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Abstract 

Purpose Declining productivity in the face of increasing numbers of poorly water-

soluble drugs has fast-tracked necessity for predictive tools which assess the delivery 

potential of bio-enabling formulations. However, there is a perceived risk associated 

with early-stage selection of bio-enabling formulations. Computational pharmaceutics 

is a growing area of research interest to support structured guidance in formulation 

strategy. Using data-driven modelling, a streamlined roadmap of computational 

possibilities for development scientists is possible. Accordingly, the aim of this thesis 

was to examine the application of machine learning (ML) computational modelling to 

inform candidate developability. Via prediction of both quality target product profile 

characteristics and formulation performance indicators for lipid-based formulations 

(LBF). In recognition of the fact that computational models will not entirely 

circumvent need for manual screening, a further aim was to explore if analysis of 

landrace pig gastrointestinal fluids could facilitate increased bio-predictive 

performance of in vitro tools for LBFs.  

Methods Data-driven computational models using various ML algorithms, with both 

classification and regression outputs, were developed to predict food effect on 

bioavailability, solubility ratio (SR) upon self-emulsifying drug delivery system 

(SEDDS) dispersion and apparent degree of supersaturation (aDS) ratio in 

supersaturated LBFs (sLBF). Model performance was validated using test sets or 

comparisons to ex vivo results. Gastrointestinal fluids from the landrace pig were 

collected in the fasted state, fed state and post placebo SEDDS administration. Ex vivo 

solubility analysis and microscopic imaging were completed using these fluids, where 

in vitro biorelevant dispersion screening with SEDDS using various dilution 

conditions was compared to the ex vivo results.  
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Results Firstly, this thesis demonstrated the applicability of ML for the prediction of 

a quality target product profile characteristic of interest in early development, namely 

food effect on bioavailability. Secondly, this thesis has advanced computational 

pharmaceutics to inform drug developability. Computational predictions of solubility 

gain upon SEDDS dispersion informed a biopharmaceutical dose number in intestinal 

fluids, which can be incorporated within the developability classification system 

(DCS) framework to inform drug developability. Thirdly, in recognition of the use of 

supersaturated LBFs to overcome dose loading limitations, this thesis has 

demonstrated how ML algorithms can predict the maximum dose loading upon 

thermal induced supersaturation. Moreover, increased understanding of the fate of 

SEDDS upon oral administration furthered the utility of the pig pre-clinical model, 

validated accuracy of in silico predictions and aided development of a bio-predictive 

in vitro screening tool for LBFs. Ultimately, it was demonstrated that the 

computational and in vitro tools developed in this thesis can be embedded within a 

wider refined drug substance to drug product development framework.  

Conclusion This thesis highlighted how pharmaceutics datasets are amenable to ML. 

The ability of computational pharmaceutics to facilitate structured formulation 

decisions was demonstrated. As model development aided increased understanding of 

the investigated phenomena through their relationship to drug properties, this thesis 

identified the significant potential to be gained from early analysis of drug properties. 

Additionally, utility of the landrace pig model to inform increasingly bio-predictive in 

vitro screening tools was established. The proposed refining of the drug substance to 

drug product development framework demonstrated the significance of both 

computationally informed and experimentally confirmed aspects of drug 

developability decision-making.  
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Chapter 1: Introduction: Challenges in Drug Development and 

Exploring Pathways for Improved Drug Developability 

 

This chapter contains material adapted from the following publication: 

A Retrospective Biopharmaceutical Analysis of >800 Approved Oral Drug Products: 

Are Drug Properties of Solid Dispersions and Lipid-Based Formulations Distinctive? 

 

Harriet Bennett-Lenane, Joseph P. O’Shea, Caitriona M. O’Driscoll, Brendan T. 

Griffin. Published August 18th, 2020 in The Journal of Pharmaceutical Sciences, 

Volume 109, Pages 3248-3261. DOI: https://doi.org/10.1016/j.xphs.2020.08.008.  

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.1016/j.xphs.2020.08.008
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Challenges in Drug Development Stemming from Modern Drug 

Discovery Approaches 

Modern drug discovery approaches, including combinatorial chemistry, molecular 

modelling and high throughput screening have revolutionised drug candidate 

discovery in the pharmaceutical industry (1-3). However, modern drug candidates 

often display high lipophilicity, poor aqueous solubility and resultant reduced oral 

bioavailability (4, 5), as these properties are common negative penalties traded for 

high potency and selectivity for contemporary lipophilic binding pockets or drug 

targets (2, 6). The resulting poor aqueous solubility of drug candidates means that 

when the solubility of the drug in the gastrointestinal tract (GIT) is limited, the 

likelihood of solubility or the dissolution rate limiting oral bioavailability is high. As 

a result, the ultimate clinical usefulness of these compounds is limited as oral drugs 

generally need to be dissolved in order to permeate the intestinal membranes (7, 8). 

Accordingly, limited aqueous solubility of candidates represents a major challenge to 

successful transition from drug substance to drug product. Such a “poor solubility 

challenge” plays a significant role in both rising product attrition rates and rising 

financial investment in research and development (R&D). These challenges are 

exemplified by the fact that the number of new medicines approved for clinical use 

decreasing consistently from the 1950s-2010s (9), as it is estimated that anywhere 

from 40-90% of all compounds in development display limited aqueous solubility (10, 

11).  

As high attrition of clinical candidates continues to impact significantly on 

pharmaceutical R&D, drug “developability” is becoming an increasingly significant 

focus for formulation scientists. Drug developability encompasses a broad term 

involving evaluation of a potential therapeutic candidates' “drug-like” properties, 
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including both its physicochemical and biopharmaceutical characteristics, with a 

particular emphasis placed on the absorption, distribution, metabolism, excretion, and 

toxicology (ADMET) process (12, 13). In terms of achieving developability of these 

drug candidates, it appears that modification of lead candidates by designing-in 

developability characteristics, translating to reduced physicochemical liability (14), is 

not always sufficient, and more commonly successful development of these drugs lies 

with various bio-enabling formulation technologies (15, 16).  

 

Bio-Enabling Formulations  

Traditionally, conventional immediate release formulations have been sufficient for 

successful delivery of drugs with favourable absorption properties, leading to efficient 

formulation development and limited resource investment. However, the 

biopharmaceutical challenges and variability of poorly water-soluble drugs (PWSD) 

has limited the applicability of these approaches in place of bio-enabling formulation 

strategies (14, 17).  Bio-enabling formulations enhance the drug dissolution and/or 

GIT solubility through various means of either altering the present drug form or its 

physicochemical properties or co-administering solubilising excipients to facilitate 

adequate solubility and dissolution characteristics along the GIT (16). While certain 

gaps in knowledge remain regarding the most effective employment of bio-enabling 

formulations (6, 15), they provide commercially scalable approaches that meet strict 

regulatory standards during the drug approval processes. Numerous bio-enabling 

strategies may be employed to overcome these biopharmaceutical limitations and 

achieve drug concentrations in excess of equilibrium solubility in GI fluids. These 

include: 1) particle size reduction (micronization/nanonization), 2) modification of 

crystal form (pharmaceutical salts, co-crystals, or polymorphs) 3) 
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complexation/solubilization (eg. surfactants, cyclodextrins or lipid-based 

formulations), or 4) development of a solid dispersion (17-19). As reference will be 

made to both solid dispersions (SD) and in particular, lipid-based formulations (LBF) 

throughout this thesis, a brief introduction of these strategies is now presented.  

 

Lipid-Based Formulations 

LBFs offer numerous biopharmaceutical advantages for PWSD resulting from over 

half a century’s worth of research and investment. The original rationale for 

investigating lipid-based systems to improve absorption was the observation that 

numerous examples of PWSD demonstrated significantly favourable increases in oral 

bioavailability when co-administered in the fed state compared to pre-prandial 

conditions (14). The term LBF spans a wide range of formulations, composed of pure 

oils or mixtures of oils, surfactants and/or co solvents in various proportions as 

classified by the lipid formulation classification system (LFCS) (20, 21). Previous 

research has suggested that many of the marketed LBF products consist of Type II or 

III formulations, often referred to as self-emulsifying drug delivery systems (SEDDS) 

(22). These can spontaneously emulsify upon dispersion due to the presence of 

surfactants and hydrophilic excipients, decreasing reliance on endogenous lipid 

digestion to facilitate emulsification (6).  

The administration of lipid excipients enhances the drug solubilisation capacity of the 

GI environment, stimulating endogenous bile acid secretion, leading to production of 

a mixture of solubilising colloidal structures composed of endogenous and exogenous 

lipids (23). These can effectively solubilise the PWSD (14, 24, 25) and the drug is 

retained either solubilised or in a transiently supersaturated state allowing for 
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increased absorption (14).  The “spring and parachute” analogy applies here to the 

generation and prolongation of supersaturation where the “spring” involves the self-

emulsifying properties of the LBF, incorporating the solubilised active substance (26), 

while “parachute” refers to formulation additives which increase stability, reducing 

drug precipitation in vivo (27) (Figure 1-1). LBFs are also biopharmaceutically 

advantageous regarding impact on intestinal permeability (28), metabolism (29) and 

lymphatic transport (30, 31). 

LBFs have been traditionally employed for drugs which display poor aqueous 

solubility and high lipophilicity (logP). “Grease-ball” molecules are therefore 

commonly quoted as strong candidates for LBFs owing to their dominant lipophilic 

and relatively weak crystal lattice energy characteristics which favour solvation in 

lipids. Conversely, while “brick dust” molecules may display acceptable lipophilic 

character for lipid solvation, the high hydrophobic interactions of these drugs provide 

the ultimate limiting factor to acceptable dose loading levels as drug solubility is 

limited by a high crystal lattice energy (6). Resultantly, the prevalence of “brick dust” 

compounds present a challenge for development of drugs with more traditional LBF 

types. This has resulted in the establishment of a broadened landscape of both 

formulation compositions and excipient combinations, as well as emerging novel LBF 

applications, including supersaturated LBFs (sLBF). These are kinetically stable 

solutions containing a drug concentration above its thermodynamic solubility, where 

increased drug loads are achieved through thermally inducing supersaturation to 

overcome the crystal lattice energy (32-34). Finally, from a pharmaceutical 

manufacture standpoint, once acceptable manufacturing equipment is in place, large 

scale manufacture of LBFs is relatively low risk and less technologically demanding 
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which can usually be completed on a smaller scale than other delivery technologies 

(35, 36). 

Figure 1-1: Visual representation of modes of action of A) conventional immediate release oral drug products, B) 

LBF products, C) SD products. Adapted from Feeney et al. (14) and Williams et al. (26). 

 

Solid Dispersions 

The merits of SDs to improve oral absorption has been demonstrated as far back as 

the 1960s (37, 38). SDs are generally two-component systems, containing one or more 

active substances dispersed in an inert matrix. Depending on the physical state of the 

carrier, SDs are classified as either crystalline or amorphous, while the API can be 

also be presented as amorphous or crystalline particles or as a molecular dispersion 

(39). SDs can facilitate increased solubility and dissolution through a reduction in API 

particle size, potentially to a molecular level, enhanced wettability and porosity, and 

altered drug crystalline state, preferably to an amorphous state (40). In its most 

commonly used form, a SD involves dispersion of drug in an amorphous polymer 
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matrix with drug present in the molecularly dispersed state (a glass solution) (41). This 

composition exploits the fact that the solubility of the dispersed or amorphous state 

can be much higher than comparative solubility of the most stable crystalline 

polymorph, thus, a supersaturated solution is more easily attained (6). Upon 

amorphisation, the impact of crystalline long range order on drug solubility and 

dissolution is largely reduced as intermolecular interactions are weaker and Gibbs free 

energy is increased (42, 43) Thus, SDs are considered useful for drugs which exhibit 

solid state limited solubility (i.e. ‘brick dust’ molecules), but can also be of merit for 

“grease ball” type molecules due to reduced particle size and increased hydrophilicity 

due to excipients (44, 45).  

Compounds are classified as glass formers (Class II and III) or non-glass formers 

(Class I) according to Baird et al. (46). These classifications are made by their 

crystallisation behaviour during a cycle of heating/cooling/heating. The drugs most 

suited to the amorphous form are class III compounds which melt to form a stable 

glass and do not recrystallize during either cooling or a second heating. SD systems 

contain stored potential energy similar to a “spring” which when dispersed can release 

and forms a supersaturated state when exposed to the GIT (Figure 1-1). The innate 

thermodynamic instability of the supersaturated state may lead to precipitation or in 

the case of amorphous SD premature recrystallization, which historically limited the 

wider application of these formulations. A variety of excipients such as polymers can 

be utilised to act as a “parachute” in the prevention of precipitation or recrystallization 

and maintain the solubility advantage. Successive generations of SDs have been 

produced each providing updated and altered excipients such as polymers to maintain 

this amorphous solubility advantage or more recently facilitating sustained drug 

release (38, 39, 47). As the types of SDs continue to expand so does the methods used 
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to manufacture them. In general, these methods are mainly divided into “solvent-

based” and “melt-based” methods (6, 39, 43), where the choice of manufacturing 

method is often based upon drug physicochemical properties, particularly for 

thermally unstable compounds which can render certain techniques more or less 

suitable.  

 

Evolving Pre-Clinical Formulation Design and Selection 

Oral formulation development must cope with both biopharmaceutical and technical 

challenges as well as limited timelines and resources. Therefore, the unavoidable 

necessity for development of such sophisticated bio-enabling delivery systems 

generally requires considerable resource investment. Historically, companies have 

shown marked differences in their decision-making approaches towards formulation 

strategy, with many companies predominantly focusing on techniques with which they 

are familiar. Many organisations have followed a pragmatic approach, deliberately 

focusing on speed, ease of implementation and minimization of cost expenditure (16, 

48, 49). In these cases contributory factors in guiding formulation choice are often still 

dependant on in-house expertise (16), as physicochemical properties and specific 

biopharmaceutical limitations are often overlooked. This all means that 

biopharmaceutical investigations of the API and formulation testing at the different 

stages of drug discovery and development is still, at its core, an empirical process 

rather than based on in depth mechanistic understanding, and significant gaps remain 

(50). As a result, several formulation options are often developed in parallel using 

cumbersome, iterative formulation screening assays, a highly resource-intensive 

strategy (16). Clearly, significant focus ought to be placed on not only formulation 

development but also the level of structure that is available to guide and streamline 
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their selection. Such an increasingly decision-based approach where predictive tools 

are applied, can help to overcome any reticence to implement bio-enabling 

formulations and represent an attractive process in comparison with the reagent-

expensive and time-consuming alternative of bench-based empirical design.  

Over the last 15-20 years progress in understanding and capacity to predict the GI 

absorption process has led to the implementation and refinement of biopharmaceutical 

predictive tools of varying complexity to forecast drug behaviour (49, 51-55). As the 

predictive capacity of any tool depends on its ability to sufficiently simulate the 

dynamic GI environment, significant efforts are being made to refine this process by 

improving the efficiency and ensuring validation of current bio-predictive screening 

tools (54). For example, while traditionally, in vitro dissolution testing for new drug 

products were conducted using aqueous media or buffers, since its introduction to the 

drug development space in the last 20 years with subsequent refinement, dissolution 

and solubility in biorelevant media are now widely assessed to provide greater 

simulation of the human in vivo environment in either a pre- or post-prandial state (56, 

57). Further advances are represented by the introduction of in vitro permeability 

models (58), pharmaceutical profiling (59), in silico PBPK models for integration of 

in vitro data and prediction of GI drug absorption (60, 61) and increased physiological 

understanding of the ability of animal models to closely mimic human in vivo exposure 

(62, 63). While a recent review of current practices exposed a significant reliance upon 

in vivo testing in animals which remains the mainstay of diagnosing biopharmaceutical 

performance (48). In addition to these methods, various well-established drug 

classification systems, which also concern drug properties including solubility and 

permeability, likewise provide important tools in guiding development.  
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Drug Classification Systems: Moving from the Drug Substance to Understanding 

Developability 

The significance of various biopharmaceutical drug classifications to inform 

formulation development strategies cannot be overlooked. In particular, the 

biopharmaceutics classification system (BCS) represented a substantial shift in the 

drug development process by introducing the concept that drug classifications attained 

from in vitro methods could be utilised to guide formulation strategies. The BCS 

provides a diagnostic framework for characterisation of these properties which limit 

oral bioavailability and development, identifying the rate limiting step as being either 

solubility or permeability (64). PWSD typically fall into BCS Class II or IV and 

represent candidates for bio-enabling formulation strategies (Figure 1-2). Since its 

adoption the BCS has been used widely in the pharmaceutical industry to categorise 

drug candidates in early formulation development and facilitates BCS-based 

biowaivers for highly soluble compounds (BCS Class I/III) replacing in vivo 

bioequivalence studies for eligible candidates. A significant modification to the BCS 

is the biopharmaceutical drug disposition classification system (BDDCS). This system 

aims to predict drug disposition characteristics as a predictor of absorption, through 

assessment of drug metabolism in place of intestinal permeability, while also 

incorporating effects of metabolising enzymes and transporters in vivo and drug 

disposition in development (65). While, in recognition of the importance of 

investigating solubility and dissolution under physiologically relevant conditions to 

select appropriate formulations, and to reduce the risk of food effects, a modified BCS 

for intestinal absorption using biorelevant solubility media, has also been published 

(66).  

 



 

30 
 

It could be suggested that one of the most significant contributions to using an 

extension of the BCS to inform early evaluation of drug developability and oral 

formulation decisions was the developability classification system (DCS) introduced 

by Butler and Dressman (13). The DCS, like the BCS, uses estimates of solubility and 

permeability for classification (Figure 1-2). However, unlike the BCS, an estimate of 

in vivo intestinal solubility using biorelevant media (FaSSIF) is used, with an 

increased effectively available volume of 500 mL used for dose/solubility 

calculations. The DCS also considers the concept of a solubility limited absorbable 

dose (SLAD), which is the maximal dose that could potentially be absorbed, factoring 

in both biorelevant solubility in physiologically relevant fluid volumes in the GIT and 

the compensatory effects of solubility and permeability on dissolution in vivo. It also 

provides a means of estimating the critical particle size at which dissolution becomes 

rate-limiting to absorption. A clear advantage of this developability assessment tool is 

that a further differentiation is made within class II drugs, according to either a 

dissolution (IIa) or a solubility limitation (IIb) of drug absorption, where the SLAD 

represents the boundary between these subclasses. These subclasses are meaningful 

for formulation selection. Various dissolution limitations (class IIa) may be overcome 

with rather simple formulations based on particle size-reduction, while class IIb drugs 

typically require extensive formulation effort with bio-enabling formulations to 

overcome the solubility limitation to absorption.  

 

While the DCS provided a solid foundation for a classification system focusing on 

early drug development, limitations for certain subcategories of compounds (e.g. weak 

bases) were acknowledged (13). As a result, the refined developability classification 

system (rDCS) was developed (67). The rDCS, offers two levels of investigations, 
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“standard investigations” for all compounds and “customised investigations” only 

when specific criteria are met. The first level of standard investigations, like the 

original DCS, with minor modifications, classifies the drug using the same DCS 

classes, according to its dose/solubility ratio and permeability. This provides a first 

impression of whether development of a drug may be challenging. Depending on the 

outcome of these standard investigations, various customised investigations using 

small scale in vitro assessments may be triggered when potential exists for 

supersaturation/precipitation (e.g., salts of acids, weak bases) or to investigate 

permeation versus dissolution-limited absorption. Incorporation of customised 

investigations in specific cases provides a more complete understanding of the 

potential in vivo performance of a compound and have strengthened the applicability 

of the DCS to the drug development setting (67). Overall, investigations based on 

biopharmaceutical drug class, using these various classification tools, provides a 

modern starting point for drug development strategies as they begin to shift focus from 

the drug substance to understanding developability. However, it remains clear that 

combined use of both traditional and emerging biopharmaceutical tools is required to 

achieve a structured pre-clinical development pipeline where only the most promising 

candidates are selected for testing.  
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Figure 1-2: Schematic representation of the various classification parameters for drugs using the BCS, BDDCS 

and DCS classification systems. Red = BCS, Green = BDDCS, Blue = DCS. Drugs are further separated in DCS 

Class 2, IIa = dissolution rate limited, IIb = solubility limited. Scales and measurements per parameter are different 

depending on the classification system. 

 

 
 

Can Structured Formulation Development Be Achieved Through 

Property Based Rules? 

In spite of the growing numbers of biopharmaceutical tools and classification systems, 

scope exists for improved predictability in drug product development decisions (15, 

16, 68). This is essential to streamline the both selection and development of bio-

enabling formulations. So that questions regarding whether adequate formulation 

approaches can rescue compounds are answered at the earliest point, bypassing costly 

late-stage terminations. While commercial success has been achieved using various 

bio-enabling formulations for more than half a century, the selection of an optimal 
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strategy for new drug candidates is still a significant challenge for most 

pharmaceutical scientists. Accordingly, a significant effort has been made to adopt a 

more focused and structured approach based on improved scientific knowledge and 

expertise, with special reference made to drug physicochemical properties.  

 

Successful development of oral drugs requires consideration of numerous factors, 

including physicochemical, biopharmaceutical and physiological determinants (69). 

While, the BCS indicates the importance of solubility and permeability as cornerstone 

biopharmaceutical parameters which determine oral absorption (64), physicochemical 

properties of the API also play a crucial role in GI absorption (70). These properties 

can significantly influence drug performance owing to their impact on dissolution, 

precipitation, permeability and food effects. As a result, since the 1990s significant 

interest has been placed on efforts to link drug properties with in vivo performance 

(54), to increase understanding of how molecular properties and descriptors might 

correlate with a better chance of a candidate being like a “drug”. The term “drug-

likeness” has been used to used describe the concept of acquiring as much relevant 

information on the structural features and physicochemical properties of compounds 

to help discover new drugs which maximally resemble existing drugs, with respect to 

these key physicochemical and biological properties (71). Certain parameters have 

been considered to be associated with this likelihood or “drug-likeness” which include 

but are not limited to; molecular weight (MW), the calculated logarithm of the 

octanol−water partition coefficient (clogP), number of hydrogen bond donors (HBD), 

number of hydrogen bond acceptors (HBA), topological polar surface area (TPSA), 

rotatable bonds (RB), and number of aromatic rings (70).  
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Overtime, different property-based rules have emerged which identify molecular 

properties perceived to increase the probability oral absorption, occasionally defined 

as “drug-ability”. Of these, the most recognisable is Lipinski et al.’s Rule-of-Five 

(Ro5) (72). The Ro5 was developed as a guide to design molecules with the potential 

for high oral bioavailability, stemming from a study conducted at Pfizer in the late 

1990s regarding the favourable absorption properties of several thousand orally 

administered drugs and clinical candidates. As a result, cut-offs for 4 key properties 

were calculated for which 90% of the molecules studied were compliant. Each 

threshold was a multiple of 5. It was deemed that molecules which exhibited the best 

solubility and permeability were found to have: a MW below 500 Da, clogP smaller 

than 5, no more than 5 HBD and no more than 10 HBA. This simple rule states that 

when a compound exhibited two or more Ro5 violations it is considered problematic 

and poor absorption or permeation is more likely. The inclusion of the 4 properties 

was justified by the original authors as increasing MW has been previously related in 

literature to poorer intestinal permeability (73). Lipophilicity, expressed as clogP, is a 

widely utilised property important for solubility but also previously correlated to 

membrane permeability measurements for compounds which are passively transported 

(74, 75). While too many hydrogen bond donor and acceptor groups hinder 

permeability across a membrane bi-layer (76).  

 

Even though the Ro5 was designed to provide chemists with a simple means of 

predicting potential problems with solubility and permeability, as these factors 

strongly influence drug absorption (77), limitations of its subsequent adoption as a 

rule of thumb for druglike properties are acknowledged. For example, both natural 

products and compound classes that are substrates of biological transporters are 
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exceptions to the rule (72). Furthermore, subsequent examination of oral drug 

parameters has demonstrated parameters such as clogP and HBD have remained 

constant while the cut-offs for parameters such as MW and HBA have increased 

substantially over the past 20 years (70, 78, 79). This has prompted some researchers 

to place into question the hypothesis that MW is a “drug-like property” (70). 

Conversely, drug lipophilicity, which has been demonstrated to be changing less over 

time than other physical properties, has been suggested as an especially important 

drug-like property (79). Additionally, recent studies on drug absorption and 

developabillity have also highlighted the importance of polar surface area (PSA), logD 

(octanol–water partition coefficient at various pH values), number of rotatable bonds 

(RB) and the number of aromatic rings (79-81). Overall, despite limitations of this 

property filter, its conceptual simplicity and ease of calculation has made it the leading 

measure of drug-likeness and it is still applied today, 20 years after its conception, 

though perhaps without rigid adherence.  

 

In addition to the Ro5, the “Oral PhysChem Score” uses a traffic light system based 

on drug values of MW, clogP, RB, calculated aqueous solubility and TPSA (82). 

Where a lower summed value of the five traffic light properties indicates improved 

biopharmaceutical properties of a candidate. While the Ro5 remains the most widely 

known rule for “drug-like” properties, the Rule of Three (Ro3), has been adopted into 

the concept of “lead-like” properties in fragment-based drug discovery, indicating 

successful hits exhibit particular physicochemical properties of MW < 300, clogP < 3, 

number of HBD and HBA < 3 each, and number of rotatable bonds <3 (83). In 

addition, the Ro3 study suggested PSA (≤60) might also be useful criteria when 

constructing fragment libraries for efficient lead discovery.  
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Overall, several rule-based systems have been developed to forecast absorption and 

drug-likeness. As these guides are successful in the candidate identification space, the 

point must be raised if similar approaches based on drug properties could be employed 

to inform formulators about hurdles to expect during formulation development. 

Undoubtedly, property-based rules that direct structure to formulation selection 

strategy through use of properties which are available during pre-formulation, would 

be highly advantageous.  

 

Formulation Decision Trees  

At present, use of drug properties to provide organisational structure in the pre-

formulation phase of development is primarily seen in use of instructive formulation 

decision trees (DTs). These flowchart DTs link drug properties with decisions on the 

preferred formulation technology for a particular drug. They have aided a shift in 

industrial product development from an essentially empirical approach to a more 

rational decision-based approach (16, 48) and are grounded on the biopharmaceutical 

risks of the API. Many companies have developed internal “yes/no” DTs based 

primarily on prior organizational experience. Typically, these DTs concern various 

biopharmaceutical properties, combining in vitro and in vivo data with in silico 

modelling to suggest suitable cut-offs. Typically, various categories of DTs are 

employed depending on the stage of formulation selection. Firstly, the formulation 

scientist must make the distinction between the conventional versus non-conventional 

nature of the formulation required. Thus, the main focus of these initial DTs is to 

provide an indication of whether a bio-enabling formulation strategy ought to be 

developed for clinical studies, which represents an important distinction as both the 

developmental timeline and cost requirements will be dependent on this necessity. 
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Approaches followed may be different, but a stepwise approach considering a 

combination of crucial elements such as the dose to be administered orally in relation 

to the API solubility in biorelevant media (dose number), aqueous solubility or data 

from relative bioavailability studies of the API in suspension versus solution using rats 

or beagle dogs are common (16, 35, 48, 53, 84). Additionally, the significance of the 

aforementioned biopharmaceutical drug classification systems to formulation 

strategies is also evident as formulation development plans often hinge on the BCS 

classification of a drug, which is used as a starting point for decision making in 

numerous DTs including examples from Boehringer Ingelheim, Janssen and Bristol 

Myer-Squibb (48, 85). While other DTs have utilised DCS classifications to 

differentiate drugs requiring either dissolution or solubility enhancing strategies using 

the SLAD principle (86).  

 

Figure 1-3: Exemplary formulation decision tree flow chart for the selection of lipid-based formulations.  

 

After identification of a requirement for a bio-enabling approach, the next step 

typically involves decisions relating to the most appropriate class of bio-enabling 

formulation to be implemented. Here, DTs have also proven useful developability 

assessments. As an example, in terms of LBF systems, previously published DTs have 

included multiple decision nodes properties including the extent of drug solubility in 
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aqueous media or the lipid vehicle, melting point, logP or human dose (Table 1-1 and 

Figure 1-3) (16, 84, 86). While a further previous example of a structured development 

for LBFs emphasised excipient solubility screening and considerations of the 

biological effects of various excipients, before proceeding to various in vitro tests 

including dispersion and in vitro lipolysis in response to the significance of in vivo 

processing to overall performance (87). This significance of dispersion and digestion 

is echoed by the lipid formulation performance classification system (88). Using this 

informative tool formulation performance is graded upon 4 grades A to D depending 

on their ability to withstand drug precipitation and maintain solubilisation under 

various in vitro conditions i.e., dispersion in simulated GI fluids and digestion under 

simulated “normal” and “stressed” intestinal digestion conditions. As a result, 

increasingly effective formulation discrimination and performance grading can be 

achieved in drug product development (88). Furthermore, DTs have been developed 

which indicate appropriate candidates for SD formulations (Table 1-1). Among these 

examples, significant characteristics for decision making included glass forming 

ability, glass transition temperature, melting point, heat stability, presence of ionisable 

groups, MW, torsional bonds, HBA and PSA (16, 85, 86). 

 

 

 

 

 

 

 

 

 

 



 

39 
 

Table 1-1: Published Examples of Formulation Decision Trees for LBF and SD Bio-Enabling Formulation 

Selection 

 

Author Formulation Type Decision Node Properties Included  

 

Kuentz et al. (16) 

 

SD 

 

Glass Forming Ability 

Melting Point  

Degree of Maximum Supersaturation 

Heat Stability 

Solubility in Volatile Solvents 

 

 

Kuentz et al. (16) 

 

LBF 

 

Aqueous Solubility Relative to Dose 

logP 

Melting Point 

Dose 

Solubility in Glycerides 

Solubility in Polyethylene Glycol or Propylene 

Glycol Derivatives 

 

 

Kuentz and 

Imanidis  (86) 

 

LBF 

 

BCS Class  

DCS Class 

Dose 

Melting Point  

logP 

 

 

Kuentz and 

Imanidis  (86) 

 

SD 

 

BCS Class  

DCS Class 

Dose 

Melting Point  

logP 

Molecular Weight 

Number of Torsional Bonds 

Number of Hydrogen Bond Acceptors 

Polar Surface Area 

 

 

Ku (85) 

 

SD 

 

Ionisation Potential 

Dose Volume 

Solubility in Vehicle  

Solution Stability 

 

 

Rabinow (84) 

 

LBF 

 

Potential for Salt Formation 

Aqueous Solubility 

logP 

Melting Point 

Dose 
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Overall, DTs have emerged as increasingly standard biopharmaceutics predictive 

practises in the formulation characterisation toolkit, making use of currently available 

knowledge. However, limitations are apparent. Firstly, whilst use of DTs have been 

suggested to significantly reduce the demand for animal studies in line with the 3R 

initiative (49, 89), depending on the specific DT certain in vitro and in vivo testing 

will be initially required to identify a suitable formulation strategy. Meaning that even 

though a more structured approach is provided to decision making, the practical 

requirements for physical formulation screening are not lessened to any meaningful 

degree. Furthermore, it could be suggested that they provide a sometimes 

oversimplified or biased view of the formulation development process and frequently 

omit all potentially suitable formulation strategies, providing only a reflection of 

tendency for formulation suitability. Their impact is also limited by complexity in 

decision nodes numbers. Lastly and perhaps most significantly, while DTs from 

different companies are typically compiled of similar key elements, each decision 

node has its own rationale making sense in the context of the specific settings of each 

company, which may not be universally applicable or undisclosed. This make it 

difficult to assess which is the superior approach or to define an overarching 

DT/strategy that would work across companies.  Even though limitations of DTs are 

apparent, more generally the concept of anticipating “successful formulation 

potential” from drug properties and the use of property-based rules is undoubtedly 

gaining significant interest. 
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Can a Retrospective Biopharmaceutical Analysis of Drug Properties 

Inform Future Success? 

Upon reflection of the potential for such DTs to inform developability, the opportunity 

for broader applicability of property-based rules to guide bio-enabling formulation 

selection has prompted interest from this author regarding other drug properties-based 

analyses to predict formulation suitability. Stemming from the fact that DTs in general 

provide crude estimates and are fundamentally built upon previous experience, it was 

hypothesised if an alternative “experience” based expert learning approach could be 

adopted through the retrospective analysis of drugs which have reached commercial 

success using certain bio-enabling approaches. Consequently, this could provide a 

statistics-based assessment of drug properties which favour certain formulation types, 

aiming to improve predictability in the formulation development process. As a result, 

the aim of the following work was to provide a retrospective, top-down, analysis of 

the current landscape of commercial products using certain bio-enabling approaches. 

Identifying which drug properties are likely to identify successful delivery 

technologies at an earlier stage in development. This analysis focuses on the 

commercial utility of the two most encountered bio-enabling formulation approaches; 

LBF and SD, due to the extensive reports in the literature on their capacity to enhance 

oral delivery, and numerous examples of commercial successes as licensed drug 

products in clinical use.  

As part of this analysis an up-to-date and comprehensive list of commercially available 

LBF and SD formulations is provided, trends in the type of drugs and formulations 

currently reaching the marketplace are discussed and key physicochemical and 

biopharmaceutical predictors of successful formulation development are identified. In 

order to achieve these aims, the commercial examples to date of drug products 
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formulated as either SD or LBF is examined and classified according to BDDCS class 

of the formulated active substance. Selected physicochemical characteristics and 

molecular properties of these commercial drugs are statistically analysed and 

compared to a list of compounds not produced via either technology. The aim of this 

analysis is to explore which drug properties signal suitability of a drug for LBFs or 

SDs, or moreover, properties which potentially distinguish between them. Thus, 

attempting to bridge a gap in current drug development, involving widespread use of 

drug-likeness filters and ADME optimisation to guide drug discovery and refine drug 

candidate selection. While many merits exist for their use, there also exists a risk that 

current filters may be overly conservative and conceptually simplistic. As increasing 

numbers of drugs emerge beyond the preferred chemical space it could be argued that 

complementary use of “formulation-likeness filters” in such instances could inform 

developers of bio-enabling technologies which may be appropriate, based on 

properties of their drug candidate, simultaneously analysing potential for success in 

terms of both drug likeness and bio-enabling potential. As the numbers of drug 

compounds using both LBF and SD in licensed commercial products continues to 

grow, so too does the database of information regarding suitable drugs compatible for 

such systems. This data bank could guide future commercial success of LBF and SD 

products, reflecting backwards in order to move forwards in the “bio-enabling” field 

with confidence.  
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Methods 

Dataset Selection 

An original databank of approximately 1000 drug compounds was collated from 

previous literature sources (90, 91) using the BDDCS classification and an in house 

database of oral drug compounds commercially approved by the EMA and FDA 

between 2010 and 2017 (92). Where information regarding BDDCS classification was 

not available, a drug’s BCS classification was used as a surrogate due to the same 

parameter of solubility being used in both classifications. This master databank was 

split into three, namely, drugs commercially developed as LBF, SD and Others i.e., 

not commercially developed via either technology. LBF and SD drugs were identified 

from previous literature referencing commercial products (6, 42, 93-100), along with 

analysis of the online databases of the US and EU respective drug licensing authorities 

(Food and Drug Administration, European Medicines Agency, Health Products 

Regulatory Authority of Ireland) where dosage, licencing and excipient information 

regarding all products was also then obtained. Where a product was identified in peer 

reviewed literature but was not authorised in these three areas another national 

authority was investigated to establish if the product had been commercialised. A LBF 

was defined as Class I-IV of the Lipid Formulation Classification System (20, 21). All 

types of SDs were considered based on description in product or published literature 

that the product is a SD (i.e., both amorphous versus crystalline API dispersed in 

amorphous carriers.) Omega-3-acid ethyl esters, Florfenicol and Silibinin were 

removed from the database due to the lack of drug property data available. Exclusion 

criteria for the Others list included any drugs used in LBF or SD commercial products, 

active metabolites and non-orally delivered drugs. The final datasets contained 49 

drugs grouped as LBF, 37 as SD and 763 as Others drugs. When including only poorly 
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soluble BDDCS Class 2/4 drugs there remained 38 drugs grouped as LBF, 30 as SD 

and 307 as Others drugs. 

 

Compilation of Physicochemical Descriptors 

Physicochemical properties to be assessed were identified and compiled from the 

literature publication “BDDCS Applied to Over 900 Drugs” (91). Physicochemical 

and molecular properties for the drugs not listed in Benet et al. above were obtained 

from PubChem, DrugBank or ADMET Predictor 9.5 (Simulations Plus, USA). The 

final properties of the drugs analysed included: Molecular Weight (MW), Maximum 

Dosage Strength (MDS), Hydrogen Bond Acceptors (HBA), Hydrogen Bond Donors 

(HBD), Polar Surface Area (PSA), Measured Partition Coefficient (logP), Calculated 

Partition Coefficient (clogP), Percentage Excreted Unchanged in Urine (U%), pDose, 

Logarithm of Aqueous Solubility (logS), Partition Coefficient at pH 7.4 (logD7.4) , 

Rule-of-5 Violations (Ro5), pKa (Strongest Acidic), Melting Point (Tm) and Rotatable 

Bonds (RB). These are defined in Table 1-2.  
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Table 1-2:  Definitions of the drug molecular properties and physicochemical characteristics analysed in the 

statistical analysis. 

 

 

 

Property  Abbreviation Definition 

clogP clogP Logarithm of a molecules partition coefficient between 

n-octanol and using the method of Leo. 

Hydrogen Bond 

Acceptors 

HBA Electronegative ion or molecule that must possess a 

lone electron pair in order to form a hydrogen bond. 

Hydrogen Bond Donors HBD Heteroatom with at least one bonded hydrogen. 

logD7.4 logD7.4 Partition coefficient of a drug at pH 7.4. This pH is 

utilised as this is the physiological pH of blood serum. 

logP logP The measured partition coefficient of a molecule 

between an aqueous and lipophilic phase (n-

octanol/water). 

logS (mol/L) logS The 10-based logarithm of the solubility of a molecule 

mol/L. 

Maximum Dosage 

Strength (mg) 

MDS The highest dosage strength licensed for a drug.  

Melting Point (C°) Tm Temperature at which a solid changes state from solid 

to liquid. 

Molecular Weight 

(g/mol) 

MW Molecular Mass of a drug. 

pDose (mol/L) pDose -log10(Maximum Dose Strength) (molar). 

Percentage Excreted 

Unchanged in Urine (%) 

%U The proportion of drug unchanged in the body and 

excreted in the urine.  

pKa (Strongest Acidic) pKa 

(Strongest 

Acidic) 

The pH at which the drug is completely balanced 

between the charged and uncharged form. Strongest 

acidic refers to the strongest acidic group in the 

molecule. 

Polar Surface Area (Å2) PSA The sum of the fractional contributions to the surface 

area of all nitrogen and oxygen atoms calculated using 

the method of Clark.  

Rotatable Bonds RB Any single bond, not in a ring, bound to a nonterminal 

heavy (i.e., non-hydrogen) atom. 

Rule of Five Violations Ro5 Number of Lipinski’s Rule-of-Five violations which 

predicts poor absorption or permeation. 
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Statistical Analysis 

A stepwise statistical analysis approach was adopted using SPSS (IBM Corporation, 

US). Frequency distributions of the variables were graphed for each of the three groups 

and normality was checked visually with Q-Q and P-P plots. Ratios of samples sizes 

between the 3 groups were obtained. Variances of the datasets were analysed and 

compared to Levene’s Test for Equality of Variances. A p-value <0.05 indicated a 

violation of equal variance. The null hypotheses were that no differences were seen in 

a drug property between drug groups. Three separate comparison were made i.e., LBF 

vs SD; LBF vs Others; SD vs Others rather than a three-group comparison, using for 

example ANOVA. This enabled use of the most appropriate comparison method based 

on assessment of data normality and equality of variance in each group and is in line 

with the null hypotheses identified. Comparison between groups were made using the 

t-test, Welch’s test, Bootstrap independent samples test (5000 samples) or Chi-Square 

test, all 2-sided, where appropriate. Rule-of-5 violations was recoded to a category 

variable or ≤1 or >1 violation and Chi-Square tests were used to test independence of 

this categorical variable. If 1 or more cells had an expected count below 5, Fisher’s 

exact test was employed. A p-value of 0.05 was used as the significance level for all 

tests. Finally, in order to analyse only PWSD, subsets of the three datasets were created 

containing only BDDCS Class 2/4 drugs and the statistical analysis described above 

was repeated.  
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Results 

Commercial Success to Date 

We envisage a gap in the literature in terms of a comprehensive list of drugs which 

have been commercially developed as either LBF or SD, to provide a true measure of 

clinical development success. Information involving product names, drug compounds 

and excipients used, dosage forms and strengths was collated (Appendix 1 Table 1-5, 

1-6). Some products have been subsequently withdrawn from the commercial market 

however, all products were licensed at one point in time.  

 

Commercial Lipid-Based Formulations 

LBF products have been successfully authorised internationally since the 1940s. Early 

examples of commercial products consisted of Type I formulations of the LFCS e.g. 

Drisdol® (101). As years progressed interest in self-emulsifying systems intensified 

(14) and resulted in a large surge in increasingly complex Type III and IV LBF 

products in the 1980s-1990s (95). Review of the published literature and online 

databases of drug product regulatory authorities in the US and EU identified 67 

commercial LBF products. As illustrated in Figure 1-4, a higher number of the LBF 

products have been authorised in the US (47/67) compared to the EU (26/67). 

Differences in the number of marketed products could represent strategic commercial 

decisions based on factors such as level of clinical demand or regulatory burden.   

In a small number of cases more than one dosage form e.g., capsule, and oral solution, 

have been produced for the same drug product (6/67 products). In comparison, 

multiple dosage strengths have been licensed almost half of the products (28/67 

products). It was observed that soft gelatin capsules dominantly account for the most 
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popular LBF product dosage form (40/67), followed by oral solutions (10/67), hard 

capsules (10/67) and oral suspensions (1/67) (Figure 1-5). There are also 6 products 

which are controlled release, demonstrating a further drug delivery advantage of 

LBFs. These are extended-release capsules (3/67), extended-release suspension (1/67) 

prolonged release capsule (1/67) and sustained release granules (1/67). Clearly, soft 

gelatin capsules represent the more prevalent dosage form as they can safely 

encapsulate liquid dosage forms in comparison to hard capsules. While there has been 

successful suspensions produced (102), solutions remain the most popular approach 

for commercial products according to our analysis. In terms of year of authorisation, 

it can be seen (Figure 1-6) that the period of 2000-2009 contained the highest number 

of commercial LBF approvals (37%). As such, combining the 1990s and 2000s 

accounts for 63% of all commercial LBF products. However, this spike in approvals 

did not continue into the period since 2010 where only 9% of all LBF products have 

been commercialised. Overall, the findings here are comparable to analysis examining 

growth in the number of LBF/SEDDS publications in PubMed from 1966 to 2016 

where they saw a large surge of publication numbers from the mid-1990s (14). Finally, 

a number of the listed products have been either discontinued or withdrawn from the 

market (12/67). No trends were evident where the reasons for withdrawal were linked 

to reasons of efficacy, safety nor stability. In the majority of cases a lack of clinical 

demand or switch to another dosage form was cited by the manufacturer.  
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Figure 1-4: Venn diagrams illustrating the numbers of LBF (A) and SD (B) commercial products authorised by 

the FDA and EU (EMA and HPRA). 

 

Commercial Solid Dispersions 

The earliest example of a commercial SD product is Cesamet® (Nabilone) from 1982 

(103). Overall, 39 commercial SD products were identified. Four of these have been 

marketed under a different brand name in a different region (Certican® = Zortress®, 

Incivek® = Incivo®, Cokiera® = Viekira XR®, Galvumet® = Eucreas®). Compared to 

LBFs, commercial SDs form a smaller number of licensed products, which may reflect 

that LBF products were a more established commercial pathway in the 1980’s and 

1990’s, relative to SDs (14, 104). As an example, the first LBF was approved over 40 

years before the first SD commercial products (Drisdol®, 1941 and Cesamet®, 1982). 

When commercial SD products manufacturing methods were analysed, we found the 

majority of products were produced via either spray drying or melt extrusion methods 

in line with previous research analysis (44).  

The widespread global market for SD products is apparent. From Figure 1-4 close to 

50% of SD commercial products are authorised in both the United States and EU 

markets. Multiple dosage strengths were seen for a majority of products (23/39), 

similar to LBFs, potentially due to scalability and manufacture of dose proportional 
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preparations of SDs. In terms of dosage forms immediate release tablets are most 

popular (27/39) (Figure 1-5). While capsules (4/39) and granules for oral suspension 

(1/39) are also seen, as well as controlled release tablets and capsules, in the form of 

extended, delayed or prolonged release. 5/39 identified SD products have been either 

discontinued or withdrawn from the market. Upon review no evidence could be found 

to suggest the majority of removals were due to efficacy or safety issues and were 

voluntary due to declining clinical demand or use of alternative dosage forms. 

Conversely, in the case of Rezulin® (Trogslitazone), its removal was linked to the 

development severe idiosyncratic hepatocellular injury (105). However, this is due to 

the drugs intrinsic toxicity rather than lack of effective formulation delivery. 

In contrast to only 9% of LBF products, 54% of SD commercial products have been 

authorised since 2010 (Figure 1-6), demonstrating a sharp growing development trend 

toward SDs in recent years. It has previously been suggested that SD formulation 

technologies have been embraced to a much greater extent since 2012 (44), with 

comparative spikes in terms of related research articles seen from 2010-2015 (96). As 

evidence of the commercial success of SD technology, Harvoni® (Gilead Sciences, 

Inc.), containing Ledipasvir and Sofosbuvir, used to treat chronic Hepatitis C was 

second in the blockbuster list of drugs ranked by sales revenue in 2015 (106). 
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Figure 1-5: Pie charts illustrating the different dosage forms products for LBF (A) and SD (B) commercial 

products. 

 

Commercial Products via Both Formulation Technologies 

Four drugs have been commercially produced via both LBF and SD technologies. 

These are Fenofibrate, Lopinavir, Ritonavir and Nimodipine. In the case of Lopinavir, 

it was originally produced in combination with Ritonavir in Kaletra® as an LBF 

capsule and subsequently replaced by AbbVie Inc.© with the SD tablet form exhibiting 

a higher dose loading capacity. This resulted in a reduced pill burden and aided 

compliance while also providing the added advantage of absence of food effect (107). 

Similarly, Ritonavir has also been commercialised as both a SD and LBF in Norvir® 

(108). In this case, original liquid filled capsules containing Ritonavir in an ethanol, 

surfactant and water-based solution were withdrawn from the market due to discovery 

of a previously unknown polymorph, leading to a significant decline in drug solubility 

and potential for poor bioavailability (109, 110). When this original form was removed 

from the market, patients were encouraged to switch to the oral liquid form. In 1999, 

AbbVie Inc. (previously Abbott), applied for approval of an LBF soft gelatine capsule 

form overcoming this stability problem which required refrigeration. Ultimately in 

2010, this LBF form was replaced by an SD 100 mg tablet which overcame the 
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requirement for refrigeration, which improves convenience. Therefore, in two cases, 

choices of both LBF and SDs were largely based on commercial strategies 

(Fenofibrate and Nimodipine), whereas for Lopinavir and Ritonavir, initially the more 

established formulation strategy of LBFs were launched, however, due to problems 

with dose loading and stability were ultimately replaced with SDs. Overall, this 

relatively small overlap of drugs produced by both technologies observed, could 

suggest existence of distinctive drug properties which render a drug candidate more 

suitable for SD delivery over LBF delivery or vice versa.  

 

 

 

 

 

 

 

 

Figure 1-6: Grouped bar chart illustrating the number of SD and LBF commercial products authorised by decade 

from 1940. 

 

BDDCS Classifications 

The three drug sets were grouped according to BDDCS classification. These visual 

representations are found in Figure 1-7. As expected, the highest numbers of LBF 

(76%) and SD (60%) drugs in commercial products belong to BDDCS Class 2. Also, 

as anticipated, the second highest proportion of SD commercially used drugs come 

from BDDCS Class 4. In contrast, the second highest proportion of LBF drugs were 
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found to be BDDCS Class 1 which indicates that, not only solubility limited 

compounds are successfully commercialised via LBFs. This most likely reflects a 

strategic commercial decision, as opposed to a strategy to address a solubility or 

permeability limitation, and may reflect that the large scale manufacture of LBFs are 

generally well established, and require relatively lower technologically input 

compared to other more expensive bio-enabling platforms such as SDs (35).  

 

 

 

 

 

 

 

 

 

Figure 1-7: Visual representation of the proportion of drug per dataset of LBF, SD and Others drugs in BDDCS 

Class 1-4. 

 

Retrospective Statistical Analysis of Properties of Commercialised LBF and SD 

Drug Compounds.  

Molecular properties of drugs previously commercialised using LBF and SD 

formulation technologies were statistically compared with properties of drug 

substances not commercialised via either technology. Tabular results of the statistical 

analysis are shown in the Appendix (Appendix 1 Table 1-1 to 1-4). A visual 

representation of significant differences obtained is illustrated in Figure 1-8. 



 

54 
 

Upon analysis of all BDDCS classes, 8/15 properties were significantly different 

between the LBF and Others datasets, namely MW, logP, %U, logS, logD7.4, Ro5, Tm 

and clogP. In addition to these 8 properties HBA, RB and PSA were also found to be 

significantly different between the SD versus Others datasets. Therefore, these 

properties can be predictive of suitability for commercial success via LBF or SD 

technologies according to the current commercial climate of both sets of drugs. While 

no clear trends for the properties of pKa (strongest acidic), MDS and pDose were 

differentiated between groups, thus, these properties did not appear useful in 

predicting suitability nor indicative of unsuitability for either formulation type. 

Between LBF and SD datasets significant differences in drug properties were observed 

as SDs displayed significantly higher mean HBA, RB, MW and PSA, compared to 

LBFs.  

Subsequently, a subset analysis was performed on BDDCS Class 2/4 drugs (low 

solubility) to explore whether results would be altered by excluding high solubility 

drugs, typically delivered using conventional methods. This subset decreased the 

numbers in the LBF group by 22% (n = 38), the SD group by 19% (n = 30) and the 

Others group by 60% (n = 307). In terms of comparisons between LBF versus Others 

within this low solubility datasets, this resulted in the parameters of Ro5 (p = 0.086), 

MW (p = 0.129) and Tm (p = 0.051) being no longer significant, albeit marginally in 

the case of Tm. Conversely, differences in both MDS ( ** p = 0.006) and pDose ( * p 

= 0.026) between LBF and Others gained significance in the low solubility dataset. In 

terms of comparisons between SD and Others, the low solubility subset did not result 

in loss of significance to any observation, while MDS ( ** p = 0.003), pDose ( * p = 

0.037) and HBD ( * p = 0.03) also gained significance.  
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Figure 1-8: Visual representation of the statistically significant differences found between LBF, SD and Others. 

p-values for the statistically significant pairwise comparisons are shown. “Total” refers to analysis with all BDDCS 

Classes. “Low Solubility” refers to analysis of only BDDCS Class 2/4. When both “Total” and “Low Solubility” 

are stated p-value refers to the “Total” result. The dark line in the middle of the boxes is the median. The bottom 

and top of the box indicates the 25th (Q1) and 75th percentile (Q3). The T-bars are inner fences/whiskers which 

extend to 1.5 times the box height. The circles are outliers that do not fall in the inner fences. The asterisks are 

extreme outliers which have values greater than three times the height of the boxes 
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Property Trends Resulting from a Retrospective Statistical Analysis 

of Licensed LBF and SD Products. 

