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Abstract

The propagation of surface water waves interacting with a current and an uneven bottom is

studied. Such a situation is typical for ocean waves where the winds generate currents in the top

layer of the ocean. The role of the bottom topography is taken into account since it also influences

the local wave and current patterns. Specific scaling of the variables is selected which leads to

approximations of Boussinesq and KdV types. The arising KdV equation with variable coefficients,

dependent on the bottom topography, is studied numerically when the initial condition is in the

form of the one soliton solution for the initial depth. Emergence of new solitons is observed as a

result of the wave interaction with the uneven bottom.

*Corresponding author.
E-mail address: rossen.ivanov@dit.ie (R. I. Ivanov)

1. Introduction

Surface waves are examples of geophysical waves found ubiquitously in the oceans. They usually
result from distant winds and may travel thousands of miles before they decay or break. Typically
surface wave heights are 1-2 meters but extreme wave heights approaching nearly 20 meters (excluding
rogue waves) have been observed.

The complete dynamics of the fluid, in many situations, can be recovered from the surface wave
motion. Therefore the wave propagation is an important research topic, with possible coastal and
oceanic engineering applications in areas like oil platform stability and designs of structures like
breakwaters and artificial reefs.

Various factors play a role in the formation and the dynamics of the surface waves. Some of
these are rotational effects (for example currents) and the bottom topography. The propagation of
waves over a current field is, in general, a complicated phenomenon and an active research topic.
Currents exist due to many factors but primarily due to wind and tides. One of the most significant
currents is the Equatorial Undercurrent (EUC) which can be observed at approximately 20 degrees
south of the Equator. The EUC flows eastwards, at a speed of around one meter per second, one
hundred meters below the ocean surface and is approximately 300 kilometers wide. Some more details
about the complexity of the dynamics of EUC which pertain to the analysis of solutions can be
found in the papers by Constantin and Johnson (2016a, 2017b). A general overview on mathematical
tools employed for the study of problems in physical oceanography is given in Johnson (2018). We
would also like to point out the recent emergence of solutions modelling large-scale ocean currents
with distinctive persistence patterns like gyres (Constantin and Johnson, 2017a) and the Antarctic
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Circumpolar Current (Constantin and Johnson, 2016b). An analysis of a solution describing nonlinear
surface waves propagating zonally on a zonal current in the presence of Coriolis effects and exhibiting
two modes of wave motion was presented by Constantin and Monismith (2017).

For the aim of our investigations we consider two-dimensional flows in the f -plane approximation.
Such an approach is reasonable since the Equator acts as a wave guide (Fedorov and Brown, 2009) and
the depth-dependent currents are confined to a shallow near-surface layer. For a rigorous existence
proof of rotational water flows in the f -plane approximation we refer the reader to the paper by
Constantin (2013); see also the paper by Martin (2018).

In the review chapters by Peregrine (1976) and Jonsson (1990), the physical circumstances in which
interactions among water waves and currents occur are discussed and also mathematical models of
these interactions are outlined. Thomas (1981, 1990) studied the horizontal velocity distribution and
surface elevation in a wave-current environment. A method has been developed for the measurement
of the strength of the wave-current interaction by Thomas and Klopman (1997). A variety of other
aspects has been an active research topic (Teles da Silva and Peregrine, 1988; Constantin and Strauss,
2004; Constantin and Escher, 2004 and 2011; Constantin et al., 2006; Henry, 2013; Constantin and
Johnson, 2015 and 2017a,b; Escher et al., 2016). Recent developments in the mathematical aspects
of wave-current interactions are presented in the monograph by Constantin (2011).

In physical reality, the seabed can be a complex undulating structure with trenches, underwater
mountains and sediment, not to mention the multitude of marine flora and fauna. In some parts of
the ocean, due to volcanic activity, the seabed is not even a stationary structure. Numerous studies
are dedicated to the wave motion over an uneven bottom (Johnson, 1973a,b, 1997; Nachbin, 2003;
Craig et al.,2005a; Dejak and Sigal, 2006; de Bouard et al., 2008; Compelli et al., 2017; Nachbin and
Ribeiro-Jr., 2018). In the majority of the existing publications however, the fluid is irrotational, i.e.
the underlying current is not taken into account.

