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Dissociation energies for the diatomic molecules C2, N2, O2, CO, and NO are estimated using the
Monte Carlo configuration interaction (MCCI) and augmented by a second order perturbation theory
correction. The calculations are performed using the correlation consistent polarized valence “triple
zeta” atomic orbital basis and resulting dissociation energies are compared to coupled cluster calcula-
tions including up to triple excitations (CCSDT) and Full Configuration Interaction Quantum Monte
Carlo (FCIQMC) estimates. It is found that the MCCI method readily describes the correct behavior
for dissociation for the diatomics even when capturing only a relatively small fraction (∼80%) of the
correlation energy. At this level only a small number of configurations, typically O(103) from a FCI
space of dimension O(1014), are required to describe dissociation. Including the perturbation correc-
tion to the MCCI estimates, the difference in dissociation energies with respect to CCSDT ranges
between 1.2 and 3.1 kcal/mol, and the difference when comparing to FCIQMC estimates narrows to
between 0.5 and 1.9 kcal/mol. Discussions on MCCI’s ability to recover static and dynamic correla-
tions and on the form of correlations in the electronic configuration space are presented. © 2014 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4866609]

I. INTRODUCTION

Prediction of molecular dissociation energies is a chal-
lenge for any computational method. To accurately predict
dissociation energies as well as qualitatively correct dissocia-
tion curves, an even handed treatment of electron correlation
across a potential energy surface is required. Post-Hartree-
Fock methods and density functional theory (DFT) have dif-
ferent advantages and disadvantages when it comes to the
theoretical treatment of dissociation and reactions. Coupled
cluster methods are well suited to calculation of dissociation
properties of molecules due to their size extensivity.1 How-
ever, coupled cluster methods can encounter difficulties when
treating potential energy surfaces, although unrestricted or-
bitals and multi-reference formalisms can eliminate some of
these shortcomings. Methods such as coupled-cluster singles
and doubles with perturbative triples (CCSD(T)) fail for dis-
sociating systems. Similarly, many body perturbation meth-
ods fail for treating dissociation surfaces when a single ref-
erence description fails. Second order many body perturba-
tion theory methods typically capture approximately 80% of
the correlation energy2 leading to relatively small differences
in total energies, but still leading to relatively large errors
in calculation of dissociation energies. These problems can
be alleviated somewhat by introducing multi-reference ver-
sions of the theories and by using unrestricted orbitals. For
both coupled cluster and many-body perturbation theory, the
introduction of multi-reference determinants complicates the

a)jim.greer@tyndall.ie

formalism, and in general the introduction of unrestricted or-
bitals can introduce spin contamination distorting the descrip-
tion of a potential energy surface. DFT methods can achieve
dissociation energies for small molecules within typically
15 kcal/mol of experiment reflecting the overestimation of at-
omization energies typical of approximate DFT. To achieve
more accurate results for dissociation energies requires in-
troducing an empirical calibration to choose the best combi-
nation of approximate exchange-correlation (XC) functional
and basis set.3 DFT as commonly implemented is also con-
fronted with the problem of using a single determinant to de-
scribe a dissociation surface. Another issue is that the XC
potentials typically used in approximate DFT are symme-
try independent, and can lead to incorrect results, for exam-
ple, for the carbon atom. For cases where dissociation is to
states which can be described by a single determinant, then a
symmetry independent XC functional can be an appropriate
approximation.4 However, in cases were the states involved
in dissociation are not well described by a single determinant,
the combination of a single reference Ansatz and a symmetry
independent XC functional introduces obstacles to a correct
description of molecular dissociation.

Full configuration interaction (FCI) calculations are size
extensive and size consistent, and provide the exact energy
within a basis set, so therefore in principle can accurately de-
scribe potential energy surfaces and by extension dissociation
energies. However, as is well known, due to the combinatorial
increase in the number of determinants or spin adapted con-
figuration state functions (CSFs) used in a CI expansion, the
problem rapidly becomes computationally intractable. Hence,

0021-9606/2014/140(8)/084114/10/$30.00 © 2014 AIP Publishing LLC140, 084114-1
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CI methods rely on truncation based on excitation level (“sin-
gles,” “doubles,” “triples,” . . . ) relative to a reference con-
figuration or small set of configurations,5 by restricting the
space to which electrons may be excited,6 or by refining the
set of configurations during the diagonalization of the CI
matrix.7

Alternative to these pre-selection schemes, methods
whereby the CI expansion is randomly selected and itera-
tively improved have been introduced,8–11 in a similar spirit
determinant based renormalization group ideas have been ap-
plied to quantum chemistry.12–16 In all of these methods the
wave function is adaptively refined to include a relatively
small number of configurations from the total CI space se-
lected for an accurate determination of the correlated many-
electron wave function and energy. Recently, similar ideas for
adaptively defining the coupled cluster expansion17 have been
introduced. Diffusion Monte Carlo ideas have also recently
been introduced that spawn walkers on a determinant space by
randomly branching from a sample of determinants to enable
importance sampling over configurations to provide stochas-
tic calculations near the FCI18, 19 and coupled cluster20 limits.
These methods can be contrasted to multi-determinant wave
functions that are selected by an iterative perturbative selec-
tion of important configurations, which are then used as an
initial trial function within the fixed node approximation in a
diffusion Monte Carlo calculation.21