Based on the statistical analysis of formulation types by drug properties the following 

general trends were observed in this work.  

 

Molecular Weight (MW) 

Drugs commercialised as both LBF and SD pharmaceutical products displayed 

significantly larger MW compared to those commercialised via conventional 

formulation approaches (i.e., Others). Comparatively, SD displayed significantly 

greater mean MW (586.6g/mol) versus LBF (448.2g/mol) suggesting that while both 

LBF and SD express potential to accommodate high MW drugs, SD approach may 

offer greater opportunities at the higher MW range. Additionally, only LBF, not SD 

drugs, lost significance versus Others when a low solubility dataset was analysed, 

suggesting that as MW increases any benefits LBF confer for PWSD are not as 

prevalent and preference for SD platforms prevails.  

These results reflect drug development trends over recent decades of increasing MW 

of drug molecules in drug development pipelines (79, 111, 112). In the two last 

decades, there has been consistent trends for higher MW drugs being brought to 

market, exemplified when in 2016 and 2017 for the first time, average MW for new 

FDA approved oral drugs exceeded 500g/mol (70), with widespread increases in MW 

observed not merely due to approval of a small proportion of very high MW drugs. 

Such trends fall outside both the Lipinski Ro5 and the Ro3 for fragment based drug 

discovery (83). Resultantly, this sharp increase has prompted questioning regarding 

the justification of MW as a property of “drug-likeness” (70).  
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The trend for high MW observed here should be considered in line with the earlier 

reported trend for increasing use of SD approaches in the last decade. It is unclear 

whether these reflect independent trends in technological advances of both SD and 

increasing drug candidate MW or complementarity of both. However, it is clear that 

SDs offer a more commercially successful track record for high MW drugs. As most 

recently evidenced by the high MW antiviral, enzyme inhibitor drugs being delivered 

commercially in this manner e.g. Cokiera®, Epclusa®, Zelboraf®. These results are 

broadly supportive of the general rule of thumb that molecules with a MW of >300 

g/mol can more easily be transformed into an amorphous state (113). Here, we 

uncovered only 2/37 drugs commercialised as SDs with MW <300 g/mol. It has also 

been suggested that comparatively high MW increases glass forming ability (GFA) of 

a drug (46, 113). While a higher solubility advantage was also demonstrated for higher 

MW drugs as a result of in silico predictive modelling of the amorphous solubility 

advantage (86). Resultantly, from our analysis MW provides a distinguishing property 

for potential commercial success between LBFs and SDs at the higher end of the MW 

scale.  

 

Melting Point (Tm) 

A significantly smaller mean Tm was found for LBF drugs (160.81°C) vs Others 

(181.18°C). This significance was lost, albeit marginally, when a low solubility dataset 

was analysed. When the variances of Tm among groups was analysed, the smallest 

spread of values was found amongst the SD group. While the lowest Tm values for 

LBF and Others groups respectively were 38°C and 43°C, the lowest Tm of a drug 

produced as a SD was approximately double these figures (80.5°C). Tm is often cited 

as an important drug characteristic influencing solubility in lipid vehicles, as an 



 

59 
 

indicator of the energy required to break intermolecular bonds and overcome the 

crystal lattice energy. Drugs possessing a high crystal lattice energy along with a 

moderate logP value (>2) are termed “brick dust” (102), typically possessing poor 

solubility in lipids due to limited capacity to dissociate from the solid form and are not 

ideal candidates for LBFs (6, 14). Previous work has demonstrated that addition of Tm 

improved computational predictions of drug solubility in triglyceride vehicles (114). 

It has been reported that for reasonable solubility in lipid vehicles, a low to 

intermediate Tm was preferable, and a Tm <150°C was proposed as a baseline for the 

selection of LBFs as potential enabling formulation approaches (86, 115-117). 

However, in this analysis more than half (i.e., 55%) of commercially licensed LBFs 

exceeded this commonly recommended value of 150°C. A subset analysis revealed 

however, that the mean maximum dosage strength was significantly lower for drugs 

exceeding this value (i.e., 148.62 mg for drugs <150°C compared to 81.48 mg for 

>150°C).  Overall, this would suggest that while low to intermediate Tm may be still 

be recommended, particularly for higher dose products, in the case of low dose/highly 

potent drugs, a Tm in excess of 150°C may not be limiting.  

Tm was not observed to be a predictor of SD commercial success. This was unexpected 

as Tm was previously demonstrated to be an important predictor for the solubility 

advantage for amorphous drugs (86), in addition to differentiating between GFA 

classifications of compounds (46). Tm can also dictate the type of manufacturing 

method suitable for a particular SD commercial product due to heat unstable 

components and risks of chemical degradation (44), as well as being related to their 

glass transition temperature (118). 
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Lipophilicity (logP, clogP, logD7.4) 

Lipophilicity remains an important property of drug candidates in development over 

the last 15-20 years, due in part to the lipophilic molecular requirements of new drug 

targets (17, 119). It is thought to be correlated with MW, yet it appears to be changing 

less overtime than other drug properties (70, 79). A 2016 analysis of 1620 molecules 

patented around that time uncovered that approximately 50% had ligands displaying 

mean logP ≥4 (2). As such, Leeson and Springthorpe have even suggested lipophilicty 

to be the most important drug property, where high lipophilicity can result in increased 

risks of multiple target binding and potential toxicology (79). As expected LBF 

commercialised drugs displayed significantly higher measured logP, clogP and logD7.4 

values than drugs compounds in the Others dataset. High lipophilicity would be 

expected to facilitate sufficient drug loading capacity in lipid vehicles. It is commonly 

reported that “grease ball” drug molecules, displaying high lipophilicity and relatively 

low Tm are good candidates for LBFs (3), while the ability to facilitate lymphatic 

uptake by LBFs is optimised for highly lipophilic drugs (logP > 5) (120). Overall, this 

finding suggests that drugs with logP values of approximately 4–5 are good candidates 

for commercial LBFs due to the mean logP value of 4.7 observed. Previously, Pouton 

and Porter have suggested that a logP >5 demonstrates suitability for LBF as such drug 

compounds are incorporated into mixed micelles and absorbed efficiently (22). 

Interestingly, the greatest variance in logP values was also found in the LBF group. 

This could be related to the diverse range of classes of LBF available (20), where 

differing quantities of lipophilic and hydrophilic excipients in the formulation offers 

greater versatility for incorporating drugs across a range of lipophilicities.  

While SDs did display significantly higher lipophilicity than Others, LBFs and SDs 

could not be separated in terms of this parameter. This reflects analysis by Ditzinger 
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et al. where 66% of SDs in literature displayed logP values of 2-6 (6). Previously, a 

logD cut off of ≤2.7 was suggested for SD over LBF formulation class suitability 

(121). However, our findings suggest that while lipophilicity provides potential to 

isolate drugs with potential for commercial success via LBF or SD delivery 

technologies, it does not differentiate between them. For example, earlier case studies 

of Kaletra®, and Norvir® containing highly lipophilic drugs (clogP ≥4.7) demonstrate 

that such drugs can be produced successfully as both LBFs and SDs. In these cases, 

despite high lipophilicity, the SD forms were ultimately more commercially 

favourable. While these provide just two examples, overall, these findings appear to 

challenge the commonly held belief that drugs with high logP values are more suited 

for LBFs and perhaps, begging the question if our rationale for assessing the utility of 

LBFs may be overly simplistic. As such, while previous research has demonstrated 

that the renowned ability of LBFs to eliminate the food effect does not always stand 

to scrutiny (92), the current results have also demonstrated that LBFs cannot be 

differentiated from SDs in terms of lipophilicity.  

 

Aqueous Solubility (logS) 

As expected, among the total dataset of drugs, aqueous solubility (expressed as logS) 

displayed a significantly lower solubility for both LBF and SD drugs versus Others. 

Interestingly, when excluding high solubility drugs from the dataset and reanalysed 

using only low solubility drugs, significances remained. This indicates that even 

within PWSD classes, LBF and SD technologies offer the opportunity to facilitate 

commercial development as oral drug products. In relating lipophilicity and 

hydrophilicity, Bergstrom et al. have previously suggested that a logP >3 is an 

indicator of reduced interaction with aqueous solvents (3). In this analysis, our mean 
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logP values for commercial LBFs (4.66) and SDs (4.16) were both found above this 

value. Such results are expected as both formulation technologies present a potential 

delivery solution for drugs encompassing the “poor solubility challenge”.  

 

Percentage Excreted Unchanged in Urine (%U) 

Percentage drug excreted in urine also distinguished drugs suitable for both LBF and 

SD but not between the two delivery techniques. A significantly lower percentage of 

both LBF and SD drugs were excreted in urine compared to the Others dataset. This 

is not unexpected as drugs excreted in the urine unchanged are typically highly water 

soluble whereas PWSDs require metabolism into metabolites which are likely more 

polar and readily excreted (122). However, a range of factors may influence the 

predictive ability of this property, including need for a bioavailability factor for orally 

delivered drugs, coupled with the fact that that certain drugs or active metabolites may 

be excreted unchanged in bile not urine (91). This property demonstrated that SD and 

LBF drugs are less hydrophilic than Others, similar to our previous result of their 

higher lipophilicity and lower aqueous solubility.  

 

Rotatable Bond Count (RB) 

SD commercialised products displayed significantly higher mean RB count than both 

LBF and Others. Once again reflecting current trends in drug candidates, as bulk 

physical properties including MW and RB count have increased with time (79). This 

finding compliments previous observations that compounds exhibiting high 

amorphous stability contain higher numbers of RBs (123). Baird et al. have suggested 

that higher RB and molecular flexibility decreases probability of being incorporated 
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into an ordered crystalline structure (46), and demonstrated that both high MW and 

high RBs are indicative of higher GFA and lower crystallisation tendency (i.e. Class 

III GFA). Elsewhere, the number of RB, providing a measure of molecular flexibility, 

has been suggested by Kuentz et al. to positively influence the amorphous solubility 

advantage of a drug (86). Comparatively higher RB (e.g., 5-10) were indicative of 

suitability for a SD formulation approach, and at a mechanistic level this most likely 

reflects the ability of good glass forming drugs to display prolonged supersaturation, 

relative to poor glass former which are at greater risk of precipitation from 

supersaturated solutions. It is also noteworthy that molecular flexibility was not 

predictive of a LBF approach. Again, at a mechanistic level LBF increase drug 

concentrations via promotion of solubilisation in the intraluminal fluids and hence the 

ability of the inherent amorphous stability of the drug is not a considered to be a factor 

influencing performance.   

 

Hydrogen Bond Acceptors (HBA) 

HBA count was observed to be a property which distinguished between suitability of 

SD commercial drugs versus both LBFs and others, with a significantly higher mean 

HBA found for SD drugs (i.e., 6.87). The importance of HBA count is reflected in the 

fact that more than double (24%) of SD drugs had greater than 10 HBA compared to 

LBF drugs (10%). Furthermore, when comparing only low solubility drugs the 

significance of the differences between SD and both LBFs and Others was 

strengthened. 

Hydrogen bonding interactions increase both stability and rigidity of the amorphous 

state by the formation of poorly packed aggregates which render crystal formation 
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increasingly difficult (123). Number of HBA has previously been significant in 

modelling both the potential for crystallisation of a drug, based on GFA class (124), 

as well as prediction of the solubility advantage for amorphous drugs (86). In the latter, 

the number of HBAs was the most important descriptor after MW in amorphous 

solubility advantage prediction. Additionally, hydrogen bonding between the API and 

polymer excipients is an important feature aiding polymers to inhibit drug 

crystallisation and promote amorphous stability. Hydrogen bonding between the two 

have been observed in dispersions displaying lower tendency and highest resistance to 

crystallisation (125, 126). Second, third and fourth generation SD utilise polymer 

carriers, either alone or in the presence of other polymers or surfactants (6). In this 

analysis, polymers were found to be the most widely used excipients in commercial 

SDs for both crystalline and amorphous based SD.  

 

Hydrogen Bond Donors (HBD) 

Both HBD and HBA counts are important with regard to Lipinski Rule-of-5 violations, 

amorphous stability and hydrogen bonding interactions between polymeric stabilisers 

and drugs. However, in this case, HBD was not found to be a property distinguishable 

between LBF, SD or Others in our analysis of the full datasets. However, when only 

low solubility drugs were analysed, a significant difference was observed between SD 

and Others. Previously, amorphous stability was found to be moderately correlated 

with the number of HBDs upon previous examination of a group of PWSDs (123) and 

positively correlated with MW (r2 = 0.70), as discussed previously in this analysis to 

be influential. Thus, intensifying the significance of hydrogen bonding capacity in 

distinguishing suitability of drugs for SD commercial success.  
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Polar Surface Area (PSA) 

The importance of hydrogen bonding capacity was once again reflected in the fact that 

PSA distinguished suitability of drugs for commercial SDs versus both LBFs and 

Others.  Significantly higher mean values were found for the SD dataset (125.92 Å2), 

versus LBF (79.68 Å2) and Others (81.48 Å2) which retained significance when only 

low solubility drugs were compared. The spread of values was also the smallest for 

SD drugs. Comparatively, drug development trends indicate the mean PSA of drugs 

has been increasingly significantly through the years (70, 79).  However, it is 

important to bear in mind that correlation does not imply causation as in this case, the 

increasing prevalence of new drug candidates displaying higher PSA as well as 

increasing use of SD technologies could represent independent trends in both cases or 

reflect complementarity of both. PSA was previously determined a significant 

descriptor in in silico modelling long term amorphous stability (123) and amorphous 

solubility gain (86). For the later, the authors suggested a comparatively higher value 

for PSA as a property to prompt consideration for SD delivery. They found a range of 

60-140 Å2 being indicative of a high amorphous solubility gain. In our analysis, the 

mean PSA for SD commercial drugs was 125.9 Å2, thus, within this range.  

 

Lipinski Rule-of-5 Violations (Ro5) 

We observed a significant association between drug group and prevalence of Ro5 

violations. This ‘drug likeness filter’ states that, in general, an orally active drug has 

no more than one violation. Thus, in our analysis we used a cut-off of ≤1 (0 or 1) or 

>1 violation (2, 3 or 4). After this discrete numerical variable was recoded to a 

categorical variable, we observed both LBF and SD to be significantly different from 

Others in terms of Ro5 violations (p ** < 0.01, p *** < 0.001). As such, 30% of SD 
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and 18% of LBF commercial drugs displayed >1 violation compared to 6% of Others 

(Appendix 1 Table 1-2). Without question, the higher Ro5 violations observed mirrors 

the growing number of beyond Ro5 drugs candidates being produced in the search for 

biological selectivity for emerging biological targets. It has previously been observed 

that only approximately 50% of all drug targets appear accessible by compounds 

within the Ro5 chemical space (127). As such, extended Ro5 (eRo5) and beyond Ro5 

(bRo5) compounds refer to those outside this defined chemical space (3). Perhaps 

suggestive that standard drug likeness filters may appear overly conservative as more 

and more non Ro5 compliant compounds reach commercial development. As 

mentioned previously, complementary use of formulation likeness filters may provide 

accurate predictions of formulation success for such troublesome drug candidates, as 

commercial success has been already demonstrated through LBF and SD approaches. 

 

Dosage Strength (pDose and MDS)  

Although, the LBF dataset demonstrated the lowest mean MDS (118.59mg) and the 

smallest first quartile value among the three groups, no significant differences were 

observed between the three groups. Conversely, upon comparison of only low 

solubility drugs, both LBF and SD drugs demonstrated significantly lower MDS 

compared to Others (p ** < 0.01, p ** < 0.01). Any lower dosage levels could refer to 

higher potency where smaller doses are required. While conversely PWSD not 

formulated by enabling formulations may require dosage increases to compensate for 

low bioavailability. A dose of <100 mg has previously been suggested as a significant 

factor to consider lipid-based drug delivery systems to dissolve the full dose. To 

overcome this perceived dose limitation LBF suspensions, along with the avocation 

of chase dosing (128) and use of ionic liquids have been suggested (129). Previously, 
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suitable drugs for LBF delivery have been proposed to be low dose drugs such as 

hormones, cytotoxic drugs or prolonged therapy drugs requiring dose titrations (35). 

Linking to this, two of the BDDCS class 1 drugs utilising LBFs commercially 

consisted of Vitamin D and its active metabolite with dosage levels in the microgram 

range (One-Alpha®, Thorens®, Uvedose®). Thus, dosage strength may also be a factor 

for previous observation that the second highest proportion of LBF commercial drugs 

are BDDCS class 1.   

We also examined dosage strength in terms of pDose. When only low solubility drugs 

were analysed both LBF and SD drugs displayed significantly smaller doses compared 

to Others (p * < 0.05, p * < 0.05). This was somewhat unexpected as a stated advantage 

of SDs over LBFs is in general, the potential for much higher dosage levels, as high 

API-to-polymer ratios can offer higher drug loadings, echoing the commercial product 

Kaletra® resulting in a decreased pill burden. However, this could be affected by 

whether a crystalline or amorphous-based solid dispersion is produced. Instability of 

the amorphous form or presence/absence of polymers could alter drug loading 

capacities of amorphous-based solid dispersions. 

 

Non-Significant Properties 

No trends in pKa were established. However, a previous meta-analysis of 61 articles 

regarding supersaturating drug delivery systems including SD and LBFs between 

2010-2015 revealed weakly acidic drugs demonstrated the highest improvement in the 

oral bioavailability-related parameters in comparison to weakly basic or neutral drugs 

(130). However, more extensive research is required as any effect of drug ionisation 

is difficult to analyse.  
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Properties of Drugs Commercialised via Both Bio-Enabling Formulation 

Technologies 

As stated previously, four drugs have been commercially developed using both LBF 

and SD technologies. These drugs are Fenofibrate, Nimodipine, Ritonavir and 

Lopinavir. Two drugs displayed >1 Ro5 violation and all four were BDDCS class 2. 

Mean logP, clogP and logD7.4 values for these drugs were high with all drugs 

displaying low aqueous solubility. With regard to Tm, only one drug, Lopinavir, had a 

Tm above the aforementioned cut off for LBFs of 150°C (174.5°C). Thus, it can be 

suggested that for a drug to act as a commercial candidate for success via both 

technologies it should display an intermediate Tm (e.g., ~150°C) to increase likely 

solubility in the lipid system. Three of the four drugs displayed ≥10 RBs and PSA 

>120 Å2. Thus, while these properties reflect suitability for SDs, they do not, in 

practice, limit the commercial potential of drugs for success with LBFs. MW ranged 

from 360.83–720.946 g/mol, demonstrating the ability of both technologies to 

accommodate drugs with a wide range of MW. The average number of HBA and HBD 

were similar to our previous values and mean %U was low (1.58%). Overall, it appears 

clear from the current commercial portfolio of products, that PWSD displaying Ro5 

violations, higher PSAs, a high RB count, mid-range Tm, high HBA and HBD count 

and a low %U, provide potential candidates for commercial development with both 

LBF and SD technologies. While in terms of drug properties which can distinguish 

between LBF and SD platforms in terms of commercial success, this review has 

demonstrated that drug MW, PSA, RB and HBA count show significant differences 

between current LBF and SD commercial products.  
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Summary of Findings 

Prompted by the increasing application of DTs to provide property-based rules to 

formulation selection, this work examined physicochemical and molecular properties 

of the current commercial portfolio of drug products using LBF and SD formulations. 

A database of drugs commercially developed as LBFs and SDs was reviewed, 

prevalence of BDDCS class was determined and retrospective trends in drugs 

properties uncovered. It was established that drug properties could distinguish not only 

LBF and SD bio-enabled commercial drugs from Others but also distinguish between 

commercially successful LBF and SD drugs. The latter involved drug properties of 

MW, RB, HBA and PSA, indicating importance of size, molecular flexibility and 

hydrogen bonding capacity in formulation of SDs. In terms of well-established drug 

likeness filters, >1 violation of Lipinski’s Ro5 was seen to be 5 and 3 times more 

prevalent for SD and LBF drugs, respectively, versus Others. While the Tm of 55% of 

commercial LBF drugs exceeded the often reported cut off of 150°C.  A general trend 

toward increasing commercial development of SD formulations in recent years was 

observed. Encouragingly, many of the significant properties established reflect drug 

discovery trends of recent years, providing a positive outlook for potential of bio-

enabling formulations to overcome solubility limitations. Furthermore, all drug 

properties included in the “Oral PhysChem Score” system i.e. MW, clogP, RB, 

solubility and PSA, indicative of bio-pharmaceutical performance of a drug, were 

found to be significant in this analysis (82).  

This is not a definitive nor exhaustive list, drugs which do not fit some properties 

mentioned may be successfully developed in the future and certain properties not 

deemed significant do have their part to play. Moreover, as the numbers of drugs 

encompassing commercial LBF and SD products continues to grow, alterations to 
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these trends may develop as certain properties may emerge or become more influential 

over time. Additionally, it must also be acknowledged that other considerations such 

as drug efficacy, safety, instability or pharmaceutical commercial interest/priorities 

will also influence potential for commercial success. Utilizing and updating trends 

going forward can aid the continued growth of both LBF and SD commercial products. 

The results of this analysis outlines how retrospective analysis of commercialised 

drugs can lead to increased understanding of the properties of interest signally 

formulation suitability without requirements for manual testing. Results indicated that 

a limited number of drug properties, most of which are usually already available to the 

formulation scientist in early development, is likely sufficient to establish a 

statistically useful map of relationships between compound features and bio-enabling 

formulation categories. Demonstrating that retrospective assessments using existing 

knowledge available in early development and formulation likeness filters possess 

capacity to inform potential developability, either as a LBF or SD commercial product, 

based on previously successfully drug candidates and success stories over the last few 

decades. As such, if trends of increasing MW, lipophilic, flexible, beyond Ro5 

candidates continue to stem from the discovery pipeline, the need for such bio-

enabling formulations will also increase. 
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Abstract 

Purpose: Despite countless advances in recent decades across various in vitro, in 

vivo and in silico tools, anticipation of whether a drug will show a human food effect 

(FE) remains challenging. One means to predict potential FE involves probing any 

dependence between FE and drug properties. Accordingly, this study explored the 

potential for two machine learning (ML) algorithms to predict likely FE.  

Methods: Using a collated database of drugs licensed from 2016-2020, drugs were 

classified into three groups; positive, negative or no FE. Greater than 250 drug 

properties were predicted for each drug which were used to train predictive models 

using support vector machine (SVM) and artificial neural network (ANN) 

algorithms.  

Results: When compared, ANN outperformed SVM for FE classification upon 

training (82%, 72%) and testing (72%, 69%). Both models demonstrated higher FE 

prediction accuracy than the biopharmaceutics classification system (BCS) (46%). 

This exploratory work provided new insights into the connection between FE and 

drug properties as the Octanol Water Partition Coefficient (S+logP), Number of 

Hydrogen Bond Donors (HBD), Topological Polar Surface Area (T_PSA) and Dose 

(mg) were all significant for prediction.  

Conclusion: This study demonstrated the utility of ML to facilitate early anticipation 

of likely FE in pre-clinical development using four well-known drug properties.  
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Introduction 

It is widely recognised that concomitant administration of oral dosage forms with food 

can alter drug pharmacokinetic profiles (92, 189, 190). As oral dosage forms are both 

widely and often chronically administered, understanding of the biological processes 

triggered by food consumption and its complex and drug-specific impact on oral 

bioavailability is vital. The numerous underlying mechanisms by which food exerts 

this effect on drug absorption include physiological changes in pH, gastric emptying 

times, fluid volumes, bile salt concentrations and intestinal enzyme activity, in 

addition to specific food effects including binding, metabolism or interference with 

transporters (92, 190, 191). The clinical consequences of these changes are assessed 

through comparison of pharmacokinetic parameters describing the rate and extent of 

bioavailability i.e. peak plasma concentration (Cmax), time to peak plasma 

concentration (Tmax) and area under the curve (AUC) in both the fed and fasted state 

(192). A food effect (FE) is defined as when the 90% confidence intervals for the ratio 

of population geometric means, based on log transformed data, for either AUC0→∞ or 

Cmax fall outside the 80–125% bioequivalence limits relative to the same formulation 

administered in the fasted stated (192). These FE studies are subject to stringent 

regulatory requirements (192, 193), and the consequences of food-mediated effects on 

bioavailability have been widely reported (190, 194-199).  

Previous research that 40% of drugs licensed between 2010 and 2017 displayed 

significant FE (92) suggests that within the current drug development paradigm, 

anticipation of the impact of food on drug absorption is pertinent. Moreover, in 

addition to guiding the design of improved formulations that are FE resistant, this 

information is fundamental to optimise exposure of medicines with narrow therapeutic 

ranges in a clinical setting, to meet strict fed state bioequivalence study requirements 
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of international regulatory authorities and reduce costs associated with product failures 

due to variability in exposure (92, 95, 190, 194). Consequently, the ability to predict 

and anticipate FE is of immense value to drug development. To date, extensive 

mechanistic tools spanning a wide range in vitro, in vivo and in silico methods to 

predict FE have been described in literature (3, 200-203). Typically, drug performance 

under fasted and fed conditions are anticipated in vitro with dissolution tests in 

biorelevant media mimicking the human gastrointestinal environment (204-206), 

while in vivo predictions using various animal models (200, 202, 207), including 

canine and porcine examples have also been employed, along with drug solubility 

testing in aspirated intestinal fluids (201, 208). However, despite the varying levels of 

success achieved by these methods, the multifaceted factors associated with drug, 

meal type and physiological conditions mean that, as of yet, no universally 

comprehensive approach for FE prediction has been found and that all current models 

exhibit limitations. 

Owing to the limitations of in vitro methods, and the challenges in performing in vivo 

pharmacokinetic studies, in silico methods have emerged as the “go-to” approaches 

for predictive biopharmaceutics (49). Drug classification tools comprising rules of 

thumb based on drug biopharmaceutical properties, and both the biopharmaceutics and 

biopharmaceutical drug disposition classification systems (BCS and BDDCS), 

provide simple guides to anticipate FE based upon related drug properties (200, 209, 

210). While such approaches provide a readily accessible prediction of likely FE, the 

relatively low accuracy and precision of these predictions has necessitated the 

development of mechanistic and data driven in silico models of FE (196).  

Physiologically-based pharmacokinetic (PBPK) models lie at the centre of this 

diversifying modelling and simulation (M&S) toolbox, and have achieved 
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increasingly accurate predictions of FE (61, 153, 169, 211). Using mathematical 

equations to model physiological processes and anatomical parameters, these 

compartment-based absorption models mechanistically simulate a drugs plasma 

concentration-time profile in the fasted and fed states and can be applied in both pre-

clinical studies with further potential application as decision-making aids for 

regulatory agencies (212). While PBPK models require comprehensive data about the 

physiological, biochemical, and physicochemical processes that occur, data-driven 

modelling tools which establish statistical relationships between FE and drug 

molecular properties, signify complementary additions to this ever-expanding M&S 

toolbox without the need for such. To date several attempts, spanning the last three 

decades, have been made to probe dependence between FE and drug physicochemical 

or molecular properties. These include linear correlations of AUC ratio with individual 

drug properties (213) and a tool for computational biopharmaceutical profiling of 

ligands, based on predicted increases in fed state simulated intestinal fluid (FeSSIF) 

solubility to signal a positive FE (3). Finally, qualitative computational models 

predicting if a drug displays a positive, negative, or no FE according to the AUCfed/fasted 

ratio, have also been published, using logistic regression (214) and more recently 

decision tree analysis (215).  

Consequently, while modelling efforts to correlate the effect of food on AUC with 

drug properties exist, the application of multiple machine learning (ML) classification 

algorithms to predict FE remains unexplored. Support vector machine (SVM) 

classification and artificial neural network (ANN) algorithms have been gaining 

interest across various facets of drug design and development, supporting streamlined 

and decision-based pre-clinical testing (124, 167, 216-220). SVM is a pattern 

recognition method widely used in data mining which works by finding an optimal 
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separation line (hyperplane) which accurately separates and maximises the margins 

between two or more classes. Separation of non-linear data is also achievable through 

kernel functions which map the original data to a higher-dimensional “feature space” 

facilitating linear separation, as previously described (173, 183). While as a ML 

algorithm, ANN detects complex non-linear relationships between datasets, by 

mimicking basic human biological information processing methods. Adopting a 

general structure consisting of an input layer, hidden layer(s), output layer and using 

activation functions and connection weights, nodes (artificial neurons) from the input 

layer send data to the hidden and output layers through weighted connections 

(“synapses”) to predict Y, as described in detail previously (172, 185).  

Using these ML algorithms, the broad objective of this work sought to develop an in 

silico model which could identify important drug properties for accurate FE 

prediction. Here, drugs were classified as displaying a positive, negative or no FE 

according to a change in the extent of drug absorption (AUC) in the fed versus fasted 

states. Using a collated database of newly licensed drugs from 2016-2020, both SVM 

and ANN were employed to explore any relationship between the three FE classes and 

drug properties. The study design facilitated investigation into the prevalence of FE 

among drugs licensed in the last 5 years, while also assessing if either ML algorithm 

or the BCS classification tool provided the highest prediction accuracy for this dataset. 

Accordingly, this study provides the first evidence of the capacity of ANN and SVM 

to facilitate early anticipation of likely FE.  
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Methods 

Database Collation 

The drug database used in this study was obtained from drug products licensed in the 

European Medicines Agency (EMA) and Food and Drug Authority (FDA) between 

January 2016 and December 2020. The database of original new drug applications 

(NDA’s) on the FDA website was searched by month from January 2016 to December 

2020 along with the European Public Assessment Report (EPAR) of the EMA licensed 

products each year from 2016-2020. Exclusion criteria were any non-oral product, any 

biological product, any modified release product, any product where no FE 

information was available, any generic of a previously authorised product or any 

authorisation submission referring purely to changes of product indication. The 

products eligible for analysis were new molecular entities (NME), new combination 

products and reformulations of products which have been previously marketed. 

General information recorded included year of licensing, generic name, commercial 

name and any label restriction of the drug administration regarding food. Information 

regarding FE on absorption was obtained from the product EPAR or FDA label for 

each product where the ratios of AUCfed/fasted were recorded (Appendix 2 Table 2-1). 

In cases where the documentation stated a product showed no change or a non-

significant change in AUCfed/fasted, with no values or ratios provided, a value of 1 was 

assigned. As FE information was obtained from regulatory submissions only, variables 

related to meal composition that might affect the interpretation of results were 

minimised.  
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Food Effect Classification  

In this study drugs were predicted to belong to one of 3 FE classes designated 

according to the change in the extent of drug absorption in the fed versus fasted state 

(AUCfed/fasted) alone, with “positive” referring to significantly increased and “negative” 

referring to significantly decreased extent of drug absorption in the fed state. This lone 

classification parameter was chosen as information regarding Cmax was more 

frequently omitted from EPARs and FDA drug labels. Previous comparative studies 

also used this classification criterion, and the toxicity, efficacy and clinical 

significance of numerous drugs including those which are chronically dosed, 

correlates better with total exposure (AUC) than Cmax (92, 213). The FE ratio 

(AUCfed/fasted) was obtained for all drugs in the final dataset (141 drugs). A positive or 

negative FE was considered significant if the ratio fell outside 80–125% in reference 

to the currently accepted 90% CI for the ratio of population geometric means between 

fed and fasted treatments for concluding a lack of food-effect (192). Drugs with 

AUCfed/fasted >1.25 were classified with a “positive FE”, AUCfed/fasted between 0.8-1.25 

were deemed to have “no FE” and AUCfed/fasted <0.8 a “negative FE”. The final 

database of 141 drug compounds consisted of 44 Positive FE, 80 No FE and 17 

Negative FE drugs.  

 

Compilation of Physicochemical Descriptors 

More than 250 descriptors for each drug were obtained from ADMET Predictor 9.5 

(Simulations Plus, USA). Molecular structures were acquired as smiles from 

PubChem and used as inputs for the ADMET Predictor software (Version 9.5, 

Simulations Plus, California, USA) to calculate the molecular descriptors. A conscious 

effort was made to ensure repetition of drug properties found to be significantly 
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correlated with FE in previously published reports, to facilitate comparisons (213-

215). The drug dosage strength used in the FE bioequivalence study for each drug was 

obtained from the EPAR or FDA product label respectively. A maximum absorbable 

dose (MAD) was calculated using a predicted fasted state simulated intestinal fluid 

(FaSSIF) solubility, again employing ADMET Predictor, using the equation described 

previously (221). The dose/solubility ratio was calculated using the dose as described 

above divided by an aqueous drug solubility predicted from ADMET Predictor.  

 

Statistical Analysis 

Prior to employment of ML, to analyse any linear univariate correlations between FE 

classification and selected drug properties, a stepwise statistical analysis approach, as 

described previously (222), was adopted using SPSS (IBM Corporation, US) on the 

full drug database. It was hoped that these preliminary results could inform which 

properties may be significant for ML prediction. In brief, frequency distributions of 

the variables were graphed for each FE classification (positive, negative, no FE) and 

normality was checked visually with Q-Q and P-P plots. Ratios of samples sizes 

between the 3 groups were obtained. Variances of the datasets were analysed and 

compared to Levene’s Test for Equality of Variances. A p-value <0.05 indicated a 

violation of equal variance. The null hypotheses were that no statistical differences 

were seen in a drug property between drug classes. Three separate comparisons were 

made i.e., negative versus no FE, no FE versus positive, positive versus negative. 

Comparison between groups were made using the t-test, Welch’s test or Bootstrap 

independent samples test (5000 samples.) A p-value of 0.05 was used as the 

significance level for all tests. Boxplots were produced to facilitate visual 

interpretation of the data again using SPSS (IBM Corporation, US) and descriptive 
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statistics including median, mean, standard deviation of mean, Q1, Q3, minimum, 

maximum and variance were obtained for each drug property for the 3 groups. The 

properties selected were S+logP (Octanol Water Partition Coefficient), HBD (Number 

of Hydrogen Bond Donors), HBA (Number of Hydrogen Bond Acceptors), T_PSA 

(Topological Polar Surface Area), Dose (mg), S+logD (Partition Coefficient pH 7.4), 

S+Sw (Aqueous Solubility), MAD (Maximum Absorbable Dose), D/S 

(Dose/Solubility Ratio), MWt (Molecular Weight) and RB (Rotatable Bonds). 

 

BCS Classification 

The BCS class of the drugs studied were obtained where available from the EPAR, 

FDA label or from literature. Fleisher et al. (191) previously described the general 

trend of FE on drug absorption (AUC) based on BCS classification where, BCS Class 

I compounds are likely to have no FE; BCS Class II compounds are likely to have a 

positive effect; BCS Class III compounds are likely to exhibit a negative effect, while 

there is insufficient evidence for any clear identifiable trends for BCS Class IV 

compounds. Further separation of drugs within BCS classes as previously recognised 

(201), was not conducted to facilitate comparisons to a previously published analysis 

(214). Accordingly, the database was classified into these 3 FE categories, while BCS 

class 4 drugs were disregarded for this portion of the analysis.  

 

Machine Learning/Model Development 

FE classifications were predicted using two ML algorithms, ANN and SVM. To 

facilitate direct comparison of the predictive power of both algorithms the same 

training:test split was used. Principal component analysis (PCA) using the 

Unscrambler XI (Camo Analytics, US) was applied for a randomised assignment of 
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training:test data. Training set criteria was that it covered the chemical space of the 

test set and ensured an almost equal representation of positive, negative and no FE 

drugs in the training set to avoid any potential for classification bias. Such imbalance 

in datasets has proved to be a widely reported obstacle to ML classification problems 

in the past (173). In accordance with previous reports of classification prediction using 

ML algorithms (124, 220), initial variable reduction was conducted. Either a one-way 

ANOVA analysis with Tukey Multiple comparisons test (parametric) or Kruskal-

Wallis analysis with Dunn’s multiple comparison test (non-parametric) were applied 

to the training data. Variables with a p-value less than 0.05 for at least one class pair 

in the respective post tests were highlighted for further investigation. A correlation 

analysis of these identified variables was carried out with highly correlated variables 

clustered into the same group and the most significant variable of the group chosen 

for inclusion in the model development. Final models as well as BCS predictions were 

compared in terms of various accuracy statistics including, overall accuracy of 

prediction, as well as sensitivity, precision, specificity and Matthews correlation 

coefficient (MCC) for each FE class, as previously defined (223). TP, FP, TN and FN 

refer to true positive, false positive, true negative and false negative results 

respectively. MCC was previously suggested as a reliable statistical metric for ML 

performance quality evaluation (224). A high MCC score (close to 1) is only achieved 

if the model obtained good results in all four confusion matrix metrics (TP, FP, TN, 

FN).  

Overall Accuracy: 
∑ 𝑇𝑃𝑖

𝑀
𝑖=1

∑ 𝑇𝑃𝑖
𝑀
𝑖=1 + 𝐹𝑁𝑖

 𝑥 100% 

Sensitivity: 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 𝑥 100% 
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Precision: 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 𝑥 100% 

Specificity: 
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 𝑥 100% 

MCC:  
(𝑇𝑃 𝑥 𝑇𝑁) − (𝐹𝑃 𝑥 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑁) 𝑥 (𝑇𝑃 + 𝐹𝑃) 𝑥 (𝑇𝑁 + 𝐹𝑁) 𝑥 (𝑇𝑁 + 𝐹𝑃)
  

 

Support Vector Machine Classification 

A SVM algorithm was used to build a classification model using Unscrambler XI 

(Camo Analytics). Resulting variables from the initial variable reduction protocol 

were mean centred, de-identified and standardized through scaling by standard 

deviation. Variables were added one-by-one to assess which combinations produced 

the highest accuracy in both the training and test sets. C-SVC was used, where as part 

of the optimisation procedure the optimum values of key parameters of the 

regularization parameter C and gamma were sought from a grid search, performed 

across 10 orders of magnitude in logarithmic scale. In this grid search these key 

parameters were varied systematically to monitor which combination provided the 

highest classification accuracy in training and cross validation. This grid search was 

repeated for each variable combination using various kernel types (linear, polynomial, 

radial basis function and sigmoid) until the combination of kernel, C, gamma and input 

variables resulting in the best classification performance was obtained. The variables 

with the highest contribution to SVM classification were interpreted from the loadings 

plot of the PCA analysis which mapped the multidimensional data into a two-

dimensional space. 
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Artificial Neural Networks 

Multilayer perceptron artificial neural networks (MLP-ANN) were produced using 

SPSS Statistics (Version 26, IBM Corporation, US). The output layer consisted of 

three responses/categories: positive, negative or no FE. After initial variable reduction, 

as described above, the remaining significant variables were rescaled through 

standardisation where values were converted to their z-scores. Hyperbolic tangent was 

chosen as the activation function for the hidden layer, while an identity output function 

was used as the output layer activation function (225). Supervised learning using the 

scaled conjugate gradient algorithm was chosen (226). Batch training was selected. 

Topologies with only one hidden layer were considered. The optimum number of 

neurons in the hidden layer was identified following a systematic trial-and-error 

approach were the number of neurons in the hidden layer were manually altered 

between 2 and 50, with runs being performed in triplicate. The optimal network size 

was chosen from the solution which resulted in the highest prediction accuracy in the 

training and test sets. All combinations of the significant variables were tested to 

ascertain which combination produced the highest prediction accuracy. This procedure 

was repeated until no improvement in model performance was observed. The relative 

contributions of each variable in the final network were elucidated from the 

normalised importance chart.
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Results 

Analysis of Trends in Physicochemical Descriptors between Food Effect 

Classifications 

A selection of well-known molecular and physicochemical properties of drugs 

licensed in the last five years were statistically compared with respect to the three FE 

classes. It was anticipated that as a result of this preliminary analysis of the entire 

dataset, any significant differences in properties between classes could inform which 

properties may be significant for subsequent ML prediction. Tabular results of the 

statistical analysis are shown in Appendix 2 Table 2-2. A visual representation of 

properties which demonstrated significant differences is illustrated in Figure 3-1.  

Upon statistical analysis, the properties of S+logP, HBD, T_PSA, Dose, S+Sw, 

S+logD, MWt, D/S and MAD were all significantly different for at least one pairing 

i.e., negative versus positive, negative versus no FE or positive versus no FE. Of these, 

6 properties, namely S+logP, HBD, Dose, S+Sw, D/S and S+logD were found to be 

significantly different between drugs classified as having either a positive or negative 

FE. In particular, the mean S+logP value was observed to be almost 2.5 times greater 

for positive FE drugs. Conversely, it was observed that drugs with a positive FE could 

be differentiated from drugs which displayed no FE in terms of the 8 properties of 

S+logP, T_PSA, Dose, S+Sw, S+logD, MWt, D/S and MAD. Where the median 

dosage strength for positive FE drugs was four times higher than that of drugs with no 

FE (200mg vs. 50mg). Finally, drugs classified as either displaying a negative or no 

FE appeared more difficult to differentiate as only three properties were found to be 

statistically different for this pairwise comparison, namely S+logP, HBD and T_PSA, 

where the median number of HBD for negative FE drugs was double that of no FE (4 

vs 2). Overall, it was observed that only one property, S+logP, was found to be 
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significantly different between all three classification groups (Figure 3-1). 

Furthermore, the properties of HBA and RB were not found to be significantly 

different between any of the three pairwise comparisons. 
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Figure 3-1: Visual representation of the statistically significant differences found between Positive, Negative and 

No Food Effect classes as part of the preliminary statistical analysis. p-values for the statistically significant 

pairwise comparisons are shown. The dark line in the middle of the boxes is the median. The bottom and top of the 

box indicates the 25th (Q1) and 75th percentile (Q3). The T-bars are inner fences/whiskers which extend to 1.5 

times the box height. The circles are outliers that do not fall in the inner fences. The asterisks are extreme outliers 

which have values greater than three times the height of the boxes. 

 

 

Food Effect Prediction using BCS Classification  

The dataset collated in this study consisted of 61/141 (43%) drugs displaying either a 

significant positive or negative FE. Previous reports indicate that BCS classifications 

(BCS Class I, II, III), using dose/solubility ratio and extent of absorption, can aid 

identification of likely FE, and such an approach was investigated to facilitate 

comparison of this simple classification rule of thumb versus data-driven ML 

techniques (191). In this study, using classifications based on the BCS, a poor overall 

accuracy of prediction (46%) was obtained. While the sensitivity of the method was 

acceptable for positive (87%) and negative (69%) FE drugs, relating to lower numbers 

of false negative classifications, the same could not be said for the no FE class. There 

only 22% of drugs found to display no FE were BCS class I (Figure 3-2). While in 

terms of precision i.e., positive prediction rate, using the BCS tool, poor results were 

seen for positive (41%) and negative FE (35%) drugs with a poor rate of specificity 

also seen for the positive FE group (49%). Finally, in terms of MCC, scores close to 

zero of 0.3 (positive), 0.2 (negative) and 0.2 (no FE) respectively were calculated 

(Figure 3-2). Therefore, these results suggest that use of the BCS tool to predict FE 

classification results in high relative amounts of either false positive or false negative 

predictions.   
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Figure 3-2: Visual representation of the sensitivity, precision, specificity, and Matthew’s correlation coefficient 

(MCC) scores of the classification predictions (positive, negative and no Food Effect (FE)) using the 

biopharmaceutics classification system (BCS) criteria where an overall accuracy of 46% was achieved for the 

dataset. 

 

Applying ANN and SVM to Predict Food Effect Classification 

Two ML algorithms, ANN and SVM were employed to qualitatively predict if a drug 

displayed positive, negative or no FE (Table 3-1). Using the SVM algorithm, the 

optimum model required 6 drug properties for prediction, namely S+logP, HBD, 

T_PSA, dose, logarithm of the air-water partition coefficient (Henry's Law Constant 

at 25°C) (logHLC) and population average number of protons available for hydrogen 

bonding divided by the number of non-hydrogen atoms (F_HBP). Using the radial 

basis function (RBF) kernel which outperformed the other kernel functions tested, 

results demonstrated that the SVM model could correctly predict FE classification of 
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the training and set sets with 72% and 69% overall accuracy respectively (Figure 3-

3). No FE drugs were predicted with the highest sensitivity upon both training (86%) 

and testing (71%) (Appendix 2 Figure 2-1), demonstrating better or comparative 

performance to ANN in these cases. Conversely, it was observed that the SVM 

algorithm was less successful in differentiating drugs with a negative FE compared to 

the ANN model described below (59%). In terms of precision, positive prediction rates 

of 79%, 91% and 60% were observed for the positive, negative and no FE groups 

(Figure 3-3). The SVM model showed the highest specificity in negative FE prediction 

(98%) where the lowest specificity was calculated for no FE drugs (69%). Intermediate 

MCC scores of 0.6, 0.7 and 0.5 were observed for the positive, negative and no FE 

classes respectively. Upon interpretation of the PCA correlations loading plot, HBD 

was the most influential property for classification prediction using this SVM-based 

model.  

ANN model development resulted in an optimum three-layer feed forward network 

denoted MLP 4-13-3 (Figure 3-4). This network consisted of a single input layer with 

four descriptors, octanol-water partition coefficient (S+logP), number of hydrogen 

bond donors (HBD), Topological Polar Surface Area (T_PSA) and Dose (mg), a single 

hidden layer with 13 nodes and an output layer with three output variables representing 

the 3 possible FE classifications (positive, negative, no FE). This network achieved 

high overall prediction accuracy in both the training (82%) and test sets (72%) (Figure 

3-3). In terms of the individual classes, in contrast to the SVM model, drugs displaying 

positive FE could be distinguished the easiest displaying the highest sensitivity rates 

in both the training (91%) and test sets (73%), while the lowest sensitivity was seen 

for the no FE group (76% training, 71% test). For the positive, negative and no FE 

groups respectively, the precision of the predictions were 83%, 93% and 73%, 
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specificity was 90%, 98% and 85% and higher MCC scores of 0.8, 0.8 and 0.6 closer 

to 1 were obtained (Figure 3-3). From the normalised importance chart, the most 

important property for prediction was S+logP, followed by T_PSA, HBD and Dose. 

However, all properties displayed over 67% importance to prediction.  

Overall, relatively similar overall prediction accuracy was achieved using both ML 

algorithms, as ANN marginally outperformed SVM. The proposed ANN network 

demonstrated equivalent or higher sensitivity, precision, and specificity statistics for 

all but one metric for the three FE classes. In terms of MCC, which have been reported 

as a more reliable overall performance evaluator, comparatively higher scores were 

observed for the ANN model. Resultantly, considering these superior and more 

consistent classification results along with the requirement for less input descriptors, 

it was concluded that the ANN algorithm produced the more robust model for this 

dataset. 

 

Table 3-1: Overview of the SVM and ANN machine learning models produced in this study, detailing the inputs, 

model architecture and the comparative overall accuracies upon training and testing.  

Model 

Type 

Input Properties Used Architecture Overall 

Accuracy 

Training Set 

Overall 

Accuracy 

Test Set 

 

 

SVM 

 

Dose, HBD, F_HBP, 

S+logP, T_PSA, 

logHLC 

 

Kernel: RBF 

Gamma: 0.01 

C value: 16.68 

 

 

 

72% 

 

 

69% 

 

 

ANN 

 

 

 

Dose, HBD, S+logP, 

T_PSA 

 

 1 hidden layer 

13 hidden nodes 

 

 

82% 

 

 

72% 
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Figure 3-3: Visual comparison of the sensitivity, precision, specificity and Matthew’s correlation coefficient 

(MCC) performance metrics calculated for the optimum support vector machines (SVM) and artificial neural 

networks (ANN) models produced in this study to predict food effect (FE) classification.  
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Figure 3-4: Schematic representation of the optimum multilayer perceptron (MLP) 4-13-3 artificial neural network 

(ANN) produced which outperformed support vector machines (SVM) for the food effect (FE) classification of 

drugs licensed from 2016-2020. H refers to hidden layer node.  
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Discussion 

The significant effects of concomitant food intake on the pharmacokinetics of many 

drugs highlights the importance of FE predictions. The capability to predict FE early 

in the drug development process can potentially expedite progression of drug products 

through pipelines and streamline the regulatory approval process through identifying 

where clinical FE studies may or may not be required. As a result, the earliest possible 

elucidation of important drug properties which indicate a likely FE is vital, as it was 

seen in this study that 43% of drugs licensed in the last 5 years reported either a 

significant positive or negative FE. While various efforts, dating as far back as 1996 

(227) have been made to correlate FE with drug properties, the purpose of this study 

was to investigate if modern ML capabilities could predict the FE classification of 

drugs. As the dataset employed embodied drugs brought to market in the last 5 years, 

which are largely diverse in terms of their structural, physicochemical, and 

pharmacokinetic properties, it was analysed if these ML algorithms could yield 

predictive tools relevant for the contemporary drug development landscape.  

Our study demonstrated the capability of ML algorithms to predict FE classification 

using drug descriptors. Upon comparison of the two ML algorithms, results suggested 

that while both approaches demonstrated capacity for prediction, ANN outperformed 

SVM. The optimum ANN, containing 1 hidden layer of 13 nodes and using 4 input 

properties (S+logP, T_ PSA, HBD, Dose), yielded strong overall accuracy in 

classification for both training (82%) and test sets (72%). Comparatively, the SVM 

model which employed 6 input properties (S+logP, T_PSA, HBD, Dose, F_HBP, 

logHLC) for prediction, did also demonstrate relatively good accuracy upon training 

(72%) and testing (69%). However, in terms of the performance metrics analysed i.e., 

precision, sensitivity, specificity and MCC, the ANN model proved either superior or 
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equivalent to SVM in 11/12 cases, including MCC scores closer to 1 for all three 

classes. The exact reason for the improvement in performance metrics and requirement 

for less inputs for ANN, while difficult to pinpoint, may be attributable to the varying 

mathematical approaches used by both methods to classify this non-linearly separable 

dataset and map the data to higher dimensional spaces, i.e. kernel tricks (SVM) and 

non-linear activation functions (ANN) (184, 185, 223, 228). While the comparative 

accuracy of SVM versus ANN modelling is dependent on the specific dataset 

involved, the easily interpretable, readily obtainable, and widely recognisable nature 

of the four properties used in the ANN model to formulation scientists expands its 

applicability in a preclinical setting, as at this time only limited resources and 

preliminary information are available regarding a model compound. Accordingly, this 

study supports the application of ML algorithms, in particular ANN, to provide 

accessible tools for FE prediction of newly licensed drugs.  

