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Abstract

While a great amount of attention is being given to the development of nano-

devices, both through academic research and private industry, the field is still on

the verge. Progress hinges upon the development of tools and components that

can precisely control the interaction between light and matter, and that can be

efficiently integrated into nano-devices. Nanofibers are one of the most promising

candidates for such purposes. However, in order to fully exploit their potential,

a more intimate knowledge of how nanofibers interact with single neutral atoms

must be gained. As we learn more about the properties of nanofiber modes, and

the way they interface with atoms, and as the technology develops that allows

them to be prepared with more precisely known properties, they become more

and more adaptable and effective. The work presented in this thesis touches on

many topics, which is testament to the broad range of applications and high de-

gree of promise that nanofibers hold. For immediate use, we need to fully grasp

how they can be best implemented as sensors, filters, detectors, and switches in

existing nano-technologies. Areas of interest also include how they might be best

exploited for probing atom-surface interactions, single-atom detection and single

photon generation. Nanofiber research is also motivated by their potential inte-

gration into fundamental cold atom quantum experiments, and the role they can

play there. Combining nanofibers with existing optical and quantum technologies

is a powerful strategy for advancing areas like quantum computation, quantum

information processing, and quantum communication. In this thesis I present

a variety of theoretical work, which explores a range of the applications listed

above. The first work presented concerns the use of the evanescent fields around

a nanofiber to manipulate an existing trapping geometry and therefore influence

the centre-of-mass dynamics of the atom. The second work presented explores

interesting trapping geometries that can be achieved in the vicinity of a fiber in

which just four modes are allowed to propagate. In a third study I explore the use

of a nanofiber as a detector of small numbers of photons by calculating the rate

of emission into the fiber modes when the fiber is moved along next to a regularly

separated array of atoms. Also included are some results from a work in progress,

where I consider the scattered field that appears along the nanofiber axis when a

small number of atoms trapped along that axis are illuminated orthogonally; some

interesting preliminary results are outlined. Finally, in contrast with the rest of

the thesis, I consider some interesting physics that can be done in one of the trap-

ping geometries that can be created around the fiber, here I explore the ground

states of a phase separated two-component superfluid Bose–Einstein condensate

trapped in a toroidal potential.
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Chapter 1

Introduction

1.1 Ultracold Quantum Gases

Almost a century ago, while the theory of quantum mechanics was still in its early

stages of development, Albert Einstein generalized some, then recent, work by

Satyendra Nath Bose [1] on the statistical nature of photons. Einstein predicted

that a phase transition would occur in a non-interacting atomic gas at extremely

low temperatures [2]. This transition, now called Bose–Einstein condensation

(BEC), leads to a macroscopic occupation of the ground state at finite tempera-

tures. For many years experimental techniques lagged behind Einstein’s theory.

After the discovery of superfluid Helium (4He), curiosity at Einstein’s theory was

renewed and in 1938 F. London suggested a connection between superfluidity and

Bose–Einstein condensation [3] and the first microscopic theory of interacting Bose

gases was developed by N. Bogoliubov [4]. Interest in BEC gathered momentum

and many related works followed. Liquid 4He however, is not an ideal candidate for

investigating BEC due to its strong interactions which mask the effects predicted

by Einstein.

Only in recent decades, with the advent of modern cooling methods and the de-

velopment of laser technology, has it became possible to cool weakly interacting

atomic clouds to the range of temperatures required to achieve BEC. In 1995 three
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groups simultaneously reported the first observation of Bose–Einstein condensa-

tion in dilute gases [5–7]. Since then many more bosonic atoms have been cooled

to quantum degeneracy [8] and the observation of Bose–Einstein condensation was

subsequently recognized with the 2001 Nobel Prize for Physics awarded to E. Cor-

nell, C. Wieman and W. Ketterle [9, 10]. While the properties of cold atoms and

superfluidity are interesting from a fundamental physics point of view, cold atoms

have also demonstrated large potential as designer quantum systems, in which

other systems can be simulated [11]. This is due to their desirable properties as

being fundamental, cold, clean and highly configurable.

1.2 Optical Nanofibers

In the 1960s, Charles K. Kao, known as The Father of Fiber Optics, realized

that optical fibers could be used for long-range optical communication [12]. Since

then optical fibers have revolutionized modern telecommunications and Kao was

rewarded for his pioneering work in 2009 when he received half of the Nobel Prize

for Physics for “groundbreaking achievements concerning the transmission of light

in fibers for optical communication”.

Once their impressive capability for low loss light transport and delivery was rec-

ognized, optical fibers were primarily developed for, and utilized in, the optical

communications industry. Optical fibers boast single mode transmission losses of

less than 0.2 dB/km. A high degree of mode confinement results in large opti-

cal intensities inside fibers, even for a conservative input power. They are ideal

for the delivery of an optical wave over considerable distances and, in addition

to revolutionizing the telecommunications industry, have found a wide variety of

applications across everything from temperature measurement to medical optics

and decoration.

In recent years, Tapered Optical Fibers (TOFs) have become the subject of much

research. TOFs are created by taking regular telecommunications optical fiber and

tapering it over a hot flame so that the core is vanishing, the cladding replaces the
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core, and the vacuum surrounding replaces the cladding [13]. A thin fiber produced

in this way can support only a small number of modes. In this case, there exists

a pronounced evanescent field that penetrates into the free-space surrounding the

fiber. The shape of this evanescent field is characteristic of the fiber properties

and the properties of the guided light. TOFs have broad applications as tools for

probing [14] and sensing [15] in atom-optics experiments. Their evanescent field

can be used for trapping and manipulating atoms at sub-micrometer distances

from the fiber surface, a prominent example is the trapping scheme described in

[16] and later achieved in [17]. This will be discussed in more detail in Sec. 2.4.

Today, quantum technologies are entering territory that has, until now, been dom-

inated by classical optics. Classical devices have been engineered up to a point

where their operation is limited by quantum effects. Meanwhile, new tools are

being developed for application in quantum technologies. Optical fibers have so

much versatility that, while they continue to offer seemingly endless applications

and improvements in classical devices, they are further proving their worth by

making new and exciting contributions to quantum devices.

1.3 Optical Lattices

Ultracold quantum gases confined in optical lattices have become a subject of

broad interest. An optical lattice is a periodic intensity pattern formed by the

interference of one or more pairs of monochromatic laser beams, which provides a

clean, regular and versatile trapping geometry for cold atoms (via the ac Stark ef-

fect). One of the motivations of this area is that optical lattices allow the imitation

of the physics of solid state systems in a highly controllable system [11, 18].

The last decade has yielded some landmark experiments relating to BECs in optical

lattices and of particular note is the observation of a quantum phase transition

between a superfluid BEC and a Mott-Insulator state [19, 20]. Optical lattices

also allow for the dimensionality of a quantum gas to be changed between one-,

two- or three- dimensions. A landmark example in this arena is the observation of
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a one-dimensional Tonks- Girardeau gas of bosons in a two- dimensional optical

lattice [21, 22]. Atoms in optical lattices have found applications in building

highly accurate atomic clocks [23] and as strong candidates for use as quantum

bits (qubits) in quantum computing [24–26].

In recent years, advances in techniques which allow for control of quantum systems

at the single-atom level have accelerated progress in the area of quantum optics.

Simultaneously, the highly-controllable environment provided by an optical lat-

tice has proven itself further as an impressive tool for confining and investigating

strongly-correlated quantum systems of ultracold atoms [27, 28]. In very recent

years the hurdle of single-site addressing has finally been overcome with the advent

of the quantum-gas microscope [29, 30]. A detailed review of quantum gases in

optical lattices can be found in [11, 18, 31].

1.4 The Present Work

1.4.1 Outline

This thesis is organised as follows:

• Chapter 2 introduces much of the background theory necessary for under-

standing the theoretical results in this thesis. Topics covered include the ori-

gin of the optical dipole force and the development of optical lattice trapping

potentials. The greatest focus of this chapter is on optical fibers, tapered

optical nanofibers and their description. The background theory associated

with Chapter 6 and Chapter 7 will be later dealt with on a chapter-by-

chapter basis. Chapter 2 provides a detailed overview of the theory needed

to begin reading.

• In Chapter 3 I present a scheme where the evanescent field around a sub-

wavelength diameter tapered optical nanofiber is combined with an optical
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lattice. The work shows that when the fiber is aligned perpendicularly to

the transverse plane of a two-dimensional optical lattice, the evanescent field

around the fiber can be used to create a time-dependent potential which melts

the lattice potential locally. This allows access to a regime in which a small

number of atoms can be locally addressed without disturbing the rest of the

lattice. If the environment around the fiber is given by a Mott-Insulator

state, the melting of the lattice transfers a well-defined number of atoms

into the fiber potential.

This work was published in Phys. Rev. A 85, 053418 (2012).

• In Chapter 4 novel optical dipole potentials based on the evanescent fields

of the TE01, TM01 and HE21 modes of an optical nanofiber are presented. I

show that these allow us to perform a continuous transition between a helical

trapping structure around the nano-fiber and a (periodic) rectangular lattice

one by simply changing the polarization of the light injected into the fiber.

Effects of unwanted mode mixing on the potentials are also investigated.

This work was published in Opt. Express, 21, 27093 (2013).

• In Chapter 5 I show that an optical nanofiber can be used to resolve sponta-

neous emission from a row of regularly separated atoms in an optical lattice

with single site resolution. This work is carried out for the specific example

of 133Cs, but the principle is applicable to any atomic species. The small size

of the fiber combined with an enhanced photon collection rate allows for the

attainment of large and reliable measurement signals.

This work was published in Opt. Express, 22, 32509 (2014).
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• In Chapter 6 I describe the properties of a system in which orthogonally

incident light is scattered from a small sample of atoms in an elongated trap

along the fiber axis. This is done for a classical field when the trap contains

two or three atoms with arbitrary interaction strength, or a Tonks-Girardeau

gas with a larger number of particles. I first show that the feedback of the

light onto the atomic sample is negligible, and then describe the resulting

field inside the fiber. For certain values of the interaction constant g and the

harmonic oscillator width l of the atomic samples, I show that solutions for

the electric field exist that are zero everywhere outside the range of trapping,

which means that all of the light scattered into the fiber remains confined.

• In Chapter 7, in a divergence from the other chapters, I investigate the su-

perfluid properties of rotating two-component Bose–Einstein condensates in

a toroidal potential. Such a potential could be created by using evanescent

light fields around a nanofiber. In the first part of this chapter I investigate

the radial phase separation that results when one component has much more

angular momentum than the other and devise a variational calculation that

agrees well with numerical calculations. In the second part of the chapter, I

show that azimuthal phase separation of the components can lead to losing

the restriction of quantization on angular momentum. This condition is usu-

ally considered to be an identifying feature of superfluid flow. I investigate

the implications this has on the resulting currents, including evidence that

the phase boundary exhibits classical solid body rotation.

A portion of this work is published in Phys. Rev. A 93, 033601(2016).

• The last chapter, Chapter 8, outlines some general conclusions.
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Chapter 2

Background theory

2.1 Optical Dipole Force

The optical dipole force arises from the coherent interaction of an inhomogeneous

electromagnetic (EM) field with the induced electric dipole moment of an atom.

The force is conservative and is the result of coherent scattering from and into the

driving field. The resultant atomic energy level shift is known as the AC-Stark

shift and it can lead to an atom experiencing a trapping potential [32–34].

An atom sitting in a laser light field E has an induced dipole moment p, oscil-

lating at the driving frequency ω. The laser field can be described, as usual, by

E(r, t) = êẼ(r) exp(−iωt) + c.c. and p(r, t) = êp̃(r) exp(−iωt) + c.c., where ê is

the polarization unit vector and the amplitude p̃ of the dipole moment is related

to the amplitude of the field Ẽ by p̃ = αẼ. Here α is the complex polarizability

of the atomic species in question. The induced optical dipole potential is given by

Udip = −1

2
〈pE〉 = − 1

2ε0c2
Re(α)I, I = 2ε0c|Ẽ|2. (2.1)

The angular brackets, 〈..〉, denote time averaging over the rapidly oscillating terms

and the factor of 1
2

accounts for the fact that the dipole is induced and not perma-

nent. I is the field intensity. The potential energy in the field is proportional to

8



the real part of the atomic polarizability, Re(α), and the intensity I. The gradient

of Udip therefore gives a conservative dipole force proportional to the gradient of

the intensity of the field

Fdip(r) = −∇Udip(r) =
1

2ε0c2
Re(α)∇I(r). (2.2)

The imaginary part of α, the part of the dipole oscillation which is out-of-phase,

describes the power being absorbed from the field

Pabs = − d

dt
Udip =

1

2
〈ṗE〉+

1

2
〈ṗE〉 = 〈ṗE〉 = 2ω Re(p̃Ẽ∗) =

ω

ε0c
Im(α)I. (2.3)

This power is then reemitted as dipole radiation and, in a divergence from the

classical picture, can be thought of as a stream of photons scattered at a rate

given by [33]

Γsc(r) =
Pabs

~ω
=

1

~ε0c
Im(α) I(r), (2.4)

which leads to unwanted recoils and therefore heating of the atom. All expressions

above are valid for any polarizable neutral particle in an oscillating electric field.

In summary, the two most important quantities are Udip, which is a function of

the real (dispersive) part of α, and Γsc, which is a function of the imaginary

(absorptive) part of α.

An expression for the frequency dependent polarizability α(ω) of an atom can

be found by starting from the classical picture of the well-know Lorentz model.

The Lorentz oscillator model assumes that since the nucleus of an atom is much

much heavier than an electron (with mass me and charge e ), the system can

be thought of as an electron-spring system connected to a stationary, infinite

mass. The oscillations have an eigenfrequency ω0 corresponding to a particular

transition frequency of the particle. In the Lorentz model, the driven oscillation of

the electron is modeled based on the damped harmonic oscillator by the equation

of motion ẍ + Γωẋ + ω2
0x = −eE(t)/me, and the solution is given by x(ω) =

9



e/me

ω2−ω2
0+iωΓω

. The local induced dipole moment is then p(ω) = −ex(ω), so that

p(ω) = − e2

me

1

ω2 − ω2
0 + iωΓω

E(t), (2.5)

and α is defined as the pre-factor of E(t)

α =
e2

me

1

ω2
0 − ω2 − iωΓω

. (2.6)

Here

Γω =
e2ω2

6πε0mec3
, (2.7)

is the classical radiative damping rate. Substituting e2/me = 6πε0c
3Γω/ω

2 and

using the on-resonance damping rate Γ ≡ Γω0 = (ω0/ω)2Γω, eq. (2.7) becomes

α = 6πε0c
3 Γ/ω2

0

ω2
0 − ω2 − i (ω3/ω2

0) Γ
. (2.8)

In the semiclassical approach, the atomic polarizability can be calculated by con-

sidering the atom as a two-level quantum system interacting with the classical

radiation field. Using the above expression for the polarizability of the atom in

eqs. (2.1) and (2.4) we arrive at the following expressions for the dipole potential

and the scattering rate in the case of large detuning

Udip(r) = −3πc2

2ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I(r) , (2.9)

Γsc(r) =
3πc2

2~ω3
0

(
ω

ω0

)3 (
Γ

ω0 − ω
+

Γ

ω0 + ω

)2

I(r) . (2.10)

These general expressions are valid for any driving frequency ω and show two

resonant contributions. Besides the unsurprising resonance at ω = ω0, there is

also the so-called counter-rotating term resonant at ω = −ω0. Using the rotating
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wave approximation (RWA), one can neglect the terms like Γ
ω0+ω

and arrive at

Udip(r) =
3πc2

2ω3
0

Γ

∆
I(r), (2.11)

Γsc(r) =
3πc2

2~ω3
0

(
Γ

∆

)2

I(r). (2.12)

The RWA is justified as long as the trapping laser is tuned quite close to the domi-

nant resonance at ω0, because the Rabi frequencies, which govern the dynamics of

the population transfer between the levels, are much smaller than the transition

frequencies [35]. In this case, the detuning ∆ ≡ ω − ω0 meets the condition that

|∆| � ω0 and so ω/ω0 ≈ 1. The RWA effectively drops the fast rotating terms,

i.e. it says that any term like ei(ω0−ω)t averages to zero on the timescales relevant

to relaxation processes.

Spontaneous emission of photons is an incoherent process which leads to heating

of the atomic cloud and is usually undesirable during experiments. In order to

minimize the photon scattering rate to a level at which the heating is negligible

one can make use of the fact that Udip ∝ I/∆ and Γsc ∝ I/∆2. This means that

for detuned optical dipole traps the scattering decreases faster than the trapping

strength for increasing values of |∆|.

Since the force an atom experiences is proportional to the gradient of the potential,

it will be attracted to regions of high or low intensity depending on the sign of the

detuning. When the laser is detuned to the red of the atomic resonance (∆ < 0)

the atom will feel an attractive force towards regions of high intensity and when

the laser is detuned to the blue of the atomic resonance (∆ > 0) the atom feels a

repulsive force in the high intensity regions eq. (2.12). It is important to remember

that the depth of the potential is directly proportional to the intensity of the laser

light.

One type of dipole trap, which is of particular relevance in Chapter 3, is an optical

lattice. Optical lattices can be created by a standing wave laser light field, which

have a periodic arrangement of intensity maxima and minima in space. This

represents a periodic arrangement of microtraps in space for the atoms. Optical
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lattice trapping potentials are one of the main foci of Chapter 3 and so, after a brief

note about laser cooling, I will discuss them in more detail in the next section.

Throughout this thesis I will regularly be concerned with the optical trapping

potentials formed in the evanescent fields around an optical nanofiber, which are

yet another example of an optical dipole trap and will be discussed later.

A Note About Laser Cooling

Optical dipole traps typically have depths on the order of a milli-Kelvin [33].

For trapping, atoms therefore need to be cooled to the order of a few hundred

micro-Kelvin because at higher temperatures the atoms would have too much

energy to be confined in the traps. A collection of atoms can be slowed using

the momentum transfer that occurs when an atom absorbs a photon. A magneto-

optical trap (MOT) is a device based on this principle. It combines three pairs

of counter-propagating laser beams in the x, y and z directions, with an added

spatially varying magnetic quadrupole field. Due to conservation of momentum,

every time an atom absorbs a photon of wavelength λ the atomic velocity changes

by the recoil velocity, vrec = ~k/m. Here, k = 2π/λ and m is the mass of the atom.

As the atoms in a gas are in continuous motion they see the cooling laser beam at

a Doppler shifted frequency compared to the laboratory frame of reference. If the

cooling laser is detuned by a magnitude that is less than the difference between

the resonance frequencies of the ground and excited states of the transition, ∆ =

ω−ωA, where ω is the laser frequency and ω0 is the resonant frequency of the atom,

then the moving atoms see the laser frequency shifted by −k.v, where k is the

free-space wave-vector of the laser light and v is the atomic velocity. The radiation

pressure is therefore stronger for atoms with velocity of opposite sign to the wave

vector, i.e. k.v < 0, and the momentum transfer ~k is opposing the velocity,

slowing the atom. After reaching the lower temperature limit achievable through

Doppler cooling, the atoms can be further cooled by polarization gradient cooling

and evaporative cooling. A detailed description of the stages of laser cooling is

outside of the scope of this thesis, but can be found in [36, 37].
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2.2 Periodic Optical Lattices

As seen in Sec. 2.1, a laser field can exert a purely conservative dipole force on

an atom which will allow the atom to be trapped. In the following discussion we

will neglect spontaneous emission, which is justified as in typical optical lattice

experiments the lattice is far-detuned and so the rate at which photons are spon-

taneously emitted is close to zero [27]. An optical lattice potential is generated

by overlapping two counter-propagating laser beams of the same frequency. The

two laser beams form a standing wave and therefore create a periodic potential

with period λ/2, which can be used to trap atoms. By overlapping the pair of

lasers at an angle less than 180◦ a variety of lattice geometries with larger period

can be achieved [38, 39]. To demonstrate the basic properties of an optical lattice,

let us assume that we have two waves which are propagating in the x-direction

with amplitude E0 and wavelength λ = 2π/k. Their interference creates an op-

tical potential Vlat(x) ∝ cos2(kx), which has intensity maxima and minima with

periodicity λ/2. As seen in the Sec. 2.1, the direction of the force depends on the

sign of the detuning of the atom. Atoms can be forced to gather at the nodes or

anti-nodes of the laser intensity pattern by using blue-detuned (ω > ω0) or red-

detuned (ω < ω0) light respectively. The lattice constant for the atomic lattice is

therefore also given by λ/2.

By introducing additional pairs of laser beams propagating in the y and/or z-

directions, a full two or three dimensional periodic trapping potential can be cre-

ated. One of the most stable and versatile geometries for such a lattice is the

two-dimensional potential formed by two pairs of orthogonally arranged, counter-

propagating laser beams.
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(a) (b)

Figure 2.1: (a) Schematic of a two-dimensional optical square lattice. (b)
Polarization of laser beams in the square lattice.

A two-dimensional lattice potential made from four laser beams of equal wave-

length, λ, equal power, P , and all linearly polarized, can be written as

Vlat(x, y) = V0

(
cos2(kx) + cos2(ky) + 2εx · εycos(φ(t)) cos(kx) cos(ky)

)
. (2.13)

Here φ is the time dependent phase between the two polarization vectors εx and

εy. εx is transverse to x̂ (in y-z plane) and εy is transverse to ŷ (in x-z plane).

For parallel polarization vectors εx = εy = ẑ we have εx · εy = 1 and for orthogonal

polarizations between the two standing wave laser fields, or for a time dependent

phase of φ = π/2, the interference term in eq. (2.13) vanishes and the potential

is proportional to the sum of the intensities of the two standing wave light fields,

panel (b) in Fig. 2.1 shows the arrangement of laser polarizations that result in a

square lattice. Assuming the latter, the potential is therefore represented by the

sums of purely sinusoidal orthogonal fields [27] (see Fig. 2.1)

Vlat(x, y) = V0

(
cos2(kx) + cos2(ky)

)
. (2.14)
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In each direction the depth of this lattice is directly proportional to the intensity

of the corresponding pair of laser beams and therefore the depth of the lattice

sites in different directions can be controlled in an experiment. Even though the

lattice potential is sinusoidal, for deep optical lattices and very cold atoms a single

site can be approximated by a harmonic potential with typical harmonic oscillator

(HO) trapping frequencies ωHO of up to 100 kHz [27]. The energy of oscillations

within a single well are then given by ~ωHO and can be expressed in units of the

recoil energy, ER = ~2k2/2m, as 2(ER)(V0/ER)
1
2 .

For 87Rb, typical values for the recoil energy are in the region of several kilohertz

(or on the order of 1030 Joules, or 100 mK). Throughout this thesis we will consider

the type of two-dimensional optical lattice described above and given by eq. (2.14).

We will assume that there is an extra harmonic confinement present which has the

effect of suppressing all oscillations in the z-direction, so that we can concentrate

on the physics in two dimensions.

2.2.1 Bloch Bands and Wannier Functions

The localized solutions to a periodic system are given by the Wannier functions

[40]. In the case of atoms confined in a two dimensional optical lattice it is conve-

nient to choose these Wannier functions W (x, y) as a basis set since they provide

a representation of wave functions localized at single lattice sites. The Wan-

nier functions can be given by linear combinations of the delocalized Bloch states

φ
(n)
k (x) = eikxu

(n)
k (x) and φ

(n)
k (y) = eikyu

(n)
k (y)

wn(x− xj, y − yj) = Θ
∑

k

exp (−ikxj)φ(n)
k (x)×

∑

k

exp (−ikyj)φ(n)
k (y), (2.15)

where Θ is a normalization constant and (x− j, yj) are the positions of the lattice

minima. In the work in Chapter 3 and Chapter 5 we consider very deep optical

lattices in which a Mott insulator state has been achieved. In this limit the Wannier

functions are a good description of the ground state wave functions [18, 27, 40].
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2.2.2 The Bose–Hubbard Model

Since the first observation of Bose–Einstein condensation in 1995 [5–7] the area of

ultracold atomic gases has steadily progressed. One of the most notable advances

was the experimental realization of the superfluid to Mott insulator transition

of ultracold atoms in an optical lattice [19]. Work in this direction has led to

an increased interest in the Bose–Hubbard model [27], due to the connection it

provides to condensed matter and the body of work already existing in lattice

structures in solid state physics.

Ultracold atoms in optical lattices represent an ideal test-bed for quantum many-

body theories. They also represent a unique system for carrying out simulations of

condensed matter systems, as the lattices can be controlled in a time-dependent

way by varying external parameters. In particular, in recent years a variety of

Hubbard type lattice models have been realized and investigated and one of the

most notable advances in optical lattice physics is the Mott insulator-superfluid

transition first achieved by Greiner et al. with cold bosonic atoms [19]. The Bose–

Hubbard Hamiltonian describes a weakly interacting gas in an optical lattice and

is given by

Hfull =

∫
d3xΨ̂†(x)

(
p2

2m
+ Vlat(x)

)
Ψ̂(x) +

g

2

∫
dxΨ̂†(x)Ψ̂†(x)Ψ̂(x)Ψ̂ (x),

(2.16)

where Ψ̂(x) is the bosonic field operator for atoms in a well-defined internal atomic

state. We also consider an idealized situation where the only trapping potential is

that of the lattice, Vlat(x), whereas a full treatment accounting for all experimental

effects would also require the consideration of an external trapping potential. As

these potentials are usually slowly varying compared to the optical lattice, they

can be neglected for our purposes. The interaction strength between two atoms

is given by g. If the atoms interact via s-wave scattering only, then g is defined

by g = 4πas/m, where as is the atomic s-wave scattering length. We assume

all particles to be in the lowest band of the optical lattice and expand the field

operator in terms of the Wannier functions Ψ̂(x) =
∑

i b̂iw0(x − xi), where b̂i is
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the annihilation operator for a particle at site xi. This leads to

Hfull = −
∑

i,j

Jij b̂
†
i b̂j +

1

2

∑

i,j,k,l

Uijklb̂
†
i b̂
†
j b̂kb̂l , (2.17)

where

Jij = −
∫
dx w0(x− xi)

(
p2

2m
+ Vlat(x)

)
w0(x− xj) , (2.18)

and

Uijkl = g

∫
dx w0(x− xi)w0(x− xj)w0(x− xk)w0(x− xl) . (2.19)

Note first that diagonal tunneling is forbidden in a cubic lattice since the Wannier

functions are orthogonal. As a result, the tunneling matrix elements Jij for sites

other than nearest neighbors are small. For such lattices the values of the offsite

interaction matrix elements Uijkl involving Wannier functions centered at different

lattice sites are also small compared to onsite interactions and we can neglect

them [40]. For an isotropic cubic optical lattice one then arrives at the standard

Bose–Hubbard Hamiltonian

HBH = −J
∑

〈i,j〉

b̂†i b̂j +
U

2

∑

j

b̂†j b̂
†
j b̂j b̂j , (2.20)

where 〈i, j〉 denotes the sum over the nearest neighbors.

The lattice depth V0 depends directly on the power in the lattice lasers. As the

lattice depth increases, tunnelling (J) decreases, and atoms confined at a single

site experience an increase in their repulsive energy, U .

The Bose–Hubbard Hamiltonian in eq. (2.16), even in one-dimension, is not an

analytically solvable model. Despite this, the principal physics of the model is

very well understood. Of particular interest is the observation of a quantum phase

transition between a superfluid and insulator phase that the Bose–Hubbard Model

exhibits as a function of U/J .
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2.2.3 Superfluid Phase

For an ideal gas in the limit of U = 0, the eigenstates of HBH can be found for

εi = 0 and periodic boundary conditions. From the eigenvalue equation E
(0)
k =

−2J cos(ka) it follows that the lowest Bloch band is at a height 4J [27, 40]. The

energy takes its minimum value for k = 0 and so in this limit particles in the

ground state are delocalized over the whole lattice, i.e. the ground state of N

particles in the lattice is |ΨSF〉 ∝ (
∑

i b̂
†
i )
N |vac〉, where |vac〉 is the vacuum state.

In this limit the system is superfluid (SF) and possesses first order long range

off-diagonal correlations [18, 41].

2.2.4 Mott Insulating Phase

In the limit where the interaction parameter U dominates over the hopping term

J we have a vastly different situation. Consider the case where the number N

of atoms is precisely equal to the number of lattice sites. Interestingly, at about

U ≈ 5.8nJ , where n is the number of nearest neighbors of each lattice site, a

quantum phase transition takes place [18, 41]. Long range correlations in the

ground state cease to exist and the system is said to become Mott insulating.