In the following, dissociation energies are treated by a
specific adaptive wave function method, Monte Carlo con-
figuration interaction (MCCI).9, 22 MCCI is a technique that
randomly selects electronic configurations, performs a matrix
diagonalization using the Hamiltonian generated from the
sampled set of configurations, retains important configura-
tions, and discards those configurations with a low weight in
the wave function, or those that make a small contribution to
the energy. MCCI has been applied to the calculation of elec-
tronic spectra, charge transport in molecules, dissociation en-
ergies, multipole moments, ionization energies, and electron
affinities.23–27 In this way, the need for working with large CI
vectors is avoided while a large fraction (for reasonable con-
vergence parameters and 10–20 electrons, typically >96%) of
the total correlation energy is readily obtained. The ability of
the MCCI method to recover static correlation to qualitatively
describe potential energy dissociation curves, as well as the
ability to describe dynamic correlations for accurate estimates
of dissociation energies, is studied.

II. METHODS

A. MCCI algorithm

The MCCI method is described in Refs. 8, 9, and 28 and
here key features of the algorithm are highlighted. A calcula-
tion is initiated by selecting a trial vector. For all MCCI cal-
culations presented, the TURBOMOLE29 program with a cor-
relation consistent polarized valence “triple zeta” (cc-pVTZ)
basis30 is used to generate a set of one- and two-electron
Hartree-Fock molecular integrals. The molecular integral set
is used to generate a restricted closed- or open-shell, as appro-
priate, Hartree-Fock determinant as a trial vector; however,

the method is not in general sensitive to the initial choice. For
example, the trial vector can be a linear combination of N0

CSFs,

|�0〉 =
N0∑

A=1

cA|�A〉, (1)

where the superscript denotes the initial choice. With the
choice of orthogonal molecular orbitals, only CSFs generated
through single and double excitations relative to those config-
urations in a trial vector will result in non-zero energy matrix
elements for the molecular Coulomb Hamiltonian operator.
Thus, by randomly applying single and double excitations rel-
ative to the trial space, new interacting configurations can be
generated. New configurations are generated from configura-
tions in the trial vector as

|�B〉 = α̂r |�A〉, (2)

where α̂r is a product of creation and annihilation operators
which for a singles substitution is given as â

†
aâi , whereas for

a doubles substitution it is â
†
aâ

†
bâi âj . No substitution implies

multiplication by zero. The indices i, j refer to orbitals occu-
pied in the configuration upon which the annihilation opera-
tors act, whereas the indices a, b refer to unoccupied orbitals
in the CSF upon which the creation operators act. The set of
new configurations B along with the CSFs A already present
in the trial vector are taken together as a CI expansion for
a new cycle of the adaptive sequence for improving the trial
function,

|�n+1〉 =
Nn∑

A=1

cA|�A〉 +
Nn+Nnew∑

B=Nn+1

cB |�B〉, (3)

with the superscript indexing the cycle for which the trial
vector is generated. The CI matrix eigenvalue problem of di-
mension Nn + Nnew is solved. The resulting CI coefficients
and their associated configurations are retained if their mag-
nitudes are above a specified threshold value; note configura-
tions in the original trial vector may also be removed during
this process thereby removing bias introduced by the choice
of the initial trial vector. All the retained configurations are
collected as a trial vector to start the next cycle. Single and
double excitations are generated with respect to the config-
urations in the new trial vector, and the process is repeated
until convergence in the energy and/or the length of the CI
expansion is achieved. Repeated application of α̂ to CSFs
in the trial vectors during each MCCI cycle results in a se-
quence of CSFs with increasing levels of excitations. After n
cycles, it is possible to have reached any excitation level be-
tween 0 and 2n relative to the configurations in the initial trial
vector. In practice, 2n � N, where N is the maximum exci-
tation in a N-electron wave function. Thus, as the configura-
tion space is explored by the random generation of configu-
rations, all excitation levels may be become included into the
many-electron wave function if required. As the threshold se-
lection for configurations is lowered, the approximation from
the trial vector relative to the FCI wave function is improved.
For larger values of the coefficient threshold, importance
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sampling is built into the algorithm as only configurations that
interact with the trial vector are generated. As the trial vector
at any stage of the calculation represents only a small fraction
of the FCI space, the interacting configuration set defines a
small sub-space of the FCI space. Using the MCCI method,
a strongly interacting set of CSFs can be quickly identified,
defining a “reference space” that describes static correlations
and an increasing fraction of the dynamical correlations as
the selection threshold for new configurations is reduced.
The “reference spaces” defined in this way are much larger
than those considered in conventional multi-reference ap-
proaches, for the diatomic molecules studied in the cc-pVTZ
basis the dimensions vary between the order of 103 and 104

