
Title Combinatorial optimisation for sustainable cloud computing

Authors De Cauwer, Milan

Publication date 2018

Original Citation De Cauwer, M. 2018. Combinatorial optimisation for sustainable
cloud computing. PhD Thesis, University College Cork.

Type of publication Doctoral thesis

Rights © 2018, Milan De Cauwer. - http://creativecommons.org/licenses/
by-nc-nd/3.0/

Download date 2025-06-29 10:17:22

Item downloaded
from

https://hdl.handle.net/10468/6903

https://hdl.handle.net/10468/6903

Combinatorial Optimisation for
Sustainable Cloud Computing

Milan De Cauwer
MSC

Thesis submitted for the degree of
Doctor of Philosophy

�
NATIONAL UNIVERSITY OF IRELAND, CORK

COLLEGE OF SCIENCE, ENGINEERING AND FOOD SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

August, 2018

Head of Department: Prof Cormac Sreenan

Supervisors: Prof Barry O’Sullivan
Dr Deepak Mehta

Contents

Contents
List of Figures . iv
List of Tables . vi
Abstract . vii
Declaration . viii
Acknowledgements . xi

1 Introduction 1
1.1 Context . 1
1.2 Cloud Computing, Data Centres and Workload Management Systems. 3
1.3 Key Challenges . 5
1.4 Thesis Statement and Contributions 6
1.5 Structure of the Dissertation . 8

2 Background, Related Work and Datasets 10
2.1 Overview . 11
2.2 Constraint Optimisation Problems 12

2.2.1 Definitions . 12
2.2.2 Optimal and Sub-optimal Solutions 15
2.2.3 Online, Semi-online and Offline Optimisation 17
2.2.4 Modeling and Solving Constraint Optimisation Problems . . . 18

2.2.4.1 Front-end Modeling Tools 18
2.2.4.2 Back-end Solvers 19

2.3 Optimisation Problems in Cloud Computing Systems 21
2.3.1 Cost Models for Data Centres 22
2.3.2 Managing Workloads in Data Centres 23
2.3.3 Workload Consolidation and Virtualisation Technologies . . . 23
2.3.4 Workload Consolidation as a Packing Problem 24
2.3.5 Extracting Evaluation Datasets 26

2.3.5.1 Data Extraction 26
2.3.5.2 Characterising the Workload 28

2.4 Workload Management in Geographically Distributed Clouds 33
2.4.1 Models for Electricity Prices and Price Prediction Errors . . . 35
2.4.2 Minimizing Data Centre Electricity Cost 39
2.4.3 Analysis . 41

2.5 Conclusion . 47

3 A Generalisation of Bin Packing as a Core Consolidation Problem 48
3.1 The Temporal bin packing Problem 49
3.2 Packing Versus Temporal Models . 52

3.2.1 Packing Model (PA) . 52
3.2.2 Temporal Model (TP) . 54

3.3 Breaking Symmetry . 56
3.3.1 Breaking Symmetry on the PA model. 57
3.3.2 Breaking Symmetry on the TP model. 57

3.4 Lower and Upper Bounds . 58

Combinatorial Optimisation for Sustainable
Cloud Computing

i Milan De Cauwer

Contents

3.5 Empirical Analysis . 60
3.5.1 Experimental setup . 61
3.5.2 Instances . 61
3.5.3 Analysis . 62

3.6 Conclusion and Limitations . 64

4 Semi-online Consolidation with Uncertain Task Duration 67
4.1 Semi-Online Resource Wastage Minimisation 68

4.1.1 The Semi-Online Framework 71
4.1.2 The Monitor Module . 71
4.1.3 The Solver Module . 72
4.1.4 Illustrating the Consolidation of Machine Run Times 74

4.2 Packing Heuristics . 75
4.3 A novel placement policy: First Merged Fit (FMF) 77

4.3.1 Illustration . 77
4.3.2 The First Merged Fit Algorithm 77

4.4 Local Search . 80
4.5 Empirical Analysis . 80

4.5.1 Overall Allocated Resources 81
4.5.2 Resource Allocation During Peak Activity Periods 82
4.5.3 Resource Allocation under Varying Time Step Duration . . . 85
4.5.4 Resource Allocation under Uncertain Task Duration 87
4.5.5 Real-time Placement of Incoming Tasks 89
4.5.6 Comparing Policies . 91

4.6 Conclusion and Limitations . 93

5 Online Consolidation with Uncertain Task Sizes 95
5.1 Methodology . 97
5.2 Prediction Module . 98

5.2.1 Input . 100
5.2.2 Output . 101

5.3 Scheduling Module . 103
5.3.1 Mathematical Model . 104
5.3.2 Policies for Online Scheduling 106

5.4 Monitoring Module . 109
5.5 Experiments . 112

5.5.1 Experimental Setup and Error Metrics 113
5.5.2 Predicting CPU and RAM Maximum Utilisation 114
5.5.3 Evaluating the Scheduling Policies 115

5.5.3.1 Polices for Known Peak Resource Requirements . . 116
5.5.3.2 Policy-Predictor Interactions 118
5.5.3.3 Eviction policies 122

5.6 Conclusion and Limitations . 123

6 Proactive Consolidation with VM Migrations 124
6.1 The Proactive Workload Consolidation Problem 125
6.2 An Integer Linear Model for the PWCP 127

Combinatorial Optimisation for Sustainable
Cloud Computing

ii Milan De Cauwer

Contents

6.3 Empirical Analysis . 129
6.4 Conclusion and Limitations . 132

7 On Bin Packing Instances 134
7.1 The Weibull Distribution . 135
7.2 Fitting Weibull Distributions to Real-world Instances 137

7.2.1 An Example Problem in Data Centre Management 137
7.2.2 Verifying the Goodness-of-Fit 139

7.3 Systematic Search for Bin Packing 140
7.3.1 Bin Packing Instances and Solver 140
7.3.2 Small Weibull Shape Parameter Values 142
7.3.3 Full Range of Shape Parameters 144

7.4 Bin Packing Heuristics . 145
7.5 Conclusion and Limitations . 147

8 Conclusions and Further Work 150
8.1 Conclusion . 150
8.2 Future Work . 151

8.2.1 Workload Consolidation as a Component to Complex Cloud
Systems . 151

8.2.2 Competitive Analysis . 152
8.2.3 Understanding Prediction/Optimisation Interactions 152

Combinatorial Optimisation for Sustainable
Cloud Computing

iii Milan De Cauwer

List of Figures

List of Figures

2.1 Visual illustrating the bin packing problem 15
2.2 Visual illustrating a heuristic solution against the optimal solution . . 16
2.3 Visual illustrating a semi-online solution structure for bin packing . . 18
2.4 A Minizinc model for bin packing 20
2.5 A Numberjack model for bin packing 21
2.6 Histogram analysis of non-utilised resources. 27
2.7 Relationship between requested resources and the duration of the tasks 28
2.8 Characterising jobs arrival rate . 30
2.9 Tasks count per job . 31
2.10 Number of incoming tasks over elapsed time 31
2.11 Distributions of incoming tasks in the dataset 32
2.12 Showing steps of the Box-Jenkins method to model electricity prices. 37
2.13 Visual comparing actual price data against various models. 38
2.14 An example of the workload dispatched over several data centres. . . 43
2.15 Exploiting price differentials to reduce overall operating costs. 44
2.16 Average optimal assignment cost under several time lags configurations 45
2.17 Average optimal assignment cost under various reconfiguration times. 47

3.1 Comparing solution structures of BP against TBP 51
3.2 A relaxed version of TBP with breakable items 59
3.3 Average gap to lb after 2 and 300 seconds on random instances 63
3.4 Average gap to lb after 2 and 300 seconds on Google instances 65

4.1 Optimal placement considering respectively an on-line, a semi-online
(time window of 3s), and a off-line contexts. 70

4.3 The semi-online framework . 71
4.4 Two valid assignments of tasks {a1, . . . , a5} to 3 standby machines

{m0, . . . ,m2}. All tasks are starting at the current time step t. 74
4.5 A run of First Merged Fit (FMF). 78
4.6 Total allocated resources over the time per policies against elapsed time. 82
4.7 Number of allocated machines over the peaks of the 123rd hour. . . . 83
4.8 Allocated resources per policies when increasing time step duration . 86
4.9 Allocated resources while increasing tasks duration uncertainty 88
4.10 Solving time (in seconds) of the placement policies when number of

incoming tasks > 100. 90
4.11 Performance of the policies while varying different parameters 92

5.1 Illustration of the experimental Setup 99
5.2 MAE and RMSE values for all the CPU predictors and user defined limit 115
5.3 MAE and RMSE values for all the RAM predictors and user defined

limit . 116
5.4 Comparing the Random and Round Robin polices on the with and

without using the greedy scheme. 117
5.5 Illustration of the number of active machines in time. 118
5.6 Illustration of of the average CPU and RAM utilisation. 119

Combinatorial Optimisation for Sustainable
Cloud Computing

iv Milan De Cauwer

List of Figures

5.7 Aggregated CPU peaks. 121
5.8 Performance of the eviction policies across different classes of priority. 122

6.1 Visual illustrating a solution of PWCP 127
6.2 Varying window size w over selected values of N . Each value of w ∈

{0, 2, 4, 6, 8, 10} corresponds to a different line style. 129
6.3 Varying the migration limits (k) over selected values of w. Each value

of k ∈ {0, 2, 4, 6, 8, 10} corresponds to a different line style. 130
6.4 Visual on the trade-off between energy cost and QoS 131
6.5 VC function of N and w . 132

7.1 Weibull distributions . 136
7.2 An example of the quality of fit using a Weibull distribution 138
7.3 Average runtime and percentage of solved instances. 143
7.4 Average runtime and percentage of solved instances exhibiting the

easy-hard-easy behaviour in search effort. 146
7.5 Average number of bins in optimal solutions 147
7.6 The difference in the average number of bins required by each of the

heuristics and the optimal solutions 148

Combinatorial Optimisation for Sustainable
Cloud Computing

v Milan De Cauwer

List of Tables

List of Tables

2.1 Seasonal ARIMA model for the electricity price. 39
2.2 Notations for parameters and decision variables 40
2.3 An example of data centre setups. 41

3.1 Percentage of instances solved within the time out function of the sym-
metry breaking technique . 62

4.1 Total run-time of allocated machines (in hours) of the placement poli-
cies . 81

4.2 Run-time of allocated machines above 180 machines during the 123rd
hour. 84

4.3 Resource utilisation (in hours) for time step duration 0, 2 and 30 seconds 87
4.4 Total run-time of allocated machines (in hours) of the placement poli-

cies tw=2 . 89

5.1 Machine usage statistic for Random, Round Robin policies and their
restricted counterparts under perfect information from the predictors. . 117

5.2 Waiting time and number of evictions for tasks of different priorities. . 120

7.1 Best-fit Weibull distributions on various instances. 141

Combinatorial Optimisation for Sustainable
Cloud Computing

vi Milan De Cauwer

Abstract

Abstract

Enabled by both software and hardware advances, cloud computing has emerged as
an efficient way to leverage economies of scale for building large computational in-
frastructures over a global network. While the cost of computation has dropped sig-
nificantly for end users, the infrastructure supporting cloud computing systems has
considerable economic and ecological costs. A key challenge for sustainable cloud
computing systems in the near future is to maintain control over these costs.

Amid the complexity of cloud computing systems, a cost analysis reveals a complex
relationship between the infrastructure supporting actual computation on a physical
level and how these physical assets are utilised. The central question tackled in this
dissertation is how to best utilise these assets through efficient workload management
policies. In recent years, workload consolidation has emerged as an effective approach
to increase the efficiency of cloud systems. We propose to address aspects of this chal-
lenge by leveraging techniques from the realm of mathematical modeling and combi-
natorial optimisation.

We introduce a novel combinatorial optimisation problem suitable for modeling core
consolidation problems arising in workload management in data centres. This prob-
lem extends on the well-known bin packing problem. We develop competing models
and optimisation techniques to solve this offline packing problem with state-of-the-art
solvers. We then cast this newly defined combinatorial optimisation problem in an
semi-online setting for which we propose an efficient assignment policy that is able
to produce solutions for the semi-online problem in a competitive computational time.
Stochastic aspects, which are often faced by cloud providers, are introduced in a richer
model. We then show how predictive methods can help decision makers dealing with
uncertainty in such dynamic and heterogeneous systems. We explore a similar but re-
laxed problem falling within the scope of proactive consolidation. This is a relaxed
consolidation problem in which one decides which, when and where workload should
be migrated to retain minimum energy cost. Finally, we discuss ongoing efforts to
model and characterise the combinatorial hardness of bin packing instances, which in
turn will be useful to study the various packing problems found in cloud computing
environments.

Combinatorial Optimisation for Sustainable
Cloud Computing

vii Milan De Cauwer

Declaration

Declaration

This dissertation is submitted to University College Cork, in accordance with the re-
quirements for the degree of Doctor of Philosophy in the Faculty of Science. The
research and thesis presented in this dissertation are entirely my own work and have
not been submitted to any other university or higher education institution, or for any
other academic award in this university. Where use has been made of other people’s
work, it has been fully acknowledged and referenced. Parts of this work have appeared
in the following publications which have been subject to peer review.

This dissertation is borne by the following publications.

1. Ignacio Castiñeiras, Milan De Cauwer, and Barry O’Sullivan. Weibull-based
benchmarks for bin packing. In Principles and Practice of Constraint Program-

ming - 18th International Conference, CP 2012, Québec City, QC, Canada, Oc-

tober 8-12, 2012. Proceedings, pages 207–222, 2012

2. Milan De Cauwer and Barry O’Sullivan. A study of electricity price features
on distributed internet data centers. In Jörn Altmann, Kurt Vanmechelen, and
Omer F. Rana, editors, Economics of Grids, Clouds, Systems, and Services - 10th

International Conference, GECON 2013, Zaragoza, Spain, September 18-20,

2013. Proceedings, volume 8193 of Lecture Notes in Computer Science, pages
60–73. Springer, 2013

3. Milan De Cauwer, Deepak Mehta, Barry O’Sullivan, Helmut Simonis, and
Hadrien Cambazard. Proactive workload consolidation for reducing energy cost
over a given time horizon. In 14th IEEE/ACM International Symposium on Clus-

ter, Cloud and Grid Computing, CCGrid 2014, Chicago, IL, USA, May 26-29,

2014, pages 558–561, 2014

4. Jesus Omana Iglesias, Liam Murphy, Milan De Cauwer, Deepak Mehta, and
Barry O’Sullivan. A methodology for online consolidation of tasks through
more accurate resource estimations. In Proceedings of the 7th IEEE/ACM In-

ternational Conference on Utility and Cloud Computing, UCC 2014, London,

United Kingdom, December 8-11, 2014, pages 89–98, 2014

5. Jesus Omana Iglesias, Milan De Cauwer, Deepak Mehta, Barry O’Sullivan, and
Liam Murphy. Increasing task consolidation efficiency by using more accurate
resource estimations. Future Generation Comp. Syst., 56:407–420, 2016

Combinatorial Optimisation for Sustainable
Cloud Computing

viii Milan De Cauwer

Declaration

6. Milan De Cauwer, Deepak Mehta, and Barry O’Sullivan. The temporal bin pack-
ing problem: An application to workload management in data centres. In 28th

IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2016,

San Jose, CA, USA, November 6-8, 2016, pages 157–164. IEEE Computer Soci-
ety, 2016

7. Vincent Armant, Milan De Cauwer, Kenneth N. Brown, and Barry O’Sullivan.
Semi-online task assignment policies for workload consolidation in cloud com-
puting systems. Future Generation Computer Systems, 82:89–103, 2018

The contents of this dissertation extensively elaborate upon previously published work
and mistakes (if any) are corrected. Some sections of the dissertation are unpublished
but may appear in future peer reviewed publications.

Optimisation models, code snippets and data available from:

• https://gitlab.insight-centre.org/mdecauwer/

Milan De Cauwer

August, 2018

Combinatorial Optimisation for Sustainable
Cloud Computing

ix Milan De Cauwer

https://gitlab.insight-centre.org/mdecauwer/

To all the people met on the way.

Acknowledgements

Acknowledgements

Firstly, I would like to express my sincere gratitude to my academic supervisors, Prof.
Barry O’Sullivan and Dr. Deepak Mehta for the continuous and unconditional sup-
port during my studies. For their guidance, professionalism and patience. I am deeply
thankful for the opportunity that they provided me with and even more so for their
support. My work would not have been possible without the support of Science Foun-
dation Ireland Grant No. 10/IN.1/I3032 and 12/RC/2289 which is co-funded under the
European Regional Development Fund.

I would like to acknowledge and thank my coauthors, talented researchers, with whom
I had the opportunity to collaborate. Barry and Deepak in the supervising roles but
also Vincent Armant, Ken Brown, Helmut Simonis, Jesus Iglesias, Liam Murphy and
Nacho Castinieras. I had great pleasure in collaborating with you.

I am grateful to my current and former colleagues here at Insight, all of whom con-
tribute to making Insight a great place to work. My time as a PhD student here at
Insight has proved to be a fulfilling life experience not only on a professional but also
on a personal level. In no particular order, I wish to personally thank colleagues and
friends Barry Hurley, Padraig O’Duinn, Tadhg Fitzgerald, Cathal Hoare and Diarmuid
Grimes for being welcoming and making me feel at home here in Ireland. Gilles and
Marius for making me a better musician as well as a keen rock-climber. Anne-Marie
George, Yves Sohege, Mesut Kaya and Mo Siala for the excitement of being around
them.

I sincerely thank staff members, Linda, Caitriona, Eleanor, Peter and Chrys for making
sure that every member of the team stays on track.

For their long term and continuing support (30+ years), I am very much indebted to my
family without whom I would not be here typing these words. To my mother Beatrice
and my father Ronan, to my sisters Isabelle and Aurore, thank you.

Finally, I would like to thank Patrick Healy and Steve Prestwich, respectively exter-
nal and internal members of the jury, for having taken time to read and comment my
dissertation. The corrections that you suggested are certainly making for a better dis-
sertation.

Combinatorial Optimisation for Sustainable
Cloud Computing

xi Milan De Cauwer

Chapter 1

Introduction

Summary. This chapter introduces the research axes discussed through-

out this dissertation. We first discuss the notion of resource management

in cloud computing structures in the emergent context of sustainable com-

puting. We then highlight that powering cloud infrastructures yields chal-

lenges that should be resolved. Some key challenges brought by the nature

of cloud systems are then defined as a motivation for this dissertation. Fi-

nally, we provide a detailed outline of the dissertation.

1.1 Context

Computational sustainability has emerged as an interesting concept in the field of
computer science. It is closely related and inspired by ideas arising in the field of
sustainable development and is relevant to many goals set by governments and so-
cieties to achieve development today without compromising tomorrow’s possibili-
ties [BKA+87]. Computational sustainability can be defined as follows: 1

“Computational sustainability is an interdisciplinary field that aims to apply tech-

niques from computer science, information science, operations research, applied math-

ematics, and statistics for balancing environmental, economic, and societal needs for

sustainable development.”

The era of data-driven decision-making often relies on data centres as a backbone to
store, structure and retrieve information for use in cloud computing contexts. Because

1http://www.computational-sustainability.org/

1

1. INTRODUCTION 1.1 Context

these ubiquitous facilities have a large economic and ecological footprint, designing
methods to exploit them efficiently is a central challenge in maintaining such structures
sustainable. Achieving sustainability is a key challenge for the emergence of data-
driven societies.

Organisations implementing cloud computing solutions are emerging as a very com-
pelling answer to the challenge of outsourcing computational tasks and data manage-
ment needs [BBA10, ZCB10, LCW11]. While the popularity of cloud solutions can
be explained by various factors, its development has given rise to many challenges
in terms of workload management and scalability of such systems. This dissertation
contributes to the effort of formally modeling parts of such systems for optimisation
purposes. More specifically, the focus is put on modeling and optimising combinato-
rial problems using methods and techniques from the realm of mathematical modeling
and operations research.

Operations research finds its origin in the efforts put in managing scarce resources
during the second World War [Lar84]. The aim of operations research is to assist
decision-making in the context of complex systems by leveraging the formalism of
mathematical modeling and optimisation techniques. The rather broad range of prob-
lems addressed by operations research encompasses project planning, network opti-
misation, assignment problems and scheduling problems, to name but a few [WG04].
Many techniques have been developed to tackle these problems such as mathematical
optimisation over discrete or continuous domains, multi-criteria decision-making or
elements of reasoning in stochastic environments. The success of operations research
can be seen in many applications arising in real-world environments such as schedul-
ing train timetables [CJT16, CT12], assigning crews to flights [JB09, BJM09] or flow
optimisation in networks [LL99].

In real-world environments, decision-makers often face uncertainty in the data defi-
ning their problem [Sah04]. While this uncertainty can be understood in terms of the
partially missing or partially incorrect information, a significant branch of research is
interested in retrieving missing or incorrect information through analysis of historical
data. Statistical modeling and machine learning has proved very successful in building
strong predictive models from historical data. Its success is due to a relatively low cost
of harvesting data and the increasing computational power available to data scientists.

Cloud computing, as a concept and its implementation using data centres gave rise to
complex technology-dependent world wide systems. Nonetheless, there is an opportu-
nity for operations research and machine learning to significantly reduce its economic
and ecological impact [BBA10]. This is particularly the case on an abstract level deal-

Combinatorial Optimisation for Sustainable
Cloud Computing

2 Milan De Cauwer

1. INTRODUCTION
1.2 Cloud Computing, Data Centres and

Workload Management Systems.

ing with workload management systems in which decisions can be computationally
hard. This is therefore the focus of this dissertation.

1.2 Cloud Computing, Data Centres and Workload
Management Systems.

Cloud computing can be thought of as a generic term for the delivery of computing
power over the Internet [LCW11]. By abstracting the means of computation from
what has to be computed, it allows end users to externalise raw computation, storage
or routinely running applications to a third-party facility. These services are usually
made available to users as a flexible, on-demand utility that can be transparently scaled
to meet their computational needs. The National Institute of Standards and Technology
defines cloud computing as follows [ZCB10]:

“Cloud computing is a model for enabling convenient, on-demand network access to
a shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction.”

Although the terminology surrounding cloud computing started to develop in the early
2000’s, its underlying concepts can be traced back to the late 1960’s and early 1970’s.
The idea of giving access to a computing facility over a network stems from the birth of
ARPANET in 1969 which can be informally thought as the first step toward a global
network allowing to access remote resources. Remarkably, the notion of computing
over a network as a utility has been discussed as early as 1966 [Par66]. The develop-
ment of UNIX in the early 1970’s started with the goal to allow concurrent users to
simultaneously access the resources of a single computer. Subsequently, UNIX sys-
tems inspired a vast diversity of multi-tasking, multi-users operating systems such as
the family of BSD operating systems and the ubiquitous Linux kernel.

As suggested previously, while the emergence of cloud computing can be attributed
to the convergence of several ripening technologies, its success can be understood in
terms of compelling features offered to businesses and end users. Among these, the
following stand out as very compelling for end users to adopt cloud services more
widely. These aspects are discussed in [ZCB10, GHMP09].

Minimal Investment
Using cloud systems as a back-end to offload computational tasks provides the

Combinatorial Optimisation for Sustainable
Cloud Computing

3 Milan De Cauwer

1. INTRODUCTION
1.2 Cloud Computing, Data Centres and

Workload Management Systems.

advantage of requiring a minimal investment underlying IT infrastructure to be
used as a front-end to access the cloud. Expensive critical components such as
mail servers, web servers or high-throughput computing hardware can be ac-
cessed as a utility through the cloud.

Scalability
As the need for computing power may vary over time for end user, scalability and
flexibility are a considerable advantage of using cloud based solutions. Cloud
users can easily scale their use of computation in a very reactive manner by
orders of magnitude.

Minimal Maintenance Cost
The high maintenance cost of the computational facilities is offloaded to a third-
party cloud system. Maintenance of both the computing hardware itself and all
the equipment needed (redundant power supply, cooling systems, networking
systems) is offloaded to the cloud provider.

Cloud computing has been a successful model for computation by abstracting the com-
putational means from the actual computation. On the user side, there is no need to
know where the computation will be held, or what kind of hardware will carry the
computation. Cloud providers can offer such services by leveraging sizable economies
of scale while designing large computing facilities accessible through the cloud. On
the provider’s side, according to [ZCB10, GHMP09], notable factors for the success
of providing computing facilities as a utility are:

Economies of scale
The overall cost of a unit of computation depends on multiple factors. Naturally,
fractions of this cost are subject to rather significant economies of scale. This is
particularly the case for networking and cooling facilities for which the marginal
cost of an additional server is negligible.