For the ideal configuration of exactly one atom per lattice site the ground state

can be represented as a straightforward product of local Fock states. This Mott

insulator state can therefore be written as |ΨMI〉 ∝
∏

j b̂
†
j|vac〉. The observation of

the transition from a homogeneous BEC superfluid to a Mott insulator has been

hailed as one of the most important advances in modern day atomic physics.

Having achieved a MI state with one atom per lattice site, one can now begin to

increase J so that U becomes less and less dominant and the atoms begin to hop

again. This tunneling results in instances where more than one atom may occupy

a single lattice site which increases the energy by U . As long as the gain in kinetic

energy due to hopping remains smaller than the interaction energy, the atoms will

remain localized. However, for any J 6= 0, the ground state is no longer a simple

product state. Once J becomes of the order of, or larger than, U , the gain in
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Figure 2.2: (a) The cross section of, and (b) the step-index profile of a typical
telecommunications fiber. Note that the radius of the core has been exaggerated
for illustrative purposes. Typical values of the important parameters have been

indicated.

kinetic energy dominates the repulsion due to double occupancy and the system

undergoes a transition back to a delocalized superfluid.

2.3 Optical Fiber Background Theory

A standard fiber consists of a core and a surrounding cladding area. The materials

are chosen such that a step-index profile results, see Fig. 2.2. A typical material for

the cladding is silica (SiO2) and the core is made from silica doped with germanium

ions. This doping leads to a refractive index which is about 1% greater than the

refractive index of the cladding, and this difference in turn leads to total internal

reflection (TIR) of light coupled into the fiber core, within a certain acceptance

angle (or numerical aperture) , and so allows it to be transmitted along the fiber.

A telecommunications fiber is typically around 125 µm in diameter, the diameter

of the core is usually ten to thirty times smaller than the entire fiber diameter.

This is necessary in order to minimize losses at the core-cladding interface when

the fiber bends. Laser light can be coupled into a fiber using a number of different

and well established coupling techniques. The propagation inside the fiber is then

determined by Maxwell’s equations, and if they are solved exactly, four individual

types of propagating mode can be identified. These are the hybrid modes HE and
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EH, which have six non-vanishing contributions to the electromagnetic field, and

the transverse modes TE (transverse electric) and TM (transverse magnetic), for

which at least one component is vanishing.

2.3.1 Light Propagation in Optical Fibers

The cylindrical symmetry of fibers suggests the use of cylindrical coordinates.

We assume that both media, that of the core and that of the cladding, are non-

absorbing and that they have a magnetic permeability equal to the vacuum per-

meability, µ0. The field components are Er, Eφ, Ez, Hr, Hφ, and Hz. Note that

since the unit vectors in the r and φ directions are not constant vectors, the wave

equations for the transverse components becomes complicated, whereas the wave

equation for the z components is simply given by

(∇2 + k2)

[
E

H

]
= 0. (2.21)

Here k2 = ω2n2/c2 is the wave-vector, and ∇2 is the Laplacian operator

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂r
. (2.22)

The direction of light propagation is along the waveguide, so we assume that every

component of the field vector assumes the same z and t dependence of ei(ωt−βz)

[ ~E(~r, t)
~H(~r, t)

]
=

[ ~E(r, φ)
~H(r, φ)

]
ei(ωt−βz). (2.23)

Eqs. (2.21) and (2.23) are Maxwell’s equations and they can be presented in cylin-

drical form as (see, for example, [42])

iωεEr = iβHφ +
1

r

∂

∂φ
Hz

iωεEφ = −iβHr −
∂

∂r
Hz

iωεEz = −1

r

∂

∂φ
Hr +

1

r

∂

∂r
(rHφ)

(2.24)

−iωµHr = iβEφ +
1

r

∂

∂φ
Ez

−iωµHφ = −iβEr −
∂

∂r
Ez

−iωµHz = −1

r

∂

∂φ
Er +

1

r

∂

∂r
(rEφ)

(2.25)
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and are solved by

Er =
−iβ

ω2µε− β2

(
∂

∂r
Ez +

ωµ

β

∂

r∂φ
Hz

)

Eφ =
−iβ

ω2µε− β2

(
∂

r∂φ
Ez −

ωµ

β

∂

∂r
Hz

)

(2.26)

Hr =
−iβ

ω2µε− β2

(
∂

∂r
Hz −

ωε

β

∂

r∂φ
Ez

)

Hφ =
−iβ

ω2µε− β2

(
∂

r∂φ
Hz +

ωε

β

∂

∂r
Ez

)
.

(2.27)

So, rather elegantly, it is enough to determine Hz and Ez to fully know the wave

solution for every component. Given the assumed z-dependence of eq. (2.23), the

wave equation (2.21) becomes

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂φ
+ (k2 − β2)

)[
Ez
Hz

]
= 0, (2.28)

which is separable, with solutions of the form

[
Ez
Hz

]
=

[
ψ1

ψ2

]
e±ilφ, l = 0, 1, 2... . (2.29)

From this eq. (2.28) becomes

∂2ψ

∂r2
+

1

r

∂ψ

∂r
+ (k2 − β2 − l2

r2
)ψ = 0. (2.30)

which has solutions called Bessel functions of order l. The general solution of eq.

(2.30) is then

ψ(r) = c1Jl(hr) + c2Yl(hr), if k2 − β2 > 0 c1, c2 ∈ C . (2.31)

ψ(r) = c3Il(qr) + c4Kl(qr), if k2 − β2 < 0 c3, c4 ∈ C . (2.32)

where the cn are constants, Jl and Yl are Bessel functions of the first and second

kind respectively, and Il and Kl are modified Bessel functions of the first and

second kind respectively, all of order l. Also, h2 = k2− β2 and q2 = β2− k2. Here

q is an important parameter, as it corresponds to the reciprocal of the decay length

Λ of the evanescent field outside the fiber, so that q = 1/Λ. The evanescent decay

length Λ, for a nanofiber of radius a = 150 nm, when the light in the fiber has
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wavelength λ = 780 nm is Λ ≈ 0.5 µm, for longer wavelengths the decay length

can extend up to 2 µm outside the fiber surface.

The condition that any loss-less mode should be confined to the core, restricts the

axial propagation constant β to the range n2k0 ≤ β ≤ n1k0, where k0 = ω/c is the

wave vector of the propagating field. This implies that the solution of eq. (2.30)

will take the form of eq. (2.31) inside the core, when r < a, and the form of

eq. (2.32) outside it, when r > a. Since Yl is singular at r = 0, the fields in eq.

(2.30) are only finite if c2 = 0. For a loss-less mode the power density is restricted

to the fiber and the guided fields must therefore vanish for large r. Because Il

diverges as r →∞, we require c3 = 0 in order to show an evanescent decay of the

field. Inside the core the field components Ez and Hz are then given by

Ez(r, φ, z, t) = AJl(hr) ei(ωt±lφ−βz),

Hz(r, φ, z, t) = BJl(hr) ei(ωt±lφ−βz), (2.33)

whereas outside the core the have the form

Ez(r, φ, z, t) = CKl(qr) ei(ωt±lφ−βz),

Hz(r, φ, z, t) = DKl(qr) ei(ωt±lφ−βz). (2.34)

Using eqs. (2.33) and (2.34), combined with eqs. (2.21), (2.29), and (2.27), the

fields Er, Eφ, Hr, and Hφ, inside and outside the fiber core can now be expressed

in terms of Ez and Hz. Here, for brevity, we restrict ourselves to including only Er

and Ez outside the fiber core (r > a). All of the solutions can be found in chapter

3 of [42] and for r > a are given by

Er(r, φ, z, t) =
β

q

[
iCKl(qr)−

ωµ0(±l)
β

D
Klqr

qr

]
ei(ωt±lφ−βz),

Eφ(r, φ, z, t) = −β
q

[
(±l)CKl(qr)

qr
+
iωµ0

β
DK ′lqr

]
ei(ωt±lφ−βz). (2.35)

It is necessary to remember that the tangential components Eφ,z and Hφ,z have

to be continuous at the core-cladding boundary, which requires the boundary
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Figure 2.3: Numerical solutions of eq. (2.37) for the propagation constant β
for a vacuum-clad silica fiber, with light at 852 nm wavelength. The dashed
lines indicate the single-mode cut-off, and the first-four-mode cut-off. One can
see that the TE01 TM01 and HE21 modes become available at approximately

the same radius.

conditions

Eφ,z(r = a)|core = Eφ,z(r = a)|cladding,

Hφ,z(r = a)|core = Hφ,z(r = a)|cladding. (2.36)

Combining these with eq. (2.35) and all of its accompanying expressions (for Er,

Eφ, Ez, Hr, Hφ, and Hz inside and outside the fiber core), then leads to the mode

condition that can be solved numerically to find the propagation constant β of

each mode, and also to determine the number of modes allowed to propagate in

the fiber. This mode condition is given by

(
J ′l (ha)

haJl(ha)
+

K ′l(qa)

qaKl(qa)

)(
n2

1J
′
l (ha)

haJl(ha)
+
n2

2K
′
l(qa)

qaKl(qa)

)
= l2

[(
1

qa

)2

+

(
1

ha

)2]2(
β

k0

)2

,

(2.37)
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where again

h =
√
k2

0n
2
1 − β2 , (2.38)

q =
√
β2 − k2

0n
2
2 . (2.39)

and the wavenumber in free space is k0 = 2π/λ. The dashed functions, J ′(x) and

K ′(x), represent a derivative with respect to the argument. The numerical solu-

tions of eq. (2.37) are shown in Fig. 2.3. By solving eq. (2.37) for J ′l (ha)/haJl(ha),

using the Bessel relations

J ′l (x) = −Jl+1(x) +
l

x
Jl(x) and J ′l (x) = Jl−1(x)− l

x
Jl(x)

it is possible to identify different sets of solutions that correspond to different

modes. In the case where l = 0 it is possible to arrive at simplified mode conditions

for the TM and TE modes (i.e. when ∂/∂φ = 0 and all the components are radially

symmetric). These simplified mode equations will be given where they are relevant

in Sec. 2.6.

2.3.2 A Note About TM, TE and Hybrid Modes.

The exact solutions for the bound field modes are usually divided into two sub-

groups: hybrid modes and transverse modes. The hybrid modes contain both

electric (E) and magnetic (H) field components along the fiber axis and are de-

noted HE (EH) when Ez is smaller (larger) than Hz. For the transverse modes,

the longitudinal component of either the electric or magnetic field is zero and the

modes are thus said to be transverse electric (TE) or transverse magnetic (TM).

In other words, TE modes have only H (magnetic field) components in the direc-

tion of propagation and TM modes have only E components in the direction of

propagation.
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(c) Hybrid mode.  
Eρ, Eɸ, Ez, Hρ, Hɸ, Hz ≠0.

E z

(b) TM01 mode.  
Eρ, Ez, Hɸ≠0. Eɸ = Hρ= Hz=0.

E z

E z
(a) TE01 mode.  

Eρ=Ez= Hɸ=0. Eɸ, Hρ, Hz≠0.

Figure 2.4: Note that only the vertical light rays are shown in the longitudi-
nal cross-section for (a) and (b), while several directions are contained in the
transverse cross-section. This figure is recreated from [43] where it appears as

Fig. 2-11, a similar figure appears as Fig. 11-2 in [44].

It is helpful to consider the schematic light ray drawings shown in Fig. 2.4. The

transverse modes always intersect the fiber axis effectively causing either the elec-

tric (a) or magnetic (b) field to be purely transverse. The TE01 only has circular

fields lines for the electric field, while the TM01 electric field lines are perpendicu-

lar and parallel to the fiber axis. In contrast to the transverse modes, the hybrid

modes circulate around the fiber axis without ever passing through it. This is

what gives rise to the non-zero components of both the electric and magnetic field

in all directions. The HE11 mode is a hybrid, it is neither TE (transverse electric)

nor TM (transverse magnetic) because the axial field components Ez and Hz are

not zero [42].

2.4 Tapered Optical Nanofibers

Tapered nanofibers are sub-wavelength diameter optical fibers with a cylindrical

silica core. Tapered fibers can be created by heating and pulling commercial
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grade optical fiber and tapering, so that the refractive indices that determine the

guiding properties of the fiber are that of the original silica cladding and that

of the surrounding vacuum [13]. Throughout the tapering process the transition

from the untapered region to the tapered region must remain adiabatic to avoid

losses, some images of tapered fibers are shown in Fig. 2.5. Current tapered

fiber technology can produce fibers with radii as low as a few hundred nanometres

[14, 45–47] and such thin fibers can only support a finite number of modes. Due to

the tapering process, the original core has vanished and the refractive indices that

determine the guiding properties of the tapered fiber are those of the original silica

cladding and of the surrounding vacuum (see Fig. 2.6). In this case, there exists

a pronounced evanescent field that penetrates into the free-space surrounding the

fiber. The shape of this evanescent field is characteristic of the fiber properties

and the properties of the guided light. In particular it can be used for trapping

and manipulating atoms at sub-micrometer distances from the fiber surface.

(a) (b)

Figure 2.5: (a) The thicker line is a human hair and wrapped around
it is a tapered optical fiber, from the Mazur group at Harvard, see
www.mazur.harvard.edu/research/. (b)This picture is the tapered part of an
optical fiber of radius 330 nm. From the group of Śile Nic Chormaic at OIST,

Okinawa, Japan.

Atoms can be trapped and guided by the gradient force of a light field, see Sec. 2.1.

When light is incident at a boundary between two media, the refracted field does

not drop instantaneously to zero, but rather decays quasi-exponentially on the
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Figure 2.6: As the fiber is pulled the core essentially vanishes, the cladding
becomes the new guiding area and the surrounding vacuum acts as an infinite

cladding.

length-scale of the field’s wavelength. This is called the evanescent field. Evanes-

cent light fields are particularly interesting because they provide high spatial gra-

dients and a well-defined potential shape which is dependent on the shape of the

dielectric surface from which they originate. However, usually the power and the

range of the evanescent field are small. A system where the intensity of the evanes-

cent field is a significant portion of the overall intensity of the wave is therefore

desireable. Tapered optical fibers allow access to this scenario by having fiber

diameters so small that a large portion of the field intensity is no longer guided in

the fiber core, but instead in the evanescent region.

Among the particularly desirable qualities of tapered optical fibers are therefore

their strong transverse confinement properties and the pronounced evanescent field

they exhibit. Several works have already been undertaken that show how these

properties can be used [48]. For example, experimental work has demonstrated

how the evanescent field can efficiently probe and couple atoms and molecules to

the fiber mode [17, 49, 50], which opens the possibility of a range of applications

for the detection and manipulation of these particles. In particular, evanescent

field spectroscopy of a small number of atoms in the vicinity of a tapered optical

fiber (TOF) has been performed [49, 51, 52] and the use of the evanescent field

for trapping atoms has also been proposed and achieved [16, 17, 50, 52]. Another

useful property of such tapered optical nanofibers is that the field distributions

can exhibit a cylindrical asymmetry depending on the polarization of the light

[53, 54].1

1In particular, in the case of the fundamental mode with quasi-linear polarization, it has been
shown that a substantial azimuthal dependence of the total intensity is observed in the vicinity
of the fiber surface [53, 54], this will be discussed later in Sec. 2.5.1.
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LP21 LP02LP01 LP11

Figure 2.7: The intensity distribution of the first four LP modes for λ = 700
nm laser light in a fiber of radius a = 1µm. Each square corresponds to 2.5 µm
× 2.5 µm. The color scale varies between low intensity (blue) and high intensity

(red).

At this point it is important to mention the significance of linearly polarized

(LP) modes, as references to them appear throughout the fiber literature. The

refractive-index difference, n1−n2, in a communications grade fiber is of the order

of 1%, which allows the approximation n2/n1 ≈ 1 and enables a very simplified

analysis of optical fibers. Where this approximation applies it is a very powerful

tool that gives clear results. Mode expressions arrived at through making this

approximation are referred to as LP modes. Since an LP mode is derived by the

approximation n2/n1 ≈ 1, it is called the weakly guiding approximation. When

the fiber is very thin and the silica cladding is replaced by air, the large differ-

ence in refractive index between the silica core and the vacuum cladding means

that the fiber becomes strongly guiding and the approximation does not apply.

A significant z-component develops and the modes can no longer be regarded as

mainly transversal. It becomes necessary to solve Maxwell’s equations exactly, as

we have described in the previous sections. The exact modes can still be grouped

according to the LP modes but are no longer degenerate.

The first four LP modes are shown in Fig. 2.7. The LP modes are linear combi-

nations of the exact modes, grouped as follows:

LP0,m : HE1,m

LP1,m : HE2,m,TE0,m,TM0,m (2.40)

LPl,m : HEl+1,m,EHl−1,m, for l ≥ 2.

As an example we consider the modes shown in Fig. 2.8. Here the TE01 and HE21
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=

=

TE01 HE21 LP11

Figure 2.8: Two different linear combinations of the TE01 and HE21 modes
combine to form the LP11 mode in two different polarization and spatial config-
urations. Since we are only looking at the transverse polarization in the fiber,
the z-component of the hybrid mode does not enter. This figure is recreated
from [43] where it appears as Fig. 2-12, a similar figure appears as Fig. 14-5(d)

in [44].

modes are combined to make the LP11 = TE01 ± HE21 mode for two different

spatial and polarization configurations. The yellow shaded regions indicate the

intensity distribution similar to what is shown in Fig. 2.7. Two more polarization

configurations exist for the LP11 mode. These are obtained by combining the TM01

and HE21 modes and give similar intensity distributions to the ones shown but with

the polarization lines rotated by 90 degrees. Like the LP modes, each exact mode

is characterized by its propagation constant β. The intensity distributions, and

polarizations of the first four nanofiber modes, HE11, HE21, TE01 and TM01, are

shown in Fig. 2.9.
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Figure 2.9: Intensity distribution of the first four nanofiber modes. The ver-
tical red lines in the first panel on the left indicate the position of the nanofiber
surface. In the panels on the right hand side, the arrows indicate the polariza-
tion direction. These images were produced for a fiber of radius 400 nm, and
lights of wavelength 780 nm. For these parameters, only the first four modes
are allowed to propagate in the fiber. Row (a) is the HE11 mode, row (b) shows

the HE21 mode, row (c) is the TE01 mode and row (d) is the TM01 mode.

Frequently during this thesis we want to ensure that only the fundamental mode

HE11 travels in the fiber. To guarantee this we choose parameters such that they
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satisfy the single-mode condition as indicated in Fig. 2.3, see [42, 44]

V = ka
√
n2

1 − n2
2 < Vc ∼= 2.405, (2.41)

where Vc is the single mode cut-off. We will also be interested in the regime where

the first four modes, HE11, TE01, TM01, and HE21, are the only modes available

in the fiber, which is guaranteed when 2.405 < V < 3.839. I will now describe

these four modes. Throughout this thesis, the refractive index and the radius of

the tapered silica waist will be referred to as n1 and a, respectively.

2.5 The Fundamental Mode HE11

The first fiber mode we will consider is the fundamental mode HE11. As described

at the end of Sec. 2.3.1, by solving eq. (2.37) for J ′l (ha)/haJl(ha), using the

Bessel relations (eq. (2.40)) we can re-frame the mode equation, eq. (2.37), for the

different families of solutions corresponding to the various modes. For the HE11

mode, β is determined from

J0(ha)

haJ1(ha)
=− n2

1 + n2
2

2n2
1

K ′1(qa)

qaK1(qa)
+

1

h2a2

−



(
n1

2 + n2
2

2n1
2

K1
′
(qa)

qaK1(qa)

)2

+
β2

n1
2k2

(
1

q2a2
+

1

h2a2

)2



1
2

, (2.42)

which, when solved numerically, gives a set of β values corresponding to the HE

propagation modes.

2.5.1 The Fundamental HE11 Mode With Quasi-Linear Po-

larization

Let us first describe the fundamental mode with quasi-linear polarization. Fol-

lowing Sec. 2.3.1, the solutions of Maxwell’s equations in cylindrical coordinates
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(r, φ, z) for the electric field ~E for this mode inside the dielectric fiber (r < a) are

given by [42]

Ex(r, φ, z; t) = −iA β

2h
[(1− s)J0(hr) cos(φ0)− (1 + s)J2(hr) cos(2φ− φ0)] ei(ωt−βz),

Ey(r, φ, z; t) = −iA β

2h
[(1− s)J0(hr) sin(φ0)− (1 + s)J2(hr) sin(2φ− φ0)] ei(ωt−βz),

Ez(r, φ, z; t) = AJ1(hr) cos(φ− φ0)ei(ωt−βz). (2.43)

Outside of the fiber (r > a) they are given by [42]

Ex(r, φ, z; t) = A
β

2q

J1(ha)

K1(qa)
[(1− s)K0(qr) cos(φ0) + (1 + s)K2(qr) cos(2φ− φ0)] ei(ωt−βz),

Ey(r, φ, z; t) = A
β

2q

J1(ha)

K1(qa)
[(1− s)K0(qr) sin(φ0) + (1 + s)K2(qr) sin(2φ− φ0)] ei(ωt−βz),

Ez(r, φ, z; t) = iA
J1(ha)

K1(qa)
K1(qr) cos(φ− φ0)ei(ωt−βz), (2.44)

where s is defined as

s =

[
1

(ha)2
+

1

(qa)2

] [
J ′1(ha)

haJ1(ha)
+

K ′1(qa)

qaK1(qa)

]−1

, (2.45)

and h and q are as before in eqs. (2.38) and (2.39).

The polarization direction of the transverse electric field is defined by φ0, with

x-polarization given when φ0 = 0 and y-polarization for φ0 = π/2. The normal-

ization constant for the modes is given by A and is directly proportional to the

square root of the total power, P .

For practical applications, such as trapping of atoms by the optical force of an

evanescent wave around a thin fiber, it is necessary to calculate the optical po-

tential which is proportional to the total intensity |E|2 of the electric field. Here
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these are given, inside and outside the fiber, by [42, 49]

| ~Ein(r, φ)|2 =A2 β
2

4h2

[
(1− s)2J2

0 (hr) + (1 + s)2J2
2 (hr) + 2

h2

β2
J2

1 (hr)

+ 2

(
h2

β2
J2

1 (hr)− (1 + s)(1− s)J0(hr)J2(hr)

)
cos[2(φ− φ0)]

]
,

(2.46)

| ~Eout(r, φ)|2 =A2 β
2

4q2

J2
1 (ha)

K2
1(qa)

[
(1− s)2K2

0(qr) + (1 + s)2K2
2(qr) + 2

q2

β2
K2

1(qr)

+ 2

(
q2

β2
K2

1(qr) + (1 + s)(1− s)K0(qr)K2(qr)

)
cos[2(φ− φ0)]

]
.

(2.47)

For simplicity let us introduce the following parameters to rescale the above equa-

tions

u = 2h2/(β2(1− s)2) , (2.48)

w = 2q2/(β2(1− s)2) , (2.49)

f = (1 + s)2/(1− s)2 , (2.50)

ξ = 2(1 + s)/(1− s) , (2.51)

so that we obtain

| ~Ein|2 = Gin[J2
0 (hr) + uJ2

1 (hr) + fJ2
2 (hr)

+ [uJ2
1 (hr)− ξJ0(hr)J2(hr)] cos[2(φ− φ0)]], (2.52)

| ~Eout|2 = Gout[K
2
0(qr) + wK2

1(qr) + fK2
2(qr)

+ [wK2
1(qr) + ξK0(qr)K2(qr)] cos[2(φ− φ0)]], (2.53)

where Gin = |A|2
2u

and Gout =
|A|2J2

1 (ha)

(2wK2
1 (qa))

. In each of the eqs. (2.52) and (2.53),

the initial terms, proportional to J2
0 (hr) and K2

0(qr) respectively, represent the

total intensity of the electric field in the LP01 mode. On their own, these terms

are a good approximation of the full HE11 mode, a simplification often made by

those working with standard telecommunications fibers. Typical values of the
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parameters that appear here will be discussed later in Sec. 2.8.1.

The above expressions for the HE11 mode are valid for any core radius a and any

pair of refractive indices n1 and n2 as long as n1 > n2. As indicated above, in

conventional single-mode fibers where ∆ ≡ (n1 − n2)/n1 � 1 and a > λ one

can make the additional approximation s = −1 + (qa/V )2[haJ0(ha)/J1(ha)]∆ +

O(∆2) ≈ −1 which leads to the φ-dependent terms containing (1 + s)J2(hr) and

(1+s)K2(qr) becoming negligible. Hence, the transverse component will be zero if

φ0 = 0 or φ0 = π/2, respectively. In addition we find h, q � β, which means that

the longitudinal component Ez is small as well. The exact HE11 mode with quasi-

linear polarization of a conventional weakly guiding fiber can thus be approximated

by an LP01 mode [42, 55].

The electric field in the LP01 mode is given by

~E = AJ0(hr) ê ei(ωt−βz) for r < a (2.54)

~E = A
J0(ha)

K0(qa)
K0(qr) ê ei(ωt−βz) for r > a (2.55)

where the polarization vector ê can be assigned as ê = x̂ or ê = ŷ.

In the field expressions for the LP01 mode above, the transverse profiles of |Ex|2 and

|Ey|2 are indistinguishable and the polarization of the field is almost completely

linear. Hence, the intensity distribution is cylindrically symmetric. In the case of

sub-wavelength diameter nanofibers, neither of the relations ∆ � 1 and a > λ

are satisfied. For nanofibers, the factor (1 + s) is not negligible and the decay

parameter qa can become sufficiently small so that both K1(qa) and K2(qa) are

much larger than K0(qa). As a result, the terms with K1(qr) and K2(qr) in the

expression of eqs. (2.44), can be large in the vicinity of the fiber surface. When

K1(qr) is large, the longitudinal component Ez outside the fiber can also become

significant, and when K2(qr) is large the terms with azimuthal dependence, that

is cos(2φ− φ0) and sin(2φ− φ0), can become significant. These terms lead to an

azimuthal dependence of the field intensity outside the fiber. In addition, when

qa is small and the refractive index difference is large, then the parameter h may
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become comparable with, or even larger than, β. Then, the component Ez of the

field where r < a may also become non-negligible compared to Eφ and Er, see

eqs. (2.43). So, there can be a significant z component Ez both inside r < a and

outside r > a the fiber surface, and one can see that characteristics of the exact

fundamental mode HE11 can become very different from the linearly polarized

mode LP01 [55].

2.5.2 The Fundamental HE11 Mode With Circular Polar-

ization

Let us next investigate the electric field equations for the fundamental HE11 mode

with circular polarization. Its components inside the fiber (r < a) are given by

Er(r, φ, z; t) = −iA β

2h
[(1− s)J0(hr)− (1 + s)J2(hr)] ei(ωt±φ−βz) ,

Eφ(r, φ, z; t) = ±A β

2h
[(1− s)J0(hr)− (1 + s)J2(hr)] ei(ωt±φ−βz) , (2.56)

Ez(r, φ, z; t) = AJ1(hr)ei(ωt±φ−βz) ,

and outside the fiber (r > a) by

Er(r, φ, z; t) = −iA β

2q

J1(ha)

K1(qa)
[(1− s)K0(qr) + (1 + s)K2(qr))] ei(ωt±φ−βz) ,

Eφ(r, φ, z; t) = ±A β

2q

J1(ha)

K1(qa)
[(1− s)K0(qr)− (1 + s)K2(qr))] ei(ωt±φ−βz) ,

(2.57)

Ez(r, φ, z; t) = A
J1(ha)

K1(qa)
K1(qr)ei(ωt±φ−βz) .

Here the parameters s, h and q are defined in the same way as for linear polarization

given earlier by equations (2.45), (2.38) and (2.39), respectively.

The ± in the field equations indicates the direction of polarization around the fiber

axis (+ indicates clockwise and − indicates counterclockwise). The normalization

constant is again given by A and is proportional to the square root of the input

power of the coupled light fields.
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The absolute value of the field intensity in the HE11 mode averaged over one

oscillation period is then given by [55]

| ~Ein(r)|2 = A2 β
2

2h2

[
(1− s)2J2

0 (hr) + (1 + s)2J2
2 (hr) + 2

h2

β2
J2

1 (hr)

]
, (2.58)

| ~Eout(r)|2 = A2 β
2

2q2

J2
1 (ha)

K2
1(qa)

[
(1− s)2K2

0(qr) + (1 + s)2K2
2(qr) + 2

q2

β2
K2

1(qr)

]
.

(2.59)

Since there is no φ dependence here the resultant distribution of | ~E(r)|2 is cylin-

drically symmetric. The functions Ej are also independent of the azimuthal angle

φ0. Hence, the intensities |Ej|2 of the cylindrical-coordinate components of the

field are independent of φ0, and so is the total intensity |E|2 of the electric field.