configurations.
As static correlations typically are described by low ly-

ing excitations relative to a dominant or set of few dominant
configurations, the MCCI method is capable of rapidly identi-
fying static correlations. In fact, a very useful aspect of MCCI
is to determine the multi-reference nature of a wave function
by sampling the CI space at a relatively large selection thresh-
old, retaining only the leading configurations in an expansion.
Dynamic correlations are described by the much larger set of
configurations that weakly interact with the reference space.
If essentially all of the correlation energy is sought from a cal-
culation and the dynamic correlations are spread throughout
a large fraction of the CI space, Monte Carlo techniques be-
come increasingly inefficient. However, for many cases of in-
terest, the correlation energy can be described to within a high
level of accuracy using only a small fraction of the FCI space
consisting primarily of singles, doubles, triples, and quadru-
ple (SDTQ) excitations, and indeed only requiring a small
subset of the SDTQ excitations. It can be argued for larger
problems that Monte Carlo techniques become the only prag-
matic approach to identifying important configurations in ex-
plicit determinant or CSF descriptions of the many-electron
wave function.

The key parameter for selecting the accuracy of an MCCI
calculation is the criterion for retaining CI expansion con-
figurations with coefficients |cA| ≥ threshold into the new
MCCI cycle as part of the next trial vector. It is intuitive that
for small values of the coefficients |cA| the corresponding CSF
may be disregarded. However, the amount of correlation that
can be obtained for a fixed value of the selection threshold
varies for different molecules, or even for the same molecule
in different states. Hence, for determining the fraction of the
correlation energy obtained from an MCCI calculation, the se-
lection threshold is an ambiguous measure. Intermediate nor-
malization can be introduced where the leading reference de-
terminant is normalized as 〈�0|�0〉 = 1, or by introducing a
multi-reference variant of intermediate normalization for sys-
tems with strong static correlations. In this way, the weight
of a configuration can be measured against the weight of the
reference space in the total wave function introducing some
degree of transferability to the selection criterion. However,
this remains a somewhat ad hoc procedure and also suffers in
that it does not provide an estimate for the magnitude of the
neglected electron correlations.

To obtain numbers relevant to, for example, spectroscopy
and thermochemistry, difference energies are required. The

difference in FCI energies between systems X and Y, or for
the same molecule in different states X and Y, is

�E = EX − EY . (4)

This may be re-expressed as

�E = ẼX − ẼY + δEX − δEY , (5)

where ẼX/Y are the approximations to the FCI energy and
δEX/Y are the errors in the approximate energies. CI energies
are variational ensuring that δEX/Y ≥ 0, but difference between
the error terms may be positive or negative; however in all
cases the two variational errors will at least partially cancel.
Hence, if an approximate CI can be performed and the mag-
nitude of the error for the correlation energy between systems
or states of a system are approximately equal or that the error
magnitudes are sufficiently small that the difference energy is
negligible, the approximation to the energy difference

�Ẽ = ẼX − ẼY (6)

will be a good approximation to the FCI energy difference
Eq. (5). Error cancellation has been used to advantage to study
electronic excitations in atoms and small molecules.23, 32 In
those studies, the magnitude for the threshold for retaining
configurations in the MCCI procedure was allowed to remain
relatively large, yet accurate predictions for vertical excitation
energies were achieved. The accuracy achieved in the calcula-
tions indicates that the error in the correlation energy between
the ground and excited states is of a similar magnitude.

In relation to the present study, dissociation energies arise
from the difference in energy at the molecular equilibrium
and dissociated geometries. In contrast with the calculation
of electronic excitations, the difference in correlation ener-
gies as well as the error in predicting the correlations ener-
gies is expected to vary substantially between the equilibrium
and dissociated states, as it is well known the character of
the wave function varies substantially as the molecule disso-
ciates. Hence, an accurate prediction of neglected correlations
δEX, δEY is required for an accurate estimate of dissociation
energies when computed using the MCCI method. In the fol-
lowing, MCCI will be used to determine dissociation curves
and, with the aid of a perturbation estimates to the error terms
to be discussed next, total energies are obtained to an accu-
racy that enables prediction of dissociation energies to near
chemical accuracy (∼1–2 kcal/mol).

B. MCCI + AK estimates

The idea of selectively including configurations into
a multi-reference CI singles and doubles calculation (MR-
CI(SD)) and then estimating the effect of the neglected

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

143.239.65.254 On: Tue, 19 Aug 2014 16:10:24



084114-4 Kelly et al. J. Chem. Phys. 140, 084114 (2014)

configurations dates back to the work of Buenker and
Peyerimhoff.31 In their approach, the energy of a full MR-
CI(SD) calculation is estimated. In the following, using MCCI
to define a “reference space” that captures both static correla-
tions and the leading dynamic correlations, a similar approach
is applied to estimate the effect of the neglected dynamic cor-
relations. Defining |�〉 as a final MCCI wave function with
energy E, it follows that for all CSFs, |�K〉, that interact with
the MCCI wave function