In our studies we are going to apply the Hamiltonian approach to derive models for surface wave
propagation in the presence of a current and of an uneven bottom. The significance of the work
of Hamilton in developing Hamiltonian mechanics in the early 19th century became apparent in
the context of fluid systems following the publication of Vladimir Zakharov (1968) with additional
constructions by Milder (1977) and Miles (1977). In his work Zakharov demonstrated the Hamiltonian
structure of an infinitely deep vorticity-free single fluid system. Further significant studies which
followed on include the works of Benjamin and Olver (1982), Craig and Groves (1994), Craig et al.
(2005b) among others. The Hamiltonian approach in the analysis of irrotational single media systems,
was then extended to include systems with nonzero vorticity. For instance a rotational single fluid
system, of finite-depth, was shown by Constantin et al. (2008) to exhibit nearly canonical Hamiltonian
structure and Wahlén (2007) showed that a fully canonical structure could indeed be achieved via a
variable transformation. Moreover, Constantin et al. (2016) showed that wave-current interactions in
stratified rotational flows also possess a Hamiltonian formulation.

Our aim is to derive and investigate a model, which takes into account both the effect of the
current and the non-flat bottom. Such a situation is common for ocean waves and waves over the
EUC are just one particular realistic example. To fulfil our goal we show first that the governing
equations for gravity water flows in the f -plane approximation (near the Equator) that exhibit con-
stant (non-vanishing) vorticity and propagate over a non-flat bed can be written in Hamiltonian
form. Subsequently, we derive from the Hamiltonian formulation a small amplitude and a long-wave
approximation, typically related to the Boussinesq and KdV propagation regimes. We use several
mathematical results explained previously in Constantin et al. (2016) and Compelli et al. (2018).
We would like to mention that the Hamiltonian formulation for two-layered stratified water flows over
a flat bed and displaying piecewise constant vorticity in the equatorial f -plane approximation was
accomplished by Ionescu-Kruse and Martin (2017).
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2. System set-up

We consider an incompressible fluid system consisting of a single inviscid medium as shown in Fig.
1. The velocity profile of the underlying current is given in the same figure.

The average surface level is taken at y = 0, and the average bottom level at y = −h. The fluid
domain Ω is bounded from above by the surface wave y = η(x, t) and underneath by a stationary
impermeable bottom described by the function y = B(x). Since the average bottom level is y = −h,
it is suitable to introduce also the bottom elevation function β(x) via

B(x) =: −h+ β(x). (1)

Given the average values for the surface elevation and the bottom level, we have
∫

R

η(x, t)dx = 0,

∫

R

β(x, t)dx = 0. (2)

The typical example for a physical system is the wave motion along the Equator over the Equatorial
Undercurrent. On the surface the current velocity is negative (westward), as the depth increases it
becomes positive (eastward), while below a certain depth there is no current. Given constants γ and
κ, a realistic model of such a current is

U(y) =











γy + κ for η ≥ y ≥ −l (layer I)

UII(y) for − l ≥ y ≥ −m (layer II)

0 for −m ≥ y ≥ B(x) (layer III)

(3)

where l and m are some positive constants describing the depths at which significant changes in the
current profile occur, cf. Fig. 1. The current (3) is subjected to the constraints

UII(−l) = −γl+ κ (4)

UII(−m) = 0. (5)and

Note that U(0) = κ is the current velocity on the surface. Typical values are κ = −2 m s−1. Since
the wind usually moves the top 20 m of the sea surface, assuming that U(−20) ≈ 0 we can make the
estimate γ ≈ −10−1 rad s−1.

The subscript notation s will be used to refer to evaluation on the surface y = η(x, t), while b will
mean evaluation on the bottom y = B(x).

3. Governing equations

Denoting the velocity field using (u, v), the motion of the water flows we consider is governed by
the equation of mass conservation

ux + vy = 0, (6)

and Euler’s equations in the presence of the Coriolis force

{

ut + uux + vuy + 2ωv = − 1
ρ
Px,

vt + uvx + vvy − 2ωu = − 1
ρ
Py − g,

(7)

where P = P (x, y, t) denotes the pressure, ω is the rotational speed of Earth, g is the gravitational
acceleration and ρ denotes the density of the fluid and is assumed to be constant.