Resiliency and Redundancy
Given their critical size, cloud providers are implementing a certain degree of
resilience and redundancy across their computing facility. This allows cloud
providers to offer a high level of availability of their computing infrastructure.

The computation power offered by cloud providers is usually implemented in data cen-
tres hosting both servers used to carry computation along with the equipment needed
for their operation. These facilities usually implement a certain degree of redundancy
in both power supply and network communication capabilities. Concentrating consid-
erable computational power in one place allows one to fully leverage economies of

Combinatorial Optimisation for Sustainable
Cloud Computing

4 Milan De Cauwer

1. INTRODUCTION 1.3 Key Challenges

scale to reduce the initial investment, operating costs and maintenance cost. Since data
centres are the physical backbone hosting the computational power of cloud systems,
adequate management of the workload they have to face is critical.

In this dissertation we have a particular focus on workload consolidation problems,
sometimes also called resource or server consolidation. It is a technique often lever-
aged in data centres to increase the overall efficiency of a cluster of physical ma-
chines. Workload consolidation techniques may be used to reduce the overall number
of servers either owned or required by the cloud provider to meet the demand from
end users. The effort in developing consolidation mechanisms is justified by the rather
low rate at which servers resources are utilised. In other words, the aim of consoli-
dation is to do more [work] with less [space/energy]. Although the concepts behind
workload consolidation are rather simple, the implementation is usually constrained
by both the technologies at play in the data centre and the particular use-case that the
cloud provider is focused on.

1.3 Key Challenges

Formally modeling cloud computing systems exposes a few key challenges that need to
be taken into consideration. Due to the heterogeneity of the various use-cases tackled
in industry, settling on a unique problem to model and solve is a rather difficult task.
The industrial applications of cloud computing cover a large spectrum of use-cases
ranging from hosting long running cloud services [PCG+10, BFF+10] to on-demand
performance computing [LTC14a, MHL+13]. In addition, cloud computing infras-
tructures often implement very different hardware technologies. These technologies
and standards are changing tremendously on both a software and hardware level. This
leads to a large variety of operational settings for which optimisation models can be
widely divergent. Appropriately capturing the problems faced by cloud providers can
therefore be challenging.

A large variety of problems faced by cloud providers are modeled for optimisation
purposes. The nature of these problems are ranging from discrete optimisation for
managing workload in geographically distributed data centres [WGM+17, CO13] to
continuous non-linear optimisation applied to managing temperatures within a data
centres [CCMO15, CSG11]. In addition, it is often the case that goals are conflicting.
For instance, many operational setting require techniques from the realm of multi-
objective optimisation. The trade-off between how many servers are required to ac-

Combinatorial Optimisation for Sustainable
Cloud Computing

5 Milan De Cauwer

1. INTRODUCTION 1.4 Thesis Statement and Contributions

commodate a given workload against the makespan of the schedule illustrates the need
for multi-objective approaches [XF10]. Another example of conflicting objectives is
the downtime of servers against the overall maintenance cost of a Cloud system. Fi-
nally, the nature of workloads faced by cloud systems is quite often characterised by
uncertainties linked to the online nature of consolidation problems on one side and the
stochastic nature of some aspects of the tasks to be consolidated. Understanding the
stochastic nature of workloads faced by cloud providers is key to drive optimisation
processes to achieve better decision-making.

Beyond the large variety of aspects that can be studied for optimisation purposes, com-
binatorial problems found in cloud systems share the property of having a rather large
size [RTG+12]. Due to the effort required by cloud providers to reach a critical oper-
ational size, combinatorial aspects related to workload assignment, server placement
and cooling are by nature characterised by large instance sizes. Despite the large size
of the problems, a desirable aspect is to implement any-time properties in algorithms
and procedures. It is indeed crucial for cloud providers to be able to take decisions in a
timely manner to be able to cope with high utilisation of their infrastructure [AFG+09].

Within the broad range of optimisation problems discussed in the literature, workload
consolidation has emerged as a suitable technique for managing workloads in the con-
text of cloud computing [HI15]. This dissertation therefore focuses on a variety of
consolidation problems with the aim of reducing the resource wastage in data centres.

1.4 Thesis Statement and Contributions

The implementation of cloud computing gives rise to complex systems in which many
aspects can be optimised [ZCB10]. In an attempt to bring elements of sustainabil-
ity to cloud computing infrastructure this dissertation will be centered on formalising
and solving combinatorial problems with a particular focus on workload consolidation
problems. In the following, we state the thesis defended in this dissertation along with
the contributions it makes to the field.

Sub-thesis 1. To date a full body of literature is focused on optimising energy con-

sumption in cloud computing infrastructures. Many approaches do rely on well-known

combinatorial problems, either studied on their own or in the context of an other ap-

plication. We claim that the bin packing problem is a natural view on many workload

consolidation problems. However, novel generalisations of the classic bin packing

problem are needed to capture the sophistication of real-world data centres setting.

Combinatorial Optimisation for Sustainable
Cloud Computing

6 Milan De Cauwer

1. INTRODUCTION 1.4 Thesis Statement and Contributions

Contributions. Chapter 3 employs mathematical modeling to formally express a core
workload consolidation problem found in many applications pertaining to cloud sys-
tems. We explore a number of techniques from the realm of operations research and
constraint programming to solve this core consolidation problem in an offline context.
These contributions have appeared in the following publication:

Milan De Cauwer, Deepak Mehta, and Barry O’Sullivan. The temporal
bin packing problem: An application to workload management in data
centres. In 28th IEEE International Conference on Tools with Artificial

Intelligence, ICTAI 2016, San Jose, CA, USA, November 6-8, 2016,
pages 157–164. IEEE Computer Society, 2016.

Chapter 4 expands on the latter by casting it in a semi-online setting in which informa-
tion is only partially known at decision time. We present a set of solving approaches
tailored to finding solutions to the consolidation problem under severe computational
time limits. Although the latter aspect is often ignored in the literature, cloud providers
need to implement fast decision-making policies. These aspects are discussed in the
following journal paper:

Vincent Armant, Milan De Cauwer, Kenneth N. Brown, and Barry
O’Sullivan. Semi-online task assignment policies for workload con-
solidation in cloud computing systems. Future Generation Computer

Systems, 82:89–103, 2018.

Sub-thesis 2 A common issue in daily operations in data centres is dealing with in-

complete or even missing information regarding the nature of the workload that needs

to be consolidated. We claim that some missing information can be at least partially

predicted with machine learning techniques and successfully used within optimisation

processes.

Contributions. In Chapter 5 we discuss a consolidation problem for which uncertain-
ties are coming from unknown object sizes at decision time. The specific application
studied in this chapter needs to take into account object eviction to avoid over allocat-
ing machines. We explore the interactions between standard machine learning models
used to retrieve missing information and the outcome of consolidation policies. These
contributions appear as a comprehensive article in the following journal:

Jesus Omana Iglesias, Milan De Cauwer, Deepak Mehta, Barry
O’Sullivan, and Liam Murphy. Increasing task consolidation efficiency
by using more accurate resource estimations. Future Generation Comp.

Syst., 56:407–420, 2016.

Combinatorial Optimisation for Sustainable
Cloud Computing

7 Milan De Cauwer

1. INTRODUCTION 1.5 Structure of the Dissertation

In Chapter 6 the nature of the uncertainty differs from previous chapter in the sense
that the size of the objects is varying in time. The information available at decision
time is somehow restricted by the online nature of the problem. In this chapter we
discuss a rather different consolidation problem in which workload can be migrated in
order to retain a minimum energy cost while satisfying operational constraints. The
latter contributions have been published as a short paper as follows:

Milan De Cauwer, Deepak Mehta, Barry O’Sullivan, Helmut Simonis,
and Hadrien Cambazard. Proactive workload consolidation for reduc-
ing energy cost over a given time horizon. In 14th IEEE/ACM Inter-

national Symposium on Cluster, Cloud and Grid Computing, CCGrid

2014, Chicago, IL, USA, May 26-29, 2014, pages 558–561, 2014.

This dissertation aims to defend these claims. The next sections provides a detailed
outline of the contents of each chapters.

1.5 Structure of the Dissertation

This dissertation addresses the challenges discussed in the previous section and will
be structured as follows. Chapter 2 provides an overview of the area in which our
work has been carried. We provide background information on techniques for mod-
eling and solving combinatorial problems. We then discuss organisational aspects of
cloud computing systems and review efforts made to optimise various facets of such
infrastructures. A particular focus will be put on workload consolidation problems and
relevant techniques developed to solve them. The variety of consolidation problems
tackled throughout this dissertation is rather broad in the settings they are considering.
Therefore each contribution chapter features its own set of notation.

Chapter 3 formalises a packing problem that emerges as a core sub-problem for man-
aging workload consolidation in data centres. We introduce this packing problem as a
generalisation of the bin packing problem in which items have a lifespan and the ob-
jective function is aiming at minimising some notion of resource wastage. Contrasting
optimisation models using Mixed Integer Programming and Constraint Programming
were developed and studied.

Chapter 4 expands on the previously defined packing problem by casting the static
consolidation problem in a semi-online setting. Because of the online nature of con-
solidation problems, we are interested in developing online or semi-online policies for
workload consolidation allowing one to compute a feasible allocation plan in a short

Combinatorial Optimisation for Sustainable
Cloud Computing

8 Milan De Cauwer

1. INTRODUCTION 1.5 Structure of the Dissertation

computational time. We introduce a semi-online formalisation of the core problem dis-
cussed in the previous chapter and introduce an assignment policy that exploits prop-
erties of this formulation. In addition, we systematically study two aspects pertaining
to real-world implementations of workload consolidation problems. We first relax the
assumption of perfect knowledge of task duration and study the behavior of policies
under imperfect information. The second aspect studied is the trade-off between delay
in processing the workload against the quality of consolidation policies.

In Chapter 5, we introduce elements of stochasticity. For the sake of developing more
realistic consolidation environments, we explore a model in which the size of tasks is
not fully known at decision time. Our methodology uses elements of machine learning
in order to accurately predict the size of the tasks to be assigned. So formulated, the
problem is closer to traditional scheduling problems rather than packing problems. We
propose a methodology for achieving an efficient utilisation of a cluster’s resources
while providing users with fast and reliable computing services. The methodology
consists of three main modules: i) a prediction module that forecasts the maximum
resource requirement of a task; ii) a scheduling module that efficiently consolidates
the workload; and iii) a monitoring module that tracks the levels of utilisation of the
machines and tasks, and can evict one or more tasks from the machines.

In Chapter 6, we explore a relaxed consolidation problem in which we allow migration
of tasks to take place. Although migrations come at the cost of introducing latency
in the system, it allows for more efficient consolidation techniques. In the considered
model, information available at decision time is only partial and limited to an arbitrar-
ily small rolling window of time. We perform investigations to understand the rela-
tionship between the number of time-periods considered in one optimisation step and
migration-limits on the Service Level Agreements, energy cost, server-transition cost
and migration cost. Our results suggest that looking ahead by only a few time-periods
can lead to significantly more efficient resource provisioning over the entire horizon
and consequently higher energy efficiency and close to no service level violations.

In Chapter 7, we present a parameterisable benchmark generator for bin packing in-
stances based on the well-known Weibull distribution. Using the shape and scale pa-
rameters of this distribution we can generate benchmarks that contain a variety of item
size distributions. We show that real-world bin packing benchmarks can be modeled
extremely well using our approach. We also study both systematic and heuristic bin
packing methods under a variety of Weibull settings.

Finally, in Chapter 8, we summarise our work and contributions and provide directions
that would be worthy to explore as future work.

Combinatorial Optimisation for Sustainable
Cloud Computing

9 Milan De Cauwer

Chapter 2

Background, Related Work and
Datasets

Summary. This chapter introduces background information and re-

lated work revolving around the notions of combinatorial optimisation and

cloud computing technologies. We first introduce constraint optimisation

problems and review various techniques to model and solve them. More

specifically, we discuss concepts encompassing optimal versus heuristic

methods to solve combinatorial problems and some elements of online ver-

sus offline optimisation. Several solving paradigms, along with front-end

and back-end toolkits used in this dissertation are then presented.

We then discuss structural aspects of modern cloud computing systems

and how their underlying mechanisms are implemented in data centres.

We review and discuss efforts made by the research community to model

complex cloud systems for optimisation purposes. We put a particular fo-

cus on energy consumption models and workload management techniques

with a emphasis on workload consolidation strategies.

Concepts from both the realm of optimisation techniques and from cloud

computing are then mobilised in a case study showing the importance of

appropriately managing workloads in distributed cloud systems. We show

how workload can be balanced among geographically distributed data

centres in order to take advantage of price differentials on local electricity

markets.

10

2. BACKGROUND, RELATED WORK AND
DATASETS 2.1 Overview

2.1 Overview

In this chapter we introduce concepts needed to understand the formalism of problem
modeling and problem solving using tools such as mathematical modeling and con-
straint optimisation. We discuss concepts related to problem modeling, online versus
offline optimisation and systematic versus heuristic search. Although these concepts
will be used as tools to model and solve workload allocation problems in cloud com-
puting, we aim at providing the necessary background to the reader to understand how
these concepts should be leveraged. The concepts presented here allow further discus-
sions to be self-contained. We use the ubiquitous bin packing problem as an illustration
of these concepts.

We then provide background information on cloud computing and its structural organ-
isation. We highlight where efforts have been made to reduce the footprint of such
systems. The work presented in this dissertation focuses on various workload con-
solidation problems emerging from modern cloud systems. A large body of literature
arrose from studying a variety of workload management problems arising in cloud
systems. Amongst the various aspects considered for optimisation are energy-aware,
latency-aware, privacy-aware workload management techniques to name but a few.
While settling for one particular family of models is rather difficult because of the het-
erogeneity of technologies and use-cases that can be found in cloud systems, we will
focus on rather high-level workload management policies with the aim of minimising
their energy footprints.

The last section of this chapter showcases the use of optimisation techniques cou-
pled with statistical learning to minimise the overall electricity bill of a network of
interconnected data centres owned by a cloud provider. Many modern cloud systems
are provided using distributed data centres that are geographically spread over vari-
ous locations. Since the energy requirement of these systems is considerable, there
is an incentive to ensure that opportunities to access low-cost energy are exploited.
The underlying idea in this case-study is to distribute the workload faced by the cloud
providers to different locations where energy can be sourced in more affordable mar-
kets. Decisions are mostly driven by local electricity market conditions. We explore
the impact of the level of price variability, time lag between locations due to the geo-
graphical distribution, reconfiguration delay and accuracy of price predictions on the
overall electricity cost of managing the workload.

Combinatorial Optimisation for Sustainable
Cloud Computing

11 Milan De Cauwer

2. BACKGROUND, RELATED WORK AND
DATASETS 2.2 Constraint Optimisation Problems

2.2 Constraint Optimisation Problems

Many real-world problems can be successfully tackled using the formalism of math-
ematical modeling. Applications are ranging from modeling complex biological sys-
tems [WW11] to modeling and optimising routing problems [PGGM13, ES10]. In par-
ticular, tackling decision and optimisation problems has been the focus of operations
research in an effort to describe systems in a rigorous way. In doing so, the model can
be studied in order to understand, make predictions, or optimise the underlying system.

Constraint optimisation is a convenient and powerful paradigm to express and optimise
real-world combinatorial problems [RBW06]. For instance, the family of planning and
scheduling problems are typically modeled using the formalism of constraint optimi-
sation [Tim02]. This formalism will be used in this dissertation to study workload
management problems arising in cloud system.

2.2.1 Definitions

Constraint programming is a generic framework used to formally describe and solve
combinatorial problems[RBW06]. Using this framework, one aims at finding a com-
plete assignment from values to variables while satisfying a set of constraints. Due
to their combinatorial complexity, solving such problems require the use of a search
algorithm implementing some backtracking mechanism. Constraint programming can
be used to approach both satisfaction and optimisation problems. The remainder of
this section provides details on the previous distinction.

Solving Combinatorial Satisfaction Problems (CSPs) requires finding a value for each
variable such that all constraints are satisfied. In contrast, to solve Combinatorial Op-
timisation problems one aims at finding the best solution that optimises a function
defined over the problem’s variables. Solving a COP requires one to find a complete
assignment from values to variables in such a way that the objective function is either
minimised or maximised depending on the nature of the problem at hand. Naturally,
the assignment is considered valid only if it does satisfy all the constraints stated in the
problem.

Definition 1. Constraint Optimisation Problem. A COP P is a tuple 〈X ,D, C, f〉
where X = {X1, . . . ,Xn} is a finite set of n variables, D = {D(X1), . . . ,D(Xn)}
the set of domains where D(Xi) is a set of values that can be assigned to variable Xi.
The set of k constraints C = {c1, . . . , ck} binds the variables together. Finally, the

Combinatorial Optimisation for Sustainable
Cloud Computing

12 Milan De Cauwer

2. BACKGROUND, RELATED WORK AND
DATASETS 2.2 Constraint Optimisation Problems

objective function f 7→ R is defined over the set of variables.

In a generic form, a combinatorial optimisation problem can be expressed as:

min f(X)

Subject to

X ∈ D(Xi).

The various combinatorial optimisation problems discussed in this dissertation are
dealing with finite discrete domains. This is due to the strong combinatorial pack-
ing/assignment aspect in variety of workload management problems considered here.

We discuss the bin packing problem to illustrate the aforementioned concepts. The
one-dimensional bin packing problem is ubiquitous in operations research. It is de-
fined as follows. Given a set S = {s1, . . . , sn} of n indivisible items, each of a
known positive size si, and m bins of capacity C, the challenge is to decide whether
we can pack all n items into the m bins such that the sum of sizes of the items
hosted in each bin does not exceed the bin’s capacity C. In the canonical formula-
tion, the bins are considered to be unit sized (i.e. C = 1.0). The one-dimensional
bin packing problem is NP-Complete [CCG+13]. Since it was first discussed, it has
given rise to a full body of literature exploring variants and generalisations of the
one-dimensional case. For instance, natural extensions to multiple dimensions are
discussed in [CK04]. A classification of the variants of packing problems is pro-
vided here [Dyc90]. Among the many applications of this problem are timetabling,
scheduling, stock cutting, television commercial break scheduling, and container pack-
ing [CO10, dC98]. Higher dimensional bin packing problems are highly relevant to
real-world application. The two-dimensional variant, also known as rectangle packing
has been studied here [SO11, SO08, Vid04, DSD10]. Similarly, the three-dimensional
case has many industrial applications.

Typical bin packing methods rely on either heuristics [ARGA04], meta heuristics such
as genetic algorithms [Fal96], operations research methods [CO10], satisfiability tech-
niques [GP10], or constraint programming [Sch09, Sha04]. There are many known
bounds on the optimal number of bins which can be used in most of the techniques
mentioned above [dC98, LLM03, MT90b].

To illustrate the modeling step, we formulate the bin packing problem as a combina-

Combinatorial Optimisation for Sustainable
Cloud Computing

13 Milan De Cauwer

2. BACKGROUND, RELATED WORK AND
DATASETS 2.2 Constraint Optimisation Problems

torial optimisation problem. Let I = {1, . . . , n} be the set of indices over the n items
and J = {1, . . . ,m} be the indices of the set of m bins.

min
∑
j∈J

yj (2.1)

s.t.
∑
j∈J

xij = 1 ∀i ∈ I (2.2)

∑
i∈I

xij × si ≤ C × yj ∀j ∈ J (2.3)

xij ∈ {0, 1} ∀i ∈ I ∀j ∈ J (2.4)

yj ∈ {0, 1} ∀j ∈ J (2.5)

This formulation uses two sets of decision variables (i.e. (2.6) and (2.7)). We explain
the semantics of these variables in the following. The set of xij variables encodes the
assignments.

∀i, j ∈ I × J : xij =

1 if item i is hosted in bin j

0 otherwise.
(2.6)

Naturally, in this formulation there are O(n2) x variables with n being the number of
items considered in the problem. The yj variables are encoding whether or not a bin j
is used. A bin is said to be used if it is hosting at least one item.

∀j ∈ J : yj =

1 if bin j is hosting at least one item,

0 otherwise.
(2.7)

The bin packing problem has direct application in the field of data centre optimisation.
Workload consolidation usually involves finding an assignment from tasks to servers
while ensuring that the total amount of resource required by the set of tasks assigned
to a server does not exceed its capacity. The application of constraint programming to
this domain has only very recently attracted attention [HDL11, RR11].

Figure 2.1 illustrates an instance solution of the bin packing problem in which we
have a set of 8 items with the following sizes: {0.6, 0.5, 0.4, 0.4, 0.4, 0.3, 0.2, 0.2}. The

Combinatorial Optimisation for Sustainable
Cloud Computing

14 Milan De Cauwer

2. BACKGROUND, RELATED WORK AND
DATASETS 2.2 Constraint Optimisation Problems

1.0

0.4

0.4

0.2

0.5

0.4

0.6

0.2

0.3

Figure 2.1: Illustrating a solution the bin packing problem.

figure depicts a valid solution to the problem for which items are assigned to four
distinct unit-sized bins. Although this solution does not break any constraints in the
formulated problem, it is arguably not optimal because items could be packed in three
bins as illustrated in Figure 2.2b.

Let the items be numbered as they appear in the list, i.e. s1 = 0.6, s2 = 0.5, . . . , s8 =
0.2. As can be seen on the illustration, this solution fixes variables as follows: x3,1 =
x4,1 = x7,1 = x2,2 = x5,2 = x1,3 = x8,3 = x6,4 = 1. On one hand, constraints (2.3)
are guaranteeing that the sum of the size of all items assign to the bin does not exceed
its capacity, on the other hand, they are ensuring that the relevant y variables are set to
1. Following this example, y1 = y2 = y3 = y4 = 1. Note that any other xij variables
is set to 0 by virtue of constraint (2.3) and the fact that the program minimises the
objective function (2.1).

2.2.2 Optimal and Sub-optimal Solutions

Solving constraint optimisation problems usually involves finding a complete assign-
ment from the variables to a value in their respective domains in such a way that all the
constraints defined on the problem are satisfied. Such an assignment produces a valid
solution for the COP.

Definition 2. Solution Optimality in COP. Let P be an instance of a combinatorial

optimisation problem as per Definition 1. Let S and S ′ be a complete assignment of

variables to values from their respective domains such that the constraints of P are

satisfied. The solution S is said optimal if there is no solution S ′ with a better value of

the objective function.

Although it is in general desirable to find such an optimal solution using complete
search, it may not always be possible in reasonable computational time due to the

Combinatorial Optimisation for Sustainable
Cloud Computing

15 Milan De Cauwer

2. BACKGROUND, RELATED WORK AND
DATASETS 2.2 Constraint Optimisation Problems

computational complexity of solving a COP. Proving optimality may need to therefore
be abandoned for the sake of producing valid solutions of good quality in a reasonable
amount of time using concepts related to heuristic search.

Many ad-hoc heuristic algorithms have been developed for various combinatorial prob-
lems to compensate for the NP-hardness of some COPs. This in particularly true in
real-world environments in which the time allowed for making decisions can be short
because of the operational nature of the decision. In the case of the bin packing prob-
lem, a variety of heuristics have been developed including some well-known heuristics
such as MAXREST, FIRSTFIT, BESTFIT and NEXTFIT [CGJ97]. Briefly these heuris-
tics operate as follows: MAXREST places the next item into the bin with maximum
remaining space capacity; FIRSTFIT places the next item into the first bin that can
accommodate it; BESTFIT places the next item into the bin that will have the least re-
maining capacity once the item has been accommodated by it; finally, NEXTFIT keeps
the last bin open and creates a new bin if the next item cannot be accommodated in the
current bin, which it will then close.

Using the example instance of BP illustrated on Figure 2.1, Figure 2.2 shows the be-
haviour of the FIRSTFIT heuristic (Figure 2.2a) in contrast with a provably optimal
solution (Figure 2.2b). The FIRSTFIT heuristics fails to return the optimal solution on
this particular instance of the bin packing problem. Although its assignment is not op-
timal, the solution is feasible as all the constraints on the problem on the variables are
satisfied. Hence, this solution can be used as an upper bound on the optimal number
of bins to be used in this instance.

1.0

0.6

0.4

0.5

0.4

0.4

0.3

0.2

0.2

(a) Solution returned by the FFD heuristic for
bin packing. This solution uses 4 bins and
hence is not optimal.

1.0

0.6

0.4

0.4

0.4

0.2

0.5

0.3

0.2

(b) Optimal solution using 3 bins to accom-
modate all the items.