�(1) =
∑

K

|�K〉〈�K |Ĥ |�〉
E − EK

, (7)

E(2) = 〈�|Ĥ |�(1)〉, (8)

where EK = 〈�K |Ĥ |�K〉. This is the idea behind the AK

method33 which uses second order perturbation estimates of
the energy to determine important configurations for inclu-
sion in a CI calculation. Harrison34 uses perturbation theory
ideas by generating all singles and doubles with respect to
a reference space, identifying the important configurations
using a perturbation estimate, adaptively expanding the ref-
erence space, performing a CI calculation on this larger CI
vector, and iterating to convergence. Within the context of
MCCI calculations, the perturbative estimates have been used
to pre-screen the randomly chosen configurations to be in-
cluded within the CI vector prior to a matrix diagonalization
step.35 Recently Coe and Paterson26 have introduced a hybrid
method which begins by first converging an MCCI calculation
to a given configuration threshold selection value, then con-
tinues by adaptively refining the CI vector in a scheme similar
to Harrison’s algorithm.

In the following, a variant on these ideas will be intro-
duced to augment MCCI estimates of total correlation ener-
gies using a single perturbative estimate. In this approach,
the MCCI algorithm is used to determine the important con-
figurations for relatively large reference wave functions, and
for which it becomes relatively time consuming to gener-
ate all single and double excitations. A MCCI vector is ob-
tained to a desired convergence level and then resulting CSFs
are ordered. The CI vector is truncated to a fixed number of
dominant CSFs. The resulting CI vector is re-diagonalized
and taken as a reference wave function, and all single and
double excitations with respect to the truncated vector are
generated. The individual energy contributions from each
of the singly and doubly excited configurations with re-
spect to the reference wave function are then summed to de-
termine a perturbative correction. A particularly convenient
aspect of this approach is that the estimates are trivially
parallelizable allowing for a perturbation correction in con-
junction with the use of MCCI to identify large reference
spaces.

III. RESULTS

A. Static correlations and molecular dissociation

Before proceeding to the estimation of dissociation en-
ergies, the ability to recover static correlations in producing
approximations to molecular dissociation curves using MCCI
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FIG. 1. MCCI dissociation energy curves. (a) Dissociation curve for C2 in
the singlet ground state determined by MCCI compared to the Hartree-Fock
approximation. The potential energy curve is calculated from the CI vector
obtained from merging the MCCI vectors obtained from calculations at 1×,
2×, 3×, and 4× the equilibrium bond length at a fixed selection threshold.
This procedure is repeated for coefficient selection thresholds of 0.005 yield-
ing 1021 CSFs, 0.001 yielding 7924 CSFs, and 0.0005 yielding 17 967 CSFs.
At a selection threshold of 10−3, the 1×, 2×, 3×, and 4× R0 bond length
calculations contributed 2612, 743, 284, and 257 unique CSFs, respectively,
of the total of 7924 CSFs. (b) Dissociation curve for the singlet ground state
of N2 calculated using the CI vector obtained from merging MCCI vectors
obtained at 1×, 2×, 3×, and 4× R0 and repeated for coefficient threshold
values of 0.005 yielding 1055 CSFs, 0.001 yielding 10 680 CSFs, 0.0005
yielding 19 700 CSFs. At a selection threshold of 10−3, the 1×, 2×, 3×, and
4× R0 bond length calculations contributed 1741, 1836, 516, and 611 unique
CSFs, respectively, from a total of 10 680 CSFs. R0 in both cases is taken to
be the Hartree-Fock equilibrium geometry (2.345 a.u. for C2 and 2.017 a.u.
for N2).

is considered. The potential energy as a function of the dis-
sociation coordinate is given in Fig. 1 for the homonuclear
diatomics C2 and N2. The dissociation curves were generated
by performing MCCI calculations at the Hartree-Fock equi-
librium bond length R0 and for 2×, 3×, and 4× the equilib-
rium bond length. The CSFs obtained for each bond length are
merged into a single CI vector and then used to determine the
potential energy as a function of the dissociation coordinate.
For this procedure, a self-consistent set of molecular orbitals
is re-calculated for each value of the bond length.

In Fig. 1(a), the ground state energy at equilibrium to
dissociation in the singlet state is plotted for the C2 in the
Hartree-Fock approximation, and for MCCI with a selection
threshold |cA| > 5 × 10−3, |cA| > 10−3, and for |cA| > 5
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× 10−4. As is well known, the Hartree-Fock approximation
is incapable of correctly describing dissociation. On the other
hand, capturing only a small amount of the electronic corre-
lation energy with the selection threshold of |cA| > 5 × 10−3

yielding only 2042 configurations enables a reasonable de-
scription of the behavior of the energy between the equilib-
rium and dissociated geometries. Similar results for N2 are
obtained and displayed in Fig. 1(b). In analogy to the non-
parallelity error (NPE) which is a measure of the maximum
deviation between an approximate potential energy surface
and the FCI surface independent of any constant shift between
them, the deviation � between the curve calculated with a se-
lection thresholds of 10−3 and 5 × 10−4 defined as

� = max
∣∣Eref

R − ER

∣∣ − min
∣∣Eref

R − ER

∣∣, (9)

where Eref
R and ER are the energies of the reference calcula-

tion and the energy of the approximation being compared, re-
spectively, at identical bond lengths R and allowing the bond
lengths to vary between R0 and 4R0. � is less than 3 kcal/mol
in the case of C2 and is 12 kcal/mol for N2.