Our models identified key physicochemical and molecular properties which contribute 

to the classification of newly licensed drugs according to the likely effect of food on 

extent of drug absorption. While the ANN model found four properties of S+logP, 

Dose, HBD and T_PSA to be noteworthy, using SVM the properties of logHLC and 

F_HBP were also required. The inclusion of S+logP as the most important property 

for ANN prediction matches observations from our preliminary statistical analysis. 

There S+logP, a widely used drug parameter used in PBPK modelling (229), was the 

only property significantly different between all three pairwise comparisons (Figure 

3-1). While another type of partition coefficient, logHLC was also significant for SVM 

modelling, S+logP or increasing drug lipophilicity in particular, has previously been 

linked with increased susceptibility to positive FE (3, 213, 230), through the increased 

dissolution and solubilisation effects of food for lipophilic drugs. This is a partition 
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property, while a hypothesis for its significance may relate to ingestion of fatty foods 

resulting in greater partitioning of lipophilic drugs between the digestion phases which 

could be related to the kinetics of partition between octanol and water. Using a cohort 

of pre-2005 drugs, Singh et al. found a significant positive correlation between AUC 

ratio and logP, where the positive effect of food was more pronounced for lipophilic 

drugs (213). In agreement, in this study, we observed that 41% of drugs with a positive 

FE had S+logP values >4, with 84% >2. Gu et al. and Omachi et al. have also 

successfully utilised logP or the closely related logD as a critical parameter to predict 

FE on AUC using both logistic regression and decision tree analysis (214, 215). 

Nevertheless, while the significance of S+logP in our model suggests the importance 

of a lipophilicity indicator to predict FE on AUC, caution has previously been advised 

in terms of using this blanket generalisation of likely positive FE for all PWSD as 

exceptions exist (213). In addition to its importance as a partition property, the 

requirement for S+logP may also reflect its significance to predict other 

biopharmaceutical properties such as membrane permeability, as it is possible that 

some dietary foods may affect permeability, however, it is unlikely that this would be 

unique to certain drugs. Lipophilicity has previously been correlated with permeability 

measurements for compounds which are passively transported (72, 74, 75, 154, 231).  

In this study S+logP alone did not prove sufficient for accurate prediction of FE, as 

other properties including HBD and T_PSA were found in the final models. While 

these were not previously significant parameters for FE classification using logistic 

regression (214), using this contemporary cohort of drugs ML identified their 

predictive abilities. Both parameters, have been formerly associated with membrane 

permeability (72), as poor permeation is suggested to be likely with drugs of PSA 

>140Å (232, 233), where T_PSA is the commonly used PSA descriptor (3), and an 
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excessive number of HBD groups impairs permeability across a membrane bilayer 

(76, 155, 234), as specified by a cut-off of 5 in Lipinski’s rule-of-5 developability 

criteria (72). Both parameters were used previously along with logP, to predict human 

jejunal permeability (Peff) using PLS (154). It could be suggested that the role of both 

T_PSA and HBD in the ML models was to aid identification of drugs with negative 

FE as HBD and T_PSA demonstrated the highest mean values for the negative FE 

class upon preliminarily statistical analysis (Figure 3-1). This finding correlates well 

to the Fleisher et al. summary of FE prediction based on BCS class where Class III 

drugs, of poor permeability and good solubility, are likely to exhibit negative FE (191). 

Such negative FE were previously associated with highly hydrophilic drugs displaying 

a narrow window of absorption (203, 214).  

Dose was also a significant parameter in classify drugs by FE on AUC. Upon early 

statistical analysis, it was observed that over 18% of drugs displaying a positive FE 

used a dose >500 mg in their respective pharmacokinetic studies, compared to 0% and 

6.25% of negative and no FE drugs respectively, with 59% of this positive class using 

a dose >200 mg. While the exact reason for this substantial difference in dosage 

strength between classes is unknown, previously a logistic regression model found 

dose number and MAD to be significant for FE classification (214). However, when 

tested neither were found to be significant in our ML models. In addition, the 

dose/solubility ratio of a drug was previously significantly correlated with AUC ratio 

(213), however, in our analysis neither this ratio nor S+Sw, despite displaying 

significant differences between classes in our preliminary statistics, were important 

for ML prediction. It could be hypothesised that this dose parameter aided the 

prediction of positive FE drugs due to its ability to differentiate positive FE drugs from 

both negative and no FE classes in our initial statistical analysis (Figure 3-1). Overall, 



 

127 
 

the properties most significant for FE classification demonstrate the importance of 

both solubility and permeability for FE prediction. These properties reflect widely 

known drug-likeness filters, drug classification systems and properties used in 

previous models for FE prediction. It is likely that any differences in significant 

properties compared with previous publications reflect the different datasets of drugs 

used to build the respective models, as this study reflects the most contemporary drug 

products licensed in the last 5 years.  

As previously stated, in terms of accuracy the ANN model outperformed SVM for FE 

classification. However, when compared to predictions using BCS class, both ML 

models performed strongly as the overall BCS accuracy (46%) was substantially 

weaker than that of the ML algorithms. BCS classifications appeared inadequate 

compared to ML in terms of consistency in precision, sensitivity, specificity and MCC 

scores. Owing in part to a large number of false positive predictions (58 drugs), this 

BCS accuracy of 46% is substantially lower than its previous 67% accuracy in 

classifying FE for a database of pre-2007 drugs (214). Possible reasons for this 

inaccuracy compared to pre-2007 drugs are unclear but may reflect that the drugs 

licensed between 2016-2020 represent a different chemical design space. While direct 

accuracy comparisons with the ML models are not achievable as no trends in FE have 

been suggested for BCS class IV drugs, perhaps improved predictions with the BCS 

tool could be obtained going forward with further subdivision of categories into weak 

acids, weak bases, and lipophilic compounds (201), however this was not within the 

scope of this study. Additionally, the accuracy of the ANN model compared 

favourably to accuracies of 80% and 66% achieved in previous computational 

approaches to predict FE classification (214, 215). Ultimately, direct comparisons of 

prediction accuracies are unachievable due to the absence of external test sets in these 
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previous publications and differences in the datasets used to build the respective 

models.  

This work identifies ANN as an accurate and efficient solution in detecting 

correlations between FE and drug properties from a cohort of newly licensed drugs 

using only 4 well-known drug properties. In the grand paradigm of drug development 

and computational pharmaceutics this model would provide early indication of 

significant FE, facilitating informed decisions in drug development. Including whether 

redesign of the drug candidate may be relevant based on drug properties or whether a 

bio-enabling strategy should be applied, prompting subsequent application of other 

computational models, such as an example from our own group (Chapter 4) (86, 114, 

160, 235), which would give an indication as to whether a lipid-based formulation 

(LBF) or other formulation strategies which are reported to overcome FE, may offer a 

high likelihood of success.  

The effects of food on drug bioavailability are multifaceted, involving physiological, 

physicochemical, and biochemical mechanisms, and as a result, similar to all current 

methods to anticipate FE, limitations of our models are acknowledged. By design, 

data-driven modelling approaches identify correlations between individual drug 

properties of the dataset and classifications, thereby facilitating prediction of the 

general physiological changes exert by food on drug absorption. However, such an 

approach, limited by the physicochemical parameters employed, cannot capture all 

contributing factors drug specific FE such as effect on metabolism, bile-micelle 

binding, specific chelation between food and a drug or activity of a specific transporter 

or enzyme (92, 200, 201). As understanding of such effects continues to grow across 

future studies, in line with continued improvements and understanding of other 

approaches of FE prediction, opportunities will exist to broaden the utility of these 
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predictions to incorporate such factors. This aside, these current models successfully 

predict FE category, providing evidence of a computational tool suited for easy 

integration within current pre-clinical drug development.  

 

Conclusion 

In this study, innovative predictive models using two ML algorithms (SVM and ANN) 

were developed which accurately predicted the FE category of drugs licensed between 

2016-2020, of which 43% demonstrated significant FE. These models were found to 

possess greater prediction accuracy than FE predictions using the BCS criteria and 

performed strongly upon comparison to previously published tools using older drug 

datasets. This predictive modelling enabled key physicochemical parameters that 

contribute to the effect of food on the extent of drug absorption to be identified, namely 

S+logP, T_PSA, HBD and Dose. Therefore, this exploratory work provides a further 

mechanistic basis to understand a drugs behaviour in fed and fasted conditions using 

a contemporary cohort of licensed drugs. Of course, the rationale and requirements for 

FE determination will differ depending on the stage of drug development, be that 

preliminarily formulation testing or the investigation of specific pharmacokinetic 

parameters. Regardless, the ML tools, particularly the ANN model produced in this 

study, can facilitate screening of drug candidates, with little cost and effort at the early 

stages of drug development, utilising only easily recognisable drug properties. 
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Abstract 

Purpose: Computational approaches are increasingly utilised in development of bio-

enabling formulations, including self-emulsifying drug delivery systems (SEDDS), 

facilitating early indicators of success. This study investigated if in silico predictions 

of drug solubility gain i.e., solubility ratios (SR), after dispersion of a SEDDS in 

biorelevant media could be predicted from drug properties.  

Methods: Apparent solubility upon dispersion of two SEDDS in FaSSIF was 

measured for 30 structurally diverse poorly water-soluble drugs. Molecular descriptors 

were used as inputs during partial least squares (PLS) and multiple linear regression 

(MLR) modelling.  

Results: Increased drug solubility upon SEDDS dispersion was observed in all cases, 

with higher SRs observed for cationic and neutral versus anionic drugs at pH 6.5. PLS 

models for SRMC (r
2 = 0.81) and SRLC (r

2 = 0.77) were developed. MLR facilitated 

generation of simplified SR equations with high predictivity (SRMC r2 = 0.74; SRLC r2 

= 0.69), requiring only three drug properties; partition coefficient at pH 6.5 (logD6.5), 

melting point (Tm) and aromatic bonds as a fraction of total bonds (F_AromB).  

Conclusion: This study demonstrated that computational predictions can be 

incorporated within conventional biopharmaceutics related classification systems. By 

using the equations to inform drug developability classifications (DCS) for drugs that 

have already been licensed as lipid-based formulations, merits for development with 

SEDDS was predicted for 2/3 drugs.  
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Introduction  

Increasing numbers of poorly water-soluble drugs (PWSD) in development pipelines 

has intensified the need for bio-enabling formulations to enhance oral bioavailability 

(6, 14). One such approach involves administration of drug substances in lipid-based 

formulations (LBFs), which enhance apparent solubility of PWSD, while potentially 

also increasing absorption via stimulation of endogenous lipid absorption pathways 

for lipophilic xenobiotics. Despite numerous commercial examples of LBFs, with 

previous estimations of up to 4% of orally administered drug products utilising LBFs 

(99), it was recently observed that relative numbers of new commercial products using 

LBFs have declined over the last decade (222). Such statistics suggest challenges to 

more widespread adoption of LBFs among pharmaceutical companies, potentially 

linked to a lack of clear guidance on appropriate early screening to guide bio-enabling 

formulation selection (15).  

Self-emulsifying drug delivery systems (SEDDS) fall under the umbrella term LBFs, 

and refer to combinations of oils with surfactants and co-solvents which spontaneously 

emulsify forming a stable emulsion on dispersion in the gastrointestinal tract (GIT) 

(25). Ability to self-emulsify and maintain solubilisation on dispersion is a key 

SEDDS performance determinant. Typically, the drug dose should be soluble in the 

SEDDS vehicle, and much effort is focused on determining the inherent lipid 

solubility of the drug, usually involving resource intensive drug solubility screening 

in a range of lipid excipients (87, 236). More recently, the application of computational 

models, in conjunction with drug biopharmaceutical profiling, has been explored to 

support higher throughput formulation selection for LBFs (3, 54). While certain 

computational approaches aim to determine drug properties which produce favourable 

oral drug candidates, other tools have instead examined molecular properties that may 
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signal necessity for use of bio-enabling strategies or alternatively signal greater 

suitability for a particular type of bio-enabling strategy. Regarding the latter, a number 

of noteworthy studies have demonstrated utility of computational pharmaceutics 

approaches to predict lipid solubility to act as a guide for maximal dose loading in 

LBF pre-concentrates (114, 115, 161, 237). Critically, while predictions of the drug 

solubility in lipids are useful to guide initial understanding of the maximum dose 

loading in the SEDDS vehicle, this approach does not represent the sole criterion for 

LBF suitability.  

Modifications in the GIT upon SEDDS ingestion are crucial in determining 

formulation performance, as solubilisation capacity in luminal media can be altered 

dramatically following SEDDS emulsification and through interactions of lipid 

excipients with endogenous solubilising species (17, 238, 239). SEDDS dispersion 

leads to increased drug solubilisation, transient supersaturation, and potentially 

precipitation, thereby presenting drugs to intestinal fluids at concentrations exceeding 

their equilibrium solubility (240). From a biopharmaceutical perspective, apparent 

drug solubility in intestinal fluid upon SEDDS dispersion appears critical in 

determining LBF suitability. Accordingly, the lipid formulation performance 

classification system emphasises formulation capability to retain solubilisation upon 

dispersion and digestion (88). The use of simulated biorelevant fluids in such in vitro 

assessments is likely to be a more reliable indicator of whether a SEDDS approach 

can effectively solubilise the dose in vivo. Biorelevant testing is an integral part of 

pharmaceutical characterisation, revealing concentrations likely to be soluble within 

human intestinal fluids (HIF) (241, 242), while a key tenet of the developability 

classification system (DCS) is the use of biorelevant solubility in fasted state simulated 

intestinal fluids (FaSSIF) as an improved guide to in vivo performance and drug 
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developability (13). More recently, a refined DCS (rDCS) extended this developability 

concept to include customised in vitro assessments of supersaturation and precipitation 

risks involving absorption number (An) and dose number (Do) (67). Such 

developability guides, along with decision trees utilising biorelevant media instead of 

buffered aqueous media (5, 13, 243, 244), signify emerging emphasis on 

developability and biopharmaceutical concepts in early product testing. However, as 

in vitro techniques utilised to predict the dose that is effectively solubilised in vivo can 

be complex and resource heavy, development of models capable of predicting this 

dose are strongly merited (51). 

With regard to both advancing LBF computational pharmaceutics and use of 

biopharmaceutically relevant conditions, our hypothesis was to apply a computational 

approach to predict solubility increases upon SEDDS dispersion. Given the inherent 

complexity of the mixed colloidal species formed upon dispersion of SEDDS with 

endogenous biliary lipids, approaches to predict apparent solubility are considered 

complex at this stage. As an alternative, the solubility increase achieved via SEDDS 

dispersion in FaSSIF, relative to drug solubility in FaSSIF, represents a more realistic 

modelling parameter. This can be used to inform the maximal dose solubilised within 

the intestine, assuming experimental drug solubility in FaSSIF is known.  

Accordingly, this study attempted to apply a computational approach in relating drug 

properties to predict solubility increases (i.e., solubility ratios) following SEDDS 

dispersion. This approach can therefore be used to effectively guide the dose number 

(Do) produced in intestinal fluids. Subsequently, this study explored suitability of 

linking the predicted Do to the framework provided by the DCS and hence, providing 

a tool for guiding developability of a SEDDS formulation strategy in early stage drug 

development. To achieve this aim, apparent drug solubility of 30 PWSD was 
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experimentally determined upon dispersion in FaSSIF of two prototype SEDDS. 

SEDDS were selected based on prior ability to spontaneously emulsifying, forming a 

stable microemulsion and were composed of either a medium chain (SEDDSMigylol812) 

or long chain (SEDDSOliveOil) oil phase, with a common surfactant, co-surfactant blend 

in order to examine their excipient effects (51). Solubility ratios (SRMC and SRLC) 

achieved versus FaSSIF solubility were collated with drug descriptors to develop 

computational models and predictive equations. Through prediction of DCS 

classifications, this work aimed to advance the concept of computational 

pharmaceutics to inform drug developability, exemplifying use of predictive tools to 

expedite formulation options in early development. 
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Methods 

Dataset Selection  

A dataset of 30 structurally diverse PWSD was selected (Table 4-1). Drugs were 

selected based on a range of criteria including availability of published reports of drug 

properties, utilisation in previous LBF computational modelling publications and 

drugs commercially licensed as LBFs (114, 115, 119, 243). Light absorbing ability of 

the compounds’ UV-chromophores were also considered, to allow sufficient 

detectability by the fibre optic UV probes of the µDISS Profiler. A final drug data set 

was selected to ensure a sufficient representation of drugs categorised as anionic (8), 

cationic (9) and neutral (13) overall at pH 6.5. The Henderson-Hasselbalch equation 

was used to determine ionisation at pH 6.5 (Table 4-1). All drug compounds were 

purchased from Kemprotec Ltd (Cumbria, United Kingdom). The final dataset 

displayed a wide physicochemical profile of molecular weight (MW) (230-868.44 

g/mol), lipophilicity (clogP) (2.1-7.1) and melting point (Tm) (79-296.5ºC). 

 

 

 

 

 

 

Table 4-1: Selection of physicochemical and molecular properties of investigated compounds collated from 

literature or ADMET Predictor 9.5. 0 = no charge at pH 6.5, + = positive charge, - = negative charge.  Am = 

Ampholyte. % refers to the percentage of the drug’s ionisable groups ionised at pH 6.5 according to the Henderson-

Hasselbalch Equation. 



 

137 
 

 

Drug Compound MW (g/mol) clogP logD6.5 Acid/Base 

 /Neutral 

pKa (% ionised at pH 

6.5) 

Classification of Charge 

pH 6.5 

Tm 

(°C) 

PSA (Å2) HBD HBA Ro5 Max Dose 

(mg) 

Albendazole 

Candesartan Cilexetil 

Carbamazepine 

Carvedilol 

Celecoxib 

Cinnarizine 

Clofazimine 

Clotrimazole 

Danazol 

Dipyridamole 

Felodipine 

Fenofibrate 

Glipizide 

Griseofulvin 

Haloperidol 

Indomethacin 

Irbesartan 

Isotretinoin 

Itraconazole 

Ketoconazole 

Mefenamic Acid 

Naproxen 

Nifedipine 

Phenytoin 

Progesterone 

Spironolactone 

Tamoxifen 

Terfenadine 

Tolfenamic Acid 

Venetoclax 

265.3 

610.7 

236.27 

406.4 

381.37 

368.6 

473.40 

344.9 

337.5 

504.64 

384.3 

360.9 

445.5 

352.77 

375.9 

357.8 

428.53 

300.44 

705.7 

531.43 

241.29 

230.26 

346.34 

252.27 

314.5 

416.57 

371.52 

471.67 

261.7 

868.44 

2.81 

5.70 

2.40 

3.88 

3.81 

4.92 

7.11 

5.08 

4.26 

3.10 

5.03 

5.20 

2.12 

2.51 

3.82 

4.03 

3.68 

6.07 

4.89 

3.67 

4.91 

3.21 

3.10 

2.09 

3.94 

3.28 

6.59 

5.60 

5.13 

6.76 

2.80 

2.89 

2.40 

2.36 

3.81 

3.98 

4.54 

5.06 

4.26 

3.02 

5.03 

5.20 

1.48 

2.51 

2.06 

1.45 

2.84 

3.99 

4.89 

3.51 

2.36 

1.10 

3.10 

2.07 

3.94 

3.28 

4.61 

3.61 

2.44 

6.54 

Ampholyte 

Ampholyte 

Basic 

Basic 

Acidic 

Basic 

Basic 

Basic 

Neutral 

Basic 

Basic 

Neutral 

Acidic 

Neutral 

Basic 

Acidic 

Ampholyte 

Acidic 

Basic 

Basic 

Acidic 

Acidic 

Acidic 

Acidic 

Neutral 

Neutral 

Basic 

Basic 

Acidic 

Ampholyte 

 10.26 (0%), 2.8 (0%) 

6 (76%) 

13.9 (0%) 

7.8 (95%) 

11.1 (0%) 

8.4 (99%) 

8.51 (99%) 

6.7 (96%) 

- 

6.59 (55%) 

5.07 (3%) 

- 

5.9 (80%) 

- 

8.3 (98%) 

4.5 (99%) 

4.12 (0%), 7.4 (11%) 

4 (99%) 

3.7 (0%) 

6.75 (64%), 4.22 (0%) 

3.89 (99%) 

4.15 (99%) 

3.93 (99%) 

8.3 (2%) 

- 

- 

8.5 (99%) 

10 (99%) 

5.11(96%) 

3.4 (99%), 10.3 (99%) 

0 

- 

0 

+ 

0 

+ 

+ 

+ 

0 

+ 

0 

0 

- 

0 

+ 

- 

0 

- 

0 

+ 

- 

- 

- 

0 

0 

0 

+ 

+ 

- 

0 

209 

163 

190.2 

114.5 

158 

119 

211 

142 

227 

163 

143 

79 

201.5 

220 

151 

160 

180.5 

174 

166 

146 

230.5 

153 

173 

296.5 

128 

134.5 

97 

147 

213 

138 

67.01 

143.3 

46.3 

75.7 

77.98 

6.48 

40 

17.8 

46.3 

145 

64.4 

52.6 

130.15 

71.1 

40.5 

68.5 

87.13 

37.3 

104.7 

69.06 

49.3 

46.5 

110.45 

58.2 

34.1 

60.44 

12.5 

47.3 

49.3 

172.03 

2 

1 

1 

3 

1 

0 

1 

0 

1 

4 
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0 
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1 

1 

1 

1 
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0 

2 

1 

1 

2 

0 

0 

0 

2 

2 

3 

3 

8 

1 

5 

3 

2 

4 

1 

2 

12 

3 

4 

6 

6 

3 

4 

5 

2 

9 

6 

3 

3 

5 

2 

2 

3 

2 

3 

3 

10 

0 

1 

0 

0 

0 

1 

1 

1 

0 

2 

0 

1 

0 

0 

0 

0 

0 

1 

2 

1 

1 

0 

0 

0 

0 

0 

1 

1 

0 

2 

200 

32 

300 

25 

200 

25 

50 

10 

200 

200 

10 

150 

10 

500 

20 

50 

300 

40 

100 

200 

500 

500 

90 

300 

200 

100 

20 

60 

200 

100 
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Formulations 

Two SEDDS previously utilised for oral delivery of a model PWSD in preclinical 

studies were chosen (51). SEDDSMigylol812 contained 40% w/w medium chain 

triglycerides (Miglyol 812) with 20% w/w surfactant (Kolliphor RH 40 - polyoxyl-40-

hydrogenated castor oil) and 40% w/w co-surfactant (Tween 85 - polyoxyethylene-

(20)–polysorbitan trioleate). SEDDSOliveOil contained 40% w/w long chain 

triglycerides (olive oil), while quantities of surfactant and co-surfactant remained 

similar to SEDDSMigylol812, with 20% Kolliphor RH 40 and 40% Tween 85. Migylol 

812N is primarily composed of C8 and C10 fatty acids (approx. 60:40%). Olive oil 

contains saturated and unsaturated fatty acids of primarily C16-C18 chain length. 

Miglyol 812N was kindly gifted from IOI Oleo GmbH (Hamburg, Germany), while 

Olive Oil, Tween 85 and Kolliphor RH 40 were purchased from Sigma-Aldrich 

(Ireland). SEDDS were prepared by weighing exact excipient quantities into a screw 

cap glass tube and incubated at 37 °C, overnight on a stirring plate 200 rpm (Mixdrive 

15, 2MAG, Germany).  

 

Media Preparation 

Phosphate buffer (PhBpH6.5) and FaSSIF-V1 were prepared according to 

biorelevant.com (Croydon, UK) protocol and adjusted to pH 6.5 using a Model 3510 

pH/mV/Temperature Meter (Jenway, UK). FaSSIF-V1 was chosen due to high 

correlation with HIF and availability of drug solubility datasets (245, 246). Water was 

obtained from a MilliQ water system. All chemicals and solvents were of analytical 

or high-performance liquid chromatography (HPLC) grade and purchased from 

Sigma-Aldrich (Ireland). Conditions for simulating dispersion of the SEDDS in 

intestinal fluids were produced by dispersing SEDDS (1:200 dilution) in PhBpH6.5 (i.e., 
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PhBpH6.5-SEDDSMigylol812 and PhBpH6.5-SEDDSOliveOil) and FaSSIF (i.e., FaSSIF-

SEDDSMigylol812 and FaSSIF-SEDDSOliveOil). This lipid dilution was chosen to be 

typical of reasonable lipid concentrations found in a biorelevant volume.   

 

Media Characterisation: Media Droplet Size and Zeta Potential 

Droplet size (nm) and polydispersity index (PDI) of FaSSIF, FaSSIF-SEDDSMigylol812, 

FaSSIF-SEDDSOliveOil, PhBpH6.5-SEDDSMigylol812 and PhBpH6.5-SEDDSOliveOil were 

measured using Dynamic Light Scattering (DLS) with a Malvern Zetasizer Nano ZS 

(Malvern Analytical, US) with a 4mW 633nm He-He laser at 37°C with a 

backscattering angle of 173° using the Stokes-Einstein equation. Measurements were 

performed with unfiltered samples in disposable UV-cuvettes from Sarstedt AG & Co. 

KG (Numbrecht, Germany) (10 x 4 x 45 mm). Refractive indices used were 1.1333 

(PhBpH6.5) and 1.334 (FaSSIF) (247). The electrophoretic mobility i.e. ζ-potential, of 

colloidal structures in the media was measured using the Zetasizer in disposable folded 

capillary cells (DTS1070) using the Helmholtz-Smoluchowski equation (248). Each 

analysis was conducted in triplicate, presented as mean ± standard deviation.   

 

Experimental Solubility Determination 

Apparent drug solubility studies in FaSSIF, FaSSIF-SEDDSMigylol812 and FaSSIF-

SEDDSOliveOil were experimentally determined over 24 hours as the 24-hour time point 

was used for solubility ratios. Solubility was determined via either shake flask with 

RP-HPLC/UV analysis (6 drugs) or µDISS Profiler (Pion INC, Woburn, MA) (24 

drugs), where preliminary studies verified method comparability (Appendix 3 Table 

3-3).  
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Shake Flask Method 

Drug was added in excess to triplicate glass vials containing either FaSSIF, FaSSIF-

SEDDSMigylol812 or FaSSIF-SEDDSOliveOil (n=3). pH was maintained at 6.5 prior to 

experiments. Vials were placed on a stirring plate (Mixdrive 15, 2MAG, Germany) in 

a 37°C incubator at 300 rpm. 300 µl samples were removed at 2, 4, 6 and 24 hours. 

Excess solid was separated using a centrifuge for 15 minutes at 21,380 x g (Mikro 200 

R, Andreas Hettich GmbH & Co. KG, Germany). Samples were diluted in acetonitrile 

for analysis via RP-HPLC/UV. Drug Detection was conducted using an Agilent 1200 

series HPLC system. The columns and mobile phases used for each drug analysed 

along with injection volume, flowrate and detection wavelength can be found in 

Appendix 3 Table 3-2.  

 

µDISS Profiler 

Apparent drug solubility (n = 3) was determined at a stirring rate of 300 rpm over 24 

hours (37°C). Path length of the in situ UV probes was varied (1 - 5 mm) depending 

on anticipated concentration range and the UV absorbance properties of the drug 

molecule. Standard spectra were collected for each compound at pH 6.5 and a linear 

relationship (r2 > 0.99) was established between absorbance and concentration in each 

case. The experimental run was performed in six vials where a large excess of API 

was added (10-20 times more than the anticipated FaSSIF solubility) to account for 

the potentially large solubility enhancement. These vials contained 15 ml FaSSIF-

SEDDSMigylol812 or FaSSIF-SEDDSOliveOil and a cross-bar magnetic stirrer. Two 

additional channels were used as blanks to consolidate for potential issues with 

background changing FaSSIF UV absorbance over time. The in-situ UV probes 

scanned the samples at predefined time intervals (30 minutes). Concentrations were 
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determined by considering area-under-the-curve (AUC) in second derivative spectra, 

to lessen interference from background turbidity. A range of wavelengths were utilised 

to quantify drug. Data was interpreted using the Au Pro software (Version 5, Pion 

INC, MA, USA).  

 

Drug Physicochemical and Molecular Properties 

In excess of 250 descriptors including physicochemical and modelling descriptors 

were obtained from ADMET Predictor 9.5 (Simulations Plus, USA). Tm was obtained 

from literature (5, 114, 119). Biorelevant solubility values in FaSSIF, FeSSIF and 

PhBpH6.5 were obtained from literature sources where available (119, 249). In absence 

of published data, predicted solubility values were generated (ADMET Predictor, Ver. 

9.5, Simulations Plus Inc., US). Highest licensed drug dosage strengths were obtained 

from the European Medicines Agency (EMA) or Food and Drug Administration 

(FDA) databases. 

 

Biopharmaceutical Data Analysis  

Apparent drug solubility values in all media are presented as mean ± standard 

deviation (n=3) (Appendix 3 Table 3-1). Solubility ratios (SR) for the 30 drugs with 

either FaSSIF-SEDDSMigylol812 (referred to as SRMC) or FaSSIF-SEDDSOliveOil 

(referred to as SRLC) versus FaSSIF were calculated via Equation 1:  

(1) 𝑆𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑡𝑦 𝑅𝑎𝑡𝑖𝑜 (𝑆𝑅) =
𝐴𝑝𝑝𝑎𝑟𝑒𝑛𝑡 𝑆𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑡𝑦 𝐹𝑎𝑆𝑆𝐼𝐹−𝑆𝐸𝐷𝐷𝑆 

𝐴𝑝𝑝𝑎𝑟𝑒𝑛𝑡 𝑆𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑡𝑦 𝐹𝑎𝑆𝑆𝐼𝐹
 

SR standard error (SE) was calculated from Equation 2 as previously reported (5): 
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(2) SE = 𝑆𝑅 𝑥 √
𝑆𝐴2

𝐴2  +  
𝑆𝐵2

𝐵2  

Where A, B, SA and SB refer to the mean measured solubility values (24hrs) and 

standard errors for A (FaSSIF) and B (FaSSIF-SEDDS) respectively. In order to assess 

capacity for SEDDS to bridge the fasted-fed state solubility gap, SRMC and SRLC were 

related to comparative SRs for each drug using FeSSIF solubility in place of drug 

solubility upon SEDDS dispersion i.e., FeSSIF/FaSSIF. Graphs illustrating SRs were 

obtained using Prism (Version 5, Graphpad, USA). Linear regression was performed 

using Excel (Microsoft Office, 2016) to assess correlations between SR and individual 

drug properties or solubility in various media. To test significance between paired 

solubility values in FaSSIF-SEDDSMC versus FaSSIF-SEDDSLC the distribution of the 

difference was used to determine normality. A two-sided bootstrap-paired test (5000 

samples) was used to determine significance (p < 0.05). A simple scatter plot was 

produced for FaSSIF-SEDDSMigylol812 versus FaSSIF-SEDDSOliveOil and regression 

coefficients fitted for interpretation and a bootstrap test for the coefficients conducted. 

A two-sided independent samples t-test was used to analyse media droplet sizes and 

Levene’s test was used to check for equality of variances. A p-value < 0.05 indicated 

a violation of equal variance. All statistical analysis was conducted using SPSS 

Statistics (Version 26, IBM Corporation, US). 

 

Multivariate Data Analysis and Modelling Parameters 

Multivariate data analysis (MDA) was conducted using Unscrambler (Version 11, 

Camo Analytics, US). Molecular structures were acquired as smiles from PubChem 

and used as inputs for the ADMET Predictor software (Version 9.5, Simulations Plus, 

California, USA) to calculate >250 molecular descriptors. These were added to PSA 



 

143 
 

and Tm and used as variable inputs for principal component analysis (PCA) and partial 

least squares (PLS) modelling. Modelling responses were the logarithm of SR in both 

SEDDS (logSRMC and logSRLC). PCA was first applied randomly to aid training/test 

set identification. A split of 70:30 (21:9 drugs) of training:test set was used to increase 

model robustness. Training set criteria was that it covered the test set chemical space 

along with a relatively even spread of SRs. Influential outliers were placed in the test 

set if they displayed both large residual and high leverage in the influence plot. A 

Hotelling’s T2 ellipse was also applied for outlier detection (95% confidence interval).  

PLS was used to establish important descriptors for predicting SRMC and SRLC. The 

nonlinear iterative partial least squares (NIPALs) algorithm was utilised and all 250+ 

variables were mean centred, de-identified and standardized through scaling by 

standard deviation. Descriptors displaying the same value for all drugs were removed, 

along with skewed descriptors. To limit overfitting potential, a limit of two principal 

components was used. Variable reduction was performed to decrease complexity and 

noise. A Martens’ uncertainty test was applied to help identify important variables and 

assess stability. This involved a “jackknifing” procedure and production of sub-

models to identify non-significant variables (250). Variable weighted beta coefficient 

rankings from the Important Variables plot and their p-values were also used to 

remove unimportant variables. Variables in the same area of the correlation loadings 

plot were removed leaving a singular variable. Variables near the centre of this plot 

were removed. Any change in r2 calibration and r2  validation was monitored. Model 

accuracy was validated by the Root Mean Square Error (RMSE) of validation and 

calibration. Models were validated by a full cross validation (leave-one-out) to 

improve power and by test sets of drugs not used in model development to strengthen 

general applicability. 
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Solubility Equation for Predicting Biopharmaceutical Dose Number and DCS 

Class.  

It was then investigated if easily interpretable equations based on drug properties could 

predict SRMC and SRLC. Multiple linear regression (MLR) was performed using Excel 

(Microsoft Office, 2016) to investigate correlations between selected significant PLS 

model variables versus logSRMC and logSRLC. Equation development was monitored 

by descriptor p-values, the f-value, r2 and adjusted r2. The same training and test sets 

as PLS were used.  

DCS classification of each drug was obtained using solubility and permeability 

parameters outlined previously (13, 67). While drug permeability was predicted from 

the ADMET Predictor (Version 9.5, Simulations Plus Inc., US), solubility criteria was 

obtained using a dose/solubility ratio in 500mls of media using equation (3): 

(3) 𝐷𝑜 =
𝐷𝑜𝑠𝑒

(𝑆𝑠𝑖 )(𝑉𝑠𝑖)
 

Where, Dose is the highest dose, Ssi apparent solubility in biorelevant media i.e., 

FaSSIF, Vsi is the available fluid volume for dissolution in the small intestine (500 

mL). 

Solubility criteria for DCS classification using experimentally determined solubility’s 

upon SEDDS dispersion was calculated using equation (4): 

(4) 𝐷𝑜(𝑆𝐸𝐷𝐷𝑆) =
𝐷𝑜𝑠𝑒

(𝐶𝑠)( 𝑉𝑠𝑖)
 

Here, Cs is apparent drug solubility upon SEDDS dispersion in biorelevant media i.e., 

FaSSIF-SEDDS.  
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For DCS classifications using the predicted solubility ratios (SR) from the MLR 

equations, Cs(Predicted) was calculated using equation 5:  

(5) 𝐶𝑠(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) = 𝑆𝑅 ∗ 𝑆𝑠𝑖  

Where SR is the predicted solubility ratio upon SEDDS dispersion from the MLR 

equations and Ssi is apparent solubility of the compound in biorelevant media i.e., 

FaSSIF. Incorporating equation 5, solubility criteria for DCS classifications upon 

SEDDS dispersion was predicted using equation 6:  

(6) 𝐷𝑜(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) =
𝐷𝑜𝑠𝑒

(𝐶𝑠(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑))( 𝑉𝑠𝑖)
 

 

 Predicting DCS Classifications of Commercial LBF Drugs  

To assess the equations’ general applicability to make predictions for drugs outside 

equation development and validation, Do(Predicted) was applied to a list of drugs that 

have been successfully commercialised as LBF products (222). DCS classifications 

were produced using Do(Predicted) values (Equation 6), to predict if dose solubility 

limitations for the commercial drugs would be overcome upon SEDDS dispersion. 

FaSSIF solubility was obtained from literature or from the ADMET Predictor 9.5 

(Simulations Plus, USA) (119, 249). Predicted classifications were compared to 

classifications using FaSSIF solubility alone (Equation 3). 
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Results 

SEDDS Characterisation on Biorelevant Dispersion  

SEDDSMigylol812 and SEDDSOliveOil both dispersed in FaSSIF and PhBpH6.5 to form 

uniform stable microemulsions with droplet sizes between 36-70 nm. PhBpH6.5-

SEDDSMigylol812 and PhBpH6.5-SEDDSOliveOil displayed significantly different mean 

droplet sizes (* p < 0.05) (Table 4.2). Droplet sizes of FaSSIF-SEDDSMigylol812 and 

FaSSIF-SEDDSOliveOil also differed (* p < 0.05) and were smaller than PhBpH6.5-

SEDDSMigylol812 and PhBpH6.5-SEDDSOliveOil. All PDI’s obtained were below 0.26 

indicating droplet sizes on dispersion were moderately homogenous. In terms of 

charge, values close to zero mV were observed for PhBpH6.5-SEDDSMigylol812 and PhB 

pH6.5-SEDDSOliveOil as all SEDDS excipients were non-ionic and neutral. FaSSIF 

displayed an overall net negative charge (-14.67 mV), which remained, though 

reduced in magnitude, through dispersion of SEDDSOliveOil (-5.73 mV) and 

SEDDSMigylol812 (-5.35 mV) (Table 4-2). 

 

Table 4-2: Size determination and ζ-potential of the media used during the course of the analysis demonstrating 

that both SEDDS dispersed uniformly to form stable microemulsions.  

Media Size nm (SD) PDI (SD) ζ-potential mV (SD) 

PhBpH6.5-SEDDS Migylol812 

PhBpH6.5-SEDDSOliveOil 

FaSSIF-SEDDS Migylol812 

FaSSIF-SEDDSOliveOil 

FaSSIF 

47.71 (1.587) 

70.18 (3.003) 

36.41 (1.096) 

44.76 (0.303) 

62.52 (5.867) 

0.147 (0.01) 

0.259 (0.009) 

0.081 (0.014) 

0.197 (0.002) 

0.234 (0.073) 

-0.76 (0.49) 

-1.27 (0.32) 

-5.35 (0.31) 

-5.73 (0.16) 

-14.67 (0.42) 
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Solubility in Biorelevant SEDDS Dispersions – Comparison of SEDDS Migylol812 and 

SEDDS OliveOil  

For the 30 drugs, solubility in FaSSIF-SEDDSMigylol812 was higher than FaSSIF-

SEDDSOliveOil as a paired bootstrap test revealed a significant difference in drug 

solubility between these medium chain and long chain lipid dispersions (* p < 0.05). 

Comparatively, the beta coefficient of the regression line for FaSSIF-SEDDSMigylol812 

versus FaSSIF-SEDDSOliveOil was significant according to a bootstrap for coefficients 

test (* p < 0.05). A strong correlation was established between drug solubility in 

FaSSIF-SEDDSMigylol812 and FaSSIF-SEDDSOliveOil (r
2 0.97) (Figure 4-1), suggesting 

that for every 100 unit increase in FaSSIF-SEDDSOliveOil solubility units, FaSSIF-

SEDDSMigylol812 increases on average by 105.6 solubility units. Consequentially, this 

indicates that solubility determined in one lipid dispersion may be used to estimate 

solubility in the other.  

 

 

 

 

 

 

 

 

 

 

Figure 4-1: Scatter plot of drug solubility in FaSSIF-SEDDSMigylol812 versus Solubility in FaSSIF-SEDDSOliveOil 

displaying a high correlation (r2 = 0.9722). Linear regression line: FaSSIF-SEDDSMigylol812 = 42.47 + 

1.056(FaSSIF-SEDDSOliveOil) 
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Solubility Ratio Trends 

Solubility ratios (SR) for 30 PWSDs upon dispersion of two SEDDS was 

experimentally determined (Figure 4-2), where SR >1 was seen in all cases, indicative 

of increased drug solubility on SEDDS dispersion in intestinal media. SRs ranged 

from 1.13 - 64.4 fold for SEDDSMigylol812 and from 1.04 - 59.7 fold for SEDDSOliveOil. 

In presence of both SEDDS, Clotrimazole and Fenofibrate displayed the highest SRs. 

Trends in ionisable drugs were analysed. Cationic drugs appeared to consistently 

display high SR, with all such compounds displaying solubility gains of >2, with 3 

and 2 drugs respectively displaying SR >10 fold in presence of SEDDSMigylol812 and 

SEDDSOliveOil. In contrast, solubility gains for anionic compounds appeared less 

pronounced, with 8/9 anionic drugs displayed SR <5. However, for Candesartan 

Cilexetil, a SR >16 was observed with both SEDDS. Candesartan Cilexetil is an 

ampholyte where the hydrogen attached to the O-CH(CH3)-O group in the cilexetil 

side chain is moderately acidic, being between the oxygen rich ester moieties, while 

also possessing a basic functional group. This ampholytic nature may have contributed 

to its deviation from the general trends observed for other anionic drugs.  
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Figure 4-2: SR (drug solubility in dispersed SEDDS media/FaSSIF) achieved for neutral, cationic and anionic 

drugs (pH 6.5). Higher SRs are seen in general for cationic and neutral drugs versus anionic drugs where every 

anionic drug except candesartan cilexetil achieved a SR < 5 in both SEDDS. 
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Neutral drugs displayed a wide range of SRs, while Celecoxib and Venetoclax 

deviated strongly from the trend of similar SRs in SEDDSMigylol812 and SEDDSOliveOil, 

with Celecoxib displaying a SRMC of 17 compared to a SRLC of 7, while Venetoclax 

also displayed a difference between SRMC and SRLC i.e., 12 versus 7. To assess SEDDS 

ability to mirror solubility increases in fed-state versus and fasted-state media, SRs 

obtained were compared to FeSSIF/FaSSIF solubility ratios. SRMC and SRLC exceeded 

SRFeSSIF/FaSSIF for 24 and 23 of the 30 drugs respectively (Figure 4-3).  This observation 

confirms the utility of SEDDS as effective bio-enabling systems to bridge the fasted-

fed state solubility gap (92).  
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Figure 4-3: SR (drug solubility in both dispersed SEDDS media/FaSSIF and FeSSIF/FaSSIF). FeSSIF/FaSSIF SR 

is overcome with SEDDSMC for 24 drugs and with SEDDSLC for 23 drugs, demonstrating ability of the SEDDS to 

bridge the FeSSIF-FaSSIF solubility gap.  
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Computational Prediction of Biorelevant Solubility Gain with SEDDS.   

Linear regression revealed weak correlations between both SRLC and SRMC versus 

individual drug properties. Lipophilicity and Tm, commonly utilised as guides towards 

LBF suitability, displayed poor quantitative relationships e.g., logP (r2 0.33, 0.32), 

logD6.5 (r
2 0.43, 0.35) and Tm (r2 0.23, 0.25). Therefore, a combination of variables was 

required to improve quantitative prediction accuracy. Firstly, PCA verified the 

structural diversity of the dataset (Appendix 3 Figure 3-1). PLS model development 

resulted in predictive PLS models for both SRs (logSRMC and logSRLC). The PLS 

models used 1-2 principal components (PC) and 5-6 variables. The logSRMC 1 PC 

model produced predictions of r2 calibration 0.81, r2 validation 0.73 requiring 5 

variables; logD6.5, melting point (Tm), molecular weight (MW), aromatic bonds as 

fraction of total bonds (F_AromB) and Atom-Type Cumulative Electrotopological 

State (E-state) index for methylene carbons (SssCH2). While the logSRLC 2 PC model 

required 6 variables; LogD6.5, MW, Tm, F_AromB, SssCH2 and number of aliphatic 

rings (N_AliphR) to produce predictions of r2 calibration 0.77, r2 validation 0.67. 

These models demonstrated good predictions of test sets, summarized in Table 4-3. 
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Table 4-3: Overview of the PLS models and MLR equations produced for SRMC and SRLC. RMSEC = root mean 

square error of calibration, CV = cross validation, RMSEP = root mean square error of prediction. 

 

PLS  

 

     

 

Y-Variable 

 

 

logSRMC 

 

   

Y-Variable 

 

 

logSRLC 

 

X-Variables 

 

 

logD6.5 

MW 

Tm 

F_AromB 

SssCH2 

 

 

 

 

 

  

X- Variables 

 

 

 

logD6.5 

MW 

Tm 

F_AromB 

SssCH2 

NAlip_R 

 

Explained Y- 

Variance (%) 

 

No. of PC’s 

 

RMSEC 

 

RMSEP CV 

 

RMSEP Test Set (n=7) 

 

r2 (Calibration) 

 

r2 (Validation) 

 

81% 

 

 

1 

 

0.19 

 

0.24 

 

0.36  

 

0.81 

 

0.73 

 

   

Explained Y- 

Variance (%) 

 

No. of PC’s 

 

RMSEC 

 

RMSEP CV 

 

RMSEP Test Set (n=7) 

 

r2 (Calibration) 

 

r2 (Validation) 

 

77% 

 

 

2 

 

0.20 

 

0.26 

 

0.37  

 

0.77 

 

0.67 

 

MLR  

  

      

 

Y Variable 
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𝒍𝒐𝒈𝑺𝑹𝑴𝑪

=  0.6 +  0.2(𝑙𝑜𝑔𝐷6.5)  
+  1.02(𝐹_𝐴𝑟𝑜𝑚𝐵) –  0.01(𝑇𝑚) 

 

𝒍𝒐𝒈𝑺𝑹𝑳𝑪

=  0.54 +  0.17(𝑙𝑜𝑔𝐷6.5)      
+  1.04(𝐹_𝐴𝑟𝑜𝑚𝐵) –  0.01(𝑇𝑚) 
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Enhanced Biorelevant Solubility Ratio Equation  

As 5-6 descriptors could predict SRMC and SRLC, MLR was performed to produce 

easily interpretable predictive equations. All significant variables from PLS modelling 

were initially included in MLR. Insignificant variables (p > 0.05) from these initial 

equations were subsequently removed, resulting in final equations with higher F-

values and significant variables. Two equations were produced (Table 4-3), both 

utilising 3 properties: logD6.5, Tm and F_AromB. Similarities between equations was 

expected due to the high correlation between dispersed SEDDS (Figure 4-1). 

 

Use of Predicted Solubility Ratios to Predict Drug DCS Class with SEDDS.  

Application of the equations to predict drug DCS class with SEDDS was assessed and 

accuracy compared to comparative DCS classifications using experimentally 

determined solubility’s upon SEDDS dispersion. DCS permeability classifications 

were estimated using drug permeability predictions from the ADMET Predictor 9.5 

(Simulations Plus, USA).  While use of a computationally derived permeability 

estimate has been applied in other studies (251), it must be acknowledged that drug 

specific effects may not be adequately captured in these predicted permeability 

estimates. In total, using experimental solubility’s, 10 drugs overcame a solubility 

limitation i.e., transitioned to DCS Class I/III. Using the Do(Predicted) approach 

(Equation 6), this transition was correctly predicted for 8/10 drugs (Table 4-4) i.e. 

Clotrimazole, Cinnarizine, Fenofibrate, Isotretinoin, Naproxen, Terfenadine, 

Glipizide and Venetoclax. DCS Classification using Do(SEDDS) (Equation 4) also 

resulted in transitions to “good solubility” for Candesartan Cilexetil and Celecoxib 

(SEDDSMigylol812 only), however, as previously discussed experimental results for both 
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drugs differed significantly from general trends observed, which may suggest a drug 

specific effects in these cases that was not captured in the MLR equations. 
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Table 4-4: DCS classification and transitions of the 30 drugs using both experimental and predicted solubility values.  

Drug FaSSIF  
 

SEDDSMigylol812 SEDDSMigylol812 SEDDSOliveOil SEDDSOliveOil  

Do Equation Used: Do 
 

Do(SEDDS) Do(Predicted) Do(SEDDS) Do(Predicted) Transition 

Albendazole IIb IIb IIb IIb IIb  

Candesartan Cilexetil IV III IV III IV IV → III 

Carbamezapine IIa IIa IIa IIa I  

Carvedilol I I I I I  

Celecoxib IIb I IIb IIa IIb IIb → IIa/I 

Cinnarizine IIa I I I I IIa → I 

Clofazimine IIb IIa IIa IIa IIa IIb → IIa 

Clotrimazole IIa I I I I IIa → I 

Danazol IIa/IIb IIa IIa IIb IIa  

Dipyridamole IV IV IV IV IV  

Felodipine I I I I I  

Fenofibrate IIb I I I I IIb → I 

Glipizide IV III III III III IV → III 

Griseofulvin IIb IIb IIb IIb IIb  

Haloperidol I I I I I  

Indomethacin I I I I I  

Irbesartan IV IV IV IV IV  

Isotretinoin IIa I I I I IIa → I 

Itraconazole IIb IIb IIb IIb IIb  

Ketoconazole IIb IIb IIa/IIb IIb IIb  

Mefenamic Acid IIb IIa IIa/IIb IIa IIb  

Naproxen IIa I I I I IIa → I 
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Drug FaSSIF  
 

SEDDSMigylol812 SEDDSMigylol812 SEDDSOliveOil SEDDSOliveOil  

Do Equation Used: Do 
 

Do(SEDDS) Do(Predicted) Do(SEDDS) Do(Predicted) Transition 

Nifedipine IIb IIa IIa/IIb IIa IIa/IIb IIb → IIa 

Phenytoin IIb IIb IIb IIb IIb  

Progesterone IIb IIa IIa IIa IIa IIb → IIa 

Spironolactone IIa/IIb IIa IIa IIa IIa  

Tamoxifen I I I I I  

Terfenadine IIa I I I I IIa → I 

Tolfenamic Acid IIa IIa IIa IIa IIa  

Venetoclax IV III III IV III IV → III 
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Predicted DCS Classifications of Commercial LBF Drugs.  

The utility of the Do(Predicted) approach to guide a LBF formulation strategy was 

subsequently assessed by applying the MLR equations to a range of drugs that have 

been successfully licensed as LBFs. A total of 49 drugs were selected initially, and the 

DCS classification using FaSSIF solubility alone was employed to determine DCS 

class. In total, 23 drugs were initially classified as DCS class I/III, and therefore, did 

not display solubility limitations. These compounds were therefore excluded from 

further analysis as a bio-enabling strategy was not considered necessary. Applying the 

Do(Predicted) approach to the remaining 26 drugs, 10 drugs were predicted to transition 

from poor to good solubility, and a further 7 drugs were found to transition from DCS 

Class IIb to Class IIa i.e “dissolution rate limited” which can offer delivery 

opportunities, where the compensatory influence of high permeability has been stated 

to be significant for acceptable oral absorption during the transit time in the intestine 

(13). Therefore, this approach predicted that in 65.4% (i.e., 17/26) of drugs, a SEDDS 

approach was likely to overcome solubility limited absorption. Of the 9 drugs that 

remained in poor solubility classification after applying the Do(Predicted) approach, 8 

were DCS Class IV, which may indicate that decisions to employ a SEDDS approach 

were not solely influenced by solubility considerations and that other factors, such as 

increased permeability, may have been a consideration in the choice to develop as a 

LBF (Table 4-5).  
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Table 4-5: DCS Class of commercial LBF drugs which displayed dose solubility limitations in FaSSIF. 