Figure 2.2: Heuristic solution against optimal solution

Combinatorial Optimisation for Sustainable
Cloud Computing

16 Milan De Cauwer

2. BACKGROUND, RELATED WORK AND
DATASETS 2.2 Constraint Optimisation Problems

2.2.3 Online, Semi-online and Offline Optimisation

Through this dissertation we tackle various consolidation problems that are expressed
in using offline, semi-online or online models. Although, in real production environ-
ments, consolidation problems are naturally often expressed as online problems, the
offline formulation of these problems are interesting to study for their combinatorial
hardness. A combinatorial problem is said to be offline if all relevant information is
available at decision time [JW12]. In such a context, provided that the information is
accurate, complete solvers can be used to find optimal solutions.

On the other hand, many real-world decision-making situations are naturally thought
of as online problems [JW12]. In an online setting, the decision-maker does not have
access to all the information necessary to take a fully informed decision. This is due to
the fact that some information has yet to be revealed. Traditionally algorithms devel-
oped for online settings are studied with concepts developed from competitive analy-
sis [MMS90]. Online optimisation fundamentally differs from stochastic programming
in the sense that uncertainties are coming from an unknown future rather than being
intrinsic to the objects handled in the problem [Spa03].

Sitting somewhere in between online and offline optimisation is semi-online optimi-
sation. Semi-online optimisation is fundamentally similar to online optimisation in
the sense that access to information is limited to what was revealed so far. We distin-
guish two strategies for decomposing an online problem in a series of offline problems.
These strategies handle local information as follows. The main difference resides in
the fact that a buffer collects information as time progresses. An optimisation step then
takes place considering past information and the information revealed while filling the
buffer.

In the case of bin packing, a significant number of articles consider semi-online vari-
ants of the problem [BB13, GW95, SY08]. To illustrate semi-online optimisation in
the context of bin packing, we come back to the aforementioned example. Let the
items arrive in the following order: L = {0.6, 0.5, 0.4, 0.4, 0.4, 0.3, 0.2, 0.2}. Let us
consider an algorithmOPT (L) assigning items in batches Li in such a way that it min-
imises the number of bins used after each batch. Let the items arrive in two batches:
L0 = {0.6, 0.5, 0.4, 0.4} followed by L1 = {0.4, 0.3, 0.2, 0.2}. The algorithm assigns
all items in L0 before having any knowledge of the second batch. In this case, as
suggested in Figure 2.3, the algorithm OPT (L0) returns the assignment pictured in
Figure 2.3a. This partial solution uses two bins.

The algorithm is then presented with the second batch L1 and has to produce a valid

Combinatorial Optimisation for Sustainable
Cloud Computing

17 Milan De Cauwer

2. BACKGROUND, RELATED WORK AND
DATASETS 2.2 Constraint Optimisation Problems

1.0

0.6

0.4

0.5

0.4

(a) Solution returned after the first optimisa-
tion step.

1.0

0.6

0.4

0.5

0.4

0.4

0.3

0.2

0.2

(b) Solution returned after the second optimi-
sation step.

Figure 2.3: Illustration of the semi-online OPT (Li)

assignment without the possibility of moving previously assigned items. Overall, after
the second optimisation step, the OPT algorithm has produced a solution using three
bins as can be seen on Figure 2.3b. Although valid, this solution is suboptimal com-
pared to a solution produced by an algorithm which has full knowledge of the item
list.

2.2.4 Modeling and Solving Constraint Optimisation Problems

Following the modeling step, the model drawn from the application can be imple-
mented using various modeling/solving paradigms. Which paradigm is to be used
depends on the context surrounding the application.

Integer Programming (IP) has proved to be a very successful methodology to solve
combinatorial optimisation or satisfaction problems [CCZ14]. It differs from Linear
Programming by restricting at least one variable to take integer values. The constraints
and objective function, if any, are linear expressions. Solving an IP problem is NP-
complete. See [NW13] for a survey of linear and mixed integer programming tutorials.

2.2.4.1 Front-end Modeling Tools

With the intention to separate problem modeling from problem solving, various mod-
eling front-ends have been developed. We make use of two front-end modeling tools
allowing to conveniently encode the various problems studied in this thesis.

Numberjack1 is an open source modeling front-end implemented in Python designed
to support a number of C/C++ mixed integer solvers such as Gurobi, CPLEX or

1http://numberjack.ucc.ie/

Combinatorial Optimisation for Sustainable
Cloud Computing

18 Milan De Cauwer

2. BACKGROUND, RELATED WORK AND
DATASETS 2.2 Constraint Optimisation Problems

SCIP as well as multiple satisfiability solvers such as MiniSat and Walksat and con-
straint programming solvers. Numberjack provides a layer of abstraction as a uni-
fied API for modeling combinatorial problems independently from the underlying
solvers [HOO10].

Another tool put to use in the dissertation is developed at Monash University, Aus-
tralia. MiniZinc implements a free and open-source language for constraint satisfac-
tion and constraint optimisation problem [NSB+07a]. It is rather high-level and solver-
independent. It allows for user friendly problem modeling. The model is then compiled
in an intermediate language supported by a large number of back-end solvers.2

Coming back to the bin packing example, Figure 2.4 and Figure 2.5 show high-level
models for the bin packing problem respectively using MiniZinc and Numberjack as
front-end modeling tools. We illustrate modeling a bin packing problem with MiniZinc
using the instance discussed earlier.

Both modeling frameworks are high level tools used to express the bin packing prob-
lem. Their respective first lines are used to declare both constants and variables per-
taining to the problem. We typically need to provide the type of the variables we
problem is dealing with. In this instance, both x and y variables are encoded using
integer values. The set of x variables is encoding the assignment of an item to a bin.
The set of y variables is encoding whether a particular bin is used. Then, we state both
assignment and capacity constraints that are constraining the problem as described in
Section 2.2.1. As a last step, we state that the function that is being minimised accounts
for the number of bins used in the solution.

2.2.4.2 Back-end Solvers

Solving NP-hard combinatorial problems in such a way that an optimal solution
is found requires the use of a complete solver implementing some form of back-
tracking system that allows to systematically explore the search space. Many such
systems have been implemented using different techniques. In practice, we made
use of CPLEX [CPL10], a state-of-the art MIP solver on one side as well as
GECODE [Gec06], a well established CP solver.

CPLEX
The CPLEX Optimizer is a commercial suite implementing various mathemati-
cal optimisation procedure. It is named after the well known Simplex algorithm

2http://www.minizinc.org/

Combinatorial Optimisation for Sustainable
Cloud Computing

19 Milan De Cauwer

http://www.minizinc.org/

2. BACKGROUND, RELATED WORK AND
DATASETS 2.2 Constraint Optimisation Problems

% A model for the Bin packing problem in MiniZinc.
% Number of items and their capacity
int: m = 8;
int: c = 10;

% set of items
set of int: I = 1..m;

% w[i] is weight of item i
array[I] of int: w = [6, 5, 4, 4, 4, 3, 2, 2];

% set of bins
int: n = m;
set of int: J = 1..n;

% x[i,j] = 1 means item i is in bin j. 0 otherwise
array[I, J] of var 0..1: x;

% y[j] = 1 means bin j contains at least one item
array[J] of var 0..1: y;

% objective is to minimize the number of bins used
var int: obj = sum(j in J) (y[j]);

% Each item must be exactly in one bin
constraint forall(i in I) (

sum(j in J) ([i,j] == 1)
);

% If bin j is used, it must not be overflowed
forall(j in J) (

sum(i in I) (w[i] * x[i,j]) <= c * y[j]
);

solve :: int_search(
[x[i,j] | i in I, j in J] ++ y,
first_fail, indomain_min, complete)
minimize obj;

Figure 2.4: A Minizinc model for bin packing

for linear continuous optimisation. CPLEX now also implements optimisation
algorithms for discrete optimisation [CPL10]. It supports a large variety of lan-
guages ranging from C to Python. CPLEX is supported within Numberjack, the
modeling front-end for Python.

GECODE
Gecode is a toolkit for developing constraint-based systems and applications.
Gecode provides a constraint solver with state-of-the-art performance while be-
ing modular and extensible. GECODE has support within Minizinc and imple-
ments a number of global constraints.

These solvers will be used as tools to solve combinatorial problems defined and study
in the reminder of this thesis.

Combinatorial Optimisation for Sustainable
Cloud Computing

20 Milan De Cauwer

2. BACKGROUND, RELATED WORK AND
DATASETS

2.3 Optimisation Problems in Cloud Computing
Systems

from Numberjack import *

def model_binPacking(data):

model = Model()

x = Matrix(data.nItems, data.nBins)
y = VarArray(data.nBins)

Cost of a solution
obj = Sum(y)
model.add(Minimise(obj))

Constraint assign item
for j in range(data.nBins):

model.add(Sum(x.row[j]) == 1)

for j in range(data.nBins):
xs = [x[(i, j)] for i in range(data.nItems)]
coefs = [data.itemSizes[i] for i in range(data.nItems)]
model += Sum(xs, coefs) < y[j] * data.BinCap

return (obj, x, y, model)

def solver_binPacking(data, param):
(obj, x, y, model) = model_binPacking(data)
solver = model.load(param[’solver’])

solver.solve()

print "Obj : {0}".format(obj.get_value())
print "X : {0}".format(x)
print "Y : {0}".format(y)

class BinPackingData:
def __init__(self):

self.itemSizes = [6, 5, 4, 4, 4, 3, 2, 2]
self.nItems = len(self.itemSizes)
self.nBins = self.nItems
self.BinCap = 10

solver_binPacking(BinPackingData(), input({’solver’:’CPLEX’}))

Figure 2.5: A Numberjack model for bin packing

2.3 Optimisation Problems in Cloud Computing Sys-
tems

Over the last decade cloud-based services have attracted a lot of interest from the re-
search community. We review work carried in an effort to maintain control over the
cost of owning and operating cloud systems. A particular focus is put on workload
management techniques as they pertain to this dissertation.

Combinatorial Optimisation for Sustainable
Cloud Computing

21 Milan De Cauwer

2. BACKGROUND, RELATED WORK AND
DATASETS

2.3 Optimisation Problems in Cloud Computing
Systems

2.3.1 Cost Models for Data Centres

Efforts to optimise cost aspects of cloud computing have covered many aspects of
cloud systems. A cost of ownership breakdown of a cloud structure can be found
in [GHMP08, DWC10]. The cost analysis suggests that there are many opportunities
for optimisation approaches to reduce it. An economic focused approach of such a
breakdown can be found in [SS10] and [CDP05] in which authors show the relative
cost of various key elements needed to build, maintain and operate a cloud system. In
particular, energy cost models are found to be widely diverse and highly dependent on
technologies implemented in and across the data centres.

Because of the rapidly changing technologies, a precise quantification of the budget
needed to develop a cloud system is difficult to estimate. It is generally reported in the
literature, see [KBSW11, MBS+11], that the computational equipment (i.e. servers,
CPUs, memory and storage equipment) represents roughly 45% of the overall cost.
The infrastructure and networking facilities needed to operate these servers are ac-
counting for up 40% of the cost. Finally, the electricity bill represents 10 to 15% of
the operational cost of running such a structure.

A very comprehensive survey [DWF16] published in 2016 discusses the recent contri-
butions on energy consumption modeling in data centres and cloud system. The sur-
vey covers a wide range of facets relevant to cloud infrastructures spanning from low
level models for digital circuitry energy efficiency to high-level workload management
procedures. The authors review more than 200 models relevant for the purpose of un-
derstanding and optimising such systems. These models are systematically classified
according to a taxonomy proposed in the survey. The work presented in this disser-
tation falls in the scope of rather high-level software-centric workload consolidation
policies.

In the extensive amount of research carried by the research community focused on
cloud optimisation over the last decade, much effort has been invested in developing
comprehensive and realistic models describing cloud systems [GHMP09]. It has been
pointed out numerous times that beyond the cost of building and maintaining such
systems, how assets are utilised to accomodate the demand for computation is a crit-
ical aspect. Indeed, appropriately managing workloads has been shown to be a key
challenge for building sustainable cloud systems [BB10b, GHMP08, Koo08]. In this
context, this dissertation puts the focus on workload management.

Combinatorial Optimisation for Sustainable
Cloud Computing

22 Milan De Cauwer

2. BACKGROUND, RELATED WORK AND
DATASETS

2.3 Optimisation Problems in Cloud Computing
Systems

2.3.2 Managing Workloads in Data Centres

During normal operations, cloud providers face a set of tasks to be assigned to physical
machines in the data centre. Tasks usually take the form of virtualised workloads that
can run concurrently on a physical machine [BB10b]. We discuss further details of vir-
tualisation technologies in the next section. Data centres are typically over-provisioned
in terms of number of available machines to be able to cope with high fluctuations in
the demand for computing power [AFG+09]. Having a much larger pool of machines
than needed at most times also allows one to design fault resilient systems [GHMP08].
The downside of over-provisioning is that only a small fraction (6-12%) of the elec-
tricity used by data centres can be attributed to productive computation. 3

2.3.3 Workload Consolidation and Virtualisation Technologies

The aim of workload consolidation, usually implemented through virtualisation of
assets, is to increase the utilisation of a subset of servers. Consolidation is typi-
cally achieved by allocating multiple computational tasks on the same physical ma-
chine [AGH+15]. In turn, workload consolidation allows data centre operators to
spread workload over a smaller set of machines so that those remaining unused can
be either powered down or put into a standby mode. Ultimately, consolidation tech-
niques increase the overall resource utilisation of servers actually used for computation
and helps to reduce the overall number of servers required by the cloud provider to ac-
comodate the workload.

Consolidation techniques can be implemented in various ways depending on the infras-
tructure’s underlying capabilities and technologies, but also on the focus and needs of
the applications running on such a system [AGH+15, CPW07, GHZ13]. Virtualisation
of computing environments is a key technology to help develop workload consolida-
tion mechanisms. This is particularly true while implementing dynamic consolidation
schemes as they require the virtualised computing environment to be migrated from a
host machine to another one [FNCR11].

A number of maturing technologies allowed for the development of layers of ab-
straction between computing environment and computing hardware. Virtual Machines
(VMs) are an example of such an abstraction by implementing a software layer emu-
lating a computer’s physical hardware. VMs are an essential mechanism to implement

3http://www.sallan.org/pdf-docs/McKinsey_Data_Center_Efficiency.
pdf

Combinatorial Optimisation for Sustainable
Cloud Computing

23 Milan De Cauwer

http://www.sallan.org/pdf-docs/McKinsey_Data_Center_Efficiency.pdf
http://www.sallan.org/pdf-docs/McKinsey_Data_Center_Efficiency.pdf

2. BACKGROUND, RELATED WORK AND
DATASETS

2.3 Optimisation Problems in Cloud Computing
Systems

workload consolidation policies in the sense that they allow multiple fully virtualised
environments to be run concurrently on the same computing hardware. A survey on
VM consolidation and green cloud computing can be found in [HI15].

Workload consolidation policies can be either static or dynamic [BKB07]. Static work-

load consolidation policies usually use per-VM historical or estimated average/peak
resource demands to decide on an assignment. Assignments of tasks to servers may
not be recomputed for long periods of time. Depending on the kind of workload and
the service offered by the cloud provider, a task may be assigned to a machine for its
entire duration without ever be moved to an other host.

In contrast, dynamic workload management is implemented on short timescales,
preferably shorter than periods of significant variability of the resource de-
mand [BB12]. It is a reactive approach in which servers are continuously monitored
and the reconfiguration of VMs to servers is triggered when the servers are either over-
loaded, under-utilised or for some reason are not available for hosting workload. Many
data centres have implemented the necessary technologies and infrastructure for work-
load migration.

There are several reasons for migrating the load of one or more virtual applications
from their current host servers to different ones. For example, if the load on a server
is very high (or very low), or if the server is about to shut down, then one might want
to move some or all the virtual machines from that server to an other. Also, if there
is a server where the energy cost per unit of computation is cheaper, then one might
want to reassign some virtual applications to that server so that the overall cost of
energy consumption is reduced. More specifically, the challenge of dynamic workload
consolidation is to consolidate server workload efficiently by deciding which virtual
machine to migrate, where to migrate, when to migrate, and, when and which servers
to switch on or off. Various objective functions coul be considered, so that the overall
energy costs are minimised [GHZ13].

2.3.4 Workload Consolidation as a Packing Problem

A natural candidate modeling framework for workload consolidation problems in
cloud systems is the family of combinatorial packing problems [RKS+08]. This family
of problems can model many workload consolidation problems quite naturally since its
core is to find a complete assignment of smaller items to larger containers (traditionally
referred to as bins) under capacity constraints. Using cloud computing terminology,
pieces of virtualised workloads can be regarded as items to be packed on servers (bins)

Combinatorial Optimisation for Sustainable
Cloud Computing

24 Milan De Cauwer

2. BACKGROUND, RELATED WORK AND
DATASETS

2.3 Optimisation Problems in Cloud Computing
Systems

in such a way that one does not exceed the bin’s capacity. Many workload manage-
ment models are to some extent inspired by variations of the bin packing problem
where available resources on servers are seen as bin capacities and tasks seen as items
to be assigned [GHZ13, LTC14b, WTAPB15, HDL11, RKS+08].

As discussed in Section 2.2, in classical bin packing settings we are given a set of
items along with their sizes and a set of bins with unit capacity. In the optimisation
formulation, the objective is to find an assignment from items to bins such that the
total number of bins used to accommodate items is minimised. See [CJCG+13b] for
a comprehensive review on packing problems and algorithms to solve them. Many
extension and variants of bin packing are relevant to this dissertation. In particular,
the Variable-Size bin packing problem (VBP) is a variant in which bins have different
capacities and the problem is to minimise the sum of the wasted space over all used
bins [FL86]. This model fails to capture the notion of item’s time to live in the bins
which is a crucial aspect of any workload consolidation problem. Another variant
of bin packing related to packing VMs for consolidation purposes is the Vector Bin
Packing problem [CK04]. In this variant, one considers multiple dimensional objects
to be packing in containers. This models are usually not modeling items with duration.

Some bin packing problem variants, usually classified in the family of Dynamic bin
packing problems, capture the notion of items having a lifespan in bins [BJK14]. These
models typically capture the latter by adding a duration attribute to items. Items, once
assigned to a bin, will be consuming space (resources) over the time of their lifespan. In
this framework, items are typically characterised by size, arbitrary arrival and departure
times (or duration). The objective is to minimise the maximum number of bins ever
used over time. Although closely related, in subsequent chapters we study the problem
from different angle where we aim to minimise the cumulative cost resulting from
using bins over a given horizon.

As a related extension, the fully dynamic bin packing problem [IL09, BJK14] allows to
rearrange the items across the bins to retain a minimal number of used bins. Multiple
contrasting models are discussed in the literature. Differences revolving in particular
around the notion of item reassignments. For instance, the case in which an arbitrary
upper bound (at most k) on the number of item rearrangements allowed in an optimi-
sation step in discussed in [JK13]. This upper bound on the number of rearrangements
is expressed through a ratio computed as the number of items reassigned over number
of items arriving. On the other hand, some models are integrating a cost linked to re-
arrangements within the objective function [CMOS13a]. This rearrangement of items
between bins is known to the cloud computing community as task or VM migrations.

Combinatorial Optimisation for Sustainable
Cloud Computing

25 Milan De Cauwer

2. BACKGROUND, RELATED WORK AND
DATASETS

2.3 Optimisation Problems in Cloud Computing
Systems

2.3.5 Extracting Evaluation Datasets

A significant proportion of the work carried out in this dissertation analyses workload
management strategies in different contexts. Beyond synthetic data sets, we are inter-
ested to study how these policies behave facing workloads coming from a real world
data centre. Unlike more traditional scientific or high-end computing environments,
cloud computing serves a much broader variety of workload profiles. For instance,
long-running Internet services, large-scale data analysis or even testing and developing
of software applications [RTG+12, DKC13] have been brought to cloud environments.

In 2011, Google data centre engineers released a substantial data log tracing the activity
of one of their data centres over the period of 29 days [RWH11]. We present here
an analysis of this data sets as it illustrates relevant aspects of workload as faced by
cloud providers. The information extracted from this dataset will be used to evaluate
consolidation policies throughout this dissertation.

The trace contains information about the computing power hosted locally and the
workload to be processed on it. To a large extent the data set illustrates well the unique
challenges that cloud providers have to face. The trace includes information on mil-
lions of tasks scheduled across 12,583 machines. The trace consists of more than
40, 000 cloud applications, which are called numerous times by thousands of users in
the form of jobs [DKC13]. In this section, we review the first 48 hours of the Google
trace.

2.3.5.1 Data Extraction

In the trace, a task represents a Linux program, possibly consisting of multiple pro-
cesses, to be run on a single machine. The trace considers a set of resources: CPU,
RAM, disk space, disk-time fraction (I/O seconds) along with the resource capacities
for each machine, the user-specified maximum requirements of resources, and time-
variable resource usages for all tasks. These values have been normalized between 0
and 1, according to the maximum capacity of a resource from the entire set of ma-
chines. Moreover, the trace includes tasks’ status (refered to as events), such as: sub-

mitted, waiting to be scheduled, running, evicted, killed, resubmitted or finished. The
reader can refer to [RWH11] for a complete discussion of the original trace.

To evaluate workload consolidation policies, we are interested in extracting informa-
tion on tasks fully processed by the cloud system. We consider a task in the trace
completed if it ran till completion, or was evicted and not submitted again. Tasks that

Combinatorial Optimisation for Sustainable
Cloud Computing

26 Milan De Cauwer

2. BACKGROUND, RELATED WORK AND
DATASETS

2.3 Optimisation Problems in Cloud Computing
Systems

do not meet this condition in the trace were discarded, since the information we have
is too little to properly compute their properties. We then define the task’s duration as
the time difference between the task’s completion and its last submission time. The
application described in the trace considers that tasks can not be partially completed
and resumed later. Furthermore, we also extracted the task resource utilisation profiles
of CPU and RAM over its duration. We use the jobID as the unique identifier for a job,
and for each of these jobs we extracted the duration of all its tasks, the user-specified
maximum requirement for each resource, and a set of actual usages for each resource
for all of its tasks. Moreover, we did not use all the attributes available from the trace.
We focus mainly on the variables that described the job events, tasks events, tasks
usage, and machines attributes.

[0, 20] (20, 40] (40, 60] (60, 80] (80, 100]
0

10

20

30

40

50

60

70

80
Wasted resources

Percentage of non−utilized resources

P
e
rc

e
n
ta

g
e
 o

f
ta

s
k
s

CPU

RAM

Figure 2.6: An analysis of the percentage of tasks with non-utilized resources. The per-
centage of non-utilized resources is computed as the difference between the allocated
and the utilized resources by a task.

In this dissertation, when use is made of this data set, we either consider one resource
(i.e. CPU), or a combination of resources (i.e. CPU and RAM), since these were the only
two resources for which one could retrieve the relevant information for all machines
and tasks. The attributes that we considered for CPU and RAM are: the CPU rate,
which indicates the average CPU utilisation for a sample period of 5 minutes, and the
canonical RAM usage, which represents the average RAM consumption for the same
sampling period. Upon submission of tasks, the cloud system users are invited to
provide an estimation of the CPU and RAM needed. We refer to this quantity as the
users’ resource limits. This information, although an approximation, is in turn used by

Combinatorial Optimisation for Sustainable
Cloud Computing

27 Milan De Cauwer

2. BACKGROUND, RELATED WORK AND
DATASETS

2.3 Optimisation Problems in Cloud Computing
Systems

the cloud provider to decide on an assignment for any given task.

2.3.5.2 Characterising the Workload

For the studied tasks, we noticed that 2.8% of the tasks had a duration of less than
0 seconds, meaning that they were submitted but were never scheduled. These tasks
were naturally discarded from the data set. Moreover, tasks with a CPU consumption
higher than 1.0 were also removed from the experiments, since those values could not
be compared directly to the machines’ resources. These only occurred for 13 out of
∼ 1.8 million tasks and are referred to as anomalies by the team that released the
original trace.