The vorticity of the water flow, defined as the curl of the velocity field (u, v), takes in our case the
shape

uy − vx = U ′(y). (8)
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Relations (3) and (8) imply that the vorticity equals the constant γ in the top layer, while vanishing
in the bottom layer. From the equation of mass conservation (6) we deduce the existence of a stream
function, denoted ψ(x, y, t), which satisfies

u(x, y, t) = ψy(x, y, t) and v(x, y, t) = −ψx(x, y, t) (9a)

and is defined up to an addition of an arbitrary function of t. Moreover, relation (8) entails the
existence of a (generalized) velocity potential ϕ(x, y, t) satisfying

u(x, y, t) = ϕx(x, y, t) + U(y) and v(x, y, t) = ϕy(x, y, t). (9b)

As a consequence of the equation of mass conservation (6) and the equations from (9b) we obtain

∆ϕ(x, y, t) = 0, (10)

for all (x, y) that lie in the fluid domain and for all t.
For simplicity we assume that, for any y and t, the functions x→ η(x, t) and x→ ϕ(x, y, t) belong

to the Schwartz class S(R) of smooth, rapidly decreasing functions. The assumption, of course, implies
that, for large absolute values of x, the wave attenuates, and disappears at infinity:

lim
|x|→∞

η(x, t) = 0 (11)

lim
|x|→∞

ϕ(x, y, t) = 0, (12)and

the same properties being true for the x derivatives of η and ϕ.
The equations of motion are completed by the boundary conditions of the free surface and on the

bottom boundary. We start with the kinematic boundary conditions which state the impermeability
of each of the two boundaries: once a particle is on one of the boundaries, it remains there at all times
t. The kinematic boundary condition on the surface is given as

ηt(x, t) = v(x, η(x, t), t) − u(x, η(x, t), t)ηx(x, t), (13a)

for all x and t. In the same vein, the kinematic boundary condition on the bed y = B(x) is

v(x,B(x), t) = u(x,B(x), t)B′(x), (13b)

for all x and t.
The kinematic boundary condition on the free surface (13a) can be expressed in terms of the

stream function as (Johnson, 1997; Constantin et al. 2008)

ηt = −(ψx)s − (ψy)sηx (14)

and in terms of the velocity potential as

ηt = (ϕy)s − ((ϕx)s + γη + κ) ηx. (15)

Furthermore, on the surface we impose the dynamic boundary condition that decouples the motion
of the water from the motion of the air above by assuming the pressure equals the constant atmospheric
pressure, Patm, that is

P = Patm on y = η(x, t). (16)

Euler’s equations can be recast by means of the stream function and the generalized velocity
potential as

∇

[

ϕt +
1

2
|∇ψ|2 +

P

ρ
− (γ + 2ω)ψ + gy

]

= 0. (17)
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We have therefore

ϕt +
1

2
|∇ψ|2 − (γ + 2ω)ψ +

P

ρ
+ gy = f(t) in the fluid,

where f(t) is an arbitrary function, reflecting the gauge freedom in the choice of the potential. Chang-
ing ϕ, if necessary, by a time-dependent factor and making use of (16) we obtain

ϕt +
1

2
|∇ψ|2 − (γ + 2ω)ψ + gy = 0 on y = η(x, t). (18)

In other words, we can write the so-called Bernoulli condition on the surface as

(ϕt)s +
1

2
|∇ψ|2s − (γ + 2ω)χ+ gη = 0 (19)

where χ(x, t) := ψ(x, η(x, t), t) is the stream function on the surface.
Equations (15) and (19) provide the time evolution of the surface variables η(x, t) and (ϕ)s ≡

ϕ(x, η(x, t), t) which, as we shall see in the next section, play the key roles in the Hamiltonian formu-
lation of the problem.