We can easily calculate the total intensity |E|2 of the electric field in a fundamen-

tal mode with rotating polarization. For the field inside the fiber, having been

rescaled as in the previous section, we obtain

| ~Ein|2 = 2Gin[J2
0 (hr) + uJ2

1 (hr) + fJ2
2 (hr)], (2.60)

and for the field outside the fiber, we get

| ~Eout|2 = 2Gout[K
2
0(qr) + wK2

1(qr) + fK2
2(qr)]. (2.61)

The terms J2
0 (hr) and K2

0(qr) in the expressions (2.60) and (2.61), respectively,

correspond to the total intensity of the electric field in the mode LP01. The other

terms describe the deviations of the exact fundamental mode HE11 with rotating

polarization from the approximate mode LP01. The total intensity of the electric

field in a fundamental mode with rotating polarization is the sum of the corre-

sponding intensities for two constituent modes with quasi-linear polarizations. The

φ0-dependent terms cancel each other and therefore do not appear in eqs. (2.60)

and (2.61). The intensity distribution, and polarization direction of the HE11 mode

are shown in row (a) of Fig. 2.9.

The above expressions are mathematically valid for the fundamental mode with
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rotating polarization of a fiber with an arbitrary core radius a and an arbitrary

pair of refractive indices n1 > n2.

It is therefore clear that the small radius of the fiber and the high contrast between

the refractive indices of the silica core and the vacuum clad substantially modify

the intensity distributions and the polarization properties of the field and its com-

ponents, especially in the vicinity of the fiber surface. A substantial azimuthal

dependence of the total intensity is observed in the vicinity of the fiber surface

for linear polarizations which is not present if the fundamental mode has circu-

lating polarization [53, 54]. The difference between the exact and approximate

modes is relatively small in the case of rotating polarization [54]. Consequently,

the underlying physics of the optical potential of the evanescent wave around a

vacuum-clad subwavelength-diameter fiber is basically the same as that of the ap-

proximate mode LP01. However, the difference of the magnitude in the vicinity

of the fiber surface is not negligible. Therefore, the use of the exact solutions of

Maxwell’s equations is required in a systematic quantitative treatment for a thin

fiber.

2.6 The First Three Higher Order Guided Modes

Modal dispersion occurs when there is more than one mode present in a fiber.

In the telecommunications industry this effect is a hindrance since it leads to

lower transfer efficiency. In this thesis, particularly in Chapter 4, we examine how

tailoring the interference between different modes might be used to engineer atom

traps. As the fiber radius increases, the higher order modes TE01, TM01, and HE21

appear in the fiber at almost the same radius, see Fig. 2.3. In this thesis, we never

consider more than the first four modes. The fundamental HE11 mode has been

discussed already in Sec. 2.5 and the expressions for the electric field components

for the TE01, TM01, and HE21 modes are given in the following subsections.
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2.6.1 The HE21 Mode

Again, as described at the end of Sec. 2.3.1, in the case where l = 0 we can reframe

the mode equation (eq. (2.37)) for the HE family of solutions. For the HE21 mode,

β is determined from

J1(ha)

haJ2(ha)
=− (n2

1 + n2
2)

2n2
1

K ′2(qa)

qaK2(qa)
+

2

h2a2

− (n2
1 − n2

2)

n2
1

[(
K ′2(qa)

2qaK2(qa)

)2

+

(
2n1kβ

a2h2q2

)2
]1/2

, (2.62)

and the mode functions of the electric parts of the fundamental guided mode HE21

[56] for r < a are given by

Er = A21
iβ

2h
[(1− u)J1(hr)− (1 + u)J3(hr)],

Eφ = −A21
β

2h
[(1− u)J1(hr) + (1 + u)J3(hr)], (2.63)

Ez = A21J1(hr),

and for r > a, by

Er = A21
iβ

2q

J2(ha)

K2(qa)
[(1− u)K1(qr) + (1 + u)K3(qr)],

Eφ = −A21
β

2q

J2(ha)

K2(qa)
[(1− u)K1(qr)− (1 + u)K3(qr)], (2.64)

Ez = A21
J2(ha)

K2(qa)
K2(qr).

Again, for simplicity, some of the constant parameters have been tidied into u, A,

R1 and R2, such that

u =
2
(

1/h2a2 + 1/q2a2
)

J ′2(ha)/haJ2(ha) +K ′2(qa)/qaK2(qa)
, (2.65)

A =
1√

πa
√
n1

2R1 + n2
2R2

, (2.66)
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R1 = J2
2(ha)− J1(ha)J3(ha) +

β2

2h2

[
(1− u)2(J1

2(ha)− J0(ha)J2(ha))

+ (1 + u)2(J3
2(ha)− J2(ha)J4(ha))

]
,

(2.67)

and

R2 =
J2

2(ha)

K2
2(qa)

{
K1(qa)K3(qa)−K2

2(qa)

+
β2

2q2

[
(1− u)2(K0(qa)K2(qa)−K1

2(qa)) + (1 + u)2(K2(qa)K4(qa)−K3
2(qa))

]
}
.

(2.68)

The intensity distribution, and polarization of the HE21 mode is shown in row (b)

of Fig. 2.9.

2.6.2 The TE01 Mode

Again, as described at the end of Sec. 2.3.1, in the case where l = 0 we can reframe

the mode equation (eq. (2.37)) for the TE family of solutions and find that for the

TE01 mode, β is determined from

J1(ha)

haJ0(ha)
= − K1(qa)

qaK0(qa)
. (2.69)

The mode functions of the electric parts of the fundamental guided mode TE01

[56] for r < a are given by

Er = 0,

Eφ =
i√
πha2

K0(qa)/J0(ha)√
n1

2P1 + n2
2P2

J1(hr), (2.70)

Ez = 0,
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and for r > a

Er = 0,

Eφ = − i√
πqa2

K1(qr)√
n1

2P1 + n2
2P2

, (2.71)

Ez = 0,

where, for simplicity, some of the constant parameters have been tidied into P1

and P2, such that

P1 =
1

a2h2

K0
2(qa)

J0
2(ha)

(
J1

2(ha)− J0(ha)J2(ha)
)
, (2.72)

P2 =
1

a2q2

(
K0(qa)K2(qa)−K1

2(qa)
)
. (2.73)

The intensity distribution, and polarization of the TE01 mode is shown in row (c)

of Fig. 2.9.

2.6.3 The TM01 Mode

For the TM01 mode, β is determined from

J1(ha)

haJ0(ha)
= −n

2
2

n2
1

K1(qa)

qaK0(qa)
(2.74)

and the mode functions of the electric parts of the fundamental guided mode TM01

[56] for r < a are given by

Er = − iβ√
πha

K0(qa)/J0(ha)√
n1

2Q1 + n2
2Q2

J1(hr),

Eφ = 0, (2.75)

Ez = − 1√
πa

K0(qa)/J0(ha)√
n1

2Q1 + n2
2Q2K0(qr)

,
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and for r > a

Er = − iβ√
πqa

1√
n1

2Q1 + n2
2Q2

K1(qr),

Eφ = 0, (2.76)

Ez = − 1√
πa

1√
n1

2Q1 + n2
2Q2

K0(qr).

Here, for simplicity, some of the constant parameters have been tidied into Q1 and

Q2, such that

Q1 =
K0

2(qa)

J0
2(ha)

[
J0

2(ha) +
n1

2k2

h2
J1

2(ha)− β2

h2
J0(ha)J2(ha)

]
, (2.77)

Q2 =
β2

q2
K0(qa)K2(qa)−K0

2(qa)− n2
2k2

q2
K1

2(qa). (2.78)

The intensity distribution, and polarization of the TM01 mode is shown in row (d)

of Fig. 2.9.

2.7 Atom-Surface Interactions

An atom near the surface of a dielectric medium experiences a force due to the

van der Waals interaction, which is an induced dipole-dipole interaction. As we

are interested in fields close to the surface of the fiber, this usually attractive force

between the atom and the surface has a significant effect and has to be taken into

account in our calculations. The van der Waals potential acting on an atom near

the surface of a dielectric fiber of infinite length can be written as [16, 57]

V c
vdW(r) =

~
4π3ε0

∞∑

n=−∞

∫ ∞

0

dk [k2K ′2n (kr)+(k2+n2/r2)K2
n(kr)]

∫ ∞

0

dξ α(iξ)Gn(iξ),

(2.79)

where

Gn(ω) =
[ε(ω)− ε0]In(ka)I ′n(ka)

ε0In(ka)K ′n(ka)− ε(ω)I ′n(ka)Kn(ka)
. (2.80)
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Here ε0 is the dielectric constant in a vacuum. The dynamical dielectric function

of silica is given by multiplying eq. (2.91) (given later in Sec. 2.8.1) by ε0 so that

ε(ω) = ε0n1 . (2.81)

When the fiber radius a is very large compared to the atom-to-surface distance D,

the expression for the van der Waals potential, VvdW near a curved surface, given

in eq. (2.79) tends to the simpler form of the potential for an atom close to a flat

dielectric surface

V f
vdW = − C3

(r − a)3
, (2.82)

where C3 is a van der Waals constant. In [16] it was shown that V c
vdW/V

f
vdW < 1,

i.e. the magnitude of V c
vdW is usually smaller than that of V f

vdW. When the atom-

to-surface distance D tends to zero the two potentials V c
vdW and V f

vdW tend to the

same values. When D increases, the ratio V c
vdW/V

f
vdW lessens, that is, the relative

difference between V c
vdW and V f

vdW increases. This makes sense since the closer the

atom is to the cylindrical surface, the more the fiber looks like a flat wall to the

atom.

In Chapter 3, when we consider the combination of a nanofiber with an optical

lattice, we have a situation where the two atoms that are closest to the fiber are

sitting at a distance which is half the lattice constant away from the fiber axis.

Therefore the distance from the trapped atom to the fiber surface is given by

D = r−a = (λ/4)− 150nm= 150nm, if we consider a lattice with a wavelength of

λ = 1200 nm. We will see that the significant part of the van der Waals potential

is well inside this range, i.e. in the region of r < 100 nm. Since it is the short

range, r − a ≤ λ/10, over which the effects of the van der Waals interaction are

most significant, the flat surface approximation is sufficient for our simulations.

The trapping potential shown in Fig. 2.11 (created by a red- and a blue-detuned

field, see next section) also includes the effect of the van der Waals interaction.

Atoms within the range of the van der Waals potential will be attracted to the

fiber and contact with the high temperature object will lead to their loss from the

system. In all of the nanofiber schemes presented in Chapters 3, 4, and 5, we will
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need to consider the influence of the van der Waals potential and in each of these

chapters it will be necessary to include a repulsive, blue-detuned, evanescent field

for the purpose of keeping trapped atoms away from the fiber surface.

2.8 Two-Color Evanescent Field Trap

In the paper presented in Chapter 3 I will show that by combining two oppositely

detuned evanescent fields with the optical lattice potential, and taking into account

the van der Waals forces acting on an atom close to the surface of the fiber, it

is possible to influence the geometry of the optical lattice potential locally in a

highly controllable way, without disturbing the lattice globally.

In this section I will describe the trapping potential that can be formed in the

evanescent field of a tapered optical fiber when an atom is in the presence of two

light fields in their fundamental modes with frequencies ω1 and ω2, wavelengths λ1

and λ2 and wave numbers k1 and k2, respectively. This kind of trapping scheme

was first discussed by Le Kien, Balykin and Hakuta in [16, 58, 59] inspired by

the earlier work of Ovchinnikov [60]. We ensure that the single mode condition

Vi ≡ kia
√
n1(ωi)

2 − n2
2 < Vc ∼= 2.405 is satisfied for both modes.

To avoid having to deal with dissipative processes we will assume that the atom

is in the ground-state and that the light fields are far detuned from the atomic

transition frequencies. The optical potential in the field of mode i is given by

Ui = −1
4
αi|Ei|2, where α is the real part of the atomic polarizability, discussed in

Sec. 2.1, at the optical frequency ωi [32]. The factor of 1/4 in the optical potential

U comes from the fact that 1/2 is contributed by the temporary induced dipole

and the other 1/2 by time-averaging of the intensity over optical oscillations.

For the evanescent field to form a radially symmetric potential with a minimum

in a ring around the fiber we require that the input fields are circularly polarized

(see description in Chapter 2). The polarization of the transverse component of

each propagating field rotates elliptically in time, and in cylindrical co-ordinates
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{r, φ, θ} the time-averaged intensity of the electric field in the mode i is given by

|Ei|2 = Ei2
[
K0

2(qir) + wiK1
2(qir) + fiK2

2(qir)
]
. (2.83)

Here Ei is the strength of the electric field and wi and fi are defined in eqs. (2.49)

and (2.50).

The force of the optical potential can be attractive or repulsive depending on the

sign of the detuning with respect to the atomic transition used for trapping. We

choose parameters so that mode 1 is red detuned (∆1 < 0) and mode 2 is blue-

detuned (∆2 > 0). If we assume that the timescale of atomic motion is much slower

than the beating period of the two light fields (the beating period is given by the

inverse of their frequency difference) then we can add the two optical potentials

to find a net optical potential given by

Ured-blue(r) =G2[K2
0(q2r) + w2K

2
1(q2r) + f2K

2
2(q2r)]

−G1[K2
0(q1r) + w1K

2
1(q1r) + f1K

2
2(q1r)] . (2.84)

Here G1 = α1E2
1/4 = |α1|E2

1/4 and G2 = −α2E2
2/4 = |α2|E2

2/4 are proportional

to the powers in the corresponding modes. Since the detunings are in opposite

directions, α1 will always be positive and α2 will always be negative. We know

that the sign of G1 is directly determined by the sign of the atomic polarizability

α1, and the sign of G2 is directly determined by the sign of α2. This allows us to

take absolute values in the expressions for G1 and G2 because their sign difference

is accounted for in eqn.(2.84). Since the evanescent decay length Λ2 = 1/q2 of

the blue-detuned field is shorter than the evanescent decay length Λ1 = 1/q1 of

the red-detuned field [42] (which follows from the fact that ω1 < ω2) we also find

q1 < q2.

By choosing parameter values for the two fields, so that the repulsive force exerted

by the blue-detuned field appropriately balances the attractive force associated

with the red-detuned field, it is possible to create a ring shaped trapping potential

in the transverse plane. When the light is circularly polarized, U is independent of
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Figure 2.10: The two-colour evanescent field of the HE11 mode with circular
polarization around a tapered optical fiber, including the van der Waals interac-
tion. The axes are not shown here but the dimensions of the potential are given
in Fig. 2.11. The possible trapping depths range from a few pico-Kelvin to a
few micro-Kelvin. The parameters are given in the text. (This image appears

in the paper included in Chapter. 3, Phys. Rev. A 85, 053418 (2012).)

φ and z, and so the trapping potential is radially symmetric. Atoms close to the

fiber surface, can be confined in this cylindrical shell-shaped trapping potential.

Confinement in the z-direction can be achieved by counter-propagating one of the

fields in the fiber which leads to a series of ring traps around the z-axis. Fig. 2.10

shows a 2D plot of the symmetric trapping ring around the fiber and a single slice

of this potential is presented in Fig. 2.11.

The parameters taken here are λ1 = 980 nm, λ2 = 640 nm, P1 = 3 mW and

P2 = 2.5 mW. The fiber radius chosen is a = 150 nm, the refractive indices are

n2 = 1 and n1, the refractive index of silica, is calculated using eq. (2.91) for

the relevant wavelengths (see below). In Fig. 2.11, the dashed red line indicates

the fiber surface, the solid red and blue lines are the absolute values of the red

and blue-detuned evanescent field contributions to the potential respectively, the

dashed black line is the van der Waals interaction and the solid black line is the

total potential, i.e. the sum of the red and blue-detuned evanescent field potentials

and the van der Waals potential. For typical experimental parameters, the value of

qia is large and so the coefficients wi and fi are small (more specific typical values

are given later in Sec. 2.8.1). Therefore the contributions of the terms containing

wi and fi in eq. (2.84) are not substantial and the first term in each expression is

45



Figure 2.11: A slice of the radially symmetric evanescent field potential shown
in Fig. 2.10 in the radial direction. The solid red line represents the absolute
value of the red-detuned field. The solid blue line represents the absolute value
of the blue-detuned field. The dashed black line represents the van der Waals
potential and the solid black line represents the sum of the three together. The

dashed red line is the fiber surface.

a good approximation to the exact potential shape [55]

Ured-blue(r) ≈ G2K
2
0(q2r)−G1K

2
0(q1r) . (2.85)

While this approximation is not good enough to investigate the exact dynamics of

atoms in the vicinity of the fiber, it can be used to approximate such things as the

distance of the minimum point from the fiber axis. Let us call the value of r at

which the minimum is located Rm. We then know that U ′(Rm) = 0, which leads

to [16]

q2G2K0(q2Rm)K1(q2Rm)− q1G1K0(q1Rm)K1(q1Rm) = 0 , (2.86)

and therefore
G2

G1

=
q1K0(q1Rm)K1(q1Rm)

q2K0(q2Rm)K1(q2Rm)
. (2.87)

When r 6= Rm it is worth considering the right hand side of eq. (2.87) more closely.

Since q1 < q2, it is a monotonically increasing function of r and we know that if it
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has a solution Rm > a with

G2

G1

>
q1K0(q1a)K1(q1a)

q2K0(q2a)K1(q2a)
, (2.88)

then a trapping minimum in the evanescent field outside the fiber exists. This

can be achieved if either the power in the blue-detuned field is large enough or

the power of the red-detuned field is small enough (but not zero). It is helpful to

note that when the power in the blue-detuned light field increases or the power of

the red-detuned field decreases, the trapping potential becomes shallower and the

minimum point moves away from the fiber surface. Conversely, when the power of

the blue-detuned light decreases or the power of the red-detuned light increases,

the potential depth increases and the minimum is moved towards the fiber surface.

If the atom makes contact with the room-temperature fiber surface, it will be lost.

To prevent this one must ensure that the potential has a non-negative value at the

fiber surface, which means
G2

G1

≥ K2
0(q1a)

K2
0(q2a)

, (2.89)

and the depth of the potential will take its maximum value when [16]

G2

G1

=
K2

0(q1a)

K2
0(q2a)

. (2.90)

For a more comprehensive discussion about the effects changes in the evanescent

field parameters have on the shape of the potential see [16].

In recent years, further work has shown that the two-color trap can be made state

insensitive by using so-called magic wavelengths [61, 62]. Vector light shifts due

to the elliptic polarization of the nanofiber modes can be also be removed by

introducing counter propagating beams [62, 63].

Lastly, fig. 2.12 shows an example of the kind of two-color evanescent field trap

that can be created using a similar scheme as that described above (also described

in [16]), but exploiting the asymmetry of the intensity field in the vicinity of the
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fiber when the propagating light is quasi-linearly polarized, as discussed in Sec.

2.5.1.

Figure 2.12: The two-color evanescent field of the HE11 mode with quasi-
linear polarization around a tapered optical fiber. The axes are not labeled
here, the trapping depth is on the order of a few micro-Kelvin. The minima are

positioned at approximately 500 nm from the fiber axis.

2.8.1 Reasonable Experimental Values

In this thesis we consider tapered optical fibers (TOF) with radii starting at a =

150 nm and never exceeding a = 500 nm, which covers the transition from the

single-mode regime to the one where four modes can propagate for the wavelengths

of interest. The refractive index of the vacuum clad is n2 = 1. The refractive index

of fused silica (SiO2) is a function of the traveling wavelength and can be obtained

using a Sellmeier-type dispersion formula and assuming the refractive index of the

vacuum to be n2 = 1 [64]:

n1 = 1 +
0.6961663λ2

λ2 − (0.0684043)2
+

0.4079426λ2

λ2 − (0.1162414)2
+

0.8974794λ2

λ2 − (9.896161)2
. (2.91)

In this formula the wavelength λ is taken in units of µm. For quick calculations

n1 is often approximated as n1 u 1.45.

An effort has been made to ensure that the values of the parameters chosen

throughout this thesis are consistent with current experimental possibilities. The

two atomic species of particular relevance to us in this thesis are the alkali atoms
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Rubidium-87 (87Rb) and Cesium-133 (133Cs). The two dominant lines in the alkali

atoms are the D1(2S1/2 → 2P1/2 and D2(2S1/2 → 2P3/2) transitions. When we

discuss trapping of 87Rb we consider that the atoms are excited at the dominant

5S − 5P optical transition with a wavelength λ = 780 nm. The upper 5P level

has a spontaneous decay rate at this transition of 2γ0 = 2π · 6 MHz. At the afore-

mentioned transition the van der Waals constant, C3, is evaluated as C3 = 2π · 3
kHz µm3 [65, 66]. In the publications presented in Chapters 3 and 4, we consider

two light fields in the fiber, one blue-detuned and one red-detuned, with detunings

chosen on the order of ∆
2π

= 102 THz. The evanescent decay lengths of the light

fields extend quite far outside the fiber, particularly the red detuned field, which

is significant as far as Λ ≈ 1.2µm. Similarly, when discussing 133Cs, we consider

the dominant wavelength at λ = 852 nm.

To highlight some of the unique properties of a single mode nanofiber with linearly

polarized light, as discussed in Sec. 2.5, we give a numerical example here. We

choose a fiber radius a = 150 nm that is small compared to the optical wavelength

λ =980 nm for this example. In this case the refractive index of the silica core

is n1
∼= 1.4507 and that of the vacuum clad is n2 = 1. Solving eq. (2.37), gives

us ha ≈ 1.0074, qa ≈ 0.0819, and βa ≈ 0.9652. Using these parameters, we find

s ≈ −0.9938. Since the fiber radius a is small compared to the wavelength λ, the

evanescent decay length is large compared to the fiber radius, leading to an inten-

sity distribution where most of the power of the field is located outside the fiber.

The single-mode condition is satisfied, V = ka
√
n2

1 − n2
2 ≈ 1.0107 < 2.405, indi-

cating that the considered fiber is a single-mode fiber. The field intensity distribu-

tion of the evanescent field is not cylindrically symmetric and significant azimuthal

variations exist. This azimuthal dependence is in the terms wK2
1(qr) cos[2(φ−φ0)]

and fK0(qr)K2(qr) cos[2(φ − φ0)] which are considerable because qa is small, so

that close to the fiber surface K1(qr) and K2(qr) are dominant over K0(qr). For

this example we have K1(qa)/K0(qa) ∼= 4.6040 and K2(qa)/K0(qa) ∼= 113.43.

When we calculate the atomic polarizability α, first described in Sec. 2.1, we

consider the four dominant lines of the 87Rb atom, which are (see [67]) λ1a =

780.027 nm, λ2a = 794.760 nm, λ3a = 420.180 nm, and λ4a = 421.553 nm . The
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emission transition probabilities of these lines are given by γ1a = 3.81 × 107 s−1,

γ2a = 3.61× 107 s−1, γ3a = 0.18× 107 s−1, and γ4a = 0.15× 107 s−1, respectively.

For 133Cs the numbers substituted are (again see [67]) λ1a = 852.11 nm, λ2a =

894.35 nm, λ3a = 455.53 nm, and λ4a = 459.32 nm. The emission transition

probabilities of these lines are given by γ1a = 3.28 × 107 s−1, γ2a = 2.86 × 107

s−1, γ3a = 0.18 × 107 s−1, and γ4a = 0.07 × 107 s−1, respectively. For both 87Rb

and 133Cs the four corresponding upper states have statistical weights of g1 = 4,

g2 = 2, g3 = 4 and g4 = 2 and the statistical weight of the ground state is ga = 2.
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Chapter 3

Creating Atom-Number States

Around Tapered Optical Fibers

by Loading From an Optical

Lattice

Note: The groundwork for this paper was done during my masters degree in 2009,

while I was working on ideas for implementing quantum logic operations in optical

lattices using nanofibers. The idea of preparing number states was only conceived

towards the end of the MSc, and even though early results appear in my MSc thesis,

the bulk of the project was carried out in 2011, when I rejoined Prof. Busch’s

research group as a PhD student. The paper was finally completed and accepted

in early 2012. Except for the initial schematic, none of the figures in the paper

appear in my MSc thesis.

3.1 Introduction

In the paper that follows, I present a scheme where a two-color evanescent field

around a subwavelength diameter tapered nanofiber, (as first described by Le Kien
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et al. [16]), can be inserted at an appropriate point in a optical lattice in order to

allow local manipulations of the optical potential geometry. I show that when the

fiber is aligned perpendicularly to the transverse plane of a two-dimensional optical

lattice the evanescent field around the fiber can be used to create a time-dependent

potential which locally melts the lattice potential. Since we have control over the

evanescent field parameters, we have some control over the number of lattice sites

that become affected by the potential, and thereby, in the Mott limit, over the

number of atoms.

The introduction of a tapered fiber into a lattice will cause modification of the

lattice structure due to scattering at the fiber surface and I first show that this

modification is weak enough to not destroy the periodic arrangement of the trap-

ping sites. However, the attractive van der Waals interaction is large enough

to have a significant influence on the atoms in the trapping sites closest to the

fiber surface and to prevent losses due to this, I investigate the use of a repulsive

(blue-detuned) evanescent field to enhance the barrier close to the fiber. Lastly I

characterize the resulting atomic samples in the melted part of the lattice.

This scheme allows access to a regime in which a small number of particles can

be addressed locally without disturbing the rest of the lattice. Furthermore, when

the environment around the fiber is given by a well ordered Mott-Insulator state,

melting the lattice transfers a controllable and well-defined number of atoms from

the individual lattice sites around the fiber into the fiber potential. Once this

has happened, the optical lattice can be switched off to prevent other atoms from

entering the fiber potential by tunneling. The atom number is therefore fixed

by the initial choice of evanescent field parameters and does not change. Such

states are also of interest in quantum information as they carry large quantities of

entanglement [68].
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in the evanescent field of the tapered nanofiber.
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I. INTRODUCTION

During the last two decades, advances in the cooling and
trapping of atoms and ions have assisted in the creation of
clean and highly controllable systems, in which fundamental
quantum-mechanical experiments can be carried out with very
low levels of noise. This has led to several breakthrough
successes in the quest for implementing ideas of quantum in-
formation processing (QIP) [1], high-precision atomic clocks
[2], and quantum metrology [3].

For neutral atoms optical lattices have been important and
hold a great deal of promise in this area. The high degree
of control one has over the laser parameters has allowed for
the execution of many seminal experiments in these periodic
systems. In particular, by controlling the amplitude of the lasers
one can adjust the trapping depth, which can act as a switch
between regimes in which the dynamics are controlled either
by tunneling between different lattice sites or by interactions
between the atoms. This has led to the celebrated observation
of the superfluid–Mott insulator transition, in which a state
with one atom per lattice site can be created [4,5].

States which have a well-defined number of particles,
so-called atomic Fock states, are currently of large interest
in physics. Their sub-Poissonian number statistics is valuable
for applications in atom metrology and quantum information
processing and has merit for investigating the foundations
of quantum mechanics as well. Several ground-breaking
experiments have recently reported the creation of such states
[6–8], and a significant amount of theoretical work has been
devoted to their characterization [9,10]. Knowing the exact
number of atoms a priori in each run of the experiment is still
a difficult task, and techniques which can deterministically
create a desired atom number are under vigorous development.

Here we present a near-field optics approach to creating
such definite atom-number states and propose the use of the
evanescent field of an optical fiber as a tool for manipulating
the optical lattice potential locally (see Fig. 1). While standard
optical fibers have a diameter of several hundred micrometers,
recent progress in tapering techniques allows for the creation
of fibers of subwavelength diameter [11] and even down to
50 nm [12]. A significant amount of the intensity in these fibers

*thennessy@phys.ucc.ie

is carried in their evanescent field and can therefore be used
to create an optical potential for ultracold atoms. In this work
we will examine the effects of introducing a submicrometer
fiber into an optical lattice and demonstrate the possibility of
deterministically creating states of fixed particle number using
appropriately chosen fields inside the fiber.

This paper is organized as follows: in Sec. II we will present
a short review of the potential forces relating to optical lattices
and submicrometer-diameter, single-mode silica fibers. We
then discuss the modifications of an optical lattice potential
due to effects from light scattering on a fiber in Sec. III and
examine several achievable potential geometries resulting
from the combination of the lattice potential and the evanescent
field potentials in Sec. IV. The resulting atomic state is
discussed in Sec. V, and we finally conclude in Sec. VI.

II. POTENTIAL FORCES

A. Optical lattices

To understand the influence the introduction of the fiber
into an optical lattice has, let us first briefly review the optical
potentials associated with optical lattices and nanofibers.
Optical lattices exist today in many laboratories and represent
periodic arrays of microtraps generated by the dipole force
of a standing-wave laser light field [4,5,13]. A variety of
trapping geometries are achievable, with the most common
being rectangular [5] or triangular [14].