Drug 

Do Equation Used 

FaSSIF  

Do 

SEDDSMigylol812  

Do(Predicted) 

SEDDSOliveOil  

Do(Predicted) 

 

Transition 

Clomethiazole Edisilate IIa I I IIa → I 

Dronabinol IIa I I IIa → I 

Ergocalciferol IIa I I IIa → I 

Isotretinoin IIa I I IIa → I 

Cholecalciferol IIb I I IIb → I 

Clofazimine IIb IIa IIa IIb → IIa 

Efavirenz IIb I IIa IIb → I/IIa 

Enzalutamide IIb IIa IIa IIb → IIa 

Ethyl Eicosapentaenoate IIb IIa IIb IIb → IIa 

Fenofibrate IIb I I IIb → I 

Loratidine IIb IIa IIa IIb → IIa 

Menatetrenone IIb IIa IIa IIb → IIa 

Nimodipine IIb I IIa IIb → I/IIa 

Progesterone IIb IIa IIa IIb → IIa 

Teprenone IIb IIa IIa IIb → IIa 

Tocopherol Nicotinate IIb I IIa IIb → I/IIa 

Amprenavir IV III III IV → III 

Nintedanib IIb IIb IIb 
 

Azithromycin IV IV IV 
 

Ciprofloxacin IV IV IV 
 

Cyclosporin A IV IV IV 
 

Lopinavir IV IV IV 
 

Ritonavir IV IV IV 
 

Saquinavir IV IV IV 
 

Tipranavir IV IV IV 
 

Vinorelbine Tatrate IV IV IV 
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Discussion 

Over the last two decades, significant strides have been made in applying 

computational approaches across the full spectrum of drug development (252). In their 

many forms, computational tools can include discovering new lead candidates with 

optimal drug-receptor binding affinity (e.g., Quantitative Structural Activity 

Relationships (QSAR)), to guiding on optimal physicochemical profiles (e.g., 

Quantitative Structural Property Relationships (QSPR)) or predictions of 

biopharmaceutical properties including solubility and permeability (3). While the 

major advances in the use of computational tools to-date have been focused on 

chemical structural design to assist the selection of new drug substances with optimal 

pharmacodynamic and/or pharmacokinetic properties, commonly referred to as 

“druggability”, more recently, the use of computational tools to guide on formulation 

design, or computational pharmaceutics, have been reported (3, 131, 157). These 

include approaches such as computational biopharmaceutical drug profiling, recently 

reported as an approach to predict physicochemical and molecular properties of drug 

candidates that render them more or less suitable for formulation via a specific bio-

enabling formulation approach (3). Accordingly, there exists an increasing focus on 

development of reliable computational pharmaceutics tools, capable of guiding 

selection of appropriate bio-enabling formulation strategies, in particular for drug 

candidates which display either solubility and/or permeability limitations.  

LBFs are one such bio-enabling formulation technology that exploit the benefit of lipid 

excipients to harness the absorption pathways of dietary fats, leading to increased 

intestinal drug solubility and improving intestinal absorption. The benefits of lipid 

excipients to increase drug solubility were clearly prevalent in this study, where 

increased solubility was observed for all 30 PWSDs following dispersion of the 
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SEDDS in biorelevant media. Indeed, the solubility increases observed were on 

average higher than the fed/fasted biorelevant solubility ratio, as SRMC and SRLC 

exceeded SRFeSSIF/FaSSIF for 24 and 23 of the 30 drugs respectively (Figure 4-3). 

However, despite clear benefits as a bio-enabling technology, it is generally 

considered that LBFs have an unfulfilled potential in a commercial sense. Over the 

last decade, prevalence of commercial LBFs appears to be decreasing relative to solid 

dispersions (SD) (222), reflecting improved scientific knowledge on the 

pharmaceutical benefits of SDs in terms of bio-enabling effects (e.g. increased drug 

solubility), but also an improved understanding of factors influencing industrial 

scalability and regulatory approval (e.g. long term stability). On the other hand, the 

prevalence of commercial LBFs has tended to be relatively few, reflecting gaps in 

understanding both in terms of bio-enabling benefits and from an industrial 

perspective, as recently reviewed (15).  With this in mind, significant strides have been 

made in the use of in silico approaches to reliably predict dose loading capacity in 

LBFs (114, 115). This current study sought to advance the application of 

computational pharmaceutics tools to consider the impact of in vivo dispersion of 

SEDDS on drug solubility in GI fluids. In recognition of the importance of in vivo 

dispersion on SEDDS performance (159) we hypothesised that computational 

prediction of drug solubility increases seen upon dispersion of SEDDS in simulated 

biorelevant fluids is likely to be a key performance indicator of whether a SEDDS 

approach can effectively solubilise the dose in vivo. As such, a computationally 

predicted solubility ratio (SR), based on drug properties in combination with 

experimentally determined solubility in FaSSIF, would support more informed 

decisions on formulation options in early development, by allowing estimation of a 

biopharmaceutically relevant Do.  
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Resultantly, our hypothesis that a relationship could be elucidated between a 

biorelevant SR for a SEDDS formulation and drug properties was demonstrated and 

shown to be robust. We observed, on a dataset of 30 PWSDs using PLS computational 

modelling, that 5-6 drug properties were sufficient to reliably predict SR upon 

dispersion of two prototype SEDDS (logSRMC r2 0.81, logSRLC r2 0.77). Subsequently, 

employment of MLR facilitated simplified equations for SR to be generated, requiring 

only 3 drug properties namely, partition coefficient pH 6.5 (logD6.5), melting point 

(Tm) and aromatic bonds as fraction of total bonds (F_AromB). These represent 

common drug properties typically identified and integrated into an early-stage 

pharmaceutical drug profiling environment (54), forgoing requirements for molecular 

fragment profiling or specialised chemometric software.  

Inclusion of drug properties in this computational model, implies their importance to 

SR upon SEDDS dispersion at a mechanistic level. For the logSRMC model, important 

descriptors were logD6.5, Tm, MW, F_AromB and SssCH2. Additionally, the logSRLC 

model also included N_AlipR. In terms of, logD6.5, Tm and MW, these are widely 

recognised drug properties from a pharmaceutical profiling context. In both PLS 

models, logD6.5 and MW were positively correlated with SR while Tm was negatively 

correlated. Inclusion of a partition coefficient descriptor was not unexpected due to 

addition of lipophilic SEDDS to the media, while logD6.5  was previously observed to 

be strongly correlated with PWSD solubilisation in biorelevant media (243), and an 

influential descriptor in modelling the FaSSIF/PhBpH6.5 ratio (5). Additionally, 

distribution coefficient has been used to characterise drug release from SEDDS, or 

more specifically the drug diffusion process from the SEDDS pre-concentrate into 

aqueous media has been related to logDSEDDS/RM i.e. the distribution coefficient of 

solubility in SEDDS pre-concentrate and the release medium (253). Conversely, the 
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negative correlation between Tm and SR is most likely attributable to high Tm 

molecules exhibiting solid state limited solubility or ‘brick dust’ drugs, which results 

in poor solubility in lipid excipients, translating to more modest SR values upon 

SEDDS dispersion. While the importance of MW as a descriptor is not unexpected 

given the influence of MW on both crystalline structure characteristics and solvation 

properties, in contrast to trends observed between MW and aqueous solubility (254), 

MW and SR in this case were positively correlated. Accordingly, as increasing size 

negatively influences aqueous solubility, MW may be indirectly conveying 

information regarding relative drug affinity for lipophilic formulation excipients to 

that for the comparatively more aqueous environment within the biorelevant medium. 

Finally, a recent retrospective analysis of selected physicochemical and molecular 

properties of drugs produced commercially as LBF products versus commercial SD 

drugs and a database of drugs not produced via either bio-enabling approach, found 

logD, Tm and MW to be significant descriptors signally commercial success with LBFs 

(Chapter 1) (222). Similar to this study, increasing logD and MW were found to be 

significant for LBF commercial success, while a lower relative drug Tm was found to 

be significant to reach commercialisation (222). The fact that these descriptors were 

significant in both a retrospective analysis of successfully commercialised LBFs and 

in this prospective SR prediction upon SEDDS dispersion, re-emphasises their 

importance as contributing factors to drug-LBF technology success and suitability.  

Additionally, SssCH2, F_AromB and N_AlipR were significant in PLS modelling. 

F_AromB was positively correlated to SR. While this positive correlation is in contrast 

to previous predictions of HIF solubility (119), it is likely that as increasing aromatic 

ring count decreases aqueous solubility (81, 255), and an increase in affinity for lipid 

excipients is seen. In this case, compounds with larger aromatic structures are likely 
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to have a negative influence on aqueous solubility. Upon SEDDS dispersion, such 

compounds will associate with greater affinity to the lipid rich microemulsions 

droplets formed, resulting in a higher SR. However, contributions of aromaticity are 

likely complex, reliant on numerous factors including attached substituents and their 

polarity, existence of ‘through resonance’ with attached substituents, as well as ion-

dipole and dipole-dipole interactions with other moieties. Number of aromatic bonds 

was previously significant for in silico prediction of FeSSIF/FeSSIF blank buffer, 

further highlighting the significance of aromaticity for solubility in media with 

increasing lipids (243). N_AlipR also influences drug shape and size and is also 

affected by adjacent moieties. Meanwhile, SssCH2 examines the topological and 

electronic features of a structure (256) and was previously significant in an in silico 

prediction of solubility in FaSSIF buffer (243).  

This work also investigated other factors influencing SR in order to understand of how 

drugs associate with biorelevant SEDDS dispersions. In terms of drug ionisation, 

general trends of higher SR for cationic (charged basic) versus anionic (charged 

acidic) drugs were observed. These observations are in line with previous research 

where solubility increases in biorelevant media versus corresponding blank buffers for 

bases and neutral drugs were higher than acids (243). Such increases for cationic 

drugs, have previously been suggested to stem from favourable electrostatic 

interactions between negatively charged polar head groups of taurocholate bile salts 

(257, 258) and positively charged drugs. In this case, such bile salt related electrostatic 

interactions are likely to occur in both FaSSIF and FaSSIF-SEDDS, with net negative 

charges observed for all three media. The general trend for increased SR for cationic 

compounds occurred despite an overall reduction in net negative charge in both 

FaSSIF-SEDDS media relative to FaSSIF, demonstrating the possibility that 
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additional electrostatic interactions may exist. As both alterations to droplet sizes and 

to overall charge of the media upon SEDDS dispersion in FaSSIF versus PhBpH6.5 were 

observed, interactions between the SEDDS and biorelevant solubilising components 

of FaSSIF are probable. In particular, the negative charges of FaSSIF-SEDDSMigylol812 

(-5.35 mV) and FaSSIF-SEDDSOliveOil (-5.73 mV), were intermediate of the overall 

charges of FaSSIF (-14.67 mV) and the values close to zero observed upon SEDDS 

dispersion in PhBpH6.5 (-0.76 mV, -1.27 mV), suggesting surface association of 

charged bile salts to the oil droplets formed upon SEDDS dispersion. Such an 

association was previously proposed upon initial in vitro dispersion of a SEDDS in a 

biorelevant media (259). It therefore could be suggested upon SEDDS dispersion, 

favourable interactions between cationic drugs and these charged bile salts found at 

the oil droplet surface may help explain the increased SRs observed. Previously, 

electrostatic interactions between cationic drugs and free fatty acids in post digestive 

media have also been suggested as a potential mechanism for increased drug 

solubilisation (159). However, presently such interactions are poorly understood, and 

electrostatic interactions appear to not be the sole solubilising mechanism involved, 

given that both neutral and cationic drugs also displayed SRs between 1.1 and 51, 

hence indicating that there are a number of additional factors governing drug 

associated with mixed colloidal dispersion.  

In terms of excipient effects, SEDDSMigylol812 and SEDDSOliveOil were compared. A 

strong correlation was observed between solubility in FaSSIF-SEDDSMigylol812 versus 

FaSSIF-SEDDSOliveOil, suggesting that strong correlations previously observed 

between drug solubility in MCT versus LCT preconcentrates, and C8 versus C10 

triglycerides are also observed upon SEDDS dispersion of these exemplary MCTs and 

LCTs (114, 238). In all cases solubility in FaSSIF-SEDDSMigylol812 was higher than 
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FaSSIF-SEDDSOliveOil, with an overall significant difference observed (* p < 0.05). 

However, the extent of solubility difference between both was relatively small i.e., for 

20 out of the 30 drugs the difference was < 20 %. Therefore, in terms of the choice of 

these exemplary MCT or LCT containing SEDDS, the practical implications in terms 

of solubility difference on dispersion in biorelevant buffer appear relatively minor. 

The merits of MCT versus LCT have been widely discussed (22, 260). While in 

general, drug solubility in most examples of MCTs is higher (14, 261), following 

formulation digestion, the digestion products of LCT may confer additional 

advantages (262), while it must also be acknowledged that these trends may not be 

observed for all MCT and LCTs comparisons. This study also identified two specific 

drug examples, namely Celecoxib and Venetoclax, where large differences in SR were 

observed, relating to large solubility percentage differences (58% and 43%) being 

observed between both SEDDS dispersions. The possible reason for these higher 

associations with dispersed SEDDSMigylol812 for these two neutral drugs is unclear, 

however this highlights a potential limitation of computational predictions to capture 

specific drug-excipient solubility effects. Therefore, future work with a wider range 

of drugs could help to increase robustness of the predictions achieved.  

Overall, this work endeavoured to advance the field of computational pharmaceutics 

by demonstrating the capacity for such predictive tools to inform developability, and 

specifically to guide formulation decisions regarding SEDDS by assessing their ability 

to improve the biopharmaceutical dose number. Do(Predicted) (Equation 6) can be easily 

applied as a computational pharmaceutics tool to guide formulation suitability, 

requiring only 3 readily obtainable drug properties, in addition to an experimentally 

determined drug solubility in FaSSIF. The suitability of Do(Predicted) to forecast 

developability was validated by comparing predicted to experimental Do values, 
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showing that 8/10 drugs were correctly predicted to transition to a “good solubility” 

DCS class (I/III). The two drugs, Candesartan Cilexetil and Celecoxib that were not 

predicted to transition most likely reflect the limitation of the model to capture drug 

specific solubility increases, as discussed previously. Subsequently, to demonstrate 

the real-time applicability of such predictions in a pharmaceutical developability 

context, Do(Predicted) was applied to a drug dataset outside the training and test sets, 

namely drugs previously successfully produced as commercial LBF products. The 

Do(Predicted) approach predicted that two out of three (65.4%) of these drugs would offer 

benefits for development as a LBF. Furthermore, when DCS classes using FaSSIF 

solubility versus DCS class using predicted solubility with SEDDS were compared, 8 

of the 9 commercial drugs which demonstrated no class transition were DCS Class IV. 

Therefore, as these predictions are based upon drug solubility gains with SEDDS it is 

likely that permeability considerations, not only solubility benefits, were influential in 

the development of these poorly soluble and poorly permeable drugs with LBFs.  

Comparable to the stated limitation of the original DCS (13), potential for 

supersaturation was not explored in these predictions. This would have particular 

relevance for ionisable drugs displaying pH dependent solubility, while weakly basic 

drugs in particular exhibit higher solubility in gastric media, along with potential for 

intestinal supersaturation and precipitation. Further limitations of the predictions are 

also acknowledged in terms of the deliberate omission of exploration of the effect of 

SEDDS digestion on drug solubility. We therefore acknowledge that this tool is 

conservative in its approach to solubility predictions and the solubility gains are likely 

to be under predictive of the kinetic solubility’s achieved in the gastrointestinal tract. 

However, from an industry perspective, where conservative risk:benefit approaches 

are often applied to formulation development, this low risk approach may be in line 



 

168 
 

with current industrial preferences. To overcome any conservative nature in the 

application of a predicted Do, we suggest incorporation of this tool into the refined 

DCS (rDCS) as part of the initial “standardised investigations” (67). For a weakly 

basic drug, customised investigations such as the small-scale 

supersaturation/precipitation experiments as specified in the rDCS could be then 

triggered to test the potential effects of supersaturation.  

 

Conclusion 

Through combinations of in silico predictions based on drug properties, and drug 

solubility screening in FaSSIF, this work demonstrated capacity for computational 

pharmaceutics to inform drug developability. By applying a computational 

pharmaceutics approach this study identified drug properties that can be used to 

predict SR for SEDDS dispersions. The results demonstrated that integration of 

biorelevant experimentally determined FaSSIF solubility into computationally 

predicted dose numbers (i.e., combining molecular, physicochemical and 

biopharmaceutical properties), allows more reliable biopharmaceutically relevant and 

data-driven decisions to be made on drug-SEDDS developability. While it is 

acknowledged that in silico predictions are not intended to completely circumvent 

experimental solubility screening, when used in conjunction with appropriate 

screening assays, such tools can guide likely successful bio-enabling approaches in a 

biopharmaceutically informed manner. In order to advance this growing field of 

computational pharmaceutics for LBFs, renewed emphasis should be placed upon 

creating validated and increasingly robust computational predictions of drug 

developability with bio-enabling formulations.  
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Note: The reader is also directed at this point to Appendix 4-6 where an additional pilot 

study is detailed using Partial Least Squares Discriminant Analysis (PLS-DA) to classify the 

drug dataset utilised in this study according to an apparent degree of supersaturation of 

greater or less than two. This was removed from the main text based on reviewer feedback 

during the journal peer-review process. 
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Abstract 

Purpose: In response to the increasing application of machine learning (ML) across 

many facets of pharmaceutical development, this pilot study investigated if ML, using 

artificial neural networks (ANN), could predict the apparent degree of supersaturation 

(aDS) from two supersaturated LBF (sLBF).  

Methods: Equilibrium solubility in Capmul MCM and Maisine CC was obtained for 

21 poorly water-soluble drugs at ambient temperature and 60ºC to calculate the aDS 

ratio. These aDS ratios and drug descriptors were used to train the ML models. 

Accuracy was compared to partial least square (PLS) regression models.  

Results: ANN outperformed PLS for both sLBFCapmul
MC (r2 0.90 vs. 0.56) and 

sLBFMaisine
LC (r2 0.83 vs. 0.62), displaying smaller root mean square error (RMSE) and 

residuals upon training and testing. Across all models, descriptors involving reactivity 

and electron density were most important for prediction. 

Conclusion: This pilot study showed that ML can be employed to predict the 

propensity for supersaturation in LBF, but even larger datasets need to be evaluated to 

draw final conclusions.  
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Introduction 

In the face of increasing pressures for accelerated development, the work of 

formulation scientists could be advanced through miniaturized screening tools, 

computational methods, and a structured approach in preclinical testing (16, 263). 

Currently, more conservative “tried-and-tested” approaches to formulation design are 

typically employed, often leading to suboptimal formulations that may disregard 

influential molecular and physicochemical drug properties or compound interactions 

with formulation excipients. However, such classical formulation development is 

likely to change as different computational tools are already widely used in drug 

discovery and are gaining momentum in pharmaceutical development. Quantity 

structure-activity relationships (QSAR) have streamlined selection of candidates with 

optimal binding profiles (3), physiologically-based pharmacokinetic (PBPK) models 

have aided the simulation of pharmacokinetic parameters (197), while theory or data-

driven modelling applications have improved formulation development (68, 124, 157, 

166, 167, 264-266). Using data-driven machine learning (ML) approaches, improved 

success rates are achievable by ascertaining statistical relationships between molecular 

descriptors and the intended response.  

The main goal of predicting an outcome using input variables is the same for both 

partial least squares (PLS) and artificial neural networks (ANN) ML algorithms. 

However, the mathematical approaches used differ, in terms of dimensionality 

reduction of data versus potential for non-linear data fitting. PLS is a well-established 

multivariate regression dimensionality reduction method. The model calculates the X- 

and Y-matrices to find the principal components in X (independent variables) that 

capture most of the variance in Y (dependent variable). This initial data is projected 

into a latent variable space, thereby maximising the covariance between X and Y 
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(176). While PLS aims to find a linear (or polynomial) relationship between X and Y, 

ANN represents an emerging ML algorithm. ANN differs in its capability to detect 

complex non-linear X-Y relationships, while detecting possible interactions between 

X variables (267). ANN mimic basic human biological information processing 

methods, as the structure of the multilayer perceptron (MLP) algorithm contains some 

main elements: input layer, hidden layer, output layer, activation functions and 

connection weights. Each neuron receives signals/inputs from other neurons in the 

preceding layers or directly from the independent variables. This signal has an 

associated weighted value which determines the strength of this interconnection. A 

weighted sum of these inputs is computed and transformed using an activation 

function to produce an output signal which is sent to the next neurons in subsequent 

layers. During training samples are passed through the network and synaptic weights 

are continuously adjusted until a minimum prediction error is achieved. While an in-

depth analysis of ANN can be found in the literature (172, 185), current research 

suggests that ANN may provide a promising alternative tool to decode complex 

pharmaceutical datasets. 

Over the last decade, interest regarding use of ML algorithms across diverse 

disciplines in pharmaceutical design and development has grown (68, 158, 163, 169, 

216, 217, 268-272). While ML models have been produced to optimise lipid-based 

formulation (LBF) development (3, 114, 115, 159-163, 235) the application of more 

novel ML approaches for bio-enabling formulations currently focuses on solid 

dispersions (SD) (168-170). However, their application to LBFs, in particular for 

supersaturated LBF (sLBF), remains unexplored. LBFs, in their most utilised form of 

lipid solutions, aim to solubilise poorly water-soluble drugs (PWSD), and improve 

biopharmaceutical properties by simulating endogenous lipid absorption pathways 
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(25). However, commercial utilisation has been declining (222), likely partly 

attributable to the dose loading limitations given by the inherent drug solubility in the 

lipid vehicle (33, 34). One delivery solution has involved the development of sLBFs. 

These are kinetically stable solutions containing a drug concentration above the 

thermodynamic solubility where increased drug loads and exposure are achieved 

through thermally inducing supersaturation (33, 273, 274). Previously, supersaturated 

solutions such as sLBFs have been characterised by the apparent degree of 

supersaturation (aDS) ratio (32, 275, 276), calculated to determine the propensity of 

drugs to supersaturate in specific lipid systems (i.e., fold-increase in drug solubility 

with elevation of temperature). This has been used as an indicator of the likelihood of 

designing sLBFs and is critical regarding the ability to maintain drug supersaturation 

upon storage (32). Therefore, we hypothesise that an in silico ML model predicting 

aDS from molecular properties would support streamlined screening of sLBFs. 

Consequently, this pilot study sought to investigate if ANN modelling could be used 

to predict the aDS in sLBFs using a dataset generated for 21 PWSD. PLS regression 

models produced from the same dataset facilitated a comparison of the two 

computational techniques for this dataset. Two medium-chain (MC) and long-chain 

(LC) based mono/di-glycerides formulations were chosen as mono-/di-glycerides 

systems that previously facilitated improved supersaturation propensity and 

streamlined drug-excipient screenings (15, 33, 277). PLS has been previously 

employed in computational modelling for LBF (114, 235). However, this study 

provided, to the best of our knowledge, the first investigation into the application of 

ANN to predict maximum dose loading in LBFs.  
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Materials and Methods  

Chemical and Materials  

Celecoxib was purchased from Astatech Inc. (Bristol, PA, USA), cinnarizine, JNJ-2A, 

ibuprofen and itraconazole were obtained from Janssen Pharmaceutica (Beerse, 

Belgium). Fenofibrate and indomethacine were purchased from Sigma-Aldrich 

(Ireland). Progesterone, felodipine, sulfalazine, haloperidol, danazol, naproxen, 

venetoclax, carvedilol, dipyridamole, niclosamide, griseofulvin, fenofibric acid, 

ketoconazole and clotrimazole, were purchased from Kemprotec (UK), Capmul MCM 

C8 was kindly donated by Abitec (Columbus, OH, USA). Maisine CC was a kind gift 

from Gattefossé (Lyon, France). All other chemicals and solvents were of analytical 

or high-performance liquid chromatography (HPLC) grade, purchased from Sigma-

Aldrich (Wicklow, Ireland). 

 

Formulations 

Two prototype single component LBF were chosen based on their previous successful 

applications as sLBF (32). The MC system contained Capmul MCM, a blend of MC 

mono- and di-glycerides where caprylic acid (C8) is considered the predominant fatty 

acid. The LC system contained Maisine CC, a blend of LC mono- and di-glycerides 

where linoleic acid, C18:2 is considered the predominant fatty acid. These 

formulations are termed sLBFCapmul
MC and sLBFMasine

LC when referring to solubility 

testing at 60°C.  
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Dataset Selection/Drug Physicochemical and Molecular Properties 

Twenty-one structurally diverse PWSD were selected (Table 5-1), where criteria 

included availability of physicochemical properties and potential utilisation as part of 

a commercial LBFs, or a sLBF. The compounds were classified according to Glass 

Forming Ability (GFA) (46), where 8 drugs were Class 1, 3 drugs Class 2 and 10 drugs 

Class 3. Greater than 250 molecular descriptors were predicted from ADMET 

Predictor 9.5 (Simulations Plus, USA) and added to experimental drug properties of 

Melting Point (Tm), Glass Transition Temperature (Tg), Entropy of Fusion (∆Sfus), 

Enthalpy of Fusion (∆Hfus) , Tm/Tg, and Reduced Glass Transition Temperature (Trg), 

obtained from literature (33, 46, 124, 278, 279). As the molecular properties can be 

obtained for any drug once the structure is known, they were used as input data. 

 

Equilibrium Solubility Determination 

Equilibrium drug solubility studies were conducted in both LBF at ambient 

temperature (AT) (22°C) and an elevated temperature (60ºC). Solubility at both 

temperatures for cinnarizine, celecoxib and JNJ-2A were obtained previously (32). 

Solubilities for the remaining drugs were conducted using an equivalent protocol as 

follows. An excess amount of drug was added to 2 mL of either Capmul MCM or 

Maisine CC in screw cap glass vials containing a magnetic stirrer. Resulting 

suspensions were stirred on a stirring plate (Mixdrive 15, 2MAG, Germany) at 200 

rpm and incubated in temperature-controlled ovens (APT.lineTM BD (E2), Binder, 

GmbH, Germany) at AT and 60°C. Aliquots were sampled at 24 h, 48 h and 72 h etc. 

(or further if required) and centrifuged at 21,380 g (i.e. relative centrifugal force) 

(Mikro 200 R, Hettich GmbH, Germany) at 22ºC and 40ºC respectively for 15 min. 

Daily sampling was continued until equilibrium solubility was reached, i.e. solubility 
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between two consecutive samples differed by less than 10%. The supernatant was 

centrifuged under identical conditions. To solubilise the oily excipient, the supernatant 

was diluted 1:10 (v/v) in acetonitrile:ethyl acetate (1:3, v/v), followed by further 1:10 

(v/v) dilution with acetonitrile:ethyl acetate (3:1, v/v) and a final dilution with mobile 

phase. The efficiency of extraction recovery was >94%, tested using a known amount 

of each compound. All samples were run in triplicate and drug concentrations were 

determined using an Agilent 1200 series HPLC system. Columns and HPLC testing 

conditions for each drug can be found in the Appendix (Appendix 4 Table 4-2).  

Subsequently, to assess the short-term stability on storage at AT, following the second 

centrifugation step, an aliquot of supernatant from the 60°C samples was allowed to 

cool at AT for 2 h. Then sampling and analysis was conducted as outlined above, with 

values obtained presented as aDS2h. These short-term stability studies were conducted 

for the majority of the compounds. 

 

Apparent Degree of Supersaturation (aDS) 

The apparent degree of supersaturation (aDS) as previously defined (275), was 

determined as the ratio of the concentration of the drug in the supersaturated solution 

according to this experimental methodology and the concentration in the saturated 

solution. This theoretical aDS was calculated according to equation (1) for both sLBF 

loaded with drug at 60°C: 

 

𝑎𝐷𝑆 =  𝐶𝑠𝑢𝑝𝑒𝑟𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 /𝑆𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 (1) 

 

where Csupersaturation is the concentration of the drug determined after heating the sLBF 

(to 60°C) and Sequilibrium is the equilibrium solubility at AT. 
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Subsequently, to facilitate comparisons of the short-term stability of the sLBF after 2 

hours, a second aDS (aDS2h) was calculated according to equation (2): 

 

𝑎𝐷𝑆2ℎ =  𝐶𝑠𝑢𝑝𝑒𝑟𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛(2ℎ) /𝑆𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 (2) 

 

where in this case Csupersaturation(2h) is the drug concentration in the lipid system that was 

heated to 60ºC followed by cooling to AT for 2 hours. The values are reported as aDS 

(± standard error (SE)) with the SE calculated from equation (3): 

 

SE = 𝑎𝐷𝑆 𝑥 √
𝑆𝐴2

𝐴2  +  
𝑆𝐵2

𝐵2  (3) 

 

where A, B, SA and SB refer to the mean measured solubility values and standard 

errors for the equilibrium solubility at AT (A) and the concentration of the drug in the 

lipid system at 60ºC with/ without 2 hours cooling (B). Graphs were obtained using 

Prism (Version 5, Graphpad, USA). 

 

Differential Scanning Calorimetry 

The majority of GFA classifications and Tg values were obtained from literature. 

However, for fenofibric acid, progesterone and sulfasalazine, this information was 

obtained experimentally using differential scanning calorimetry (DSC) equipped with 

a TA Q1000 with a TA Refrigerated Cooling System 90 (TA Instruments, New Castle, 

DE, USA). The cell was purged with nitrogen at 50 mL/min. After the midpoint glass 

transition temperature (Tg,mid) had been determined, crystallization screening 

experiments were conducted using the protocol by Baird et al. (46). In brief, 2 mg of 
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drug weighed into a T-zero pan and heated at 10º C min-1 to 10ºC above the Tm of each 

drug (as per Table 1), held isothermally for 3 min, cooled at a rate of 20ºC min-1 to -

75ºC and reheated to at 10ºC min-1 to 10ºC above the Tm of each drug. Sample weights 

for each repeat sample were within 1 mg and experiments were run in triplicates. GFA 

was categorised according to Baird et al. into Class I (in case of crystallisation during 

cooling prior to the Tg), Class II (for no crystallisation during cooling, but 

crystallisation was observed upon reheating above Tg) and Class III (for no 

crystallisation observed during cooling nor reheating to Tm) (46). 
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Table 5-1: Selection of the physicochemical and molecular properties of the investigated compounds collated from the literature, predicted from ADMET Predictor 9.5 or obtained experimentally 

using DSC. AMPH refers to ampholyte. 

 

Drug Compound MW 

(g/mol) 

clogP logD6.5 Acid/ 

Base/ 

Neutral 

GFA 

Class 

Tm (°C) Tg (°C) ∆Hfus 

(kJ/mol) 

∆Sfus*0.01 

(kJ/mol/K) 

Tm/Tg Trg HBA 

 

HBD RB 

Carvedilol 

Celecoxib 

Cinnarizine 

Clotrimazole 

Danazol 

Dipyridamole 

Felodipine 

Fenofibrate 

Fenofibric acid 

Griseofulvin 

Haloperidol 

Ibuprofen 

Indomethacin 

Itraconazole 

JNJ-2A 

Ketoconazole 

Naproxen 

Niclosamide 

Progesterone 

Sulfalazine 

Venetoclax 

406.49 

381.38 

368.53 

344.85 

337.47 

504.64 

384.26 

360.84 

318.76 

352.77 

375.87 

206.29 

357.80 

705.65 

498.90 

531.44 

230.27 

327.13 

314.47 

398.40 

868.46 

3.88 

3.81 

4.92 

5.08 

4.26 

3.11 

5.03 

5.20 

3.98 

2.51 

3.82 

3.64 

4.03 

4.89 

5.40 

3.67 

3.21 

4.03 

3.94 

3.15 

6.68 

2.36 

3.81 

3.98 

5.06 

4.26 

3.02 

5.03 

5.20 

1.25 

2.51 

2.06 

1.69 

1.45 

4.89 

5.40 

3.51 

1.10 

4.02 

3.94 

–0.35 

6.54 

B 

A 

B 

B 

N 

B 

B 

N 

A 

N 

B 

A 

A 

B 

N 

B 

A 

A 

N 

A 

AMPH 

III 

II 

II 

III 

II 

I 

III 

III 

I 

I 

I 

III 

III 

III 

III 

III 

I 

I 

I 

I 

III 

114.5 

163 

121 

148 

225.5 

163 

145 

79 

184 

245 

148 

77 

161 

168 

142 

146 

152 

230 

130 

245 

138 

41.9 

58 

8.5 

30 

88.3 

40.4 

45 

–19 

35.4 

89 

33 

-45 

45 

58 

91.2 

45 

5.9 

86 

55.2 

54.6 

64 

53.00 

34.10 

37.50 

33.34 

35.50 

72.00 

30.98 

33.00 

99.00 

39.12 

54.26 

26.50 

37.60 

57.60 

22.90 

52.85 

25.65 

40.70 

23.67 

99.00 

18.40 

13.67 

7.80 

9.50 

7.97 

7.12 

16.51 

7.38 

9.32 

21.66 

7.96 

12.80 

7.56 

8.64 

13.00 

5.50 

12.50 

6.03 

8.01 

5.87 

20.08 

4.50 

1.23 

1.32 

1.39 

1.39 

1.38 

1.39 

1.31 

1.39 

1.48 

1.36 

1.38 

1.54 

1.37 

1.33 

1.14 

1.32 

1.52 

1.40 

1.23 

1.58 

1.22 

0.81 

0.76 

0.72 

0.72 

0.73 

0.72 

0.76 

0.72 

0.68 

0.73 

0.73 

0.65 

0.73 

0.75 

0.88 

0.76 

0.66 

0.71 

0.81 

0.63 

0.82 

5 

4 

2 

1 

3 

12 

5 

4 

4 

6 

3 

2 

4 

9 

4 

7 

3 

5 

2 

9 

12 

3 

1 

0 

0 

1 

4 

1 

0 

1 

0 

1 

1 

1 

0 

3 

0 

1 

2 

0 

3 

3 

10 

2 

5 

4 

1 

12 

4 

5 

3 

3 

5 

4 

3 

10 

7 

8 

3 

2 

1 

3 

11 
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Statistical Analysis 

To test the significance between paired solubility values in Capmul MCM versus 

Maisine CC and sLBFCapmul
MC versus sLBFMaisine

LC, the distribution of the differences 

was used to determine normality, or lack thereof. A two-sided bootstrap-paired test 

(5000 samples) determined the significance (p < 0.05). Simple scatter plots were 

produced for Capmul MCM versus Maisine CC and sLBFCapmul
MC versus 

sLBFMaisine
LC, regression coefficients fitted for interpretation and a bootstrap test for 

the coefficients conducted. Statistical analysis was conducted using SPSS Statistics 

(Version 26, IBM Corporation, USA). 

 

Partial Least Squares Regression (PLS) 

Quantitative prediction of aDS using PLS regression was conducted using 

Unscrambler (Version 11, Camo Analytics, US). PLS model development followed 

standard steps described previously (235). Molecular structures were acquired as 

smiles from PubChem and used as inputs for the ADMET Predictor (Version 9.5, 

Simulations Plus, California, USA) to calculate >250 molecular descriptors which 

were added to Tm,Tg, ∆Hfus, ∆Sfus, Tm/Tg, and Trg and used as variable inputs. The 

individual modelling responses were aDS ratios from both sLBFCapmul
MC and 

sLBFMaisine
LC. Principal component analysis (PCA) was applied for a randomised 

assignment of training:test data. Training set criteria were that it covered the chemical 

space of the test set along with a relatively even spread of aDS ratios. A Hotelling’s 

T2 ellipse was applied for outlier detection (95% confidence interval). The nonlinear 

iterative partial least squares (NIPALs) algorithm was utilised, and all variables were 

mean centred, de-identified and standardized through scaling by standard deviation. 

To limit overfitting potential, a limit of two principal components was used. Variable 

reduction was performed as previously described (235) using a Martens’ uncertainty 
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test (250), an important variables plot and correlation loadings plot. Model accuracy 

was validated by the root mean square error (RMSE) of the training set and test set.  

 

Artificial Neural Networks (ANN) 

Multilayer perceptron artificial neural networks (MLP-ANN) were produced using 

SPSS Statistics (Version 26, IBM Corporation, US) to predict aDS. A partition 

variable using the same training:test set split was utilised to compare PLS versus ANN. 

Input properties were obtained as described above and were rescaled through 

standardisation where values were converted to their z-scores. Hyperbolic tangent was 

chosen as the activation function for the hidden layer, while an identity output function 

was used in the output layer (225). Supervised learning using the scaled conjugate 

gradient (SCG) algorithm was chosen for its speed, and lack of user-critical parameters 

(226). Batch training was selected due to the relatively small dataset size and the 

learning algorithm employed. Variable reduction was initially conducted using an 

independent variable importance analysis. As an arbitrary criterion, only variables 

with a relative importance of >70% were included in the architecture going forward. 

Topologies with only one hidden layer were considered, to avoid overfitting. The 

optimum number of neurons in the hidden layer was identified following a systematic 

trial-and-error approach were the number of neurons in the hidden layer were 

manually altered between 2 and 20, with runs performed in triplicate. The optimal 

network size was chosen thorough minimum RMSE in the training and test sets. The 

most important variables in each network were elucidated from the normalised 

importance chart. PLS and ANN models produced were directly compared in terms of 

different performance evaluation functions including correlation coefficient (r2), 

training set RMSE, test set RMSE and residual by predicted charts. 



 

182 
 

Results 

Comparing the Solubility of MC and LC-based LBF and sLBF 

Initially solubility in both LBF (Capmul MCM and Maisine CC) at AT and both sLBF 

(sLBFCapmul
MC and sLBFMaisine

LC) at 60°C was compared. Significant differences were 

seen at AT (* p< 0.05) and at 60ºC (* p<0.05). The beta coefficients of the regression 

lines of both Maisine CC versus Capmul MCM and sLBFMaisine
LC versus sLBFCapmul

MC 

were also significant (* p < 0.05, * p < 0.05). A relatively strong correlation was 

established between solubility (logS) in both blends at AT (r2 = 0.84). This was 

stronger at 60°C (r2 = 0.9) (Figure 5-1). Fourteen of the twenty-one (66%) drugs 

demonstrated a higher aDS ratio in sLBFMaisine
LC versus sLBFCapmul

MC (Figure 5-2). All 

21 drugs showed higher solubility in Capmul MCM when compared to Maisine CC at 

AT. In general, this trend was repeated at 60°C, except for fenofibrate and cinnarizine 

where the order of solubility was switched, albeit not significantly so.  

 

 

 

 

 

 

 

 

 

Figure 5-1. Scatter plots of the solubility in Capmul MCM versus Maisine CC (a) and sLBFCapmul
MC versus 

sLBFMaisine
LC

 (b). Formulation abbreviations can be inferred from the main text. 
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Apparent Degree of Supersaturation 

Thermally induced solubility increases were seen for all drugs in both the MC and LC 

sLBF (aDS ratio >1), reflecting increased dose loading relative to conventional LBFs. 

Drug solubility in Capmul MCM, Maisine CC, sLBFCapmul
MC and sLBFMaisine

LC are 

presented as mean ± SD (n=3) in the Appendix (Appendix 4 Table 4-1). Extent of aDS 

ranged from 1.04 to 3.17 in sLBFCampul
MC and between 1.06 and 3.4 in sLBFMaisine

LC 

(Figure 5-2). In the rank order of supersaturation propensity, the investigational drug 

candidate JNJ-2A and felodipine produced the lowest aDS in sLBFCapmul
MC and 

sLBFMaisine
LC respectively. Dipyridamole demonstrated the highest aDS using both 

sLBF.  

While correlations between GFA class and aDS ratios have been previously observed 

using solvent shift mediated supersaturation (275), our data revealed no clear trend 

between aDS and GFA (Figure 5-2). The mean aDS for sLBFCapmul
MC and 

sLBFMaisine
LC in each GFA class was class 1 (2.04, 2.08) class 2 (2.22, 2.56), class 3 

(2.05, 2.16), indicating that between GFA classes, no significant differences were 

seen. Mean aDS for the three GFA classes also did not significantly differ according 

to sLBF fatty acid chain length.  

Upon comparison of the aDS values obtained upon cooling of the 60°C samples for 

2h at AT (aDS2h) average differences in aDS ratio units of 0.17 (sLBFCapmul
MC) and 

0.16 (sLBFMaisine
LC) were observed (Appendix 4 Table 4-3). Corresponding to average 

drug solubility losses of 7.9% and 7.7% upon cooling, respectively. For this dataset 

which comprised of drugs of a variety of chemical structures, the range of precipitation 

upon removal of heating was moderate i.e., less than 20%, with 71% of drugs 

displaying less than 10% loss after 2h. 
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Figure 5-2. Apparent degree of supersaturation (aDS) ratios achieved for the dataset in both sLBFCapmul
MC and 

sLBFMaisine
LC. No clear aDS trend was elucidated in terms of the glass-forming ability (GFA) classification (as 

grouped). Details and definitions of the abbreviations are given in the text. 

 

Quantitatively Predicting aDS using PLS and ANN 

Quantitative models predicting aDS were produced using PLS and ANN. Unabridged 

versions of all the drug descriptor abbreviations in this section are found in Appendix 

4 Figure 4-1. PLS models for both aDS sLBFCapmul
MC and aDS sLBFMaisine

LC of 2 PCs 

and 8 and 9 input variables respectively were developed (Table 5-2). The aDS 

sLBFCapmul
MC model produced relatively weak predictions of r2 = 0.56, and in the 

training and test sets the RMSE was 0.4 and 0.79 using 8 variables: VMcGowans, 

N_Hydrgn, EEM_Afc, EEM_AFnp, SHCH_321, SHaaCH, EEM_NFc and Pi_FMi4 

(Figure 5-3). The Martens’ uncertainty test designated SHCH_321 and EEM_NFC as 

the most important variables. Comparatively, the 2 PC aDS sLBFMaisine
LC PLS model 

displayed a correlation coefficient of r2 = 0.62 and RMSE in the training and test sets 

of 0.4 and 0.45 using 9 input variables: HIVI-TC, N_FrRotB, NPA_Q2, EEM_Nfc, 
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EEM_NFnp, Pi_Aqo, Pi_AQc, Pi_FPI3 and Pi_FMi6. In this case, N_FrRotB and 

Pi_FMi6 were the most important variables.  

 

Table 5-2. Overview of the ANNs produced to predict aDS for sLBFCapmul
MC and sLBFMaisine

LC from their drug 

properties, including their architecture and various performance indicators. Tr and Te refer to training and test 

sets. 

 

Y Variable Model 

Type 

Architecture Input Variables r2 RMSE 

Tr 

RMSE 

Te 

aDS 

sLBFCapmul
MC 

 

 

aDS 

sLBFCapmul
MC 

PLS 

 

 

 

ANN 

2 PCs 

 

 

 

1 hidden layer,  

5 nodes 

VMcGowan, N_Hydrogn, 

SHCH_321, SHaaCH, 

EEM_Afc, EEM_Afnp, 

EEM_NFc, and Pi_FMi4 

Pi_FPl5, NPA_Q6, ∆Hfus, 

EEM_F4, EqualEta, M_CX, 

MlogP, MolVol, 

N_CYPAtoms, N_Electr, 

NPA_Q1, Pi_FPl3, Pi_MinQ, 

S+S_Intrins, and SolFactor  

0.56 

 

 

 

0.90 

0.40 

 

 

 

0.19 

0.79 

 

 

 

0.36 

aDS 

sLBFMaisine
LC 

 

 

 

aDS 

sLBFMaisine
LC 

PLS 

 

 

 

 

ANN 

2 PCs 

 

 

 

 

1 hidden layer,  

8 nodes 

HIVI-TC, N_FrRotB, 

NPA_Q2, EEM_Nfc, 

EEM_NFnp, Pi_AQo, 

Pi_AQc, Pi_FPI3, and 

Pi_FMi6 

F_AromB, HBDch, MaxQ, 

N_Atoms, N_Bonds, 

NPA_Q2, NPA_Q5, Pi_FMi1, 

Pi_FPl1, SsssCH, and T_Rads  

0.62 

 

 

 

 

0.83 

0.40 

 

 

 

 

0.28 

0.45 

 

 

 

 

0.25 
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Figure 5-3. Scatter plots illustrating the predicted versus observed aDS values obtained for aDS sLBFCapmul
MC 

using PLS (r2 = 0.56) and ANN (r2 = 0.90) (a,c). Scatter plots illustrating the predicted versus observed aDS 

values obtained for aDS sLBFMaisine
LC using PLS (r2 = 0.62) and ANN (r2 = 0.83) (b,d).  

 

Using ANN, MLP 15-5-1 for sLBFCapmul
MC and MLP 11-8-1 for sLBFMaisine

LC 

networks were produced (Table 5-2). These equated to input layers with 15 and 11 

drug properties, one hidden layer with 5 and 8 nodes and singular output layers i.e., 

predicted aDS. A strong correlation between predicted and observed aDS values was 

observed for the sLBFCapmul
MC network (r2 = 0.90) (Figure 5-3). This demonstrated 

low RMSE upon training (0.19) and testing (0.36) (Table 5-2). The properties included 

in the network were; Pi_FPl5, SolFactor, N_CYPAtoms EEM_F4, Pi_FPl3, NPA_Q6, 
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MlogP, MolVol, NPA_Q1, S+S_Intrins, EqualEta, ∆Hfus, M_CX, Pi_MinQ and 

N_Electr. The normalised importance chart signified ∆Hfus, EEM_F4 and N_Electr as 

the three most significant variables (Figure 5-4). Predicted and observed aDS values 

for aDS sLBFMaisine
LC were strongly correlated (r2 0.83), as training and testing RMSE 

of 0.28 and 0.25 were observed (Figure 5-3). Drug properties in the final network were 

N_Bonds, Pi_FPl1, T_Rads, MaxQ, N_Atoms, Pi_FMi1, HBDch, F_AromB, 

NPA_Q2, SsssCH and NPA_Q5. MaxQ, NPA_Q5 and NPA_Q2 were the most 

important variables (Figure 5-4). 

 

Figure 5-4. Normalised importance charts of the ANNs for sLBFCapmul
MC (a) and sLBFMaisine

LC (b) detailing the 

percentage importance of the input variables in predicting aDS. Details and explained abbreviations are given in 

the main text and Appendix 4 Figure 4-1.  

 

Upon model comparison, the ANN produced improved aDS predictions for both sLBF 

as both ANN models displayed substantially stronger correlation coefficients, lower 

training and testing RMSE and smaller residuals. The residuals for both ANN models 

demonstrated almost complete independence and random distribution in residual by 

predicted charts (Appendix 4 Figure 4-2). The relatively poor performance of the PLS 

models indicates that their inclusion was primarily for the purpose of comparison with 

the ANN.  
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Discussion 

The increasing adoption of model-based approaches across drug design and 

development has aided increased efficiency in pharmaceutical research. 

Computational tools exist across the pharmaceutical industry in many forms. 

However, for LBFs, thus far, drug property-based aspects of computational 

pharmaceutics have focused on solubility predictions for traditional solution or self-

emulsifying drug delivery system (SEDDS) formulations (114, 115, 159, 235). The 

exploration of ANN to support LBF development remains relatively unexplored. As a 

result, the main purpose of this research was to investigate if an ANN model could be 

developed to predict the aDS in sLBF using drug physicochemical or molecular 

properties. These predictions could be used to guide whether the degree of 

supersaturation in lipids is sufficient to enable dosing in early development. 

Accordingly, as part of this pilot study two ANN were developed which predicted aDS 

in sLBF from drug properties. These ANN produced superior predictions compared to 

PLS models developed using the same available dataset. These ANN predicting aDS 

(sLBFCapmul
MC and sLBFMaisine

LC), containing 1 hidden layer of 5 and 8 nodes, and 

using 15 and 11 drug properties respectively, yielded strong prediction accuracy 

performance (r2 = 0.90, 0.83) and low RMSE upon both training (0.19, 0.28) and 

testing (0.36, 0.25). In comparison, using PLS a lower accuracy of prediction (r2 = 

0.56, 0.62), higher residuals and RMSE upon training (0.4, 0.4) and testing (0.79, 0.45) 

were observed using 8 and 9 drug properties. Accordingly, this study demonstrates 

that ANN can be applied to link molecular drug properties to a predicted maximum 

dose loading capacity i.e., aDS upon thermal induced supersaturation. 

These modelling results suggest that aDS prediction is a complex and multifaceted 

phenomenon, as for this dataset numerous drug descriptors and non-linear 
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mathematical algorithms were required for higher accuracy. One explanation for the 

improved performance of ANN for this dataset may be attributed to its capability in 

decoding multidimensional highly non-linear relationships in datasets in the hidden 

layer, as opposed to linear relationships of the latent variables obtained through PLS. 

Consequentially, this work highlights the capability of ANN to provide an industrially 

applicable alternative to the more established computational pharmaceutics modelling 

methods such as PLS. While PLS regression has advantages versus ANN in terms of 

model transparency and decreased complexity in interpretation, in situations of 

interrelationships or substantial non-linearity as seen here, ANN may improve the 

accuracy of prediction. Therefore, it is hoped that this pilot study can initiate future 

larger scale studies to strengthen these predictions.  

Modelling indicated that drug properties hold key information about aDS. Overall, a 

wide range of drug descriptors, reflecting topology, reactivity, structure and size, 

electrostatics and thermodynamics, were significant. Trends in important properties 

were revealed. The three most important properties predicting aDS for sLBFCapmul
MC 

were ∆Hfus (enthalpy of fusion), EEM_F4 (Fourth component of the autocorrelation 

vector of sigma Fukui indices) and N_Electr (total number of electrons in a molecule) 

(Figure 5-4). ∆Hfus is a thermodynamic property, involving the amount of thermal 

energy which must be absorbed or evolved to change 1 mole of a solid to a liquid with 

no temperature change (280).  ∆Hfus was shown to previously inversely correlate with 

potential of a drug to supersaturate from solvent shift induced supersaturation (275). 

Fukui indices are frontier orbital indices, indicating atomic electron affinity and a 

molecules ability to become polarized upon changes to electron density (281, 282). 

Similar Fukui indices were previously important properties governing intrinsic 

dissolution rate of PWSD in biorelevant media (283) and in support vector machine 
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modelling to predict GFA for compounds between 200-300 g/mol. In that case a high 

value, which denoted increased electron reactivity, suggested a non-glass former 

(124). The number of electrons in a molecule is related to reactivity as electrons in the 

outermost atom shell determine reactivity. Generally, polarizability increases as the 

volume occupied by electrons increases. To predict aDS in sLBFMaisine
LC, MaxQ 

(maximal PEOE partial atomic charge), NPA_Q5 and NPA_Q2 (fifth and second 

component of the autocorrelation vector of estimated NPA partial atomic charges) 

were the most important properties (Figure 5-4). Both natural population analysis 

(NPA) and partial equalization of orbital electronegativity (PEOE) are methods to 

calculate partial atomic charges. They describe charge and electron density 

distributions within molecules, providing clues about chemical behaviour (284, 285). 