4. Hamiltonian formulation

The total energy written as the sum of kinetic and potential energy contributions is

H =
1

2
ρ

∫

R

η
∫

B

(u2 + v2)dydx+ ρg

∫

R

η
∫

B

y dydx. (20)

This energy functional written in terms of the appropriate variables will serve as a Hamiltonian for
the system under consideration. The energy of the current in the bottom layer is zero, in the middle
layer (−m ≤ y ≤ −l) is constant, so the only physical contribution to H is coming from the top
layer. With computations, similar to those in Constantin et al. (2016), Compelli (2016), Compelli
and Ivanov (2017) and Compelli et al. (2018), one can represent the energy functional in the form

H [ξ, η] = H0[ξ, η]−

∫

R

(γη + κ)ξηxdx+
1

6
ργ2

∫

R

η3dx+
1

2
ργκ

∫

R

η2 dx (21)

where

H0[ξ, η] =
1

2
ρ

∫

R

η
∫

B

|∇ϕ|2dydx+
1

2
ρg

∫

R

η2dx =
1

2ρ

∫

R

ξG(β, η)ξ dx+
1

2
ρg

∫

R

η2dx (22)

is the energy of a system without a current (Compelli et al. (2018)). The other notations are as
follows:

ξ(x, t) := ρϕ(x, η(x, t), t), φ(x, t) := ϕ(x, η(x, t), t), (23)

and the Dirichlet-Neumann operatorG(β, η) for equation (10) for the fluid domain under consideration
is given by

G(β, η)φ = −ηx(ϕx)s + (ϕy)s = (−ηx, 1) · (∇ϕ)s =
√

1 + η2x ns · (∇ϕ)s (24)

where ns = (−ηx, 1)/
√

1 + η2x is the outward-pointing unit normal vector to the water surface (Craig
et al., 2005a).
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Using the relations (Constantin et al. 2008; Constantin et al. 2016; Compelli et al. 2018)

δH0

δξ
= (ϕy)s − (ϕx)sηx,

δH0

δη
= −ρ

(

(ϕy)s − (ϕx)sηx
)

(ϕy)s +
1

2
ρ|∇ϕ|2s + ρgη (25)

we can write equation (15) in the form

ηt =
δH

δξ
(26)

and equation (19), noting that ξt = ρ(ϕt)s + ρ(ϕy)sηt, ξx = ρ(ϕx)s + ρ(ϕy)sηx, in the form

ξt = −
δH

δη
+ ρ(γ + 2ω)χ, (27)

where the HamiltonianH is given by equation (21). The system (26)-(27) can be written in a canonical
Hamiltonian form in terms of the variables η and

ζ = ξ +
ρ(γ + 2ω)

2

∫ x

−∞

η(x′, t) dx′

(Wahlén, 2007); however, for our purposes we prefer the following form. Noting that χx = (ψx)s +
(ψy)sηx = −ηt, as follows from equation (14), and introducing the new variable

u = ξx,

we can transform the system (26)-(27) into

ut = −

(

δH

δη

)

x

− ρ(γ + 2ω)ηt, ηt = −

(

δH

δu

)

x

. (28)

Thus, the dynamics now is determined only by the Hamiltonian H written in terms of η and u. In
what follows we will determine an expression for H [η, u] for a specific wave propagation regime.

5. The Boussinesq and KdV approximations

We will make now some further assumptions about the scales of the quantities involved. Introduc-
ing the usual small scale parameters

ε =
a

h
and δ =

h

λ
,

where a is the typical wave amplitude and λ is the typical wavelength, we consider the long-wave and
shallow water scaling regime. Then clearly η/h is of order ε. The operator h∂ (where ∂ := ∂/∂x) has
an eigenvalue of order 2πh/λ, that is of order δ. The quantity u = ξx has the meaning of a velocity
multiplied by ρ, and therefore is of order ε; see more details in Compelli et al. (2018).