The simplest case of an optical lattice trapping potential is
given by a one-dimensional model, in which two counterprop-
agating laser beams interfere. This results in a standing wave
for the optical intensity given by

I (z) = I0 sin2(kz), (1)

where k = 2π/λ is the free-space wave number of the laser
light, I0 is the maximum intensity of the laser beam, and the
periodicity is given by λ/2. The spatially varying ac Stark shift
then forms a potential for the induced dipole moment p of the
atom given by

Udip = −1

2
〈p · E〉 = − 1

2ε0c
Re(α)I, (2)

where ε0 is the vacuum permittivity, c is the speed of light,
and α(ωL) is the optical polarizability, which depends on the
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FIG. 1. (Color online) Schematic showing a typical optical
potential geometry resulting from the combination of an optical lattice
potential and a trapping potential around an optical nanofiber.

frequency of the laser field E. Its real part is given by Ref. [15]

α(ω) = 2πε0c
3
∑

j

gj

ga

γja

(
1 − ω2

ω2
ja

)
(
ω2

ja − ω2
)2 + γ 2

jaω
2
, (3)

where gj and ga are the statistical weights of the excited and
ground states, respectively, ωja are the transition frequencies,
and γja are the emission transition probabilities [16]. Depend-
ing on the detuning of the laser beam, the atoms can be forced to
gather at the nodes or antinodes of the laser intensity pattern by
using light blue-detuned (ωL > ω0) or red-detuned (ωL < ω0)
with respect to the chosen transition ω, respectively.

By introducing pairs of counterpropagating lasers in the
remaining directions of space, higher-dimensional lattices can
be created. The interference terms between the laser fields in
the different directions can be eliminated by choosing per-
pendicular polarization vectors of the two laser fields, which
for a two-dimensional setup results in an intensity pattern
represented by the sums of purely sinusoidal orthogonal fields
(see Fig. 1):

I (x,y) = I0[sin2(kx) + sin2(ky)]. (4)

Throughout this paper we will consider this type of two-
dimensional optical lattice; however, a generalization to three-
dimensional, layered lattices is straightforward. We will also
assume that every beam is independent and not created through
retroreflection.

Optical lattices typically have lattice constants in the range
of 400–650 nm, and we will consider a lattice with a trapping
wavelength λ/2 = 527 nm. We choose the lattice to be loaded
with 133Cs atoms, which localize in the high-field regions.

B. Subwavelength diameter optical fibers

Recent developments in tapered, dielectric fiber technology
have made it possible to produce fibers with radii a as low
as a few hundred nanometers [12]. In such fibers the core
has vanished, and the fibers can be described by one large
refractive index step between the remaining cladding, n1(ω),
and the outside vacuum, n2. An interesting consequence of the
subwavelength nature of the diameter is that the majority of
the field will be guided in the evanescent field on the fiber’s
surface. It therefore becomes accessible to atoms in the fiber’s
vicinity, and light blue-detuned with respect to the atoms
transition frequency will create a repulsive force, preventing
the atoms from coming too close to the fiber, which is at
room temperature. At the same time red-detuned light will
result in an attractive force, and a combination of both fields
was suggested by Le Kien et al. [17] as a way of creating a

trapping potential around the fiber. This was experimentally
observed in Ref. [18].

Let us briefly review the description of such a potential,
following closely [17]. We consider two frequencies, ωr and
ωb, where the indices correspond to the red- and blue-detuned
fields, respectively. They are chosen such that the single-mode
condition

Vi ≡ kia

√
n2

1(ω) − n2
2 < 2.405 (5)

is fulfilled [19] and both light fields are in the fundamental
mode HE11. The intensity distribution of the evanescent fields
depends on the polarization of the input fields, and here we
choose circular polarization for both beams to achieve angular
symmetry [20,21]. In cylindrical coordinates {r,φ,θ}, the time-
averaged intensity outside the fiber is then given by

|Ei |2 = ε2
i

[
K2

0 (qir) + wiK
2
1 (qir) + fiK

2
2 (qir)

]
. (6)

Here Kn are the modified Bessel functions of the second kind
and εi is the strength of the electric field. The decay of the fields
from the surface of the fiber is characterized by qi , which is
the reciprocal of the decay length 
i and is given by

qi =
√

β2
i − n2

2ki
2, (7)

where β is the longitudinal propagation constant of the mode
[20]. Finally, the prefactors are given by Ref. [21]

wi = 2qi
2

β2
i (1 − si)2

, (8)

fi = (1 + si)2

(1 − si)2
, (9)

with s defined as

si =
(

1
q2

i a2 + 1
h2

i a
2

)
[ J ′

1(hia)
hiaJ1(hia) + K ′

1(qia)
qiaK1(qia)

] (10)

and hi = (n2
1k

2
i − β2

i )
1
2 . The combined optical potential

around the fiber for a blue-detuned field and a red-detuned
field is therefore given by (see Fig. 1)

U (r) = |αb|ε2
b

4

∣∣∣∣ [K2
0 (qbr) + wbK

2
1 (qbr) + fbK

2
2 (qbr)

]
− |αr |ε2

r

4

∣∣∣∣ [K2
0 (qrr) + wrK

2
1 (qrr) + frK

2
2 (qrr)

]
,

(11)

where the factors in front of the mode-structure terms are
directly proportional to the powers of the individual light fields,
Pr and Pb.

C. Van der Waals interaction

Finally, we need to take into account the van der Waals
attraction between the atoms and the fiber. The classical van der
Waals potential felt by an atom near the surface of a dielectric
fiber of infinite length is given by Ref. [22]

V (r)= h̄

4π3ε0

∞∑
n=−∞

∫ ∞

0
dk

[
k2K

′
n(kr)+

(
k2+ n2

r2

)
K2

n(kr)

]

×
∫ ∞

0
dξ α(iξ )Gn(iξ ), (12)
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where

Gn(ω) = [ε(ω) − ε0]In(ka)I ′
n(ka)

ε0In(ka)K ′
n(ka) − ε(ω)I ′

n(ka)Kn(ka)
. (13)

Here In(x) and Kn(x) are the modified Bessel functions of the
first and second kinds, respectively. It should be noted that
this approximation neglects the resonant frequencies of silica.
However, as these are substantially different and weaker than
those of Cs atoms, this is justified [17].

A detailed analysis of expression (12) was carried out by Le
Kien et al. [17], who found that for atoms close to the surface
the van der Waals potential tends to the same values as that for
a flat surface. The latter has the simple and well-known form

Vflat = − C3

(r − a)3
, (14)

C3 = h̄

16π2ε0

∫ ∞

0
dξ α(iξ )

[
ε(iξ ) − ε0

ε(iξ ) + ε0

]
. (15)

The ground-state cesium atom has its dominant (D2) line at
852 nm, which gives a van der Waals constant of C3 = 2π ×
1.56 kHz μm3 [23], and this value will be used throughout
this paper. In the following we will also use the simplified
expression (14) whenever justified while making sure the full
expression gives identical results.

III. SCATTERING AT THE FIBER

When a fiber is introduced in a position perpendicular to
the transverse plane of a two-dimensional optical lattice, the
four incident beams will be scattered from the cylindrical
surface and distort the regularity of the lattice. To describe
this we approximate the fiber by an infinite cylinder of radius
a = 150 nm oriented orthogonally to the lattice vectors and
assume that the waves undergo a linear scattering process [24].
In cylindrical coordinates the four incident waves of the
conventional lattice have the form of plane waves,

EI (θj ) = E0 exp
[
ikr cos(θ − θj )

]
, (16)

coming from the angles θj = 0,π/2,π,3π/2, and the total
lattice field is that given by

EI =
√

[EI (0) + EI (π )]2 +
[

EI

(
π

2

)
+ EI

(
3π

2

)]2

. (17)

Assuming that the beams along the π/2 direction are polarized
parallel to the cylinder axis and the ones along the π direction
are orthogonal, the scattered field can be written as in Ref. [25],
where the respective polarizations are contained in E0.

E
‖
S = E0

∞∑
n=0

{
inanH

(1)
n (kr) cos

[
n

(
θ + π

2

)]

+ inanH
(1)
n (kr) cos

[
n

(
θ + 3π

2

)]}
, (18)

E⊥
S = E0

kr

∞∑
n=0

{
inbnH

(1)
n (kr) cos(nθ )

+ inbnH
(1)
n (kr) cos[n(θ + π )]

}
, (19)

FIG. 2. (Color online) (a) Lattice intensity including the scatter-
ing of the light on the fiber when the fiber is placed at an intensity
minimum of the lattice. (b) van der Waals potential and optical lattice
potential which includes the scattered lattice field. (c) and (d) show
the same for a fiber placed at a lattice intensity maximum. Each plot
spans an area of 4.2 μm × 4.2 μm, and the lattice depth is 60ER . A
color scale has been used which varies from blue to red, where the
blue (dark gray) areas correspond to minima and red (medium gray)
areas correspond to maxima.

where H (1)
n are Hankel functions of the first kind and the

scattering coefficients are given by

an = Jn(α)J ′
n(mα) − mJn(mα)J ′

n(α)

H
(2)
n (α)J ′

n(mα) − mJn(mα)H (2)′
n (α)

, (20)

bn = mJn(α)J ′
n(mα) − Jn(mα)J ′

n(α)

mH
(2)
n (α)J ′

n(mα) − Jn(mα)H (2)′
n (α)

. (21)

From this the complete field follows as

Etot =
√

(E‖
I + E

‖
S)2 + (E⊥

I + E⊥
S )2. (22)

Here we note that all of the square plots in this paper span
an area of 4.2 μm × 4.2 μm. This 4.2 μm corresponds to
approximately four optical lattice wavelengths and thus an
eight by eight grid of traps. The optical intensity in the vicinity
of a fiber of radius a = 150 nm for a lattice constant of λ/2 =
527 nm is shown in Figs. 2(a) and 2(c). One can see that if the
fiber is located at a minimum of the optical intensity [Fig. 2(a)],
the lattice structure is almost unaffected. Positioning the fiber
at an optical intensity maximum [Fig. 2(c)], on the other hand,
leads to noticeable disturbances, which, nevertheless, leave the
basic lattice structure intact. Clearly, larger fibers will lead to
more scattering; however, the numbers chosen here are well in
reach of experimental possibilities.

In general the scattered radiation propagates as a cylindrical
wave, and its intensity falls off as the inverse power of the
radial distance. Since the energy flow is only in the planes of
constant z, the scattered radiation corresponding to a particular
incident ray will be observed only in that plane which contains
the incident ray, and no scattering into other layers of a three-
dimensional lattice occurs.

The overall potential seen by the atoms must include the
van der Waals potential, and Figs. 2(b) and 2(d) show that the
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lattice sites most affected by the scattering are also strongly
affected by the van der Waals potential. (Note that the Cs atoms
we are considering here are high-field seekers.) It is clear that
in a shallower lattice the effect of the van der Waals attraction
will be more severe on a larger range, and we will show in the
next section that the introduction of a repulsive blue field can
be a useful tool for counteracting this effect.

IV. ADDING FIBER POTENTIALS

A. Compensating the van der Waals potential

In order to minimize the disturbance of the lattice due to
the van der Waals potential, we will study the possibility of
compensating the attractive potential with a repulsive one from
a blue-detuned optical field. The joint potential is simply given
by adding the blue part of Eq. (11) to the van der Waals
expression of Eq. (14):

Uc(r) = |αb|ε2
b

4

[
K2

0 (qbr) + wbK
2
1 (qbr) + fbK

2
2 (qbr)

]
− C3

(r − a)3
. (23)

Since the modified Bessel functions have an exponentially
decaying form, it is not possible to perfectly compensate the
van der Waals potential at all distances from the fiber. However,
the discrepancy is weaker at larger distances, which allows the
reduction of the radius in which the attractive potential is
significant. In Figs. 3 and 4 we show the potential for the two
different positions of the fiber for different intensities of the
blue beam. One can clearly see that in both cases it is possible
to achieve a situation in which almost all lattice sites close to
the fiber are still intact (middle panel). This is important for the
construction of a well-defined Mott insulator state around the
fiber, which is a prerequisite to loading the fiber potential
with a well-defined particle number. While the exact number
of restored lattice sites also depends on the lattice depth, the
graphs show typical achievable experimental values. For very
small distances from the fiber surface, the attractive van der
Waals potential will always be stronger than the compensating
optical field, and tunneling will become an important loss
factor at longer times.

Let us also remark that with such a localized potential it is
possible to remove atoms from specific lattice sites by using
the fiber as a dark absorber [11]. Used in conjunction with
existing ideas involving optical conveyor belts [26], this simple

FIG. 3. (Color online) Combined potentials (van der Waals, blue-
detuned evanescent field, and optical lattice) for a fiber placed at a
minimum of the lattice intensity. The wavelength of the evanescent
field is λb = 700 nm, and its power is increased through Pb = 0,
0.05, and 0.10 mW from left to right. The lattice depth is chosen to
be 60ER .

FIG. 4. (Color online) Same as Fig. 3, with the fiber placed at
a maximum of intensity of the lattice. Each plot spans an area of
4.2 μm × 4.2 μm.

setup could be an effective method of removing entire rows or
patterns of atoms.

B. Loading the fiber potential

In the following we will consider the situation where an
attractive, red-detuned field is added to the fiber as well. This
will allow for the creation of a circular potential minimum
around the fiber, deep enough to trap ultracold atoms. Recent
experiments have demonstrated this by stochastically trapping
atoms from a surrounding thermal or condensed cloud [18].
Since in our situation the environment around the fiber
is given by the well-ordered optical lattice, a controlled
melting of the lattice by the evanescent field will transfer a
controllable number of atoms from the individual lattice sites
into the fiber potential. The resulting state is therefore highly
number squeezed and can be used in applications in quantum
information or metrology [7,27].

We study this process by assuming a realistic experimental
situation of a Mott insulator made from Cs atoms with a
resonant transition at λ0 = 852 nm [28]. For the two light fields
in the fiber we consider a blue-detuned field at a wavelength
of λb = 700 nm and the red-detuned field at λr = 980 nm.
The detunings of the fiber fields from the dominant line of the
atom are then given by �b

2π
= −46 THz and �r

2π
= 76 THz, and

with a fiber radius of 150 nm, the evanescent decay lengths
corresponding to the blue and red fields are 
b = 0.36 μm
and 
r = 1.83μm. The two-dimensional optical lattice we
consider has a depth 60ER .

Two typical examples of resulting trapping geometries,
when all potentials are taken into account, are shown in Figs. 5
and 6 for a fiber located at an intensity minimum. Since we
assume the fiber to be initially dark, the lattice sites which are
visible closest to the fiber in Figs. 5(c) and 6(c) are actually
empty because they are within the radius of the surface van
der Waals potential. For all other sites in the vicinity of the
fiber one can clearly see that the addition of the red and
blue fields allows for the lowering of the on-site energies.
Therefore, as the asymptotic potential of the evanescent field
goes to zero and since there is no local maximum in the
fiber potential, a sudden switch-off of the optical lattice will
leave all atoms with center-of-mass energies <0 trapped in
the fiber potential alone. In the example shown in Fig. 5,
where Pb = 0.12 mW and Pr = 0.036 mW, one finds that
this condition is fulfilled for eight lattice sites. Increasing the
evanescent fields to Pb = 0.17 mW and Pr = 0.082 mW (see
Fig. 6) the radius of the evanescent field increases, and careful
examination shows that 20 sites are reached. Note that, due to
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FIG. 5. (Color online) (a) The red- and blue- detuned beams in the
fiber are switched on for Pb = 0.12 mW and Pr = 0.036 mW. The
lattice sites for which the energy is lowered such that the residing
atoms will be trapped in the fiber potential after the optical lattice
is switched off are marked with a cross. (b) and (c) cut through the
potential at the lines indicated in (a). The black solid line represents a
slice of the two-dimensional potential geometry. The relevant on-site
energies are indicated as well, and the dotted blue line indicates the
potential after the optical lattice is switched off. The fact that the fiber
potential does not always meet exactly the zero points of the overall
potential before switch-off is due to phase shifting of the optical
lattice after scattering on the fiber.

the rectangular geometry of the considered lattice, only certain
atom numbers can be achieved, and realistic parameters limit
this technique to samples of only a few tens of atoms. If the
switch-off process of the optical lattice is done on a time
scale shorter than the typical atom tunneling time in an optical

FIG. 6. (Color online) Same as Fig. 5, but for higher powers of
the evanescent fields, Pb = 0.17 mW and Pr = 0.082 mW. A larger
number of atoms will be trapped after the optical lattice is switched
off.

lattice (which is of the order of several milliseconds [5]), no
other atoms will be able to join the well-defined sample.

The state created in this sudden-switch-off procedure is a
highly excited, out-of-equilibrium state in the final potential,
and subsequent cooling is necessary to prevent further atom
loss due to scattering and thermalization. While a detailed
calculation of these effects goes beyond the scope of this work,
loss through rethermalization can be minimized by applying
a Feshbach resonance while carrying out this process and
subsequently adiabatically lowering the fiber potential while
switching the interaction back on [29].

It is also worth pointing out that in both examples above
the presence of the repulsive blue field ensures the existence
of a repulsive wall between the fiber and the atoms, thereby
preventing direct atom loss through the room-temperature
object. However, the power in the blue-detuned field does not
correspond to the same field strength that optimally cancels
the effects of the van der Waals potential, as discussed in the
previous section. It is rather necessary to overcompensate the
van der Waals potential and recreate the trapping minimum
using the red-detuned field. In the next section we will discuss
the nature of the atomic state created in the fiber potential.

V. ATOMIC STATE

Let us finally briefly characterize the atomic many-body
state that can be created by the procedure above and focus in
particular on the nature of the correlations in the sample. For
this we first consider the effective dimensionality of the ground
state of the potential around the fiber after the optical lattice
is switched off. Since the size of the radial ground state of the
potential will be much smaller than the curved, azimuthal one,
we can assume an approximate separation of the wave function
in the two directions. This allows us to describe the spectrum
in the azimuthal direction by a free-space periodic potential
with the well-known spectrum Ea

n = (n2h̄2π2)/(2mL2),
where L = 2πrm is the circumference of the potential at
the position of its radial minimum rm. Since no analytical
expression for the position of this minimum is known, we find
it numerically and estimate the energy difference between the
ground and the first excited states in the azimuthal direction
to be of the order of �Ea

10 = Ea
1 − Ea

0 ∼ 10−33 J for both
situations shown in Fig. 5

To find the spectrum in the radial direction, we numerically
diagonalize the radial part of the potential for a wide range
of parameters and find typical values for the separation of the
ground and first excited states to be of the order of �Er

10 ∼
10−30 J. This significant difference in the stiffness of the
spectra in the two different directions (the z direction can be
adjusted separately to be stiff) translates into an approximate
one-dimensional situation with an aspect ratio of ∼103.

Having established the effective dimensionality of the
potential, the many-body state of a one-dimensional Bose gas
can now be characterized using the Lieb-Liniger parameter
γ = mg1D/h̄2n1D [30]. Here g1D is the one-dimensional
coupling constant given by g1D = 4h̄2a3D

ma⊥
(a⊥ − Ca3D)−1, with

C ≈ 1.4603, and n1D is the linear density of the atoms [31].
For values of γ � 1 the atomic many-body state would be in
the strongly correlated Tonks-Girardeau regime, whereas for
γ < 1 the gas can be treated as weakly correlated. For both
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cases shown in Fig. 5 the radial ground-state size is of the
order of a⊥ ∼ 0.2 μm (we assume the same is achieved in
the z direction), and the position of the radial minimum is at
rm ∼ 6.6 μm. This leads to values of γ = 0.560 for the 8-atom
case and γ = 0.346 for the 20-atom case, putting both states
firmly in the weakly correlated regime.

VI. CONCLUSION

In this work we have suggested that the combination of
optical lattices and tapered optical nanofibers can be used
to create small atomic samples which allow control over the
final atom number. While introducing the fiber into the optical
lattice inevitably leads to a disturbance of the lattice in the
vicinity of the fiber due to scattering of the lattice beams, we
have shown that this can be minimized and, due to the small
fiber diameter, usually leaves the overall lattice structure intact.
The attractive van der Waals potential close to the surface
of the fiber can be compensated by using a blue-detuned

evanescent field around the fiber, which allows a reduction of
the range of the fiber’s influence to the size of a single lattice
site for typical experimental parameters. Adding a second,
red-detuned light field to the fiber then allows local melting of
the optical lattice and can be used to create a small sample with
a well-defined atom number. Finally, we have shown that these
samples are in the superfluid regime and therefore are good
candidates for investigating the physics of persistent currents
or, using more varied optical potentials around the fiber, the
physics of superfluid superconducting quantum interference
devices.
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3.2.1 Scattering of the Lattice at the Fiber Surface: Ad-

ditional Comments

The panels on the left hand side of Fig. 2 in the paper included on the previous

pages (Sec. 3.2) show the lattice intensity pattern, including scattering at the

fiber, when a fiber of radius a = 150 nm is placed at an intensity minimum in the

lattice (in panel (a)) and when the fiber is placed at an intensity maximum (in

panel (c)). In Figs 3.1 and 3.2 further examples of the lattice intensity pattern are

included for additional values of the fiber radius a. In Fig. 3.1 the fiber sits at a

lattice intensity minimum and in Fig. 3.2 the fiber sits at an intensity maximum.
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Figure 3.1: Lattice intensity pattern for increasing values of fiber radius when
the fiber sits at a minimum of the lattice intensity. The fiber radius increases
from a = 50 nm where no disturbance to the lattice is evident in panel (a), to
a = 350 nm where the disturbance to the lattice is very significant in panel (d).
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Figure 3.2: Lattice intensity pattern for increasing values of fiber radius when
the fiber sits at a maximum of the lattice intensity. The fiber radius increases
from a = 50 nm where no disturbance to the lattice is evident in panel (a) to
a = 350 nm where the disturbance to the lattice is very significant in panel (d).

Distortion of the lattice due to scattering is evidently greater in the x-direction

where the lattice beams are polarized parallel with the fiber surface. In Figs. 3.1

and 3.2, each plot spans an area of 4 µm × 4 µm. The other parameters are

unchanged from the paper and, as in the paper, the color scale chosen varies from

blue to red where the blue areas correspond to minima of the lattice intensity and

red areas to maxima of the lattice intensity.

3.3 Conclusions and Future Work

While our work demonstrates that optical nanofibers can be used to locally address

atoms in an optical lattice, the introduction of the quantum gas microscope half

a decade ago [29] has provided a much more versatile and less invasive way of

achieving the same. These systems allow a laser beam to be focused below the

diffraction limit, so that individual lattice sites can be addressed. This advance, in
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combination with the advent of schemes for manipulating and selectively removing

atoms from optical lattices as in [69], is a significant step forward towards the

realization of scalable quantum computers with optical lattices, see for example

[24–26].

While therefore optical nanofibers are unlikely to contribute greatly to advances in

manipulating neutral atoms in optical lattices in the short term, they nevertheless

posses other properties that make them attractive for use in lattices. For example

the local modification of the lattice potential, especially in combination with higher

order modes can be of interest in creating new and more complex geometries.

Furthermore, fibers can act as cavities (see Chapter 7), and therefore offer an

advantage in situations where the light levels have to be low. Finally, flipping this

situation on its head, another interesting question is about the effect of the atoms

on the light traveling in the fiber. A first step in this direction is discussed in

Chapter 5.
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Chapter 4

Shaping the Evanescent Field of

Optical Nanofibers for Cold Atom

Trapping

4.1 Introduction

This chapter comprises of a paper in which we present optical dipole trapping

geometries for cold, neutral atoms that can be created using the evanescent fields

of an optical nanofiber. The nanofiber has a diameter large enough to allow the

next lowest lying family of three modes above the fundamental mode to propagate.

Specifically, the four modes allowed are HE11, TE01, TM01 and HE21.

The creation of helical potentials in free space has previously been considered

[70, 71] where they were generated by counter-propagating Laguerre-Gauss beams

with counter-directed orbital angular momenta. In this work, we show that simple

adjustments to the parameters of the counter-propagating laser light traveling in

a nanofiber result in significant changes to the intensity profile of the evanescent

field along the direction of propagation.
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A pair of counter-propagating linearly polarized beams will form a standing wave

pattern. Alternatively, if the pair are circularly polarized, the standing wave

that results from their superposition can take two different forms depending on

whether they have the same or opposite sign. When the pair of beams are both

of the same sign, the intensity pattern that results from their superposition is

azimuthally symmetric. When the pair of beams have opposite sign, the resulting

standing pattern is everywhere linearly polarized, the polarization direction is

rotating through 2π along the direction of propagation and this results in an

intensity pattern that has two maxima which take on a double helix pattern with

periodicity λ
2

.

As discussed in Chapters 2 and 3, if both a red- and blue-detuned fundamen-

tal mode are present in the fiber at the same time, the differing decay lengths

of their respective evanescent fields result in a combined optical potential with a

minimum at some distance from the fiber surface. The described evanescent fields

can therefore be turned into a potential geometry by considering the combina-

tion of counter-propagating higher order modes with a blue-detuned field in the

fundamental mode. For example, using a blue-detuned HE11 fundamental mode

in combination with counter propagating red-detuned HE21 modes allows for the

formation of a potential in the shape of four intertwined spirals, as shown in the

schematic Fig. 4.1. The tapered waist of a nanofiber can be a few mm in length

[45], allowing for many full revolutions of the trap minimum which has a spacing

constant of λ/2. We demonstrate the effect of varying the polarization between

circular and linear in each of the two counter-propagating HE21 beams on the trap-

ping geometry. By changing the polarization from circular to linear in each of the

two counter-propagating HE21 modes simultaneously, the four-helix configuration

can be transformed into a lattice configuration. The potential barriers between

traps in the azimuthal and longitudinal directions can be controlled independently.
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Figure 4.1: Two oppositely circularly polarized, counter propagating, red-
detuned HE21 modes can be combined with a single blue-detuned HE11 funda-

mental mode to achieve a helical potential.

Simultaneous excitation of the TE01, TM01 and HE21 modes has been observed in

[72, 73] and a scheme allowing excitation of the TE01, TM01 and HE21 modes while

suppressing the fundamental mode has been demonstrated in [74]. However, selec-

tive excitation between the TE01, TM01 and HE21 modes has not been achieved.

At the end of the paper we discuss the modification to the 4-helix configuration

due to unwanted mode mixing from the TE01 and TM01 modes.

Shortly before the publication of our work, D. Reitz and A. Rauschenbeutel, in

[75], showed that a double helix potential can be created in the evanescent field of

a single mode tapered fiber by combining three circularly polarized HE11 modes.
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1. Introduction

A sub-wavelength diameter optical fibre can be produced by heating and pulling a standard
telecommunications fibre so that its waist diameter reduces from about a hundred microme-
ters to a few hundred nanometers [1–3]. These tapered nanofibres have many uses and one
of the most prominent is in the study of atomic samples and their optical properties at ultra-
cold temperatures. By locally probing atomic fluorescence emitted from atoms trapped in a
magneto-optical trap with high efficiency, they have been used to estimate the size and profile
of the atomic cloud and other trap parameters [4] and by recording the fluorescence spectrum of
a small number of atoms close to the fibre surface, the effects of the short range van der Waals
interaction has been investigated [5].

When light travelling in such a fiber arrives at the tapered waist, the fiber diameter is smaller
than the wavelength of the propagating light and it can no longer be confined in the fiber. A
considerable fraction of the power propagates outside the surface boundary in the form of an
evanescent field. This presents a novel strategy for trapping and guiding atoms near the fiber
surface. The evanescent field represents an intensity gradient to a nearby atom, which leads to a
dipole force that is either attractive or repulsive depending on whether the guided mode is red-
or blue-detuned relative to the atom’s dominant transition frequency.

If both a red- and blue-detuned fundamental mode are present in the fiber at the same time,
the differing decay lengths of their respective evanescent fields result in a combined optical
potential with a minimum at some distance from the fiber surface [6, 7]. This technique has
been experimentally demonstrated for cold caesium atoms [8]. The two-color trap can be made
state insensitive by using red- and blue-detuned magic wavelengths [9,10] and vector light shifts
due to the elliptic polarization of the nanofiber modes can be removed by introducing counter
propagating beams [10,11]. The evanescent field around a tapered optical fiber offers a strategy
for gaining near-field access to atoms and characterising potential trapping geometries [12],
and exploring possibilities for their use in more involved settings [13] is becoming a very active
research area. The advantages of using fibers that are slightly bigger than single-mode fibers
has also become a subject of great interest [12, 14].