0 (0,10] (10,20] (20,30] (30,40] (40,50] (50,60] (60,70] (70,80] (80,90] (90,100)

20

40

60

80

100

120

140

Percentage of non−utilized resources

Av
er

ag
e

ta
sk

 d
ur

at
io

n
(m

in
ut

es
)

CPU
RAM

Figure 2.7: Relationship between over-requested resources and the duration of the
tasks

We investigated whether there was a significant difference between the users’ resource
limits and the tasks’ maximum resource consumption within a 48 hours time frame.
Figure 2.6 presents the tasks that requested unnecessary resources. We observed that
the majority of tasks, namely 77.4% in the case of CPU and 63.7% in the case of RAM,
requested between 80% and 99% more resources than what the task consumes at max-
imum during its execution. Nevertheless, it is important to emphasize that these errors
occurred mostly for tasks with low duration (i.e. less than an hour) and the number of
tasks with low duration are significantly more than those of longer duration. Figure 2.7
presents the relationship between tasks’ duration and the percentage of the tasks’ non-
utilized resources, we divided the percentage of non-utilized resources into buckets of

Combinatorial Optimisation for Sustainable
Cloud Computing

28 Milan De Cauwer

2. BACKGROUND, RELATED WORK AND
DATASETS

2.3 Optimisation Problems in Cloud Computing
Systems

10% each. Figure 2.7 shows a clear trend in which tasks with long duration were the
ones that requested between 0% and 10% more resources than necessary, while the
tasks with shorter duration requested at least 70% more resources than necessary. For
instance, the figure shows that tasks that requested at least 90% more resources than
necessary, have an average duration of 5.7 minutes when the resource considered is
CPU and of 4.1 minutes when the resource considered is RAM. On the other hand, the
tasks that requested between 0% and 10% more resources than needed, have an aver-
age duration of 91.6 minutes when the resource considered is CPU and of 77.1 minutes
when the resource considered is RAM. Furthermore, for both resources the absolute
difference between the user’s resource limit and the maximum utilized by a task is
rarely large. For instance, only 3% of the tasks requested more than 0.05 CPU units
than needed and less than 2% of the tasks requested more than 0.05 RAM units than
needed.

Moreover, we discovered that 17.4% of the tasks requested less CPU than needed.
In the case of RAM, the number is much lower. We observed that only 1.9% of the
tasks requested less RAM than needed. In addition, we see that 96.7% of the tasks
that exceeded their CPU limit were tasks that requested between 0.0 and 0.05 of CPU.
Similarly, 95% of the tasks that exceeded their RAM limit were tasks with a limit
between 0 and 0.064 of RAM. This is due to some internal policies in the Google cluster
in which users can request less than what they utilize without beeing evicted [RWH11].
Since requesting 0.0 units of CPU will result in an obvious underestimation, we replace
0 with the next minimum CPU request, 6.247e-7. Similarly, we replaced 0.0 RAM limit
with the next minimum value, i.e. 9.53e-7.

Figure 2.8a presents job arrival rate. The x-axis presents the time between 0 hours
and 48 hours, namely the entire time frame that was studied here. The y-axis presents
the total number of jobs submissions. Each point represents cardinality of the jobs
submitted within a 5 minute window. The figure shows a moderate fluctuation in terms
of incoming jobs rate, where values range from 18 to 221 jobs. Moreover, Figure 2.8b
presents the CDF of the values from Figure 2.8a. The figure shows that almost 90%
of the time the total number of jobs that will arrive in 5 minute will be at most 100.
Furthermore, it is expected that, 67% of the time between 50 and 100 jobs will arrive
in 5 minute, 20% of the time it is expected that less than 50 jobs will arrive, and 13%
of the time it is expected that more than 100 jobs will arrive.

Figure 2.9 presents the number of tasks associated to each job over the 48 hours stud-
ied. It is clear from the figure that the majority of the jobs are composed of a small
number of tasks. We are considering the distribution of number of tasks per job and

Combinatorial Optimisation for Sustainable
Cloud Computing

29 Milan De Cauwer

2. BACKGROUND, RELATED WORK AND
DATASETS

2.3 Optimisation Problems in Cloud Computing
Systems

0 8.3 16.6 25 33.3 41.6 50
0

50

100

150

200

250

Time (hour)

N
um

be
r o

f
Jo

bs

(a) Job arrival count in the 48 hours studied.

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Jobs

F(
x)

Empirical CDF

(b) Job arrival CDF.

Figure 2.8: Characterising jobs arrival rate

discovered that 76% of the jobs consist of a single task, 16% of jobs are composed
from 2 to 50 tasks, and only 8% of the jobs are composed by more than 50 tasks (up
to 10,500 tasks in rare occasions). Other studies (see [RTG+12, DKC12]) suggest
that the patterns of utilisation in the trace indicates that the cluster is used by several
organizational entities, each executing its own particular mix of tasks. This type of
environment is usually characterized by a large dynamic range of resource demands
with high variation over short time intervals. Reiss et al. [RTG+12], studied the job
inter-arrival rate for the whole trace and discovered that around 40% of submissions
recorded less than 10 milliseconds after the previous submission, and that the median

Combinatorial Optimisation for Sustainable
Cloud Computing

30 Milan De Cauwer

2. BACKGROUND, RELATED WORK AND
DATASETS

2.3 Optimisation Problems in Cloud Computing
Systems

0 5 10 15 20 25 30 35 40 45 50
0

2000

4000

6000

8000

10000

12000

Time (hour)

N
um

be
r o

f T
as

ks

Figure 2.9: Tasks count per job

inter-arrival period is 900 milliseconds.

0 20 40 60 80 100 120 140 160

Elapsed time in hours

0

1000

2000

3000

4000

5000

In
co

m
in

g
 t

a
sk

s
p
e
r

ti
m

e
-s

te
p
 o

f
2

 s
e
cs

0

50000

100000

150000

200000

250000

C
u
m

u
la

ti
v
e
 n

u
m

b
e
r

o
f

in
co

m
in

g
 t

a
sk

s

Figure 2.10: Number of incoming tasks over elapsed time

Figure 2.10 shows the high variability in the number of incoming tasks received over

Combinatorial Optimisation for Sustainable
Cloud Computing

31 Milan De Cauwer

2. BACKGROUND, RELATED WORK AND
DATASETS

2.3 Optimisation Problems in Cloud Computing
Systems

the time. Each vertical bar represents the number of incoming tasks (left y-axis) re-
ceived within a time period of 2 seconds at a specific time (x-axis). The cumulative
number of incoming tasks (right y-axis) is depicted by the red dotted line. In the
dataset, the number of tasks received by two consecutive time steps can differ by sev-
eral orders of magnitude. There are two noticeable peaks of around 5000 tasks arriving
after 57 hours and 123 hours. The second noticeable peak is closely surrounded by
other peaks of several thousands of incoming tasks. This specificity in the dataset is of
particular interest. It allows us to compare the behaviours of the different policies in
case of intensive demand of resources.

0 1 2 5 10 20 50 100 200 500 1000 >1000

Incoming tasks

101

102

103

104

105

106

T
im

e
-s

te
p
s

o
f

2
 s

e
cs

(a) Number of time windows of size 2s (y-
axis log scale) presenting x incoming tasks
(x-axis)

0 1 2 5 10 20 50 100 200 500 1000 >1000

Incoming tasks

101

102

103

104

T
im

e
-s

te
p
s

o
f

3
0

 s
e
cs

(b) Number of time windows of size 30s (y-
axis log scale) presenting x incoming tasks
(x-axis)

0.00 0.05 0.10 0.15 0.20 0.25

Cpu requirements in percent

100

101

102

103

104

105

106

In
co

m
in

g
 t

a
sk

s

(c) Number of incoming tasks (y-axis log
scale) per task cpu requirements (x-axis)

1 min 10 mins 1 hour 10 hours 1 day >1 day

time duration

101

102

103

104

105

106

In
co

m
in

g
 t

a
sk

s

(d) Number of incoming tasks (y-axis log
scale) per task durations (x-axis)

Figure 2.11: Distributions of incoming tasks in the dataset

Figure 2.11 shows various task distributions of the dataset according to different pa-
rameters. Figure 2.11a, respectively, Figure 2.11b, shows the number of time steps of
2s, resp. 30s, when varying the interval of tasks received within a time step. For 2s
and 30s, the number of time steps decreases in a logarithmic manner as the number

Combinatorial Optimisation for Sustainable
Cloud Computing

32 Milan De Cauwer

2. BACKGROUND, RELATED WORK AND
DATASETS

2.4 Workload Management in Geographically
Distributed Clouds

of incoming tasks increases. Over the week of incoming tasks, for the 2s time period,
more than 246000 time steps of 2s representing a sum of 56 hours, receive no tasks
(Figure 2.11a), while only 1038 time steps of 30s, representing a sum of twenty one
hours, are empty (Figure 2.11b). The difference between the number of time steps of
2s and 30s remains significantly high when one or two tasks are received within a time
step. Then, as expected, since tasks have more chance to be pooled within time steps
of longer time periods, there are more time steps of 30s that receive between six to
ten tasks, eleven to twenty tasks, ..., > 1000 tasks than the number of time steps of 2s.
Note that, for both distribution 2s and 30s, there are more than 700 time-steps receiv-
ing between twenty and a hundred tasks. Finding an optimal placement for these time
steps remains challenging even for state of the art techniques and solver [CMO16].
From more than a hundred tasks received during a time step, the difference between
the number of time steps of 2s and 30s is tightening and becomes almost equal for of
tasks> 1000 tasks. There are thirteen time steps of 30s against twelve time steps of
2s receiving more than 1000 tasks. This pattern is specific to the data-set built from a
real trace of incoming tasks. Peaks of incoming tasks are spread across time. In this
last case, the associated placement problems are very hard to solve optimally within a
service level agreement matching on-demand QoS expectations.

In Figure 2.11c, the incoming tasks are sorted by percentage of CPU-requirement of
the largest capacity machine, which represents a standard machine in our experiments.
The CPU-requirement of each individual task does not exceed 25%. The number of
incoming tasks decreases in a logarithmic manner as the CPU requirement increases.
Most of the tasks in the data sets require less than 7.5% of the CPU capacity of a
standard machine. In this case, a machine can host more than ten tasks.

Figure 2.11d shows the distribution of incoming tasks per duration as reported in the
trace. The dataset contains a wide range of task durations. It is characterized by a
majority of tasks (>170000) finishing before ten minutes. There are around 40000
tasks lasting between ten minutes and one hour. The remaining tasks, approximatively
15000, last more than one hour.

2.4 Workload Management in Geographically Dis-
tributed Clouds

In this section, we consider a case-study introducing fundamental aspects of workload
management in distributed cloud systems. This section is used as a vehicle for explain-

Combinatorial Optimisation for Sustainable
Cloud Computing

33 Milan De Cauwer

2. BACKGROUND, RELATED WORK AND
DATASETS

2.4 Workload Management in Geographically
Distributed Clouds

ing the behaviour of Internet data centres (DCs) under several typical settings. We aim
to highlight the importance of properly handling workloads in a setting where elec-
tricity can be sourced on different markets. We show how to make use of optimisation
techniques coupled with statistical learning to appropriately handle workloads in cloud
structures.

The key idea here is to take advantage of price differentials in a multi-electricity market
setting. We present a methodology for studying the energy cost implications of min-
imising data centre energy costs under different operational and energy cost prediction
regimes. We then systematically study the impact of the level of price variability, time
lag between locations due to the geographical distribution, reconfiguration delay, and
accuracy of price predictions on the overall electricity cost associated with managing
a network of data centres.

For various operational and strategic reasons, such as speed and latency, redun-
dancy of both equipment and data, networks of data centres are sometimes struc-
tured in a geographically distributed fashion [GHMP08, ZCB10]. The cost per
unit of computation can vary significantly between various locations due to regional
specificities [QWB+09]. Noticeable efforts motivated by the importance of energy
costs in operating a DC have been made to take advantage of these price differen-
tials [LLRL12, RLXL10, SLX10, BGG+10] and to design energy-aware routing pro-
tocols [QLM12].

From a combinatorial optimisation point of view, we can formulate the problem of
managing a data centre as an assignment problem where one tries to allocate workloads
to a set of data centres such that an overall energy cost function in minimised. This cost
function should be a function of the various characteristics of the set of data centres and
the forecasted electricity price at each location. Of course, factors such as geographical
spread and the time needed to reconfigure the system should also be incorporated into
the assignment problem.

We present an approach to simulating realistic electricity prices using a time-series
analysis technique. We aim to capture the generic behavior of electricity prices on a
wholesale electricity market. We will also introduce a simple approach to simulating
Gaussian errors while predicting prices over a short time-horizon. The focus of this
section is put on a variety of problems of interest in data centre management.

Combinatorial Optimisation for Sustainable
Cloud Computing

34 Milan De Cauwer

2. BACKGROUND, RELATED WORK AND
DATASETS

2.4 Workload Management in Geographically
Distributed Clouds

2.4.1 Models for Electricity Prices and Price Prediction Errors

In order to study the electricity costs associated with managing a data centre (DC), a
realistic model for electricity price dynamics on a wholesale market is required. Fig-
ure 2.12a shows the weekly dynamics of the actual spot price of electricity on the Irish
market over the first seven days of 2009 at 30 minutes intervals. Electricity price is nat-
urally studied as a time-series in which each data point describes the price of electricity
at a specific moment in time.

There are various approaches to building predictive models for real-time market elec-
tricity prices, for example GARCH models [HLLz05], wavelet models [TZWX10],
artificial neural networks [YSL04, HPS01], and other machine learning-based meth-
ods [IOS12a]. In this case-study, we used a time-series analysis procedure referred to
as the Box-Jenkins (BJ) method [BJ70] to build an Auto-Regressive Integrated Mov-
ing Average (ARIMA) model characterizing the electricity price behavior over a day.
A complete description of techniques used to model time series data can be found
in [CC09]. The ARIMA model is a commonly used tool to understand, model and
predict future values of a time-series Pt (see [CENC03, RB]).

The ARIMA models the behavior of a time series using two components. The first one
is the autoregressive (AR) part,

AR(p) : Pt =
p∑
i=1

ϕiPt−i + εt

which states that values of the series are partially determined by its past values. The
second part is the moving average (MA) part,

MA(q) : Pt = εt +
q∑
j=1

θjεt−j.

Combining these two components the model

ARMA(p, q) : Pt = εt +
p∑
i=1

ϕiPt−i +
q∑
j=1

θiεt−j

is a powerful tool that builds a rather simple model for a time-series. Note that εt is a
set of independent variables identically distributed according to a Gaussian distribution
N(0, σ2

Price) with σ2
Price being a measure of the variability of the price.

In order to grasp the seasonal nature of the series we used the generalized
SARIMA(p, d, q)(P,D,Q)[s] model, where d and D are, respectively, the order of

Combinatorial Optimisation for Sustainable
Cloud Computing

35 Milan De Cauwer

2. BACKGROUND, RELATED WORK AND
DATASETS

2.4 Workload Management in Geographically
Distributed Clouds

the ordinary and the seasonal differentiation, p and P are the orders of ordinary and
seasonal AR processes, and q and Q the orders of the MA processes. Finally s is the
frequency of the seasonality, which is 48 in our case representing a period of 24 hours
at a fidelity of 30 minutes.

The Box-Jenkins approach is a process that iterates over a set of candidate ARIMA
models to find the best fit of a time-series to its past values. Figure 2.12 shows the
various steps that were undertaken to produce an accurate model for electricity price.
The procedure aims at finding best fit for parameters ϕi and θi to the data. The first
step is to ensure that the time-series under study is stationary, i.e. that the mean and
variance over time is constant, and that we accurately model the seasonal effect, if any.

The actual series as seen in Figure 2.12a does not fulfill the stationary property, and
shows a clear seasonality over a range of 48 time periods. Thus, the series was differ-
entiated twice including a seasonal differentiation:

548dPt = dPt − dPt−48

with
dPt = 5Pt = Pt − Pt−1

As a result, Figure 2.12b shows that a stationary series was achieved by differentiating
the time-series twice thus fixing the orders d = 1 for the regular and D = 1 for the
periodic component.

The next step allows us to define the orders of both the AR and MA processes, respec-
tively p and q in our model. For doing so, we refer to the Autocorrelation Function
(ACF), illustrated in Figure 2.12c, and the Partial Autocorrelation Function (PACF),
presented in Figure 2.12d, of the differentiated series. The quick decay of values on
the ACF suggests an AR(p) process. The value of p should be read on the PACF as
the last value significantly different from 0. Hence p = 3. Similarly, the order of the
MA process is read on the ACF. Hence q = 3. Then, the same procedure is repeated
for the seasonal component by taking into account a 48 period lag allowing us to fix
P = 1 and Q = 2. Values of best fit of parameters θi and ϕi are listed in Table 2.1.
The last step in the BJ method is to check that the residuals of the model are showing
white noise properties.

Figure 2.13 illustrates the range of situations that one can simulate by varying the
σ2
Price parameter. This parameter affects the amount of noise that the generated series

shows against the theoretical ARIMA model. As the figure shows, even with highly
fluctuating prices (e.g. σ2

Price = 500) the trend over a day still appear. In the following,

Combinatorial Optimisation for Sustainable
Cloud Computing

36 Milan De Cauwer

2. BACKGROUND, RELATED WORK AND
DATASETS

2.4 Workload Management in Geographically
Distributed Clouds

P
ric

e

Time

50
10

0
15

0
20

0

Thu Fri
Sat

Sun
M

on Tu
e

W
ed Thu

(a) Actual series.

1 2 3 4 5 6 7 8

−
15

0
−

10
0

−
50

0
50

10
0

Time

(b) Differentiated series.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
0.

4
−

0.
2

0.
0

0.
2

Lag

A
ut

o
co

rr
el

at
io

n
F

un
ct

io
n

(c) Autocorrelation function.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Lag

P
ar

tia
l a

ut
o

co
rr

el
at

io
n

fu
nc

tio
n

(d) Partial auto correlation function

Figure 2.12: Modeling electricity prices. An iteration of the Box-Jenkins method.

we will use σ2
Price to carry experiments in which price series are simulated with a

controlled intrinsic variability.

In addition to a model for electricity prices, we aim to provide an empirical insight into
the impact of price prediction errors on the overall cost of the optimal assignment of
workload in an data centre. To this end, we modeled forecasting errors for a particular
time slot t as being distributed according to a Gaussian distribution centered on the
actual value. Hence, let P = {p1, . . . , pT} be a price series and P̂ = {p̂1, . . . , p̂T}
be a simulation of its forecasted values. Given P , we can build P̂ such that P̂t =
N (Pt, σpred), ∀t ∈ T . Here σpred describes the standard deviation of the predictions.

Combinatorial Optimisation for Sustainable
Cloud Computing

37 Milan De Cauwer

2. BACKGROUND, RELATED WORK AND
DATASETS

2.4 Workload Management in Geographically
Distributed Clouds

Index

gg

Actual

0 12 24 36 48 60 72 82 96

40
10

0

Index

c(
a) σprice

2 =50

0 12 24 36 48 60 72 82 96
50

15
0

Index

c(
b)

σprice
2 =126.6

0 12 24 36 48 60 72 82 96

50
15

0

Index

c(
c) σprice

2 =300

0 12 24 36 48 60 72 82 96

50
20

0
c(

d)

σprice
2 =500

0 12 24 36 48 60 72 82 96

0
15

0

(a) Simulated price series.

40
60

80
10

0
12

0
14

0
16

0

0 6 12 18 24 30 36 42

P
ric

e

Time

actual
σpred = 2.0 (MSE = 4.46)
σpred = 5.0 (MSE = 25.05)
σpred = 10.0 (MSE = 124.83)

(b) Simulated forecast errors.

Figure 2.13: The upper plot shows a week’s price dynamics seen on the Irish elec-
tricity market. The other plots represent several simulations ranging from a clean
to a noisy trend. Simulations were generated on 96 time periods with σ2

Price ∈
{50, 126.6, 300, 500}. Below, simulated forecast errors: σpred ∈ {2.0, 5.0, 10.0} rang-
ing from good predictions to inaccurate ones.

Combinatorial Optimisation for Sustainable
Cloud Computing

38 Milan De Cauwer

2. BACKGROUND, RELATED WORK AND
DATASETS

2.4 Workload Management in Geographically
Distributed Clouds

Table 2.1: Seasonal ARIMA(3,1,3)(1,1,2)[48] model obtained applying the BJ
methodology. (s)ari parameters are the best fit for the (seasonal) auto regressive pro-
cess of order i. (s)maj , the best fit for the order j (seasonal) mobile average parame-
ters.

Process ar1 ar2 ar3 ma1 ma2 ma3 sar1 sma1 sma2
Val -0.054 0.740 0.058 -0.674 -0.915 0.599 -0.524 0.021 -0.077

Std Err 0.058 0.108 0.079 0.059 0.076 0.104 - 0.099 0.156

Figure 2.13b shows an instance of a generated price series (in black) using the model
discussed in the previous section. The figure also shows simulations of predicted prices
for various σpred values. As a measure of the accuracy of the simulated predictions, we
use the mean squared error (MSE) defined asMSE(P, P̂) = 1

T

∑
t∈T (Pt−P̂t)2. Values

of MSE for those particular simulations are also reported on the figure. Small values
(e.g. 4.46) of MSE suggest that the overall predictions are good. As the accuracy of
predictions degrades, the value of MSE rises (e.g. 124.83). Throughout the remainder
of this case-study we will be using the σpred parameter to simulate situations ranging
from perfect (σpred = 0) to highly inaccurate price forecasts with bigger values of
σpred.

2.4.2 Minimizing Data Centre Electricity Cost

This section presents an example for modeling real-world problem using the formal-
ism of mathematical modeling. We formalise the problem of finding the minimum
total electricity cost for a network of data centres. The formulation is adapted from
the problem described in [RLXL10]. Our intention, however, is to give a systematic
characterization of price properties on the cost of running a network of data centres.
Table 2.2 summarizes the parameters and the decision variables needed to formulate
the problem.

We first assume that each data centre is in a location where electricity price Pi(t)
on the wholesale market varies every 30 minutes. We consider a set L of locations
spread geographically so that there is a time lag TL ∈ {0, 1, 2, . . . , 24} thirty minutes
between two consecutive locations. This time lag parameter actually controls how the
price signals at the various locations will be shifted with respect to each other; it has
been suggested that energy prices become less correlated between two locations as
the distance between them increases, i.e. the further away two locations are, the less
correlated are their energy prices [QWB+09]. Using the model defined in previous
section, we also define P̂i(t) as a vector of predicted prices of Pi(t).

Combinatorial Optimisation for Sustainable
Cloud Computing

39 Milan De Cauwer

2. BACKGROUND, RELATED WORK AND
DATASETS

2.4 Workload Management in Geographically
Distributed Clouds

Table 2.2: Notations for parameters and decision variables

N Number of Locations
Mi Number of servers available at i ∈ L
µi Request rate handled by a server at i ∈ L
Poi Power used by a working server at i ∈ L
WL(t) Amount of requests for period t
Pi(t) Electricity Price at i during time slot t
P̂i(t) Forecasted Price at i during time slot t
TR Time needed to reconfigure
TL Time lag between two consecutive locations

mi Number of turned on servers at i ∈ L
λi Number of requests assigned to i ∈ L

Each data centre has a number Mi of servers that can be switched on or off in order to
handle the workload WL at location i. At each period the decision is thus to turn on
a subset mi ∈ {0, . . . ,Mi} of servers at each location i. We assume that each server
in location i has a capacity factor µi, expressed in terms of processing requests, and
will consume an amount Poi of electricity if running. For each time interval t we can
express the expected total energy cost of running N data centres as:

Ct =
N∑
i=1

mi × Pi(t)× Poi

Therefore, we can define the cost over all time periods as C = ∑
t∈T Ct. The decision

of the assignment of workload at a particular time t is computed in order to minimize
overall expected energy cost. The optimization process is thus based on the forecasted
prices P̂i(t). This quantity is given by:

Ĉt =
N∑
i=1

mi × P̂i(t)× Poi.

In some of the experiments shown in the next section, we assume a perfect predic-
tion accuracy (σpred = 0), and solving the problem with P̂ is equivalent to solv-
ing the problem with P . A solution to this problem requires that all the workload
is distributed among the locations. Thus we can express the workload constraint as∑
i∈L λi = WL(t). On the other hand, the assigned load to an data centre at location i

should not exceed its processing power (requests): λi ≤ mi × µi.

Solving this problem requires finding the assignment of the workload to the data cen-
tres λi, and subsequently the number of servers, mi, that are turned on. The mathemat-

Combinatorial Optimisation for Sustainable
Cloud Computing

40 Milan De Cauwer

2. BACKGROUND, RELATED WORK AND
DATASETS

2.4 Workload Management in Geographically
Distributed Clouds

ical model can be written as follows and will be solved for each time interval t ∈ T

considered in the problem:

min
λi,mi

∑
i∈L

mi × P̂i(t)× Poi

Subject to

λi ≤ mi × µi, ∀i ∈ L∑
i∈L

λi ≤ WL(t),

mi ∈ {0, . . . ,Mi}, ∀i ∈ L

λi ∈ N. ∀i ∈ L

Finally, our model provides a way to simulate various levels of inertia in the system.
The parameter TR specifies the number of time slots needed to reassign the workload.
When TR is set to 0, we assume that the assignment for time t is performed instanta-
neously at the beginning of the period. For positive values of TR, a new assignment
done at time t will be held over TR times slots before a new assignment is allowed
to be performed. We simulate this by solving the optimization program on every time
period divisible by TR and keeping the assignment in between those time periods.