Furthermore, the bottom variations are considered small, such that X = εx is of order 1. It is
assumed that β(x) can be of the order of h provided that the bed stays away from the surface, that is
|βmax|/h is of O(1) with |β(x)|/h < 1. This way one can expand in powers of β/h. We introduce the
local depth

b(X) := h− β(εx) > 0.

b(X) is of order 1. Most importantly, ε ∼ δ2 which usually leads to the Boussinesq and KdV
propagation regimes. The Dirichlet-Neumann operator G(β, η) expanded to the given order (ε ∼ δ2),
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is evaluated in Compelli et al. (2018). The Hamiltonian (21) becomes (rescaled by ε2 as an overall
scale factor)

H [η, u] =
1

2ρ

∫

R

u

(

b(X) + δ2
1

3
∂b3(X)∂ + εη

)

udx+
1

2
ρ(g + γκ)

∫

R

η2dx+ κ

∫

R

ηudx

+
1

2
εγ

∫

R

η2udx+
1

6
εργ2

∫

R

η3dx+O(ε2). (29)

The Boussinesq-type equations of motion (Boussinesq, 1872) are determined by (28):

ρ(ηt + κηx) = − (bu)x − δ2
1

3
b3uxxx − ε (uη)x − εργηηx (30)

and
ut + κux + Γηt = −ρ(g + γκ)ηx −

ε

ρ
uux − εγ(ηu)x − εργ2ηηx, (31)

where Γ = ρ(γ + 2ω). This system in the irrotational case and with a flat bottom (b=const.) is
integrable. It is known as the Kaup-Boussinesq system (Kaup, 1975), the details of which can be
found in Compelli et al. (2018).

In the leading order

ρ(ηt + κηx) = − (bu)x
ut + κux + Γηt = −ρ(g + γκ)ηx.

(32)and

The solutions for η and u can be deduced from the form

η(x, t) = η0e
ik(x−c(X)t)

u(x, t) = u0e
ik(x−c(X)t)

(33)and

where k = 2π/λ is the wave number and c(X) is the wave speed. Note that c depends on the “slowly
varying” variable X . From (32)-(33) it is straightforward to obtain the following quadratic equation
for the wavespeed c:

(c− κ)2 + b(γ + 2ω)c− (g + γκ)b = 0. (34)

This can be written as
(c− κ)2 + (γ + 2ω)b(c− κ)− (g − 2ωκ)b = 0. (35)

Since the Earth’s rotation angular velocity is ω ≈ 7.3×10−5 rad s−1 and κ is usually of a magnitude
of several m s−1, then ωκ≪ g giving the quadratic equation for (c− κ)

(c− κ)2 + (γ + 2ω)b(c− κ)− gb = 0. (36)

The solutions are

c(X) = κ+
1

2

(

−(γ + 2ω)b(X)±
√

(γ + 2ω)2b2(X) + 4gb(X)
)

. (37)

For example, for the EUC when γ = −0.1 rad s−1, κ = −2 m s−1 we see that ω is negligible
and the values for the left and right running speeds when b = h = 4000 m are c+ ≈ 480 m s−1 and
c− ≈ −83 m s−1. For a depth b = 500 m we have c+ ≈ 97 m s−1 and c− ≈ −51 m s−1. It is evident
also that c(X) is usually much bigger than κ. Another observation is that the presence of vorticity
changes considerably the wave speed, which for the irrotational case (γ = 0, κ = 0, b = 4000 m) for
example, is c± ≈ ±198 m s−1.
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As in the irrotational case (Compelli et al., 2018), in addition to the variable X , we introduce the
characteristic variable in the form

θ =
1

ε
R(X)− t, (38)

where R(X) is some function to be determined. The (x, t) coordinate partial derivatives change
according to

∂x ≡ R′(X)∂θ + ε∂X

∂t ≡ −∂θ.and

The equations then can be transformed from (x, t) variables to the slow variables (θ,X). The
leading order of the obtained equations, like in the irrotational case (Compelli et al., 2018) suggests
that the appropriate choice for R(X) requires

R′(X) ≡
1

c(X)
. (39)

This way, of course, two sets of equations arise (for the left and for the right running waves).
The equations written in terms of the new variables are

ρ ((−c+ κ)ηθ + εcκηX) = − (bu)θ − εc (bu)X − δ2
1

3
b3

1

c2
uθθθ − ε (uη)θ − εργηηθ +O(ε2) (40)

and

(−c+ κ)uθ + εcκuX − ρc(γ + 2ω)ηθ

= −ρ(g + γκ)ηθ − εcρ(g + γκ)ηX − ε
1

ρ
uuθ − εγ(ηu)θ − εργ2ηηθ +O(ε2). (41)