Shown in Fig. 2(a) is a comparison, using molecular oxy-
gen as an example, of how the number of independent MCCI
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FIG. 2. Triplet ground state O2 calculation obtained from (a) CI vectors and
(b) CI vectors plus second order perturbation corrections obtained by merg-
ing MCCI vectors calculated at 4, 7, and 33 points along the dissociation
curve. All MCCI vectors obtained using a coefficient selection threshold of 5
× 10−3. Merged vector lengths range from 1266 CSFs to 2248 CSFs. Single-
point calculations are also shown for comparison. R0 is the Hartree-Fock
equilibrium geometry (2.177 a.u.), whereas the minima including correla-
tions is found at approximately 1.05 × the Hartree-Fock minimum.

calculations used to build a merged vector affects the shape
of a molecular dissociation curve. As before, the MCCI vec-
tors from different bond lengths are merged resulting in a sin-
gle CI vector consisting of all CSFs obtained from the calcu-
lations at the different bond lengths. Merged CI vectors are
constructed using either 4, 7, or 33 equally spaced points be-
tween R0 and 4R0 obtained from MCCI calculations with a
selection threshold of 5 × 10−3. The merged vector obtained
from 4 points contains a total of 1266 CSFs, while the merged
vector obtained from 33 distinct bond lengths contains 2248
CSFs. The overall shape of the dissociation curve remains
similar for all curves depicted, however to achieve this re-
sult it is important that the selected bond lengths are chosen
to uniformly span the entire range from equilibrium to disso-
ciation. Figure 2(b) shows curves constructed from the same
vectors as in (a) with addition of second order perturbation
theory corrections. When including the perturbation correc-
tions, the shape of the curve is less sensitive to the number
of calculations at distinct bond lengths that are used to form
the merged vector. In Fig. 3, similar data are shown for the
quintet state of C2 which at dissociation is the ground state
of C + C. Dissociation curves were constructed by merg-
ing the MCCI vectors obtained from the bond lengths of 1×,
1.5×, 2×, 2.5×, and 3× R0. In this case, the Hartree-Fock
approximation incorrectly predicts a bound state, including
only low levels of correlation from MCCI calculations with
|cA| > 5 × 10−3 resulting in a merged vector length of only
1350 CSFs is found to behave similarly to a description of
the dissociation generated from MCCI calculations with a se-
lection threshold of |cA| > 10−3 with a merged CI vector of
8305 CSFs. As with the singlet state, it is important to in-
clude bond lengths spanning from equilibrium to dissocia-
tion, though geometries closer to the equilibrium geometry
contribute the largest number of unique CSFs, i.e., CSFs that
are not included by the MCCI calculations at the other bond
lengths. For the |cA| > 10−3 calculation, the R0 geometry con-
tributes 1659 unique CSFs to the CI vector, while at the 3 × R0

geometry 453 unique CSFs are found. The calculations are
consistent with the well known fact that static correlations to
a large extent govern the qualitative behavior for molecular
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FIG. 3. Quintet state of C2 which is the ground state at dissociation C + C.
The Hartree-Fock approximation incorrectly predicts a bound state at shorter
bond lengths, while MCCI provides qualitatively the correct dissociation in
the quintet state using only 1350 CSFs obtained at a coefficient selection
threshold of 0.005, representing a small fraction of the full CI space.
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dissociation, and we have demonstrated that the configura-
tions describing static correlations are readily identified from
a Monte Carlo search of the CI space even at a relatively
large selection threshold. The calculations yield results that
are computationally efficient insofar as it is only required to
diagonalize small matrices, and whether a molecule is de-
scribed by a single- or multi-reference expansion poses no
particular challenge to the method.

B. Capturing dynamic correlations

Dynamic correlations must be treated in an even handed
manner across the dissociation pathway to yield energy differ-
ences that are accurate and in contrast to static correlations, a
much larger number of configurations are typically required to
describe dynamic correlations. As previously discussed, it is
required to estimate the error magnitudes in Eq. (5) between
two total energy calculation at different geometries and for
different spin states are comparable for accurate estimation
of dissociation energies. For the MCCI calculations, C2, N2,
and CO are calculated as singlets at their equilibrium bond
lengths, NO as a doublet, and O2 as a triplet. The dissociated
limit is taken to be eight times the equilibrium bond length
and the calculations are performed in the energetically favor-
able spin states with C+C, O+O, and C+O quintets, N+O
a hextet, and N+N a septet. The lowest selection threshold
chosen for the calculations is 2 × 10−4. Based on Full Con-
figuration Interaction Quantum Monte Carlo (FCIQMC) esti-
mates for the full configuration interaction energies presented
in Ref. 19, it is found that the MCCI energies presented in
Table I recover over 93% of the total correlation energy for
the molecules at their equilibrium geometries, and over 97%
of the total correlation energy for dissociated geometries; it