Here we present a scheme for creating helicoidal potentials by combining a counter-
propagating higher mode with a blue-detuned fundamental mode. These spiralling geometries
can be produced by fixing the blue-detuned portion of the evanescent field in a cylindrically
symmetric configuration while modifying the red-detuned portion of the evanescent field. The
creation of helical potentials in free space has previously been considered [15], where they were
generated by counter-propagating Laguerre Gaussian beams with counter-directed orbital an-
gular momenta. One application of these spiralling potentials is, for example, the measurement
of quantized rotations in atomic clouds [16].

In the next two sections we will first briefly introduce and review the modes that can propa-
gate in an optical nanofiber and discuss the trapping geometries that can be constructed using
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the fundamental modes. In Section 3 we present different trapping geometries which can be
created by exciting a specific higher order mode in the fiber and in Section 4 we consider mod-
ification of the trapping geometry due to unintended excitation of nearby modes. Finally we
conclude in Section 5.

2. Trapping with the first fundamental mode

An optical nanofiber can be thought of as a very thin optical fiber with a cylindrical silica core
of radius a and refractive index n1 = 1.452 and an infinite vacuum clad of refractive index
n2 = 1. It can be created by heating and pulling commercial grade optical fiber and tapering
it down such that the refractive indices that determine the guiding properties of the fiber are
that of the original silica cladding and that of the surrounding vacuum. Such a thin fiber can
only support a finite number of modes and the permitted propagation constants, β , can be
determined numerically [3]. The field distributions associated with these modes can be found
by solving Maxwell’s equations and here we will just give the expressions for the evanescent
part of the electric field as they will be used throughout this paper. In cylindrical polar co-
ordinates {r,φ ,z}, these are given by [3]

Er(r,φ ,z) = A
Jl(ha)

Kl(qa)

iβ
q2

[
K

′
l (qr)+B

iωμl
β r

Kl(qr)

]
ei(ωt+lφ−β z), (1a)

Eφ (r,φ ,z) = A
Jl(ha)

Kl(qa)

iβ
q2

[
il
r

Kl(qr)−B
ωμ
β

K
′
l (qr)

]
ei(ωt+lφ−β z), (1b)

Ez(r,φ ,z) = A
Jl(ha)

Kl(qa)
Kl(qr)ei(ωt+lφ−β z), (1c)

where the Jl are Bessel functions of the first kind and the Kl are modified Bessel functions
of the second kind. The dash denotes the derivative with respect to the argument of the Bessel

function. The constant B is given by B = iβ l
ωμ

(
1

q2a2 + 1
h2a2

)(
J
′
l (ha)

haJl(ha) +
K

′
l (qa)

qakl(qa)

)
and A deter-

mines the power in a given mode. The parameter q, which is the reciprocal of the decay length

of the evanescent field, is defined by q =
√

β 2 − k2
0n2

2 and h =
√

k2
0n2

1 −β 2. The azimuthal
index l counts the number of 2π phase changes of each component in a circle around the fiber
axis and its sign determines the polarization of the mode.

The fields described, by Eqs. (1), are not in general transversely polarized due to the
z−component which, for a set frequency and decreasing fiber radius, increases in magnitude
(relative to the transverse components). The transverse parts of the light beams described by
these formulae are circularly polarized where the sign of the index l gives the handedness of
the polarization. Linearly polarized solutions can be obtained by taking superpositions of the
circularly polarized beams with equal amplitude and opposite handedness.

The finite number of modes that can be supported by the fiber is determined by the ratio of the

fiber radius to the wavelength of the propagating light. Under the constraint V ≡ k0a
√

n2
1 −n2

2 <

2.405, the fiber can support only one mode, namely the fundamental mode HE11. Here k0 is
the free space wave-number. The HE11 mode has a Gaussian intensity profile in the fiber and
the shape of its evanescent field depends on three fundamental parameters of the system, the
wavelength of the light, the fiber radius and the refractive index of the medium. If the light in
the HE11 mode is circularly polarized the intensity is azimuthally uniform. If the light is quasi-
linearly polarised this uniformity is broken and two intensity maxima appear at opposite sides
of the fiber [7]. The intermediate cases of elliptical polarization interpolate between these two
scenarios. The evanescent field decays faster for shorter wavelengths.
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An atom interacting with the evanescent field sees a dipole potential of the form U =
− 1

4 α(E∗E), where α is the atomic polarizability. It can be calculated from Eqs. (1), and any
intensity gradient results in a force whose sign is given by the detuning of the light field with
respect to the atoms’s dominant frequency.

A simple and stable ring trap in the transverse plane around the fiber can then be created by
combining a blue- and a red-detuned evanescent field, which due to their differing decay lengths
results in an intensity minima at some radial distance from the fiber surface [7]. However, the
attractive red-detuned intensity must overcome the blue-detuned one at a position where the
van der Waals potential is negligible. Though the van der Waals expression for an atom close
to a curved dielectric surface is quite complex, in our scheme it is sufficient to approximate
this attractive potential by the much simpler form for an infinite plane dielectric surface which
is given by VvdW = − C3

(r−a)3 with C3 = 5.6 × 10−49Jm3. This approximation is accurate for
trapping minima close to the fiber surface [7]. The radial position of the minimum can be
adjusted by varying the powers in the red- and blue-detuned beams and in Fig.1(a) we show
typical examples for a fiber of radius a = 200nm and two optical fields of λred = 1064nm
and λblue = 700nm, which are red- and blue-detuned from the dominant D2 transition line in
caesium at λ = 852nm . The fiber radius was chosen to ensure the single mode condition is
satisfied for both wavelengths and the power in the blue beam is kept fixed. By increasing the
power in the red beam, a clear shift of the minimum towards the fiber surface is observed.

Fig. 1. (a) Potential in the radial direction for a 200nm fiber with 29 mW in the blue-detuned
beam and three different powers in the red-detuned beam: 25mW (most shallow), 30 mW
(intermediate depth) and 35 mW (deepest potential). Panels (b) and (c) show the shape of
the potential in three dimensions when the counter propagating red-detuned modes have
orthogonal circular or parallel linear polarization respectively.

It has recently been pointed out, by D. Reitz and A. Rauschenbeutel [17], that a double helix
potential can be constructed in the evanescent field of a single mode optical fiber by the ap-
propriate combination of three circularly polarized light beams. Their proposal is based on the
following principle; the intensity along the propagation (z) direction can be modified by using
a counter-propagating beam configuration. If both beams are linearly polarized, then a simple
standing wave pattern is formed. If the beams are circularly polarized, however, the standing
wave formed by their superposition can take two different forms depending on whether the
components have the same or opposite handedness. In the case where the counter-propagating
components have the same handedness a standing wave with circular polarization and hence
azimuthal symmetry in the intensity is formed. If the components have opposite handedness
the standing wave is linearly polarized everywhere with the polarization direction rotating con-
tinuously through 2π along the propagation direction, resulting in the two intensity maxima
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which form a double helix pattern with a periodicity of λ/2 . The helical angle at the fiber
surface is given by arctan(2πa/λ ) [17].

Figures 1(b) and 1(c) show the different shapes of such a potential in three dimensions for
different polarisations in the red-detuned beam. In (b) the counter propagating red-detuned
beams have orthogonal circular polarisation and the resulting potential has the form of a double
helix [17]. In (c) the beams have parallel linear polarisation and one observes the creation of
a potential that is periodic in the azimuthal and longitudinal directions and has similarities to
having two one-dimensional optical lattices aligned along opposite sides of the fiber. The trap-

ping frequency in the radial and azimuthal direction can be determined from ωr =

√
∂ 2

r U(rmin)
m

where m is the mass of caesium and one finds typical values of 500KHz in the radial direction
and 150KHz in the azimuthal one.

3. Trapping using the higher order HE21 mode

If the parameter V is increased beyond the value of 2.405, simply by increasing the fiber diame-
ter, three additional modes will successively be allowed to propagate. These are the HE21, TE01

and TM01 modes. In the weakly guiding approximation, all three of these modes correspond
to the LP11 mode which resembles the free space Laguerre Gaussian LG01 mode. The strong
confinement of the mode by the nanofiber causes the LP11 mode to split into three modes with
different propagation constants.The transverse intensity and polarization profiles of these three
modes are shown in Fig 2.

Fig. 2. (a) Intensity and polarization vectors for the HE21 mode with quasi-linear polariza-
tion, for a 500nm diameter fiber with 1064nm wavelength light. (b) and (c) show the TE01
and TM01 modes for the same parameters. The ring marks the fiber vacuum boundary.
(d) shows the intensity in the azimuthal direction for the HE21 mode, at 100nm from the
fiber surface, for four different polarization states where IL/R denotes intensity in left/right
circularly polarized modes.

It is noteworthy that the TM01 mode has significant on axis intensity, due to the large z-
component of the field in the nanofiber, whereas the TE01 and HE21 modes have the same
doughnut shape as the LP11. The transverse part of the polarization of the TE01 and TM01

modes is linear with a 2π rotation of polarization direction.
Since trapping geometries based on superpositions of the TE01 modes with both the HE21
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and the HE11 modes are known to be very versatile [12], we present in the following an analy-
sis of the trapping geometries that can be created by combining the HE21 mode and the HE11

fundamental mode. We will first consider a clean excitation and then include effects from un-
intended excitations of the TE01 and TM01 modes on these potentials. Even though these unin-
tended excitations change the trapping potential, we show that this can actually lead to a new
category of interesting geometries.

The HE21 mode can be either circularly or linearly polarized, where the linearly polarized
one is a direct combination of right and left circularly polarized beams. In this case the trans-
verse part of the polarization vector undergoes a 2π rotation in a circuit around the fiber axis,
while the polarization vector rotates in the opposite sense to the circuit taken so that the elec-
tric field vector is orthogonal to the fiber surface at four points. The evanescent field must be
continuous across the fiber boundary at these points and this results in four intensity maxima
along the azimuthal direction. These polarization vectors are shown superimposed on the in-
tensity profile at one instant of time in Fig 2(a). The circularly polarized HE21 mode has an
azimuthally symmetric intensity profile (not shown).

The variation in azimuthal intensity distribution for different polarization states of the HE21

mode is shown in Fig. 2(d) and four intensity maxima are clearly visible, which become more
pronounced the less circularly polarized the beam is. In these figures the fiber radius is 500nm
so that the HE21 mode is allowed to propagate for 1064nm wavelength light in a silica fiber
with a decay length of 1/q = 0.52 μm

Counter-propagating HE21 modes can broadly be achieved in three different ways, which
lead to three different classes of standing wave pattern: (a) counter-propagating circularly po-
larized modes of the same handedness , (b) counter-propagating quasi-linearly polarized modes,
and (c) counter-propagating circularly polarized modes of opposite handedness. Two counter-
propagating quasi-circularly polarized modes with the same handedness form a cylindrically
symmetric standing wave (case (a)), which can be used to create symmetric, equally spaced
disconnected potential rings around the fiber, see Fig. 3(a). Counter-propagating two quasi-
linearly polarized HE21 modes (case (b)), results in a standing wave with four intensity maxima
per circuit of the fiber, which allows to create a regular lattice of traps with periodic boundary
conditions around the fiber, see Fig. 3(b). And two counter propagating HE21 modes with op-
posite quasi-circular polarization (case (c)) will combine to form a linearly polarized mode like
that shown in Fig 2(c) with the polarization vectors rotating with propagation direction. This
results is an evanescent field consisting of four intertwined helices, leading to a potential of the
same shape (see Fig. 3(c)).

Switching between these different standing wave configurations by smoothly varying the
polarization is experimentally conceivable. In the upper row of Fig. 4 we show how the stand-
ing wave formed by two counter-propagating modes with the same quasi-circular polarization
transforms into a two-dimensional lattice of traps by simply changing the polarization from
circular to linear in each of the counter propagating modes simultaneously. The same method
transforms the four helix standing wave into the lattice (see middle row of Fig. 4) and in or-
der to transform the four helix potential into the circularly symmetric standing wave one of
the circularly polarized modes, say left circularly polarized, is held constant while the other is
smoothly changed from right to left (lower row in Fig. 4).
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Fig. 3. Potential shapes corresponding to three types of standing wave (a) the shape of
the potential in three dimensions when the modes have identical circular polarizations (b)
the shape of the potential in three dimensions when the modes are linearly polarized, (c)
the shape of the potential in three dimensions when the modes have orthogonal circular
polarizations

Fig. 4. Intensity in the {r,φ} plane as a circularly symmetric standing wave is transformed
into the lattice (upper row), a four helix standing wave is transformed into the lattice (mid-
dle row) and a circularly symmetric standing wave is transformed into the four helix stand-
ing wave (lower row).

To use the above intensity patterns to trap caesium atoms, we consider introducing a 700nm
fundamental HE11 mode, which, for the fiber parameters specified above, has an evanescent

#195713 - $15.00 USD Received 13 Aug 2013; revised 20 Sep 2013; accepted 23 Sep 2013; published 31 Oct 2013
(C) 2013 OSA 4 November 2013 | Vol. 21,  No. 22 | DOI:10.1364/OE.21.027093 | OPTICS EXPRESS  27099



field decay length of 1/qblue = 0.12μm. The three dimensional geometries of these potentials
for counter-propagating modes with identical circular polarization, counter-propagating modes
with parallel linear polarization and for counter-propagating modes with orthogonal circular
polarization are shown in in Figs. 3(a),(b) and (c), respectively. The distance between potential
minima in the azimuthal direction is approximately a wavelength for the chosen parameters
and depends on the radial position of the potential minimum, which can be modified by varying
the ratio of power in the red-detuned field to that in the blue. Here the potential minimum, for
26 mW in the 1064nm field and 110 mW in the blue field, is located at 145nm from the fiber
surface.

Fitting the radial profile in the vicinity of the trapping minimum to a harmonic oscillator
potential 1

2mCω2
r r2, where mC is the mass of caesium, leads to an estimate of 400kHz for ωr/2π .

The same method leads to an estimate of 240kHz for the azimuthal trapping frequency ωφ /2π .
Note that the potential barriers between the traps can be smoothly removed in the longitudinal
direction by lowering the power in one of the counter-propagating beams and independently in
the azimuthal direction by changing the polarization of the mode from linear to circular.

4. Effects of mode-mixing

Controlling the distribution of power between the available modes in a nanofiber is an experi-
mentally open problem. Depending on the shape of the tapering region and the quality of the
beam injected initially, the modes present in the tapered waist can have different populations

Simultaneous excitation of the TE01, TM01 and HE21 modes has been demonstrated [18,
19]. Recently, a scheme has been presented [20] which allows excitation of the TE01, TM01

and HE21 modes while supressing contamination of the fundamental mode to less than 1%.
However, a clean excitation of the HE21 mode has not yet been reported. In the following we
will look at the effects the presence of unintended excitation of the TE01 and TM01 modes has
on the HE21 based potentials. So far, our scheme has assumed sole excitation the HE21 mode.
However if power is passed from the HE21 to the TE01 and TM01 modes, the 4-helix potential
is modified and in general the potential changes from having four traps per azimuth to only two
(see Fig. 5). The effect is stronger in the case of power transfer to the TE01 mode. This can be
explained by referring back to Fig. 2 where it can be seen that the TE01 and TM01 modes can
interfere destructively with the HE21 mode at two azimuthal positions where the polarizations
match. In the case of the radially polarized TE01 mode this effect will be greater since the
HE21 evanescent field is strongest where the polarization is radial. In this figure there is 50mW
propagating in the fundamental mode and 2mW shared between the three higher modes.
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Fig. 5. The modification of the 4-helix potential as power is transferred from HE21 to (a)
TE01 and TM01 in equal measure, (b) TE01 with the power in TM01 held constant and (c)
TM01 with TE01 held constant. The ratios represent the fraction of power in each mode as
TE01:TM01:HE21

5. Conclusion

By considering a tapered fiber with a diameter large enough to allow the next lowest modes
above the fundamental mode to propagate, we have shown that a trapping potential in the shape
of four intertwined helices can be created. This is achieved by combining red- and blue-detuned
modes in a specific way and in particular by counter-propagating the red-detuned HE21 modes.
This 4-helix configuration can be transformed into a rectangular lattice of traps wrapped around
the cylinder by adjusting the polarisations of the counter-propagating beams. The potential
barriers between traps in the azimuthal and longitudinal directions can be controlled indepen-
dently. We have also considered the effects on this trapping geometry from unintended transfer
of power from the HE21 to the TE01 and TM01 modes. It is apparent that, were it possible to
selectively couple to the available modes with strategically chosen relative intensities, a large
number of interesting trapping geometries could be achieved.
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4.3 Conclusions and Future Work

Evanescent field based nanofiber traps provide a powerful experimental platform

for quantum optics and make it possible to probe and efficiently interface trapped

atoms. These nanofiber traps have great flexibility and potential for various ap-

plications in fundamental research and in technology fields. We have shown that

these traps have a high degree of tunability, especially when combining higher

order modes.

The kind of helical trap presented here has advantages over the free-space helical

potentials considered in [70, 71], in that it is not restricted in the maximum length

over which it can be made uniform. There is also the possibility of preparing

nanofibers with a non-uniform radius and so to create helical or lattice potentials

with varying pitch and circumference.

It was pointed out in [75], that in experiments with polar molecules [76] or charged

particles [77, 78] long range interaction is present and bound states with a fixed

inter-particle distance can occur in helical potentials. This presents an opportunity

for investigating zero-temperature second-order liquid to gas transitions [76].
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Chapter 5

Detecting Atoms Trapped In An

Optical Lattice Using a Tapered

Optical Nanofiber

5.1 Introduction

The ability to control the spatial position of single atoms to a high degree of

precision is important for controlling collisions and interactions. It is therefore

necessary to develop diagnostic tools that allow one to measure the position of a

single atom with very high fidelity. A number of methods to achieve this have

been developed in recent years, ranging from advanced de-convolution algorithms

[79] to the recent development of atom microscopes [29].

In the work I present in this section we study the emission rates that can be

achieved from a row of emitting atoms into the guided modes of an optical nanofiber

in a configuration where the axis of the fiber is aligned perpendicularly to the row

of regularly separated atoms and show that such a setup allows one to distinguish

contributions from individual lattice sites. The possibility to detect single atoms

using a sub-wavelength-diameter fiber and the fact that single photons sponta-

neously emitted from the atoms can be readily guided into the fiber modes has
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been shown [80]. Furthermore, a recent work by Masalov and Minogin had pre-

dicted that the scattering rates into the fiber from the first three higher order

modes are generally about ten times higher than for the fundamental mode [81].

This was subsequently measured by Kumar et al. [82].

The parameters governing the emission characteristics of an atom into the guided

mode of a nanofiber are the fiber radius a, the atom position and the transition

wavelength λ0, and the orientation of the dipole oscillation. The scheme presented

here depends on the capability to align the atomic dipoles so that they oscillate

in the x-y plane, transverse to the fiber. We calculate the spatial emission profile

of an array of two-level atoms as detected by a tapered fiber and show that an

optical nanofiber can be used to resolve spontaneous emission from individual

atoms (using 133Cs as an example) trapped in an optical lattice. We compare the

use of a single mode fiber (a fiber supporting only the first fundamental mode

HE11), to the use of a fiber which supports the first four available modes.
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1. Introduction

Developing tools to control all degrees of freedom of single quantum particles is one of the
fundamental aims of the area of quantum engineering. Over the past few decades precision
spectroscopy has made significant strides towards achieving this goal for the internal degrees
of freedom of atoms and ions, and more recently electro-magnetic trapping technologies have
made similar advances in controlling the external degrees. By today; magnetic, optical and
magneto-optical traps can be designed to trap and control large or small numbers of atoms, and
even single particles. One example of the latter are optical microtraps, in which single atoms
can be localized to an area with dimensions smaller than an optical wavelength. Such traps can,
for example, be based on highly focussed laser beams or small scale interference patterns, with
the most famous example of the latter being optical lattices. Taking advantage of the existence
of the so-called Mott transition at low temperatures, such lattices allow for the creation of
periodically spaced arrays of individually trapped atoms in one, two or three dimensions.

The ability to control the spatial position of single atoms to a high degree of precision is, for
example, important in controlling distance dependent interactions. It is therefore necessary to
develop diagnostic tools that can measure the position of a single atom with very high fidelity.
A number of technologies have been developed during recent years and among these are de-
convolution algorithms [1] and atom microscopes [2]. The latter rely on an advanced optical
setup and the ability to position optical elements very close to the atoms. In this work we
suggest another method which makes use of technology developed in the emerging area of
sub-wavelength diameter optical fibers by calculating the spatial emission profile of an array of
periodically spaced two-level atoms in the presence of such a fiber. Optical nanofibers, which
are created by placing industrial grade silica fiber over a hot flame and pulling both ends (for a
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review of this technology see [3]), support only a small number of modes and can therefore be
thought of as cavities into which enhanced emission rates can be achieved [4–9]. The emission
characteristics of an atom into a nanofiber in general depends on the radius of the fiber, the
distance from the atom, the wavelength of the transition and the orientation of the atomic dipole
[10]. It has been shown that a single-mode fiber of radius 200 nm can collect up to 28% of the
spontaneous emission of a cesium atom when the atom is sitting at the fiber surface [11]. In
larger fibers, which support higher order modes as well, even higher collection rates can be
achieved [12, 13].

Here we study the coupling between a row of atoms and the guided modes of a perpendic-
ularly aligned optical nanofiber and show that such a setup can resolve the position of single
atoms on length scales that are typical for optical lattices. It can also allow for the detection
of empty sites in a Mott insulator state or be used in a time-dependent way to identify, for ex-
ample, edge states [14]. In the following we first briefly introduce the geometry of the setup
(Section 2), then present the expressions for the collected radiation (Section 3), discuss the ob-
tained results (Section 4), present an application of our scheme to a relevant dynamical situation
in order to demonstrate its limits (Section 5), and make concluding remarks (Section 6).

2. Optical lattices and nanofibers

Let us first briefly review the components of the suggested setup. Optical lattices are formed
by pairs of counter-propagating lasers which interfere to create spatially periodic arrays of mi-
crotraps by employing the dipole force of the standing wave laser light field [15]. The simplest
case of an optical lattice trapping potential is given by a one-dimensional model, in which two
counter-propagating laser beams interfere. This results in a standing wave for the optical inten-
sity given by I(z) = I0 sin2(kz), where k = 2π/λ is the free space wave number of the laser light
and I0 is the maximum intensity of the laser beam. The periodicity of the intensity is λ/2 and
the spatially varying ac Stark shift then forms a potential for the induced dipole moment, d, of
the atom given by

Udip =−
1
2
〈d ·E〉=− 1

2ε0c
Re(α)I. (1)

Here ε0 is the vacuum permittivity, c is the speed of light and α(ωL) is the optical polariz-
ability, which depends on the frequency of the laser field, E, see [16]. By using light which
is blue-detuned (ωL > ω0) or red-detuned (ωL < ω0) with respect to the atomic transition ω0,
the atoms can be forced to gather at the nodes or anti-nodes of the laser intensity pattern, re-
spectively. Higher dimensional lattices can simply be created by introducing pairs of counter
propagating lasers in the other spatial directions [17], and different spatial geometries can be
achieved by varying the angle between these beams [18]. Optical lattices typically have lattice
constants in the range between 400 nm and 700 nm and throughout this work we assume a
lattice spacing of λ/2 = 640 nm. The atom we consider is 133Cs, whose ground state has its
dominant (D2) line at λ0=852 nm.

Cold atoms trapped in optical lattices provide an adaptable quantum system in which a vari-
ety of matter-wave quantum phenomena can be engineered and observed. Notably, it has been
possible to induce a quantum phase transition from a superfluid to a Mott insulator state by
controlling the tunneling interaction between different sites. This was first demonstrated exper-
imentally in 2002 [17], when a Mott insulator state with a well-defined number of atoms per
lattice site was achieved using 87Rb. However, until recently it was only possible to demonstrate
this phase transition by detecting the loss of coherence using a time-of-flight interferometric
measurement, and only the development of so-called atom microscopes has made it possible to
resolve single sites inside the lattice [2]. The technological difficulty in constructing a device
that can resolve single lattice sites lies in overcoming the diffration limit and allowing for sub-
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Fig. 1: (a) Schematic of a tapered optical nanofiber aligned perpendiculary to a periodic array
of trapped atoms. In reality the untapered ends have a radius on the order of 125 µm and the
nanofiber waist is on the order of hundreds of nanometers. The typical length of the tapered
region is between 3 and 10 mm, depending on the tapering technique employed [3]. (b) Top-
view of the fiber and atom configuration. The dipoles are arranged in a line (so that they lie end
to end) and perpendicular to the fiber. Not drawn to scale.

wavelength resolution. The atom microscope does this by using advanced optical elements to
focus the light to below the diffraction limit.

A second strategy for going beyond the diffraction limit is to use sensors of subwavelength
size and here we study an approach of this kind based on collecting the optical emission using
the guided modes of a nanofiber. Recent advances in technology have made it possible to pro-
duce tapered fibers with radii as small as a few hundred nanometres [3,19], in which only a very
small number of modes can propagate. These devices can be fully integrated in ultracold atom
experiments [20, 21] and we suggest a geometry in which a fiber is aligned perpendicularly to
a row of regularly spaced atoms (see Fig. 1) in order to collect the atomic fluorescence. Due
to the small radius of the fiber, such a setup allows for a good spatial resolution of the atomic
distribution.

As already mentioned above, the emission characteristics of an atom into a nanofiber depend
on the radius of the fiber, the distance between the atom and the fiber, the wavelength of the
transition and the orientation of the atomic dipole [10]. In the following we will investigate the
use of single- (supporting only HE11) and multi-mode fibers (supporting HE11, HE21, TE01,
TM01), as the latter are known to allow for much higher collection rates [12,13]. We consider a
one-dimensional optical lattice in which 133Cs atoms are individually trapped with a separation
distance λ/2 = 640 nm and assume that all dipoles are aligned. For any position of the fiber we
therefore only include a contribution from the component of the dipole along the line connect-
ing the fiber centre and the atom. The distance between the surface of the fiber and the axis of
the row of atoms is given by l and the fiber radius by a (see Fig. 1(b)). The fiber we consider is
made of silica, which for a photon of λ0 = 852 nm has a refractive index of n1 = 1.4525 [22].
The refractive index of the vacuum, n2 , is equal to 1.

Following closely the approach of [12] to calculate the emission rate into the fiber, let us first
consider the emission rate into free space,

W0 =
1

4πε0

4d2ω3
0

3h̄c3 , (2)

where d is the matrix element of the atomic dipole moment, ε0 is vacuum permittivity and ω0
is the atomic frequency. This emission can excite four guided modes given by the four possible
combinations of ±σ polarization and ±z propagation direction in the fiber. Normalizing the
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emission rate into each of these modes with respect to the full emission rate, we arrive at

Wguid =W0
3λ0

2β ′

8π
|E|2 , (3)

where E is made up of the mode functions of the electric parts of the relevant mode outside of
the nanofiber. The parameter β ′ is the reciprocal of the group velocity and calculated as β ′ =
dβ/dk, where the propagation constant β is determined by ensuring continuity between the
field components outside of the nanofiber (r > a) with the ones at the surface of the fiber [23].
This leads to an implicit equation that has to be solved numerically as a function of the system
parameters.

For the presented scheme to work, one has to compare the lifetime of the Mott insulator state
with the lifetime of the fluorescence transition and the technical ability to scan the fiber in front
of the lattice or vice versa. Since the first two time-scales are orders of magnitude different and
since it is technically possible to move atoms in optical lattices over tens of micrometers with
high precision [24], the presented scheme can in principle be realized with currently available
technology.