Comparatively, PLS performance was poor in terms of correlation and residual error 

and therefore more suited here as qualitative models. The fact that PLS and ANN use 

different mathematical approaches to obtain correlations, and that ANN can 

incorporate interrelationships between descriptor variables likely explains differences 

in final model variables. Despite the observed differences, Fukui indices, partial 

atomic charges and atom type E-state indices were significant for PLS and ANN 

prediction, supporting their importance for aDS.  

As a lack of thermodynamic stability is a fundamental limitation of sLBFs, it is 

imperative that supersaturation is maintained over a sufficient period to facilitate 

adequate absorption. In this study, after 2 hours of cooling, the sLBFs maintained 

relatively high levels of supersaturation across a variety of drugs. aDS was previously 

suggested as a guide for likelihood of precipitation from sLBF (32), where drugs that 

generated higher aDS coupled with high Tm/Tg ratios (higher crystallisation tendency), 

demonstrated quick precipitation on storage at 25ºC, while drugs with low aDS and 
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low Tm/Tg ratios resulted in good storage stability. Similarly, in this study, 

dipyridamole a Class 1 GFA drug with a high Tm/Tg and ∆Sfus produced the highest 

aDS in both sLBFs, while Class 3 GFA JNJ-2A and felodipine, both possessing low 

crystallisation tendencies, produced the lowest aDS. Therefore, this could provide an 

extended application of these models to anticipate precipitation potential, with 

reference to indicators of crystallisation tendency (Tm/Tg, ∆Sfus) (46). However, 

investigations regarding the overall accuracy of this combination were not within the 

scope of this current pilot study.  

The influence of fatty acid chain length in terms of both aDS and drug solubility 

between the MC and LC-based mono/di-glyceride blends was also observed. Like 

previous work involving MC and LC triglycerides (114, 235), a relatively strong 

correlation was found between solubility in both blends at AT. Interestingly, it 

appeared the common effect of heating became more influential for solubility rather 

than properties of the lipids as heating increased the strength of the correlation. While 

solubility was higher in sLBFCapmul
MC for the majority of drugs, approximately 60% 

demonstrated higher aDS in sLBFMaisine
LC

. This was potentially aided by the generally 

lower drug solvation in the long-chain formulation at AT, thereby permitting higher 

aDS gains upon heating. 

Finally, as recent expert commentary has emphasized various shortcomings of data-

driven modelling (68), we acknowledge the dataset used in model development here 

is limited in size. As such, this work was essentially a pilot study seeking to investigate 

potential for ANN to improve the accuracy of predictive models. Accordingly, the 

authors support strategies for further research using a larger dataset to confirm the 

correlations obtained and have produced the ANN models as predictive model markup 

language (PMML). Increases in the dataset will further clarify which drug properties 
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are significant for aDS, extending the applicability of the models. Notwithstanding 

this limitation, this pilot study successfully achieved the intended goal of 

demonstrating the robust predictive power of ANN to LBF datasets.  

 

Conclusion 

This pilot study explored the application of ANN as a computational technique to 

predict aDS in sLBF. The ANN models demonstrated accuracy in quantitative 

prediction of aDS ratios versus PLS models from the same dataset. These models, 

while demonstrating ANNs ability to capture complex data relationships, also 

facilitated greater insight into the relationship between drug properties and 

supersaturation propensity. It was revealed that this complex phenomenon is related 

to molecular descriptors of electron density and chemical reactivity. The study impacts 

support the application of ML-based computational pharmaceutics in early LBF 

development testing. Future research with larger datasets will be needed to confirm 

this pilot study findings. Moving forward, integration and dissemination of 

computational expertise and in silico tools will be vital for efficient decision-making 

in the development of lipid-based drug delivery systems of the future. 
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Abstract 

Purpose: To investigate if solubility and microscopic characterisation of the landrace 

pig pre-clinical animal models can aid development of bio-predictive in vitro 

screening tools.   

Methods: In this work, post-mortem gastric and small intestinal fluids were collected 

in the fasted, fed state and at five sample-points post administration of a placebo self-

emulsifying drug delivery system (SEDDS) in the fasted state to pigs. Cryo-TEM and 

Negative Stain-TEM were used for ultrastructure characterisation. Ex vivo solubility 

of fenofibrate was determined in the fasted-state, fed-state and post-SEDDS 

administration. Highest observed ex vivo drug solubility in intestinal fluids after 

SEDDS administration was used for optimising the biorelevant in vitro conditions to 

determine maximum solubility.  

Results: Under microscopic evaluation, fasted, fed and SEDDS fluids resulted in 

different colloidal structures. Drug solubility appeared highest 1 hour post SEDDS 

administration, corresponding with presence of SEDDS lipid droplets. A 1:200 

dispersion of SEDDS in biorelevant media matched the highest observed ex vivo 

solubility upon SEDDS administration.  

Conclusion: Overall, impacts of this study include increasing evidence for the pig 

preclinical model to mimic drug solubility in humans, observations that SEDDS 

administration may poorly mimic colloidal structures observed under fed state, while 

microscopic and solubility porcine assessments provided a framework for increasingly 

bio-predictive in vitro tools.  
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Introduction 

Trends in physicochemical properties of molecules in the drug development pipelines 

continuously display an increasing prevalence of poorly water-soluble drugs (PWSD) 

(2, 3). Resultantly, the pharmaceutical industry must adapt to ensure developability of 

such candidates. Solubility in the gastrointestinal tract (GIT) is an important parameter 

in guiding on the oral developability classification, as previous estimates suggest 

approximately 40% of new chemical entities are rejected in early development owing 

to insufficient solubility (286). Prevalence of such challenging properties provokes a 

multifaceted response; including development of bio-enabling formulations, in 

addition to both development and validation of in vitro tools and pre-clinical animal 

models to accurately forecast in vivo behaviour, together counteracting increasing 

product attrition.  

One common bio-enabling formulation strategy involves the use of self-emulsifying 

drug delivery systems (SEDDS) (222). SEDDS are a type of lipid-based formulation 

(LBF) composed of an isotropic mixture of oils, surfactants and co-solvents, designed 

to self-emulsify following dispersion within the GIT. SEDDS include various 

mixtures of lipophilic and/or hydrophilic surfactants, helping to emulate positive food 

effects experienced by many PWSD, as concentrations of bile salts and phospholipids 

are increased in the fed state (257). These endogenous surfactants, in combination with 

lipid digestion products, may increase the solubilisation capacity in the GIT fluids for 

PWSD through creation of a range of colloidal structures. In this heterogeneous 

environment, the solubility deficit between the fasted and fed state can be bridged 

(287, 288).  

Successful application of such bio-enabling oral drug delivery systems is often 

dependent on existence of efficacious screening processes and predictive in vitro 
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models simulating the GIT. These investigations provide vital tools for progression of 

bio-enabling drug delivery systems, ideally simulating the likely in vivo human 

response in an efficient and cost-effective manner. However, lack of accurate in vitro 

predictions can result in a reluctance by the pharmaceutical industry to utilise such 

non-conventional formulation approaches. The past two decades have witnessed a 

surge in development of in vitro models for SEDDS including biorelevant dispersion, 

digestion and permeability testing, where increasingly detailed simulations of the GIT 

are seen (52, 243, 289, 290). Additionally, prevalence of computational modelling, as 

well as in silico simulations based on physiologically-based pharmacokinetic (PBPK) 

modelling platforms, such as Gastroplus, Simcyp and PK-Sim are steadily increasing 

(61, 114). While collaborative efforts are being made to improve in vitro and in silico 

tools (53, 55), the complexity of endogenous formulation processing results in gaps in 

development of accurate in vivo predictions. Resultantly, one method to increase 

prediction accuracy involves validation and optimisation of in vitro simulation 

conditions, via introduction of increasingly physiologically and biopharmaceutically 

relevant input parameters. 

In addition, pre-clinical animal models provide invaluable early performance 

indicators for oral bioavailability, formulation performance and impact of dosing 

conditions (e.g., food effects) (61, 202, 207, 291). Usually this involves collection of 

plasma samples, but an additional opportunity exists for collation of animal 

gastrointestinal (GI) luminal aspirates and fluids for solubility screening (292). The 

utility of the pig model to reliably predict human in vivo behaviour has been previously 

reviewed (291), demonstrating high similarity with human GI conditions and 

physiology of commonly used breeds such as the domestic miniature-sized pig. 

However, while similar in anatomy and physiology, the chief principle of utilising 
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animal models is their ability to provide a reliable estimate of in vivo performance of 

drug delivery systems in humans. It is, therefore, crucial that all biopharmaceutical 

processes are adequately simulated, including the ability of the intestinal fluids in the 

target species to provide a comparable solubilisation capacity to their human 

equivalents (286, 293). Resultantly, previous quantitative assessment of the 

composition of porcine GI fluids revealed differences in both the concentrations of 

solubilising components and in the relative quantities of the major bile acids when 

compared to human intestinal fluids (294). These observations led to the development 

of a porcine biorelevant medium, fasted state simulated intestinal fluid of pigs 

(FaSSIFp) based on the composition of porcine GI fluids with respect to pH, buffer 

capacity, osmolality, surface tension, as well as the bile salt, phospholipid and free 

fatty acid content in fasted state pigs (294). As these endogenous compounds and their 

interactions with LBF excipients have been suggested to be vital for solubilisation of 

PWSD in the GIT (292), further characterisation evaluating similarities and 

differences in the fluid ultrastructure’s formed in both human and porcine fluids 

through microscopic evaluation is warranted. Furthermore, additional characterisation 

of fluid structures observed following SEDDS administration may provide insights 

regarding the capability of SEDDS to mimic post-prandial enhanced solubilisation and 

improve understanding of the mechanisms by which this enhanced solubilisation is 

generated.    

In response to the necessity for validated in vitro models, this research sought to assess 

if a qualitative evaluation of porcine fluid ultrastructure, as discussed above, in 

combination with quantitative assessments of drug solubility in these fluids, could 

inform increasingly bio-predictive in vitro tools. In order to achieve this aim, 

morphological characterisations of porcine luminal media in the fasted and fed state, 
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as well as at five time points post SEDDS ingestion were conducted at the 

ultrastructure level. While similar microscopic analysis of both human and simulated 

fluids have been conducted (257, 295), this research provides the first comparative 

analysis of porcine fluids using two complementary techniques of Cryogenic 

Transmission Electron Microscopy (Cryo-TEM) and Negative Stain TEM, previously 

demonstrated as excellent tools for such analyses (296). These qualitative observations 

were then compared to ex vivo solubility values to investigate any time dependent 

change in drug solubility post SEDDS ingestion. Fenofibrate was chosen as a BCS 

Class II neutral drug, and has previously displayed food effect in landrace pigs (207), 

where the lack of a pH effect between gastric and intestinal samples allowed direct 

comparisons. Using combined knowledge from the microscopic images and 

quantitative solubility studies, it was analysed if the maximum observed ex vivo 

solubility with SEDDS could be used to inform more physiologically relevant input 

parameters, supporting refinement of in vitro models for SEDDS.  
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Materials and Methods 

Materials 

Fenofibrate was purchased from Kemprotec Ltd. (UK). Hard gelatine capsules (00EL 

Licaps®) were obtained from Capsugel®. All food components used in preparing the 

FDA recommended breakfast were purchased commercially. Fasted State Simulated 

Intestinal Fluid (FaSSIF) and Fasted State Simulated Gastric Fluids (FaSSGF) were 

produced from FaSSIF/FeSSIF/FaSSGF powder obtained from Biorelevant.com 

(Croyden, UK). For the fasted state simulated porcine media (FaSSIFp); Lipoid E PC 

S was obtained from Lipoid GmbH (Germany), Sodium taurodeoxycholate; Sodium 

hydroxide (NaOH) pellets; Chloroform; Sodium chloride (NaCl); Sodium dihydrogen 

phosphate monohydrate; Sodium oleate were purchased from Sigma Aldrich (Ireland) 

and sodium taurocholate was ordered from Thermo Scientific Ltd., Alfa Aesar (UK). 

Olive Oil, Tween 85 and Kolliphor RH 40 were all purchased from Sigma-Aldrich 

(Ireland). All other chemicals and solvents were of analytical grade or HPLC grade, 

respectively, and were purchased from Sigma–Aldrich (Ireland) and used as received. 

Water of HPLC grade was produced using a MilliQ system (Merck KGaA, Germany). 

 

Gastric and Intestinal Fluid Collection 

This study was carried out under a licence issued by the Health Products Regulatory 

Authority (HPRA), Ireland and EU Statutory Instruments. Local University Ethical 

Committee approval was obtained. 11 male landrace pigs were sourced locally and 

housed individually at the Universities Biological Services Unit (17-20 kg and mean 

18.3 kg). Pigs were fed approximately 175 g of standard weanling pig pellet feed twice 

daily and given free access to water. The final feed of 175 g was given 24 h prior to 
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dosing. Pigs were grouped into either fasted state (3 pigs), fed state (3 pigs) or SEDDS 

group (5 pigs) for the post mortem assessment.  

The following post mortem fluid collection protocol was repeated for the 3 groups. 

Firstly, the fasted state group (following a 24 hour fast) received 50 mL of water via 

a syringe 30 min prior to euthanasia and post-mortem sampling. The study was 

designed to mimic dosage conditions under a fasted leg of a pre-clinical study, 

therefore 50 mL of water was provided to mimic administration of a dose with water 

in pigs and access to water was thereafter restricted until sampling, in accordance with 

the standard protocol applied by Henze et al. (207). The fed state group of 3 pigs, were 

fed a half portion of a standard high-caloric, high-fat FDA breakfast, the mass which 

equated to approximately 18–20 g/kg of body weight. The fed group were given this 

FDA breakfast two hours prior to euthanasia and post-mortem luminal fluid sampling, 

where water was again restricted until sampling. The SEDDS group was orally 

administered with 1 g of a Type IIIa SEDDS via a dosing device in a gelatine capsule 

(00EL Licaps®, Capsugel®) followed by 50 mL of water via syringe. 1 g SEDDS was 

chosen to be representative of a commonly administered amount in comparative 

animal studies using the landrace pig. SEDDS consisted of 40% olive oil (long chain 

triglyceride), 40% Tween 85 (co-surfactant) and 20% Kolliphor RH 40 (surfactant). 

Access to water was restricted up to 3 h post dosing. All pigs were euthanized 

humanely by intravenous injection of pentobarbital sodium followed by potassium 

chloride. The peritoneal cavity was exposed by midline incision and the stomach and 

small intestine were isolated. Occluding ligatures were applied proximal to the cardiac 

sphincter and distal to the pyloric sphincter as well as at the proximal and distal ends 

of the small intestine. Once both ends were secured, the stomach and small intestine 

were removed from the peritoneal cavity. The small intestine was subdivided into three 
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sections approximating to the duodenum (USI), jejunum (MSI) and ileum (LSI). 

Gastric, USI, MSI and LSI luminal fluids were then collected and transferred to sterile 

50 mL sample tubes at time intervals of 0.5, 1, 2, 3 and 4 h post dosing respectively 

(n = 1). Further digestion in the samples post-sampling was inhibited with 1 µM 

orlistat (297). All samples were first immediately frozen at -20 °C, then stored at -80 

°C until further analysis.  

 

Cryogenic and Negative Stain Transmission Electron Microscopy Studies  

All GI samples (fasted, fed and SEDDS) were centrifuged at 30,000 × g for 15 min at 

room temperature in an Optima MAX-XP Ultracentrifuge from Beckman Coulter 

(Brea, CA, USA) and the supernatant collected for ultrastructure characterisation. 

Cryo-TEM samples were prepared by depositing 3 µL of the supernatant (some diluted 

in ultrapure water to ensure proper vitrification) on glow-discharged 300 mesh lacey 

carbon grids from Ted Pella Inc. (Redding, CA, USA). Sample vitrification was then 

carried out in liquid ethane using a Vitrobot Mark IV from FEI (Hillsboro, OR, USA) 

under controlled (4 °C, 100% relative humidity) and automated conditions (blot time 

3 s, blot force '0'). The vitrified samples were then kept in liquid nitrogen and images 

obtained with an accelerating voltage of 200 kV using a Tecnai G2 20 TWIN 

Transmission Electron Microscope equipped with a 4K CCD Eagle digital camera 

from FEI. Negative Stain TEM samples were prepared by depositing 4 µL on glow-

discharged 200 mesh carbon grids from Ted Pella Inc. After 60 s, 10 μL of water was 

added and the grids carefully aspirated using the edge of a filter paper. Gastric samples 

were then stained with 10 μL of a uranyl acetate solution (pH 2) for 30 s, while 

intestinal samples were stained with a phosphotungstic acid solution (pH 7). Lastly, 

the grids were washed twice with 10 μL water and aspirated. Images were recorded 
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using a CM100 TWIN Transmission Electron Microscope (Philips, Amsterdam, The 

Netherlands) with an accelerating voltage of 100 kV and equipped with a side-

mounted Veleta Camera (Olympus). Use of both techniques allowed for cross-

referencing of samples to verify presence of different colloidal structures and 

increased the robustness of the analysis. 

 

Solubility Studies 

Ex vivo apparent solubility studies of fenofibrate were conducted on gastric and USI 

samples obtained from the SEDDS group at 0.5, 1, 2, 3 and 4 h post sampling, as well 

as fasted and fed gastric and USI samples. pH of the SEDDS samples was measured 

using a using a Model 3510 pH/mV/Temperature Meter (Jenway, UK). Fenofibrate 

was added in excess to triplicate glass vials containing a specified volume of each fluid 

preheated to 37 °C and a magnetic stirrer. Vials were placed on a stirring plate at 300 

rpm (Mixdrive 15, 2MAG, Germany) in a 37 °C incubator for the period of the study. 

150 µL samples were removed at 2, 4, 6 and 24 h, with the mean of the 24 h samples 

used for data analysis. Samples were centrifuged at 11,400 × g for 10 min at 37 °C 

(Mikro 200 R, Andreas Hettich GmbH & Co. KG, Germany), followed by a 10-fold 

dilution in acetonitrile. Next the samples were centrifuged a second time to remove 

precipitated proteins (11,400 × g, 10 min, 4 °C). Supernatant was then transferred to a 

separate centrifuge tube and suitably diluted in mobile phase in preparation for 

analysis via RP-HPLC/UV.  

In vitro solubility studies were carried out using commercial FaSSGF, FaSSIF along 

with FaSSIFp previously described (294). FaSSGF and FaSSIF were prepared using 

the Biorelevant.com protocol (Croyden, UK) and FaSSIFp was prepared using the 
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previously published protocol (294). Fenofibrate solubility was obtained in FaSSGF, 

FaSSIF and FaSSIFp, as well as 1:50, 1:100, 1:200, 1:500 and 1:1000 i.e., 1 g:50 mL, 

1 g:100 mL, 1 g:200 mL, 1 g:500 mL and 1 g:1000 mL, dilutions of SEDDS dispersed 

through mixing in the biorelevant medias (n = 3). The same method as above was 

followed, however, only one centrifugation at 37 °C, 11,400 × g for 15 min was used. 

The solubility result for 1:200 dispersion of SEDDS in FaSSIF was obtained from a 

previous publication (Chapter 4) (235). 

 

RP-HPLC/UV Analysis 

Detection of fenofibrate was conducted using an Agilent 1200 series HPLC system 

comprising a binary pump, degasser, autosampler and variable wavelength detector. 

Data analysis was conducted with EZChrom Elite version 3.2. A Waters Symmetry® 

C18 column (4.6 × 150 mm, 5 µm) maintained at 25 °C was used during separation. 

The mobile phase used consisted of 80:20 (v/v) acetonitrile and sodium acetate 25 mM 

buffer adjusted to pH 5. The flow rate was 1 mL/min and the detection wavelength 

was 287 nm. The drug concentration in each vial was calculated from a calibration 

curve run on the same day. The solubility value presented was the mean value of the 

24 h triplicate samples. The analysis displayed linearity over the range 0.01-25 µg/mL 

(r² > 0.999). The precision of the method at 1 and 10 µg/mL, expressed as the 

coefficient of variation, was 0.442% and 0.327% within days and 2.796% and 2.92% 

between days respectively.  
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Statistical Analysis 

Prior to statistical analysis, drug solubility data in the different ex vivo and in vitro 

media were compared to Levene’s Test for Equality of Variances where a p-value 

<0.05 indicated a violation of equal variance. Solubility comparisons were conducted 

using a one-way ANOVA with pairwise comparisons of the groups completed using 

Tukey’s multiple comparison test. All statistical analysis was conducted using SPSS 

(IBM, California) as a p-value <0.05 indicated a significant result. Graphs of solubility 

and pH were obtained using Prism 5 (GraphPad Software, CA, USA).  

 

In Silico Prediction  

A multiple linear regression (MLR) equation previously developed to predict the 

solubility ratio (SR) of drugs upon SEDDS dispersion in FaSSIF relative to FaSSIF 

solubility (235) was employed (Chapter 4). This equation was previously produced 

using Excel (Microsoft Office, 2016), where correlations were investigated between a 

selection of drug properties and SR for a database of 30 PWSD, resulting in equation 

1:   

(1) 𝑙𝑜𝑔𝑆𝑅 = 0.54 +  0.17(𝑙𝑜𝑔𝐷6.5)  +  1.04(𝐹_𝐴𝑟𝑜𝑚𝐵) –  0.01(𝑇𝑚) 

Where logD6.5 is the partition coefficient at pH 6.5, F_AromB is aromatic bonds as a 

fraction of total bonds and Tm is the melting point of the drug (fenofibrate). The antilog 

of the result was then multiplied by the solubility of fenofibrate in FaSSIF obtained 

from literature (249), in order to obtain the in silico prediction of fenofibrate solubility 

upon SEDDS dispersion in FaSSIF and compared to the ex vivo and in vitro results 

obtained in this study.  
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Results  

pH Characterisation of Gastric and Intestinal Porcine Media with a SEDDS 

In order to assess if administration of a SEDDS would alter the pH profile in the GI 

fluids of pigs, post mortem samples of both the gastric and USI samples were collected 

at various time points post SEDDS administration in the fasted state (Figure 6-1). In 

total five pigs were administered a SEDDS formulation, and post mortem samples of 

the gastric and USI samples were collected at 0.5, 1, 2, 3 and 4 hours (n = 1). Due to 

the limited sample availability, no pH could be obtained for USI at 0.5 h. In terms of 

the gastric samples, after 30 min the low pH value observed was in line with previously 

reported values of fasted state pH in landrace pigs (range reported 1.2 - 4.0) (291). 

However, at 1 h the pH observed was higher (5.38), while values appeared to 

subsequently fall back to low levels thereafter. However, given that only one sample 

was available, limited statistical relevance can be derived. The pH of the USI samples 

ranged from 5.06 - 7.67, consistent with previous fasted-state observations in the 

landrace pig (291). Overall, it would appear that administration of SEDDS has a 

limited effect overall on gastric and USI pH over the 4-hour period, and while further 

studies would be required in a larger number pigs, to assess a transient increase in 

gastric pH, such studies were not considered justified given the findings of this initial 

pilot study. 
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Figure 6-1. pH values obtained as a function of time from gastric (black circles) and USI samples (black squares) 

following administration of a placebo SEDDS to fasted pigs (n=1) 
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Microscopic Evaluation of Fasted and Fed State Gastric and Intestinal Porcine 

Fluids 

Two complementary techniques of Cryo-TEM and Negative Stain TEM were used 

(Figure 6-2). For the fasted-state, Cryo-TEM and Negative Stain gastric images 

revealed the presence of small structures, which may represent micelles and a 

vesicle/lipid droplet (~100-150 nm). In the USI fasted state samples, bilamellar 

vesicles (200 nm), a ruptured vesicle (~400 nm) and small micelle-like structures (10-

30 nm) were the predominant features. A MSI fasted sample also revealed an 

abundance of fiber-like structures. In the fed-state gastric images, while micelles (10-

50 nm) were seen, overall, these images displayed evidence of a heterogeneous 

population with clustering of structures and higher concentrations of colloidal 

structures of different sizes ranging from approximately 50-500 nm. Structures 

observed included unilamellar vesicles, multi-compartmental vesicles and 

multilamellar vesicles and lipid droplets. In terms of the USI images, once again 

clusters of multivesicular structures including unilamellar, bilamellar and multi-

compartmental vesicles were dominant (approximately 100-600 nm). Furthermore, 

either a mixed micelle or lipid droplet was seen (100 nm), as well as a mixture of 

micelles and vesicles in the Negative Stain TEM USI and MSI samples. 
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Figure 6-2. Cryo-TEM and Negative Stain TEM images of fasted and fed state (2 h post-prandial) gastric and 

intestinal samples. Letters indicate representative colloidal structures. A (Multi-Compartmental Vesicles 200-800 

nm), B (Lipid droplet), C (Unilamellar and Bilamellar Vesicles or Lipid Droplets 150-400 nm), D (Ruptured 

Vesicle 400 nm), E (Fiber-like structures), F (Micelles/Small structures 10-50 nm). Measurement scales are shown. 

To ensure proper vitrification the fed state USI samples were diluted in ultrapure water.  
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Microscopic Evaluation of Porcine Gastric and Intestinal Fluids Post 

Administration of a Placebo SEDDS 

Changes in luminal fluid ultrastructure were observed at different time points (0.5, 1, 

2, 3, 4 h) post SEDDS oral administration in the fasted state. Cryo-TEM images were 

obtained for the 0.5, 1 and 2 h SEDDS samples only (due to sample unsuitability) and 

Negative Stain TEM images for each sampling point, except 0.5 h USI and MSI and 

3 h MSI (no sample collection) (Figure 6-3 and 6-4). When compared to the fasted 

state gastric composition, high concentrations of small micelles 10-40 nm are seen in 

the 0.5, 1 and 2 h Cryo-TEM images, in addition to small lipid structures (20-60 nm) 

after SEDDS administration. In terms of the USI Cryo-TEM images, the 1 h samples 

demonstrated examples of what resembled lipid droplet clusters, similar in appearance 

to structures seen in the 2 h gastric and fed state USI samples (Figure 6-3). SEDDS 

administration did not appear to produce similar multivesicular structures to the fed 

state, while a clear difference in composition was observed from the fasted state in 

terms of higher concentrations of micelles and clusters of lipids droplets, particularly 

at the 1 h sampling point.  

Similarly, Negative Stain TEM revealed differences between SEDDS administration 

and the fasted and fed state (Figure 6-4). Firstly, similar to Cryo-TEM a high 

concentration of small lipid structures 10-40 nm was visualised in the 0.5 h gastric 

image. The 1 h gastric image revealed a heterogeneous mix of structures with a higher 

concentration of structures versus the fasted state. A large lipid droplet or vesicle, 

approximately 200-250 nm in diameter, could be observed and was similar in 

appearance to structures observed in the fed state gastric sample. In the 2 h gastric, 

USI and MSI samples, vesicles/lipid droplets (100-200 nm) were observed, while the 

compositional characteristics of the 3 h samples depicted a great mix of micelles and 
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vesicles of 10-200 nm. Interestingly, the 4 h samples, appeared similar in overall 

composition to the previous fasted state images, in terms of appearance of small 

structures resembling micelles (10-50 nm), and fiber-like structures.   

 

Figure 6-3. Cryo-TEM images of SEDDS Gastric and USI fluids at 0.5, 1 and 2 h post SEDDS administration. 

Letters indicate representative colloidal structures. A (Unilamellar Vesicles 100-600 nm), B (Lipid Droplet), C 

(Small Lipid Structures 20-60 nm), D (Small Micelles 10-40 nm). A 200 nm scale is shown for all images. To aid 

proper vitrification the 1h USI samples were diluted in ultrapure water 
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Figure 6-4. Negative Stain TEM images of SEDDS gastric and intestinal fluids at 0.5, 1, 2, 3 and 4 h post placebo 

SEDDS administration. Letters indicate representative colloidal structures. A (Vesicles 200-400 nm), B (Fiber-like 

Structures), C (Micelles/Small Structures 10-60 nm), D (Small Lipid Structures 10-40 nm). Measurement scales 

are shown for each image.  
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Fenofibrate Solubility in Pig Gastric and Intestinal Media Post Ingestion of a 

Placebo SEDDS 

To investigate potential correlations with the colloidal species visualised upon 

microscopic evaluation of the SEDDS samples, ex vivo solubility studies using gastric 

and USI fluids were conducted. These results were also compared to the ex vivo fed, 

fasted and biorelevant media solubility results (Figure 6-5). As seen in Figure 6-5, in 

both the gastric and USI samples, the highest ex vivo solubility was observed 1 h post 

SEDDS ingestion where both samples displayed similar values, while the lowest 

solubility was at 4 h. In terms of gastric solubility at each time point, fenofibrate 

solubility increased from 0.5 h (189 ± 10 µg/mL) to 1 h (285 ± 31 µg/mL) post 

ingestion (Figure 6-5). After the 1 h sample, a decrease in drug solubility was seen, 

where 2 h (61 ± 8 µg/mL) and 3 h (68 ± 4 µg/mL) samples displayed similar solubility, 

both below the value obtained from the gastric fed state sample (86 ± 6 µg/mL). 

Finally, the 4 h sample displayed a low drug solubility (9 ± 4 µg/mL), similar to the 

value obtained from fasted gastric media (6 ± 2 µg/mL). USI samples displayed a 

similar solubility trend, though no sample fluid could be collected for the 0.5 h sample 

thus, was not available for comparisons. Once again, the 1 h time point demonstrated 

the highest drug solubility (271 ± 36 µg/mL). After this time, drug solubility decreased 

substantially as solubility at 2 h (117 ± 12 µg/mL) was higher than the 3 h (85 ± 9 

µg/mL) sample in contrast to the gastric samples where 2 h and 3 h displayed similar 

values. In this case, the 2 h sample did exceed the fed state USI solubility obtained 

(104 ± 19 µg/mL), however not significantly (p > 0.05). Again, the lowest drug 

solubility was observed at 4 h (4 ± 1 µg/mL), also similar to the fasted state USI sample 

(7 ± 1 µg/mL). 
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Figure 6-5 A) Fenofibrate solubility in gastric porcine luminal fluids 0.5, 1, 2, 3 and 4 h post placebo SEDDS 

ingestion for five pigs (Gastric SEDDS Ex Vivo) compared to fasted and fed gastric porcine (2 h post-prandial) 

and FaSSGF apparent solubility (n =3). B) Fenofibrate solubility in USI porcine luminal fluids 1, 2, 3 and 4 h post 

placebo SEDDS ingestion for four pigs (USI SEDDS Ex Vivo) compared to fasted and fed USI, FaSSIF, FeSSIF 

and FaSSIFp solubility (n =3).  
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Exploration of in vitro SEDDS Screening Tool using Enhanced Biorelevant Media 

and Investigation of Appropriate Dilution Conditions.  

Apparent solubility was determined in SEDDS dispersions in simulated human or 

simulated porcine fluids and compared to the apparent solubility from the ex vivo 

studies where 1 g of SEDDS was administered. The gastric and intestinal ex vivo 1 h 

samples were taken as an approximation of the maximum in vivo solubility with 

SEDDS, and consequently, as the value which the in vitro conditions should replicate. 

Apparent solubility was determined in 1:50, 1:100, 1:200, 1:500 or 1:1000 dispersions 

of SEDDS in the various biorelevant medias (FaSSGF, FaSSIF, FaSSIFp). All medias 

containing dispersed SEDDS were significantly different from the solubility of 

fenofibrate in the respective medias alone i.e., FaSSGF (0.25 ± 0.01 µg/mL), FaSSIF 

(9.6 ± 1.4 µg/mL) and FaSSIFp (15.69 ± 0.9 µg/mL). One-way ANOVA analysis and 

a Tukey post-test found that in the three medias, no significant difference was found 

between the ex vivo results and in vitro solubility in the 1:200 SEDDS media (Figure 

6-6). Conversely, in all three media, the 1:50, 1:100, 1:500 and 1:1000 dispersions 

significantly differed (p < 0.05) from the ex vivo 1 h gastric and 1 h USI results 

respectively. The 1 h USI ex vivo solubility and 1:200 in vitro solubility results in 

FaSSIF were also not significantly different from the solubility predicted from a 

previously published equation which predicts drug solubility gain upon SEDDS 

dispersion (Chapter 4) (235).  
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Figure 6-6. Maximum fenofibrate ex vivo solubility in Gastric and USI luminal fluid 1 h after SEDDS 

administration compared to FaSSGF, FaSSIF and FaSSIFp media supplemented with 1:50, 1:100, 1:200, 1:500, 

1:1000 dispersions of SEDDS. A one-way ANOVA and Tukey post-test revealed no significant difference be-

tween solubility in the porcine fluids versus the three biorelevant media with a 1:200 dilution. A predicted solubility 

upon SEDDS dispersion in FaSSIF from MLR also displayed no significant difference from the ex vivo USI result. 

* represents a significant difference (p <0.05) of mean solubility compared the ex vivo solubility measurement in 

each graph i.e., 1 h gastric ex vivo or 1 h USI ex vivo. 
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Discussion 

The increasing demand for bio-enabling drug delivery systems has generated a 

complementary necessity for predictive tools to support data-driven, model-informed 

formulation development. Ability to confidently discriminate formulation 

performance using in vitro tools is key for successful implementation of modern bio-

enabling drug delivery approaches. While combined pressures of traditional 

production familiarity, cost effectiveness and time constraints reinforce the 

importance of both accurate and efficient tools to encourage adoption of novel bio-

enabling technologies. In recent decades, research has focused on standardization and 

increasing the physiological relevance of such tools (50). However, significant gaps 

in understanding limit ability to consistently predict in vivo drug luminal behaviour. 

Accordingly, the OrBiTo (Oral Biopharmaceutics Tools) project collaborators have 

highlighted importance of validation of in vitro and in silico models, through 

identifying key in vivo processes to be simulated and optimizing experimental inputs 

to reflect the identified variables (50, 55). Consequently, this research aimed to 

establish if, through microscopic and quantitative assessment of porcine fluids, in vitro 

simulation conditions could be improved through increasingly physiologically 

relevant input parameters. It is hoped that such a refinement of in vitro conditions can 

support the developability of drugs with SEDDS, through the facilitation of 

increasingly accurate in vitro dose number predictions. 

The first step in achieving this aim involved obtaining an improved understanding of 

the landrace pig model, via a microscopic characterisation of pig luminal fluid 

ultrastructure. Aiming to reinforce the utility of the landrace pig model, while also 

aiding creation of increasingly bio-reflective in vitro conditions. Morphological 

characterisations on gastric, USI and MSI fluids were conducted using two 
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microscopic techniques: Cryo-TEM and Negative Stain TEM. Firstly, fasted and fed 

state as ultrastructure’s were microscopically compared and contrasted. Distinct 

morphological differences were observed between the fasted and fed state samples due 

to increased prevalence of clustering and generally larger structures in the latter. The 

exact composition of the fasted gastric samples was more difficult to elucidate due to 

the lack of comparative studies investigating human gastric fluids, perhaps suggesting 

scope for future research. For example, the somewhat unexpected presence of small 

micelle resembling structures in both the fasted and 4 h SEDDS gastric samples, is in 

line previous reports of high bile salt concentrations in the landrace pig stomach 

compared to humans (294). Most likely reflecting reflux of bile from the pig 

duodenum to the stomach. In terms of intestinal samples, the fasted intestinal fluids 

did suggest, in addition to fiber-like structures and vesicles, evidence of spherical 

micelles, previously shown to be abundant in FaSSIF and fasted state human intestinal 

fluids (FaHIF) (257, 295, 296). Similar vesicular components of approximately 100 

nm have also been found in FaSSIF (247, 257). In contrast, the more complex 

composition of the fed state samples displayed evidence of clustering and larger 

multivesicular structures. The heterogeneous fed state presentation was expected as 

previous research demonstrated large variability in fed state human intestinal fluids 

(FeHIF) compared to FaHIF ultrastructure (296).  

The irregular appearance of some larger structures (>200 nm) has previously been 

related to their dynamic transient nature as intermediate phases (298, 299). The fed 

state images in this study resembled the ultrastructure of FeSSIF including micelles 

and structures ranging from unilamellar to multicompartmental vesicles (296). This is 

reflective of previous observations that while uni-, bi- and multilamellar vesicles 

dominate in FeHIF they are rarely seen in FaHIF (295). However, upon comparison 
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of the porcine fed state intestinal fluid to fed state human intestinal fluids, the 

structures observed appeared generally smaller in these porcine samples, as numerous 

elongated structures from 1-10 µm have been observed in FeHIF (296, 298, 300). 

While similar structures would be expected in general, significant differences in 

ultrastructure between pigs and humans is likely related to differences in rates of 

digestion, major primary bile acids (291), total phospholipid and cholesterol 

concentrations along with differences in bile salt : phospholipid ratios (294). When 

compared to previous work demonstrating capacity for landrace pigs to predict food 

effects (207), from these images, it is clear that such an effect is produced through 

large clusters of heterogeneous vesicular structures in the fed state compared to the 

fasted state, capable of increasing the solubility of PWSD. Accordingly, an impact of 

this work is that porcine GI fluid ultrastructure, while demonstrating differences to 

human and simulated fluids, also shares common characteristics of these fluids, aiding 

its simulation of human luminal fluids.  

Microscopic analysis was additionally conducted to investigate how porcine luminal 

fluids responded to SEDDS administration. Like the food effect, understanding of the 

in vivo SEDDS solubilisation process is a key consideration for the development of 

predictive tools. SEDDS performance is often related to a bridging of the fasted-fed 

solubility gap, therefore, it was investigated if SEDDS administration led to 

production of colloidal species more closely resembling the fed state. Images of gastric 

and intestinal media samples taken periodically up to four hours post placebo SEDDS 

administration revealed time dependent SEDDS processing in vivo through 

differences in colloidal and lipid structures. Compared to fasted gastric samples, high 

concentrations of small micelles ranging from 20-40 nm and larger lipid structures 

were seen in the 0.5 h gastric SEDDS sample, resembling higher concentrations of 
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small micelles previously seen in fed state simulated intestinal fluids (FeSSIF) and 

FeHIF (257, 296). The 1 h SEDDS USI samples displayed a large unilamellar vesicle 

and clusters of lipid droplets, similar to the USI fed sample, previously observed in 

FeSSIF, FeSSIF-V2 and FeHIF (296, 300). While a similar lipid droplet was seen in 

the 2 h gastric sample. From these images it appears that the SEDDS droplets formed 

ranged from 100-200 nm approximately. This can be compared to smaller previous 

size estimates of 44.76 ± 0.303 nm and 51.7 ± 0.8 nm observed for this SEDDS 

dispersed in FaSSIF and simulated gastric fluid without pepsin (SGFsp) respectively 

(51, 235). However, effect of digestion on droplet size was not accounted for in these 

previous studies. This along with differences in bile salt and phospholipid constituents 

and concentrations between the in vivo porcine and human simulated media, likely 

explains the smaller sizes seen.  

From these images it appears that SEDDS administration does not result in colloidal 

structures of the same complexity and size of fed state fluids, with the differences in 

types and concentrations of lipids present, along with the added complexity of the 

surfactant present in the SEDDS samples playing a role. In contrast, clusters of lipid 

droplets from SEDDS processing were seen, predominantly in numerous 1 h USI 

samples. This can be compared to previous work where small micelles and clusters of 

lipid droplets were microscopically observed at the beginning of lipolysis during in 

vitro SEDDS digestion and fewer lipid droplets were seen as time progressed, 

suggesting complete digestion (259). Clear differences between the 0.5 h to 4 h 

SEDDS samples were seen. When compared to the fasted state Negative Stain TEM 

images, similarities were perceived with the 4 h SEDDS images in terms of the 

predominant presence of fiber-like structures and small structures resembling 

micelles. Overall, this microscopic assessment suggests that the colloidal structures 
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formed post SEDDS ingestion, while demonstrating increased colloid numbers 

relative to the fasted state, appear less complex than fed state fluids. While other 

physiological effects such as transit times may also play a role in differences seen in 

the media. 

Following the observation of varied colloidal structures in the gastric and intestinal 

fluids, and presence of lipid droplet clusters in the 1 h USI sample during microscopic 

analysis, it was then assessed if these qualitative observations could be correlated to 

time dependent changes in fenofibrate solubility from 0.5 h up to 4 h post SEDDS 

administration. Accordingly, the differing drug solubility’s seen at the various time 

points can be related to time dependant digestion of the vehicle and potential on-going 

lipid absorption. Solubility in both the gastric and USI samples was highest at 1 h post 

administration, exceeding fed state solubility, before decreasing at 4 h to levels similar 

to fasted state gastric and USI fluid and simulated fasted media. Resultantly, for 

fenofibrate, which displays a high dose loading in this SEDDS (96.6 ± 3.4 mg/mL) 

(51). It appears to be the presence of the SEDDS lipid droplets, as seen in the 1 h USI 

images, which are likely to be the key reservoirs of drug, maintaining high 

solubilisation capacity.  

In summation, the images 1 h after SEDDS administration, the time of maximum 

observed ex vivo drug solubility, appeared different in colloidal ultrastructure 

composition, compared to the fasted state fluid, and also the fed state fluids 2 h after 

feeding. In the fed state, the lipid load produced is likely higher and more diverse, 

reflecting the complexity of the meal composition, likely contributing to differences 

observed with the SEDDS samples. While it appears from this study that the increased 

fenofibrate solubilisation using SEDDS is primarily driven through presence of 

SEDDS lipid droplets. It must be acknowledged that a different SEDDS may produce 
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a different outcome in such a study and these results represent a snapshot reflecting 

the ingested type and amount of SEDDS ingested. Any solubilising effect of the 

SEDDS was lost at 4 h, where fenofibrate solubility mirrored fasted state gastric and 

USI values. In agreement, the Cryo-TEM 4 h images resembled the fasted state, with 

these results both suggesting that by this time the GIT had sufficiently processed the 

SEDDS, and digestion and absorption was complete. A contributing factor may also 

be that from 3 h after SEDDS administration pigs received ad libitum water access, 

potentially accelerating flushing of the SEDDS at 4 h. 

Previous research has investigated the drug solubilisation effect of carvedilol in canine 

intestinal fluids, where administration of 2 g of LBF resulted in a significantly higher 

solubility in fluids collected 5-20 min after administration versus 1 g of LBF or water 

(301). This higher solubility was only seen for the 5-20 min samples, and not in 

samples taken at 0-5 min or 20-90 min after LBF administration. Differences in the 

timeframe of maximum observed solubility between these two studies is likely as a 

result of the previously discussed differences in absorption rates between canines 

versus pigs. Where the rate of drug absorption and gastric emptying in pigs is 

suggested to be marginally slower than canines (291). Meanwhile, in this study, 

solubility in fasted and fed state ex vivo USI samples, 7 ± 1 and 104 ± 19 µg/mL 

respectively, appeared similar to reported human values for fenofibrate solubility in 

FaHIF (20 ± 26 µg/mL) and FeHIF (148 ± 60 µg/mL) (249). Overall, these results 

reflect the fact that while inter-species differences are inevitable and some weaknesses 

may exist for use of the porcine model, merits for its ability to provide close 

predictions of human solubility are clear.  

Stemming from the combination of qualitative and quantitative assessments of porcine 

fluids post SEDDS ingestion, solubility at 1 h post SEDDS ingestion appeared highest 
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for both gastric and USI fluids. Therefore, it appears that in order to accurately 

represent the maximum solubility estimate for dose number solubility classification, 

as outlined in the developability classification system (DCS), use of this 1 h media 

would provide the best solubility approximation when a SEDDS approach is 

considered. Accordingly, using knowledge obtained from the porcine fluid 

assessments in this study, in vitro testing was conducted to assess if this solubility 

estimate could be closely replicated in vitro using supplemented biorelevant media 

under optimal screening conditions. While use of in vitro models provide welcomed 

resources to predict in vivo formulation performance, they remain only as accurate as 

the precision of the experimental parameters upon which they are based. Even though 

appropriate simulation of in vivo relevant fluid volumes has been suggested to be 

critical for correct implementation of bio-predictive tools (302), typically, testing 

parameters utilised, including dilutions, are taken from previous research and 

repeated, which may not represent an accurate bio-simulation of the conditions being 

replicated. Resultantly, it was hypothesised that a refined biorelevant medium 

reflecting the highest solubility observed from the microscopic and quantitative 

assessments in this study, could provide a more predictive and physiologically relevant 

estimation of how the GIT responds to SEDDS ingestion. In order to investigate which 

in vitro dispersion conditions provided the closest estimate of the 1 h ex vivo result, 

five different ratios of SEDDS dispersed (1:50, 1:100, 1:200, 1:500 and 1:1000) in 

three different biorelevant media were tested. These dispersions were selected as being 

reflective of the current physiological volumes suggested for the human small 

intestine, which vary from approximately 50-1100 mL (303, 304), while 

approximation is complicated through complementary presence of absorption. While 

the testing dilutions also approximated the 250 mL BCS solubilisation parameter (64) 
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and 500 mL DCS dose number solubilisation parameter (13), they also considered 

dilutions typically used for in vitro dynamic dispersion testing using dissolution 

testing apparatus (USP 2) (51, 290). As such, this also aimed to provide justification 

for traditional dispersion practises used in current in vitro tools to reflect the maximum 

solubilisation effect of 1 g of SEDDS administered in an in vivo study, a typical desired 

dose for humans. 

Accordingly, this work succeeded in verifying that a 1:200 dispersion of SEDDS in 

biorelevant media provides the closest simulation of maximum ex vivo solubility after 

1 h upon administration of 1 g of SEDDS. SEDDS dispersed 1:200 in all three media 

(FaSSGF, FaSSIF and FaSSIFp) displayed no statistically significant differences from 

the ex vivo 1 h SEDDS solubility value in gastric and USI porcine fluids (Figure 6-6). 

Suggesting that biorelevant media containing 1:200 dispersed SEDDS should be used 

to accurately reflect likely maximum solubility in vivo after 1 h when 1 g of SEDDS 

is administered. Furthermore, as no statistically significant differences were found 

between solubility in the (1:200) FaSSGF, FaSSIF, FaSSIFp, or the ex vivo 1 h SEDDS 

gastric and USI samples, the earlier hypothesis, from the microscopy and solubility 

assessments, regarding the importance of the SEDDS droplets for solubilisation was 

reinforced. As these similar solubility values suggest that the SEDDS excipients are 

primarily driving fenofibrate solubility in the SEDDS dispersions, in contrast to any 

altered concentrations of bile salts and phospholipids or products of digestion in the 

respective medias. Additionally, accuracy of a previously published in silico tool for 

predicting solubility gain and resultantly dose number and DCS classification upon 

SEDDS dispersion in biorelevant media (Chapter 4) was verified when the predicted 

value (297 µg/mL) was similar to the ex vivo (1 h USI) and in vitro (1:200) solubility 

estimates (Figure 6-6). Therefore, accurate prediction of the in vivo and in vitro 



 

224 
 

measurements through this in silico modelling reinforces its applicability to reliably 

predict dose numbers with SEDDS. Overall, an improved in vitro screening tool using 

appropriately concentrated SEDDS dispersions accurately predicted maximum in vivo 

drug solubility, demonstrating the significance of in vitro tool validation. 

 

Conclusion 

Overall, implications of this work for wider research are numerous. The ability of 

microscopic and solubility analysis of porcine fluids to refine in vitro predictions with 

SEDDS was realised upon demonstration that solubility at 1 h post SEDDS 

administration was closely matched by a 1:200 dispersion of SEDDS in various 

biorelevant media. Resultantly, this study demonstrates that tailoring of formulation 

screening with refined bio-relevant inputs is of the utmost importance. While there 

will always remain a need for certain in vivo studies, characterisation of these systems 

can lessen dependence and aid progression to a more confirmatory, rather than 

exploratory role, via improvements in the predictive power of in vitro tools. 

Furthermore, this study represents the first characterisation of GI colloidal phases in 

pigs using advanced microscopic techniques, forming the basis for a better 

understanding of the landrace pig as a model for evaluating drug bioavailability from 

SEDDS, while providing increasing evidence for its close representation of human 

solubilisation capacity. Overall, through integration of qualitative and quantitative ex 

vivo porcine GI fluid characterisations and solubility estimates with in vitro tools, this 

work has demonstrated that refined predictions of in vivo drug solubility are 

achievable.  
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General Discussion 

Overview and Summary  

Declining R&D efficiency of new drug candidates has provided an incentive to 

reinvigorate approaches that improve drug developability (9, 16, 67). Since the late 

20th century, computationally driven drug design has facilitated streamlined 

identification of candidates with optimal binding properties (1, 2). However, despite 

the drug design advances achieved by a “structure-based analysis”, these candidates 

often display less than optimal aqueous solvation properties. This renders such drug 

candidates difficult to deliver using conventional formulations and candidate 

developability is often closely associated with the ability of bio-enabling formulations 

to rescue their delivery. As a result, successful adoption of these bio-enabling 

approaches, including LBFs, can only be achieved through scientifically informed 

decision making and optimised screening of potential candidates. Considering that 

only small quantities of a drug substance exist in the early pre-formulation stage, use 

of extensive screening, laboratory and monetary resources is not an optimal selection 

approach (3). Incorporation of predictive biopharmaceutic tools in these established 

screening settings can assess a candidate ‘fitness for purpose’ to achieve adequate 

exposure when formulated. By using such predictive tools, only drug candidates that 

show positive results in vitro or in silico will undergo subsequent laboratory testing, 

resulting in less material waste and associated costs.  

Accordingly, one means to identify or predict suitable candidates is through the 

employment of computational pharmaceutics approaches. Computational 

pharmaceutics is an area of growing interest (132) as the digitalisation of 

pharmaceutical sciences, which encompasses many AI techniques (133), is a 
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promising means to support decision making in drug development. Computational 

approaches can be initiated with either a well-established understanding of 

physiological processes (theory-driven modelling) or by deriving statistically 

significant correlations between an indicator of interest and independent variables 

(data-driven modelling). With reference to this ever-expanding computational 

research area, Chapter 1 and 2 of this thesis illustrate how decisions regarding both 

formulation suitability and design are increasingly being informed by expert learning 

approaches. These include formulation DTs, retrospective statistical analyses, or AI 

methods, where the importance of both biopharmaceutical parameters and drug 

properties provides the basis for many investigations. However, such successful 

anticipation of developability, or more specifically as demonstrated in this thesis, 

“formulat-ability” is not straightforward. It requires a combined approach using a 

myriad of predictive in vitro and in silico tools to break away from the significant 

amount of trial-and-error still applied. Considering the limitations of resource-

intensive experimental screening and the emergence of computational pharmaceutics, 

an optimised computational pharmaceutics-aided drug development paradigm shift 

can be achieved through: 

1) Development of data-driven computational tools to predict quality target 

product profile (QTPP) characteristics (e.g., food effects) which inform early 

drug development decisions. 

2) Adopting computational tools into the current development setting which 

predict indicators of drug developability for optimal bio-enabling formulation 

selection. 
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3) Development of reliable experimental biopharmaceutics in vitro tools which 

validate and confirm these computational pharmaceutics tools in accurately 

anticipating in vivo performance.  

