Vertical divacancy 

Lateral divacancy 

555777 

24.44 

4.27 

6.78 

3.41 

(10, 10) 

 

 

 

Monovacancy 

Vertical divacancy 

Lateral divacancy 

555777 

55.42 

14.61 

9.61 

8.10 

(20, 20) 

 

 

 

Monovacancy 

Vertical divacancy 

Lateral divacancy 

555777 

388.70 

34.09 

42.10 

5.07 

(30, 30) 

 

 

 

Monovacancy 

Vertical divacancy 

Lateral divacancy 

555777 

9995 

70.30 

59.68 

22.90 

Table 6.4 - The 3rd column shows, for each defect, the proportionality constant between 
localization length and the distance between defects 푙  in the 
relation	휉 = (푐표푛푠푡푎푛푡) × 푙 . 
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A graphical representation of selected data follows in figure 6.7. There are a few 

observations to make. 

 

 

 
Figure 6.7 - Mean free path 휆 versus distance between defects 푙  for (a) armchair and 
(b) zigzag carbon nanotubes. 

 
First, as the tube size increases the mean free path extends significantly for a 

 ldv 

 vdv
 

 vdv
 

(a) 

(b) 
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fixed defect concentration. This is attributed to the diminishing		푅푠, which is 

proportional to the ratio of the scattering cross section of the defect to the tube 

diameter. This can be seen in figure 6.8. 

 

 

 
Figure 6.8 - The scattering resistance of the various isolated defects for (a) zigzag and 
(b) armchair tubes decreases with increasing CNT diameter. Black circles represent 
monovacancies, blue stars represent vertical divacancies, red diamonds represent lateral 
divacancies, and green squares represent the 555777 defect. 

(a) 

(b) 
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Second, monovacancies and divacancies introduce different amounts of 

scattering depending on the chirality. Monovacancies have a much lower effect 

than divacancies on the conductance of metallic armchair tubes. This confirms 

previous results showing that monovacancies lead to very little scattering at the 

Fermi level [12]. In contrast, both monovacancies and divacancies have 

comparable 푅  when n > 10 in (n, 0) zigzag CNTs. Also, the latter show very 

similar scattering between lateral and vertical divacancies, unlike the armchair 

tubes. Nevertheless, in all cases the differences between the various divacancy 

configurations decline as the diameter increases. This should be expected in 

analogy to the convergence of the formation energies for larger tube sizes. 

 

6.3 Conclusions 
 

Our main findings for defective CNTs are as follows: (i) extending previous 

results [68], we confirm from explicit ab-initio calculations that the 555777 

divacancy becomes more stable in armchair tubes larger than (30, 30); (ii) 

evaluating electron transmission as a function of diameter and chirality for a 

range of defects and defect configurations, we find strong scattering from the 

555777 divacancy configuration, which should be observable in electrical 

spectroscopy experiments; (iii) establishing an approximation that relates 

scattering contributions from independent defects to treat otherwise 

computationally intractable structures, we extract the localization length in large 

diameter CNTs.  

The validation of an independent scattering approximation was achieved 

by comparing our calculated transport properties for small diameter tubes with 

single defects against the work of Rubio, Flores, and Biel et al in which 

experimental data was combined with a rigorous scattering formalism [7, 10, 

11]. This validation allows for a study of Anderson localization characteristics in 

larger CNTs. Specifically, the localization length increases with tube diameter 

and, for typical defect densities, may be in excess of 100 nm. Nevertheless, 
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strong scattering from the 555777 configuration is observed. As mentioned, this 

can be used in electrical spectroscopy experiments to differentiate between 

defect geometries. Our predictions regarding the larger diameter structures have 

important implications for technological applications, particularly interconnects, 

in which wider CNTs are often considered. 
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Chapter 7 
Summary and Conclusions 
 

In chapter 4, a study of the bulk In0.53Ga0.47As electronic structure was carried 

out using the DFT+퐺푊 approach which corrects for the intrinsic limitations of 

LDA and the KS-DFT formalism. Good agreement with the low temperature 

experimental bandgap was found. Using this bulk simulation cell, point defects 

were inserted and their atomic structure and charge transition levels were 

calculated. The calculation of charge transition levels involves electron addition 

and removal energies requiring systems with different numbers of electrons. 