3. Emission rates into the four modes of interest

Substituting the electric field components of the relevant modes into Eq. (3) gives four ex-
pressions for the rates of emission into the four modes of interest to us [12]. These are the
fundamental HE11, TE01, TM01 and HE21 modes, each propagating into either±z with circular
polarization ±σ

WHE11(r) =W0
3λ 2β ′

8π2a2

(
1

n2
1N1 +n2

2N2

)
J2

1 (ha)
K2

1 (qa)

×
[

K2
1 (qr)+

β 2

2q2

[
(1− s)2K2

0 (qr)+(1+ s)2K2
2 (qr)

]]
, (4)

WTE01(r) =W0
3λ 2β ′

8π2q2a4

(
1

n2
1P1 +n2

2P2

)
K2

1 (qr), (5)

WTM01(r) =W0
3λ 2β ′

8π2a2

(
1

n2
1Q1 +n2

2Q2

)
β 2

q2 K2
0 (qr)K2

1 (qr), (6)

WHE21(r) =W0
3λ 2β ′

8π2a2

(
1

n2
1R1 +n2

2R2

)
J2

2 (ha)
K2

2 (qa)

×
[

K2
2 (qr)+

β 2

2q2

[
(1−u)2K2

1 (qr)+(1+u)2K2
3 (qr)

]]
. (7)

In the above equations the Jn are Bessel functions of the first kind, the Kn are modified Bessel
functions of the second kind, a is the fiber radius and

q =
√

β 2−n22k2 and h =
√

n2
1k2−β 2. (8)

The explicit expressions for the constants N,P,Q, R, s and u are given in the appendix.
The number of modes a nanofiber in vacuum can support is related to the quantity V =

aω0
c

√
n2

1(ω0)−1 [23] and for V < 2.405 the single-mode condition is satisfied. This means that

only the HE11 mode can travel in the fiber and for 133Cs, with λ0 = 852 nm, this corresponds
to keeping the fiber radius in the region where a < 309.6 nm. The range of radii for which
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the first four modes are supported is 0.363λ0 < a < 0.580λ0, which corresponds to 309.6 nm
< a< 494.2 nm.

Since atoms trapped in a Mott insulator state have a rather large separation of λ/2 , they can
be treated as independent dipoles and it is appropriate to sum the normalized rates of emission
into each of the modes. At every position we therefore sum over all of the atoms and over all
of the modes. In all the results we present the emission rates are normalized with respect to
emission into free space, W0.

4. Results

To show that the spatially inhomogeneous emissions rate originating from a row of atoms
trapped in a one-dimensional optical lattice can be resolved using a nanofiber, we calculate
the emission rate into the fiber as a function of the position of the fiber with respect to the po-
sition of the atoms. Since this rate depends on the distance from the atoms, spatial resolution
with high visibility can be expected if the fiber is close to the atoms.

Table 1: Numerical values of β and β ′ for the fundamental HE11 mode for the λ0 = 852 nm
transition in 133Cs for a fused silica fiber with n1 = 1.4525.

Fiber Radius β β ’
150 nm 7.471×106 1.115
200 nm 7.883×106 1.364
250 nm 8.436×106 1.517
300 nm 8.919×106 1.566

We first consider the use of single-mode fibers, which support the HE11 mode only. This
means that we are restricted to fibers with a radius of a< 309.6 nm and in Table 1 the numerical
values for β and β ′ are given for fibers of radii 150 nm, 200 nm, 250 nm and 300 nm. The
resulting emission rates into a fiber with a = 150 nm for various distances l between the fiber
surface and the row of atoms are shown in Fig. 2(a) and distinct maxima are clearly visible
whenever the fiber is aligned with an occupied trapping position of the lattice (indicated by the
vertical red lines and schematic blue atoms).

Fiber position
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(a) Varying the atom-fiber distance

0 λ 2λ  3λ-3λ -2λ  -λ
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(b) Varying the fiber radius

Fig. 2: (a) Emission rate into the HE11 mode of a fiber with fixed fiber radius a = 150 nm at
a distance, l, of 200 nm (solid line), 250 nm (dashed line) and 300 nm (starred line) from the
row of atoms. (b) Emission rate into the same mode, but for fibers with different radii at fixed
atom-fiber distance l = 200 nm. The fiber radius is 150 nm (solid line), 200 nm (dashed line),
250 nm (starred line) and 300 nm (circled line).
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As expected, the visibility can be seen to decrease with increasing distance of the fiber from
the row of atoms, but even for l = 300 nm the signal still allows to distinguish individual
maxima. Beyond that, when the atoms are a distance away from the fiber surface such that the
light from two polarized dipoles overlaps, it becomes very difficult to resolve the atoms. The
positions where no maximum is visible have been intentionally left empty, and the effective
extinction of the signal shows that this setup is able to resolve defects in the atomic crystal. As
the absence effectively measures a signal homogeneous in space, no degrading of the signal is
visible for the parameters shown in the plot.

The dependence of the emission rate into the fiber on the radius of the fiber is shown in
Fig. 2(b). Note that we keep the distance between the atom row and the fiber surface constant
(l), which means that as the fiber radius increases, the critical distance from the fiber axis to
the atom (l + a) increases, and the rate of emission into the guided modes can be expected to
reduce. This is clearly visible in Fig. 2(b) and the results show that even rather big single-mode
nanofibers can record very distinct signals if they are close enough to the atoms.

Table 2: Numerical values of β and β ′ for a fiber of radius a = 400 nm fiber for the first four
guided modes, again at the λ0 = 852 nm transition in 133Cs.

Mode β β ’
HE11 9.559×106 1.564
TE01 8.197×106 1.616
TM01 7.893×106 1.464
HE21 7.737×106 1.599
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Fig. 3: Combined emission rates into the four available modes in a fiber of radius 400 nm at a
distance of 200 nm (solid), 250 nm (dashed) and 300 nm (starred). The overall rates of emission
are higher than for a single-mode fiber, however, the visibility decreases faster with increasing
distance between the atoms and the fiber.

In slightly larger fibers the presence of three extra modes allows for even higher collection
rates and in Fig. 3 we show the emission rates into a fiber of radius a = 400 nm. The relevant
values for β and β ′ are given in Table 2. For λ0 = 852 nm this fiber can support four guided
modes and comparing the rates obtained for l = 200 nm with the ones for the single-mode fiber
(solid line in Figs. 2(a) and 2(b)), one can see that the collection rate increases from about 0.06
to 0.07. This increase persists at the larger distance of l = 250 nm (dashed lines), however less
dramatically and by l = 300 nm (starred line) it is almost impossible to distinguish the atoms.
While using a larger fiber gives an advantage in terms of radiation collected, Fig. 3 also shows
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that the visibility goes down faster and therefore the resolution for single lattice sites decreases.
From the above it is clear that close proximity between the fiber and the atoms (< 300 nm) is

advantageous to obtain clearly distinguishable signals. However, bringing a room-temperature
fiber close to a trapped ultracold atom requires the consideration of the van der Waals interaction
between the atom and the fiber surface. This is an attractive interaction that can influence the
position of the trapping minimum and therefore the distance between the atom and the fiber.
While this can lead to a different effective emission rate into the fiber, the more dramatic effect
is that the atom can be lost when the attractive potential destabilises the trapping minimum. The
classical van der Waals potential felt by an atom near the surface of a dielectric fiber of infinite
length was calculated by Boustimi et al. [25], and a detailed analysis of their expression by Le
Kien et al. [26] showed that for atoms close to the surface the van der Waals potential tends to
the same values as that for a flat surface

Vflat =−
1

(r−a)3
h̄

16π2ε0

∫ ∞

0
dξ α(iξ ) =− C3

(r−a)3 . (9)

For atoms further away, the expression for a flat surface offers an upper limit on the influence
of the van der Waals interaction and taking λ0 = 852 nm gives a van der Waals constant for
133CS of C3 ≈ 5.6×10−49 J m3 [26]. The combined potentials the atoms sees at two different
distances from the fiber (l = 250 nm and l = 300 nm) are shown in Figs. 4(a) and 4(b), where
we have assumed that the atom is transversally trapped in a tight harmonic oscillator trap of
frequency 500 kHz. One can see that at these distances the van der Waals interaction does not
significantly effect the trapping position and no corrections to the emission rates are necessary.
This, however, changes when the atom comes closer to the surface, for distances around 200 nm
the trapping potential becomes unstable and the atom is lost to the strong attractive potential
from the fiber (see Fig. 4(c)). To avoid this and to stabilise the trapping potential, one can
add a field to the fiber, which is blue-detuned for the atom and therefore provides a repulsive,
evanescent field that can partly compensate the van der Waals potential.

For this we consider a field of frequency ωb, chosen such that the single mode condition is
fulfilled and that the field is in the fundamental mode HE11. To achieve an angular symmetry
in the repulsive intensity distribution we choose circular polarization so that the time-averaged
intensity outside the fibre is given by [23]

|E|2 = 2A2
[
(1− s)2K2

0 (qr)+(1+ s)2K2
2 (qr)+

2q2

β 2 K2
1 (qr)

]
. (10)

Here the Kn are modified Bessel functions of the second kind, the parameters q and β are as
described in Section 3 and A is given in the Appendix. The combined optical and van der Waals
potential seen by a ground state atom is then given by [23]

U =−1
4

α|E|2− C3

(r−a)3 . (11)

where α = α(ωb) is the real part of the atomic polarizability at the optical frequency ωb.
The effect of the blue-detuned potential can be seen in Fig. 4(d), where a field of wavelength

λb = 440 nm and power Pb = 1.75 mW is added to the fibre and allows the original trapping
location to be restored. However, it is worth noting that this compensation mechanism does not
work for arbitrarily short distances, due to the different functional forms of the van der Waals
and the optical potential.
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Fig. 4: Potentials along the shortest distance between the fiber surface and the atom. The solid
line represents the undisturbed harmonic oscillator potential assumed to have a frequency of
ω=500 kHz and the starred line is the van der Waals potential give in Eq. (9). The dashed
line is the combined potential of all individual ones. (a) and (b) show that for l ≥ 250 nm the
trapping site is stable, whereas it can be seen in (c) that for l = 200 nm the minimum of the
joint potential is lost. In (d) a blue-detuned field has been added to the fiber to compensate the
attractive van der Waals force. The circled line shows the combined van der Waals and blue-
detuned potential, as given in Eq. (11). One can see that this allows for the restoration of the
trapping site.

5. Limits

To demonstrate the limits of the technique proposed above and to apply it to a relevant dynam-
ical situation, we return to considering a single-mode fiber of radius 150 nm in this section.
From the results shown in Fig. 2(a) we have seen that a nanofiber with a radius smaller than
half an optical wavelength can resolve the position space of a collection of atoms trapped in an
optical lattice. It is therefore a natural question to ask what the limit of this approach is and if it
can be used to resolve more complicated atomic distributions or dynamical processes.

With this in mind, we show in Figs. 5(a) and 5(b) the results for a situation typical in the
process of controlled collisions between neutral atoms [27], in which every second atom in a
row is brought closer to its neighbor. We consider a row of ten atoms initially equally spaced
and calculate the spatially resolved emission rate as the distance between pairs becomes smaller
using a fiber of radius a = 150 nm, which is l = 200 nm away from the row of atoms. One can
clearly see that initially the expected well-resolved maxima appear, but with decreasing sepa-
ration between each pair of atoms the respective maxima move closer together and eventually
the pairs of atoms become indistinguishable from each other.

A simple geometrical consideration shows that this should happen when the fibre is so far
away from the atoms that it is sitting in the region of overlap of the emission cones from
two neighboring dipoles. For the example given in Fig. 5 this corresponds to a distance of
around 500 nm. However, as the intensity measured in the fiber increases, one can still infer the
presence of two atoms.
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Fig. 5: (a) At the bottom of this figure, 10 atoms are arranged in a row, equidistant from one
another with a spacing of λ/2 = 640 nm. Moving towards the top, every other atom shifts
closer to its neighbor on the right. The emission from two different atoms can be distinguished
until their separation is closer than approximately 500 nm. (b) Here we show three slices from
Fig. 5(a) when the pair separation is equal to 640 nm (starred line), 480 nm (solid line) and 320
nm (dashed line). We also indicate the colorbar axis in Fig. 5(a), which ranges from dark blue
when low to bright red when high.

Let us finally remark that even though our calculations have been done for a one-dimensional
setting, one can easily imagine using a fiber to measure states at the edge of a two-dimensional
geometry. Moving the nanofiber through a two-dimensional lattice, however, would lead to
losses due to the finite reach of the van der Waals potential and in [28] it was shown that
compensation via a blue-detuned field can compensate well enough to allow the fiber to be
moved through a lattice while compromising only the very closest sites to itself. This still
allows, for example, for measurements to be made on alternate rows. While the analysis of the
emission spectrum would be more difficult as emitters are located in two-dimensional space,
one can compare measurements from different positions in order to determine the occupation
of single lattice sites or even employ fiber arrays [29].

6. Conclusions

We have shown that subwavelength optical nanofibers can be used to resolve atomic distribu-
tions in optical lattices. This is an alternative approach to the recently developed atom micro-
scope and allows for higher resolution when using smaller fibers. However, as it requires bring-
ing macroscopic objects very close to single atoms, it is mainly limited to one-dimensional
arrays or edges of higher dimensional ones. Nevertheless, it offers a new approach that can be
integrated in ultracold atom experiments with current technologies.

Appendix

The explicit forms for the emission rates into the individual modes of the fiber given in Sec. 3
contain the following expressions for completion
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HE11 MODE

N1 =J2
1 (ha)− J0(ha)J2(ha)+

β 2

2h2

[
(1− s)2 (J2

0 (ha)+ J2
1 (ha)

)

+(1+ s)2 (J2
2 (ha)+ J1(ha)J3(ha)

)]
(12)

N2 =
J2

1 (ha)
K2

1 (qa)

[
K0(qa)K2(qa)−K2

1 (qa)+
β 2

2q2

[
(1− s)2 (K2

1 (qa)+K2
0 (qa)

)

+(1+ s)2 (K1(qa)K3(qa)−K2
2 (qa)

)]
]

(13)

s =
1/h2a2 +1/q2a2

J′1(ha)/haJ1(ha)+K′1(qa)/qaK1(qa)
(14)

TE01 MODE

P1 =
1

a2h2
K2

0 (qa)
J2

0 (ha)

(
J2

1 (ha)− J0(ha)J2(ha)
)

(15)

P2 =
1

a2q2

(
K0(qa)K2(qa)−K2

1 (qa)
)

(16)

TM01 MODE

Q1 =
K2

0 (qa)
J2

0 (ha)

[
J2

0 (ha)+
n2

1k2

h2 J2
1 (ha)− β 2

h2 J0(ha)J2(ha)
]

(17)

Q2 =
β 2

q2 K0(qa)K2(qa)−K2
0 (qa)− n2

2k2

q2 K2
1 (qa) (18)

HE21 MODE

R1 =J2
2 (ha)− J1(ha)J3(ha)+

β 2

2h2

[
(1−u)2(J2

1 (ha)− J0(ha)J2(ha))

+(1+u)2(J2
3 (ha)− J2(ha)J4(ha))

]
(19)

R2 =
J2

2 (ha)
K2

2 (qa)

[
K1(qa)K3(qa)−K2

2 (qa)+
β 2

2q2

[
(1−u)2(K0(qa)K2(qa)−K2

1 (qa))

+(1+u)2(K2(qa)K4(qa)−K2
3 (qa))

]]
(20)

u =
2
(
1/h2a2 +1/q2a2

)

J′2(ha)/haJ2(ha)+K′2(qa)/qaK2(qa)
(21)

A =
β
2q

J1(ha)/K1(qa)√
πa2(n12N1 +n22N2)

(22)
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5.3 Conclusions and Future Work

Since the publication of this paper there has been further interest in the interaction

of cold atoms with nanofiber higher modes. Recently, in [82], a fiber carrying the

first four guided modes was integrated into a gas of 87Rb atoms and the number

of fluorescence photons detected was larger by a factor of about six compared to

a single mode fiber. This is in agreement with the increase predicted by [81] and

provides promising support for the realization of trapping and detection schemes

using higher order mdoes.

This presented scheme could be used to detect atomic population non-destructively

in lattice sites close to the edge. Such atoms can have specific importance, due to

the existence of edge states in topological insulators, and therefore this method

might be highly suitable to the exploration of topologically non-trivial phases.

Furthermore, non-destructive single site resolution allows for the detection of im-

perfections in Mott Insulator states or single atoms in optical traps with high

accuracy.

However, the impressive advances in the area of quantum gas microscopes raises

the question of whether nanofibers have any advantage over such systems in spe-

cific scenarios? One aspect would be that nanofibers are only limited by the fiber

diameter, rather than the diffraction limit of a highly non-linear lens. It is rela-

tively cheap to build a fiber system, and (currently) requires less resources when

compared to atom microscopes.

The prospect of transferring light from one place, or from one specific atom, to

another along the path of a nanofiber is also exciting. It is possible to conceive of

experiments where the mode selectivity of fibers is an advantage. Since fibers can

be bent, one can in principle envision a situation where an atom is located at the

centre of a loop, which would allow a detector covering 2π. Arranging nanofibers

in arrays could allow for simultaneous measurements, which is not easily done

using a microscope. Showing that single atom resolution is possible is only the

first step.
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Chapter 6

Confined Light in the Scattered

Field of Bosons in a Nanofiber

Guided Mode

6.1 Abstract

For several decades laser light has been used in many interesting ways to tailor

trapping geometries and to manipulate atomic interactions. In most cold atom

experiments, the optical potential is provided by external lasers and considered

to be static. Light scattering and long-range interactions due to backaction are

generally neglected. Only recently, first experiments using the Dicke phase transi-

tion for atoms trapped in optical cavities have enabled the creation of potentials

that are inherently dependent on the atomic density itself [83]. In the scheme

presented here, we consider the light scattered into an optical nanofiber by atoms

trapped in a one-dimensional harmonic trap parallel to the axis of the nanofiber.

Our approach is semiclassical, and we show how the shape of the scattered electro-

magnetic field is influenced by the exact density distribution of the trapped atoms.

The possibility for backaction on the atomic wavefunction due to the population

of the fiber mode is also examined but determined to be negligible, at least for
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experimentally realistic parameter regimes. I show that, for particular values of

atomic interaction and trapping frequency, the scattered field is completely local-

ized over a range that corresponds to the length on which the atoms are trapped.

This is first shown for a pair of interacting atoms, then we give some preliminary

results for three interacting atoms, and finally for systems with more particles in

the Tonks Girardeau regime.

6.2 Introduction

In recent years, the field of research concerning the use of nanofibers in cold atom

experiments has been developing quickly. Notable milestones and key ideas include

the proposal and realization of a scheme to trap atoms in a two-color evanescent

field around a single mode nanofiber [16, 17] (further discussed in Chapter 3),

the possibility for the coupling of atoms to a nanophotonic waveguide in order to

self-organize without external trapping potentials or cavity mirrors [85] and the

prediction that dipole-dipole interactions via the fiber mode can induce a stable

regular order and nontrivial long-range correlations [84].

At the same time, the development of techniques to control and manipulate the

interparticle scattering properties of ultracold atoms has given access to gases in

the ideal as well as in the strongly correlated regime. These techniques are typically

based on Feshbach or confinement-induced resonances, which has permitted, in

particular, the experimental realization of strongly interacting bosonic gases in

the Tonks-Girardeau (TG) regime [86, 87]. In this limit a quasi-one-dimensional

quantum gas of strongly-interacting bosons famously acquires fermionic properties

[21, 22].

In the following I will describe a system, where transversally incident laser light

is scattered into an optical nanofiber by a small number of atoms trapped next

to the fiber. In particular I will be interested in different effects stemming from

control over the scattering properties of the atoms, which I describe fully quantum

mechanically. Our approach is similar to the one taken by Grießer and Ritsch
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in [88], who described a Maxwell–Boltzmann gas interacting with a laser in the

vicinity of an optical nanofiber. A scattering matrix approach to this system

has also been explored [89]. The atoms scatter light into the fiber, which in

turn backacts onto the atoms. Following the Dicke approach, one would expect

that above a certain laser intensity threshold, the system will undergo a phase

transition into one of multiple self-sustained ordered states. While the dependence

of this state on the correlation strengths within the atomic samples is clearly

an interesting question, I show in the following that any backaction of the light

on the atoms for the small samples we are dealing with is negligible. However,

the correlations within the atomic samples have a significant influence on the

scattered field, as the source term in the Helmholtz equation depends on the

density distribution of the atoms.

This chapter represents a work in progress. However, as we have already obtained

significant results, these are presented in the following. I begin with the derivation

of the relevant Helmholtz equation in Sec. 6.3 and the situation for two and three

interacting bosons is described in Sec. 6.4. A Tonks-Girardeau gas is considered

in Sec. 6.5, and Sec. 6.6 lays out the possibilities for future work and concludes.

6.3 Helmholtz Equation in One-Dimension

We consider the atoms to be trapped in an effectively one-dimensional potential

parallel to the nanofiber and along the z-axis given by

UH =
1

2
mω2z2. (6.1)

The trap is located within range of the evanescent decay length of the fundamental

HE11 mode of a nanofiber, for light at the dominant wavelength of the trapped

atom. This ensures that a significant amount of light will be scattered into the

fiber. An incident laser beam is oriented at a right angle to the nanofiber axis,

so that the atom trap is illuminated transversely. Below we follow Griesser and

Ritsch [88] in order to derive the parameters and form for a Helmholtz equation
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that describes the field scattered into the fiber. A schematic of the setup can be

seen in Fig. 6.1.

x y
z

ES(z)ES(z)

EL(x)

Figure 6.1: Schematic of atoms in an elongated trap along the z-axis of a
nanofiber and inside the range of the fundamental mode. All other spatial de-
grees of freedom are assumed to be frozen out by strong transversal confinement.

The incident laser field in three dimensions EL(x, t), with frequency ωL, can be

written in its the usual form

EL(x, t) = êLEL(x) exp(−iωLt) + c.c. (6.2)

When this incident beam scatters from the trapped atoms, it gives rise to a new

field, ES, which we can write in the form

ES(x, t) = êLES(x) exp(−iωLt) + c.c. ,

where polarization effects and retardation have been neglected. Its envelope, ES,

satisfies the standard Helmholtz equation

∇2ES +
(
k2
Lnf (x) + k2

Lχ
)
ES = −k2

LχEL , (6.3)

where kL is the wavevector of the incident laser beam and nf (x) is the refractive

index profile of the nanofiber and

χ(x, y, z) =
α

ε0
ρ(x, y, z), (6.4)
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is the susceptibility of the particles in three dimensions. In eq. (6.4) α is the

atomic polarizability, as discussed in Chapter 2, ρ is the atomic density and ε0 is

the permittivity of free space. For the trapping scenario outlined above, we need

to make some adjustments to this three dimensional model.

As we assume the radial confinement to be much stronger than the axial, we can

factorize the atomic density as ρ(x, t) = ρ(z, t)ρ⊥(x⊥). A similar ansatz can be

made for the fiber mode, requiring that the radial mode function of the fiber is

only weakly perturbed by the presence of the atoms

ES(x, y, z, t) =
√
AES(z, t)u(x⊥) , (6.5)

where A is the cross-section accounting for the radial overlap of the normalized

HE11 mode function with the density distribution ρ [88],

A =
1∫

u2ρ⊥d2x⊥
. (6.6)

Using the separation of variable ansatz made in eqs. (6.5) and (6.6), the Helmholtz

equation can be integrated over the transverse degrees of freedom to yield an

expression which describes the dynamics in the z-direction only:

∂2ES(z, t)

∂z2
+
(
β2 + k2

Lχ(z)
)
ES = −k2

Lχ(z)EL. (6.7)

Here the effective magnitude of the incoming electric field is given by

EL = −
√
A

∫ ∞

−∞
ELuρ⊥d

2x⊥ (6.8)

and the effective susceptibility is χ = α
ε0A
ρ. Henceforth, when we refer to χ and

ES, we mean χ(z) and ES(z). We assume that the fiber has an infinite length and

therefore choose Sommerfeld’s radiation boundary conditions in order to avoid

reflections [88]
∂ES
∂z

= ±iβES(z, t), z → ±∞. (6.9)
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Table 6.1: Parameters, values and units

Quantity Name Value Unit

ω Harmonic oscillator frequency 2π × 700 Hz

m Mass of Cs 133× 1.66× 10−27 kg

λL laser wavelength 800× 10−9 m

β Prop constant 8.0163× 106 m−1

α Atomic polarizability −3.9264× 10−38 C m2V−1

ε0 Vacuum permittivity 8.8542× 10−12 F/m

A Cross section 1 m2

EL Laser field strength 150 V m−1

g Interaction strength 1× 10−36 (J s)2 kg−2

The dipole potential along the z-direction is given by a combination of the scat-

tered field (the solution of the Helmholtz equation) and the incident laser field as

US = −α|ES + EL|2 and the total potential felt by the atoms is given by

Utot = UH − α|ES + EL|2. (6.10)

Noticing that the electric field interference terms are only present across the width

of the incident laser beam, it simplifies outside of this area to

US(|z| → ∞) = UH − α|ES|2. (6.11)

In the following we will be answering the question of whether this optical dipole

potential has an effect on the atomic state. To investigate the effect of the potential

due to the scattered field, we look at a set of experimentally realistic parameters,

which are listed in Table 6.1.

Looking at the left-hand-side of eq. (6.3), one can see that the magnitude of the

scattered field is controlled by the magnitude of the terms in (β2 + k2
Lχ)ES, where

the propagation constant β is on the same order of magnitude as the wavevector

kL = 2π/λL. For the second term, which contains the effects of the atomic density,

to be significant χ must be on the order of one or larger. In our case the density is
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low, (ρ ≈ 2µm−1), ε0 ≈ 8.854× 10−12 F/m, and the cross section, A, is roughly of

the order of one or smaller. For typical atoms, i.e. Cesium or Rubidium, the atomic

polarizability due to the far-detuned incident beam has a magnitude on the order

of 10−38C m2V−1, which can increase by a few orders of magnitude if the beam

moves closer to resonance, this however results in unwanted radiation pressure

which leads to atom loss. This suggests that χ, even for idealized parameters and

on-resonance laser light, is 18 orders of magnitude smaller than one.

It is therefore clear that the optical field will not have any backaction on the atoms,

unless the intensity of the incoming laser beam in increased unreasonably. In the

following we will therefore concentrate on the effect of the inhomogeneous density

distribution of the atoms on the optical field. For this we will solve the Helmholtz

equation with the appropriate source term fully numerically, as well as using the

Greens function methods.

For the latter, we can very simply apply the standard procedure for a Helmholtz

equation of the form
∂2ES
∂z2

+ β2ES = −k2
LχEL, (6.12)

for which the solution is given by (see [90])

ES(z) =
k2
LELα

4πε0A

∫ −∞

−∞
ρ(z′)

e−iβ|z−z
′|

|z − z′| dz
′. (6.13)

6.4 Two and Three Interacting Bosons

The Hamiltonian for two interacting bosons in a harmonic potential can be written

as

H =
2∑

i=1

[
− ~2

2m

∂2

∂zi2
+ Utot

]
+ g1Dδ(z1 − z2). (6.14)

The interaction is modeled as point-like and the quantity g1D represents its strength,

which we will always assume to be repulsive (g1D > 0). It is related to the

one-dimensional s-wave scattering length, a1D, through g1D = −2~2/ma1D. In
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turn, a1D is related to the actual three-dimensional s-wave scattering length,

a3D, through a1D = −l2⊥/2a3D(1 − Ca3D/l⊥) , where C is a constant of value

C = 1.4603 . . . and l⊥ is the ground state size of the transversal trapping poten-

tials [91].

The density of the two-particle state is given by the diagonal of the reduced single-

particle density matrix,

ρ = ρ1(z, z) =

∫ ∞

−∞
Ψ(z, z2)Ψ∗(z, z2)dz2 , (6.15)

where Ψ(z1, z2) is the two-body wave function and z1 and z2 are the respective

positions of atoms. The wave function satisfies the Schrödinger equation εΨ = HΨ.

As g1D increases, the density distribution gets broader and we will show in the

following that, for a two atom boson-boson interaction, a singular value of the

repulsive interaction strength g1D exists that results in complete destructive in-

terference of the scattered field at large values of |z|. In fact, at this value the

scattered light is localized across the region where the atoms are trapped. Later

we will see that for three interacting atoms two of these critical points exist and

that for a Tonks gas with N bosons N−1 can be found. The points of localization

of light are a direct consequence of the inhomogeneity of the source term.

For the classical Helmholtz equation the main effect of an increased scattering

among the atoms is a broader density distribution in the source term. However,

this can also be achieved with a change in the trapping frequency, and we therefore

show in Fig. 6.2 a diagram where the points that lead to light localization can be

found along a black line as a function of g1D and trap ground state width l =
√

~
mω

.

For a given value of l we will call the corresponding value of the interaction strength

gc. One can see from Fig. 6.2 that a minimum value for l exists, below which no

localization can be found. This is the regime, where the trap is very tight and the

density never becomes broad enough to allow for the destructive interference effect

to happen. Note that the width of the density for the two atom case is limited by

the width of the first eigenstate of the harmonic oscillator [92].
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Figure 6.2: For a pair of trapped bosons, the black line indicates the critical
value for the interaction strength, gc, at which localization of the scattered field

occurs for a given trap width.