In light of these factors, the specific objectives of this thesis involve the development 

of drug property-based computational models and in vitro screening tools to inform 

drug developability. This thesis aimed to place a spotlight on the potential of emerging 

ML approaches to inform formulation selection. Specifically, we have assessed the 

capacity for ML algorithms to predict both QTPP characteristics, i.e., food effect, 

which typically dictate early drug development pathways, as well as tools to identify 

suitable candidates for LBF bio-enabling delivery systems. Special emphasis is placed 

on drug physicochemical and molecular descriptors as predictive modelling inputs and 

the potential application of ML techniques to a broad variety of biopharmaceutics 

datasets.  

In Chapter 3, two ML algorithms were compared for the prediction of FE on 

bioavailability, identifying a convenient means of highlighting drug delivery problems 

associated with variable drug plasma levels upon concomitant food ingestion. While 

it is widely acknowledged in literature that FE prediction is difficult (200), such ML 

models can be added to the growing number of FE predictive tools to advance this 

research area (201). As delivery of drugs displaying significant FE is often facilitated 

through bio-enabling approaches, such as LBFs and SDs, Chapter 1 used a 

retrospective statistical analysis of commercialised drug products to identify drug 

property trends which may signal increased suitability of a drug for a LBF or SD 

approach. Both Chapter 4 and Chapter 5 subsequently focused on the development of 

ML computational tools predicting developability indicators which signal drug 

suitability for LBFs. Special emphasis was placed in these chapters on the solubility 
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gain achieved upon dispersion of a SEDDS in intestinal fluids (Chapter 4), as well as 

the maximal dose loading achieved via a thermally induced supersaturation approach 

(Chapter 5).  

Subsequently, ex vivo solubility and microscopic assessments carried out as part of 

Chapter 6 investigated the capacity for the pig pre-clinical model to not only validate 

examples of the previously obtained in silico predictions from Chapter 4, but also to 

produce increasingly bio-predictive in vitro screening tools for LBFs. This is in 

acknowledgement of the fact that not only is bio-prediction a significant factor to 

ensure confidence can be placed in vivo performance simulation capacity (49), but also 

that in vitro testing remains an important aspect of pre-formulation decision making. 

Reliable experimental testing is still required to confirm any promising in silico results 

prior to significant drug product investment. Considering the results obtained in this 

current thesis, a refining of the wider drug substance to drug product developability 

framework incorporating both computationally informed and experimentally 

confirmed facets of drug developability testing was proposed. The approaches 

involved in assessing the aims of this thesis have been described in detail in the 

preceding chapters, and an overall, general discussion of the findings is now provided.  
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Model Performance and Lessons Learned from Computational 

Modelling 

Model Performance Comparisons  

In response to the major aims of this thesis, this work has succeeded in demonstrating 

the capability of ML algorithms to identify suitable drug candidates for LBFs. 

Throughout this thesis data-driven computational models using numerous algorithms 

including MLR, PLS, PLS-DA, SVM and ANN were used to predict various 

biopharmaceutical properties of interest. In light of growing ‘big data’ opportunities, 

availability of molecular descriptors, and the desire to avoid any previously 

hypothesised theoretical concepts providing bias in prediction, the current models 

were developed using drug properties as inputs where statistically significant 

relationships were obtained with the intended dependent variables. Examples of both 

classification (Chapter 3, Appendix 4-6) and regression models (Chapter 4, 5) were 

produced. These demonstrated the applicability of ML to numerous scenarios 

depending on the stage of drug development or type of prediction required. 

Classification models provide worthwhile early information to formulators guiding 

initial decisions, while in later stages of screening, regression models, like those in 

this current thesis, can provide valuable quantitative outputs to compare bio-enabling 

applications.  

As described in Chapter 2, consistent model development and prediction validation is 

imperative to encourage wider application of computational pharmaceutics tools.  As 

the predictive outputs and accuracy of these models provide the major results from 

this work, a comparison of the accuracy of the predictions to the experimental input 

values is shown in Table 8-1. It is acknowledged that singular predictions do not give 

the best estimation of model performance, however, the percentage difference of the 
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predictions, using fenofibrate as a model drug, from each model were used for 

illustrative purposes. The PLS-DA classifications of aDS groups (>2 or <2) are not 

illustrated in Table 8-1 as their development was primarily for trend analysis and no 

test set was used (Appendix 4-6). However, fenofibrate aDS was correctly classified 

for both aDS sLBFCapmul
MC and LBFMaisine

LC using PLS-DA.  

As shown in Table 8-1, both the SVM and ANN FE models from Chapter 3, which 

displayed overall prediction accuracies of 82% and 70% respectively, correctly 

predicted fenofibrate to display a positive FE. Importance of stringent model 

validation using numerous performance indicators is also highlighted in Chapter 3 as 

the sensitivity results for both positive (87%) and negative (69%) FE classes using the 

BCS tool appeared acceptable, seemingly outperforming the SVM model. However, 

upon a wider look at the precision (41%, 35%) and MCC values obtained (0.3, 0.2) 

the poor performance of the BCS tool was revealed. 

In Chapter 4, fenofibrate solubility values upon SEDDS dispersion for both the PLS 

and MLR-based models, which displayed r2 values ranging from 0.69-0.81, were 

found to differ less than 10% different from the experimentally determined values (i.e., 

SEDDSMigylol812 (PLS 8.3% and MLR 8.9% difference) and SEDDSOliveOil (PLS 2.3% 

and MLR 2.5% difference). Here, the proximity of the PLS and MLR model results 

verifies the merit of a simplified MLR approach using three drug properties where no 

pre-processing or specialised software is required. The suitability of Chapter 4’s 

Do(Predicted) approach to forecast developability was furthermore validated by 

comparing Do(Predicted) to Do(SEDDS) values (experimentally determined values). There 

80% of drugs (8 out of 10 drugs assessed) used in model development were correctly 

predicted to transition to a “good solubility” DCS class (I/III). Further validation of 

the Do(Predicted) approach was demonstrated when, using the database of commercial 
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LBF drugs from Chapter 1, it was predicted 65.4% of these drugs would offer benefits 

as a LBF, owing to a projected shift in DCS classification to either Class I, III or IIa. 

Within this 16/17 (94%) of the DCS class IIa and IIb drugs did demonstrate a class 

shift.  

Lastly, in terms of prediction accuracy, the PLS and ANN models developed to 

forecast aDS in sLBFs from Chapter 5, demonstrated correlation coefficients (r2) 

ranging from 0.56-0.90, while the PLS models produced comparatively poor accuracy.  

For all four models, modest percentage differences between the predictions and the 

experimentally determined values for fenofibrate were seen (Table 8-1). Overall, these 

results highlight how the accuracy or greater applicability of a particular ML algorithm 

for a dataset is dependent on many factors and no one size fits all approach is currently 

known or available.  
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 Table 8-1: Collation of the computational models produced in this thesis detailing the training and testing accuracy, and the % difference between the predicted versus reference 

results for fenofibrate.  

 Model Description  Model Type Training 

Accuracy 

Testing  

Accuracy 

Fenofibrate % 

Difference 

SVM Model Predicting FE (Chapter 3) Classification  Overall Accuracy 

72% 

Overall Accuracy 

69% 

Correct 

Classification  

ANN Model Predicting FE (Chapter 3) Classification  Overall Accuracy 

82% 

Overall Accuracy 

72% 

Correct 

Classification  

PLS Model Predicting logSRMC  (Chapter 4) Regression  r2 0.81 RMSE 0.36 8.3% 

PLS Model Predicting logSRLC  (Chapter 4) Regression r2 0.77 RMSE 0.37 2.3% 

MLR Equation Predicting logSRMC (Chapter 4) Regression r2 0.74 RMSE 0.39 8.9% 

MLR Equation Predicting logSRLC  (Chapter 4) Regression r2 0.69 RMSE 0.37 2.5% 

PLS Model Predicting aDS sLBFCapmul
MC 

 (Chapter 5) Regression r2 0.56 RMSE 0.79 4.9% 

PLS Model Predicting aDS sLBFMaisine
LC (Chapter 5) Regression r2 0.62 RMSE 0.79 23.4% 

ANN Model Predicting aDS sLBFCapmul
MC

 (Chapter 5) Regression r2 0.90 RMSE 0.21 13.4% 

ANN Model Predicting aDS sLBFMaisine
LC (Chapter 5) Regression r2 0.83 RMSE 0.25 9.1% 
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Interpretability of the Modelling Results  

While predictive values and classifications form major outputs, the modelling and 

statistical analysis conducted in this thesis also facilitated improved molecular basis 

for understanding the various biopharmaceutical processes investigated in this current 

thesis. Various previously held assumptions, for example regarding the importance of 

solubility and permeability parameters to FE on bioavailability (Chapter 3) (191), or 

drugs commercialised with bio-enabling strategies being more likely to be found 

outside Lipinski’s Ro5 (3) (Chapter 1) were verified. On the other hand, modelling did 

uncover some unexpected insights, including that no direct link between GFA class 

and aDS in sLBF could be established (Chapter 5 and Appendix 4-6) or that over 55% 

of LBF commercial drugs exceeded the reported Tm guide of <150°C for LBF 

suitability (86, 115) (Chapter 1). Moreover, new insights regarding SR trends achieved 

upon dispersion involving the cationic, anionic or neutral state of the drug at pH 6.5 

were uncovered. DLS analysis suggested surface association of charged bile salts to 

the oil droplets formed upon SEDDS dispersion, which may facilitate favourable 

interactions between cationic drugs and these charged bile salts found in FaSSIF 

(Chapter 4). Additionally, the significance of drug reactivity and electron density to 

aDS (Chapter 5) was suggested. Both of which may warrant further in-depth 

investigations in the future to improve understanding of these hypotheses.  

An important aspect of data-driven modelling is to ensure that any lack of bias towards 

inclusion or omission of any drug property is avoided in model development. For 

example logP, has long been highlighted as a significant drug property upon which 

suitable drug candidates are identified, particularly considering formulation as LBFs 

(95). More generally, logP is an important absorption property, related to both drug 

solubility and permeability. Well documented relationships have been established with 



 

234 
 

permeability, pharmacological potency, and toxicity, as it reflects the key event of 

molecular desolvation in transfer from aqueous phases to cell membranes and protein 

binding sites (54, 74, 79). Furthermore, the fact that logP is said to be changing less 

over-time than other physical properties appears to cement its standing as an essential 

“drug-like” property signally successful drug development (70, 79). However, in 

terms of data-driven ML, depending on the dataset in question, no statistically 

significant correlations may be attainable with a particular parameter, even if 

traditional hypothesis’ regarding its importance exist. Therefore, it is important not to 

place extra significance on this during model development, so that input parameters 

are chosen blindly. In these cases, any familiarity bias with certain properties may 

decrease the predictive accuracy of the models. For example, in Chapter 1 as part of 

the retrospective analysis, logP was shown to significantly differentiate both SD and 

LBF drugs from others, however, its inability to separate commercial LBF and SD 

drugs does appear to challenge the commonly held view that drugs with higher logP 

values are more suited to LBFs. On the other hand, when unbiased selection of input 

parameters forms part of ML model development, any presence of logP or any of its 

closely related properties is statistically warranted. Accordingly, in this current thesis 

logP and closely related properties were final descriptors in multiple models. For 

example, logP was a significant parameter for FE classification prediction in Chapter 

3, representing the sole property to be significantly different between the 3 

classification groups upon initial statistical analysis and providing the most important 

property in the ANN. While logD6.5 was significant in both the PLS and MLR models 

to predict the SR upon dispersion for SEDDSMigylol812 and SEDDSOliveOil and MlogP 

(Moriguchi’s method of calculating logP) (305) was a significant property to predict 

aDS for sLBFCapmul
MC. Overall, these observations demonstrate how data-driven 
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modelling can only be achieved if pre-conceived theory’s regarding important 

properties are disregarded, while the complexity of the phenomena in question was 

also demonstrated as in all cases numerous drug properties were required to obtain 

acceptable accuracy.  

 

Importance of Biorelevant Experimental Inputs for Informing and 

Confirming Computational and In Vitro Tools – Lessons Learned 

from the Pig Model.  

High model predictivity, as described previously in this discussion, or indeed high 

analytical capacity of any tool, can only be achieved when appropriate bio-relevant 

input parameters are used. Over the last 30 years significant strides have been made in 

using in vitro and in silico tools to improve and/or confirm mechanistic understanding 

of what is happening in the GIT upon drug administration (53, 55). While the 

emergence of computational tools is described in this thesis, the continued necessity 

for experimental validation testing of the formulations highlighted for potential 

success by these computational predictions remains a critical part of pre-formulation. 

Even though the use of computationally models has undoubtedly streamlined the 

number of candidates which reach the experimental testing stage, it is vital that the 

experimental confirmatory analysis of any in silico prediction is highly reflective of 

the in vivo environment. It is undoubtedly the major aim of such screening tools to 

provide value in early formulation design by ensuring validity and frequent refinement 

of their input parameters (49, 50) thereby intensifying their ability to accurately 

simulate in vivo scenarios, providing the most “bio-predictive” estimates. 

Accordingly, the proceeding sections highlight the potential insights to be gained from 
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microscopic and quantitative analysis of the landrace pig animal model to both inform 

and confirm that in silico and in vitro screening methods produced as part of this thesis 

are bio-predictive in their predictions. 

Firstly, in conjunction with model validation requirements already discussed, the ex 

vivo fenofibrate solubility analysis of pig luminal fluids detailed in Chapter 6 further 

sought to confirm the close proximity of our modelling predictions to the likely in vivo 

results. Results revealed the in-silico solubility gain upon dispersion predictions for 

fenofibrate in SEDDSOliveOil, using the PLS (283.38 µg/mL) and MLR (296.95 µg/mL) 

models from Chapter 4 closely approximated ex vivo apparent fenofibrate solubility in 

pig intestinal fluids collected after 1 hour of 1g of administration of the same placebo 

SEDDS (271 ± 36 µg/mL) (Figure 8-1). The further observation that this 1-hour 

porcine estimate produced the highest solubility value among all samples taken at 0.5, 

1, 2, 3 and 4 hours after oral SEDDS ingestion further justifies the capacity of the 

computational model from Chapter 4 to reflect the likely maximum in vivo solubility 

value achieved with SEDDS. Suggesting accurate Do calculations were produced 

using bio-predictive in silico estimates of drug solubility upon SEDDS dispersion. 

Thereby, facilitating increased confidence in these previously discussed in silico 

results.  

 

In addition to in silico tools, a major aspect to improve early drug development is the 

link between in vitro testing and the pre-clinical evaluation in vivo. There has been 

significant focus in designing and validating improved biorelevant, biopharmaceutical 

in vitro tools simulating in vivo formulation performance (51, 55, 302, 306). However, 

it does appear that often anecdotal or traditionally applied rules rather than systematic 

validation of current experimental methods is the status quo. Often input parameters 
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for in vitro tools such as dilution conditions to simulate in vivo fluid volumes, appear 

to be taken from previous research and repeated. As a result, this sometimes doesn’t 

represent the most accurate bio-simulation of the conditions. In line with this thought, 

Chapter 6 focused on the hypothesis that comparisons to porcine luminal fluids 

estimates could improve the bio-predictive nature of in vitro screening tools for LBFs. 

Subsequently, upon testing of 5 different dilution conditions it was observed that a 

1:200 dispersion of SEDDSOliveOil, in biorelevant media (FaSSIF, FaSSGF and 

FaSSIFp) provided the closest simulation of maximum ex vivo solubility after 1 h upon 

administration of 1 g of SEDDS, as no significant differences between the obtained 

solubility values were obtained. Therefore, it is suggested that this dilution condition 

should be used going forward. This 1:200 dilution condition was used for the 

experimental inputs for the dispersion modelling data in Chapter 4. As illustrated in 

Figure 8-1, in terms of the intestinal media solubility results, no significant difference 

(p = 0.163) was found between the ex vivo porcine, in vitro results using biorelevant 

media (FaSSIFp, FaSSIF) or the predicted results from Chapter 4, once again helping 

to strengthen confidence in the validity of the resulting in silico predictions.  
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Figure 8-1: Visual illustration of the fenofibrate intestinal solubility results predicted and experimentally 

determined in Chapter 4 and 6. 1h SEDDS USI refers to the ex vivo solubility of fenofibrate in porcine upper small 

intestinal fluids collected 1h after placebo SEDDSOliveOil administration to pigs. FaSSIF + SEDDS (1:200) refers to 

solubility in FaSSIF plus a 1:200 dilution of dispersed SEDDS (Chapter 4). FaSSIFp + SEDDS (1:200) refers to 

solubility in FaSSIFp plus a 1:200 dilution of dispersed SEDDS (Chapter 6). MLR and PLS prediction refer to the 

predicted fenofibrate solubility values upon SEDDSOliveOil dispersion in FaSSIF using Chapter 4’s PLS and MLR 

models.  

 

In addition to providing validation to both these in vitro and in silico estimates, 

Chapter 6 provided increased understanding of the fate of a SEDDS formulation upon 

oral administration in an in vivo model. This work aimed to advance the utility of the 

landrace pig model to provide invaluable early indicators for human oral 

bioavailability and formulation performance. For example, to the best of our 

knowledge the microscopic images of the luminal fluid ultrastructure obtained in 

Chapter 6 provide the first visual characterisation of porcine luminal fluids, facilitating 

comparisons to similar images previously published for both biorelevant media and 

human GI fluids (257, 295-297, 300). The combination of these microscopic images 

and ex vivo solubility studies of the fluids facilitated an in-depth comparison of the 
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colloidal structures formed in the fasted and fed states. Furthering the previously 

published acknowledgment regarding ability of the pig model to simulate human FE 

(207).  This work also uncovered substantial differences in both the complexity and 

concentrations of colloidal structures seen in the fasted state and upon SEDDS 

administration. Combination of these microscopic differences and the fact that each 

biorelevant media (FaSSIF, FaSSGF and FaSSIFp) displayed similar fenofibrate 

solubility upon SEDDS dispersion also pointed to the importance of the SEDDS 

excipients as drug reservoirs and as the primary drivers of fenofibrate solubility in 

contrast to any altered concentrations of bile salts and phospholipids or products of 

digestion in the respective medias.  

 

Moreover, this work has provided insights to strengthen knowledge regarding 

previously acknowledged physiological differences between the pig and humans (62). 

For example, the images presented in Chapter 6 showing presence of small micelle 

resembling structures in both the fasted and 4 h SEDDS gastric samples also lend 

further support to the previously held hypothesis by Henze et al. regarding reflux of 

bile from the pig duodenum to the stomach resulting in high bile salt concentrations 

in the landrace pig stomach compared to humans (294). In summary, the analysis 

conducted in Chapter 6 provided useful novel insights into the pig as a predictive 

model of human bioavailability, while succeeding in both producing an increasingly 

bio-predictive in vitro screening tools for LBFs and verifying the accuracy of the in 

silico predictions for fenofibrate from Chapter 4.  
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Interplay Between Computational Modelling and Conventional 

Biopharmaceutics Related Classifications Systems  

In recognition of the previously acknowledged significance of drug classification 

systems to inform drug developability and the likely rate limiting steps for oral 

bioavailability, this thesis has identified three ways in which commonly used 

classifications systems (BCS, DCS, rDCS and BDDCS) and computational 

pharmaceutics tools are intertwined.  

Firstly, predictive estimates from conventional classification systems can be utilised 

to establish the predictive accuracy of ML models by providing comparative estimates. 

Accordingly, a drug’s BCS class has previously been suggested as a useful predictive 

tool to anticipate FE (191, 214). However, using the database of newly licensed drugs 

in Chapter 3, only a 46% overall accuracy was achieved, with poor MCC values of 

0.2, 0.2 and 0.3 calculated for the FE categories. This result was substantially lower 

than results achieved for both ML ANN and SVM classification models, therefore, 

providing a good baseline comparator of their predictive ability. Additionally, the 

close reflection of the significant properties for the ANN model, in particular logP, 

T_PSA and HBD, to the stated importance of solubility and permeability parameters 

to BCS drug classifications also aided in verification of the significance of these 

parameters to early pre-clinical decision-making.  

Secondly, in Chapter 1, by classifying the dataset according to BDDCS class, 

previously uncovered applications for bio-enabling formulations can be uncovered. In 

Chapter 1, using the BDDCS, it was revealed that, as expected, the highest proportion 

of commercial LBF (76%) and SD (60%) drugs belonged to BDDCS Class 2. 

However, contrary to the generally taken view that LBFs are suited for lipophilic and 
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PWSD (14), results revealed that the second highest proportion of LBF drugs were 

found to be in the highly soluble BDDCS Class 1 category, as a lower dosage strength 

requirement or the ease of large scale LBF manufacture was suggested as a hypothesis 

to explain this unexpected result. Therefore, the use of the BDDCS tool as part of the 

retrospective analysis in Chapter 1 aided in highlighting potential uncovered or 

somewhat hidden further applications of LBFs.  

Thirdly, Chapter 4 demonstrated how predictions of SR upon SEDDS dispersion can 

be combined with established classification systems to advance the broader 

applicability of computational pharmaceutics tools. Chapter 4 explored suitability of 

linking the biopharmaceutical Do(Predicted) approach to the framework provided by the 

DCS and rDCS and hence, providing a tool for guiding developability of a SEDDS 

strategy. Incorporation of DCS class transition predictions with SEDDS into the rDCS, 

as part of the initial “standardised investigations” was also suggested (67). As part of 

the rDCS guide, various other properties of the drug including ionisation potential, 

would next trigger customised in vitro investigations. Embedding these computational 

models within a broader developability framework such as the rDCS demonstrates 

effectively how the wider applicability of in silico predictions can be strengthened for 

an external formulation scientist. Undoubtedly, a clear visualisation of potential for 

formulation success within an established biopharmaceutics framework, such as the 

rDCS, has a wider significance in a development setting, compared to a purely 

numerical predicted output from a model.  

 



 

242 
 

Model Integration and Computational Accessibility 

This potential to embed ML models within widely known drug classification systems 

to support developability provides only one example of methods by which 

computational pharmaceutics tools can be integrated into the current drug 

development landscape. The various tools detailed in this thesis demonstrate 

importance of a collaborative, accessible and overall user-friendly approach to 

reinforce the appeal of computational algorithms. The quote “essentially all models 

are wrong but some are useful” often attributed to statistician George E. P. Box, rings 

true in this case. Since modelling will always be associated with a certain degree of 

uncertainty, it should be recognised that any type of model-based drug development 

approach, in particular the comparatively youthful field of computational 

pharmaceutics, should not be naively expected to predominantly replace in vitro and 

in vivo assessments. Therefore, at present the continued need to merge computational 

tools with appropriate levels of reliable in vitro confirmatory testing is acknowledged. 

However, while these computational tools may not completely revolutionise how in 

vivo performance is predicted, their adoption can significantly optimise the costly pre-

formulation process and mitigate against declining R&D productivity.  

 

There are multiple ways in which the growing data science and research communities 

can unite and promote widespread application of these tools. Examples of such means 

are demonstrated across this current thesis. Firstly, as seen in Chapter 1 significant 

insights can be gained from retrospective analysis of drug product datasets. While 

much of the data needed for such analysis is already available, it is often currently not 

collected in a way that allows helpful ML projects to be performed. It is now the job 

of interested parties to collate, harness and structure such valuable data assets. 

https://en.wikipedia.org/wiki/Statistician
https://en.wikipedia.org/wiki/George_E._P._Box
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Retrospective analyses like that detailed in Chapter 1 could be repeated and updated 

periodically to ensure their enduring impact. Moreover, the potential for such 

commercial datasets is not limited to a singular analysis, as demonstrated in Chapter 

4 where the previously collated LBF commercial product database from Chapter 1 was 

used to externally validate the SR computational modelling approach accuracy to 

predict drug DCS classifications. In this instance, it was shown how the same dataset 

can be used as part of both a “top down” and “bottom up” computational analysis.  

 

While additional examples of the wider applicability of the computational models 

developed in this thesis have previously been discussed, including connections to well 

established classification systems and examples of linear and non-linear ML 

approaches, the importance of not producing “stand-alone” predictions is paramount. 

Combined and sequential use of these computational tools including predictions of 

both QTPP characteristics of interest (Chapter 3), followed by predictions to determine 

the most appropriate bio-enabling formulation application (Chapters 1, 4, 5 and 6) 

provides a synergistic value to these in silico models. Both this and the place of these 

computational assessments within the wider drug developability framework will be 

discussed in greater detail later in this discussion.  

 

Going one step further, it could also be suggested that improved mechanistic 

understanding of some of the physiological phenomena underpinning the various in 

silico predictions could be achieved by combining predictions, simulations, and 

imaging from various sources. For example, a formulation scientist trialling use of a 

SEDDS approach could combine computational predictions of drug loading in LBF 

excipients (114, 115, 160, 163), predicted SR upon SEDDS dispersion in intestinal 
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fluids (Chapter 4), SR trends in ionisation of compounds observed (Chapter 4), MD 

simulation of SEDDS behaviour in the GIT (164-166) and microscopic images post 

SEDDS ingestion (Chapter 6). This would facilitate an increased understanding of the 

in vivo processing of the prospective SEDDS and the relationship to formulation 

performance. Furthermore, while the models obtained throughout this thesis focus on 

ML and data-driven predictions, it is likely that while data-driven and theory-based 

approaches occupy either end of the modelling spectrum, realistically the most 

accurate models will contain both theory and data-based aspects hand-in-hand. 

Therefore, combinations of different approaches, as described above, will aid to 

achieve the best performance.  

 

In addition, the value of any model is determined by its practicalities for its intended 

purpose. Therefore, the importance of accessible and easily disseminated modelling 

approaches, often suggested to be important drivers for increased adoption of ML (68), 

is also addressed throughout this thesis. This is exemplified via 1) development of 

drug property-related MLR equations in Chapter 4 requiring no data-processing or 

specialised software for predictions, 2) the easily interpretable and accessible nature 

of the four final modelling parameters in the FE ANN model (Chapter 3) and 3) the 

ability for the produced ANNs to be exported as predictive model markup 

language (PMML) files. PMML is a gold standard approach to share models allowing 

the models to be compatible with a wide range of ML software’s, not only the software 

on which the networks were produced. This facilitates external predictions to be made 

by other researchers without any manual manipulation or prior knowledge of the 

networks being necessary. Moreover, the preference to develop models which contain 

easily interpretable drug properties, such as the MLR equations produced in Chapter 
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4, highlights the issue regarding a necessity to strike a balance between model 

interpretability versus statistical accuracy, which can sometimes be at odds. In that 

particular case, while the overall accuracy of the comparative PLS-based models using 

5-6 drug properties appear more robust versus the MLR equations predicting SR, it 

must be decided in the individual case if an increased training/testing accuracy or the 

omission of any data scaling or software requirements is more favoured. Without 

question, the most appropriate model depends on numerous factors including the stage 

of development, costs, accessibility to software or indeed availability of computational 

expertise or molecular descriptors.  

Finally, in response to the growth of big data analytics across the pharmaceutical 

industry, ML models built and validated using hundreds, if not thousands of input 

samples remain the ultimate goal. However, it must not be forgotten that in certain 

circumstances, whether limited by resources or availability of high-throughput 

analytical methods, particularly in an academic setting, such large datasets are 

currently unrealistic in certain aspects of pharmaceutics. Indeed, if the science of 

computational pharmaceutics is to move to the mainstream studies such as some of 

those presented in this thesis, involving relatively smaller datasets, are required to 

disseminate the necessary computational expertise and identify potential modelling 

opportunities. These studies built on smaller datasets can provide a foundation upon 

which larger subsequent datasets can be employed and again highlight the necessity 

for continued experimental confirmatory studies for identified candidates. Overall, in 

summary, as exemplified by these examples, it is hoped that by extending the 

accessibility of these models, synergistic adoption of numerous tools will help to guide 

drug developability and support computational pharmaceutics in achieving its full 

potential.  
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Computationally Informed and Experimentally Confirmed 

Developability Testing to Reconsider the Drug Substance to Drug 

Product Paradigm  

Stemming from the significant need for improved computational tools, a primary aim 

of this thesis was to investigate if data-driven ML models, predicting numerous drug 

developability indicators, could provide an increasingly structured approach to 

formulation selection. In line with the need to integrate these computational models 

into the wider drug developablity setting, sequential application of these tools within 

a refined drug substance to drug product development framework will be discussed 

(Figure 8-3). In that case use of these tools can provide guidance on how to proceed 

strategically when presented with a seemingly difficult to deliver drug, by both 

highlighting potential barriers to development and subsequently seeks to identify 

delivery solutions to overcome said barriers. Before discussing the wider applications 

for these tools within the drug developability space, an exemplary case study detailing 

the model predictions using fenofibrate is shown in Figure 8-2, illustrating the 

preliminary information obtainable from the computational models. Fenofibrate, as 

used previously throughout this discussion, a typical BCS class II compound, was 

chosen here as conventional formulations display low and variable bioavailability in 

the fasted state relative to the fed state, due to low solubility and resultant slow 

dissolution (307). Thus, it is seen as a reliable model for assessment of FE and 

formulation decision-making. 



 

247 
 

 

Figure 8-2: Visual representation of the modelling results for each computational model produced in this thesis 

for the model compound fenofibrate.  

 

As seen in Figure 8-2, after drug candidate identification, a first prediction strategy 

within this computational suite would be to allocate either a predicted positive, 

negative or no FE on bioavailability classification. Early prediction of FE would 

provide pertinent information to formulation scientists (92). This could facilitate 

identification of potential delivery problems, as possibility of either a significant 

positive or negative FE at this stage would identify either a need to formulate the drug 

with a more sophisticated technology to overcome the FE or to redesign the drug itself. 

Accordingly, Chapter 3 of this thesis identified two ML methods which accurately 

classified drugs according to FE. Figure 8-2 demonstrates that both SVM and ANN 

models correctly predicted fenofibrate as belonging to the “positive” FE category, as 

it is well known that fenofibrate bioavailability increases significantly with increased 

solubilisation and/or dissolution in the fed state (207).  

Next as both ML FE models predicted a positive FE for fenofibrate, subsequent 

application of other computational tools can indicate whether certain bio-enabling 

formulation strategies, which are reported to overcome FE (92), would offer a high 
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likelihood of success for this drug. This anticipation of “successful formulation 

potential” would generally consist of several successive analyses. In this case, the first 

of which being the top-down retrospective statistical analysis of drug property trends 

of commercial LBF and SD products as described in Chapter 1. The limitations and 

somewhat crude nature of this sort of approach, including a “successful formulation 

bias” have been previously identified in this thesis. However, it is believed its adoption 

would provide an early indicator, or a “formulation likeness filter” with little cost, of 

which bio-enabling strategy would be more likely to be successful with this compound 

prior to further in-depth investigations of applicable excipient types.  

Application of the analysis in Chapter 1 can be two-fold, as preliminary comparisons 

of statistically significant differences between both LBF and SD approaches versus 

Others suggest if the properties of the drug more closely reflect those which have used 

bio-enabling formulations versus a conventional strategy. Next, subsequent statistical 

comparisons between trends in LBF versus SD commercial drugs properties identifies 

which of these bio-enabling strategies is more suited, using these previous property 

trends as a guide. In addition, further analysis of trends in dosage forms and 

commercialisation rates per decade, also identified in Chapter 1, can likewise provide 

useful information to formulators. As part of this retrospective statistical analysis of 

commercial LBF and SD drugs, compared to drugs not licensed using either approach, 

8 and 11 of the well-established drug properties analysed were found to be 

significantly different between both LBF and SD approaches versus Others. As 

illustrated in Figure 8-2, it is suggested that the properties of fenofibrate resembled 

trends in drugs commercialised using both bio-enabling approaches in terms of its 

values for 7 drug properties including logP, %U, logS, logD, Tm, clogP and RB count. 

Subsequently, when focus shifted to drug properties which were significantly different 
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between LBF versus SDs, fenofibrate appeared to more closely reflect trends in 

commercial LBF drugs in ¾ cases i.e., lower number of HBA (three), lower MW 

(360.83 g/mol) and lower PSA (52.6 Å2). Therefore, using Chapter 1’s retrospective 

analysis as a guide to inform future success, it is anticipated that even though 

commercial examples exist of both LBF and SD fenofibrate products, the drug 

properties of fenofibrate more closely conform to previous commercial LBF 

properties.  

Next, as this retrospective analysis from Chapter 1 did signal likely success with a 

LBF strategy for fenofibrate, formulators may be prompted to try to anticipate which 

type of LBF application, including those classified by the LFCS (21) or beyond. A 

common strategy may be to assess the potential for SEDDS formulation to facilitate 

adequate drug solubility, through their self-emulsifying properties (14). Prediction of 

drug solubility in LBF excipients and dose loading capacity has provided a significant 

research focus for many with numerous computational approaches including 

predictions from drug structure (114, 115, 160-163, 264), as previously described in 

this thesis. Therefore, it is also acknowledged that predictions from these tools could 

also be employed at this stage in the wider drug developability setting. However, it 

has long been recognized that successful LBF capability assessment needs to include 

aspects of in vivo formulation performance (88, 308). This acknowledges the interplay 

between any formulation excipients and the GIT, which is of high complexity, as 

modifications in the GIT upon SEDDS ingestion are crucial in determining 

formulation performance. While significant strides have been made in understanding 

this complex formulation-drug-intestinal fluid interplay through the use of, for 

example, MD simulations (164-166), to the extent of our knowledge the ML models 

produced in Chapter 4 of this thesis are the first examples of ML LBF models to 
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incorporate formulation dispersion. These provide the first quantitative models to 

estimate solubility increases (i.e., solubility ratios) achieved by a drug upon dispersion 

of a SEDDS in intestinal fluids, to determine SEDDS suitability.  

PLS models of 5-6 drug properties and subsequent MLR equations of only 3 easily 

interpretable drug properties were described in Chapter 4. It can be seen in Figure 8-2 

that both methods predicted high SR of >30 fold for fenofibrate using both a MCT and 

LCT-based SEDDS. Therefore, Chapter 4’s work also demonstrated a two-fold 

application of modelling as development of multiple models can provide a useful 

comparison of the most appropriate formulation excipient blend (MCT versus LCT-

based). Such a significant solubility increase is to be relatively expected as fenofibrate 

is often used as a model compound for the assessment of LBFs, with numerous 

preclinical studies demonstrating improvement in fenofibrate bioavailability from 

these systems (51, 309). After predicting SR this approach can next be employed to 

calculate the biopharmaceutical dose number (Do) produced in intestinal fluids, 

guiding the dose that is effectively solubilised and if a DCS Class transition to “good 

solubility” is likely. Importantly, from a practical point of view, only prior knowledge 

regarding solubility of the candidate in FaSSIF and the dose would be required to 

obtain such an important indicator of success using this tool. In a particular 

development setting, depending on the individual dosage strength requirements, the 

suggested dose obtained from such a Do(Predicted) approach i.e., if < 1, could prompt 

manual experimental screening of this SEDDS ability to deliver the selected dose.  

Conversely, if Do(Predicted) results (i.e. Do(Predicted) >1) from Chapter 4 or indeed other 

previously published computational tools which predict initial drug loading capacity 

in LBFs (115), suggest that a traditional LBF approach presents a high level of risk, a 

next logical step is to analyse the potential for other LBF strategies to facilitate 
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delivery. Dose loading limitations are a critical restraint to the more widespread use 

of traditional LBF systems (6, 95). As the dosage levels achievable are restricted by 

the inherent drug solubility in the lipid vehicle or in the lipid reservoirs produced upon 

formulation processing. This solubility is often limited for “brick dust” molecules 

which exhibit high crystal lattice energies. Numerous advanced initiatives are 

emerging to combat these limitations including ionic liquids/lipophilic salts (310, 

311), hybrid systems (312) or lipophilic prodrugs (313). Chapter 5 of this thesis 

focused on the development of computational models predicting the solubility 

increases achieved through thermal induced supersaturation i.e., aDS of a drug, in a 

sLBF system. sLBFs involve heating of a drug–lipid mixture to overcome the drug’s 

crystal lattice energy, while during heating and upon cooling the drug is maintained in 

a supersaturated state (6, 34). Supersaturated systems have previously been described 

according to the aDS ratio (275, 276), which has also been considered a major factor 

impacting sLBF ability to maintain drug supersaturation upon storage (32). Therefore, 

we believed aDS prediction was a useful indicator of achievable dose loading levels 

in early development. This computational tool can compare any gain in dose loading 

levels achieved to the non-supersaturated LBF. As demonstrated in Chapter 5, an ANN 

modelling approach was shown to outperform a PLS approach using 15 and 11 

properties to predict aDS for both a MCM and LCM sLBF (sLBFCapmul
MC and 

sLBFMaisine
LC). Once again demonstrating the potential for modelling to compare 

different fatty acid chain lengths.  

For fenofibrate, as outlined in Figure 8-2, aDS ratios of 2.02 and 2.6 were predicted 

for sLBFCapmul
MC and sLBFMaisine

LC respectively. This ANN modelling results suggest 

use of the MCM formulation may achieve higher dose loading for this drug 

(approximately 150 mg/mL versus 130 mg/mL), where a similar initial dosage level 
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to the SEDDSMigyolol812 formulation from Chapter 4, previously published, was 

observed (143.8 ± 10.9 mg/mL) (51). However, formulation long-term stability and 

precipitation potential, or applicability of precipitation inhibitors for these sLBF (314) 

should be next considered by the formulation scientist, in addition to likely in vivo 

solubility. While limitations of these models as stand-alone assessments, including 

omission of SEDDS digestion and long-term stability of sLBFs are acknowledged, as 

demonstrated via this case study, valuable information to optimise early decisions in 

LBF development can be obtained using these models.  

These preceding paragraphs have illustrated how the computational tools developed 

in this thesis can collectively provide vital drug developability information. However, 

in a much broader sense the work in this thesis raises the question of where this 

computational suite of tools fits into the modern drug substance to drug product 

development framework. With a view to the future, it is suggested that the knowledge 

accrued in this thesis could be used to redefine the framework for transitioning from 

drug substance to drug product. With this in mind, a refining of the current drug 

developability and formulation decision pathways, incorporating both 

computationally informed and experimentally confirmed aspects of developability 

testing could initiate a paradigm shift (Figure 8-3). Previously the biopharmaceutics 

risk assessment roadmap (BioRAM) was highlighted as a critical mechanism to 

identify the necessary information, patient factors and decision steps for optimum drug 

delivery. 
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Figure 8-3: Visual incorporation of the computational and in vitro tools developed in this thesis as part of a refined drug substance to drug product development paradigm. Here both 

computationally informed and experimentally confirmed aspects of drug developability are incorporated. 
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In the BioRAM use of modelling and simulation techniques, in line with those 

produced in this thesis, were highlighted as critical sources of information for 

optimum drug delivery (315). It can clearly be identified that the computational tools 

produced in this thesis reflect key decision steps identified in the BioRAM. A 

visualisation of the stages in developability testing where the computational and in 

vitro tools produced in this thesis may be applied within the wider testing framework 

can be seen in Figure 8-3. Here, in line with the “learn and confirm” approach followed 

by the BioRAM; computational “learning” tools can be integrated with appropriate 

experimental “confirmatory” studies to identify the optimal delivery approach.  

Firstly, at the drug discovery phase after identification of an oral drug candidate, the 

fundamental considerations of the BioRAM are the quality target product profile 

(QTPP) characteristics which encompass key product attributes deemed clinically 

relevant for achieving product success (315). One such characteristic of clinical 

interest is the food effect on bioavailability. Depending on the therapeutic class or 

target population early knowledge of food effects may lead to a “go/no-go” decision 

or initiation of investigations into alternate dosage forms to mitigate this effect. 

Therefore, even at the earliest stages of drug discovery computational tools such as 

the ANN and SVM FE classification models produced in Chapter 3 can be used to 

provide vital early information regarding the feasibility of a conventional formulation 

versus need for an advanced bio-enabling approach.  

Next a central tenet of the BioRAM involves understanding the optimal delivery of a 

drug substance through developing a suitable formulation approach (315). As part of 

the BioRAM the significance of leveraging prior information in drug development 

decisions to achieve effective delivery is highlighted. In line with this, in this thesis 

the retrospective statistical analysis conducted in Chapter 1 employed prior data to 
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identify drug property trends in commercial LBF and SD drugs. Such an approach can 

be successfully employed at this stage in drug development to highlight if a 

prospective candidate reflects the physicochemical properties of drugs previously 

successfully developed using these bio-enabling approaches (Figure 8-3). Next, 

sequentially along this revised framework, the computational models developed in 

Chapters 4 and 5 can also be applied for bio-enabling formulation selection to provide 

early indicators of the likelihood of success with SEDDS or sLBF systems, depending 

on the SR and dose loading levels achieved for the candidates. At this point 

experimentally determined inputs such as FaSSIF solubility and dose are required. 

However, as it is acknowledged that at this early point in development the exact dose 

is unlikely to be known, the dose range of 5mg – 50mg – 500mg as suggested by the 

rDCS could be used for predictions (67).  

In line with the suggestions of the BioRAM, a refined drug developability paradigm 

will certainly include numerous tools but will also likely evolve from an initially 

computationally informed approach to an increasingly experimentally confirmed drug 

development approach once the initial computational outputs have been established. 

This change in significance from computational to experimental testing can be 

explained by the main intended purpose of both the BioRAM and the computational 

models applied in this thesis. Both primarily serve as early risk assessments which 

highlight the likelihood of success for a particular formulation approach. Therefore, 

as illustrated in Figure 8-3, based on the in silico results and knowledge generated, 

any emerging understanding should then be validated in experimental confirmatory 

studies to ascertain whether the formulation approaches highlighted could result in 

acceptable drug product performance. In doing this only a streamlined number of 

candidates with the highest chance of success will reach the experimental testing stage. 
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This highlights that while the utility and strength of computational tools in the 

development paradigm continues to grow, at present, there still remains a requirement 

for structured initial in vitro studies to confirm the in silico predictions before 

significant financial investment is initiated. Examples of such in vitro approaches at 

this point in development include the in vitro LBF screening tool detailed in Chapter 

6 of this thesis (Figure 8-3). Subsequently, following the application of the various 

confirmatory assessments, as illustrated in Figure 8-3, application of the various 

computationally tools included in this thesis can result in an optimal phase 1 clinical 

trial product. 

Overall, both the intuitive linking of the tools produced in this current thesis and their 

place in a refined drug developability framework has been demonstrated. By providing 

a structure to initial clinical and formulat-ability decision making with little cost or 

manual effort, these “team players” in the vast computational pharmaceutics toolbox 

can advance the field of computational pharmaceutics through their application at 

numerous points in drug development. This work has effectively demonstrated the 

need for early predictors of developability and how knowledge of drug properties and 

biopharmaceutical parameters, can aid the transition from drug substance to drug 

product. In doing so capturing both computationally informed and experimentally 

confirmed aspects of drug development.   
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Overall Conclusion and Future Perspectives 

This thesis has, firstly, demonstrated the capability of ML to guide formulation 

strategy with relatively minimal manual or financial effort. While the overarching 

concept of computational pharmaceutics has been spoken about for the better part of 

a decade, over the last few years in particular, momentum is increasing towards an 

integrated model-informed approach to guide drug development strategies. The 

computational models produced in this thesis, including accurate predictions of FE on 

bioavailability, SR upon SEDDS dispersion in intestinal media and aDS upon heating, 

represent useful additions to the emerging computational pharmaceutics toolbox. 

These tools support the increasing adoption of bio-enabling formulations, in particular 

LBFs. The easily interpretable nature of these tools, including predictive models 

which do not require specialised software, highlights the importance of both useability 

and dissemination of computational expertise to facilitate further expansion of 

computational pharmaceutics-driven development. To further elucidate the wider 

applicability of these models, future studies incorporating more drug datasets of 

varying chemical and structural composition and the investigation of deep learning 

potential are required (158). 

Secondly, while the modelling predictions form major outputs of this thesis, this work 

has also aided further recognition of the significance of drug properties to numerous 

phenomena relevant for formulation testing. It was demonstrated how analysis of drug 

properties can provide a mechanistic tool to elucidate formulation performance. 

Throughout this thesis increased molecular understanding of which properties form 

influential players for various aspects of formulat-ability were identified. In some 

cases, new or unexpected drug properties were highlighted for certain phenomena for 

which in-depth understanding has not been fully elucidated to this point. Accordingly, 
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future studies can gain a deeper understanding for the presence of these properties in 

our final models, extending past the preliminary hypotheses for their inclusion 

presented in this thesis.  

Thirdly, this thesis has examined the utility of the landrace pig model to inform 

increasingly bio-relevant input parameters to improve the bio-predictive capacity of 

in vitro and in silico tools. Through comparisons to ex vivo solubility levels in porcine 

fluids, an in vitro screening tool which closely mimicked likely in vivo performance 

was developed. Furthermore, the ability of the pig to act as a model of human 

bioavailability was strengthened as the first microscopic analysis of porcine fluids was 

provided. This facilitated comparisons of the colloidal structures formed in the fed and 

fasted state. Even though ex vivo solubility results in porcine fluids aided in 

verification of the bio-predictive nature of the related computational modelling 

predictions, further studies are now needed using different formulation types and 

ionisable drugs, to further investigate appropriate in vitro parameters which closely 

mimic in vivo performance.  

Finally, this thesis proposed a refined drug substance to drug product development 

paradigm, encompassing both computationally informed and experimentally 

confirmed decision making.  It was shown that through sequential application of the 

computational and in vitro tools produced in this thesis, informed decisions regarding 

both the necessity for or suitability of a particular LBF approach can be anticipated. 

This thesis has also advanced computational pharmaceutics through incorporation of 

drug developability. Capacity to integrate these tools into standard developability 

testing demonstrates that while a solid foundation is present, substantial effort is 

required to shift computational pharmaceutics tools from “nice to have” to a “must 

have”. 
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Appendix 1: Chapter 1 

Table 1-1 Results of Statistical Analysis comparing LBF, SD and Others using all BDDCS Classes (Total). 