From the first equation

uθ =
ρ

b
((c− κ)ηθ − εcκηX)− ε

c

b
(bu)X − δ2

b2

3c2
uθθθ − ε

1

b
(uη)θ − ε

ργ

b
ηηθ +O(ε2). (42)

So in the leading order

u =
ρ

b
(c− κ)η (43)

and thus

uθ =
ρ

b
((c− κ)ηθ − εcκηX)− ε

ρc

b
((c− κ)η)X − δ2

ρb(c− κ)

3c2
ηθθθ − ε

ρ(c− κ)

b2
2ηηθ − ε

ργ

b
ηηθ +O(ε2).

(44)
Therefore the second equation can be written with u excluded as

ε
c2

b
[2(c− κ) + b(γ + 2ω)] ηX + ε

[

c2cX
b

−
κc(c− κ)bX

b2

]

η

+ δ2
(c− κ)2b

3c2
ηθθθ + ε

3(c− κ)2 + 3γb(c− κ) + γ2b2

b2
ηηθ = 0. (45)

This is a KdV-type equation (Korteweg and de Vries, 1895) with variable coefficients. The coef-
ficients depend on functions, slowly varying with X. The KdV equation with constant coefficients is
integrable, however it seems that equation (45) can not be transformed to any integrable forms of the
KdV equation.

8



For the irrotational case with κ = 0, b = c2/g the equation reduces to

ε(2cηX + cXη) + δ2
c2

3g2
ηθθθ + ε

3g

c2
ηηθ = 0. (46)

This is the equation derived by Johnson (1973a,b; 1997). Therefore equation (45) is a generalization
of Johnson’s equation.

We observe that X plays the role of the time-like variable in the usual KdV setting and θ - the
space-like variable. This surprising outcome is due to the fact that the original (x, t) variables are
both of order 1/ε (while combinations like the characteristics x− c(X)t are of order 1) and at leading
order both x and t can measure time:

t =
1

ε
R(X)− θ ≈

1

ε

X

c̄(X)
+O(1) =

x

c̄(X)
+ . . . , (47)

where c̄ is some “average” propagation speed .1

6. Wave propagation

In this section we study numerically the wave propagation, as governed by eq. (45). We assume
for simplicity that κ = 0 since it is much smaller than c (indeed, κ is usually 1 − 2 m s−1, while c
is usually tens to hundreds m s−1). The proper scale ε ∼ δ2 means that for depths of magnitude
h = 200 m and wave amplitudes η ∼ 20 m we have wavelengths η/h ∼ (h/λ)2 or λ ∼ 630 m. For
smaller amplitudes we have of course bigger wavelengths. We take h = 200 m and γ + 2ω = 0.1 rad
s−1 (which is a typical vorticity value that can be observed in the upper layer in the ocean). Rescaling
back X, θ and η to their original physical values (X → X/ε, θ → R(X)− t) we re-write equation (45)
in the form

bc2 (2c+ (γ + 2ω)b) ηX + bc2cXη +
b3

3
ηθθθ + (3c2 + 3γbc+ γ2b2)ηηθ = 0. (48)

The wave speed we determine from equation (37) taking the positive branch as the right-running
waves:

c(X) =
1

2

(

−(γ + 2ω)b(X) +
√

(γ + 2ω)2b2(X) + 4gb(X)
)

. (49)

We assume that the wave approaches some sort of obstacle at X = X∗

b(X) = h

[

1−Q exp

(

−µ

(

X −X∗

h

)2
)]

that is

β(X) = Q exp

(

−µ

(

X −X∗

h

)2
)

with Q < 1 measuring the height of the obstacle and µ ≪ 1 measuring the width of the obstacle, see
Fig. 2. Far from the obstacle, at X = −∞ the bottom has a depth y = −h and the wave speed for
the right running waves is

c0 =
1

2

(

−(γ + 2ω)h+
√

(γ + 2ω)2h2 + 4gh
)

. (50)