TABLE I. A comparison of MCCI energies (converged with a coefficient
threshold of 2 × 10−4) with CCSD. Absolute energies are reported in
hartrees. Dissociation energies are reported in kcal/mol. With the exception
of C2 and N2, MCCI estimates are comparable to CCSD. The equilibrium
bond lengths R0 are taken as the CCSDT geometries found in Ref. 37 and are
2.3632 bohrs for C2, 2.0845 bohrs for N2, 2.898 bohrs for O2, 2.1460 bohrs
for CO, and 2.1853 bohrs for NO. The dissociated bond lengths are taken to
be 8 × R0.

EEq NEq EDiss NDiss D0 �D0

C2

MCCI − 75.7740 30 203 − 75.5536 20 960 138.79
CCSD − 75.7496 − 75.5571 121.27 −17.51

N2

MCCI − 109.3578 24 139 − 109.0183 14 157 213.91
CCSD − 109.3552 − 109.0245 208.34 −5.57

O2

MCCI − 150.0989 29 213 − 149.9256 14 239 109.17
CCSD − 150.1096 − 149.9418 105.71 −3.46

CO
MCCI − 113.1329 25 362 − 112.7472 9 832 242.94
CCSD − 113.1384 − 112.7494 245.07 2.13

NO
MCCI − 129.6899 36 674 − 129.4799 9 970 132.27
CCSD − 129.6978 − 129.4831 135.26 2.99

should be noted that even at this relatively high selection
threshold the total energies are comparable to multi-reference
CI(SD) calculations, although this result is obtained from a
much smaller number of configurations. The NO molecule
at equilibrium has the largest percentage of correlation en-
ergy neglected by MCCI of 6.7% at a selection threshold of
2 × 10−4, suggesting a large percentage of dynamic correla-
tion must be captured in this case to approach the FCI limit.
Also in Table I is a comparison to CCSD total and dissoci-
ation energies. All coupled cluster calculations presented in
this work were carried out using the ACES36 program. As
mentioned previously, the selection coefficient threshold is
not transferable in the sense that differing amounts of the cor-
relation energy are obtained between equilibrium and dissoci-
ated geometries. Table I highlights this limitation where it is
found that the estimates for the dissociation energies obtained
from MCCI at a fixed selection threshold do not perform con-
sistently compared to the size extensive CCSD predictions.
For small enough selection thresholds, the calculations for
both the equilibrium and dissociated geometries will approach
FCI results with size extensivity restored, but for a reasonably
large selection threshold this will not be the case. The conver-
gence for the NO molecule at the equilibrium and dissociated
geometries is shown in Fig. 4 as a function of the number
of optimal CSFs included in the MCCI vector. Clear to see
from the figure is that the dissociated geometry is much eas-
ier to converge toward FCI limits with a smaller set of CSFs,
whereas the dynamic correlations at equilibrium are more dif-
ficult to capture. It can be inferred from Table I and Fig. 4 that
it is difficult to balance the magnitude of the neglected cor-
relations to cancel the error between equilibrium and disso-
ciated geometries using a single selection threshold. Another
feature of the convergence in the correlation energy as shown
in Fig. 4 is the fact that there are two distinct regions that ex-
ist beyond the range of configurations that would normally be
classified as static correlations. The two regions are defined
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FIG. 4. Difference between FCIQMC and MCCI total energies for the NO
molecule as a function of the number of CSFs in the MCCI vectors at R0
and 8R0 bond lengths. The curves represent the convergence of the MCCI
calculations as the coefficient selection threshold is reduced and reveal that
beyond the range of what is normally considered to be static correlations that
there are two distinct regimes of dynamic correlations as indicated by the
changing slopes of the curves at larger number of CSFs. Note the energies
are given in kcal/mol for subsequent comparison to reporting of dissociation
energies.
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by different slopes in the convergence curves; for purposes
of discussion, the region with the steeper slope occurring at a
smaller number of CSFs is labeled type 1 correlations, and the
region with slower convergence occurring at larger number of
CSFs is labeled type 2 correlations. For the dissociated geom-
etry N+O, the transition between the two regions occurs in
the vicinity of 1000 CSFs, whereas for the equilibrium geom-
etry this transition is seen to occur for >10 000 CSFs. For the
equilibrium state, a much larger absolute energy error must
be recovered by type 2 correlations relative to the equilibrium
state.