2.4.3 Analysis

We consider the impact of factors such as price volatility, forecasting errors, time lag
between locations, and time needed to reconfigure the system on the optimal energy
cost required by a network of data centres. For doing so, all experiments were con-
ducted with the same set of fixed parameters for both the set of locations and the work-
load. We simulated instances of the problem with 4 data centres such that the total
maximum processing power was fixed at

∑
i∈L µi ×Mi = 167000. On the other hand,

the load was fixed at WLt = 100000,∀t ∈ T requests. We thus have the guarantee

Table 2.3: Data centre setup for each of the four locations.

data centres
l 1 2 3 4
Po 100 110 120 110
µ 0.9 1.1 1.5 1.2
M 50000 40000 20000 40000

Combinatorial Optimisation for Sustainable
Cloud Computing

41 Milan De Cauwer

2. BACKGROUND, RELATED WORK AND
DATASETS

2.4 Workload Management in Geographically
Distributed Clouds

that the problem always admits a feasible solution.

The individual data centre configurations are summarized in Table 2.3. Those features
form the static part of the model. We can see that data centre 3 has the most efficient
configuration with a cheaper cost per unit of computation ratio. Despite the fact that
we can order data centres by efficiency, finding an optimal assignment for a particular
time period requires one to further investigate price behavior features. We thus discuss
these parameters in the remainder of this section.

Figures 2.14 illustrates with two scenarios how the overall system behaves over time.
Figure 2.14a shows how many servers (m1 on top to m4 at the bottom) were set to run
in each of the 4 data centres over the 48 time intervals. In this particular scenario we
defined a 4 hour (8 intervals of 30 minutes) timezone difference between each location
causing price peaks to be shifted across the day. The workload distribution was com-
puted assuming that price forecasting was perfect (i.e. σpred = 0). The price levels for
each individual location are also reported on the right axis. Despite the fact that some
IDs are more efficient than others, we see that none of the data centres are constantly
working at full capacity. In fact, none of the four data centres are producing any work
while local electricity prices are at their highest. Due to its superior configuration, data
centre 3 is running all its servers over most of the day but is still powering down during
time slots 39, 40 and 41, where local energy costs are highest.

We further note that the assignment over time is very sensitive to price variations. This
is due to the fact that the cost per unit of computation in the various locations are
always relatively close to each other. This ratio favors, in turn, different locations only
because of the price differentials occurring within a day.

Let us explore another scenario involving errors in price prediction for both data centre
3 and data centre 4. For Figure 2.14b errors were simulated with a σpred = 10 level
such that P̂t = N (Pt, 10),∀t ∈ T and are represented with the solid gray line. In
this scenario we observe that forecasted prices can significantly depart from the actual
price. Since workload distribution is computed from the predicted prices P̂t, we can
clearly see that this assignment is not optimal. For instance, the workload assignment
at t = 29 seem to be erroneous as data centre 1 and data centre 2 are both in a quite
high-priced period but are still carrying workload. This is due to a large overshooting
of the price forecast in location 3 at that particular time causing data centre 3 to turn all
its servers down and thus shifting the load to other data centres. Looking more closely
at the dynamics of this scenario, one can spot this faulty behavior taking place over the
24 hour period, e.g. t = 16, t = 24.

Combinatorial Optimisation for Sustainable
Cloud Computing

42 Milan De Cauwer

2. BACKGROUND, RELATED WORK AND
DATASETS

2.4 Workload Management in Geographically
Distributed Clouds

● ●

●

● ●

●

●

● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ●

●

●

● ●

● ●

● ●

● ● ● ● ● ●

●

●

● ● ●

● ●

0 10 20 30 40

0
20

00
0

50
00

0
Index

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

● ●

●

●

● ●

●
●

●

●

●

●

●

●

●

● ●

Index

50
15

0

L 1

● ●

●

● ●

●

●

●

● ● ● ● ● ● ●

● ●

●

● ●

●

● ●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●

●

●

●

● ● ●

●

● ●

0 10 20 30 40

0
20

00
0

40
00

0

Index

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

● ●

Index

50
15

0

L 2

● ●

●

● ●

● ● ●

●

● ● ●

0 10 20 30 40

0
10

00
0

20
00

0

Index

●

●
●

●

●

●

●

●

●

●

●
●

● ● ●

●

● ●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ● ●

●

●

Index

50
15

0

L 3

●

●

m 3
 Price

● ● ● ● ● ● ●

●

● ● ● ● ● ● ●

● ● ● ● ●

●

● ●

●

●

●

● ● ● ● ●

● ●

● ●

● ● ●

● ●

●

● ●

●

●

● ● ●

0 10 20 30 40

0
20

00
0

40
00

0

●

●

●

● ●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

50
15

0

L 4

(a) 4 hour timezone gap between each consecutive locations.

● ● ● ●

● ●

● ● ●

●

●

●

●

● ●

●

● ●

●

●

● ●

●

● ● ● ● ●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

0 10 20 30 40

0
20

00
0

50
00

0

Index

●

●
●

●

●

●

●

● ●

● ●
●

●

● ●

●
● ● ●

●
●

●
●

●

●

●

●

●

●

●

●

● ● ●
●

● ● ●

●

● ●
● ●

●

● ● ● ●

Index

50
15

0

L 1

● ● ● ● ●

●

●

●

●

●

●

●

●

● ●

●

● ● ●

●

● ● ● ● ● ● ● ●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

0 10 20 30 40

0
20

00
0

40
00

0

Index

● ●

●

● ●
●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

● ●

●

●
●

●
●

●

●

●
● ●

Index

50
15

0

L 2

m 2
P

P̂

● ● ● ●

● ●

●

●

●

● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ●

●

● ● ● ● ●

●

● ● ● ●

● ●

0 10 20 30 40

0
50

00
15

00
0

Index

●

●

●

●

●

●

●
●

●
●

●

● ● ●

●

●

●

● ●

● ●
●

●

● ● ●
●

●
●

●
●

● ●

●

●

●
●

●

●

●

●
●

● ● ●

●
●

●

Index

50
15

0

L 3

● ● ● ●

●

●

● ●

●

● ●

●

●

● ● ● ● ●

●

● ● ●

●

● ● ● ● ● ● ● ●

● ●

● ●

●

●

●

●

●

●

●

● ●

●

●

● ●

0 10 20 30 40

0
20

00
0

40
00

0

●

●

●

●
●

●
●

●

●

●
●

●
● ●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

● ●
●

● ● ●
●

● ●

●

●

●

●
● ●

●

●

●

●

●

50
15

0

L 4

(b) Inaccurate price forecasts for locations 3 and 4.

Figure 2.14: Number of servers running mi (in black) and price levels (in gray) at each
locations. In Figure 2.14b we also plot the electricity price forecasts (solid gray line).
Since σpred was set to 0 for data centres 1 and 2, actual and forecasted prices are strictly
overlapping at these locations.

Combinatorial Optimisation for Sustainable
Cloud Computing

43 Milan De Cauwer

2. BACKGROUND, RELATED WORK AND
DATASETS

2.4 Workload Management in Geographically
Distributed Clouds

We now report on systematic experiments that give insights into how various features
of the problem can affect the overall energy cost. Unless specified, the configuration
mentioned above was used. Each experiment was run 10 times. In the following
figures, we systematically fit curves to the data to help demonstrate the trend in the
results.

Price Variability. The first two experiments that were conducted aim to characterize
the impact of variety among prices on the overall assignment cost. To this end we
increase, in turn, the number of locations considered in the problem. The underlying
assumption here is that the number of opportunities to reduce electricity costs occur
more frequently as the number of locations increases. Price Pi were all generated with
σ2
price = 126.6 and their forecast were set to be perfect (i.e. σpred = 0). Neither time

lags nor reconfiguration times were used. One should note that the capacity Mi of
each data centre was tuned in order to keep the total processing power constant (i.e.
167000).

As Figure 2.15a shows, the cost of the optimal assignment quickly decreases with the
cardinality of L. In fact, it dropped by almost 10% from a situation in which there is
no possibility to take advantage of price differentials (card(L) = 1) to a situation in
which price differentials are induced by a larger number of locations (card(L) = 20
and above). This effect seems to level off for more than 20 locations in this particular

+

++

+
+

+

+

+

+

+

+

+
+

+

+
+

+

+

++

+

+
+
+
+

+

++

+

+
+
+
+
+
+

+
+++

++

+

+

+

++++
+
+

0 10 20 30 40 50

4.
1e

+
10

4.
2e

+
10

4.
3e

+
10

4.
4e

+
10

4.
5e

+
10

C
os

t o
f O

pt
im

al
 A

ss
ig

nm
en

t

|L|

(a) The effect on optimal energy cost associ-
ated with increasing the number of locations.

+

++
++
+
++++

+

+
+

+

+
+
+

++
++

++

+

+
+

+

+

+
+++

+

+

+++

+

+

+
+

+

++

+

+
+

+

+
+

+
+
+

+

+
+

+

++
+
+
+

+

+
+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+
+
+

+

+

+

+

+

+
+

++

+

+

+
+

+

0 20 40 60 80 1003.
8e

+
10

4.
0e

+
10

4.
2e

+
10

4.
4e

+
10

C
os

t o
f O

pt
im

al
 A

ss
ig

nm
en

t

σ2

(b) The effect associated with intrinsic price
fluctuation with σ2

price ∈ {0, 5, . . . , 500}.

Figure 2.15: Exploiting price differentials to reduce overall operating costs. Both
factors can be seen as opportunities to exploit price differentials in order to reduce
overall operating costs.

Combinatorial Optimisation for Sustainable
Cloud Computing

44 Milan De Cauwer

2. BACKGROUND, RELATED WORK AND
DATASETS

2.4 Workload Management in Geographically
Distributed Clouds

setup.

To further test the impact of price variety on total energy cost, we can also generate
prices that are intrinsically more or less fluctuating as shown in Figure 2.13a by varying
the σ2

price parameter. Figure 2.15b shows how the level of fluctuation among prices
affects the cost of the optimal assignment. For low values of σ2

price, prices at distant
locations will not deviate much from each other. As σ2

price rises, prices are more and
more noisy, and thus exhibit more intrinsic diversity. We see the impact of that diversity
by the decreasing cost of the optimal assignment. In the best cases, it appears that
energy costs can be reduced by almost 15% if prices at the different locations show a
reasonable level of variability. Finally, we note that it is not clear if this effect would
level, but we clearly see that as σ2

price progresses the cost displays more variance.

Timezone Effect.

The timezone effect was illustrated in the first scenario (Figure 2.14a) discussed in the
previous section. We can show that, given the particular daily shape of real-time elec-
tricity prices, spreading data centres over distant locations gives substantial electricity
cost savings. To demonstrate thus, we assumed perfect prediction on prices generated
with a σ2

price ∈ {5, 150, 300} and varied the TL parameter to set the time lag between
each consecutive locations. Thus, TL = 0 means that prices are perfectly in phase and
TL = 2 means that each consecutive location is separated by an hour, slightly shifting
the price signals.

●

●

●

●

●

●
●

●

●

●

● ● ●

●

●

● ●
●

3.
4e

+
10

3.
6e

+
10

3.
8e

+
10

4.
0e

+
10

4.
2e

+
10 +

+

+

+ +
+

+

+

+

+

+

+

+

+

+

+

+
+

1 6 12 18

C
os

t o
f O

pt
im

al
 A

ss
ig

nm
en

t

Time Lag (30 mins)

● σprice
2 = 5

σprice
2 = 150

σprice
2 = 300

(a) Varying the time lag between locations.

●●●
●●

●●

●
●●

●●

●
●

●

●
●

●
●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●
●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0e
+

00
1e

+
08

2e
+

08
3e

+
08

4e
+

08
5e

+
08

C
os

t(
P̂

)
−

 C
os

t(
P

)

σpred

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0
2

4
6

8
10

12
14

16
18

20

M
S

E
● Cost(P̂) − Cost(P)

 MSE

(b) Varying the quality of price predictions.

Figure 2.16: Average optimal assignment cost under several time lags and price pre-
diction regimes.

Combinatorial Optimisation for Sustainable
Cloud Computing

45 Milan De Cauwer

2. BACKGROUND, RELATED WORK AND
DATASETS

2.4 Workload Management in Geographically
Distributed Clouds

As Figure 2.16a suggests, in this configuration a time lag of 12 30-minute intervals (6
hours) gives the best results. This is not surprising since with TL = 12 prices at the
four locations are perfectly out of phase. This gives the opportunity to route the load
away from locations showing high price levels (midday) to locations where electricity
is cheaper (night time). In this particular setup, a perfect geographical spread could
account for up to 15% in electricity cost savings. We further note that the price vari-
ability effect does not contradict the time lag effect since the observed trends are quite
similar.

Price Forecast Quality. As the “bad forecast" scenario depicted in Figure 2.14b sug-
gested, low prediction accuracy can lead to non-optimal assignments. To gain an in-
sight into how the quality of price forecasting affects the cost of assignment, we varied
the parameter σpred in the range 0, . . . , 5 by steps of 0.1. Predictions will thus be
fuzzier as σpred rises. Prices at the various locations were generated with a standard
variability level σ2

price = 126.6. Recall that when σpred = 0, predictions are perfect
and thus the assignment will be optimal.

Figure 2.16b shows that the difference between the assignment cost computed with
P̂ and the same solution evaluated with the actual price P . This difference can be
interpreted as a penalty cost induced by bad decision-making due to the uncertainty
while predicting prices. We show that this penalty cost is rising with the level of
uncertainty σpred. Furthermore, this difference seems to be strongly correlated with
the MSE indicator measuring the accuracy of predictions.

Reconfiguration Time. The last feature that was tested is the speed with which the
data centre can be reconfigured. Until now, we assumed that the system could be
configured instantaneously at the beginning of a given time period. For realism sake,
we defined scenarios in which the time needed to reconfigure the system was set to
TR ∈ {0, 1, 2, 4}. For instance, when TR is set to 2 the system will need an hour to
reassign the workload.

As can been in Figure 2.17, the reconfiguration time dramatically affects the cost of
the assignment. For TR = 0 we assumed that reconfiguration for period t is done at
the beginning of period t, thus we have the same behavior as shown in Figure 2.15a.
For TR = 4, we see that the gain induced by more variability within prices is almost
null. In fact, several runs are indicating a degradation of the cost of assignment. This
could be explained by the fact that, introducing latency in the system, prevents one to
take immediate advantage of price differentials. We can derive from this that the more
that prices fluctuate, the more flexible the system must be in order to benefit from it.

Combinatorial Optimisation for Sustainable
Cloud Computing

46 Milan De Cauwer

2. BACKGROUND, RELATED WORK AND
DATASETS 2.5 Conclusion

+

+

++

+++
+++

+

+

+

+

+
+

+
+

+

+

+
+

+

++

+

+

+

++

+

+
+

+
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

++

+

+

++

+

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+

+

+

+
+
+

+

+

+

+

+

+

+

+

+
+

++

3.
8e

+
10

4.
2e

+
10

4.
6e

+
10

0 100 200 300 400 500

●

●●●
●

●

●

●
●

●●●
●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

C
os

t o
f O

pt
im

al
 A

ss
ig

nm
en

t

σprice
2

●

TR = 0
TR = 1
TR = 2
TR = 4

Figure 2.17: Time to reconfigure TR ∈ {0, 1, 2, 4}. As there is more inertia in the
system, the expected gain from highly fluctuating prices vanishes.

2.5 Conclusion

In this chapter we have introduced concepts supporting subsequent technical chapters.
We discussed techniques to model and solve combinatorial problems. The efforts car-
ried by the research community to optimise often inefficient cloud infrastructures was
then reviewed with a particular focus on workload consolidation. Finally, we showed
through an example tackling a setting in which data centres are spread over several dis-
tant locations how to use statistical modeling and optimisation techniques. The basis
of our analysis is an approach to forecasting on the basis of a time-series representing
energy prices over time, and an approach to controlling the effect of forecast errors.
An assumption has been that the more distant a pair of data centres, the less correlated
are their local energy prices.

Combinatorial Optimisation for Sustainable
Cloud Computing

47 Milan De Cauwer

Chapter 3

A Generalisation of Bin Packing as a
Core Consolidation Problem

Summary. This chapter formalises a packing problem that emerges as

a core sub-problem for managing workload consolidation in data centres.

As a generalisation of the bin packing (BP) problem, it considers a set

of tasks (items) to be assigned to a set of machines (bins) under capacity

constraints on each machine. Unlike classic BP settings, items have a

lifespan in the bins. We define the cost of using a bin as the product of the

bin’s capacity and the time it will be used for. We refer to this problem as

the Temporal bin packing problem (TBP).

We formalise the problem using mathematical modeling and present opti-

misation models using Mixed Integer Programming (MIP) and Constraint

Programming (CP) for two contrasting but equivalent viewpoints on the

problem. The packing model (PA) extends traditional BP models while

the temporal model (TP) explicitly models time with a sequence of pack-

ing problems. In addition, two ad-hoc symmetry breaking techniques are

developed. Finally, we introduce both a lower bound and an upper bound

on the objective function.

Our empirical results suggest that the TBP is a challenging problem for

complete solvers to prove optimality. While breaking symmetry consid-

erably reduces the computational effort for both PA and TP models, the

packing model using CP should be considered for solving larger instances

of the TBP.

48

3. A GENERALISATION OF BIN PACKING AS A
CORE CONSOLIDATION PROBLEM 3.1 The Temporal bin packing Problem

As a first step to model consolidation problems in cloud systems we use the formalism
of the previously discussed bin packing problem (BP). Informally, we are given a set
of machines (bins) and a set of tasks (items). Each task is associated with a resource
requirement (i.e. CPU cycles) and the duration for which it will exist in the system.
The goal is to assign all the tasks to machines while minimising the overall allocated
resources. This allows us to switch off those machines that are spared by achieving
better workload consolidation across the pool of machines. Motivated by this, we
define the cost of using a machine as the product of its resource capacity and the time it
will be used for. We refer to this problem as the Temporal bin packing problem (TBP).
Although, TBP has strong connections with BP, the cost of using a bin captures the
notion of time to live the bin.

As highlighted in Chapter 2, cloud providers often build and maintain over-provisioned
infrastructures. As such, it is reasonable to consider that at any point in time, there are
enough available machines for the workload to be addressed without any delay due to
the lack of available resources. A desirable aspect of workload allocation policies is
to implement workload consolidation in order to spare machines not needed to tackle
the workload [BB10a]. This is usually achieved by minimising the allocated resources
across the data centre. In the context of our application, minimising the sum of the
machines usage cost as defined later is equivalent to minimising allocated resources
across the infrastructure. In our model, we thus aim to minimise the allocated resources
under the assumption that each task will be assigned and processed as soon as it arrives.
Our model focuses on an offline formulation of this variant of the bin packing problem.

The remainder of the chapter is structured as follows: We provide the motivation for
defining TBP in the context of workload consolidation for data centres and develop a
mathematical model in Section 3.1. Section 3.2 describes how the time dimension can
be either implicitly or explicitly modelled with both MIP and CP. In order to strengthen
the models, Section 3.3 introduces symmetry breaking techniques. In Section 3.4, both
a lower and upper bound on the objective function are derived. Finally, Section 3.5
compares the performance of the various models introduced in the chapter.

3.1 The Temporal bin packing Problem

Assigning items to bins while respecting capacity constraints is a core problem in
workload consolidation problems faced by cloud providers. Servers in data centres
are typically constrained over several dimensions (i.e. resources such as CPU time,

Combinatorial Optimisation for Sustainable
Cloud Computing

49 Milan De Cauwer

3. A GENERALISATION OF BIN PACKING AS A
CORE CONSOLIDATION PROBLEM 3.1 The Temporal bin packing Problem

RAM and I/O capacity or network communication [GHMP08]). We will focus on a
single dimension as CPU cycles are typically reported to be a bottleneck in such sys-
tems [RTG+12]. For all the tasks submitted to the system, it is desirable to minimise
the gap from submission time to the time the task starts running on the system. Under
the assumption that the infrastructure is over-provisioned, we consider this gap to be
negligible as it is always possible to allocate more machines if needed. Also, we make
the assumption that once a machine is powered-up the number of VMs assigned to it
does not make a difference, only the maximum duration of items assigned to it does.
Although workload consolidation problems are usually seen as online problems, we
model an offline problem that should be solved sequentially in order to provide solu-
tions to the online problem. We provide a formalisation of this core offline problem
in which the allocation of tasks to servers may be seen as a generalisation of the bin
packing problem. To the best of our knowledge this problem has not been described in
the literature. For related packing problems, refer to Section 2.3.4.

Let J = {1, . . . , n} be the set of items (tasks to be assigned) and each item i ∈ J be
defined by a pair (qi, ri) where qi ∈ {1, . . . , Q} denotes its size and ri ∈ N+ denotes
the duration for which it will be assigned to a bin. Let M = {1, . . . ,m} be the set
of bins. A bin j ∈ M is defined by a capacity Cj ∈ {1, . . . , Q}. A bin is said to
be opened if it contains at least one item. The cost of using a particular bin j is a
linear function Cj × lj , where lj is the maximum duration of all the items assigned
to it. The problem is to find an assignment from items to bins subject to capacity
constraints while minimising the sum of the bins usage costs

∑
j∈MCj × lj . We refer

to this problem as the Temporal bin packing problem (TBP). Throughout the rest of
the chapter we will fix the bins capacity to the constant Q such that ∀j ∈M : Cj = Q

with Q being the size of the overall largest item.

In such a context, we note that minimising resource wastage and minimising allocated
resources are equivalent problems if all bins have the same capacities Q. We define the
energy as duration times requirement Let the required energy be the sum over all items
of the product of each item resource requirement and its duration, i.e. R = ∑

i∈J qi×ri.
This energy is constant for any instance of TBP. Indeed, R does not depend on the
assignment of items to bins. Let the allocated energy depend on the items assignments
and be expressed as A = ∑

j∈MQ × lj . Finally, the wasted energy is the difference
between the allocated energy and the required energyW = A−R. Minimising wasted
energy is: min ∑

j∈M(lj ∗Q)−∑
i∈J (ri×di) ≡ min ∑

j∈M(lj ∗Q). SinceR is constant
and we consider that all bins have the same capacity, minimising the wastage energy is
equivalent to minimising the allocated energy. The required energy, allocated energy
and wasted energy are illustrated on Figure 3.1. The figure shows two contrasting

Combinatorial Optimisation for Sustainable
Cloud Computing

50 Milan De Cauwer

3. A GENERALISATION OF BIN PACKING AS A
CORE CONSOLIDATION PROBLEM 3.1 The Temporal bin packing Problem

10

10

3

3

40 l0 = 90

20 l1 = 100

Required Energy

Wasted Energy

Allocated Energy

(a) An optimal BP solution which uses only 2
bins. Non optimal for TBP. Its cost is 1900.

10

10

10

l0 = 100

l1 = 40

l2 = 20

3

6

7

7

(b) A non optimal BP solution using 3 bins in-
stead of 2. An optimal solution for TBP with
a cost of 1600.

Figure 3.1: An optimal solution for BP does not necessarily yield a good solution for
TBP.

solutions to the assignment of 4 items.

Furthermore, we provide the intuition TBP is a generalisation of BP where ∀(i, i′) ⊆
J ×J : ri = ri′ = r. In that case the objective function reduces to

∑
j∈MQ× lj with

the domain of lj is reduced to D(lj) = {0, r}. The items duration being all equal, we
can guarantee that lj = r for all opened bins reducing the problem to a simple packing
problem over one dimension.

Although TBP is closely related to BP, an optimal solution for BP does not necessarily
yield a good solution for TBP. Consider an empty state of the bins with capacity
Q = 10. Let the following four items form an instance of TBP: J = {(3, 100), (3, 90),
(7, 40), (7, 20)} where each tuple stands for size and duration (i.e. (qi, ri)). As seen in
Figure 3.1a, finding a feasible assignment for the four items can be done using a BP
approach. This solution uses the minimum number of 2 bins. Nevertheless, when the
notion of time (ri) is introduced in the problem, the objective function we are interested
in is evaluated as the sum of the allocated energy (i.e. 10 × 100 + 10 × 90 = 1900).
In contrast, as shown on Figure 3.1b, an optimal TBP solution uses 3 bins with a cost

Combinatorial Optimisation for Sustainable
Cloud Computing

51 Milan De Cauwer

3. A GENERALISATION OF BIN PACKING AS A
CORE CONSOLIDATION PROBLEM 3.2 Packing Versus Temporal Models

evaluated at 10 × 100 + 10 × 40 + 10 × 20 = 1600, which is the best assignment of
these four items. With the same reasoning, using arguments exposed previously, it is
easy to understand that this solution also minimises resource wastage in the bins.