Equation (48) in this limit becomes

1From (39) c̄ can be defined on the interval [0, X] as c̄(X) =
[

1
X

∫

X

0
dX̃

c(X̃)

]

−1
.
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hc20 (2c0 + (γ + 2ω)h) ηX +
h3

3
ηθθθ + (3c20 + 3γhc0 + γ2h2)ηηθ = 0. (51)

This is clearly the KdV equation whose one-soliton solution is

η(X, θ) =
A2h3

3c20 + 3hc0γ + h2γ2
sech2

{

A

2

(

θ −
A2h2

3c20(2c0 + h(γ + 2ω))
X

)}

(52)

where A is a constant. For A = 0.12 s−1, c0 = 35 m s−1 the amplitude for η given by the expression
multiplying sech2 is 18.6 m. In our numerical studies we are using the one-soliton solution (52) as
an initial condition for equation (51). The parameters for all cases presented in Figs. 3 to 7 are the
same (h = 200 m, γ + 2ω = 0.1 rad s−1, µ = 0.01, A = 0.12 s−1, c0 = 35 m s−1, X∗ = 1000 m)
only the parameter Q that measures the height of the obstacle is different. The numerical results
are the fully implicit finite-difference implementation of (51) complemented by an inner iteration
with respect to the nonlinear term (for more details see, for example, Todorov and Christov (2007)).
In all Figs. 3 to 7 the wave elevation η is shown. The horizontal axis is the (slow) characteristic
variable θ = R(X) − t measured in seconds. The snapshots are taken for different X (recall that
X now coincides with x numerically but it is also the time-like variable, see equation (47)). It is
shown how the wave profile is changing with time as the initial KdV soliton travels though the region
with a hump at the bottom. We observe emerging solitons and reflected rapidly decaying waves of
radiation. Of course there is a change in the propagation speed when the incoming wave passes above
the obstacle, due to the dependence of c on X . The emerging solitons are smaller by amplitude and
therefore by energy in comparison to the incoming wave. This is an example of how a reef prevents
the propagation of waves with a big amplitude. The increase of the emerging solitons with Q can be
explained by means of the spectral theory of the KdV equation, as in the works by Johnson (1973a,b)
or in the review article by Compelli et al (2018). It is observed that the dispersive radiation waves of
small amplitude move to the left. This is because their phase velocity determined from the linearised

equation c2 (2c+ (γ + 2ω)) ηX + b2

3 ηθθθ = 0 when 2c+ (γ + 2ω)h > 0 is

−
b2k2

3c2(2c+ (γ + 2ω)b)
k2 < 0

and becomes significant for the short waves where the wave number k is not small. This effect is
unphysical since the KdV model does not work as a water-wave model for short waves. The soliton’s
velocity, on the other hand, is positive as can be seen from equation (52).

7. Discussion

The motion of the wave surface is determined by the variables η(x, t) and the potential on the
surface φ(x, t). The fluid potential ϕ(x, y, t) in the fluid body can be recovered from φ(x, t) (Craig et
al., 2005a) and then the velocity field in the fluid body from equation (9). In many cases there are
internal waves which form below the surface, between the top layer of warm water and the bottom
layer of cold water with high salinity and higher density. There are by now numerous studies of a fluid
system of two discrete fluid layers separated by an internal wave. We mention only the important
works of Benjamin and Bridges (1997a,b), Craig and Groves (2000), Craig et al. (2005b). Wave-
current interactions in a two-layer system have been investigated by Constantin and Ivanov (2015),
Constantin et al. (2016), Compelli and Ivanov (2015, 2017), Compelli (2016) and others. Therefore
a system with both surface and internal waves over uneven bottom is of particular interest for future
studies.
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Fig. 2. Bottom obstacle as a “hump”.
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Fig. 3. The parameter Q = 0.5 with a solitary wave moving above an obstacle.
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Fig. 4. The parameter Q = 0.6 with a second emerging soliton. A small amplitude (and velocity)
soliton is visible behind the bigger one.
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Fig. 5. The parameter Q = 0.7 with 2 emerging solitons.
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Fig. 6. The parameter Q = 0.8 with three emerging solitons.
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Fig. 7. The parameter Q = 0.9 with several emerging solitons.
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