In Fig. 5, the energy contributions are presented in matrix
form, with each pixel representing an average over 100 × 100
energy contribution magnitudes and the leading 12 000 CSFs
from each of the MCCI calculation have been chosen for de-
piction of the CI space. Each energy contribution is defined as

EIJ = c∗
I HIJ cJ /�c †S�c, (10)

with HIJ the energy matrix element between configurations I
and J. The choice of 12 000 CSFs will be motivated later in

(a)

(b)

FIG. 5. Depiction of MCCI energy contributions constructed from CI vectors
of length 12 000 for (a) the N2 equilibrium geometry, (b) the O2 equilibrium
geometry. The gray scale indicates a linear scale for the magnitude of each
energy contribution with the lighter shading corresponding to lower values.

this section when the size of the CI vector from which pertur-
bative estimates are generated is considered to achieve a given
accuracy in the dissociation energies. The lighter gray colors
correspond to lower values of the energy contributions and the
darker colors represent larger energy contributions. The off-
diagonal elements in the figure represent the magnitude of the
interactions between CSFs and hence describe the nature of
the molecular correlations. Depicted within Fig. 5 are energy
contributions for the N2 molecule and the O2 molecule and by
comparison between the two, it can be concluded that the set
of configurations with strong interactions is much larger for
the case of the O2 molecule with respect to the N2 molecule.
A similar depiction for the NO molecule is shown in Fig. 6
but in this case comparing the correlations between the equi-
librium and dissociated geometries. In this case it is clear that
the set of equilibrium configurations that are highly interact-
ing is much larger than for the dissociated state. This then
gives insight into the two regimes for the dynamical correla-
tions. Type 1 dynamical correlations can be found relatively
easily by the MCCI algorithm, but type 2 dynamical corre-
lations are much more weakly interacting among themselves

(a)

(b)

FIG. 6. Depiction of MCCI energy contributions constructed from CI vectors
of length 12 000 for (a) the NO equilibrium geometry, (b) the N O dissociated
state. The gray scale indicates a linear scale for the magnitude of each energy
contribution with the lighter shading corresponding to lower values.
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TABLE II. Total energies and dissociation energies estimates in the cc-pVTZ basis. A reference space of 12 000 CSFs was used in the CI calculations for
the reference spaces. NPT2 is the total number of unique single and double excitations relative to the reference space and EPT2 is the perturbation estimates
from these configurations. All energies are reported in hartree with the exception of dissociation energies, which are reported in kcal/mol. The homonuclear
molecules overestimate dissociation energy, while the heteronuclear molecules underestimate dissociation energy with respect to both CCSDT and FCIQMC.
The equilibrium bond lengths R0 are taken as the CCSDT geometries found in Ref. 37 and are 2.3632 bohrs for C2, 2.0845 bohrs for N2, 2.898 bohrs for O2,
2.1460 bohrs for CO, and 2.1853 bohrs for NO. The dissociated bond lengths are taken to be 8 × R0. Equilibrium bond lengths for the FCIQMC calculations
are taken from Ref. 38 (differences between the CCSDT and experimental geometries vary between >0.001 and <0.01 bohr).

Equilibrium bond length
EMCCI+PT2 NPT2 EPT2 �E (CCSDT) �E (FCIQMC)

C2 −75.7837 10 539 816 −0.0182 −0.0026 0.0013
N2 −109.3739 24 298 236 −0.0217 −0.0002 0.0015
O2 −150.1216 40 661 401 −0.0380 0.0071 0.0089
CO −113.1495 40 688 511 −0.0236 0.0062 0.0069
NO −129.7127 53 840 989 −0.0420 0.0052 0.0058

Dissociated bond length
EMCCI+PT2 NPT2 EPT2 �E (CCSDT) �E (FCIQMC)

C + C −75.5600 12 945 063 −0.0098 0.0023 0.0023
N + N −109.0266 23 228 804 −0.0089 −0.0032 0.0028
O + O −149.9393 42 276 847 −0.0147 0.0090 0.0095
C + O −112.7530 54 090 448 −0.0074 0.0023 0.0025
N + O −129.4866 67 369 019 −0.0056 0.0023 0.0024

Dissociation energies
D0(MCCI + PT2) �D0 (CCSDT) �D0 (FCIQMC)

C2 140.89 −3.08 −1.20
N2 218.76 −2.142 −1.90
O2 114.84 −1.19 −0.49
CO 249.80 2.45 1.86
NO 142.40 1.81 1.5

and interact back with only a small number of configurations
from the reference space (static correlations) and type 1 dy-
namical correlations. The latter set of configurations capture
a much smaller amount of correlation energy, but an estimate
of their contributions is necessary to obtain accurate estimates
for dissociation energies.