To see what happens at the critical value, we show in the middle column of Fig. 6.3

the real part of the electric field for the points marked in red and labeled A-E in

Fig. 6.2. For the remainder of this chapter, where we plot the real part of the

electric field, we always confirm that the real and imaginary parts undergo their

π phase shift at the same critical point. To compare, the column on the left

shows the same in the absence of interaction (g = 0) and the column on the right

assumes g1D to be twice the critical value (g1D = 2gc). For small values of l one

can see that the field localizes at the critical interaction strength, whereas for the

other two interaction strengths a wave solution can be found at large |z|. This is

more clearly visible where the chosen interaction strengths are quite different in

magnitude (points A,B and C), but can be seen with smaller amplitude also for

the points D and E.

To show what happens at the localization point we show in Fig. 6.4 the real part

of the electric field for l = 400 nm on the left, and for l = 600 nm on the right, for

continuously changing g1D. The dashed horizontal lines correspond to the values

of g1D used in Fig. 6.3, the color scale varies from blue, indicating the lowest value

of the real part of the electric field, to red, where the real part of the field takes its
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Figure 6.3: For the trapping width corresponding to the points labeled A-E
in Fig. 6.2, here we show the real (solid line) and the imaginary (dotted line)
parts of the scattered electric field ES at g = 0 in the left column, g = gc in the

center column and g = 2gc in the third column.

highest value. One can clearly see that through the critical point the asymptotic

field undergoes a π phase flip, which indicates that the localization is an effect

of destructive interference from waves scattered by different parts of the density

distribution. For l = 600 nm, shown in the right panel in Fig. 6.4, the localization

and phase flipping happen at a small value of g1D and one can see that this is the
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Figure 6.4: Real parts of the electric fields for a situation where the width of
the harmonic oscillator ground state is l = 400 nm (left panel) and l = 600 nm

(right panel). These again correspond to examples B and D, from Fig. 6.2.

only localization point in this system.

In Fig. 6.5, a more detailed version of the second row in Fig. 6.3 is shown, with

the panel on the left corresponding to the real (black) and imaginary (grey) parts

of the electric field for different values of g1D. The solid black line is at g1D = gc.

The panel on the right shows the optical potential calculated from −α|ES|2 and

the panel at the bottom is an enlargement of the section of the optical potential

indicated with a red frame. As expected, at g1D = gc the optical potential is zero

everywhere outside of the region to which atoms are confined. In Fig. 6.6, a more

detailed version of the fourth row in Fig. 6.3 is shown, which confirms the same

results.

Three Interacting Bosons

While the numerical solution of the two atom problem is rather straightforward,

larger numbers cannot be treated easily. However, despite the dimensionality of

the Hilbert space for more particles requiring significantly more computational

resources than the two particle case, we are able to present a limited set of re-

sults here. The Hamiltonian for the one-dimensional problem of three interacting
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Figure 6.5: The panel on the left shows the real and imaginary parts of the
scattered electric field and the panel on the right shows the corresponding dipole
potential for a variety of g1D values indicated in the right panel. The smaller
panel at the bottom is an enlarged section of the panel showing the potential,
as indicated by the red frame, to highlight that only the potential for gc goes to
zero for larger values of |z|. The data in this figure belongs to the vertical line

through point B in Fig. 6.2.

ultracold bosons can be written as

H =
3∑

j=1

[
− ~2

2m

∂2

∂zj2
+ Utot

]
+

∑

1≤j<k≤3

gjkδ(zj − zk) , (6.16)

and we assume for simplicity that all gij have the same value (i.e. the gas is made

from a single atomic species). The numerical solutions show the existence of a

critical interaction strength and in Fig. 6.7 these are given as a function of the

width of the underlying trapping potential. Note that two points exist for every

trapping width until, similar to the two-particle case, the trap becomes too narrow.
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Figure 6.6: Same as Fig. 6.5, but for atoms trapped in a harmonic oscillator
with a ground state width of l = 600nm. This corresponds to the vertical line

through point D in Fig. 6.2.

It is also worth pointing out that in Fig. 6.7 the only calculated data points are the

ones indicated by bold dots, wheras in the two-particle case the entire curve are

calculated values. This is due to the limited access to the large resources necessary

to solve the three particle Hamiltonian for more parameters. The indicated curves

are extrapolated.

The real part of the electric field over the full range of interaction strength for

four different trap widths is shown in Fig. 6.8. One can see that for l = 200 nm

no critical point exists and that for l = 300 nm only one can be found (indicated

by the white dashed line). For l = 400 nm and l = 500 nm two critical points are

visible, but none further. As before, at each critical point the field goes through a

π phase shift.
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Figure 6.7: The line indicates the critical values for the interaction strength,
gc, at which localization of the scattered field occurs for a given trap width.

This is for the three particle case.

Solving systems for larger particle numbers and arbitrary interaction is numerically

not possible. However in the limit of strong interaction the existence of the so-

called Bose-Fermi mapping theorem allows us to map the strongly interacting

bosons to non-interacting fermions, and an analytical solution exists again. A gas

in this limit is called a Tonks-Girardeau gas.

6.5 Tonks-Girardeau Gas

A Tonks-Girardeau (TG) gas is a one-dimensional, strongly correlated gas con-

sisting of bosons that interact via a hard-core potential [87, 93, 94]. In the limit

of point-like interaction, Girardeau found that such a model can be solved exactly

by mapping it to an ideal, spinless fermionic system and was the first to point

out that a gas of strongly-interacting bosons can acquire certain fermionic prop-

erties such as the exclusion of two particles from being at the same point [87].

Tonks gases have proven to be a rich system in which to study new physics, not
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Figure 6.8: For three particles, the localization points in the electric field are
just about evident where we expect to see them based on Fig. 6.7. The white
dashed lines indicate the flipping points described in the text. The color scale
again varies from blue, indicating the lowest value of the real part of the scatered
electric field, to red, where the real part of the scattered field is at its highest.

least due to their analytic accessibility. Identifying scenarios that take advantage

of this is therefore interesting, especially as an exact solution for the harmonic

oscillator is known [86, 95]. Here we consider a gas of N bosons trapped in the

scenario described in the previous section, where the atoms are tightly confined in

the transversal directions and we have control over the trapping frequency in the

z-direction. In this way, in the low-temperature limit, we again restrict our model

to the longitudinal direction only, as in [91].

The utility of the Fermi-Bose mapping for a TG gas lies in the fact that the density

profiles for the Fermi and Bose problems are identical. The ground state density
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for a TG gas of N atoms in a harmonic oscillator can be calculated as

ρN =
N−1∑

n=0

|Ψn|2 =
N−1∑

n=0

∣∣∣∣∣
4
√

mω
π~ e

−mz2ω
2~ Hn

(
z
√

mω
~

)
√

2nn!

∣∣∣∣∣

2

. (6.17)

As the interaction is fixed, the only way to change the size of the density distri-

bution is to vary the width of the harmonic oscillator potential. Here we use the

average spacing, lsep, of the N atoms in a Tonks gas in a harmonic oscillator as

our variable

lsep =
2
√

2N − 1

N − 1

√
~
mω

, (6.18)

as we can vary it in a linear fashion and it therefore aids intuitive understanding.

For all examples in this section, the mass of the atoms was chosen to correspond

the Cesium, i.e. m = 133 a.m.u.. The corresponding trapping frequencies are then

given by

ω =
8N − 4

(N − 1)2

~
ml2sep

. (6.19)

Similar to the two and three atom cases discussed above, we find that certain

values of the average spacing exist for which the scattered electric field is zero

outside the region where the atoms are trapped. In fact, for a TG gas of N atoms

we find that N − 1 of these points exist.

In order to connect the results of the TG limit to the ones for the cases discussed

above, we show in Fig. 6.9 the asymptotic value of the optical potential as a

function of lsep for a three particle Tonks gas. One can clearly see that two values

exist for which the potential goes to zero. However, one can also notice that the

field goes to zero for larger interparticle distances corresponding to lower densities.

In Fig. 6.10 we show the full fields (left panel) and potential (right panel) for the

three particle Tonks case for three different values of lsep. The critical value of lsep,
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Figure 6.9: Optical potential strength in the asymptotic region well outside
the trapping width against the average spacing between the atoms for the three-
particle Tonks gas. The two points, where the light localises, are clearly visible.

The critical value of lsep has been denoted lcsep.

where the localization occurs, is labeled lcsep. Again, the localization of the field

for lc is clearly visible.

To see the effect of larger particle numbers, we show in Fig. 6.11 the real part of

the scattered field plotted against the ground state size of the harmonic oscillator

for easier comparison between the systems of different particle number. One can

clearly see that each plot has N − 1 points at which the field localises and the

phase jumps by π.

6.6 Conclusions and Future work

While the results presented in this chapter are undoubtedly interesting, their full

understanding requires additional work. Furthermore, the obtained field strengths

are very small and to observe this effect one would need to consider strategies

that allow more light to scatter into the fiber. This could, for example, be the
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Figure 6.10: The real and imaginary parts of ES (left panel) and the optical
potential Uscat (right panel) for a Tonks gas of 3 atoms.

inclusion of a Bragg cavity into the fiber, or bringing the scattered light close to

the resonance. The latter would, however, also lead to more heating and one would

have to consider saturation of the atoms. Furthermore, larger amounts of light

inside the fiber will also, at some point, lead to backaction on the atomic density

and therefore to a modification of the source term in eq. (6.7).

While at the moment the fully numerical calculations coincide with the numerical

solution of the Green’s function approach, it would also be valuable to find the

analytical solution from the latter.

Finally, it was recently pointed out that at zero-temperature the atom-field entan-

glement can play a significant role [96] and therefore treating our system in a full

quantized mode could lead to additional insights. Small atomic systems coupled
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Figure 6.11: Real part of the scattered electric field ES for Tonks gas systems
of different particle numbers and for different values of the trap size lsep.

controllably to optical modes would not only be interesting for studying funda-

mental aspects of physics, but would also be valuable for constructing quantum

technology devices, in particular in quantum information.

While research in this area is interesting from a fundamental point of view, ul-

tracold atoms are also well-suited candidates for observing concepts and ideas in

quantum information [97].

The idea for the project was developed jointly between myself and Thomas Busch. All calculations
were carried out by myself.
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Chapter 7

Rotating Phase Separated

Bose–Einstein Condensates in a

Ring Trap

7.1 Abstract

This chapter explores the superfluid properties of a two-component Bose–Einstein

condensate in a toroidal trap as a function of rotation and intra- and inter-species

interaction energies. These systems allow for two different kinds of phase separa-

tion, radial and azimuthal, and the conditions and consequences of each of these

are discussed. In the early part of the Chapter, after presenting the background

theory, I numerically determine the conditions for radially phase separated ground

states to exist. In the latter part, a published work is enclosed where we show

that an azimuthal phase separation process can lead to the breaking of one of the

hallmarks of superfluid flow, namely the quantization condition on circulation.

In this case, the resulting, non-quantized currents are stable for long times and

possess a phase boundary that exhibits classical solid body rotation, despite the

quantum nature of superfluid flow.
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7.2 Introduction

Beginning in the 1930s, the theory of superfluidity was developed mostly with the

aim of explaining the remarkable transport properties of liquid Helium-4 (4He)

cooled below its critical temperature (Tλ = 2.17 K) [3, 98, 99]. However, superfluid

4He is a liquid rather than a gas, and although its underlying BEC nature is

fundamental to its superfluid properties, the interactions between the atoms are

relatively strong which means that it is not straightforward to describe. In the

last 20 years, the achievement of BEC in rubidium, cesium and the other alkalis,

has allowed access to systems where superfluid phenomena are more easily isolated

and observed. A very successful formulation of superfluid theory uses a picture

where a superfluid system comprises a condensate and elementary excitations.

This means that the flow patterns that can exist in a BEC in superfluid phase

are constrained by the existence of a single macroscopic wave function. The study

of the response of such a system to rotation results therefore in some striking

signatures of superfluidity, for example the formation of quantized vortices. In

recent years many of the signatures of superfluidity, such as frictionless flow below

a critical velocity [100], irrotational flow [101], and the formation of vortices with

quantized circulation have been experimentally demonstrated [102, 103].

The idea of superflow, or dissipationless flow, first emerged in 1911 when it was

observed that the resistance of mercury falls to zero below 4 K [104]. This led

physicists to suppose that, if a substance truly had no resistance, then a current

flowing in it would remain forever and could be described as a persistent current.

Since that time, experiments have shown that persistent currents can, at least

in principle, persist on timescales comparable with the age of the universe [105].

Persistent currents represent one of the strongest signatures of superfluidity, but

they become unstable above a certain velocity threshold [106]. Despite a growing

number of interesting theoretical and experimental works [107–114], some impor-

tant questions about the superfluid properties of BECs and when they possesses

stable persistent currents, remain to be answered.
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As the experimental techniques for controlling and investigating cold gases have

advanced, they continue to become an even richer testbed for studying super-

fluidity. An interesting system that has been realized in a number of physics

laboratories in recent years is the spinor condensate, which allows for the study

of interpenetrating superfluids. In this work we are looking at the example of

a two-component condensate trapped in a two-dimensional toroidal trap, where

angular momentum is associated with one or both components. This angular mo-

mentum might be due to rotation of the external trapping potential, or transferred

to one or both of the components by a Raman transfer of atoms between two spin

states, for example using a Laguerre-Gauss beam [113, 115, 116]. The interaction

parameters associated with the two gaseous components can be tuned in a way

that determines whether the mixture is miscible or immiscible (phase separated)

and the ground states associated with each take on a variety of interesting forms.

In this chapter I investigate the different kinds of ground state possible in a two-

component Bose–Einstein condensate within the framework of mean-field theory.

The interaction between the two components can be adjusted to alter the location

of each component and probe the transition between miscibility and immiscibility.

The chapter is organized as follows. In Section 7.3 I present a description in

terms of a pair of coupled Gross–Pitaevskii (GP) equations, and the associated

background theory relevant to the system. Section 7.4 presents my calculations

of radially phase separated ground states, which is unpublished work that we are

currently preparing for publication. The work on azimuthally phase separated

condensates is presented in Section 7.5 and in Section 7.6 I conclude.

7.3 Superfluidity and Spinor Systems

7.3.1 Gross–Pitaevskii Picture

Two dilute bose-condensed gases with wavefunctions Ψ1 and Ψ2, self-interaction

constants g11 and g22 and mutual-interaction constant g12 = g21 can be described
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by two coupled Gross–Pitaevskii (GP) equations in the limit of zero temperature

[117, 118],

i~
∂Ψ1(r, t)

∂t
=

[
−~2∇2

2m
+ V1(r) +Ng11|Ψ1(r, t)|2 +Ng12|Ψ2(r, t)|2 −Ω1L̂1

]
Ψ1(r, t),

(7.1)

i~
∂Ψ2(r, t)

∂t
=

[
−~2∇2

2m
+ V2(r) +Ng22|Ψ2(r, t)|2 +Ng21|Ψ1(r, t)|2 −Ω2L̂2

]
Ψ2(r, t).

(7.2)

For simplicity we assume that each component is in a different hyperfine state (j

= 1, 2) of the same atomic species, so that m1 = m2 = m [113, 119], and that each

component contains an equal number of atoms, N1 = N2 = N . The rotational

energy acquired by the condensates is dependent on the frequency of the externally

imposed rotation, Ωj, which is assumed to be around the z-axis, Ωj = Ωjz. The

external trapping potentials are given by Vj.

The coupling constants, gij =
√

8π~2aij/(maz), describe atom-atom interactions

in terms of the three-dimensional scattering lengths, aij, and the characteristic

harmonic oscillator length in the z direction, az =
√

~/mωz. For simplicity we

choose the s-wave scattering lengths within each component to be equal, that is

a11 = a22 = a, and for both species to experience the same out-of-plane trapping

frequencies, ωz. This leads to g11 = g22 = g, which we will assume to always be pos-

itive. In the absence of interaction the GP equation becomes a linear Schrödinger

equation, and one can use the single particle solution to describe each component

separately.

In the absence of an external trapping potential and rotation the condition for

miscibility of the two components is given by [117]

g11g22 ≥ g2
12, (7.3)

and the system will phase separate if this condition is broken. In the presence of

an external trapping potential (as in the system we consider below) the density is

inhomogeneous and therefore the exact point of phase separation will be moved

slightly from that defined here [107, 120].
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(d) g11=2g, g22= 2g, g12= 0

(c) g11=2g, g22= 2g, g12= 2g

(b) g11=2g, g22= 2g, g12= 4g

(a) g11=2g, g22= 4g, g12= 3g
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Figure 7.1: Examples of miscible and immiscible states in a two-component
BEC in a harmonic trap. Each row is described in more detail in the text. The

plots on the right hand side show a cut through the density distributions.

In Fig. 7.1 a selection of the different possible ground states for a two-component

BEC in a harmonic trap are shown. By varying the interaction parameters, the

ground state can be either miscible, or phase separated. Examples (a) and (b)

show situations where the two components phase separate (g2
12 > g11g22), however

in (a) this separation is radial since g11 6= g22, whereas in (b) it is azimuthal

because g11 = g22. Examples (c) and (d) both show situations in the miscible

regime and demonstrate that a repulsive intercomponent interaction can lead to

a lower density overall. All densities are normalized to one, and the trapping

potential is shown in the background in the plots on the right hand side as a

guide.
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7.3.2 Vortices and Persistent Currents

One of the fundamental excitations of a superfluid is a vortex structure. It is

defined as a point of zero density around which there is a circulating flow obeying

∇× vs = 0, except at the center [121]. In cylindrical polar coordinates, where êr,

êφ and êz are unit vectors in the r, φ and z directions, and vs = vrêr + vφêφ + vz êz

∇× vs =
1

r

∣∣∣∣∣∣∣∣∣∣∣∣∣

êr rêφ êz

∂
∂r

∂
∂φ

∂
∂z

vr rvφ vz

∣∣∣∣∣∣∣∣∣∣∣∣∣

, (7.4)

which means that the condition ∇× vs = 0 is met if 1
r
∂
∂r

(rvφ) = 0. This leads to

a flow velocity given by

vs =
κ

2πr
êφ, (7.5)

where the net circulation is denoted by κ.

There is a close link between the physics of a quantum vortex, and that of a

persistent flow around a ring. To understand when persistent currents might

be possible, it is helpful to consider the flow velocity, vs(r), associated with the

wavefunction Ψ(r) = |Ψ(r)|eiφ(r)

vs(r)ψ(r) = −i ~
m
∇Ψ(r) . (7.6)

If the gas is uniform, |Ψ(r)| = C (with C a constant), then vs = ~
m
∇φ(r) from

which it is evident that ∇× vs(r) is proportional to ∇×∇φ(r) = 0. This can be

interpreted to mean that any net circulation in a uniform system has to be zero.

However, since a closed flow happens along a well-defined path, the geometry of

the underlying system needs to be taken into account.

If, in a given geometry, a path between any two points can be continuously de-

formed to realize all of the possible paths between these two points then that geom-

etry is called simply-connected. A geometry is said to be multiply-connected if this
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condition is not met. In a condensate the geometry can be multiply-connected if

either the trap itself is multiply-connected, or if a vortex within the system causes

a region of zero density.

The integral of the flow velocity along a path l can be written as

m

~

∫ r2

r1

dl · vs = φ(r2)− φ(r1), (7.7)

and it is clear that a simply connected geometry requires m
~

∮ r1
r1

dl ·vs = 0. There-

fore a flow along a closed path cannot exist (see Fig. 7.2a). Circulation in a

multiply-connected geometry, however, is permissible if the closed path encircles

a point of zero density. In this case m
~

∮ r1
r1

dl · vs = 2πκ, and circulation is allowed

as long as it is quantized in units of 2π (see Fig. 7.2b) [122].

 
     

a) b)

I
dl r� = 0

I
dl r� = 2⇡

Figure 7.2: (a) is an example of a simply-connected trapping geometry. The
net circulation around any closed path must be zero. (b) shows a multiply-
connected trapping geometry. The net circulation along a path like the one
indicated can be any integer multiple of 2π. Recreated from Fig. 2.2 in [122].

As seen above, the ground states possible in two component systems belong to

two regimes, miscible and phase-separated, which have different sets of spatial

properties, excitation spectra, and stability criteria. The physics of persistent

currents can therefore vary a great deal across these regimes and in the phase

separated regime the presence of domain walls can lead to new physics.
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In the preprint in Sec. 7.5.1 of this Chapter, we discuss a scenario where the condi-

tion of quantized rotation is broken due to azimuthal phase separation between the

two components in a toroidal trap. This symmetry breaking results in changing the

multiply-connected toroidal geometry into two individual simply-connected ones

and, as we will show, this leads to a change from superfluid to quasi solid-body

rotation. This change has interesting consequences, as in the superfluid situation

the atomic velocity has a 1
r

dependence, which means that atoms closer to the

vortex core move faster than atoms farther away, whereas for a solid body the

dependence is usually considered to be proportional to r.

In order to have persistent currents, a multiply connected trap is necessary and

the simplest possible form for our purpose is given by a two-dimensional ring. This

will be discussed in the next section.

7.3.3 Toroidal Traps

As mentioned before, we are interested in the simple multiply connected poten-

tial realized by a toroidal trap, which has recently been the subject of strong

experimental interest [115, 123, 124]. Persistent currents in single component con-

densates have been shown to exist for up to 40 seconds in [115], and for over two

minutes in [113]. However, superflow in toroidally trapped miscible two-component

condensates has been observed only on much shorter timescales, with no rotation

at all remaining after 20 s in [113].

Since we are only interested in azimuthally symmetric potentials, we can restrict

the treatment here to a radial co-ordinate. In its simplest form a suitable potential

can be written as a displaced harmonic oscillator given by

Vj =
1

2
mω2

r(r − r0)2, (7.8)

where r0 is the toroidal radius, r2 = x2+y2, and ωr is the radial trapping frequency,

identical for both components.
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Experimentally a number of techniques can be used to create toroidal potentials.

Ring traps formed by passing a repulsive barrier, the Gaussian beamwaist of a blue-

detuned laser, through the center of a harmonic potential have been demonstrated

[115, 123, 125, 126]. These can be modelled as V = 1
2
mω2r2 +V0e

−2r2/σ2
0 , where ω

is the radial trapping frequency of the standard harmonic oscillator potential, σ0 is

the beam waist of the blue-detuned laser and V0 is its strength. Such setups allow

control over the height of the central barrier, as this is proportional to the beam

intensity, and therefore make it possible to convert between toroidally shaped traps

and harmonic potentials. A second possibility is to create all-optical traps by using

a red-detuned Laguerre-Gauss beam (often created using a hologram) [113, 115,

127]. A novel optical ring lattice, created by combining Laguerre-Gauss modes

has also been proposed [128]. Alternatively, and especially related to the work

presented in this thesis, ring-shaped trapping potentials can be produced in the

evanescent field of a nanofiber [16, 17]. Such traps have the advantage that the fiber

at the center can be used to deliver light in a specific way to the trapped atoms, and

it also provides a well defined region of zero density at the center. However, the use

of toroidal nanofiber traps also presents some obstacles. For example, the presence

of a solid, dielectric fiber at the center of the experiment would make carrying out

time-of-flight (TOF) measurements impossible. Furthermore, the evanescent field

potentials are limited in range and the dimensions of the trap are restricted to the

scale of the evanescent decay lengths. A direct comparison between a two-color

nanofiber trap, as described earlier in this thesis and in the paper in Chapter 3

[129], and the shifted harmonic oscillator potential used in some of our calculations

below, can be seen in Fig. 7.3. The evanescent field potential is given for a fiber

of radius a = 150 nm and the wavelengths of the two lasers used to make it are

λb = 640 nm and λr = 1064 nm. These are blue- and red-detuned about the

dominant D2 transition in Rubidium 85 (λRb = 780 nm) and the powers of the

two associated laser fields are Pb = 35 mW and Pr = 30 mW. For the harmonic

oscillator potential we choose ω = 2π×30000 kHz, the mass of rubidium is m = 85

a.m.u. and we choose trap parameters such that r0 = 400 nm. It is clear that,

while the choice of trap will undoubtedly make a quantitative differences to any
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Figure 7.3: The left hand panel shows the evanescent field potential around
a nanofiber and the panel in the middle shows the shifted harmonic oscillator
potential. The panel on the right shows a radial cut through both potentials,
with the black line being the evanescent field potential around the fiber for the
parameters given in the text. The red line is a harmonic oscillator potential
which has a similar frequency to the evanescent field potential at its deepest
part. One can see that the evanescent field potential is asymmetric around the
minimum, with its inner wall being much steeper than the outer-wall. Addition-
ally, the evanescent field potential is bounded. Further details and parameter

values are given in the text.

results, qualitatively similar behavior can be expected when the system’s energy

is low.

In Fig. 7.4, we show some examples of ground states in a toroidal trap, when

neither component has angular momentum and Ω1 = Ω2 = 0 Hz. Panel (a)

shows a state in the miscible regime (g11 = g22 = g, g12 = 0.5g) and azimuthally

homogeneous density distributions for both components are clearly visible. In

panel (b), where the scattering parameters are chosen to be on the border between

the miscible and immiscible regime (g11 = g22 = g12 = g), the first appearance of

in-homogeneities in the density distribution can be seen. Finally, panel (c) shows

a system deep in the phase-separated regime (g11 = g22 = g, g12 = 1.5g), where it

is evident that the state is azimuthally symmetrically split. In (c), the splitting

angle is determined by random noise added numerically. For tight traps, i.e. when

the trap width is smaller than the circumference, this kind of azimuthal phase

separation is always energetically favourable to a radial one [114, 130, 131], while

in wider toroidal traps concentric ring configurations can occur (see for instance

[114, 131]).
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(b) g11=g22= g12= 1g

(a) g11=g22= 1g, g12= 0.5g

(c) g11=g22= 1g, g12= 2g.

Figure 7.4: Ground states for two-component condensates in the absence of
angular momentum. In (a) g11 = g22 = g and g12 = 0.5g, which results in a
uniformly mixed state. In (b) the parameters are on the border between the
miscible and immiscible regime, g11 = g22 = g12 = g, and an in-homogeneity
in the density distribution can be seen. In (c) the system is deep in the phase
separated regime, g11 = g22 = g and g12 = 1.5g, which results in a symmetrical

azimuthally phase separated state.

In the next section we will show that the inclusion of angular momentum can lead

to the appearance of a radially phase separated ground state.

7.4 Radial Phase Separation

An interesting scenario in which to examine the ground state of a two-component

condensate in the phase separated regime in a toroidal trap is the situation where

one component has no angular momentum and the other has a large amount. To

achieve this we will assume Ω1 = 0 and Ω2 large in all calculations presented in

this chapter.
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The presence of angular momentum in one of the components leads to a centrifu-

gal force that draws this component towards the outer edge of the toroidal trap.

When this is combined with the presence of large repulsive interaction between

the two components (i.e. large g12 � √g11g22), radial phase separation can be-

come energetically favorable over azimuthal phase separation at some point as the

overlap in their densities decreases.

All simulations in this chapter have been carried out using a real-space mesh

of 29 × 29 points. The algorithm we have used for imaginary-time propagation is

based on the split-operator method [132]. In the next section we will systematically

explore the changeover from an azimuthally phase separated ground state to one

that is radially phase separated.

7.4.1 The Transition from Azimuthal to Radial Phase Sep-

aration

As the phase separation dynamics in multicomponent BECs is an energetically

driven process, it depends on the detailed interplay between kinetic, rotational

and non-linear energies. While it was argued in the last section that radial phase

separation is possible, determining the values for its first appearance is the aim

of this chapter. It is clear that for low amounts of angular momentum azimuthal

phase separation is strongly favorable, whereas for increasing rotation the radial

overlap reduces and at some point it becomes energetically cheaper to radially

phase separate. However, as the exact trapping geometry and size of the system

are playing a role in determining quantitative parameters, we will here only show

that this transition point exists for experimentally realistic numbers.

While one could examine the density distribution each time to establish the kind

of phase separation the system has undergone, here we take advantage of the

insight, that for azimuthally phase separated condensates the expectation value

of the angular momentum does not need to be quantized. A non-integer number

therefore indicates azimuthal phase separation and in Fig. 7.5 these numbers are
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Figure 7.5: Angular momentum in the ground states of the miscible (blue)
and immiscible (red) regimes, in component with angular momentum, |Ψ2|2.
Quantization of winding in the miscible regime is clear from the staircase pat-
tern, where the stairs only have integer values. As the external trap rotation
for Ψ2 increases, we see that there is a transition from where the quantization

condition does not hold, to where it does.

given for the ground state of systems in the miscible (blue) and immiscible (red)

regime as a function of increasing rotation applied to the second component. One

can see that in the miscible regime the system always adheres to the requirement

of having a quantized winding number, which is consistent with the expectation.