                                           p-value  

Drug 

Property   

Descriptors LBF SD Others Statistical Tests LBF vs SD LBF vs 

Others 

SD vs Others 

clogP n 

Median 

Mean 

SD 

Q1, Q3, 
Min, Max 

Variance 

49 

4.94 

5.30 

2.97 

3.32, 7,32 
-0.73, 14.36 

8.85 

37 

4.49 

4.49 

2.04 

3.24, 4.49 
-1.63, 7.63 

4.15 

763 

2.49 

2.29 

2.37 

0.81, 3.86 
-6.66, 10.97 

5.613 

Levene’s Test 

Welch’s/t-test 

Mean Difference 

95% Confidence Interval 

0.04 

0.14W 

0.82 

(L) -3.17 

(U) 1.95 

0.03 

0.00W 

3.01 

(L) 2.14 

(U) 3.88 
 

0.298 

0.00t 

2.20 

(L) 1.42 

(U) 2.98 
 

Hydrogen 

Bond 

Acceptors 

n 
Median 

Mean 

SD of Mean 
Q1, Q3 

Min, Max 

Variance 

49 
4 

4.76 

4.01 
2, 6 

1, 23 

16.11 

37 
6 

6.87 

2.72 
5, 9.5 

2, 13 

7.398 

763 
4 

4.64 

3.02 
3, 6 

0, 4 

9.092 

Levene’s Test 
Bootstrap 

Mean Difference 

95% Confidence Interval 
 

0.37 
0.011 

-2.11 

(L) -3.43 
(U) -0.70 

0.03 
0.85 

0.12 

(L) -0.89 
(U) 1.36 

0.45 
0.00 

2.26 

(L) 1.33 
(U) 3.12 

Hydrogen 

Bond 

Donors 

n 
Median 

Mean 

SD of Mean 
Q1, Q3 

Min, Max 

Variance 

49 
1 

1.92 

1.86 
1, 3 

0, 10 

3.45 

37 
3 

2.27 

1.43 
1, 3.5 

0, 4 

2.04 
 

763 
2 

1.82 

1.78 
1,2 

0, 23 

3.18 

Levene’s Test 
Bootstrap 

Mean Difference 

95% Confidence Interval 
 

0.77 
0.32 

-0.35 

(L) -1.05 
(U) 0.34 

0.45 
0.74 

0.09 

(L) -0.39 
(U) 0.63 

0.714 
0.07 

0.45 

(L) -0.05 
(U) 0.96 

logD7.4 n 

Median 
Mean 

SD of Mean 

Q1, Q3 
Min, Max 

Variance 

49 

3.87 
3.82 

2.89 

1.48, 5.65 
-3.2, 11.35 

8.36 

37 

3.59 
3.46 

2.40 

2.15, 5.26 
-5.4, 7.05 

5.76 

 

488 

1.34 
1.25 

2.15 

-0.11, 2.65 
-8.86, 10.40 

4.63 

 

Levene’s Test 

Bootstrap 
Mean Difference 

95% Confidence Interval 

 

0.15 

0.52 
0.36 

(L) -0.72 

(U) 1.45 

0.003 

0.00 
2.57 

(L) 1.71 

(U) 3.43 

0.7 

0.00 
2.21 

(L) 1.38 

(U) 2.98 

logP n 

Median 

Mean 
SD of Mean 

Q1, Q3 

Min, Max 
Variance 

49 

4.50 

4.66 
2.16 

3.31, 6.15 

0.28, 10 
4.66 

37 

4.37 

4.16 
1.78 

3.16, 5.69 

-1.80, 6.92 
3.18 

454 

2.36 

2.22 
1.99 

0.92, 3.66 

-8.83, 7.80 
3.96 

Levene’s Test 

Bootstrap 

Mean Difference 
95% Confidence Interval 

0.22 

0.25 

0.49 
(L) -0.29 

(U) 1.31 

0.45 

0.00 

2.44 
(L) 1.79 

(U) 3.07 

 

0.33 

0.00 

1.94 
(L) 1.31 

(U) 2.55 

logS n 46 35 587 Levene’s Test 0.24 0.28 0.008 
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                                           p-value  

Drug 

Property   

Descriptors LBF SD Others Statistical Tests LBF vs SD LBF vs 

Others 

SD vs Others 

Median 

Mean 
SD of Mean 

Q1, Q3 

Min, Max 
Variance 

-4.8 

-4.38 
1.64 

-5.54, -3.70 

-6.50, 0.25 
2.70 

-5.3 

-4.95 
1.49 

-5.7, -4.4 

-8.85, -0.57 
2.22 

-2.92 

-2.81 
1.73 

-4.14, -1.34 

-7.44, 1.70 
2.968 

Welch’s Test/ t-test 

Mean Difference 
95% Confidence Interval 

0.11t 

0.58 
(L) 0.58 

(U) 0.357 

0.00t 

-1.57 
(L) -2.09 

(U) -1.06 

0.00w 

-2.15 
(L) -2.63 

(U) -1.63 

Maximum 

Dosage 

Strength 

(mg) 

n 

Median 
Mean 

SD 

Q1, Q3 
Min, Max 

Variance 

44 

62.5 
118.59 

141.02 

1.94, 200 
0.0005, 500 

19885.23 

37 

100 
144.33 

181.56 

40, 200 
1, 1000 

32964.28 

760 

75 
195.79 

761.68 

10, 250 
0.04, 20000 

580148.89 

Levene’s Test 

Bootstrap 
Mean Difference 

95% Confidence Interval 

0.79 

0.50 
-25.75 

(L) -106.33 

(U) 44.78 

0.39 

0.195 
-77.21 

(L) -160.1 

(U) -7.78 

0.46 

0.30 
-51.46 

-134.01 

30.48 

Melting 

Point (OC) 

n 

Median 
Mean 

SD 

Q1, Q3 
Min, Max 

Variance 

47 

151 
160.81 

64.14 

116.5, 211 
38, 284 

4114.07 

30 

170.5 
175.97 

44.83 

141, 207.86 
80.5, 271 

2009.88 

652 

180.5 
181.18 

58.8 

139, 222.5 
43, 374 

3457.69 

Levene’s Test 

Bootstrap 
Mean Difference 

95% Confidence Interval 

0.01 

0.231 
-15.18 

(L) -39.26 

(U) 8.98 

0.20 

0.035 
-20.38 

(L) -39.91 

(U) -1.14 

0.05 

0.54 
-5.21 

(L) -22.22 

(U) 11.81 

Molecular 

Weight 

(g/mol) 

n 
Median 

Mean 

SD of Mean 
Q1, Q3 

Min, Max 

Variance 

49 
396.65 

448.20 

216.82 
314.61, 517.1 

144.21, 1202.61 

47011.07 

37 
493.58 

586.63 

230.92 
405.47, 785.47 

129.17, 1113.2 

53322.02 

763 
329.63 

354.63 

148.61 
263.79, 419.39 

46.07, 1681.91 

22086.19 

Levene’s Test 
t-test/Bootstrap 

Mean Difference 

95% Confidence Interval 

0.12 
0.009 

-138.43 

(L) -235.25 
(U) -40.70 

0.001 
0.011 

93.57 

(L) 37.08 
(U) 156.41 

0.00 
0.00 

231.99 

(L) 158.46 
(U) 310.92 

pDose 

 

n 

Median 

Mean 
SD of Mean 

Q1, Q3 

Min, Max 
Variance  

44 

3.86 

4.27 
1.49 

3.29, 4.94 

2.11, 8.60 
2.21 

37 

3.88 

3.50 
0.66 

3.37, 4,17 

2.11, 5,57 
0.44 

760 

3.71 

3.83 
0.90 

3.16, 4.45 

1.37, 7.00 
0.82 

Levene’s Test 

Bootstrap 

Mean Difference 
95% Confidence Interval 

0.001 

0.115 

0.407 
(L) -0.07 

(U) 0.91 

0.000 

0.063 

0.45 
(L) 0.36 

(U) 0.90 

0.007 

0.737 

0.04 
(L) -0.18 

(U) 0.26 

Percentage 

Excreted 

Unchanged 

in Urine 

(%) 

n 

Median 

Mean 

SD of Mean 

Q1, Q3 

Min, Max 
Variance 

40 

0.5 

7.33 

16.5 

0.10, 5.75 

0, 69 
272.16  

33 

0.05 

5.68 

18.24 

0, 1.25 

0, 99 
332.84 

667 

4.2 

19.47 

27.78 

0.5, 30 

0, 100 
771.91 

Levene’s Test 

Bootstrap 

Mean Difference 

95% Confidence Interval 

0.86 

0.70 

1.65 

(L) -7.21 

(U) 9.23 

0.00 

0.01 

-12.14 

(L) -17.07 

(U) -6.41 

0.00 

0.03 

-13.79 

(L) -18.77 

(U) -7.18 

pKa 

(strongest 

acid) 

n 

Median 
Mean 

SD of Mean 

46 

10.44 
10.20 

5.66 

29 

9.7 
9.12 

4.86 

624 

10.33 
9.90 

0.21 

Levene’s Test 

Bootstrap 
Mean Difference 

95% Confidence Interval 

0.34 

0.38 
1.08 

(L) -1.18 

0.52 

0.73 
0.30 

(L) -1.38 

 0.44 

 0.41 
-0.78 

(L) -2.61 
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                                           p-value  

Drug 

Property   

Descriptors LBF SD Others Statistical Tests LBF vs SD LBF vs 

Others 

SD vs Others 

Q1, Q3 

Min, Max 
Variance 

0.27, 22 

4.75, 13.86 
32.07 

4.09, 12.63 

0, 19.90 
23.57 

4.77, 13.98 

-12.00, 19.96 
26.99 

(U) 3.41 (U) 1.99 (U) 1.06 

 
 

Polar 

Surface 

Area  

(Å2) 

n 

Median 
Mean 

SD of Mean 

Q1, Q3 
Min, Max 

Variance 

49 

52.9 
79.68 

67.94 

37.3, 102.15 
17.10, 364.00 

4616.27 

37 

112.85 
125.92 

52.74 

84.76, 180.59 
23.68, 212.97 

2781.26 

762 

72.91 
81.48 

57.91 

46.53, 104.09 
1.18, 772.46 

3340.33 

Levene’s Test 

Bootstrap 
Mean Difference 

95% Confidence Interval 

0.82 

0.003 
-46.24 

(L) -71.83 

(U) -19.74 

0.12 

0.85 
-1.91 

(L) -19.95 

(U) 18.36 

0.26 

0.00 
44.33 

(L) 26.83 

(U) 61.81 

Rotatable 

Bonds 

n 

Median 
Mean 

SD of Mean 

Q1,Q3 
Min, Max 

Variance 

49 

5 
6.6 

4.82 

3, 10.5 
0, 18 

23.2 

37 

7 
8.76 

4.67 

5.5, 12.5 
0, 18 

21.8 

746 

4 
5.2 

4.02 

2, 7 
0, 32 

16.17 

Levene’s Test 

Bootstrap 
Mean Difference 

95% Confidence Interval 

0.95 

0.041 
-2.14 

(L) -4.20 

(U) -0.09 
 

0.013 

0.06 
1.41 

(L) 0.06 

(U) 2.81 
 

0.024 

0.00 
3.56 

(L) 2.04 

(U) 5.04 

Rule of 5 

Violations 

n 
Mean 

SD of Mean 

49 
0.82 

0.88 

 

37 
1.03 

0.96 

 

763 
0.269 

0.62 

 

Pearson Chi-Square/ 
Fischer’s Exact Test 

0.22P 
 

 

 

0.006F 
 

0.000F 
 

 

 

 

Results of the pairwise comparisons completed using BDDCS I-IV classification groups. B = Bootstrap, t = t-test, W = Welch’s test, P = Pearson Chi-Square, F = Fischer’s Exact Test. Bootstrap 

95% Confidence Interval based upon 5000 stratified bootstrap samples. (L) and (U) refer to lower and upper 95% confidence limits. For non-categorical variables showing normal distribution, 

when Levene’s test was not significant, 95% Confidence intervals and sig. Level for groups comparison were based on ‘equal variance assumed’ calculations i.e independent samples t-test (2 

sided). When Levene’s test was significant, 95% Confidence intervals and sig. Level for group’s comparison were based on ‘equal variance not-assumed’ calculations i.e Welch’s test. For non-

categorical variables not showing normal distribution the bootstrap method was used (5000 samples). Categorical variables i.e., Ro5, were analysed using Chi-Square tests. If 1 or more cells had 

an expected count below 5, Fisher’s exact test was employed. A p-value of 0.05 was used as the significance level for all tests. SD refers to Standard Deviation of the Mean. 
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Table 1-2: Rule-of-5 Violations versus Drug Group Cross Tabulation (All BDDCS Classes): 

 

 

 

 

 

 

 

 

 

 

 

 

   
Drug Group 

 
Total 

   
LBF SD Others 

 

Ro5 No Greater than 1 Count 40 26 714 780 
  

% of Group Total 81.6% 70.3% 93.6% 91.9% 
 

Greater than 1 Count 9 11 49 69 
  

% of Group Total 18.4% 29.7% 6.4% 8.1% 

Total 
 

Count 49 37 763 849 
  

% of Group Total 100.00% 100.00% 100.00% 100.00% 



 

263 
 

Table 1-3: Results of Statistical Analysis comparing LBF, SD and Others using BDDCS Class II/IV (Low Solubility). 

                                           p-value  

Drug Property   Descriptors LBF SD Others Statistical Tests LBF vs SD LBF vs Others  SD vs Others 

clogP n 

Median 

Mean 

SD of Mean 

Q1, Q3 

Min, Max 

Variance 

38 

4.99 

5.62 

0.47 

3.76, 7.36 

-0.73, 14.36 

8.25  

30 

5.05 

4.92 

1.57 

3.82, 6.02 

1.91, 7.63 

2.45 

307 

3.36 

3.31 

0.12 

2.19, 4.40 

-2.42, 10.97 

4.03 

Levene’s Test 

Welch’s/ t-test 

Mean Difference 

95% Confidence Interval 

0.16 

0.21W 

0.70 

(L) -0.39 

(U) 1.79 

0.005 

0.000W 

2.31 

(L) 1.34 

(U) 3.27 

0.33 

0.000t 

1.61 

(L) 0.86 

(U) 2.35 

Hydrogen Bond 

Acceptors 

n 

Median 

Mean` 

SD of Mean 

Q1, Q3 

Min-Max 

Variance 

38 

4 

4.34 

2.88 

2, 6 

1, 13 

8.29 

30 

6 

7 

2.56 

5, 10 

3, 12 

6.55 

307 

4 

4.81 

2.60 

3, 6 

0, 18 

6.78 

Levene’s Test 

Bootstrap 

Mean Difference 

95% Confidence Interval 

0.97 

0.00 

-2.66 

(L) -3.90 

(U) -1.39 

0.36 

0.31 

-0.47 

(L) -1.40 

(U) 0.58 

0.37 

0.00 

2.19 

(L) 1.26 

(U) 3.16 

 

Hydrogen Bond 

Donors 

n 

Median 

Mean 

SD of Mean 

Q1, Q3 

Min-Max 

Variance 

38 

1 

1.68 

1.38 

1, 3 

0, 5 

1.90 

30 

2.50 

2.27 

1.46 

1, 4 

0, 4 

2.13 

307 

1 

1.63 

1.23 

1, 2 

0, 7 

1.52 

Levene’s Test 

Bootstrap 

Mean Difference 

95% Confidence Interval 

0.43 

0.09 

-0.58 

(L) -1.23 

(U) 0.09 

0.23 

0.81 

0.06 

(L) -0.36 

(U) 0.54 

0.04 

0.03 

0.64 

(L) 0.11 

(U) 1.17 

logD7.4 

 

n 

Median 

Mean 

SD of Mean 

Q1, Q3 

Min-Max 

Variance 

38 

3.92 

3.90 

2.85 

2.10, 5.58 

-3.20, 11.35 

8.12 

30 

4.05 

4.04 

1.67 

2.75, 5.39 

1.28, 7.05 

2.79 

181 

2.85 

4.04 

2.01 

0.73, 3.52 

-3.68, 10.40 

4.04 

Levene’s Test 

Bootstrap 

Mean Difference 

95% Confidence Interval 

 

0.04 

0.80 

-0.14 

(L) -1.21 

(U) 0.94 

0.02 

0.001 

1.82 

(L) 0.92 

(U) 2.74 

0.30 

0.000 

1.96 

(L) 1.28 

(U) 2.66 

logP n 

Median 

Mean 

SD of Mean 

Q1, Q3 

Min-Max 

Variance 

38 

4.51 

4.84 

2.05 

3.72, 6.29 

0.28, 10 

4.19 

30 

4.62 

4.60 

1.30 

3.63, 5.73 

2.18, 6.92 

1.69 

175 

3.12 

3.06 

1.66 

2.24, 4.18 

-1.56, 7.80 

2.76 

Levene’s Test 

Bootstrap 

Mean Difference 

95% Confidence Interval 

0.05 

0.56 

0.24 

(L) -0.54 

(U) 1.03 

 

0.12 

0.00 

1.78 

(L) 1.08 

(U) 2.49 

0.31 

0.00 

1.54 

(L) 1.02 

(U) 2.07 

logS n 

Median 

Mean 

SD of Mean 

Q1,Q3 

36 

-5.13 

-4.91 

1.14 

-5.70, -4.2 

29 

-5.4 

-5.29 

1.31 

-5.80, -4.90 

228 

-4.2 

-4.23 

1.03 

-4.9, -3.44 

Levene’s Test 

Bootstrap  

Mean Difference 

95% Confidence Interval 

0.74 

0.24 

0.38 

(L) -0.29 

(U) 1.03 

0.93 

0.00 

-0.69 

(L) -1.05 

(U) -0.29 

0.63 

0.00 

-1.06 

(L) -1.54 

(U) -0.56 
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                                           p-value  

Drug Property   Descriptors LBF SD Others Statistical Tests LBF vs SD LBF vs Others  SD vs Others 

Min-Max 

Variance 

-6.5, -1.21 

1.29 

-8.85, -0.57 

1.71 

-7.44, -1.00 

1.07 

Maximum Dosage 

Strength 

(mg) 

n 

Median 

Mean 

SD of Mean 

Q1, Q3 

Min-Max 

Variance 

35 

75 

116.64 

133.81 

10, 200 

0.0005, 500 

17904.70 

30 

100 

118.01 

104.11 

37.5, 200 

1, 400 

10838.05 

307 

100 

195.50 

209.24 

30, 300 

0.45, 300 

43781.20 

Levene’s Test 

Bootstrap 

Mean Difference 

95% Confidence Interval 

0.19 

0.96 

0-1.37 

(L) -57.57 

(U) 57.13 

0.008 

0.008 

-78.86 

(L) -126.11 

(U) -30.98 

0.00 

0.003 

-77.50 

(L) -120.90 

(U) -32.83 

Melting Point (OC) n 

Median 

Mean 

SD of Mean 

Q1, Q3 

Min-Max 

Variance 

36 

153 

162.97 

65.49 

117.88, 223.55 

38, 284 

4288.33 

24 

173.75 

179.93 

46.81 

143.25, 211.63 

80.5, 271 

2191.41 

257 

182 

183.46 

57.73 

141.75, 224.00 

52, 349.84 

3332.99 

Levene’s Test 

Welch’s/t-test 

Mean Difference 

95% Confidence Interval 

0.04 

0.25W 

-16.96 

(L) -44.88 

(U) 11.50 

0.20 

0.051t 

-20.49 

(L) -41.06 

(U) 0.08 

0.15 

0.77t 

-3.53 

(L) -27.44 

(U) 20.38 

Molecular Weight 

(g/mol) 

n 

Median 

Mean 

SD of Mean 

Q1, Q3 

Min-Max 

Variance 

38 

398.64 

449.49 

207.06 

315.45, 530.36 

153.14, 1202.61 

42874.38 

30 

581.65 

618.37 

215.47 

431.08, 812.76 

346.34, 1113.20 

46426.99 

307 

375.87 

394.59 

138.62 

296.54, 451.62 

136.11, 1058.06 

19214.60 

Levene’s Test 

Bootstrap 

Mean Difference 

95% Confidence Interval 

0.17 

0.002 

-168.88 

(L) -266.68 

(U) -68.55 

0.007 

0.129 

54.91 

(L) -7.11 

(U) 127.64 

0.000 

0.000 

223.79 

(L) 145.70 

(U) 306.04 

pDose 

 

n 

Median 

Mean 

SD of Mean 

Q1, Q3 

Min-Max 

Variance 

35 

3.86 

4.18 

1.38 

3.38, 4.48 

2.11, 8.32 

1.91 

30 

3.95 

3.93 

0.59 

3.46, 4.21 

3.04, 5.57 

0.36 

307 

3.51 

3.67 

0.77 

3.09, 4.15 

2.29, 6.03 

0.59 

Levene’s Test 

Bootstrap 

Mean Difference 

95% Confidence Interval 

0.004 

0.34 

0.25 

(L) -0.24 

(U) 0.78 

0.000 

0.026 

0.52 

(L) 0.07 

(U) 0.99 

0.04 

0.037 

0.27 

(L) 0.04 

(U) 0.50 

Percentage 

Excreted 

Unchanged in Urine 

(%) 

n 

Median 

Mean 

SD of Mean 

Q1, Q3 

Min-Max 

Variance 

31 

0.5 

3.98 

11.81 

0.05, 2.2 

0, 65 

139.67 

27 

0.03 

1.36 

4.64 

0, 0.5 

0, 24 

21.56 

262 

1.5 

1.36 

21.41 

0.29, 10 

0, 100 

458.18 

Levene’s Test 

Bootstrap 

Mean Difference 

95% Confidence Interval 

0.13 

0.39 

2.61 

(L) -0.78 

(U) 7.15 

0.001 

0.014 

-7.77 

(L) -11.88 

(U) -2.73 

0.000 

0.000 

-10.38 

(L) -13.38 

(U) -7.41 

pKa (strongest acid) n 

Median 

Mean 

SD of Mean 

Q1, Q3 

Min-Max 

37 

10.6 

10.11 

0.99 

4.25, 14.04 

0.27, 22 

25 

9.33 

9.04 

5.01 

3.99, 12.63 

0, 19.90 

272 

10.29 

9.85 

5.13 

4.74, 13.78 

-12, 19.96 

Levene’s Test 

Bootstrap 

Mean Difference 

95% Confidence Interval 

0.23 

0.45 

1.06 

(L) -1.68 

(U) 3.78 

0.14 

0.81 

0.25 

(L) -1.78 

(U) 2.4 

0.70 

0.44 

-0.81 

(L) -2.89 

(U) 1.25 
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                                           p-value  

Drug Property   Descriptors LBF SD Others Statistical Tests LBF vs SD LBF vs Others  SD vs Others 

Variance 36.4 25.06 26.33 

Polar Surface Area  

(Å2) 

n 

Median 

Mean 

SD of Mean 

Q1, Q3 

Min-Max 

Variance 

38 

55.4 

74.63 

54.39 

37.3, 98.56 

20.23, 279 

2957.95 

30 

116.43 

130.08 

49.79 

90.16, 182.69 

46.53, 204 

2478.83 

306 

76.15 

82.85 

43.78 

54.8, 104.60 

1.18, 266.66 

1917.02 

Levene’s Test 

Bootstrap 

Mean Difference 

95% Confidence Interval 

 0.56 

0.00 

-55.45 

(L) -79.78 

(U) -29.24 

 0.22 

0.37 

-8.23 

(L) -24.99 

(U) 10.32 

0.05 

0.00 

47.22 

(L) 28.55 

(U) 65.61  

Rotatable Bonds n 

Median 

Mean 

SD of Mean 

Q1, Q3 

Min-Max 

Variance 

38 

5 

6.53 

4.88 

3, 11 

0, 18 

23.8 

30 

7 

8.8 

4.39 

5.75, 12.25 

3, 18 

19.27 

306 

5 

5.62 

4.10 

3, 7 

0, 24 

4.10 

Levene’s Test 

Bootstrap 

Mean Difference 

95% Confidence Interval 

0.76 

0.050 

-2.27 

(L) -4.46 

(U) -0.08 

0.04 

0.274 

0.90 

(L) -0.65 

(U) 2.53 

0.13 

0.001 

3.18 

(L) 1.51 

(U) 4.87 

Rule of 5 Violations n 

Mean 

SD 

34 

0.9412 

0.8507 

 

27 

1.148 

0.9488 

 

239 

0.343 

0.6542 

 

Pearson Chi-Square/ 

Fischer’s Exact Test 

0.159P 

 

 

 

0.086F 0.001F 

 

Results of the pairwise comparisons completed using BDDCS II/IV classification groups. B = Bootstrap, t = t-test, W = Welch’s test, P = Pearson Chi-Square, F = Fischer’s Exact Test. Bootstrap 

95% Confidence Interval based upon 5000 stratified bootstrap samples. (L) and (U) refer to lower and upper 95% confidence limits. For non-categorical variables showing normal distribution, 

when Levene’s test was not significant, 95% Confidence intervals and sig. Level for groups comparison were based on ‘equal variance assumed’ calculations i.e independent samples t-test (2 

sided). When Levene’s test was significant, 95% Confidence intervals and sig. Level for group’s comparison were based on ‘equal variance not-assumed’ calculations i.e Welch’s test. For non-

categorical variables not showing normal distribution the bootstrap method was used (5000 samples). Categorical variables i.e., Ro5, were analysed using Chi-Square tests. If 1 or more cells had 

an expected count below 5, Fisher’s exact test was employed. A p-value of 0.05 was used as the significance level for all tests. SD refers to Standard Deviation of the Mean. 
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Table 1-4 Rule-of-5 Violations versus Drug Group Cross Tabulation (BDDCS Class II/IV) 

   
Drug Group 

  
Total 

   
LBF SD Others 

 

Ro5 No Greater than 1 Count 31 20 279 330 
  

% of Group Total 81.60% 66.70% 90.90% 88.0% 
 

Greater than 1 Count 7 10 28 45 
  

% of Group Total 18.40% 33.30.% 9.10% 12.00% 

Total 
 

Count 38 30 307 375 
  

% of Group Total 100.00% 100.00% 100.00% 100.00% 
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Table 1-5: Tabular representation of SD commercial products. 

Trade Name Drug Dosage Form/Strength Excipients* Method of Manufacturer 

Afeditab CR® Nifedipine Tablet (30mg) Poloxamer/PVP Spray Drying 

Afinitor® Everolimus Tablet (2.5,5, 7.5, 10mg) HPMC Spray Drying 

Astagraf XL® Tacrolimus Capsule (0.5, 1, 5mg) HPMC Wet Granulation  

Belsomra®  Suvorexant Tablet (5, 10, 15, 20mg) Polyvinylpyrrolidone/ 

Vinyl Acetate 

Copolymer 

(Copovidone) 

Melt Extrusion 

Certican® Everolimus Tablet (0.25, 0.5, 0.75, 1mg) HPMC Spray Drying 

Cesamet® Nabilone Capsule (1mg) Povidone Solvent Evaporation 

Cokiera® Dasabuvir/ 

Ombitasvir/ 

Paritaprevir/ 

Ritonavir 

Tablet 

(200/8.33/50/33.33mg) 

Copovidone Melt Extrusion 

Crestor® Rosuvastatin 

Calcium 

Tablet (5, 10, 20, 40mg) HPMC Spray Drying 

Cymbalta® Duloxetine Capsule (30, 60mg (+20mg 

FDA)) 

HPMCAS  

Deltyba® Delamanid Tablet (50mg) Hypromellose Phthalate 

(HPMCP) 

 

Envarsus XR® Tacrolimus Tablet (0.75, 1, 4mg) HPMC Melt Granulation 

Epclusa® Sofosbuvir/ 

Velpatasvir 

Tablet (400/100mg) Copovidone Spray Drying 

Eucreas® Vildagliptin/ 

Metformin HCL 

Tablet (50/850mg + 

50/1000mg) 

HPC Hot Melt Extrusion  

Fenoglide® Fenofibrate Tablet (40, 120mg) PEG 6000, Poloxamer 

188 

Spray Melt 

Galvumet® Vildagliptin 

/Metformin HCL 

Tablet (50/850mg + 

50/1000mg) 

HPC Hot Melt Extrusion 

Gris-PEG® Griseofulvin Tablet (125, 250mg) PEG 400 and 8000, 

Povidone 

Melt-Extrusion 

Harvoni® Ledipasvir/ 

Sofosbuvir 

Tablet (90/400, 45/200mg) Copovidone Spray Drying 

Incivek® Telaprevir Tablet (375mg) HPMCAS Spray Drying 

Incivo® Telaprevir Tablet (375mg) HPMCAS Spray Drying 

Intelence® Etravirine Tablet (25, 100, 200mg) HPMC Spray Drying 

Isoptin SR-E 

240® 

Verapamil Tablet (240mg) HPMC/HPC Spray Drying 

Kaletra® Lopinavir/Ritonavir Tablet (100/25, 200/50mg) PVP Melt Extrusion 

Kalydeco® Ivacaftor Tablet (75, 150mg) HPMCAS Spray Drying  

Mavyret® Glecaprevir/ 

Pibrentasvir 

Tablet (40/100mg) Copovidone (Type K 

28) 

Melt Extrusion 

Modigraf® Tacrolimus Granules for Oral Suspension 

(0.2,1mg) 

HPMC Spray Drying  

Nimotop® Nimodipine Tablet (30mg) PEG Spray Drying/ Fluid Bed 

Nivadil® Nilvadipine Capsule (16mg,8mg) HPMC Spray Drying 

Norvir® Ritonavir Tablet (100mg) PVP VA 64 Melt Extrusion 

Noxafil® Posaconazole Tablet (100mg) HPMCAS Melt Extrusion 

Onmel® Itraconazole Tablet (200mg) PVP VA 64 Melt-Extrusion 

Orkambi® Lumacaftor/ 

Ivacaftor 

Tablet (100mg/125mg, 

200mg/125mg) 

HPMCAS Spray Drying  

Prograf® Tacrolimus Capsule (0.5, 1, 3, 5mg) HPMC Spray Drying 

Rezulin® Troglitazone Tablet (200, 300, 400mg) PVP Spray Drying 

Samsca® Tolvaptan Tablet (15, 30 + 60mg) HPMC Granulation  
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Trade Name Drug Dosage Form/Strength Excipients* Method of Manufacturer 

Shui linjia Silibinin Capsule (70mg) Lecithin  

Sporanox® Itraconazole Capsule (100mg) HPMC Fluid Bed Bead Layering 

Stivarga® Regorafenib Tablet (40mg) Povidone K25  

Venclexta® Venetoclax Tablet (10, 50, 100mg) Copovidone Melt Extrusion 

Viekira XR® Dasabuvir/ 

Ombitasvir/ 

Paritaprevir/ 

Ritonavir 

Tablet 

(200/8.33/50/33.33mg) 

Copovidone Melt Extrusion 

Votubia® Everolimus Tablet (2.5, 5, 10mg) HPMC Spray Drying 

Zelboraf® Vemurafenib Tablet (240mg) HPMCAS Solvent/Anti-Solvent 

Precipitation 

Zepatier® Elbasvir/ 

Grazoprevir 

Tablet (50/100mg) TPGS, Copovidone, 

HPMC 

Spray Drying 

Zortress® Everolimus Tablet (0.25, 0.5, 0.75, 1mg) HPMC Spray Drying 

 

Data obtained from FDA Drug Label (from Drugs@FDA database), European Summary of Pharmaceutical Characteristics 

(SPC), Health Products Regulatory Authority (HPRA) National Drug Authorisation SPC or Therapeutic Goods Administration 

(TGA) product information. *Excipients listed refer only to selected relevant excipients from the total excipients of the drug 

products which contribute directly to the transformation and/or stability of a drug as a SD. 

 

 

 

 

 

 

 

 

 

 

 

 



 

269 
 

Table 1-6: Tabular representation of LBF commercial products. 

Trade Name Drug Dosage Form/Strength Excipients* 

Absorica® Isotretinoin Hard Gelatine Capsule 

(10,20,25,30,35,40mg) 

Sorbitan Monooleate, Soybean Oil and 

Stearoyl Polyoxylglycerides 

Accutane® Isotretinoin Soft Gelatine Capsule (10,20,40mg) Beeswax, Hydrogenated Soybean Oil 

Flakes, Hydrogenated Vegetable Oil, 

Soybean Oil 

Advil Cold and 

Sinus® 

Ibuprofen Liquid Gel Capsule (200mg/30mg) Fractionated Coconut Oil, Poly Ethylene 

Glycol 

Agenerase® Amprenavir Soft Gelatine Capsule (50, 150mg) Polyethylene Glycol 1000 Succinate 

(TPGS), Polyethylene Glycol 400 (PEG 

400), Propylene Glycol  

Aloxi® Palonosetron Soft Gelatine Capsule (0.5mg)  Mono- and di-glycerides of Capryl/Capric 

acid, Glycerin, Polyglyceryl Oleate, Water, 

and Butylated Hydroxyanisole 

Amitiza® Lubiprostone Soft Gelatine Capsule (8, 24mcg) Medium-Chain Triglycerides 

Aptivus® Tipranivir Soft Gelatine Capsule (250mg) Macrogolglycerol Ricinoleate, Ethanol, 

Mono/diglycerides of Caprylic/Capric acid, 

Propylene Glycol. 

Aptivus® Tipranivir Oral Solution (100mg/mL) Macrogol, Polyethylene Glycol, Propylene 

Glycol, Mono/Diglycerides of 

Caprylic/Capric Acid, Polyoxyl 35 Caster 

Oil, Vitamin E Polyethylene Glycol 

Succinate (TPGS). 

Avodart® Dutasteride Soft Gelatine Capsule (0.5mg) Mono- and Diglycerides of Caprylic/Capric 

acid 

Cipro®  Ciprofloxacin Oral Suspension (250mg/mL, 

500mg/5mL) 

Medium Chain Triglycerides 

Claravis® Isotretinoin Liquid Filled Hard Shell Capsule 

(10,20,30,40mg) 

Hydrogenated Vegetable Oil, Polysorbate 

80, Soybean Oil. 

Clarityn®  Loratadine Soft Gelatine Capsule (10mg) Caprylic/Capric Glycerides, Glycerin, 

Polysorbate 80. 

Convulex® Valproic Acid Soft Gelatine Capsule (150, 300, 

500mg) 

Macrogol 6000, Glycerol Monostearate 44-

55 Type II 

Depakene® Valproic Acid Soft Gelatine Capsule (250mg) Corn Oil 

Detrol La®  Tolterodine Tartrate Extended Release Gelatine Capsule 

(2, 4mg) 

Medium Chain Triacylglycerides, Oleic 

Acid, Gelatin. 

Drisdol® Ergocalciferol Liquid Filled Hard Shell Capsule 

(1.25mg) 

Glycerin, Soybean Oil, Edible Vegetable 

Oil.  

Epadel®(36) Ethyl 

Eicosapentaenoate 

Soft Gelatine Capsule (500mg) Alpha Tocopherol  

Fenogal® Fenofibrate Hard Gelatine Capsule (200mg) Lauryl Macroglycerides, Macrogol 20,000 

Fortovase® Saquinavir Soft Gelatine Capsule (200mg) Medium Chain Mono- and Diglycerides. 

Gengraf® Cyclosporin Hard Gelatine Capsule (25, 100mg) 

(50mg discontinued) 

Polyethylene Glycol, Polyoxyl 35 Castor 

Oil, Polysorbate 80, Propylene Glycol, 

Ethanol. 

Gengraf® Cyclosporin Oral Solution (100mg/mL) Polyoxyl 40, Hydrogenated Castor Oil, 

Polysorbate 80, Propylene Glycol 
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Trade Name Drug Dosage Form/Strength Excipients* 

Glakay® Menatetrenone Soft Gelatine Capsule (15mg) Carnauba Wax, Hydrogenated Oil, Glyceryl 

Monooleate, PG Esters of Fa, Glycerin. 

Hectorol® Doxercalciferol  Soft Gelatine Capsule (0.5, 1, 2.5mcg) Ethanol, Fractionated Triglyceride of 

Coconut Oil 

Heminevrin® Clomethiazole Soft Gelatine Capsule (192mg) Medium Chain Triglycerides, Glycerol 

Hycamtin® Topotecan Liquid Filled Hard Shell Capsule 

(0.25, 1mg) 

Hydrogenated Vegetable Oil, Glyceryl 

monostearate 

Infree® Indomethacin Capsule (100, 200mg) Cremophor RH 60 

Juvela N® Tocopherol 

Nicotinate 

Soft Gelatine Capsule (200mg) Carnauba Wax, Medium Chain 

Triglycerides, Glycol Esters of Fatty Acids, 

Glycerin. 

Kaletra® Lopinavir/ Ritonavir Soft Gelatine Capsule 

(133.3mg/33.3mg) 

Glycerin, Oleic Acid, Polyoxyl 35 Castor 

Oil, Propylene Glycol. 

Kaletra® Lopinavir/ Ritonavir Oral Solution (80+20mg/mL) Ethanol, Glycerin, Polyoxyl 40 

Hydrogenated Castor Oil, Propylene Glycol. 

Ketas® Ibudilast  Sustained Release Granules (10mg) Hydrogenated Castor Oil, Macrogol 6000, 

Cremophor RH 60. 

Lamprene® Clofazimine Soft Gelatine Capsule (50, 100mg) Beeswax, Glycerin, Lecithin, Plant Oils, 

Propylene Glycol. 

Lipofen® Fenofibrate Hard Shell Capsule (50, 150mg) 

(100mg discontinued) 

Gelucire 44/14, Polyethylene Glycol 20,000, 

Polyethylene Glycol 8000, Propylene Glycol 

Lovaza® Omega-3 Acid Ethyl 

Esters 

Soft Gelatine Capsule (900mg/gram)  Soybean Oil. 

Marinol® Dronabinol Soft Gelatine Capsule (2.5, 5, 10mg) Sesame Oil. 

MXL® Morphine Prolonged Release Capsule (30, 60, 

90, 120,150,200mg) 

Hydrogenated Vegetable Oil BP, Macrogol 

6000 Ph Eur 

Navelbine® Vinorelbine Soft Gelatine Capsule (20, 30, 80mg) Anhydrous Ethanol, Glycerol Macrogol 400 

Neoral® Ciclosporin Soft Gelatine Capsule (25, 50, 100mg) Alpha-tocopherol, Ethanol, Propylene 

Glycol, Glycerol, Corn oil-mono-di-

triglycerides, Macrogolglycerol 

hydroxystearate / Polyoxyl 40 hydrogenated 

castor oil. 

Neoral® Ciclosporin Oral Solution (100 mg/mL) Alpha–tocopherol, Ethanol, Propylene 

Glycol, Corn oil-mono-di-triglycerides, 

Macrogolgylcerol Hydroxystearate / 

Polyoxy 40 Hydrogenated Castor Oil. 

Nimotop® Nimodipine Soft Gelatine Capsule (30mg) Glycerin, Peppermint oil, Polyethylene 

Glycol 400 

Norvir® Ritonavir Oral Solution (80 mg/mL) Polyoxyl 35 Castor oil, Propylene Glycol, 

Ethanol.  

Norvir® Ritonavir Soft Gelatine Capsule (100 mg) Ethanol, Oleic Acid, Polyoxyl 35 Castor Oil. 

Ofev® Nintedanib Soft gelatine capsule (100mg, 150mg) Triglycerides (Medium-Chain), Hard Fat 

Lecithin (soya)  

One-Alpha® Alfacalcidol  Soft Gelatine Capsule (1mcg) Sesame Oil (refined) 

Panimun Bioral® Cyclosporin Soft Gelatine Capsule (25, 50, 100mg) Ethanol, Propylene Glycol, Corn Oil 

Mono/Di/Tri-Glycerides, Macrogolglycerol 

hydroxystearate / Polyoxyl 40 Hydrogenated 

Caster Oil, Ethanol.  
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Trade Name Drug Dosage Form/Strength Excipients* 

Pentasa® Mesalazine Extended-Release Capsule (250, 

500mg) 

Acetylated Monoglyceride, Castor Oil 

Prometrium® Progesterone Soft Gelatine Capsule (100, 

200,300mg) 

Peanut Oil, Glycerin, Lecithin. 

Rapamune® Sirolimus Oral Solution (1mg/mL) Polysorbate 80 (E433), Phosal 50 PG 

(Phosphatidylcholine, Propylene Glycol, 

Mono-and Diglycerides, Ethanol, Soya Fatty 

Acids and Ascorbyl Palmitate). 

Rayaldee® Calcifediol Extended-Release Capsule (0.03mg) Mixture of Lipophilic Emusifier with a HLB 

<7 and an absorption enhancer, oily vehicle 

- mineral oil, liquid paraffins or squalene. 

Restandol 

Testocaps® 

Testosterone Soft Gelatine Capsule (40mg) Castor Oil and Propylene Glycol 

Monolaurate (E477) 

Roaccutane® Isotretinoin Soft Gelatine Capsule (10, 20mg) Beeswax, Soya-Bean Oil (refined), Soya-

Bean Oil (hydrogenated). 

Soya-bean Oil (Partially Hydrogenated) 

Rocaltrol® Calcitriol Soft Gelatine Capsule (0.25, 0.5mcg) Fractionated Triglycerides of Coconut Oil  

Sandimmune® Ciclosporin Oral Solution (100 mg/mL) Alcohol  dissolved in Olive Oil, Ph. 

Helv./Labrafil M 1944 CS 

(Polyoxyethylated Oleic Glycerides) 

Vehicle  

Sandimmune® Ciclosporin Soft Gelatine Capsule (25, 50 and 

100mg) 

Corn Oil, Linoleoyl Macrogolglycerides, 

Glycerol, Ethanol. 

Selbex® Teprenone Hard Gelatine Capsule (50mg) Alpha-tocopherol, Macrogol 6000 

Solufen® Ibuprofen Hard Gelatine Capsule (200mg) Gelucire 44/14  

Sustiva® Efavirenz Oral Solution (30mg/mL) Medium Chain Triglycerides 

Targretin® Bexarotene Soft Gelatine Capsule (75mg) Polysorbate 20, PEG400 

Thorens® Cholecalcifer-ol  Oral Drops Solution (10000IU/mL, 

25000IU/2.5mL) 

Refined Olive Oil 

Tirosint® Levothyroxine Soft Gelatine Capsule (0.025, 0.05, 

0.075, 0.1, 0.125, 0.15, 0.112, 0.137, 

0.088, 0.174, 0.200, 0.013mg) 

Glycerin  

Uvedose® Cholecalcifer-ol Oral Solution (100,000IU/2mL) Glycolyzed Polyoxyethylenated Glycerides 

Vesanoid® Tretinoin Soft Gelatine Capsule (10mg) Beeswax, Hydrogenated Soybean Oil 

Flakes, Hydrogenated Vegetable Oils and 

Soybean Oil 

Vyndaqel® Tafamidis Soft Gelatine Capsule (20mg) Macrogol 400, Polysorbate 20, Butylated 

hydroxytoluene  

Xtandi® Enzalutamide Soft Gelatine Capsule (40mg) Caprylocaproyl Polyoxylglycerides. 

Zantac® Ranitidine Soft gelatine capsule (150, 300mg) Medium Chain Triglycerides, Gelucire 

33/01 

Zemplar® Paricalcitol Soft Gelatine Capsule (1, 2mcg) Medium Chain Triglycerides (fractionated 

from coconut oil or palm kernel oil), Alcohol  

Zipsor® Diclofenac 

Potassium 

Soft Gelatine Capsule (25mg) ProSorb (proprietary combination of 

Polyethylene Glycol 400, Glycerin, Sorbitol, 

Povidone, Polysorbate 80, and Hydrochloric 

Acid), Isopropyl Alcohol, and Mineral Oil 
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Trade Name Drug Dosage Form/Strength Excipients* 

Zmax® Azithromycin  Extended-Release Oral Suspension 

(27mg/mL) 

Glyceryl Behenate 

 

Data obtained from FDA Drug Label (from Drugs@FDA database), European Summary of Pharmaceutical Characteristics 

(SPC), Health Products Regulatory Authority (HPRA) National Drug Authorisation SPC or Medicines and Healthcare 

Products Regulatory Agency (MHRA) SPC unless otherwise stated.*Excipients listed refer only to selected relevant excipients 

from the total excipients of the drug products which include both lipophilic and hydrophilic excipients types as classified by 

the lipid formulation classification system.  
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Appendix 2: Chapter 3 

Table 2-1: Compilation of licensed oral medicines from 2016-2020 and their AUCfed/fasted ratio, clinical recommendation regarding food take, BCS and food effect (FE) Classification. LF, MF 

and HF refer to Low Fat, Medium Fat and High Fat Meals respectively, * refers to the 90% CI limits and ** refers to the range of values quoted. 

Year 

Licensed 

Generic Name Commercial Name Clinical Recommendation Food Effect 

Classification 

AUCfed/fasted BCS 

Class 

2020 Avapritinib Ayvakit/Ayvakyt Taken on an empty stomach, at least one hour 

before and two hours after a meal 

Positive 1.27/1.29 2 

2020 Glasdegib   Daurismo Taken with or without food No FE 0.84 4 

2020 Lefamulin Xenleta Taken on an empty stomach, at least 1 hour 

before or 2 hours after a meal 

No FE  0.82 3 

2020 Pralsetinib Gavreto Taken on an empty stomach (no food intake for 

at least 2 hours before and at least 1 hour after 

taking) 

Positive 2.22 2 

2020 Osilodrostat Isturisa Taken with or without food No FE  0.89 1 

2020 Filgotinib Jyseleca Taken with or without food No FE  1 2 

2020 Ivacaftor 

Tezacaftor 

Elexacaftor 

Kaftrio Taken with fat-containing food Positive 

Positive  

No FE  

1.9-2.5**  

2.5-4**  

 1 

2 

2 

4 

2020 Selumetinib  Koselugo Take on an empty stomach. Do not consume 

food 2 hours before each dose or 1 hour after 

each dose 

No FE  0. 62 4 

2020 Nifurtimox Lampit Taken with food Positive 1.71 2 

2020 Siponimod Mayzent Taken with or without food No FE  1 2 

2020 Bempedoic Acid Nilemdo Taken with or without food No FE  1 2 

2020 Darolutamide Nubeqa Taken with food Positive 2-2.5  2 

2020 Bempedoic Acid 

Ezetimibe 

Nustendi/Nexlizet Taken with or without food No FE  

No FE  

1 

1  

2 

2 

2020 Azacitidine Onureg Take with or without food Negative 0.79 1 

2020 Elagolix Sodium 

Estradiol 

Norethindrone Acetate 

Oriahnn No instructions with regard to food intake Negative 

No FE  

No FE  

0.75 

1 

1.23  

3 

1 

2 

2020 Alpelisib Piqray Taken immediately after food, at approximately 

the same time each day 

Positive LF 1.77 HF 1.73 2 

2020 Pretomanid Pretomanid FGK Taken with food Positive 1.88 2 
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Year 

Licensed 

Generic Name Commercial Name Clinical Recommendation Food Effect 

Classification 

AUCfed/fasted BCS 

Class 

2020 Selpercatinib Retevmo Taken with or without food No FE  1 
 

2020 Solriamfetol Sunosi Taken with or without food No FE  1 1 

2020 Capmatinib Hydrochloride Tabrecta Taken with or without food Positive LF 1 HF 1.46 2 

2020 Fostamatinib Tavlesse Taken with or without food No FE  1.23 4 

2020 Dolutegravir Sodium Tivicay pd Taken with or without food Positive 1.66 4 

2020 Tucatinib Tukysa Taken with or without food Positive 1.5 2 

2020 Solifenacin Succinate Vesicare LS Avoid taking with food due to bitter taste  No FE  1 1 

2020 Enzalutamide Xtandi Taken with or without food  No FE  1  2 

2020 Ozanimod Zeposia Taken with or without food No FE  1 2 

2019 Isotretinoin Absorica Ld Taken with or without food No FE   1.2 2 

2019 Lumateperone Tosylate Caplyta Taken with food No FE  1.09 1 

2019 Ivabradine Corlanor Taken with food Positive 1.2-1.4** 1 

2019 Trientine Dihydrochloride Cufence Take this medicine with water only. Avoid 

eating or drinking (except water) for 1 hour 

before, or 2 hours after taking. 

Negative 0.55 3 

2019 Lemborexant Dayvigo Taken immediately before going to bed No FE  1.18 2 

2019 Avatrombopag Maleate Doptelet Taken with food No FE  LF 1.0 HF 1.0 4 

2019 Dolutegravir Sodium 

Lamivudine 

Dovato Taken with or without food Positive 

No FE  

1.33  

1 

4  

3 

2019 Triclabendazole Egaten Taken with food Positive 2 2 

2019 Gilteritinib Fumarate Xospata Taken with or without food No FE  0.9 4 

2019 Riluzole Xservan Taken at least 1 hour before or 2 hours after a 

meal 

No FE  0.85 2 

2019 Apalutamide Erleada Taken with or without food No FE  1 2 

2019 Colchicine Gloperba Taken with or without food No FE  0.93 3 

2019 Ledipasvir 

Sofosbuvir 

Harvoni Taken with or without food  No FE  

Positive 

1 

~2 

2 

3 

2019 Fedratinib Hydrochloride Inrebic Taken with or without food No FE  LF 1.24 HF 1.24 2 

2019 Lorlatinib Lorviqua Taken with or without food  No FE  1.05 4 

2019 Lusutrombopag Mulpleo Taken with or without food No FE  1 4 

2019 Istradefylline Nourianz Taken with or without food Positive 1.64 2 

2019 Voxelotor Oxbryta Taken with or without food Positive 1.42 2 

2019 Naldemedine Rizmoic/Symproic Taken with or without food No FE  1 4 
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Year 

Licensed 

Generic Name Commercial Name Clinical Recommendation Food Effect 

Classification 

AUCfed/fasted BCS 

Class 

2019 Amifampridine Ruzurgi Taken with or without food No FE   1 3 

2019 Talazoparib Talzenna Taken with or without food No FE  1 2 

2019 Elexacaftor 

Ivacaftor 

Tezacaftor 

Trikafta 

(Copackaged) 

Taken with fat containing food Positive 

Positive  

No FE  

1.9-2.5**  

2.5-4** 

1 

4 

2 

2 

2019 Pexidartinib Hydrochloride Turalio Taken on an empty stomach, at least 1 hour 

before or 2 hours after a meal or snack 

Positive 2 2 

2019 Ubrogepant Ubrelvy Taken with or without food No FE   1 4 

2019 Larotrectinib Vitrakvi Taken with or without food  No FE  1 1 

2019 Dacomitinib Vizimpro No instructions with regard to food intake No FE  1 2 

2019 Ceritinib Zykadia Taken with food Positive LF 1.64 HF 1.39 4 

2019 Sotagliflozin Zynquista Taken once daily before the first meal of the day Positive 1.5 2 

2018 Brigatinib Alunbrig Taken with or without food No FE  1 1 

2018 Tafenoquine Succinate Arakoda Taken with food Positive 1.41 
 

2018 Bictegravir 

Emtricitabine 

Tenofovir Alafenamide 

Biktarvy Taken with or without food No FE  

No FE  

Positive 

1.24 

1 

1.64  

2 

1 

3 

2018 Estradiol 

Progesterone 

Bijuva Taken with food No FE  

Positive 

1 

1.79 

1 

2 

2018 Encorafenib Braftovi Taken with or without food No FE  1 2 

2018 Duvelisib Copiktra Taken with or without food Negative 0.63 4 

2018 Doravirine 

Lamivudine 

Tenofovir Disoproxil Fumarate 

Delstrigo Taken with or without food No FE  

No FE  

Positive 

1.1 

0.93 

1.27 

2 

3 

3 

2018 Baloxavir Marboxil Xofluza Taken with or without food  No FE  0.64 2 

2018 Ibrutinib Imbruvica No instructions with regard to food intake Positive 2 2 

2018 Dolutegravir Sodium 

Rilpivirine Hydrochloride 

Juluca Taken with a meal Positive 

Positive 

1.87 

1.72 

4 

2 

2018 Tolvaptan Jynarque Taken with or without food No FE  1 4 

2018 Tafenoquine Succinate Krintafel Taken with food Positive 1.41 
 

2018 Binimetinib Mektovi Taken with or without food No FE  1 2 

2018 Mexiletine Hydrochloride Namuscla Should be swallowed with water. In case of 

digestive intolerance, capsules should be taken 

during a meal. 

No FE  1 1 



 

276 
 

Year 

Licensed 

Generic Name Commercial Name Clinical Recommendation Food Effect 

Classification 

AUCfed/fasted BCS 

Class 

2018 Neratinib Nerlynx Taken with food, preferably in the morning Positive 2.2 4 

2018 Omadacycline Tosylate Nuzyra Fast for at least 4 hours and then take  No FE  0.39 3 

2018 Elagolix Sodium Orilissa Taken with or without food No FE  0.76 3 

2018 Ivacaftor 

Lumacaftor 

Orkambi Mixed with one teaspoon (5 mL) of age-

appropriate soft food or liquid and the mixture 

completely consumed.  