3.2 Packing Versus Temporal Models

We provide two contrasting but equivalent optimisation models for the TBP. First, the
Packing model (PA) focuses on finding an assignment in such a way that the capacity
constraints on the bins are satisfied. While this model is similar in nature to the classic
formulation of BP, it defines lj variables capturing the time for which each bin j will
be allocated.

In contrast, the Temporal (TP) model explicitly models time by posting a series of
packing constraints ensuring that the capacity constraints are satisfied at each time
point. Although equivalent to PA, this model is more explicit and thus grows faster
with instance sizes. In the next section, we introduce a Mixed Integer Programming
(MIP) and a Constraint Programming (CP) implementations for both the PA and TP

models.

3.2.1 Packing Model (PA)

MIP implementation. We can formulate the TBP as a MIP model using Boolean
variables to decide on the assignments, i.e. xij = 1 if item i ∈ J is assigned to bin
j ∈ M, 0 otherwise. We introduce two other sets of variables. The first set models
the time for which each bin will be allocated. Let ∀j ∈ M : lj ∈ N. Note that a
tighter upper bound on lj variables is the maximum duration of all items considered in
the instance i.e. maxi∈J {ri}. The argument is that the duration of the longest runing
task is a natural upper bound on the run time of the machines. The second set exposes
the usage levels uj of the bins. Let ∀j ∈ M : uj ∈ {0, . . . , Q}. With these variables
defined the MIP model for PA reads:

Combinatorial Optimisation for Sustainable
Cloud Computing

52 Milan De Cauwer

3. A GENERALISATION OF BIN PACKING AS A
CORE CONSOLIDATION PROBLEM 3.2 Packing Versus Temporal Models

min
∑
j∈M

lj ·Q (3.1)

s.t.
∑
j∈M

xij = 1 ∀i ∈ J (3.2)

uj =
∑
i∈J

xij · qi ∀j ∈M (3.3)

uj ≤ Q · lj ∀j ∈M (3.4)

lj ≥ xij · ri ∀i ∈ J ∀j ∈M (3.5)∑
j∈M

lj ·Q ≥
∑
i∈J

ri · qi (3.6)

∑
j∈M

uj =
∑
i∈J

qi (3.7)

xij ∈ {0, 1} ∀i ∈ J ∀j ∈M (3.8)

uj ∈ {0, . . . , Q} ∀j ∈M (3.9)

lj ∈ {0, . . . ,max
i∈J
{ri}} ∀j ∈M (3.10)

The program minimises the sum of the allocated energy over the bins (3.1) while stat-
ing that all items must be assigned to a bin (3.2). A bin that is hosting at least one item
should have a positive allocation time which is enforced through constraint (3.5) by
forcing lj variables to larger values than the duration of any item that may be assigned
to it. The assignment is subject to capacity constraints on every bin (3.3) with the usage
defined as the sum of the item sizes assigned to it. Constraint (3.6) redundantly states
that the overall allocated energy on the machines should be greater than the overall re-
quired energy. In the same way, constraint (3.7) redundantly states that the sum of the
bin usages should match the sum of items requirements. These redundant constraints
are featured in this model, as well as the following ones in order for the solvers to pos-
sibly cut parts of the search space. Finally, with (3.8) (3.9) (3.10) variables are taking
values in their respective domains.

CP implementation. Let ∀i ∈ J : xi ∈ M be a variable that denotes the bin
assigned to item i. lj variables have the same semantics as above but their domain
can reduced to the all distinct item duration : D(lj) = {ri | i ∈ J }. We minimise a
cost variable (3.11) modeling the objective function defined as the sum over the bins
allocation times lj times their capacities Q (3.12). The right hand side of (3.13) stands
as a lower bound on the cost since the minimum cost would be reached if all the items
are fitted with the required energy being equal to the allocated energy. The latter is
similar to constraint (3.6) from the MIP model. We use constraint (3.14) to enforce that

Combinatorial Optimisation for Sustainable
Cloud Computing

53 Milan De Cauwer

3. A GENERALISATION OF BIN PACKING AS A
CORE CONSOLIDATION PROBLEM 3.2 Packing Versus Temporal Models

each item i be assigned to bin j such that the sum of the weights of each item, qi, in
each bin j is equal to the usage uj . Similar to constraint (3.5), constraint (3.15) sets
the allocation time of each bins to match the maximum duration of the items assigned
to it. The model CP model for PA reads:

min cost (3.11)

sum(cost, 〈l1, . . . , lm〉, 〈Q, . . . , Q〉) (3.12)

cost ≥
∑
i∈J

qi · ri (3.13)

bin_packing_load(〈u1, . . . , um〉, 〈x1, . . . , xn〉, 〈q1, . . . , qn〉) (3.14)

∀j ∈M : lj = max
i∈J

((xi = j) · ri) (3.15)

∀j ∈M : uj ≤ Q · lj (3.16)

In this formulation, the bin_packing_load() global constraint is an implementation of
a packing constraint suggested by Paul Shaw [Sha04]. This particular implementation
exposes the load variables. This constraint requires that each item i with weight qi,
be put into bin j such that the sum of the weights of the items in each bin is equal
to the bin’s load uj with domains D(uj) = {0, . . . , Q}. This global constraint is im-
plemented in Gecode [STL10] and accessed through the Minizinc constraint modeling
language [NSB+07b].

3.2.2 Temporal Model (TP)

In contrast to the packing model developed in the previous section, the temporal model
explicitly models time points for which the problem admits a departing item. Let
T = 〈t1, . . . , to〉 be the ordered set of these time points such that t1 maps to the time
point of value 0, t2 the smallest duration, and to the longest duration of any item. Let
K+ = {1, . . . , o} be the index over T andK = {1, . . . , o−1} an index over T without
its last element. Last, K− is defined as K minus its last element. With time defined
explicitly, we can build subsets of items ∀k ∈ K : Jk = {i | i ∈ J ∧ ri > tk}.
Naturally, J1 includes all the tasks whereas Jo−1 includes the subset of tasks with
maximum duration.

MIP implementation.

Similar to the packing model, let ∀(i, j) ∈ J × M : xij be Boolean variables

Combinatorial Optimisation for Sustainable
Cloud Computing

54 Milan De Cauwer

3. A GENERALISATION OF BIN PACKING AS A
CORE CONSOLIDATION PROBLEM 3.2 Packing Versus Temporal Models

deciding on the assignment of item i. In addition, let ∀(j, k) ∈ M × K : ujk ∈
{0, . . . , Q} be integer variables modeling the utilisation level of machine j at time
point k. Furthermore, we introduce a set of Boolean variables ∀(j, k) ∈M×K : yjk
stating whether or not machine j is processing any task at time k. The model is as
follows.

min
∑
k∈K

∑
j∈M

Q ∗ (tk+1 − tk) ∗ yjk (3.17)

∑
j∈M

xij = 1 ∀i ∈ J (3.18)

ujk =
∑
i∈Jk

xij · qi ∀j ∈M ∀k ∈ K (3.19)

ujk ≤ Q · yjk ∀j ∈M ∀k ∈ K (3.20)

yjk ≥ yjk+1 ∀j ∈M ∀k ∈ K− (3.21)

ujk ≥ ujk+1 ∀j ∈M ∀k ∈ K− (3.22)∑
j∈M

ujk =
∑
i∈Jk

qi ∀k ∈ K (3.23)

xij ∈ {0, 1} ∀j ∈M ∀i ∈ J (3.24)

ujk ∈ {0, . . . , Q} ∀j ∈M ∀k ∈ K (3.25)

yjk ∈ {0, 1} ∀j ∈M ∀k ∈ K (3.26)

The objective function (3.17), equivalent to that of the packing model (3.1) and
(3.11), is computed piece-wise over all the machines and all consecutive time points.
Items must be assigned to bins (3.18) under capacity constraints enforced by (3.19)
and (3.20). Constraint (3.21) redundantly states that if a bin is allocated at time point
k, it is implied that it should be running at previous time points as well. The same
reasoning applies to the usage of the bins over time (3.22).

Finally, (3.23) states that the overall usage at any time period should match the sum of
sizes of those items still allocated (Jk). Constraints (3.24), (3.25), (3.26) are forcing
variables to take values in their respective domains.

CP implementation. We provide a Constraint Programming formulation based on a
conjunction of bin_packing_load() constraints. Each constraint models a time point.

Let xi ∈M be an integer variable that denotes the bin assigned to item i ∈ J . Let yjk
be a Boolean variable that denotes whether the bin j is used at time-point k. Let ujk

Combinatorial Optimisation for Sustainable
Cloud Computing

55 Milan De Cauwer

3. A GENERALISATION OF BIN PACKING AS A
CORE CONSOLIDATION PROBLEM 3.3 Breaking Symmetry

be a integer variable denoting the level of utilisation of machine j at time-point k. The
domain of ujk is D(ujk) = {0, . . . , Q}. The CP formulation for the temporal model
reads as:

min
∑
k∈K

∑
j∈M

Q · (tk+1 − tk) · yjk (3.27)

∀k ∈ K : bin_packing_load(〈u1k, . . . , um|Jk|〉,

〈x1, . . . , x|Jk|〉,

〈q1, . . . , q|Jk|〉) (3.28)

∀j ∈M ∀k ∈ K : yjk ⇔ ujk > 0 (3.29)

∀j ∈M : decreasing(〈uj1, . . . , uj,|K|〉) (3.30)

∀j ∈M : decreasing(〈yj1, . . . , yj,|K|〉) (3.31)

∀k∈K
∑
j∈M

ujk =
∑
i∈Jk

qi (3.32)

The objective function (3.27) to minimise here is the same as the one introduced in the
previous MIP formulation. Constraint (3.28) imposes that each item i ∈ Jk be put into
bin xi such that the sum of the weights of each item, qi, in each bin j is equal to the
usage ujk at time-point k. In this model, the yjk variables are constrained (3.29) to be 1
if and only if the usage of machine j at time point k if higher than 0. In (3.30) the usage
of any machine is constrained to decrease over the time points while constraint (3.31)
is stating that if bins j was opened in time k, it is necessary for the bins to be opened
in time k − 1. Finally, (3.32) is the equivalent of (3.23) from the MIP model.

We have shown a MIP and a CP implementation for both PA and TP models for TBP. In
the next section, we show how these models can be strengthened in order to improve
pruning from the solvers.

3.3 Breaking Symmetry

We introduce some symmetry breaking rules that can be implemented in addition to
the core models shown in previous sections. As can be seen on Figure 3.1b, the opti-
mal solution for the instance illustrating the problem can be used to build equivalent
solutions by permuting the bins. To reduce the search space, an order can be imposed
over the bins. This order can be defined over the time for which bins are allocated (lj

Combinatorial Optimisation for Sustainable
Cloud Computing

56 Milan De Cauwer

3. A GENERALISATION OF BIN PACKING AS A
CORE CONSOLIDATION PROBLEM 3.3 Breaking Symmetry

variables) or on the bins utilisation (uj variables).

3.3.1 Breaking Symmetry on the PA model.

On Run Times (RT). We constrain the order of the bins to be decreasing on run
time. For the PA-MIP model, this can be implemented by imposing the following set
of constraints : ∀j ∈ {1, . . . ,m− 1} : lj ≥ lj+1. Similarly, the PA-CP should impose
the values of lj variables to be decreasing : decreasing(〈l1, . . . , lm〉).

In addition, by enforcing this order, we can deduce that the running time of the first
bin should be equal to the duration of the longest item l1 = maxi∈J (ri) and that its
usage has to be higher than the size of the biggest item u1 ≥ qi with i being the item
with the longest duration. This holds true and can be implemented in both MIP and
CP because the longest item will be hosted on this machine along with possibly other
shorter items.

On Usage (US). An alternative way to break symmetry is to enforce the bins’ order
based on their usage level. This order can be imposed by posting ∀j ∈ {1, . . . ,m −
1} : uj ≥ uj+1 in the PA-MIP model. Similarly, the PA-CP should implement the
constraint : decreasing(〈u1, . . . , um〉).

Additionally, breaking symmetry on uj variables implies that the usage of the first bin
is at least that of the size of the biggest item, i.e. u1 ≥ qi with i being the size of the
largest item.

3.3.2 Breaking Symmetry on the TP model.

Similar techniques can be applied in the temporal model. Because the TP is more
expressive, i.e. it models time explicitly, breaking symmetry can be done over the bins
throughout the multiple time steps.

On Run Times (RT). In this model, with the MIP implementation, one can enforce
the order on the run time by stating that a bin j can be allocated only if the bin j − 1
is also allocated. This holds true for all time points considered in the problem. The
ordering can be enforced through yjk variables, i.e. ∀j ∈ {1, . . . ,m − 1} ∀k ∈
K : yjk ≥ yj+1k. Likewise, in the CP implementation, the model should impose
∀k ∈ K : decreasing(〈y1k, . . . , ymk〉).

Combinatorial Optimisation for Sustainable
Cloud Computing

57 Milan De Cauwer

3. A GENERALISATION OF BIN PACKING AS A
CORE CONSOLIDATION PROBLEM 3.4 Lower and Upper Bounds

With the ordering on run times, further properties can be deduced on the structure of
solutions for TBP. Because the longest item will be assigned to the first machine, we
can state that it should be allocated for all time points i.e. ∀k ∈ K : y1k = 1.

On Usage (US). Finally, the order on the bins can be based on their utilisation level.
This is only true for the first time point in the problem and should not be enforced
for all time points. The MIP model should then be equipped with the following set of
constraints : ∀j ∈ {1, . . . ,m − 1} : uj1 ≥ uj+1,1. On the other hand, the CP model
should implement decreasing(〈u11, . . . , um1〉).

3.4 Lower and Upper Bounds

Modern complete solvers rely on an implementation of a backtracking system. The
backtracking system is responsible for systematically exploring the search space until
having found an optimal solution. These systems are usually reasoning on both lower
and upper bounds on the value of the objective function to guide the search procedure.

A solution yielding an upper bound on the objective function is a complete assignment
from variables to values in their respective domains in such a way that all constraints
are satisfied. Although such a feasible solution is in general not optimal, it can be used
by solvers to prune sections of the search space that are yielding objective values that
are dominated. A lower bound on the objective function is provided by a solution that
is in general not feasible because some constraints of the original problem are relaxed.

We introduce with Algorithm 1 an ad-hoc method to compute a lower bound on the
allocated energy (equivalently, on the resource wastage) on any instance of TBP. It
relies on sorting the items by decreasing duration (line 2) and uses the L1 bound de-
rived by Silvano Martello and Paolo Toth for the BP Problem [MT90a]. By definition,
L1 is a lower bound on the number of bins used in a bin packing instance. The re-
laxation considers the items breakable and thus can be split and assigned to multiple
bins at the same time. The L1 bound is provided on line 3 with L1 = d∑i∈J qi/Qe.
We define on line 4 a vector R containing the cumulative sum of items sizes such that
R1 = q1, R2 = R1 + q2, . . . , Rn = Rn−1 + qn. The main loop on line 5 iterates over
the minimum number of bins needed to accommodate all items while finding for each
of those bins their maximum running time lm by retaining the maximum duration of
any item assigned to it in this relaxed version of the problem (line 8 and 9).

To illustrate the algorithm, Figure 3.2 shows how it is applied to the small instance

Combinatorial Optimisation for Sustainable
Cloud Computing

58 Milan De Cauwer

3. A GENERALISATION OF BIN PACKING AS A
CORE CONSOLIDATION PROBLEM 3.4 Lower and Upper Bounds

Algorithm 1: TBP_lowerBound()
Input: J ,M, q, r,Q
Output: lb

1 lb← 0
2
−→
J ← sortOnDurationDecreasing(J)

3 L1← d
∑
i∈J qi/Qe

4 R← cumSum(−→J)
5 for m ∈ {0, . . . , L1− 1} do
6 lm ← 0
7 for each i ∈

−→
J do

8 if Ri > m ∗Q ∧Ri ≤ (m+ 1) ∗Q then
9 lm ← max(lm, ri)

10 lb← lb+ lm ∗Q
11 return lb

introduced in Section 3.2. The items are sorted by decreasing duration and assigned
to L1 = d(3 + 3 + 7 + 7)/10e = 2 bins considering that they are breakable. The lm
variables evaluate to 100 and 40 in this instance. Finally the lower bound is computed
as 100 ∗ 10 + 40 ∗ 10 = 1400.

As an upper bound on the objective function, we adapt the well known FIRSTFIT

algorithm for BP. Algorithm 2 differs in the ordering of the items. We first order the
items decreasingly on the items duration on line 1 and initialise both uj and lj variables
on lines 3 and 4. Then, the loop over each each item searches for the first candidate bin

M0

M1

M2

10040

L1=2

l 0
=
10
0

l 1
=
40

Figure 3.2: A relaxed version of TBP in which items are breakable. The lower bound
evaluates to 1400.

Combinatorial Optimisation for Sustainable
Cloud Computing

59 Milan De Cauwer

3. A GENERALISATION OF BIN PACKING AS A
CORE CONSOLIDATION PROBLEM 3.5 Empirical Analysis

to accommodate it. Naturally, line 7 checks whether or not there is sufficient remaining
capacity in bin j for item i. If this is the case, we assign i to j and update the uj and
lj variables accordingly on lines 8 and 9. The upper bound on the objective function
is then returned on line 11 as the sum over the bins of their capacity Q times their run
times lm.

Algorithm 2: TBP_firstF it()
Input: J ,M, q, r, Q
Output: ub

1
−→
J ← sortOnDurationDecreasing(J)

2 for each j ∈M do
3 uj ← 0
4 lj ← 0
5 for each i ∈ J do
6 for each j ∈M do
7 if qi + uj ≤ Q then
8 uj ← uj + qi
9 lj ← max(lj, ri)

10 break

11 return
∑
j∈MQ× lj

While TBP_firstFit() is a heuristic method, from the example introduced in Figure 3.1,
it is clear that it would produce the optimal solution. Although it is the case in this
instance, it does not hold true for any instance of the TBP. The lower bound and upper
bound algorithms will be used to assess the solution quality returned by systematic
solvers in the next section.

3.5 Empirical Analysis

As such the Temporal bin packing has not been described in the literature. In previous
sections, we have presented alternative models (PA vs TP), implementations (MIP vs
CP) and symmetry breaking techniques (RT vs US). We now consider the most efficient
way to systematically solve the TBP. As it is not guaranteed to find optimal solutions
as the instance size grow, we have thus provided both lower and upper bounds methods
to compare the various approaches.

Combinatorial Optimisation for Sustainable
Cloud Computing

60 Milan De Cauwer

3. A GENERALISATION OF BIN PACKING AS A
CORE CONSOLIDATION PROBLEM 3.5 Empirical Analysis

3.5.1 Experimental setup

As a framework for the experiments we implemented the MIP model using Number-
jack [HOO10], a modeling package for constraint programming (version 1.1.0.) The
backend solver used was CPLEX (version 12.51.). On the CP side, models were
implemented with Minizinc [NSB+07b] (version 2.0.2) using as a back-end solver
Gecode [Gec06] (version 4.4.0.) All experimental runs were performed on a cluster of
Intel Xeon E5430 Processor with 12 GB of memory running CentOS release 6.6.

Due to the large spectrum of the experiments, we have unified the default search strat-
egy in Minizinc to search on the assignment variables xij with a first_fail variable
selection heuristic and indomain_min value selection policy. These strategies were ex-
perimentally found to be the best performing. Both Gecode and CPLEX were allowed
to parallelize over 4 CPU cores. All optimisation models and instances used in the
chapter are freely accessible. 1

3.5.2 Instances

Two data sets were used to evaluate the performance of the various settings described
in previous sections. The first one is a randomly generated set of instances ranging
from size n = 10 to 100 items by increments of 10 giving rise to 10 instance classes
: C10, C20, . . . , C90, C100 each containing 10 different instances. The size of the bins
and the size of the biggest possible item have been fixed to Q = 100. Each item has
a uniformly generated size qi ∈ {1, . . . , Q} as well as a uniformly generated duration
ri ∈ {10, . . . , 1000}.

Our second data set is coming from a real-world application in the context of data
centres. We extracted the data (item size and duration) from a trace recorded by Google
in 2011 over a cluster of 12k servers [RWH11]. Much information has been gathered
about the trace characteristics [RTG+12, DKF13, LC12]. Features of this data set
were analysed in depth in Section 2.3.5 of this dissertation. For our evaluation, we
have uniformly sampled this trace containing the description on several million tasks.
As with the randomly generated instance, this data set contains 10 classes spanning
from size 10 to size 100. Each class is a collection of 10 instances.

1https://gitlab.insight-centre.org/mdecauwer/TemporalBinPacking

Combinatorial Optimisation for Sustainable
Cloud Computing

61 Milan De Cauwer

https://gitlab.insight-centre.org/mdecauwer/TemporalBinPacking

3. A GENERALISATION OF BIN PACKING AS A
CORE CONSOLIDATION PROBLEM 3.5 Empirical Analysis

Table 3.1: Percentage of instances solved within the time out function of the symmetry
breaking technique

Time Out Sym Break Google random

2sec
US 42.08 17.66
RT 45.65 28.20
NO 40.27 13.33

30sec
US 55.99 17.86
RT 69.52 41.43
NO 51.49 19.05

120sec
US 58.37 17.86
RT 68.16 47.72
NO 57.78 20.39

300sec
US 59.86 19.21
RT 70.05 53.04
NO 59.13 22.29

3.5.3 Analysis

We investigate the performance of the various models for the TBP developed earlier.
The two models (PA, TP), along with their respective MIP and CP implementations
have been evaluated on both the uniform random data set and the instance set drawn
from the Google trace. In order to simplify the analysis we are first interested in the
performance of the symmetry breaking techniques introduced earlier. As suggested by
Table 3.1 we see that breaking symmetry on the run times (RT) of the machines is the
most efficient as it constantly outperforms breaking symmetry on the utilisation (US).
We report in the table the proportion of instances that were solved to optimality within
the timeout. NO means that no symmetry breaking technique was used. The proportion
is computed over all combinations of models and solvers. The numbers show that
symmetry breaking on the random instances has only a limited impact. There must be
features in the Google data set, not present in the random data set, that take advantage
of symmetry breaking.

From now on, only the RT strategy will be used to compare the various model / im-
plementation couples. Due to the high rate at which data centres receive new tasks to
allocate on their infrastructure, we will focus on the behavior of the models on a very
short time out of 2 seconds. To get a better picture of the models’ performances, we
will also include a time out of 300 seconds.

Figure 3.3 reports on the average gap to the lower bound on the 10 classes of instances.
This gap is computed as the average of distance between the objective reported by the
solver and the lower bound given by Section 3.4 divided by the lower bound. Note that

Combinatorial Optimisation for Sustainable
Cloud Computing

62 Milan De Cauwer

3. A GENERALISATION OF BIN PACKING AS A
CORE CONSOLIDATION PROBLEM 3.5 Empirical Analysis

10 20 30 40 50 60 70 80 90 1000.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

PA-MIP
TP-MIP
PA-COP
TP-COP
ub

(a) Time out 2 seconds.

10 20 30 40 50 60 70 80 90 1000.00

0.02

0.04

0.06

0.08

0.10

0.12

PA-MIP
TP-MIP
PA-COP
TP-COP
ub

(b) Time out 300 seconds.

Figure 3.3: Random instances. Average gap to lb after 2 and 300 seconds. The x-axis
is instance size, the y-axis is the average gap to the lower bound computed across all
instances of size x

Combinatorial Optimisation for Sustainable
Cloud Computing

63 Milan De Cauwer

3. A GENERALISATION OF BIN PACKING AS A
CORE CONSOLIDATION PROBLEM 3.6 Conclusion and Limitations

if the solver proved optimality, then we use the optimal value as a lower bound.

As the figure suggests, on short timeouts, of all the complete approaches, PA-CP is
scaling better than other approaches. Overall its gap to the lower bound is leveling
around 10% which seems comparable with the adapted TBP_firstF it() heuristic.
Under severe cut-off times, the TP model does not find solutions for instance sizes
above 60 items. When allowed 300 seconds, surprisingly, most of the models are
not finding solutions for instances of size 100. The only candidate that is scaling is
PA-CP. The TP-MIP alternative seem to systematically yield better solutions than the
other candidates models. Also, this model solves all instances up to size 40. When
considering all models and solvers under both timeouts, the MIP family seems to hold
better results than the models implemented with CP.

The performance of the models and solvers were evaluated on the instances drawn from
the google data set and on presented in Figure 3.4. We can see on the figure that in
general these instances are easier to solve. For a 300 seconds time out, all solvers were
able to produce solutions up to instances of size 100. Under tighter timeout (2s), it is
confirmed that PA-CP is the only setting able to produce solutions. This is most likely
due to the fact that the model is of smaller size and that the default search strategy is
able to get a first solution quickly. All the alternatives, provided 300 seconds of search
time, are performing better than our heuristic upper bound.