In the immiscible case, however, the expectation value of the angular momentum

shows a continuous increase for small values of the applied rotation, indicating that

the system is azimuthally phase separated. Once Ω2 exceeds a certain value, the

quantized behaviour returns, indicating that the system is no longer azimuthally

phase separated.

These interpretations can be confirmed by looking at the density distributions for

certain values, indicated in Fig. 7.5 and shown in Fig. 7.6. For points (a) and

(b) in the miscible regime one can see the expected azimuthally homogeneous
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Figure 7.6: Density distributions corresponding to the points indicated in
Fig. 7.5. Where a radial cut is present, in (a), (b) and (e), the origin is indicated
by the dotted line in the full 2D plots. The trapping potential is also indicated
in red as a guide for the eye but does not correspond to the same scales and

axes.

distribution and also the fact that the angular momentum carrying component,

|Ψ2|2, represented by the dotted line in the cut, is sitting farther out in the trap.

The point (c) corresponds to an immiscible state where neither |Ψ1|2 nor |Ψ2|2

have any angular momentum and where the ground state is azimuthally phase

separated. As Ω2 increases, quantized circulating states appear and the first one

is indicated in the graph. However, just below this transition frequency (indicated

by the dashed part of the red line), the states are not cleanly azimuthally phase

separated, as can be seen from the density distribution corresponding to point (d).

In this region the states are at the transition between azimuthally phase separated

and fully radially phase separated. Finally, an immiscible state where |Ψ1|2 has

no angular momentum and |Ψ2|2 has 11 units is shown for (e). One can see that

the system is now in a fully radially phase separated state.

The simulation parameters used in Figs 7.6 and 7.5 are ωr = 2π × 30000 Hz,

r0 = 0.3µm and Ng11 = Ng22 = g = 1.1095× 10−41 (Js)2 kg −1.
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7.4.2 Variational Calculation

In order to determine the influence of the phase separation process on the ground

states obtained above and distinguish it from the separation due to the centrifugal

force, we will carry out a variational calculation in this section. As we are only

interested in the radially phase separated state, we can take advantage of the

azimuthal symmetry to simplify the calculations.

The variational principle says that if one assumes a trial wavefunction |Ψ〉 and

calculates the energy expectation value

E(Ψ) =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 , (7.9)

where 〈Ψ|Ĥ|Ψ〉 =
∫

Ψ∗ĤΨdx, this value gives an upper bound to the true ground

state energy, i.e. E(Ψ) ≥ E0. Minimizing a number of free parameters in a

trial wavefunction can therefore provide us with a good approximation to the real

ground state.

In our case the energy functional of the system of two coupled GP equations (eqs.

(7.1) and (7.2)) is given by

E(Ψ1,Ψ2) =

∫
dr

(
~2|∇Ψ1|2

2m︸ ︷︷ ︸
kinetic energy
component 1

+
~2|∇Ψ2|2

2m︸ ︷︷ ︸
kinetic energy
component 2

+V (|Ψ1|2 + |Ψ2|2)︸ ︷︷ ︸
potential energies

(7.10)

+
1

2
g11|Ψ1|4
︸ ︷︷ ︸
interaction in
component 1

+
1

2
g22|Ψ2|4
︸ ︷︷ ︸
interaction in
component 2

+ g12|Ψ1|2|Ψ2|2︸ ︷︷ ︸
interaction between

components

)
.

Because we will be considering states with given and well defined winding numbers,

the −ΩL terms do not appear in this functional and we instead choose appropriate

trial wave-functions.

In order to find a good variational ansatze for the condensates we need to consider

both, the form of the density and the contribution from the in-homogeneous phase,

while also taking advantage of the symmetry of the system. As the potential is
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built from displaced harmonic oscillators, we choose (using cylindrical coordinates)

Ψ1(r, κ1) = N1 re
−A1(r−R1)2ei2πκ1 , (7.11)

Ψ2(r, κ2) = N2 re
−A2(r−R2)2ei2πκ2 , (7.12)

where Ai accounts for the width of the wavefunction and Ri allows for position-

ing the maximum of the Gaussian function. The normalization is given by the

constants Ni, which are carried through the variational calculation as constraints.

This reduces the number of variational parameters by two and means that ulti-

mately we have four variational parameters A1, A2, R1, and R2.

Since the calculations are long winded and the obtained expressions rather un-

wieldy (see Appendix A for the detailed forms of the expectation values), the

minimization process for the variational parameters is carried out numerically.

From this, the position of the maxima of the density can be determined as

Ri,max =
AiRi +

√
A2
iR

2
i + 2Ai

2Ai
. (7.13)

where i = 1, 2 for the first and second component respectively. The distance

between the two maxima, Rgap, is given by

Rgap =
1

2

(√
A2 (A2R2

2 + 2)

A2

−
√
A1 (A1R2

1 + 2)

A1

−R1 +R2

)
. (7.14)

The variational results for the position of the maxima of the individual density

distributions are compared to the numerically exact ones in Fig. 7.7. The unfilled

shapes correspond to the maxima of |Ψ1|2, which is the non-rotating component,

and the filled shapes correspond to |Ψ2|2. The horizontal red line indicates the

position of the trap minimum at r0 = 300 nm. Ground states in the miscible

regime are circular and correspond to any point on the blue plateaus in Fig. 7.5.

Ground states in the immiscible regime are diamonds and correspond to any point

on the red plateaus in Fig. 7.5. The data resulting from the variational calculation
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Figure 7.7: Position of the maximum of the density distribution for increasing
winding number for miscible and immiscible systems. The trap parameters
here are the same as in Fig. 7.5, i.e. ωr = 2π × 30000 Hz, r0 = 0.3µm and

g = 1.1095× 10−41 (Js)2 kg−1.

is in black and data from the numerical ground-state finding program is in red.

One can see that excellent agreement between the two approaches exists.

A comparison of the density distributions obtained from the variational and the

numerical method is shown in Fig. 7.8, for two examples with the same external

rotation, Ω2 = 2π×9000 Hz, but with different values of g12. The parameters used

are the same as in Fig. 7.5. It is interesting to note that for the same external

rotation, the second component acquires a different winding in the miscible and

immiscible states. In the left panel, the miscible case, |Ψ2|2 has eight units of

winding and so it gains a centrifugal contribution which pushes it further from

r = 0 than |Ψ1|2, which carries no angular momentum. As g12 = 0 in this panel,

the separation is completely due to the centrifugal force. The right panel is in the

immiscible regime and |Ψ2|2 has twelve units of phase winding. From Fig. 7.5 one

can see that this is in the regime where it is energetically favorable for |Ψ2|2 to sit
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Figure 7.8: Comparison of the densities obtained by variational (black) and
numerical calculation (red). |Ψ1|2 is represented by the solid lines and |Ψ2|2 is

represented by the dotted lines.

outside |Ψ1|2 and that the ground state is radially symmetric. In this situation

the inter-component interaction pushes |Ψ2|2 away from the centre and it therefore

effectively sees a trap with larger radius and higher frequency leading to a higher

κ2.

While this variational calculation gives results that agree very well with our numer-

ical calculations, it only does so in the range where the phase separation is radially

symmetric, rather than azimuthal. Since the variational calculation gives a one

dimensional solution along the radial direction, it is not useful for finding ground

states that have significant variation in the azimuthal direction. The range over

which the variation approach is useful must be informed by numerical simulation.

7.5 Azimuthal Phase Separation

The following section contains a preprint, currently submitted to Phys. Rev. Lett.,

in which the transition between miscibility and phase separation in rotating toroidally
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trapped two-component condensates is discussed. In the phase separated regime

the requirement of quantization of circulation is broken and azimuthally phase

separated superfluids can rotate with arbitrary circulation. As the phase sepa-

ration also leads to the presence of a phase boundary, we show that energetic

considerations force the system to undergo solid body rotation. This is a novel

demonstration of the coexistence of classical and quantum behaviors, which can

be observed in current state of the art cold-atom experiments.
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7.5.1 Emergence of Classical Rotation in Superfluid Bose–

Einstein Condensates (paper)

Manuscript Information

Manuscript Title: Emergence of Classical Rotation in Superfluid Bose–Einstein

Condensates.

Journal Information: Phys. Rev. A 93, 033601(2016).

Authors: Angela White, Tara Hennessy, and Thomas Busch

DOI: 10.1103/PhysRevA.93.033601

The idea for the project was jointly developed between Angela White, Thomas Busch and myself.
The calculations for the radial phase separation were carried out by me, whereas Angela White
lead the work on the azimuthal phase transition. The interpretation of the results was a joint
effort between all three members in this project.
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Emergence of Classical Rotation in Superfluid Bose-Einstein Condensates

Angela White,1 Tara Hennessy,1 and Thomas Busch1

1Quantum Systems Unit, Okinawa Institute of Science and Technology
Graduate University, Onna-son, Okinawa 904-0495, Japan.

Phase transitions can modify quantum behaviour on mesoscopic scales and give access to new
and unusual quantum dynamics. Here we investigate the superfluid properties of a rotating two-
component Bose–Einstein condensate as a function of changes in the interaction energy and in
particular through the phase transition from miscibility to immiscibility. We show that the breaking
of one of the hallmarks of superfluid flow, namely the quantisation condition on circulation, is
continuous throughout an azimuthal phase separation process and displays intriguing flow dynamics.
We find that the resulting currents are stable for long times and possess a boundary between the two
condensate components that exhibits classical solid body rotation, despite the quantum nature of
superfluid flow. To support this co-existence of classical and quantum behaviour the system develops
a unique velocity flow profile, which includes unusual radial flow in regions near the boundary.

Phase transitions in quantum systems can have a dra-
matic impact on the quantum mechanical behaviour on
mesoscopic scales. Superfluidity in Bose-condensed gases
is a mesoscopic manifestation of quantum mechanical ef-
fects and one of its hallmarks is the existence of quantised
flow around phase singularities as a response to external
rotation [1–4]. However, as the quantisation condition
arises from the requirement of the single-valuedness of
the wavefunction, an interesting, and less well investi-
gated, generalization appears in superfluids composed of
several components. In these systems, due to the in-
terplay of intra- and inter-component interactions, the
spinor order parameter can undergo a phase transition
that modifies the global symmetry of the system. As
the quantisation condition applies to each component in-
dependently, the path along which circulation is deter-
mined consequently depends on the presence of the other
component. This has proven to be particularly striking
in toroidally trapped binary mixtures of BECs, where
immiscibility can drive a transition to azimuthal phase
separation, breaking the requirement of quantised circu-
lation around the toroid [5]. We show that this transi-
tion is continuous and leads to a boundary between the
two condensate components which rotates as a classical
solid body. While this might seem at first to be incom-
patible with the quantum nature of superfluid flow, this
co-existence can be explained through the presence of a
radial flow.

In superfluids the circulation around a closed path p
is quantised according to

∮
p
v · dr = n2π~/m . Here n is

an integer winding number, m the atomic mass, ~ the re-
duced Planck constant, and the superfluid velocity field,
v = ~∇θ/m, is completely determined by the gradient of
the condensate phase, θ. This implies the velocity field
of a vortex has a tangential 1/r velocity profile, in con-
trast to classical rigid-body rotation, where v = Ω × r.
The creation of vortices is a response to external rota-
tion and many of their properties depend, in particular,
on the confining geometry. While in simply connected
trapping potentials vortices with higher winding num-
bers are unstable [6], multiply connected geometries are

known to support persistent currents with large angular
momentum [7–10].

A simple multiply connected potential can be realised
by a toroidal trap, which has recently been the subject of
intense experimental interest [7, 9]. For single component
condensates superflows have been shown to exist for up
to 40 s [11], however the superflow in toroidally trapped
miscible two-component condensates has only been ob-
served on much shorter timescales [12].

In this work we first study how the quantisation of
circulation breaks down in the transition region between
miscibility and phase separation in a rotating, toroidally
trapped two-component condensate. While deep in the
phase separation regime angular momentum scales lin-
early with rotation frequency, close to the phase sepa-
ration point an oscillatory behaviour is found, which is
accompanied by significant changes in the order param-
eter. At the same time, the phase profile, which drives
the superfluid flow, adjusts in a way that allows quantum
and classical behaviour to coexist.

The system is modelled using two coupled Gross–
Pitaevskii (GP) equations, which aptly describe a two-
component Bose–Einstein condensate in the limit of zero
temperature. Each component is assumed to be a differ-
ent hyperfine state (j = 1, 2) of the same atomic species,
m1 = m2 = m, [12, 13] and to consist of the same num-
bers of atoms, N1 = N2 = N . The two-dimensional cou-
pled GP equations for the wave functions ψj under rota-

tion around the z-axis with rotation frequency ~Ω = Ω~z,
are then given by

i~
∂ψj

∂t
=

(
− ~2

2m
∇2 + Vj +

1,2∑

i

Ngij |ψi|2 − ~Ω · L̂
)
ψj .

(1)
In order to allow for stable systems with high angular mo-
mentum, we assume that the atoms are trapped in a har-
monic ring-shaped potential of the form Vj = 1

2mω
2
r(r −

r0)2, where r0 is the toroidal radius, r2 = x2 +y2, and ωr

is the radial trapping frequency, identical for both com-
ponents. Toroidal trapping potentials have recently been
realised in several experiments by using, for example, a
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time-averaged harmonic potential with a Gaussian laser
beam through its centre [7] or all optical traps made by
applying a red-detuned Laguerre-Gauss mode of a laser
beam [8, 11, 12]. Alternatively, ring-shaped trapping po-
tentials which vanish asymptotically can be produced in
the evanescent field of an optical nanofiber [14, 15].

The coupling constants, gij =
√

8π~2aij/(maz), de-
scribe atom-atom interactions in terms of the three-
dimensional scattering length aij , and the characteris-
tic harmonic oscillator length in the z direction, az =√

~/mωz. For simplicity we choose the s-wave scatter-
ing lengths within each component to be equal, that is
a11 = a22 = a, and for both species to experience the
same out-of-plane trapping frequencies, ωz. The strength
of atom-atom interactions between the two components,
g12, will be varied to induce the phase transition.

Homogeneous two-component condensates are misci-
ble for values of g2

12 < g11g22 and immiscible or phase-
separated when g2

12 > g11g22 [16–18]. For trapped con-
densates these values are slightly shifted due to the in-
homogeneous density profile [19, 20] and the density dis-
tribution in the phase separated regime is determined by
the shape of the external trapping potential. In narrow
ring traps (and when g11 = g22), azimuthal phase sep-
aration is favoured (see for instance [5, 21, 22]), while
in wider toroidal traps concentric ring configurations can
occur (see for instance [21, 22]).

In the following we will show how the phase separa-
tion influences the rotational properties of azimuthally
separated states and how the existence of a boundary be-
tween the two condensate components forces the system
to adopt a rotation pattern that mimics solid body rota-
tion. For this we numerically solve the coupled GP equa-
tions by applying a pseudo-spectral second order Strang
method with symmetric three-operator splitting [23].

When the atom-atom interaction is chosen so that
the two superfluid components are miscible, each com-
ponent is multiply connected and circulation around
the toroid is quantised. This implies that for each
component the average angular momentum per parti-
cle, 〈Lz〉 = i~

∫
dxψ∗

j (y∂/∂x− x∂/∂y)ψj , is also quan-
tised. In stark contrast, azimuthally phase-separated
states break the multiply connected nature of each con-
densate component around the toroid and it was recently
shown that they can therefore rotate with arbitrary cir-
culation and angular momentum of any value [5].

As experimentally realistic toroidal condensates are in-
herently of finite size, the phase-transition takes the form
of a continuous transition and in Fig. 1 we show how
the breakdown of the quantisation condition across this
transition for the above system develops. To do so, we
calculate the angular momentum of the stationary state
for three values of inter-atom interaction, g12, selected
such that the system is either fully miscible, fully immis-
cible or in the transition region between these two do-
mains. As expected, for g12 well in the miscible regime,
quantisation of angular momentum in each component is
observed (curve with blue asterisks). When g12 is chosen
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FIG. 1: Phase diagram mapping the transition from quantised
steps of angular momentum to linear scaling of 〈Lz〉/~ with
Ω, by varying g12 from the miscible to immiscible regime. For
g12 on the border of miscibility to immiscibility, an oscillatory
behaviour, damped with increasing Ω is observed. Simulation
parameters: ωr = 2π × 30000 Hz, λ = ωz/ωr ≈ 10, r0 =
0.3µm with Ng = 1.1564 × 10−41 (Js)2kg−1. Points labelled
1, 2 and 3 correspond to density profiles in the transition
regime, which we plot in Fig. 2.

321

| 1|2

| 2|2

hLzi/~ = 0.46 hLzi/~ = 0.88 hLzi/~ = 1.0

⌦ = 2⇡ ⇥ 700 Hz ⌦ = 2⇡ ⇥ 1000 Hz ⌦ = 2⇡ ⇥ 1400 Hz

x(µm)x(µm) x(µm)0.5 0.5 0.5�0.5 �0.5 �0.5
�0.5

�0.5
0.5

0.5

y(µm)

y(µm)

FIG. 2: Condensate density profiles in the transition between
the miscible and immiscible regime. These correspond to
points labelled 1, 2 and 3 in Fig. 1. Simulation parame-
ters: g12 = 1.01g, ωr = 2π × 30000 Hz, r0 = 0.3µm and
Ng = 1.1564× 10−41 (Js)2kg−1.

so that the condensate exhibits clear azimuthal phase-
separation, angular momentum can be seen to scale lin-
early with Ω (curve with black circles). In the interme-
diate regime (g12 ' g), however, an interesting damped
oscillatory dependence of angular momentum with rota-
tion frequency is found. The damping arises as a result of
the increased rotation effectively cancelling the harmonic
trapping potential, which shifts the value of the critical
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interspecies interaction strength at the phase separation
point towards the free space result (gC12 = g). For larger Ω
the chosen interspecies interaction strength g12 = 1.01g
therefore moves further into the phase separated regime
and the curve becomes more linear. The density dis-
tributions corresponding to the miscible and immiscible
regimes are also displayed in Fig. 1.

On the border between miscibility and immiscibility
(curve with red squares in Fig. 1), the density distribu-
tion changes as a function of the rotation frequency and
three examples corresponding to different angular mo-
menta are shown in Fig. 2. This behaviour can be under-
stood by realising that the rotational energy acquired by
the condensate is dependent on the frequency of the ex-
ternally imposed rotation, Ω. If the system is in a phase-
mixed state at a rotation frequency that allows for an
integer winding number, it can acquire a certain amount
of rotational energy with increasing rotation frequency
before it is energetically more favourable to phase sepa-
rate and adjust the amount of angular momentum. This
leads to the observed cycling through mixed and phase
separated density distributions for condensates close to
the phase boundary.

While in the mixing regime the well known 1/r veloc-
ity profile characteristic of rotation with quantised angu-
lar momentum is exhibited, it is easy to see that in the
phase separated regime, where fractional winding num-
bers appear, this needs to be modified. In fact, if each
superfluid component demonstrated a perfect vortex-like
velocity profile everywhere, the phase boundaries would
shear over time, as the atoms closer to the center of the
potential move faster than those at the outer radial edges.
This would lead to an increase in the interaction energy
and consequently unstable rotation. Instead, to ensure
that the boundary between the two condensate compo-
nents is always as short as possible, i.e. along the radial
direction, the system reacts by modifying the velocity
profile away from purely azimuthal flow (see Fig. 3).

To understand the flow profile in the phase separated
case, we decompose the velocity field into its radial and
azimuthal velocity contributions. These correspond to
vr = cos(ϕ)vx +sin(ϕ)vy and vϕ = − sin(ϕ)vx +cos(ϕ)vy
and are shown in Fig. 4. Two regions where the ve-
locity field exhibits distinctly unique behaviour can be
clearly identified. In the bulk of each component, the
flow displays the characteristic tangential superfluid ve-
locity profile of the form v ∝ n/r êϕ, with êϕ a unit
vector in the direction of the azimuthal angle ϕ. In con-
trast, in the vicinity of the boundary, the velocity field
departs from a purely azimuthal profile and a radial flow
develops. This is consistent with the fact that each com-
ponent only reacts to the presence of the other over the
scale of the domain wall width [24].

The appearance of the radial flow can be understood
by realising that, in order to have minimal length, the
boundary between the two condensate components needs
to move as a classically rotating object. This leads to
a rotation velocity proportional to r, meaning that at
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FIG. 3: Phase profile within the condensate, θj , with overlaid
lines of constant phase (pink) extended towards the central
point of the trap.Upper row shows the two components in the
miscible regime (g12 = 0.95g), where the purely azimuthal
flow is confirmed by the fact that all lines meet at a sin-
gle point. The lower row shows the phase separated regime
(g12 = 1.6g) and the presence of a radial flow component is
indicated by the absence of a single crossing point. Simu-
lation parameters: Ω = 2π × 1910 Hz, ωr = 2π × 8000 Hz,
r0 = 0.75µm, Ng = 1.1564× 10−41 (Js)2kg−1.
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FIG. 4: Decomposition of the condensate velocity into (a) az-
imuthal and (b) radial components plotted within the conden-
sate edge (defined as 6% of the maximum density |ψj |2). Sim-
ulation parameters: Ω = 2π × 1273 Hz, ωr = 2π × 10000 Hz,
r0 = 0.5µm, Ng = 1.1564× 10−41 (Js)2kg−1 and g12 = 1.2g.

larger radii the boundary has a larger velocity than at
smaller radii. As this is in contrast to the 1/r velocity
profile of the superfluid in the bulk region, the radial flow
correctly re-distributes the atoms between the faster flow
at smaller radii and the slower flow at larger radii. Be-
hind the boundary, the radial flow leads to the movement
of atoms from smaller to larger radii, while at the same
time reducing their azimuthal velocity, while in front
of the boundary the opposite process takes place, with
atoms flowing from larger to smaller radius (see Fig. 4).

The stable, classical solid body rotation of the phase
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boundary can be observed when the external rotation
is switched off and the system is able to evolve without
constraint (see supplementary video 1). As expected, the
condensates rotate with an effective rotation frequency,
Ωeff = 〈vϕ/r〉, which corresponds to the frequency of ex-
ternally imposed rotation, that is Ω/Ωeff ∼ 1.

The above system is therefore an intriguing example
where classical behaviour is displayed on a mesoscopic
scale, despite the dynamics of the constituents being fully
quantum mechanical. Similar behaviour can be found in
the rotation of Abrikosov vortex lattices [25]. The emer-
gence of large-scale classical behaviour in systems com-
posed of quantum vortices also occurs in quantum tur-
bulence, which displays classical Kolmogorov scaling on
length scales larger than the average inter-vortex spacing
[26–30].

In conclusion, we have studied the transition between
miscibility and phase separation in rotating toroidally
trapped two-component condensates. In the phase sep-
arated regime the requirement of quantisation of circu-
lation is broken and azimuthally phase separated super-
fluids can rotate with arbitrary circulation. However,
to minimise the energy of the system, the boundary be-

tween the two condensate components has to always be
aligned in the radial direction and therefore rotates as an
effective solid body within the two-component flow. To
resolve the dichotomy between this solid-body rotation,
which has a velocity profile proportional to r, with the
superfluid vortex profile in the bulk of the components,
which is proportional to 1/r, the system develops an un-
usual flow pattern involving radial components. This
novel demonstration of the coexistence of classical and
quantum behaviours can be observed in current state of
the art cold-atom experiments.
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7.6 Discussion and Future Work

The portion of this chapter dealing with radial phase separation (Sec. 7.4) is still a

work in progress and in my thesis I have laid the foundations by carrying out the

full variational approach. However, the question of stability needs to be answered

before the material can be considered for publication, which can be done using

Bogoliubov-de Gennes theory on the trial wavefunction or the exact numerical

solution. For energetic instabilities originating from the Landau criterion, it is

important to determine the speed of sound, which in multi-component systems

can be different to the well-known free space result. In addition, the existence of

a dynamical instability due to a possible counterflow needs to be investigated.

It is also possible to imagine a more complex phase diagram using three compo-

nent systems. Here two components can, for example, azimuthally phase separate,

whereas a third component carrying a larger amount of angular momentum radi-

ally phase separates with respect to the other two. Trapping geometries which are

not rotationally symmetric are also of large interest, as they do not require the con-

servation of angular momentum and therefore can allow for additional dynamics

or instabilities.

Finally, situations in which one component is significantly smaller than the other

can lead to the interesting regime of Josephson physics, where in the azimuthally

phase separated regime the majority component is tunnel-coupled through the

minority one.
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Chapter 8

Conclusions

This thesis has focused around a few main topics including (i) the introduction of

nanofibers into a system of cold atoms trapped in an optical lattice (in Chapter 3),

(ii) the various trapping geometries that can be created using the first few modes

of a nanofiber (in Chapter 4), (iii) the use of a nanofiber as a detector of single

atoms in periodic arrays (in Chapter 5), (iv) the light scattering into a nanofiber

due to an inhomogeneous atomic distribution close to its surface (in Chapter 6),

and (v) the radial and azimuthal phase separation of a two-component condensate

in a toroidal trap (in Chapter 7).

Even though each chapter had its own conclusions section, here I will provide a

brief and general summary of my work.

In Chapters 3, 4, 5 and 6 I have discussed several examples of systems where

tapered nanofibers are integrated into a cold atomic system and shown that such

systems are versatile and realistic. While experiments in such systems are already

delivering impressive results, they have by far not reached their full potential

and one can predict many more exciting applications to come in the future. I

would expect that nanofibers will play a significant role in the first realizations of

quantum technologies based on integrating atoms and light.

While at first glance the work presented in Chapter 7 might seem to be a divergence

from the rest of the thesis, it is connected by the fact that toroidal trapping
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potentials can naturally be made using the evanescent field around a nanofiber.

Their advantage is that these traps would be highly stable, as the fields creating

them are inherently linked to the fiber and can therefore not drift with respect to

each other.

Multicomponent superfluids have only become available over a wider range with

the appearance of gaseous BECs and a lot of the associated physics is still un-

known. The emergence of classical rotation in a quantum system is a rather

unexpected finding and clearly demonstrates that these systems hold potential for

dynamics quite different from single component systems. With first experiments in

this area appearing at the moment, I would expect many more interesting results

to be discovered in the near future.
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Appendix A

Variational Expressions

Here we give the various expressions relating to the variational approach described

in Chapter 7. The normalization of the trial wavefunction is given by (X1 =
√

2A1R1)

〈Ψ1|Ψ1〉 =
π
(√

πX1(2X2
1 + 3)(erf(X1) + 1) + e−X

2
1 (2X2

1 + 2)
)

8A2
1

. (A.1)

The expectation value of the kinetic energy is

〈
Ψ1

∣∣∣∣
~2

2m
∇2

∣∣∣∣Ψ1

〉
=
π~2

(√
πX1(2X2

1 + 5)(erf(X1) + 1) + e−X
2
1 (2X2

1 + 4)
)

16A1m

+
πκ2

1~2
(√

πX1 (erf(X1) + 1) + e−X
2
1

)

4A1m
, (A.2)
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where we note the dependence on the winding number, κ1. The expectation value

of the potential energy is

〈Ψ1|V |Ψ1〉 =
πmω2e−X

2
1

(4A1)3

[
4A1r

2
0
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(A.3)

The expectation value of the self-interaction term of the Hamiltonian is

〈Ψ1|g11|Ψ1|2|Ψ1〉 =

e−X
2
1 (
√

π
2
g11e

2X2
1X1(16X4

1 + 40X2
1 + 15)(erf(

√
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(A.4)

The expectation value of the interaction term of the Hamiltonian is

〈Ψ1|g12|Ψ2|2|Ψ1〉 =
A2

2g12e
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(A.5)

141



The corresponding expressions for Ψ2 can be arrived at by switching all of the

subscripts, i.e. replacing 1 by 2, and 2 by 1. As these expressions are rather

cumbersome, they are minimised numerically for the results presented in Chapter

7.
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Kevrekidis, and D. S. Hall, Phys. Rev. Lett. 99, 190402 (2007).

155



Nonequilibrium Dynamics and Superfluid Ring Excitations in Binary Bose-

Einstein Condensates.

[120] L. Wen, W. M. Liu, Y. Cai, J. M. Zhang, and J. Hu, Phys. Rev. A 85,

043602 (2012).

Controlling phase separation of a two-component Bose-Einstein condensate

by confinement.

[121] J. F. Annett, Superconductivity, Superfluids and Condensates, Oxford Mas-

ter Series in Condensed Matter Physics, Oxford University Press, 2003.

[122] A. K. Ramanathan, Ph.D. thesis, University of Maryland, College Park

(2011).

A Ring with a Spin : Superfluidity in a toroidal Bose-Einstein condensate.
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