To improve the estimates of dissociation energies, all sin-
gle and double excitations of a reference CI vector obtained
from MCCI are generated and their contribution to the total
energy is estimated using the procedure outlined in Sec. II B.
Table II compares these perturbation corrected MCCI ener-
gies for all the molecules considered. In Fig. 7, the conver-
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FIG. 7. Dissociation energy estimates from MCCI + perturbation correction
converge with increasing reference space NA. Dissociation energy is overes-
timated for the homonuclear cases, and underestimated for the heteronuclear
cases, with respect to the FCIQMC estimates.

gence in the dissociation energies is studied versus the size of
the MCCI-selected “reference space.” It is found that to ob-
tain dissociation energies within 2 kcal/mol of FCIQMC esti-
mates for C2, N2, O2, CO, and NO that a reference space size
of approximately 12 000 CSFs should be chosen. The calcula-
tions are performed by extracting the top 12 000 most signifi-
cant CSFs obtained from the MCCI vectors calculated with a
coefficient selection threshold of 2 × 10−4 for equilibrium ge-
ometries and 10−4 for dissociated geometries. The CI matrix
for this truncated vector is re-diagonalized and used as the ref-
erence wave function for the perturbation estimates. The per-
turbation estimate introduces error estimates for the neglected
correlations in Eq. (5) with the resulting dissociation energy
agreeing with FCIQMC to within ∼2 kcal/mol, and for the C2

and O2 molecules the differences are within 0.8 kcal/mol.
The procedure may now be approximately described as

follows. The MCCI calculations are used to define static cor-
relations and the important singles and doubles interacting
back to the static correlations, these latter terms as generated
can be equated to the type 1 dynamic correlations. It should
be noted that with the use of the MCCI algorithm, the type 1
correlations are obtained by repeated diagonalization of ma-
trices that are only a small fraction of the dimension of the
full CI(SD) or MR-CI(SD) matrices that would otherwise be
required. Relative to the static and type 1 correlations, all sin-
gles and doubles are considered using the perturbation esti-
mate. As can be seen in Fig. 4, the type 2 correlations con-
tributions are small relative to type 1 correlations as reflected
in the change of the slope in Fig. 4 at larger number of CSFs
and there is a much larger number of the type 2 configura-
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tions. Thus, these configurations are much more difficult to
sample using Monte Carlo techniques as they are effectively
distributed over the entire space defined by single and double
substitutions with respect to the configurations describing the
static and type 1 correlations. However, as the perturbation
estimate is trivial to parallelize, their contribution to the “ref-
erence space” consisting of the static and type 1 correlations
can be readily generated.

IV. CONCLUSIONS

MCCI quickly generates compact wave functions capa-
ble of capturing a large percentage of the correlation energy
and generates qualitatively correct potential energy surfaces.
The robust treatment of multi-reference wave functions by
MCCI reveals the algorithm it is well suited for capturing
static correlations. Examining the convergence of the MCCI
calculations with respect to vector length indicates two dis-
tinct regimes for the description of dynamical correlations,
which we have labeled type 1 and 2 dynamical correlations.
Using the MCCI algorithm to determine the “reference space”
consisting of static and type 1 dynamical correlations, aug-
mented by a second order perturbation correction for estimat-
ing type 2 dynamical correlations leads to highly accurate es-
timates of dissociation energies to within 2 kcal/mol of full
configuration interaction energies estimated by the FCIQMC
method.

The calculations reveal that to obtain accurate dissocia-
tion energies in the range of 107 to 7 × 107 CSFs for the
molecular set C2, N2, O2, CO, and NO in the cc-pVTZ basis
are required. This is readily achieved by considering conver-
gence of the dissociation energies as a function of the “refer-
ence space” consisting of static and type 1 correlations and
applying relative to this space the perturbation estimate to
gauge the effect of neglected correlations. Following this ap-
proach, it is found that in the cc-pVTZ basis that approxi-
mately 12 000 configurations are sufficient to define the “ref-
erence space” needed to ensure dissociation energy estimates
near chemical accuracy for the molecular test set. It has been
demonstrated that the configurations for these large “refer-
ence spaces” can be found using the MCCI algorithm with-
out the requirement to diagonalize large, within the context
of CI calculations, matrices although with the introduction of
the requirement to perform repeated diagonalizations of ma-
trices on the order of the number of static contributions plus
leading type 1 correlations. The sampling of the CI space dur-
ing the Monte Carlo iterations can be performed in parallel
resulting in efficient searches for the static and type 1 cor-
relations. From the perturbation estimate, it is found that the
neglected correlations are larger for the equilibrium geome-
tries (0.029 hartree on average) than for dissociated geome-
tries (0.009 hartree on average). Hence achieving the error
cancellation as described in Eq. (6) is difficult for calculation
of dissociation energies, and the perturbation corrections are
needed to provide an accurate estimate to the FCI energy. In
the study presented, the error estimates have been tested by
comparing against benchmark FCIQMC calculations. How-
ever, Fig. 4 identifies a means for defining the minimum di-
mension for a “reference space” needed to achieve near FCI

estimates of the total energies. To capture static and type 1
correlations, the “reference space” should be large enough to
include all configurations up to the bend seen in Fig. 4 of the
convergence of the energy with number of CSFs for the equi-
librium geometry. As the correlations in the dissociated ge-
ometry are easier to capture, the dimension of the “reference
space” from the equilibrium geometry should be chosen for
performing the perturbation estimates for both the equilibrium
and dissociated geometries to ensure a balanced treatment for
the perturbation estimates. As the perturbation estimates con-
sist of trivially parallelizable calculations, efficient estimates
of dissociation energies with the method are readily attainable
from the resulting total energy estimates that are found to be
within a few kcal/mol of FCI limits.
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