3.6 Conclusion and Limitations

Motivated by the problem of reducing resource wastage in data centres, we have de-
veloped a model that generalises the bin packing problem. The problem is to find an
assignment of tasks to machines, subject to capacity constraints, such that the unused
resources in time are minimised. The problem can be solved by implicitly considering
the time dimension (packing), or by explicitly modeling time (temporal model). For
both viewpoints on the problem, we have provided a MIP and a CP implementation
along with symmetry breaking rules.

The evaluation of the PA and TP models on custom instances suggests that solving
TBP is challenging even on rather small instances. Regardless of the model or solver,
symmetry should be broken on the run times. Choosing which model to use depends
on the size of the instance. We note that the straight- forward modification of well
studied BP heuristics is yielding good performance. The best setting appears to be the
BESTFIT on item size policy with a list of items ordered by decreasing duration.

Combinatorial Optimisation for Sustainable
Cloud Computing

64 Milan De Cauwer

3. A GENERALISATION OF BIN PACKING AS A
CORE CONSOLIDATION PROBLEM 3.6 Conclusion and Limitations

10 20 30 40 50 60 70 80 90 1000.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
PA-MIP
TP-MIP
PA-COP
TP-COP
ub

(a) Time out 2 seconds.

10 20 30 40 50 60 70 80 90 100

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14 PA-MIP
TP-MIP
PA-COP
TP-COP
ub

(b) Time out 300 seconds.

Figure 3.4: Google Instances. Average gap to lb after 2sec versus 300sec. The x-axis
is instance size, the y-axis is the average gap to the lower bound computed across all
instances of size x

Combinatorial Optimisation for Sustainable
Cloud Computing

65 Milan De Cauwer

3. A GENERALISATION OF BIN PACKING AS A
CORE CONSOLIDATION PROBLEM 3.6 Conclusion and Limitations

The TBP problem models a simplified workload management problem found in cloud
computing infrastructures. The problem deals with simple uni-dimensional object with
a known lifespan to be assigned to bins in an offline fashion. We have developed
optimisation models capable of scaling up to 100 items. In most of the real operational
settings in cloud systems, the nature of the optimisation problem is online as objects
are revealed as time passes. The scale of the problem is also quite often orders-of-
magnitude higher than the instances studied in this chapter. These aspects will be
introduced and discussed in the next chapter in order to make this model for workload
consolidation more realistic and compelling.

Combinatorial Optimisation for Sustainable
Cloud Computing

66 Milan De Cauwer

Chapter 4

Semi-online Consolidation with
Uncertain Task Duration

Summary. As highlighted in the introduction chapter, satisfying

on-demand access to cloud computing infrastructures under quality-of-

service constraints while minimising the wastage of resources is a key

challenge in data centre resource management. This chapter deals with

this challenge in a semi-online workload management system, allocating

tasks with uncertain duration to physical servers. Our semi-online frame-

work, based on a bin packing approach, allows us to gather information

on incoming tasks during a short time window before deciding on their

assignments. The contributions of this chapter are as follows: (i) we pro-

pose a formal framework capturing the semi-online consolidation prob-

lem; (ii) we propose a new dynamic and real-time allocation algorithm

based on the incremental merging of bins; and (iii) an adaptation of stan-

dard bin packing heuristics with a neighborhood search algorithm for the

semi-online context considered here. A systematic study of the impact of

varying time-period size and varying the degrees of uncertainty on the du-

ration of incoming tasks is then provided. The policies are compared in

terms of solution quality and solving time on a data-set extracted from a

real-world data centre trace.

In this chapter, we leverage semi-online optimisation techniques in which workload
allocations must be made without full knowledge of future demands. A semi-online
formulation of the workload consolidation problem gathers information on incoming
tasks for a short period of time. It may allow an operator to take more informed de-

67

4. SEMI-ONLINE CONSOLIDATION WITH
UNCERTAIN TASK DURATION 4.1 Semi-Online Resource Wastage Minimisation

cisions than the fully online formulation while keeping control of delays in task de-
ployments. In a cloud computing production environment, it is often the case that the
duration for which a task will consume resources is either approximated or not known
at all. This fits the new challenge of on-demand allocations in which demands are guar-
anteed to be satisfied in real-time. We therefore formalise the workload consolidation
problem as a semi-online packing problem whereby each bin maps to a machine and
each item maps to a task.

We tackle the semi-online formulation of the on-demand workload consolidation
where tasks have to be allocated to servers in real-time. While the vast majority of the
work carried on workload consolidation considers either the offline [PB13, WTTL12]
or online [PY10, HLW11, DC12] setting, we cast the problem in a semi-online frame-
work by considering a short period of a few seconds within which tasks are grouped
before being allocated to hosts. More precisely, we build upon the offline workload
consolidation problem discussed in [CMO16].

The remainder of this chapter is organised as follows. Section 4.1 provides a mathe-
matical formulation of the on-demand bin packing (ODBP) problem. In order to find
solutions to the problem, Section 4.2 shows how to adapt packing heuristics to this
consolidation problem. In Section 4.3, we contribute a flexible algorithm considering
both tasks and machines to find efficient packings. Section 4.4 introduces neighbor-
hood search in order to improve packings. Finally, Section 4.5 shows the performance
of our approach compares to adapted heuristics of the related work in terms of solving
time and solution quality. We demonstrate that our bin merging policy can achieve re-
ductions in energy use of up to 40% over the compared approaches. We show that the
policy is relatively robust to increased errors in the predicted duration of the tasks. Fi-
nally, we show that moving from the pure online problem to the semi-online problem,
with relatively small decision time windows, has a significant impact on the solution
quality, but that all policies quickly stabilise and do not benefit further from longer
time windows.

4.1 Semi-Online Resource Wastage Minimisation

On-line policies decide the placement incoming tasks as soon as they arrive in the
system. Such a framework must fully satisfy on-demand Quality-of-Service (QoS)
requirements, guaranteeing the real-time placements of tasks. However, due to the
lack of knowledge of which tasks might come next, on-line placement strategies may

Combinatorial Optimisation for Sustainable
Cloud Computing

68 Milan De Cauwer

4. SEMI-ONLINE CONSOLIDATION WITH
UNCERTAIN TASK DURATION 4.1 Semi-Online Resource Wastage Minimisation

provide poor consolidation solutions and waste more resources than required.

On the other hand, for efficient resource utilisation, off-line approaches consider the
task placement as a batch optimisation problem for which the incoming tasks are
known in advance. The knowledge of forthcoming tasks allows a better consolida-
tion but involves more sophisticated techniques that may require an expensive solving
time. In the context of on-demand placement, neither the existence of incoming tasks
nor their duration can be known in advance.

The aim of our approach is to fill the gap between on-line and off-line approaches and
investigate the benefit of a semi-online framework in terms of the trade-off between
efficient resource utilisation and on-demand placement QoS. To have a better under-
standing of our overall objective in the semi-online context, consider an arbitrary start
time of 0. For any time t, let ztm be the observed run-time duration for machine m
between the time points 0 and t. Then, our overall objective is, for some sufficiently
large time t, to allocate tasks to machines such that each task starts within δ seconds of
its arrival time, and so that the sum over m of ztm is minimised.

Let us consider the following example of a sequence of six incoming tasks a0, . . . , a5,
having an expected duration of 50, 10, 100, 50, 10, 100 minutes respectively, requir-
ing the same CPU resource equivalent to 50% of a machine capacity, and arriving at
one second intervals. We aim to minimise the run-time of allocated machines. In
the following, we consider semi-online consolidation as discussed in Section 2.2.3.
Figure 4.1 shows an optimal placement of the incoming tasks within three different
contexts, on-line, semi-online, and off-line. In an on-line context, the time for decid-
ing the placement of the incoming tasks is negligible. The optimal placement, seen on
the first row of Figure4.1, allocates the tasks a0 and a1 to the machine m0, then, a2 and
a3 to m1 and finally, a4 and a5 to m2.The run-time of allocated machines is 250 mins.
In a semi-online context, incoming tasks are first gathered and then allocated at the
start of the next time period. In the example we consider a time period of 3 seconds.
Within this context, the optimal placement shown in 2nd row Figure 4.1 corresponds
to 210 mins total run-time. Machine m0 allocates its first task at 6 seconds while m1

and m2 start respectively at 9 and 12 seconds. In the first time period of 3 seconds
the system first collects the tasks a0, a1, a2. From 3 to 6 seconds the system solves the
placement concerning the tasks received between 0 and 3 seconds. At the same time, it
also collects a3, a4, a5 for future placement. At 6 seconds the system implements last
processed solution and allocates a0 and a2 to m0 and a1 to m1. From 6 to 9 seconds
the system decides the placement of a4, a5. At 9 seconds it implements the solution by
allocating a4 to m1 and a3 and a5 to m2. Note that in the semi-online framework the

Combinatorial Optimisation for Sustainable
Cloud Computing

69 Milan De Cauwer

4. SEMI-ONLINE CONSOLIDATION WITH
UNCERTAIN TASK DURATION 4.1 Semi-Online Resource Wastage Minimisation

δ
=

0s
m0 m1 m2

a0

a1

a2

a3

a4

a5

10min 50min 100min50min 10min 100min

50% 50% 50%

δ
=

6s

m0 m1 m2

a0

a2

a1

a4

a3

a5

100min50min 10min 100min

50% 50% 50%

δ
=
∗

m0 m1 m2

a1

a4

a0

a3

a2

a5

10min 50min 100min

50% 50% 50%

Figure 4.1: Optimal placement considering respectively an on-line, a semi-online (time
window of 3s), and a off-line contexts.

waiting time δ between the arrival and the allocation of a task is at most twice greater
than the time period of 3 seconds. A small waiting time positively affects on-demand
QoS1.

In the off-line context where all incoming tasks are known before being allocated, the
optimal placement shown in 3rd row Figure 4.1 corresponds to 160 minutes of run-
time of allocated machines. In this context, the system has decided the placement of
the tasks before they arrive, they are allocated as soon as they arrive.

Intuitively, the greater the knowledge of the incoming tasks, the better the consolida-
tion. However, to satisfy on-demand assignment of tasks placement strategies cannot
afford to wait too long to have a greater knowledge. By using a semi-online framework
we expect to have more information that can lead to better overall assignments while
satisfying on-demand QoS.

1∗ = undefined

Combinatorial Optimisation for Sustainable
Cloud Computing

70 Milan De Cauwer

4. SEMI-ONLINE CONSOLIDATION WITH
UNCERTAIN TASK DURATION 4.1 Semi-Online Resource Wastage Minimisation

Monitor Solver

A,M
〈A1,M1〉, . . . ,〈Ai,Mi〉

h0, . . . , hi

Figure 4.3: The semi-online framework

4.1.1 The Semi-Online Framework

We introduce the semi-online on-demand bin packing problem for which the objective
is to minimise the global waste of CPU resources allocated across the pool of machines.
The semi-online framework 2 is implemented using two distinct modules as illustrated
in Figure 4.3. The first module acts as a monitor and receives the stream of tasks A
to be allocated to the pool of machines M. At each time step i, from the previous
placement solutions sent by the solver, the monitor updates and sends back in the set
Mi the information representing the current state the machines. From the stream of
incoming tasks A, the monitor also gathers the tasks received during the current time
step i into the set Ai before passing them to the solver.

Finally from the current state of the machines Mi and newly arrived tasks Ai the
solver builds the corresponding packing problem. The resulting placement solution hi,
mapping each incoming task to a machine, is then sent to the monitor module.

4.1.2 The Monitor Module

The monitor module decomposes time into a sequence of time steps of size tw mea-
sured in seconds. Each time step i is mapped to the end time ti of the corresponding
time period. Each task a received during time step i is characterised by an arrival
time ta, an expected duration d̄a and a required CPU resource qa. The starting time
t̄a of a corresponds to the end of the next time step after the task has been received,
t̄a = ti+1. We implicitly guarantee on-demand placement by requiring the solver to
return a consolidation plan within a single time step, which ensures each task will start
within 2× tw seconds of its arrival time.

2https://gitlab.insight-centre.org/mdecauwer/
SemiOnlineConsolidation

Combinatorial Optimisation for Sustainable
Cloud Computing

71 Milan De Cauwer

https://gitlab.insight-centre.org/mdecauwer/SemiOnlineConsolidation
https://gitlab.insight-centre.org/mdecauwer/SemiOnlineConsolidation

4. SEMI-ONLINE CONSOLIDATION WITH
UNCERTAIN TASK DURATION 4.1 Semi-Online Resource Wastage Minimisation

Algorithm 3: Monitor
Input: A,M, hi−1
Output: Ai,Mi

1 for each a ∈ A, ta < ti do
2 da ← max(0, t̄a + d̄a − ti)
3 Ai ← {(a, da, qa) | a ∈ A, ti − tw ≤ ta < ti}
4 for each m ∈M do
5 RunningTasks(m)← {a|∀j < i, a ∈ Aj, hj(a) = m, da > 0}
6 Cm ← 1−

∑
a∈RunningTasks(m)

qa

7 lm ← max({da | a ∈ RunningTasks(m)})
8 Mi ← {(m, lm, Cm) |m ∈M}
9 return Ai,Mi

Algorithm 3 provides details on how the monitor module is implemented. The monitor
first updates (resp. initiates) the remaining duration da of the tasks already in progress
(line 8). Note that the tasks that have completed have a remaining duration of 0. The
ones that have not yet started will have a remaining duration initialised after being
scheduled. The monitor then gathers the tasks revealed during time step i into the
set Ai (line 3). The tasks that have been placed but that have not yet completed are
gathered into the set RunningTasks(m) (line 5). This set builds upon the previous
placement solutions hj , j < i. A placement solution hj , received during time step j, is
a mapping from the incoming tasks Aj to the machines in the clusterM.

From the tasks running at step i, the monitor updates the remaining capacity Cm of
each machine m (line 6). It also updates the expected remaining run-time lm of each
machine (line 7). lm represents the maximal expected duration of tasks currently allo-
cated to the machinem, lm = 0 if the machine is currently hosting no tasks. In the end,
the monitor sends both the current state of the machinesMi and the incoming tasks
Ai to the solver (line 9).

4.1.3 The Solver Module

At each time step i the solver is called to solve the On-demand bin packing Problem
(ODBP) corresponding to the current state of clusterMi and newly arrived tasks Ai.
The goal is to return a valid placement hi of the incoming tasks Ai on the physical
servers M minimizing the expected run-time of allocated machines. The solver has
no further knowledge of subsequent arriving tasks. The tasks for which the placement
decision is made during time step i will start running on the assigned machines at the

Combinatorial Optimisation for Sustainable
Cloud Computing

72 Milan De Cauwer

4. SEMI-ONLINE CONSOLIDATION WITH
UNCERTAIN TASK DURATION 4.1 Semi-Online Resource Wastage Minimisation

beginning of the next time step i+1. In the following ODBP problem formulation, each
{0, 1} decision variable xa,m denotes the assignment of the task a to the machine m ∈
M such that xa,m = 1 if task a has been assigned to machine m, xa,m = 0 otherwise.
The auxiliary integer variable em denotes the expected run-time of a machine m. It is
entirely determined by the decision variables xa,m.

The input data da and qa have the same meaning as before; they represent the expected
duration and the CPU requirement of the task a. Similarly, lm and Cm denote the
current maximal expected remaining run-time and the expected remaining capacity of
the machine m. We denote by um the maximal expected duration of the remaining and
the current incoming tasks, um = max(lm, {da | a ∈ Ai}). The mathematical model
corresponding to the on-demand bin packing problem is as follows:ODBP (Ai,Mi) :

min
∑

m∈Mi

em (4.1)

s.t. (4.2)∑
m∈M

xam = 1 ∀a ∈ Ai (4.3)

∑
a∈Ai

xam · qa ≤ Cm ∀m ∈Mi (4.4)

xam · da ≤ em ∀m ∈Mi ∀a ∈ Ai (4.5)

xam ∈ {0, 1} ∀m ∈Mi ∀a ∈ Ai (4.6)

em ∈ [lm...um] ∀m ∈Mi (4.7)

At each time step i the solver aims at minimising the sum of the expected remaining
run-times of the allocated machines (4.1). The placement solution returned by the
solver enforces the following constraints. Each incoming task is assigned to exactly
one machine (4.3). The sum of CPU requirement of incoming tasks assigned to a
machine do not exceed the current machine capacity (4.4). The expected remaining
run-time of a machine is bound by the largest remaining duration of any incoming
task assign to it (4.5) and the maximal expected remaining run-time of the machine
constraints (4.7).

A solution of the above mathematical model is a placement reflected in the assignment
of the xam boolean variables (4.6). Thus, given a current state of the clusterMi and
newly arrived tasks Ai, the mapping hi : Ai 7→ M sent back to the monitor is a
function s.t. hi(a) = m iff xam = 1.

Combinatorial Optimisation for Sustainable
Cloud Computing

73 Milan De Cauwer

4. SEMI-ONLINE CONSOLIDATION WITH
UNCERTAIN TASK DURATION 4.1 Semi-Online Resource Wastage Minimisation

m0 m1 m2

a1

a2
a3

a4 a5

d1 + d3 + d5

10min 90min 30min 50min 20min

25%

50%

25%

50%

90%

m0 m1 m2

a1

a2

a3

a4

a5

d1 + d5

10min 50min 90min 20min

25%

50%

75%

100%
90%

Figure 4.4: Two valid assignments of tasks {a1, . . . , a5} to 3 standby machines
{m0, . . . ,m2}. All tasks are starting at the current time step t.

4.1.4 Illustrating the Consolidation of Machine Run Times

In Figure 4.4, we consider two placements of five tasks, {a1, . . . , a5}, with the follow-
ing duration in minutes (mins): d1 = 90, d2 = 10, d3 = 50, d4 = 30, d5 = 20. The
machines, {m0,m1,m2}, have the same CPU capacity. The tasks have the following
CPU requirements (in percentage of the CPU capacity): q1 . . . q4 = 25% and q5 = 90%.
In the first assignment depicted at the top of the figure, the objective function evaluates
the wastage ofm0 to w(m0) = 90−((25%×10)+(25%×90)) = 65 minutes of CPU re-
sources. m1 andm2 waste, respectively,w(m1) = 50−((25%×30)+(25%×50)) = 30
minutes and w(m2) = 20 − (90% × 20) = 2 minutes. The total wastage of the
first assignment is then 65 + 30 + 90 = 185 minutes of allocated CPU. Similarly,
in the the second assignment of the Figure 4.4, the total wastage is evaluated to
w(m0) + w(m1) + w(m2) = 45 + 0 + 2 = 47 minutes of allocated CPU. The second
assignment wastes fewer CPU resources than the first assignment.

Note that the total running time of active machines in the first assignment is d1 + d3 +
d5 = 160 minutes. The total running time of active machines in the second assignment
is d1 +d5 = 110 minutes. Implicitly, this example gives us insights into the importance
of task duration. It also shows the relationship between the total wastage and the total
running time of active machines.

Combinatorial Optimisation for Sustainable
Cloud Computing

74 Milan De Cauwer

4. SEMI-ONLINE CONSOLIDATION WITH
UNCERTAIN TASK DURATION 4.2 Packing Heuristics

Minimising the global duration of active machines is a difficult task. In [CMO16]
where an offline version of ODBP is tackled, the approaches using state-of-the art
CPLEX and CP solvers cannot solve the problem optimally for more than a few hun-
dred tasks. In the context of real world on-demand task placement, heuristic ap-
proaches are needed to cope with problem sizes reaching thousands of tasks. In the
following, we focus our study on heuristic methods minimising the wastage in ho-
mogeneous platforms in data centres for minimising the global duration of active ma-
chines.

4.2 Packing Heuristics

A range of policies originally developed for the bin packing problem can be adapted
to produce solutions to ODBP in a semi-online fashion. The hard constraint on the bin
capacities is an aspect usually tackled by these policies such as the family of AnyFit
(First, Next, Best, Worst) policies, Sum of Squares and Harmonic heuristics. These
heuristics are discussed in [CJCG+13a].

Due to the semi-online nature of the problem at hand, solving policies must only con-
sider information available up to time i when finding an assignment for tasks Ai. An
aspect traditionally not handled by bin packing models is the duration for which an
item will be consuming resources on its host bin. As shown in Section 4.1, the current
expected run-time of machine m is modeled by lm.

In addition to the policies themselves, the order of tasks to be assigned in any particular
time window may significantly impact the solution’s quality. The natural order is given
by the LIST and leaves the tasks a ∈ Ai ordered by their arrival time ta. Alternatively,
the order D sorts the incoming tasks by decreasing duration da(i). Finally, at every
time step i, the set of machines is ordered on their lm values.

First Fit (FF) The FF policy can be applied as-is to the ODBP problem. The tasks
inAi are in turn assigned to the first machine that has enough remaining capacity. The
condition for assigning task a to machine m at time i is thus qa ≤ Cm. Assigning a to
m updates the remaining capacity on machine m such that Cm = Cm − qa.

Next Fit (NF) The NF policy maintains a pointer to the machine that was last se-
lected to host a task. In turn, each task a ∈ Ai will be assigned to the machine
currently referenced by the pointer. If there is insufficient remaining space on this

Combinatorial Optimisation for Sustainable
Cloud Computing

75 Milan De Cauwer

4. SEMI-ONLINE CONSOLIDATION WITH
UNCERTAIN TASK DURATION 4.2 Packing Heuristics

machine (i.e. qa > Cm), NF will move the pointer to the next machine. If no machine
in the list of active machines can accommodate the task under consideration (i.e. the
pointer reaches the machine it started with), a non-active machine will host the task.
The position of the pointer is maintained across the successive optimisation steps.

Best Fit on Requirements (BFR) / Best Fit on Duration (BFD) Since items are
characterised by both size and duration, the best fit policy is ambiguous in the context
of ODBP. BFR acts similarly to the Best Fit policy for the bin packing problem. For
each task a ∈ Ai, BF selectsm ∈M so that the quantity Cm−qa is minimised. On the
other hand, the BFD policy focuses on finding the machine with the closest running
time hence minimising the quantity |lm − da|. Naturally if no machine in the set of
active machines has enough spare capacity to accommodate the task, a new machine is
made active and the task assigned to it.

Max Rest - MR The Max Rest policy, also known as Worst Fit acts as the opposite
of the BFR policy. Each task a ∈ Ai gets assigned to the machine maximising the
quantity Cm − qa.

Sum Square - (SS) The Sum-of-Squares algorithm was introduced by János Csirik
et al [CJK+99]. Sum-of-Squares uses the notion of the gap of a bin which is its spare
capacity. The number of bins with spare capacity g is denoted by N(g). Initially,
∀g : N(g) = 0. Then SS assigns an item a of size qa such that the the quantity∑

1≤g≤B N(g)2 is minimised. Here, B stands for the capacity of the bins. The main
intuition behind this algorithm is that is maximises the likelihood of finding a item that
almost perfectly fits the gap in a bin at any time.

Harmonic - (HA) Lee and Lee [LL85] introduced the Harmonic heuristic for bin
packing with the underlying idea being an harmonic partitioning of items and bins
on the segment [0, 1] into M families. In our case, the M parameter depends on the
number of machines that are hosting tasks at solving time. This partitioning allows us
to classify items in an efficient manner. We reuse that idea but instead of partitioning
items on their sizes, we partition them on their remaining duration.

Combinatorial Optimisation for Sustainable
Cloud Computing

76 Milan De Cauwer

4. SEMI-ONLINE CONSOLIDATION WITH
UNCERTAIN TASK DURATION

4.3 A novel placement policy: First Merged Fit
(FMF)

4.3 A novel placement policy: First Merged Fit (FMF)

On-line placement policies (cf. Section 4.2) make a clear separation between already
allocated machines hosting a set of running tasks and the list of upcoming tasks Ai

that have to be allocated. The policies iteratively allocate tasks to machines, and may
miss the opportunity to associate the first two tasks together before assigning them
to a machine. This is the main idea behind our algorithm. We propose a flexible
approach that does not try to allocate a task to a machine but rather allows each task to
be associated to another task or machine.

4.3.1 Illustration

A key concept of the algorithm is to group both allocated machines and arriving tasks
under the general notion of bin. A bin, thus, represents either a machine currently
running, or a set of tasks to be allocated, or both. In Figure 4.5, we illustrate an
execution of our approach. The first step is to create a bin for each running machine
and each arriving task. Then, the list of bins is sorted according to some criterion. In
the example, the order of the machines prioritises the longest remaining running time.
At each iteration the algorithm merges the best ranked bin with the next compatible
bin in the list.