Thus, accurate assessment of charge transition levels necessitates the avoidance 

of the limitations of DFT, and to this end the 퐺푊 approximation to the electron 

self-energy was also employed for these defective simulation cells. Comparing 

with recent hybrid DFT studies of charge transition levels of point defects in 

bulk InGaAs [13], overall qualitative agreement is obtained with the largest 

discrepancy of 0.16 eV exhibited by deep transition levels, while good 

agreement is seen for shallow levels. Despite the discrepancy at midgap, our 

bulk calculations are consistent with the conclusion of ref. [13] in which the As 

antisite was assigned as the most likely physical origin of observed midgap Dit 

peak. However, we explore this conclusion further using a consistent 

comparison with an oxide-passivated surface model. Before focusing on the 

surface model, we note that our bulk simulations show that for anion-situated 

defects, a significant variation of charge transition levels as a function of local 

cation disorder is observed. Such variations, which are significant yet remain in 

the lower half of the bandgap, may at least partially account for the Dit feature 

which rises from just below midgap and extends into the valence band, a 

persistent feature reported in many experimental studies of In0.53Ga0.47As/high-k 

oxide interfaces [6, 37, 48]. 

It is easy to appreciate that the effect of bonding to an oxide can 

significantly alter both the electronic and atomic structure of point defects 
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compared to a bulk environment. Thus, following the study of point defects in 

bulk In0.53Ga0.47As, a consistent comparison with a high-k oxide passivated 

surface is necessary to investigate the premise that defects in an entirely bulk 

environment are responsible for the midgap peaks observed in the experimental 

Dit. Such an investigation not only allows for a comparison between “bulk” and 

“surface” defects (specifically the antisites, in this work), but also allows for a 

study of defects which are not amenable to a bulk simulation cell, namely the As 

dimer. To this end, a model of the (100) In0.53Ga0.47As surface passivated with 

Al2O3 was constructed. Our calculations show that all defects bonding to the 

oxide exhibit charge transition levels which resonate with the semiconductor 

host bands, most of which are deep into the conduction band.  

The large variation between bulk and surface defect properties prompts a 

quantitative investigation of the defect levels as a function of distance from the 

oxide. Since the GaAs antisite is amenable to both bulk and surface simulations, 

and also bonds directly to the oxide in our surface model, this defect was chosen 

for this investigation. It is found that when the GaAs antisite is located in the 

second As layer down from the oxide, the defect levels shift dramatically to 

within ~0.1 eV of their bulk values. Combining our studies of defective bulk and 

surface models, we conclude that the experimental distribution of interface states 

can be explained by a combination of the following effects:  

 

(i) Defects bonding directly to the oxide contribute to the conduction 

band Dit feature. AsGa antisites located 1 monolayer down (or in the 

first In/Ga layer) from the oxide contribute states to the Dit feature 

that extends into the valence band. 

(ii) Anion-situated defects bonding to a locally variable cation alloy 

contribute to the Dit feature that rises sharply towards the valence 

band; the corresponding charge transition levels can change by ~0.1-

0.2 eV as a function of the local cation configuration, yet remain in 

the lower half of the In0.53Ga0.47As bandgap near the valence band 

edge. 
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(iii) The position of the +2/+1 charge transition level of the AsGa antisite 

in an entirely bulk environment is consistent, within the experimental 

and computational error, with the position of the midgap Dit peak, in 

agreement with previous theoretical investigations [13].  

 

Point defects were also studied in semiconducting and metallic CNTs. The 

remarkable electronic properties of CNTs make them one of the most important 

emerging research materials for both front-end and back-end devices [57]. 

However, the challenges associated with their large scale manufacturing and 

integration precludes their widespread commercial use in CMOS technology in 

the near future. Despite this fact, they are good candidates for studying the 

physics of low-dimensional systems, and the information gleaned from such 

studies will undoubtedly prove beneficial if the VLSI of CNTs becomes 

commercially viable. Hence, we study point defects in CNTs using explicit ab-

initio methods; localized orbital based DFT for the electronic structure, in 

conjunction with Green’s function based methods to evaluate the electronic 

transport.  

Our calculations confirm the greater stability of the 555777 divacancy 

over the 585 configuration in armchair CNTs for diameters larger than 40 Å, 

which extends previous results based on parameterized molecular mechanics 

[68]. Following the analysis of defect energetics, transport through defective 

CNTs was assessed as a function of diameter and chirality; we find evidence for 

strong resonant backscattering from the 555777 defect. This should be 

observable in electrical transport spectroscopy, allowing for the experimental 

differentiation of defect geometry. Keeping in mind that large diameter CNTs 

are often considered for interconnect applications due to the inverse relationship 

between CNT bandgap and diameter, in conjunction with our evidence that 

555777 defects become more stable with diameter, we note the deleterious effect 

this defect structure may have on potential interconnect applications of CNTs, 

especially as the backscattering occurs within ~0.1 eV of the Fermi level. 

Utilizing the independent scattering approximation (which was validated by 
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comparing to the more rigorous scattering formalism of [7, 10, 11]), we 

considered defects at typical experimental densities, allowing for an estimate of 

the mean free path and localization length within the Anderson localization 

regime of transport for large (up to ~40 Å diameter) CNTs. We find that, for a 

given defect structure, the localization length rises monotonically with diameter 

in both armchair and zigzag CNTs and may be greater than 100 nm for typical 

defect densities.  