Positive 3 

2 

2 

2 

2018 Doravirine Pifeltro Taken with or without food No FE  1.16 2 

2018 Letermovir Prevymis Taken with or without food No FE  0.99 2 

2018 Tacrolimus Prograf Taken consistently with or without food. No FE  0.63 2 

2018 Rucaparib Camsylate Rubraca Taken with or without food Positive 1.38 2 

2018 Brexpiprazole Rxulti Taken with or without food No FE  1 2 

2018 Sarecycline Hydrochloride Seysara Taken with or without food Negative 0.73 3 

2018 Ertugliflozin Steglatro Taken with or without food No FE  1 1 

2018 Ertugliflozin 

Sitagliptin 

Steglujan Taken with or without food No FE  

No FE  

1 

1 

1 

2 

2018 Ivacaftor  

Tezacaftor 

Symdeko/Symkevi Taken with fat-containing food Positive 

No FE  

3 

1 

2 

2 

2018 Ivosidenib Tibsovo Taken with or without food. Do not administer 

with a high fat meal due to increase in 

concentration 

Positive 1.98 2 

2018 Riluzole Tiglutik Kit Taken at least 1 hour before or 2 hours after a 

meal 

No FE  0.91 2 

2018 Tecovirimat Tpoxx Taken within 30 minutes after a full meal of 

moderate or high fat 

Positive 1.39 2 

2018 Abemaciclib Verzenios Taken with or without food No FE  1.09 3 

2018 Abiraterone Acetate Yonsa Taken with or without food Positive 4.4 4 

2017 Alectinib Alecensa Taken with food Positive 3 4 

2017 Deutetrabenazine Austedo Taken with food No FE  1 2 

2017 Betrixaban Bevyxxa Taken with food Negative LF 0.39 HF 0.52 3 

2017 Acalabrutinib Calquence Taken with or without food No FE  1 2 

2017 Spironolactone Carospir Taken with or without food, but should be taken 

consistently with respect to food 

Positive 1.9 2 

2017 Allopurinol 

Lesinurad 

Duzallo Taken with food No FE  

No FE  

1 

1 

4 

2 
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Year 

Licensed 

Generic Name Commercial Name Clinical Recommendation Food Effect 

Classification 

AUCfed/fasted BCS 

Class 

2017 Deflazacort Emflaza Taken with or without food. Tablet and 

Suspension 

No FE  1 
 

2017 Tofacitinib Xeljanz Taken with or without food No FE  1 3 

2017 Telotristat Etiprate Xermelo Taken with food No FE  3.64 
 

2017 Pirfenidone Esbriet Taken with food  No FE  0.84 1 

2017 Tivozanib  Fotivda Taken with or without food No FE  1 2 

2017 Valbenazine Tosylate Ingrezza Taken with or without food No FE  0.87 1 

2017 Deferasirox Jadenu Sprinkle Taken on an empty stomach or with a light meal No FE  LF 1 HF 1.18 2 

2017 Ribociclib Succinate Kisqali Taken with or without food No FE  1 4 

2017 Macimorelin Acetate Macrilen Taken after fasting for at least 8 hours Negative 0.51 
 

2017 Cladribine Mavenclad Taken with or without food Negative 1 3 

2017 Glecaprevir 

Pibrentasvir 

Maviret Taken at the same time with food Positive 

Positive 

1.83-2.63** 

1.4-1.53** 

4 

4 

2017 Pitavastatin Sodium Nikita Taken with or without food No FE  1 2 

2017 Ritonavir Norvir Should be mixed with soft food  Negative 0.51 4 

2017 Baricitinib Olumiant Taken with or without food No FE  0.86 3 

2017 Valsartan Prexxartan No instructions with regard to food intake No FE 0.92 2 

2017 Cariprazine Reagila Taken with or without food No FE  1.12 2 

2017 Edoxaban Roteas Taken with or without food No FE  1 4 

2017 Oxycodone Hydrochloride Roxybond No instructions with regard to food intake No FE  1.23 3 

2017 Midostaurin Rydapt Taken with food No FE 1.6 2 

2017 Tenofovir Alafenamide 

Darunavir 

Cobicistat 

Emtricitabine 

Symtuza Taken with food No FE  

Positive 

Positive 

No FE  

1.20 

1.52  

1.4 

1 

3 

2 

2 

1 

2017 Tenofovir Alafenamide Vemlidy Taken with food Positive 1.51-1.81** 3 

2017 Niraparib Zejula Taken with or without food No FE  1 1 

2017 Pitavastatin Magnesium Zypitamag Taken with or without food No FE  1 2 

2016 Brivaracetam Briviact Taken with or without food No FE  0.95 1 

2016 Emtricitabine 

Tenofovir Alafenamide 

Descovy Taken with or without food No FE  

Positive 

1 

1.17-1.77** 

1 

3 
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Year 

Licensed 

Generic Name Commercial Name Clinical Recommendation Food Effect 

Classification 

AUCfed/fasted BCS 

Class 

2016 Sofosbuvir 

Velpatasvir 

Epclusa Taken with or without food Positive 

No FE  

1.78 

1.21 

3 

4 

2016 Migalastat Hydrochloride Galafold Food should not be consumed at least 2 hours 

before and 2 hours after taking to give a 

minimum 4 hours fast 

Negative 0.63-0.58** 3 

2016 Empagliflozin 

Lignagliptin 

Glyxambi Taken with or without food No FE  

No FE  

0.84 

1 

3 

3 

2016 Palbociclib Ibrance Taken with food No FE  1.2 2 

2016 Lenvatinib Mesilate Kisplyx Taken at about the same time each day, with or 

without food 

No FE  1 2 

2016 Trifluridine 

Tipiracil Hydrochloride 

Lonsurf No instructions with regard to food intake No FE  

Negative 

1 

0.6 

3 

3 

2016 Sacubitril 

Valsartan 

Neparvis Taken with or without food No FE  

No FE  

1 

1  

4 

2 

2016 Ixazomib Ninlaro Taken at least 1 hour before or at least 2 hours 

after food 

Negative 0.72 3 

2016 Pimavanserin Nuplazid Taken with or without food No FE  1.08 
 

2016 Obeticholic Acid Ocaliva Taken with or without food No FE  1 2 

2016 Emtricitabine 

Rilpivirine Hydrochloride 

Tenofovir Alafenamide 

Odefsey Taken with food No FE  

Positive 

Positive 

0.88 (0.85-0.9)* 

1.72 (1.49-1.99)* 

1.53 (1.39-1.69)* 

1 

2 

3 

2016 Opicapone Ongentys Should not eat food for 1 hour before and for at 

least 1 hour after intake. 

Negative 0.69 2 

2016 Saxagliptin 

Dapagliflozin Propanediol Monohydrate 

Qtern Taken with or without food Positive 

No FE  

1.27 

1 

3 

3 

2016 Dronabinol Syndros Administer the first dose on an empty stomach 

at least 30 minutes before eating. Subsequent 

doses can be taken without regard to meals. 

Positive 2.5 2 

2016 Osimertinib Mesylate Tagrisso Taken with or without food No FE  1.06 3 

2016 Eluxadoline Truberzi Taken with food Negative 0.4 3 

2016 Selexipag Uptravi Taken with food No FE  1.1 2 

2016 Venetoclax Venclyxto Taken with a meal Positive MF 3.4 HF 5.1-5.3**  4 

2016 Elbasvir 

Grazoprevir 

Zepatier Taken with or without food No FE  

Positive 

0.89 

1.5 

2 

2 
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Table 2-2: Results of Statistical Analysis comparing Positive, Negative and No FE groups for drugs licensed from 2016-2020 

Drug Property 

   

Descriptors Negative No FE Positive Statistical Tests Neg vs No FE Neg vs Pos No FE vs Pos 

S+logP n 

Median 

Mean 
SD of Mean 

Q1, Q3, 

Min, Max 
Variance 

17 

2.09 

1.50 
2.29 

-0.45, 3.33 

-2.43, 4.21 
5.26 

80 

2.80 

2.90 
1.72 

2.02, 3.90 

-1.38, 7.49 
2.97 

44 

3.61 

3.67 
1.77 

2.71, 4.80 

-1.34, 7.25 
3.13 

Levene’s Test 

Bootstrap/t-test 

Mean Difference 
95% Confidence 

Interval 

0.08 

0.018B 

-1.41 
(L) -2.56 

(U) -0.34 

0.15 

0.002B 

-2.17 
(L) -3.41 

(U) -0.98 

 

0.81 

0.021t 

-0.76 
(L) 1.41 

(U) -0.11 

 

Hydrogen 

Bond  

Donors 

n 

Median 

Mean 
SD of Mean 

Q1, Q3 
Min, Max 

Variance 

17 

4 

3.53 
1.55 

2.5, 4.5 
0, 6 

2.39 

80 

2 

1.90 
1.09 

1, 3 
0, 4 

1.18 

44 

2 

1.86 
1.15 

1, 3 
0, 4 

1.33 

Levene’s Test 

Bootstrap 

Mean Difference 
95% Confidence 

Interval 
 

0.075 

0.00 

1.63 
(L) 0.85 

(U) 2.39 

0.26 

0.00 

1.67 
(L) 0.86 

(U) 2.48 

0.34 

0.86 

0.04 
(L) -0.36 

(U) 0.46 

Hydrogen 

Bond 

Acceptors 

n 

Median 
Mean 

SD of Mean 

Q1, Q3 
Min, Max 

Variance 

17 

8 
7.71 

2.69 

5.5, 10 
4, 13 

7.221 

80 

6 
6.28 

2.57 

5, 7.75 
1, 15 

6.61 

44 

7 
7.30 

3.49 

5, 9 
2, 16 

12.17 

Levene’s Test 

Bootstrap 
Mean Difference 

95% Confidence 

Interval 
 

0.60 

0.06 
1.43 

(L) -0.04 

(U) 2.91 

0.42 

0.67 
0.41 

(L) -1.47 

(U) 2.30 

0.04 

0.09 
-1.02 

(L) -2.22 

(U) 0.18 

logD7.4 n 
Median 

Mean 

SD of Mean 
Q1, Q3 

Min, Max 

Variance 

17 

1.12 

0.82 

2.65 
-0.57, 2.93 

-5.18, 4.21 

7.07 

80 

2.18 

1.98 

1.78 
0.99, 3.13 

-2.87, 6.64 

3.17 

44 

2.93 

3.01 

1.93 
1.75, 4,17 

-2.26, 7.25 

3.71 
 

Levene’s Test 

Bootstrap/t-test 

Mean Difference 

95% Confidence 
Interval 

 

0.05 

0.09B 

-1.16 

(L) -2.65 
(U) 0.22 

0.16 

0.003B 

-2.19 

(L) -3.66 
(U) -0.80 

0.73 

0.003t 

-1.03 

(L) -1.71 
(U) -0.35 

Polar Surface 

Area 

n 

Median 

Mean 
SD of Mean 

Q1, Q3 

Min, Max 
Variance 

17 

107.41 

125.09 
35.87 

92.88, 157.65 

76.10, 178.36 
1286.99 

80 

90.37 

89.12 
33.26 

70.47, 108.48 

22.00, 188.80 
1105.95 

44 

100.01 

104.26 
43.93 

77.36, 132.71 

29.46, 199.58 
1930.20 

Levene’s Test 

Bootstrap 

Mean Difference 
95% Confidence 

Interval 

0.16 

0.00 

35.92 
(L) 18.03 

(U) 54.07 

0.87 

0.07 

20.77 
(L) -1.06 

(U) 42.94 

 

0.05 

0.047 

-15.15 
(L) -30.40 

(U) 0.19 

Dose (mg) n 

Median 
Mean 

SD of Mean 

Q1, Q3 
Min, Max 

Variance 

17 

80 
105.36 

96.00 

25.00, 175.00 
1.00, 300.00 

9216.31 

80 

50.00 
121.15 

205.71 

10.00, 143.75 
0.20, 1340.00 

42314.80 

44 

200.00 
242.57 

193.88 

100.00, 375.00 
2.00, 800.00 

37588.93 

Levene’s Test 

Bootstrap 
Mean Difference 

95% Confidence 

Interval 

0.25 

0.64 
-15.79 

(L) -79.20 

(U) 48.38 

0.009 

0.001 
-137.20 

(L) -212.56 

(U) -62.23 

0.258 

0.005 

-121.41 

(L) -195.66 

(U) -44.74 

S+Sw n 17 80 44 Levene’s Test 0.18 0.18 0.86 
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Drug Property 

   

Descriptors Negative No FE Positive Statistical Tests Neg vs No FE Neg vs Pos No FE vs Pos 

Median 

Mean 

SD 
Q1, Q3 

Min, Max 

Variance 

-0.49 

-0.38 

1.39 
-1.49, 0.22 

-2.05, 2.98 

1.94 

-0.99 

-0.92 

1.07 
-1.55, -0.31 

-3.61, 2.02 

1.14 

-1.54 

-1.56 

1.05 
-2.35, -0.76 

-4.42, 1.01 

1.097 

Bootstrap/t-test 

Mean Difference 

95% Confidence 
Interval 

0.13B 

0.54 

(L) -0.10 
(U) 1.25 

0.003B 

1.18 

(L) 0.51 
(U) 1.91 

0.002t 

0.64 

(L) 0.24 
(U) 1.03 

MAD n 

Median 

Mean 
SD 

Q1, Q3 

Min, Max 
Variance 

17 

2.46 

2.77 
1.54 

1.57, 3.54 

0.57, 6.14 
2.36 

80 

2.78 

2.75 
1.06 

2.15, 3.38 

0.02, 5.84 
1.13 

44 

1.02 

2.11 
1.02 

1.26, 2.71 

-0.13, 4,34 
1.04 

 

Levene’s Test 

t-test 

Mean Difference 
95% Confidence 

Interval 

0.07 

0.96 

0.15 
(L) -0.60 

(U) 0.63 

0.07 

0.06 

0.67 
(L) -0.02 

(U) 1.33 

0.78 

0.001 

0.64 
(L) 0.25 

(U) 1.03 

Molecular 

Weight 

(g/mol) 

n 

Median 
Mean 

SD of Mean 

Q1, Q3 
Min, Max 

Variance 

17 

457.69 
453.74 

184.44 

302.62, 570.61 
146.24, 804.04 

34018.56 

80 

426.31 
419.89 

134.86 

348.99, 491.83 
109.13, 889.02 

18188,43 

44 

446.95 
497.65 

180.56 

368.95, 557.87 
287.22, 1113.21 

32601.00 

Levene’s Test 

Bootstrap 
Mean Difference 

95% Confidence 

Interval 

0.09 

0.47 
33.85 

(L) -59.07 

(U) 126.99 

0.86 

0.41 
-43.91 

(L) -147.60 

(U) 60.81 

0.04 

0.02 
-77.78 

(L) -141.53 

(U) -22.05 

Dose/Solubility  

Ratio 

 

n 
Median 

Mean 

SD of Mean 
Q1, Q3 

Min, Max 

Variance  

17 
2.14 

2.10 

1.36 
1.08, 3.22 

-0.89, 4.05 

1.86 

80 
2.47 

2.47 

1.23 
1.62, 3.26 

-0.54, 5.83 

1.52 

44 
3.86 

3.71 

1.20 
3.32, 4.40 

0.18, 7.02 

1.43 

Levene’s Test 
t-test 

Mean Difference 

95% Confidence 
Interval 

0.57 
0.28 

-0.37 

(L) -1.03 
(U) 0.30 

0.26 
0.00 

-1.61 

(L) -2.32 
(U) -0.90 

0.28 
0.00 

-1.24 

(L) -1.70 
(U) -0.79 

Rotatable 

Bonds 

n 

Median 

Mean 
SD of Mean 

Q1, Q3 

Min, Max 
Variance  

17 

6 

6.65 
5.26 

2.50, 8.50 

0.00, 22.00 
27.62 

80 

5 

5.50 
3.41 

3.23, 7.75 

0.00, 15.00 
11.60 

44 

5 

6.60 
4.97 

3.00, 9.00 

0.00, 24.00 
24.72 

Levene’s Test 

Bootstrap 

Mean Difference 
95% Confidence 

Interval 

0.15 

0.26 

1.15 
(L) -0.86 

(U) 3.15 

0.89 

0.96 

0.079 
(L) -2.81 

(U) 2.97 

0.02 

0.20 

-1.07 
(L) -2.79 

(U) 0.49 
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Figure 2-1: Visual comparison of the sensitivity, precision, specificity and MCC performance metrics calculated for the test 

set of the optimum SVM and ANN models produced in this study to predict FE classification. 
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Appendix 3: Chapter 4 

Table 3-1: Apparent solubility values in PhBPh6.5, FaSSIF, FeSSIF, FaSSIF-SEDDSMigyolo812, FaSSIF-SEDDSOliveOil, and SR for SEDDSMigylol812, SEDDSOliveOil, and FeSSIF versus FaSSIF. FE = 

Food Effect.  

Drug Compound PhBpH6.5 ± SD 

 

(µg/mL) 

FaSSIF ± SD 

 

(µg/mL) 

FeSSIF ± SD 

 

(µg/mL) 

𝑭𝒂𝑺𝑺𝑰𝑭 −

𝑺𝑬𝑫𝑫𝑺𝑴𝒊𝒈𝒚𝒍𝒐𝒍𝟖𝟏𝟐 ± 

SD 

(µg/mL) 

𝑭𝒂𝑺𝑺𝑰𝑭 −

𝑺𝑬𝑫𝑫𝑺𝑶𝒍𝒊𝒗𝒆𝑶𝒊𝒍 ± 

SD 

(µg/mL) 

logSRMC logSRLC logFE 

Albendazole 

Candesartan Cilexetil 

Carbamazepine 

Carvedilol 

Celecoxib 

Cinnarizine 

Clofazimine 

Clotrimazole 

Danazol 

Dipyridamole 

Felodipine 

Fenofibrate 

Glipizide 

Griseofulvin 

Haloperidol 

Indomethacin 

Irbesartan 

Isotretinoin 

Itraconazole 

Ketoconazole 

Mefenamic acid 

Naproxen 

Nifedipine 

Phenytoin 

Progesterone 

Spironolactone 

Tamoxifen 

Terfenadine 

Tolfenamic acid 

Venetoclax 

0.9 ± 0.4 

- 

227.1 ± 22.9 

46 

1.54234 ±0.51 

1.4 

- 

2.3 ± 0.3 

0.3 ± 0.05 

6.35 

1.187 

0.3 ± 0.0 

22.5 ± 0.6 

15 

77.81 

219.0 ± 78.0 

102.0 ± 4.0 

- 

- 

6.5 

- 

230.26 

11.5 

39.07 

11.16 

22 

5.9 

13.6 ± 1.3 

27.404 

0.04 

1.9 ± 0.0 

8.26 

266.1 ± 31.4 

55.9 

34.09 ± 5.12 

13.4 

6.2 

3.5 ± 0.4 

9.6729 ±1.89 

11.56 

54.278 

9.6 ±1.4 

31.3 ± 3.3 

20 ±0.9 

110.51 

443.0 ± 10.0 

112.0 ± 3.4 

52.21 

0.33 

25.91 ± 0.70 

60 

492.29 

27.8 

42.84 

25.56 

25.8 

156 

89.0 ± 4.0 

62.779 

20.729 ±0.51 

6.1 ± 0.1 

10 

524.1 ± 25.0 

305.0 ± 2.0 

226 

112 ± 2.0 

29.6 

71.1 ± 6.0 

28.8 ± 0.4 

137.2 ± 6.2 

237.0 ± 1.0 

40.4 ± 2.9 

4.3 ± 0.2 

29.2 ± 3.4 

120.9 ± 7.3 

109.0 ± 7.0 

261 

321 

0.7 

403.3 ± 16.5 

649 

401 

46.1 ± 1.0 

283 

78.6 ± 16.2 

46.0 ± 2.5 

236.0 ± 13.0 

256 

41.0 ± 0.5 

28.4 ± 2.2 

9.62 ± 1.28 

138.9 ± 9.6 

388.127 ± 13.46 

634.098 ± 5.46 

579.82 ± 33.83 

228.9 ± 10.84 

57.8 ± 1.68 

225.43 ± 17.8 

59.09 ± 1.44 

42.90 ± 1.19 

337.47 ± 29.1 

482.39 ± 47.175 

35.47 ± 0.62 

37.35 ± 0.8675 

347.44 ± 25.48 

811.48 ± 9.1 

306.29 ± 31.19 

188.3 ±6 .90 

4.763 ± 0.16 

109.32 ± 5.65 

212.46 ± 13.292 

2356.17 ± 95.78 

124.78 ± 9.93 

61.51 ± 7.24 

89.34 ± 5.98 

61.9 ±7.08 

1081.47 ± 56.36 

371.23 ± 15.46 

311.56 ± 16.03 

246.340 ± 25.75 

7.44 ± 1.634 

138.49 ± 4.63 

379.83 ± 16.47 

442.88 ± 32.49 

240.02 ± 16.07 

194.05 ± 9.45 

47.12 ± 4.24 

208.95 ± 11.27 

41.61 ± 3.79 

37.873 ± 0.907 

245.36 ± 14.63 

286.55 ± 26.29 

32.523 ± 1.27 

34.15 ± 0.57 

243.65 ± 14.83 

794.21 ± 4.77 

277.5 ± 37.22 

155.53 ± 6.30 

2.89 ± 0.5 

98.21 ± 7.43 

198.6 ± 13.19 

2255.05 ± 75.76 

101.72 ± 9.65 

56.29 ± 5.58 

62.72 ± 1.21 

47.8 ± 6.05 

882.21 ± 20.79 

329.95 ± 4.28 

224.37 ± 7.13 

138.83 ± 16.37 

0.704 

1.227 

0.164 

1.055 

1.230 

1.232 

0.969 

1.809 

0.786 

0.568 

0.794 

1.706 

0.054 

0.272 

0.497 

0.263 

0.436 

0.556 

1.159 

0.625 

0.549 

0.672 

0.652 

0.158 

0.544 

0.380 

0.839 

0.620 

0.696 

1.075 

0.593 

1.225 

0.152 

0.898 

0.848 

1.161 

0.881 

1.776 

0.633 

0.516 

0.655 

1.480 

0.017 

0.233 

0.343 

0.253 

0.395 

0.474 

0.943 

0.579 

0.520 

0.661 

0.564 

0.117 

0.389 

0.267 

0.753 

0.569 

0.553 

0.825 

0.507 

0.083 

0.294 

0.737 

0.823 

0.922 

0.679 

1.311 

0.473 

1.074 

0.640 

0.624 

-0.862 

0.164 

0.039 

-0.609 

0.367 

0.789 

0.327 

1.192 

1.034 

-0.089 

0.220 

0.820 

0.488 

0.251 

0.180 

0.459 

-0.185 

0.137 
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Table 3-2: RP-HPLC/UV methods for the 6 drugs completed using the Shake Flask Method with HPLC-UV analysis.  

 

 

 

 

 

 

 

Drug  Column A B Ratio Temp 

(°C) 

Flow Rate 

(mL/min) 

Inj. Vol 

(µL) 

λ (nm) 

Danazol Symmetry C18 5 µm, 4,6 x 150 mm  ACN Water 55:45 25 1 50 286 

Ketoconazole Symmetry C18 5 µm, 4,6 x 150 mm  Phosphate buffer 10 mM, 

pH 8.5 

ACN 

 

40:60 25 0.8 50 297 

Venetoclax Zorbax Eclipse Plus-C18 column (5 μm, 4.6 mm 

x 150 mm) including Zorbax 156 Eclipse Plus-

C18 guard column (5 μm, 4.6 mm x 12.5 mm) 

ACN + 0.5 % TFA  Water + 

0.5 % TFA 

53:47 40 1 50 316 

 Fenofibrate Symmetry C18 5 µm, 4,6 x 150 mm  NaAc 25 mM, pH 5.0 ACN 20:80 25 1 50 287 

Celecoxib Symmetry C18 5 µm, 4,6 x 150 mm  ACN + 0,15%TEA, pH3 Water  55:45 25 1 20 254 

Griseofulvin Symmetry C18 5 µm, 4,6 x 150 mm  ACN Water 55:45 25 1 50 292 
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Figure 3-1: Principal component analysis (PCA) scores plot detailing the chemical space occupied by the Training and Test 

Sets of the dataset. Training set is shown in red and test set is shown in blue.  

 

 

61% of the variation in the dataset is explained by PC-1 and PC-2 and Venetoclax is outside the 95% confidence level and was 

therefore placed in the test set.  
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Table 3-3: Preliminary studies testing the two solubility methods employed 

 

Drug Solubility in FaSSIF-SEDDSMigylol812 and FaSSIF-SEDDSOliveOil completed for both shake flask and µDISS methods 

using Danazol. Solubilities were obtained using FaSSIF-V2 for the µDISS method, which contains a smaller concentration 

of lecithin, due to powder availability at that time, therefore a ratio of solubility in MC/LC was calculated to test similarity of 

results instead of direct comparisons. 

 

 Shake Flask  uDiss Ratio MC/LC 

Solubility 

FaSSIF-SEDDSMigylol812 59.089 µg/mL (±1.44) 37.130 µg/mL (±0.589) Shake Flask = 1.42 

FaSSIF-SEDDSOliveOil 41.612 µg/mL (± 3.79). 22.878 µg/mL (±1.138) µDISS = 1.6 
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Appendix 4: Chapter 5 

Table 4-1. Equilibrium solubility values (µg/mL) and aDS for the dataset of 21 drugs using Capmul MCM and Maisine CC. AT refers to Ambient Temperature. Data in brackets refer to 

standard deviation (SD) of solubility value or standard error (SE) of aDS ratios. * denotes data obtained from a previous publication. 

 

 

Drug Compound AT Solubility 

 Capmul MCM 

 

AT Solubility 

Maisine CC 

Solubility 60ºC  

sLBFCampul
MC 

Solubility 60ºC  

sLBFMaisine
LC 

aDS  

sLBFCapmul
MC 

aDS  

sLBFMaisine
LC 

Carvedilol 

Celecoxib 

Cinnarizine 

Clotrimazole 

Danazol 

Dipyridamole 

Felodipine 

Fenofibrate 

Fenofibric Acid 

Griseofulvin 

Haloperidol 

Ibuprofen 

Indometacine 

Itraconazole 

JNJ-2a 

Ketoconazole 

Naproxen 

Niclosamide 

Progesterone 

Sulfalazine 

Venetoclax 

45.07 (2.94) 

49.78 (5.61)* 

35.97 (1.03)* 

192.06 (5.91) 

16.32 (4.52) 

10.17 (0.98) 

74.41 (4.63) 

76.95 (6.66) 

11.81 (4.77) 

4.70 (0.51) 

31.37 (1.34) 

237.34 (14.85) 

21.31 (0.70) 

1.99 (0.02) 

283.07 (15.58)* 

104.92 (3.32) 

39.21 (4.83) 

8.73 (0.55) 

97.92 (9.08) 

3.79 (0.08) 

2.45 (0.41) 

10.28 (0.70) 

13.30 (1.11)* 

29.27 (1.01)* 

91.05 (3.73) 

11.19 (0.64) 

1.38 (0.17) 

36.79 (1.04) 

50.11 (1.38) 

7.80 (0.26) 

1.92 (0.01) 

7.63 (0.94) 

128.67 (4.05) 

7.84 (0.30) 

0.53 (0.01) 

47.50 (1.24) 

29.62 (0.25) 

17.27 (1.98) 

3.21 (0.25) 

49.49 (0.84) 

0.20 (0.03) 

2.44 (0.16) 

127.90 (2.77) 

88.10 (6.67) 

81.67 (3.98) 

311.16 (13.89) 

42.91 (1.85) 

32.22 (3.12) 

125.73 (12.40) 

136.98 (11.10) 

36.28 (1.55) 

12.55 (0.52) 

46.03 (1.43) 

616.10 (103.62) 

35.53 (1.55) 

5.12 (0.49) 

293.35 (27.73) 

221.22 (2.98) 

50.73 (6.04) 

14.96 (0.96) 

163.96 (19.86) 

4.89 (0.13) 

6.43 (0.28) 

28.91 (1.79) 

36.16 (2.83) 

86.64 (6.54) 

170.82 (5.27) 

22.41(0.95) 

4.71 (0.61) 

49.71 (6.19) 

144.38 (8.82) 

18.45 (0.56) 

3.68 (0.26) 

14.22 (0.45) 

436.41 (46.36) 

14.45 (0.25) 

1.16 (0.03) 

76.48 (2.92) 

66.14 (5.06) 

25.90 (0.45) 

5.44 (0.22) 

112.75 (6.06) 

0.32 (0.03) 

3.62 (0.84) 

2.84 (0.11) 

1.77 (0.14) 

2.27 (0.07) 

1.62 (0.05) 

2.63 (0.43) 

3.17 (0.25) 

1.69 (0.11) 

1.78 (0.12) 

3.07 (0.72) 

2.67 (0.18) 

1.47 (0.04) 

2.60 (0.27) 

1.67 (0.05) 

2.57 (0.14) 

1.04 (0.07) 

2.11 (0.04) 

1.29 (0.13) 

1.71 (0.09) 

1.67 (0.15) 

1.29 (0.03) 

2.62 (0.12) 

2.81 (0.15) 

2.72 (0.18) 

2.96 (0.14) 

1.88 (0.06) 

2.00 (0.08) 

3.42 (0.36) 

1.35 (0.10) 

2.88 (0.11) 

2.37 (0.06) 

1.91 (0.08) 

1.86 (0.14) 

3.39 (0.22) 

1.84 (0.04) 

2.18 (0.03) 

1.61 (0.04) 

2.23 (0.10) 

1.50 (0.10) 

1.70 (0.09) 

2.28 (0.07) 

1.62 (0.17) 

1.48 (0.21) 
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Table 4-2. RP-HPLC/UV Methods utilised in this study. ACN refers to Acetonitrile, MeOH refers to Methanol, TFA refers to Trifluoroacetic Acid, H2O refers to Water and NaAC 

refers to Sodium Acetate. * denotes the fact that the mobile phase was adjusted to pH 2.5 with 5 %v/v Orthophosphoric acid. 

 

Drug  Column A B Ratio Temp (°C) Flow Rate 

(ml/min) 

Inj. Vol 

(µL) 

λ (nm) 

Danazol Symmetry C18 5 µm, 4,6 x 150 mm  ACN H2O 55:45 25 1 50 286 

Ketoconazole Symmetry C18 5 µm, 4,6 x 150 mm  Phosphate buffer 

10 mM, pH 8.5 

ACN 

 

40:60 25 0.8 50 297 

Venetoclax Zorbax Eclipse Plus-C18 column (5 μm, 4.6 

mm x 150 mm) including Zorbax 156 Eclipse 

Plus-C18 guard column (5 μm, 4.6 mm x 12.5 

mm) 

ACN + 0.5 % 

TFA  

H20 + 0.5 % 

TFA 

53:47 40 1 50 316 

Carvedilol Symmetry C18 5 µm, 4,6 x 150 mm ACN NaAc 25 mM, 

pH 5.0 

60:40 25 1 50 280 

Clotrimazole Symmetry C18 5 µm, 4,6 x 150 mm MeOH ACN 95:5 25 1 50 255 

Griseofulvin Symmetry C18 5 µm, 4,6 x 150 mm  ACN H2O 55:45 25 1 50 292 

Dipyridamole Gemini 5µ C18 4,6 x 250 mm ACN H2O 60:40 40 1 20 282 

Felodipine Gemini 5µ C18 4,6 x 250 mm ACN H2O 70:30 25 1 20 360 

Haloperidol Symmetry C18 5 µm, 4,6 x 150 mm ACN:MeOH NaAc 25 mM, 

pH 5.0 

65:35 25 0.8 50 247 

Naproxen Symmetry C18 5 µm, 4,6 x 150 mm ACN + 0.1% 

TFA 

H2O + 0.1% 

TFA 

60:40 25 1 50 254 

Niclosamide Symmetry C18 5 µm, 4,6 x 150 mm 95:5:0.1 

ACN:H2O:TFA 

 

5:95:0.1 

ACN:H2O:TFA 

75:25 25 1 50 332 

Progesterone Symmetry C18 5 µm, 4,6 x 150 mm ACN NaAc 25 mM, 

pH 5.5 

85:15 25 1 50 254 

Sulfalazine Symmetry C18 5 µm, 4,6 x 150 mm ACN:H2O:TFA H2O:ACN:TFA 60:40 25 1 50 357 

Fenofibric Acid Symmetry C18 5 µm, 4,6 x 150 mm ACN* H20* 70:30 25 1 20 286 
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Table 4-3. Equilibrium solubility and aDS2h in sLBFCapmulMC and sLBFMaisine
LC and the aDS ratio difference from average aDS and average aDS2h used to investigate the short-term 

stability of the sLBF after cooling at AT.  

 

 
Solubility 60ºC (+2h) 

Capmul MCM 
 

Solubility 60ºC (+2h) 

Maisine CC 

aDS2h 

sLBFCapmul
MC 

aDS2h 

sLBFMaisine
LC 

aDS Ratio Unit 

Change 

aDS Ratio Unit 

Change 

Carvedilol 116.44 (6.57) 27.75 (1.02) 2.58 (0.13) 2.70 (0.12) 0.25 0.11 

Celecoxib 101.8 (0.0) 39.6 (0.0) 2.04 (0.13) 2.97 (0.14) 0.27 0.25 

Cinnarizine 100.1 (0.0) 97.5 (0.0) 2.78 (0.05) 3.33 (0.07) 0.51 0.34 

Clotrimazole 308.30 (1.28) 172.73 (0.90) 1.61 (0.03) 1.74 (0.04) 0.01 0.13 

Danazol 39.99 (3.54) 22.57 (1.88) 2.45 (0.41) 2.02 (0.12) 0.18 0.01 

Dipyridamole 29.55 (4.25) 4.53 (0.49) 2.91 (0.29) 3.29 (0.31) 0.26 0.13 

Felodipine 125.19 (5.94) 45.89 (9.05) 1.68 (0.08) 1.25 (0.14) 0.01 0.10 

Fenofibric Acid 32.74 (3.17) 17.86 (0.93) 2.77 (0.66) 2.29 (0.08) 0.30 0.08 

Griseofulvin 12.21 (0.15) 3.70 (0.24) 2.59 (0.16) 1.92 (0.07) 0.07 0.01 

Haloperidol 45.37 (0.24) 13.47 (0.79) 1.45 (0.04) 1.76 (0.14) 0.02 0.10 

JNJ-2A 259.5 (0.0) 65.8 (0.0) 0.92 (0.03) 1.38 (0.02) 0.12 0.23 

Ketoconazole 224.87 (11.29) 63.82 (3.81) 2.14 (0.07) 2.15 (0.08) 0.03 0.08 

Naproxen 45.42 (7.01) 20.39 (2.82) 1.16 (0.13) 1.18 (0.12) 0.14 0.32 

Niclosamide 14.06 (1.02) 5.13 (0.23) 1.61 (0.09) 1.60 (0.08) 0.10 0.10 

Progesterone 133.30 (16.12) 99.09 (7.27) 1.36 (0.12) 2.00 (0.09) 0.31 0.28 

Sulfalazine 4.69 (0.23) 0.30 (0.03) 1.24 (0.04) 1.49 (0.16) 0.05 0.13 

Venetoclax 7.13 (1.29) 2.89 (0.52) 2.91 (0.32) 1.18 (0.13) 0.29 0.30 
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Figure 4-1. Unabridged Abbreviations of Independent Input Variables used in the final PLS and ANN models. Extra 

information about the descriptors used can be found at this reference (316).  

 

Variables in PLS model predicting aDS sLBFCapmul
MC:  

• VMcGowan: Mc Gowan's characteristic volume (317). 

• N_Hydrogn: Number of hydrogens. 

• SHCH_321: Atom-type hydrogen E-state index for -CH3, -CH2- and >CH- groups (saturated aliphatic 

carbon) (256). 

• EEM_Afc: Sum of absolute values of scaled sigma Fukui indices on C (281, 282). 

• EEM_AFnp: Sum of absolute values of scaled sigma Fukui indices on nonpolar atoms. 

• EEM_NFc: Minimum scaled sigma Fukui index on C. 

• SHaaCH: Atom-type hydrogen E-state index for aCHa groups (aromatic carbons). 

• Pi_FMi4: Fourth component of the autocorrelation vector of scaled pi Fukui- indices (electrophilic). 

 

Variables in PLS model predicting aDS sLBFMaisine
LC: 

• EEM_NFc: Minimum scaled sigma Fukui index on C. 

• EEM_NFnp: Minimum scaled sigma Fukui index on nonpolar atoms. 

• HIVI-TC: pIC50 in log(mol/L) for inhibition of the HIV-1 Integrase 3'-processing. 

• N_FrRotB: Number of freely rotatable bonds. 

• NPA_Q2: Second component of the autocorrelation vector of NPA partial atomic charges. 

• Pi_AQo: Sum of absolute values of pi partial atomic charges on O. 

• Pi_AQc: Sum of absolute values of pi partial atomic charges on C. 

• Pi_FPI3: Third component of the autocorrelation vector of scaled pi Fukui+ indices (nucleophilic) 

• Pi_FMi6: Sixth component of the autocorrelation vector of scaled pi Fukui- indices (electrophilic). 

 

Variables in MLP-ANN predicting aDS sLBFCapmul
MC

: 

• Pi_FPl5: Fifth component of the autocorrelation vector of pi Fukui(+) indices. 

• SolFactor: Universal salt solubility factor based on S+Sw model. 

• N_CYPAtoms: Number of potential atoms that can be oxidized by CYP P450 enzymes. 

• EEM_F4: Fourth component of the autocorrelation vector of sigma Fukui indices. 

• Pi_FPl3: Third component of the autocorrelation vector of pi Fukui(+) indices. 

• NPA_Q6: Sixth component of the autocorrelation vector of estimated NPA partial atomic charges 

(284, 285). 

• MlogP: Moriguchi estimation of log P (318).  
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• MolVol: Liquid molal volume (cm^3/mol) at the normal boiling point is based on Schroeder's method. 

• NPA_Q1: First component of the autocorrelation vector of estimated NPA partial atomic charges. 

• S+S_Intrinsic: Intrinsic water solubility (mg/mL) based on S+Sw and S+pH_Satd models. 

• EqualEta: Equalized molecular hardness. 

• ∆Hfus: - Enthalpy of fusion in kJ/mol obtained from literature.   

• M_CX: Summation of numbers of carbon and halogen atoms weighted by C:1.0, F:0.5, Cl:1.0, Br:1.5, 

and I:2.0. 

• Pi_MinQ: Minimum Hückel pi atomic charge. 

• N_Electr. Total number of electrons in a molecule. 

 

Variables in MLP-ANN predicting aDS sLBFMaisine
LC

 

• N_Bonds: Number of bonds. 

• Pi_FPl1: First component of the autocorrelation vector of pi Fukui(+) indices. 

• T_Rads: topological equivalent of Rads_3D. 

• MaxQ: Maximal PEOE Partial Atomic Charge. 

• N_Atoms: Number of atoms. 

• Pi_FMi1: First component of the autocorrelation vector of pi Fukui(-) indices. 

• HBDch: Sum of Estimated NPA Partial Atomic Charges on HB Donor Hydrogens. 

• F_AromB: Aromatic bonds as fraction of total bonds. 

• NPA_Q2: Second component of the autocorrelation vector of estimated NPA partial atomic charges. 

• SsssCH: Atom-type E-state index for >CH- groups. 

• NPA_Q5: Fifth component of the autocorrelation vector of estimated NPA partial atomic charges. 
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 Figure 4-2. Predicted by residual plots for sLBFCapmul
MC and sLBFMaisine

LC using PLS and ANN modelling 
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Appendix 4-6: Pilot study to investigate if PLS-DA could classify drugs according to an aDS cut-off of 2 using glass-forming 

ability (GFA) or selected GFA related solid-state properties. 

 

Introduction  

This study design explored if PLS-DA could classify drugs according to an aDS cut-off of 2 

using glass-forming ability (GFA) or selected GFA related solid-state properties. This 

facilitated investigation if previously published correlations between GFA class (a drugs 

propensity to vitrify on cooling), and aDS ratios (275, 319) are also observed for sLBFs. A 

high or low aDS value was arbitrarily defined by a critical value of 2, as a suitable indicator of 

whether a sLBF approach may be a viable formulation option. 

 

Methods 

Partial Least Squares Discriminant Analysis (PLS-DA) 

To investigate if GFA class or related properties could be correlated to aDS, PLS-DA was 

applied using Unscrambler XI (Camo Analytics, US). Two aDS groups of >2 or <2 were 

obtained, forming the response variable. GFA classifications, widely known drug 

physicochemical properties previously related to GFA or used in previous in silico models for 

LBFs were included as descriptor variables (46, 124, 235, 320). Variables were mean centred 

and standardised through scaling by standard deviation. Included variables were Molecular 

Weight (MW), Acidic (A), Basic (B), or Neutral (N) drugs, Partition Coefficient (logP), GFA 

Class 1 (GI) ,Class 2 (GII) or Class 3 (GIII), Tm, Tg, ∆Hfus, ∆Sfus, Hydrogen Bond Acceptors 

(HBA), Hydrogen Bond Donors (HBD), Polar Surface Area (PSA), Tm/Tg, Trg, Number of 

Bonds (N_B), Number of Freely Rotatable Bonds (N_Ro), Fraction of Single Bonds (F_SB), 
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Fraction of Double Bonds (F_DB), Fraction of Aromatic Bonds (F_AB), Atom-Type 

Cumulative Electrotopological State (E-state) Index for Methylene Carbons (S-C), Partition 

Coefficient at pH 6.5 (logD) and Number of Aliphatic Rings (N_AR). A Martens’ uncertainty 

Test identified the important variables (250), involving a “jackknifing” procedure and 

production of sub-models to identify non-significant variables. 

 

Results 

Classification of Drugs by aDS using PLS-DA 

The possibility to relate aDS classifications and GFA-associated properties using PLS-DA was 

tested. While MVA is commonly used for quantitative prediction, classification predictions 

facilitate broad analysis of property trends. We defined an aDS cut-off of 2 as an arbitrary value 

for suitable supersaturation and hence as indicator of whether a sLBF approach may be a viable 

formulation option. The aim was to achieve class separation in the score plots (Figure 4-6-1). 

Separation was evident for both sLBFs as two clusters were observed in blue (<2) and red (>2). 

However, Haloperidol (No. 11) and Sulfasalazine (No. 20) likely exhibited drug specific 

properties, resulting in poor separation from the scores plot area predominated by >2 aDS 

(Figure 4-6-1).  

In terms of sLBFCapmul
MC, 55% of the variability was explained using 2 principal components 

(PC). From the uncertainty test, MW, N_B, N_Ro and S-C were most important for 

classification (Figure 4-6-2). Higher values of MW, N_B, N_Ro were observed in general for 

the >2 group. For sLBFMaisine
LC, a higher percentage of variability was explained (62%), using 

2 PC and ∆Hfus, ∆Sfus and F_SB were found to be the most important properties. Drugs 

classified as >2 tended to display a higher ∆Sfus, as lower values of ∆Sfus were found to the left 
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of the scores plot. Differences in the most important properties between the two sLBF may 

reflect the higher number of drugs which displayed a higher aDS (>2) in sLBFMaisine
LC.  

 

Figure 4-6-1: Scores plots from the PLS-DA classification aDS >2/<2 for sLBFCapmul
MC (a) and sLBFMaisine

LC (b) using GFA 

related properties. Drugs (numbered according to their listing in Chapter 5, Table 5-I) are classified according to aDS <2 (blue) 

or >2 (red) where better separation is achieved for sLBFMaisine
LC (b). 

 

Figure 4-6-2: Important variables chart from the PLS-DA aDS classification of sLBFCapmul
MC (a) and sLBFMaisine

LC (b) 

demonstrating the weighted regression coefficients of the input descriptors. The error bars show the 95% confidence interval 

and the diagonal black lines denote the variables calculated to be the most important for classification according to the Martens’ 

uncertainty test. 
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Discussion and Conclusion 

This work analysed if trends between aDS and GFA-related properties could be elucidated via 

aDS classification modelling. GFA was previously correlated to solvent shift mediated aDS 

using PCA, where supersaturation potential of class 3 drugs was higher than class 1 drugs 

(275). Here, PLS-DA revealed GFA class and related properties better explained variability for 

sLBFMaisine
LC versus sLBFCapmul

MC (62% versus 55%). General separation of the aDS groups 

(>2/<2) was achieved. Molecular weight (MW), number of bonds (N_B), number of freely 

rotatable bonds (N_RB) and Atom-Type Cumulative Electrotopological State (E-state) Index 

for Methylene Carbons (S-C) were the most important properties for aDS classification in 

sLBFCapmul
MC. Increasing size, incorporating N_B and MW, along with N_RB were previously 

positively correlated to GFA. There MW > 300g/mol and higher RB count were common 

characteristics of glass-forming compounds (46, 98, 118, 220, 321). While, MW and N_RB 

were observed as significant properties for commercial success with LBF (222), S-C was 

significant in modelling the solubility gain upon SEDDS dispersion (235). For sLBFMaisine
LC, 

important classification properties were Entropy of Fusion (∆Sfus), Enthalpy of Fusion (∆Hfus) 

and Fraction of Single Bonds (F_SB). ∆Sfus and ∆Hfus were previously linked to GFA, where 

class 1 drugs displayed higher values compared to class 3 (118, 320). Inclusion of F_SB may 

indicate decreased saturation or aromaticity may influence aDS. Aromatic ring structures were 

previously related to high crystallisation tendencies and poor GFA. Therefore, despite lack of 

evidence of a direct trend between aDS and GFA classes (Chapter 5, Figure 5-2) and presence 

of only ∆Hfus in the quantitative models, properties previously correlated to GFA were 

somewhat influential in classifying drugs by aDS. However, a larger dataset including an 

external test set is needed to verify these results.  
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Abbreviation List 

∆Hfus Enthalpy of Fusion 

∆Sfus Entropy of Fusion  

ADMET Absorption, Distribution, Metabolism, Excretion and Toxicology 

aDS Apparent Degree of Supersaturation  

AI Artificial Intelligence  

ANN Artificial Neural Networks 

API  Active Pharmaceutical Ingredient 

AT  Ambient Temperature 

AUC Area Under the Curve 

BioRAM 

BCS 

Biopharmaceutics Risk Assessment Roadmap 

Biopharmaceutics Classification System  

BDA Big Data Analytics 

BDDCS Biopharmaceutical Drug Disposition Classification System  

bRo5 Beyond Rule of Five 

CBP Computational Biopharmaceutical Profiling  

clogP Calculated Octanol/Water Partition Coefficient 

Cmax Peak Plasma Concentration  

COSMO-RS Conductor like Screening Model for Real Solvents 

Cryo-TEM Cryogenic Transmission Electron Microscopy  

D/S  Dose Solubility Ratio  

DCS Developability Classification System 

DLS Dynamic Light Scattering 

Do Dose Number 

DSC Differential Scanning Calorimetry  

DTs Decision Trees 

EEM_Afc Sum of Absolute Values of Sigma Fukui Indices on C 

EEM_AFnp Sum of Absolute Values of Sigma Fukui Indices on Nonpolar Atoms 

EEM_F2 Second Component of the Autocorrelation Vector of Sigma Fukui 

Indices 

EEM_F4 Fourth Component of the Autocorrelation Vector of Sigma Fukui 

Indices 

EEM_NFc Minimum Sigma Fukui Index on C 

EEM_NFnp Minimum Sigma Fukui Index on Nonpolar Atoms 

EMA Eurpean Medicines Agency 

EPAR European Public Assessment Report  

EqualEta Equalized Molecular Hardness 

eRo5 Extended Rule of Five 

F_DB Fraction of Double Bonds 

F_HBP Population Average Number of Protons Available for Hydrogen 

Bonding Divided by the Number of Non-Hydrogen Atoms  

F_SB Fraction of Single Bonds 



 

297 
 

FArom_B,  Aromatic Bonds as a Fraction of Total Bonds 

FaSSGF Fasted State Simulated Gastric Fluids  

FaSSIF  Fasted State Simulated Intestinal Fluid 

FaSSIFp Fasted State Simulated Intestinal Fluid of Pigs  

FDA Food and Drug Administration  

FE Food Effect 

FeHIF Fed State Human Intestinal Fluids  

FeSSIF Fed State Simulated Intestinal Fluid  

FN False Negative 

FP False Positive  

GFA  Glass Forming Ability 

GIT Gastrointestinal Tract  

HBA Hydrogen Bond Acceptors  

HBD Hydrogen Bond Donors  

HBDch Sum of NPA Partial Atomic Charges on HB Donor Hydrogen Atoms 

HIF 

HIVI-TC 

Human Intestinal Fluids 

pIC50 in log(mol/L) for inhibition of the HIV-1 Integrase 3'-

processing 

HPLC  High Performance Liquid Chromatography  

HPRA Health Products Regulatory Authority 

LBF Lipid-Based Formulations  

LCT Long Chain Monoglycerides  

LFCS Lipid Formulation Classification System  

logD7.4, logD6.5 Partition Coefficient at pH 7.4 or 6.5 

logHLC Logarithm of the Air-Water Partition Coefficient  

logP Octanol/Water Partition Coefficient 

logS 

LR 

Logarithm of Aqueous Solubility 

Linear Regression 

LSI Ileum 

M&S  Modelling and Simulation  

M_CX Summation of Numbers of Carbon and Halogen Atoms Weighted by 

C:1.0, F:0.5, Cl:1.0, Br:1.5, and I:2.0. 

MAD Maximum Absorbable Dose 

MaxQ Maximum PEOE Partial Atomic Charge 

MCC Matthew’s Correlation Coefficient 

MCT  Medium Chain Triglycerides  

MDS Maximum Dosage Strength 

MD Simulations Molecular Dynamic Simulations 

ML Machine Learning  

MlogP Moriguchi Estimation of logP 

MLP Multilayer Perception  

MLR Multiple Linear Regression 

MolVol Liquid molal volume  
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MSI Middle Small Intestine 

MW Molecular Weight  

N_AR Number of Aliphatic Rings  

N_Atoms Number of Heavy Atoms  

N_Bonds Number of Bonds  

N_CYPAtoms Number of potential atoms that can be oxidized by CYPP450 

enzymes 

N_Electr Total Number of Electrons in a Molecule 

N_Hydrgn Number of Hydrogens  

N_FrRotB Number of Freely Rotatable Bonds 

NME  New Molecular Entity 

NPA_Q1 First Component of the Autocorrelation Vector of Estimated NPA 

Partial Atomic Charges 

NPA_Q2 Second Component of the Autocorrelation Vector of Estimated NPA 

Partial Atomic Charges 

NPA_Q5 Fifth Component of the Autocorrelation Vector of Estimated NPA 

Partial Atomic Charges 

NPA_Q6 Sixth Component of the Autocorrelation Vector of Estimated NPA 

Partial Atomic Charges 

OrBiTo Oral Biopharmaceutics Tools  

PBPK Physiological based Pharmacokinetic Modeling 

PC Principal Component 

PCA Principal Component Analysis  

PC-SAFT Perturbed Chain Statistical Associating Fluid  

PDI  Polydispersity Index 

pDose LOG10(Maximum Dose Strength) 

PhBpH6.5 

PiAQc 

PiAQo 

Phosphate Buffer pH 6.5 

Sum of absolute values of pi partial atomic charges on C 

Sum of absolute values of pi partial atomic charges on O 

Pi_FMi1 

Pi_FMi6 

First Component of the Autocorrelation Vector of pi Fukui(-) indices 

Sixth component of the autocorrelation vector of scaled pi Fukui- 

indices (electrophilic) 

Pi_FPl1 First Component of the Autocorrelation Vector of pi Fukui(+) 

indices 

Pi_FPl3 Third Component of the Autocorrelation Vector of pi Fukui(+) 

indices 

Pi_FPl5 Fifth Component of the Autocorrelation Vector of pi Fukui(+) 

indices 

Pi_MinQ Minimum Hückel pi Atomic Charge 

PLS Partial Least Squares 

PLS-DA Partial Least Squares Discriminant Analysis  

PMML Predictive Model Markup Language 

PSA  Polar Surface Area  
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PWSD Poorly Water-Soluble Drug 

QSAR 

QTTP 

Quantitative Structure Activity Relationships 

Quality Target Product Profile 

R&D Research and Development 

RB Rotatable Bonds 

rDCS Refined Developability Classification System 

RMSE  Root Mean Square Error  

Ro5 

S+logD 

S+logP 

Lipinski Rule-of-5 

Simulations Plus model of log D based on S+logP 

Simulations Plus model of log P 

S+S_Intrins Intrinsic Water Solubility 

S+Sw  Aqueous Solubility  

SD Solid Dispersion 

SE  Standard Error  

SEDDS Self-Emulsifying Drug Delivery Systems  

SGFsp 

SHaaCH 

Simulated Gastric Fluid Without Pepsin  

Atom-type hydrogen E-state index for aCHa groups (aromatic 

carbons) 

SHCH_321 Atom-Type Hydrogen E-State Index for -CH3, -CH2- and >CH 

Groups  

SLAD Solubility Limited Absorbable Dose  

sLBF Supersaturated Lipid Based Formulation 

SolFactor Universal Salt Solubility Factor 

SRLC Solubility Ratio Long Chain Triglyceride-based SEDDS 

SRMC Solubility Ratio Medium Chain Triglyceride-based SEDDS 

SssCH2 Atom-Type Cumulative Electrotopological State (E-State) Index for 

Methylene Carbons  

SsssCH Atom-Type E-State Index for >CH- Groups 

SVM Support Vector Machine 

T_Rads Topological Version of the Projected Radius of the Molecule 

Averaged Over All Orientations 

Te Test Set 

Tg Glass Transition Temperature  

Tm Melting Point  

Tmax Time to Peak Plasma Concentration  

TN True Negative 

TP 

T_PSA 

True Positive  

Topological Polar Surface Area 

Tr Training Set 

Trg Reduced Glass Transition Temperature 

U% Percentage Excreted Unchanged in Urine  

USI Upper Small Intestine 

VMcGowan McGowan's Characteristic Volume 
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