There are a few points to bear in mind regarding the limitations of the 

approaches undertaken in this work. For the In0.53Ga0.47As defects (chapters 4 

and 5), a study of the formation energies of the defect centers in which the 

chemical potentials of the added/removed species are taken into account (using 

equation 2.3 on page 18, for example) was not carried out. Such (temperature- 

and pressure-dependent) chemical potentials characterize the energy required to 

transfer atoms to/from their respective reservoirs, and so can provide an estimate 

of the formation energies of defect centers as a function of experimental growth 

conditions [13]. For example, under As-rich growth conditions, one uses a large 

chemical potential for As atoms [5], which in turn would lower the AsGa antisite 

formation energy (see equation 2.3), and the concentration (푐) of this defect 

would then be expected to increase as [5] 

 

																																																										푐	 ∝ 푒 ( / )																																													(7.1) 

 

assuming thermodynamic equilibrium (푘  is Boltzmann’s constant and 푇 is 

temperature). If included in this work, such a study would provide a comparison 

of the concentrations of each defect in both bulk and high-k oxide passivated 

surface chemical environments. This would yield information on which defect(s) 

is (are) most likely to form for a given set of growth conditions, and how these 

dependencies on growth conditions change between bulk and surface models. 

Komsa and Pasquarello carried out such a study for bulk defects [13], and under 

As-rich growth conditions the AsGa antisite (which exhibits a midgap charge 

transition level) would likely be present in large concentrations. A corresponding 
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study of the formation energetics of the defects studied in this thesis near an 

interface with a high-k oxide, and whether or not these energetics change 

significantly for different oxides, would yield a stronger comparison of our 

approach against hybrid DFT [13] (as opposed to relying on a comparison 

between charge transition levels only). Such simulations of the relative stabilities 

of defects as a function of surface preparation techniques (cation- or anion-rich 

growth conditions, and nature of the oxide) would also provide a more rigorous 

characterization of the candidates giving rise to experimentally observed Dit [6, 

37, 48].  

 In relation to the limitations concerning the modeling of defects in CNTs 

(chapter 6), our study would benefit from larger simulation cells. In this work, 

the validity of the independent scattering approximation (ISA) is assumed based 

on a previous application involving impurities in Si nanowires [119], and a 

comparison against a rigorous approach in which multiple defects are described 

in a single simulation cell [7, 10, 11]. However, our study would benefit from a 

complementary analysis of multiple defects performed using our choice of 

methods (described in chapter 3). While being very computationally expensive, 

longer simulation cells for the scattering region (see section 3.5.2, page 58, and 

section 3.8.1, page 72) would allow for the incorporation of more than one 

defect, which in turn would provide an explicit study of the scattering properties 

as a function of distance between defects i.e. defect density (as opposed to the 

implicit study of these properties in which the defect density is accounted for 

within an assumed linear relationship between the mean free path of a single 

defect and a variable distance between defects). This would give a stronger test 

of the applicability of the ISA to the systems we study in this thesis, and in 

particular where the ISA breaks down; how close point defects within a CNT 

have to be before interference effects between scattered electron waves have a 

significant impact, and in addition how this relationship changes with decreasing 

curvature as the CNT diameter is increased. 

 In this thesis, first principles electronic structure methods were applied 

to the study of point defects in technologically relevant post-Si device materials. 
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The materials considered here, In0.53Ga0.47As and CNTs, represent both short and 

long-term solutions to the problem of continued Moore’s law scaling beyond 

what is achievable using conventional Si-based MOSFETs integrated with Cu 

interconnects. The practical significance of point defects in nanoscale devices 

prompts accurate, quantitative studies of their atomic and electronic structure 

within the framework of state-of-the-art computational methods for atomistic 

simulations. We stress that such studies are imperative for the realization of 

post-Si Moore’s Law scaling. To this end, a promising direction for future 

studies would be, in addition to addressing the limitations mentioned above, the 

characterization of defects in other III-V materials within a consistent first-

principles framework, i.e. the DFT+퐺푊 methodology, to investigate the 

possibility of universal trends in defect properties, such as charge transition level 

positions and hence Fermi-level pinning, across these materials. Also, utilization 

of ab-initio transport simulators with at least 2-dimensional periodic boundary 

conditions would allow for the study of electronic transport throughout the III-

V/high-k interface. Inclusion of a gating field in such a study would enable an 

ab-initio evaluation of the electrical properties of highly realistic models of III-V 

FETs in the presence of point defects, allowing for rigorous comparison between 

theory and experiment. For CNTs, multi-dimensional transport simulations 

would allow for the study of CNT arrays, which would be highly beneficial as a 

first principles assessment of realistic CNT interconnects.  
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