Two bins are said to be compatible if: (i) at most one of the bins is built from a currently
running machine, (ii) if one of the bins is already hosting a task, then merging must
be into that bin, without exceeding its capacity; otherwise, merging can be in either
bin but must respect that bin’s capacity. As an illustration, in Figure 4.5, b1 is the bin
hosting the longest task. Since the second bin is b2, b1 and b2 are compatible, b2 and
b1 merge into b1. The merge operation transfers the tasks from b2 to b1 and removes
b2 from the queue. No other bins in the queue are compatible with the updated bin b1.
Tasks from the newly created bin b1 will be allocated to a new machine (m2). Next up
in the list is b3 which is built from a currently running machine, as is b4. Consequently,
b3 and b4 are not candidates for merging. b3 will be merged with b5 to form the updated
bin b3(m1). The algorithm terminates with no new tasks to be allocated.

4.3.2 The First Merged Fit Algorithm

Algorithm 4, First Merged Fit (FMF), receives the set of incoming tasks Ai and the
current state of the machineMi and returns a valid placement hi assigning the incom-

Combinatorial Optimisation for Sustainable
Cloud Computing

77 Milan De Cauwer

4. SEMI-ONLINE CONSOLIDATION WITH
UNCERTAIN TASK DURATION

4.3 A novel placement policy: First Merged Fit
(FMF)

b5

a2
30min
b4

45min

(m0)

b3 (m1)

50min
b2

b1

b1(m2)

100min

b3(m1)

me
rg
e(b

1,
b 2
)

m
er
ge
(b
3
,
b 5
)

a0
100min

a1

a0
a190min

a2

50min

Figure 4.5: A run of First Merged Fit (FMF).

ing tasks to the machines. First, each machine currently running, and each upcoming
task is mapped to a bin (line 1). Implicitly, in our approach, a bin is an object that
models the expected state of a physical machine that will be hosting the incoming
tasks assigned to it. Thus, a bin either corresponds to an already running machine or
represents a machine that will start running with its new set of assigned tasks. The
function buildBins returns the bins corresponding to each incoming task and each
machine currently running (Cm < 1), buildBins(Ai,Mi) = {b ∈ B | (db, qb) =
(da, qa),∀a ∈ Ai} ∪ {b ∈ B | (db, qb) = (dm, (1 − Cm)), ∀m ∈ Mi}. For a bin b,
db represents the expected duration of the task, qb the sum of CPU requirement. The
list of bins B is sorted according to the maximal duration of tasks of each bin (line 2).
Each iteration sees the best-ranked bin bi, line 4, merged with the next compatible bin
bj in the queue (line 7). When the bin is filled, i.e. no further bins can be merged with
the current bin, each task allocated to the bin is then mapped to a physical machine
for placement. The function physicalMachine(b) returns either the running machine
corresponding to the bin or an unassigned machine.

Algorithm 5 gathers the tasks of two bins in one (line 10) and updates the state of the

Combinatorial Optimisation for Sustainable
Cloud Computing

78 Milan De Cauwer

4. SEMI-ONLINE CONSOLIDATION WITH
UNCERTAIN TASK DURATION

4.3 A novel placement policy: First Merged Fit
(FMF)

Algorithm 4: First Merged Fit (FMF)
Input: Ai,Mi

Output: hi
1 B ← buildBins(Ai,Mi)
2 SB ← sortByMaxDuration(B)
3 while SB is not empty do
4 bi ← pop(SB)
5 bj ← nextAllocableWith(bi, SB,Mi)
6 while bj 6= null do
7 bi ← merge(bi, bj , SB,Mi)
8 bj ← nextAllocableWith(bi, SB,Mi)
9 for each a ∈ bi do

10 hi(a)← physicalMachine(bi)

11 return hi

Algorithm 5: merge
Input: bi, bj , SB,Mi

Output: br
1 SB ← SB \ bj
2 if bi ∈Mi then
3 br ← bi
4 bs ← bj

5 else
6 br ← bj
7 bs ← bi

8 dbr ← max(dbr , dbs)
9 qbr ← qbr + qbs

10 Abr ← Abr ∪ Abs

11 return br

bin accordingly (lines 8-9). In the case of a merge between a bin associated with a
running machine and a bin associated with a new machine, the bin receiving the merge
is the bin associated with the running machine (lines 3-6).

Algorithm 6 searches the next compatible bin starting from the index of the last visited
bin j and iterates over the queue of unvisited bins (line 1). If a compatible bin is found,
i.e. the input bin bi and the visited bin bj do not both represent running machines
(line 2) and the sum of the resources requirement is not excessive, the two bins will be
merged (cf. Algorithm 5). If no compatible bin is found, the bin is completed, the sets
its allocated tasks will be placed and start running on the corresponding machine at the
next time step.

Let n = |B| be the number of bins, i.e. the number of running machine plus the number
of upcoming tasks. The complexity of sorting the list of bins is O(nlog(n)). For each
bin in the list (Algorithm 4 Line 3) we only iterate over the remaining part of the list
(Algorithm 6) in descending order. In the worst-case, no compatible bins are found,

Algorithm 6: nextAllocableWith

Input: bi, SB,Mi

Output: bj
1 for each bj ∈ SB from j do
2 if not (bi ∈Mi and bj ∈Mi) then
3 if qbi

+ qbj
≤ 1 then

4 return bj

5 Return null

Combinatorial Optimisation for Sustainable
Cloud Computing

79 Milan De Cauwer

4. SEMI-ONLINE CONSOLIDATION WITH
UNCERTAIN TASK DURATION 4.4 Local Search

so the list of bins does not decrease over the iteration. In this case the complexity is
n×(n−1)/2. Overall, the complexity of FMF isO(nlog(n)+n×(n−1)/2) = O(n2).

4.4 Local Search

The previously described policies can be used to produce valid solutions heuristically
in a rather short amount of computational time. In a real operational setting one could
use the time left in the window to try to converge to better solutions using techniques
such as neighborhood search. The underlying idea is to build a MIP model capturing
the decision problem local to a time window. This local problem is composed of the
state of the system and the list of incoming tasks for which an assignment is expected.
The various policies are used to produce a feasible solution (incumbent) in turn pro-
vided as a first assignment to the complete solver (CPLEX). The complete solver is
then allowed the time left to explore further solutions.

CPLEX was tuned to use a neighborhood search technique (RINS) method described
in [DRP05] as a black box. RINS exploits information contained in the linear relax-
ation of the MIP model. RINS can be thought as an anytime approach to neighborhood
search in the sense that it always yields the best feasible solution found so far.

4.5 Empirical Analysis

In these experiments, we first compare the performance of the workload consolidation
of the incoming tasks as reported in the trace (i.e. we assume we know the duration of
each task when it arrives). Section 4.5.1 compares the total allocated resources of the
different approaches for the period one week of incoming tasks. Section 4.5.2 analy-
ses the resource consumption of the policies during high demand of tasks placement.
Section 4.5.3 measures the resource usage when varying the time step duration. Sec-
tion 4.5.4 relaxes the hypothesis on full knowledge of task duration and measures the
resource usage when varying the uncertainty of task duration. Section 4.5.5 compares
the time performance. Last, Section 4.5.6 summarises the resource usage and the time
performances of the approaches.

Combinatorial Optimisation for Sustainable
Cloud Computing

80 Milan De Cauwer

4. SEMI-ONLINE CONSOLIDATION WITH
UNCERTAIN TASK DURATION 4.5 Empirical Analysis

4.5.1 Overall Allocated Resources

Figure 4.6 shows the solution quality of the different approaches by comparing the
total allocated resources over time. Using the simulation framework described in Sec-
tion 4.1.1, we measured the performance of heuristics in terms of cumulative allocated
resources (y-axis) as the simulated time progresses (x-axis).

The allocated resource is measured in terms of run-time of allocated machines. The
time step duration is two seconds. Figure 4.6 a) shows the evolution of the total re-
source usage of each policy. Figure 4.6 b) shows the evolution of the total resource
usage when the remaining time left is used to improve the solution returned by each
policy using a neighborhood search heuristic [DRP05] with the CPLEX solver.

The total resource allocated over time interleaves steady growths and levels. Steady
growth corresponds to time periods when few tasks arrived per time-window. Levels
correspond to arrivals of peaks of incoming tasks. In periods of steady growth all
the approaches slightly increase the total allocated resources. The gap in resource
utilisation of the approaches slightly increases after each change of level. At these
times, the placement of tasks becomes more challenging and the difference between
the solution quality of the policies increase accordingly. We analyse in details the
arrival of peaks of tasks in Section 4.5.2.

The best placements policies are FMF followed by FF then BFD. The placement poli-
cies HA and MRR waste significantly more resources and exceed the resource limit
shown in the Figure 4.6a. When the solution of each policy is enhanced by the neigh-
borhood search, Figure 4.6b, less efficient policies significantly improve their resource
usage and narrow the gap between the best policies. Note that the use of neighborhood
search marginally improves the resource usage of the best policies.

In Table 4.1 we present the total resources allocated by the different approaches after
seven days, i.e., 168 hours of workload consolidation. Compared to the leading stan-
dard bin-packing heuristics, FMF consumes 4% less resource than FF and 15% less
resource than BFD. Compared with the most inefficient policies, FMF saves 1.75 and
3.6 times more resource than MRR and HA.

Table 4.1: Total run-time of allocated machines (in hours) of the placement policies

Approaches: FMF BFD BFR FF HA MRD MRR NF SS
Policy: 5016 5902 6239 5223 18232 6225 8786 6313 6327

Policy+NS: 4969 5392 5474 5231 5102 5205 6113 5138 5279

Combinatorial Optimisation for Sustainable
Cloud Computing

81 Milan De Cauwer

4. SEMI-ONLINE CONSOLIDATION WITH
UNCERTAIN TASK DURATION 4.5 Empirical Analysis

0 20 40 60 80 100 120 140 160 180
elapsed time in hours

0

1000

2000

3000

4000

5000

6000

7000

to
ta

l
ru

n
 t

im
e
 o

f
a
llo

ca
te

d
 m

a
ch

in
e
s

in
 h

o
u
rs

MRD

BFD

SS

MRR

HA

FF

FMF

BFR

NF

(a) Policies

0 20 40 60 80 100 120 140 160 180
elapsed time in hours

0

1000

2000

3000

4000

5000

6000

7000

to
ta

l
ru

n
 t

im
e
 o

f
a
llo

ca
te

d
 m

a
ch

in
e
s

in
 h

o
u
rs

BFR_NS

MRR_NS

MRD_NS

HA_NS

FF_NS

NF_NS

SS_NS

FMF_NS

BFD_NS

(b) Policies + neighborhood search

Figure 4.6: Total allocated resources over the time per policies against elapsed time.

4.5.2 Resource Allocation During Peak Activity Periods

We analyse the resources allocated and released after incoming peaks of tasks. Fig-
ures 4.7 a) and 4.7 b) compare the behaviour of the approaches at the arrival of three
peaks of 3293, 959 and 3899 tasks received at different time steps. During the 123rd

hour 10246 tasks have to be placed, the three noticeable peaks represent 80% of the

Combinatorial Optimisation for Sustainable
Cloud Computing

82 Milan De Cauwer

4. SEMI-ONLINE CONSOLIDATION WITH
UNCERTAIN TASK DURATION 4.5 Empirical Analysis

123.0 123.2 123.4 123.6 123.8 124.0
elapsed time in hours

200

250

300

350

400

450

n
u
m

b
e
r

o
f

a
llo

ca
te

d
 m

a
ch

in
e
s

MRD

BFD

SS

MRR

HA

FF

FMF

BFR

NF

(a) Policies

123.0 123.2 123.4 123.6 123.8 124.0
elapsed time in hours

200

250

300

350

400

450

n
u
m

b
e
r

o
f

a
llo

ca
te

d
 m

a
ch

in
e
s

BFR_NS

MRR_NS

MRD_NS

HA_NS

FF_NS

NF_NS

SS_NS

FMF_NS

BFD_NS

(b) Policies + neighborhood search

Figure 4.7: Number of allocated machines over the peaks of the 123rd hour.

incoming tasks. We thus focus on that specific hour of the simulation for the sake of
illustrating differences in allocation policies under stress load. In both figures, the x
axis corresponds to a specific time span of one hour, i.e. 1800 time steps of 2 seconds
of the 123rd hour of the simulation of task arrivals. The y axis describes the number of
allocated machines.

In Figure 4.7a, at the arrival of the first noticeable peak of tasks, all the approaches
perform similarly. They allocate new machines to cover the peak requirement. The

Combinatorial Optimisation for Sustainable
Cloud Computing

83 Milan De Cauwer

4. SEMI-ONLINE CONSOLIDATION WITH
UNCERTAIN TASK DURATION 4.5 Empirical Analysis

Table 4.2: Run-time of allocated machines above 180 machines during the 123rd hour.

Policy: FMF BFD BFR FF HA MRD MRR NF SS

tw = 2 Alone 35.8 51.8 54.9 49.7 74.7 57.2 76.8 55 54.1
+NS 35.3 51 53.5 50 43.2 49.5 69.9 50.6 50.3

tw = 30 Alone 35.9 52.4 52.2 48.6 71 53.5 75.5 53.2 53.4
+NS 36.4 48.4 50.2 48.1 42.1 48.5 67 48.6 48.8

same behaviour can be observed at the arrival of the second and the third noticeable
peaks. The quality of the tasks consolidation methods can in fact be observed after the
peaks when the CPU resource is gradually released by the finishing tasks. Placement
policies from the related work waste significantly more resource than FMF. At the end
of the first and the third peaks, HA allocates up to 40 more machines than FMF while
the others placement policies allocate up to 80 more machines than FMF.

Figure 4.7b shows the resource allocated by the policies enhanced by neighborhood
search heuristics. Only the less efficient placement policies HA, MRD and NF show a
clear benefit of using the neighborhood search heuristic to improve their solutions. At
the arrival of the first peak of incoming tasks the number of allocated machines used
by MRD is significantly reduced when using neighborhood search and passes from
more than 450 machines to less than 350 machines. The resource consumption of HA
enhanced by neighborhood search is also significantly reduced. It remains constantly
close to FMF along the hour. For the other methods, the neighborhood search approach
does not improve the solution returned by the policies. In these cases, the solutions
returned by the policies are already good. The neighborhood search does not have the
time to improve the placement within the time step of two seconds. In Table 4.2, 4th

line, we also check the performance of the enhanced policies when the duration of each
time step has been increased to 30 seconds. The results show that with a longer time
step duration, the gain in resources utilisation is not significant for the policies already
proposing an efficient consolidation.

Note that at the beginning and at the end of the 123rd hour more than 180 machines
remain allocated. Table 4.2 shows the extra resource above 180 machines allocated
during this hour. In the first part of Table 4.2, we show the extra resources allocated
when the time step is 2 seconds. To cover the peaks of incoming tasks of the 123rd hour,
FF allocates 40% more extra resources than FMF. The other policies, such as BFD
and HA, allocate between 40% and 200% more resources than FMF. Table 4.2, 2nd

line, shows that HA enhanced by neighborhood search approach drastically reduces
the resource consumption by 42%. MRD and NF are improved by approximately 8%.
FMF, BFD, BFR and FF show similar resources consumption enhanced or not by

Combinatorial Optimisation for Sustainable
Cloud Computing

84 Milan De Cauwer

4. SEMI-ONLINE CONSOLIDATION WITH
UNCERTAIN TASK DURATION 4.5 Empirical Analysis

neighborhood search. In these cases, the policies solutions are already efficient, the
remaining time dedicated to the neighborhood search heuristic to improve the polices’
solutions show no benefit. Note that HA enhanced by a neighborhood search heuristic
returned better results than BFD, BFR, FF. Implicitly it seems that the local minimum
found by the neighborhood search starting from HA solutions is better than the local
minimum found when starting from BFD, BFR and FF solutions.

In the second part of Table 4.2, we show the extra resources allocated when the time
step is 30 seconds. In this case all the policies slightly improves their resource con-
sumption except FMF, BFD, FF, showing similar results. Using a neighborhood search
heuristic drastically improves the allocated resources of HA and more reasonably the
resources consumption of MRR, NF, SS, BFD, and BFR. FMF and FF return similar
resource consumption than before.

In summary, during a period high resource demand, the placement policies may pay the
price of an inefficient placement after the peaks. As a result when the short duration
tasks end an unnecessary amount of machines remain active to execute longer time
duration tasks. These tasks should have been placed in different machine earlier. FMF
is showing a more efficient usage of the allocated resource. This behaviour can be
explained by the fact that FMF takes full advantage of the tasks ordering based on
duration compared to some other policies such as BFD or MRD. In addition, FMF
exploits the opportunity to merge incoming tasks before allocating them to a machine.

4.5.3 Resource Allocation under Varying Time Step Duration

Figure 4.8 shows the evolution of the resource usage of the different approaches when
increasing the time step duration. The resource usage (y-axis) is expressed in run-
time hours of allocated machines. The time step duration (x-axis) is expressed in
seconds. Note that increasing the time step duration implicitly decreases on-demand
QoS ensuring real time placement of tasks. In an on-line context each task has to be
placed as soon as it arrives in the system. In the experiments we simulate the on-line
context by considering an ordering heuristic based on the arrival time of the tasks. The
result of the on-line simulation is shown by the time step duration 0s. The benefit of
the semi on-line context described in this study is shown from the time step duration
2s to 30s. Above 30 seconds we consider the On-demand QoS not fulfilled.

In Figure 4.8 a) each policy shows a noticeable improvement of the resource usage
from the on-line context, i.e. a time step duration of 0s, to the semi-online context, i.e.
a time step duration of 2s. Within the semi on-line context, i.e. from a time step of 2s

Combinatorial Optimisation for Sustainable
Cloud Computing

85 Milan De Cauwer

4. SEMI-ONLINE CONSOLIDATION WITH
UNCERTAIN TASK DURATION 4.5 Empirical Analysis

0 5 10 15 20 25 30
time step duration in secs

4500

5000

5500

6000

6500

7000

7500

8000

ru
n
 t

im
e
 o

f
a
llo

ca
te

d
 m

a
ch

in
e
s

in
 h

o
u
rs

MRD

BFD

SS

MRR

HA

FF

FMF

BFR

NF

(a) Policies

0 5 10 15 20 25 30
time step duration in secs

4500

5000

5500

6000

6500

7000

7500

8000

ru
n
 t

im
e
 o

f
a
llo

ca
te

d
 m

a
ch

in
e
s

in
 h

o
u
rs

BFR_NS

MRR_NS

MRD_NS

HA_NS

FF_NS

NF_NS

SS_NS

FMF_NS

BFD_NS

(b) Policies + neighborhood search

Figure 4.8: Allocated resources per policies when increasing time step duration

to a time step of 30s, the resource usage slightly decreases, or remains stable, as the
time step duration increases. FMF always shows the best resource utilisation when in-
creasing the time step duration, and is closely followed by FF. Figure 4.8 b) shows the
evolution of the resource usage of the placement policies enhanced by the neighbor-
hood search. Compared with the solution returned by policies, the policies enhanced
by neighborhood search show a noticeable improvement in the resource usage. FMF
and FF are the exceptions, the resource usage remain stable.

Combinatorial Optimisation for Sustainable
Cloud Computing

86 Milan De Cauwer

4. SEMI-ONLINE CONSOLIDATION WITH
UNCERTAIN TASK DURATION 4.5 Empirical Analysis

Table 4.3: Resource utilisation (in hours) for time step duration 0, 2 and 30 seconds

Policy tw FMF BFD BFR FF HA MRD MRR NF SS

A
lo

ne
0*(s) 6076 6076 6514 5898 18493 7803 9643 13032 7072
2(s) 5016 5902 6239 5223 18232 6225 8786 6313 6327
30(s) 4943 5947 6228 5258 14255 6306 8648 6280 6280

+N
S 2(s) 4969 5392 5474 5231 5102 5205 6113 5138 5279

30(s) 4950 5050 5466 5228 5061 5138 6149 5213 5093

Table 4.3 sums up the total resource usage at the specific time duration of 0s, 2s and
30s. In the online context (time step duration = 0), FMF is similar to BFD. From
time step duration = 0s to 2s, NF, MRD and FMF respectively reduce the allocated
resources by 50%, 20% and 17%. These improvements represent the best gains among
the policies for this variation of time step duration. Then, only HA shows a significant
decrease in the resource consumption and allocates 22% less resources from a time
step duration of 2 to 30 seconds. FMF only reduces its allocated resources by 1.5%.
When it comes to the policies enhanced by neighborhood search, only BFD shows a
modest decrease in the resource utilisation of 6%. The other enhanced policies keep
similar number of allocated resources. Enhanced policies such as MRR+NS, NF+NS
slightly increase the resource consumption when passing to a time step duration of
30s. These cases are counter-intuitive since the same methods give better results in a
less informed context. In the general case, solving a succession of locally optimized
problem leads closer to the global optimal. However it is not always the case. In our
experiments the cases of MRR+NS and NF+NS remain marginal.

4.5.4 Resource Allocation under Uncertain Task Duration

In this section we relax the assumption on full knowledge of duration and measure
resource usage when varying the uncertainty of task duration. In our experiments,
given a task duration prediction error of x% and a task duration d recorded from the
data centre traces, the policy is sent the expected duration in [d× (1−x/100), d× (1+
x/100)] for the placement. The simulator updates the expected duration as the time
passes, but effectively deallocates a task only when its real duration ends.

Figure 4.9 show for each policy the evolution of the allocated resource when increasing
the task duration prediction error. Both type of approaches, i.e., policies (Figure 4.9a)
and policies enhanced by neighborhood search (Figure 4.9b), follow the same pattern.
First, the resources allocated by the approaches increase linearly as the error prediction
increase from 0% to 100%. Then, from 100% the resources allocated remain constant
or slightly increase. Within the approaches based on policies, FMF is noticeably better

Combinatorial Optimisation for Sustainable
Cloud Computing

87 Milan De Cauwer

4. SEMI-ONLINE CONSOLIDATION WITH
UNCERTAIN TASK DURATION 4.5 Empirical Analysis

0 50 100 150 200 250 300
task duration prediction error in percent

4500

5000

5500

6000

6500

7000

7500

8000

ru
n
 t

im
e
 o

f
a
llo

ca
te

d
 m

a
ch

in
e
s

in
 h

o
u
rs

MRD

BFD

SS

MRR

HA

FF

FMF

BFR

NF

(a) Policies

0 50 100 150 200 250 300
task duration prediction error in percent

4500

5000

5500

6000

6500

7000

7500

8000

ru
n
 t

im
e
 o

f
a
llo

ca
te

d
 m

a
ch

in
e
s

in
 h

o
u
rs

BFR_NS

MRR_NS

MRD_NS

HA_NS

FF_NS

NF_NS

SS_NS

FMF_NS

BFD_NS

(b) Policies + neighborhood search

Figure 4.9: Allocated resources while increasing tasks duration uncertainty

and shows better resource utilisation. The second best is FF while the other policies
consume significantly more resources. The policies HA and MRR are outside the scope
of the figure, their performance are shown in Table 4.4. Within the approaches using
neighborhood search, FMF+NS remains better for prediction error between 0% and
100%. Then, it is closely followed by MRD+NS. Here MRD takes a clear advantage
of the neighborhood search heuristic to improve its resource consumption. It is also
the case for HA+NS and MRR+NS that now appear in the scope of the figure.

Combinatorial Optimisation for Sustainable
Cloud Computing

88 Milan De Cauwer

4. SEMI-ONLINE CONSOLIDATION WITH
UNCERTAIN TASK DURATION 4.5 Empirical Analysis

Table 4.4: Total run-time of allocated machines (in hours) of the placement policies
tw=2

Policy err FMF BFD BFR FF HA MRD MRR NF SS
A

lo
ne

0% 5016 5902 6239 5223 18232 6225 8786 6313 6327
100% 5766 7411 6794 6089 21181 6639 10590 7222 7485
300% 5775 8031 6760 6206 21271 6644 10420 7366 7401

+N
S 0% 4969 5392 5474 5231 5102 5205 6113 5138 5279

100% 5786 6490 6348 6082 7515 5804 6837 5915 6546
300% 5837 6809 6322 6133 7505 5849 7068 5973 6727

Table 4.4 sums up the two patterns followed by the approaches when increasing the
task duration prediction error. For a prediction error of 100%, the policy FMF wastes
5% less resources than FF and between 13% and 23% less than the other policies.
MRR and HA for that consumes 1.8 and 3.7 times more resources than FMF. For
a prediction error of 300%, the policy FMF wastes 7% less resources than FF and
between 13% and 28% less than the other policies. Enhanced policies using neighbor-
hood search drastically reduce the resource usage of all policies except FMF+NS and
FF+NS.

In summary we have analysed the behaviour of the different approaches when increas-
ing the uncertainty of the task duration prediction error. Here again enhancing FMF
or FF by a neighborhood search does not improve the resource consumption, and con-
firms the quality of the the solution returned by these policies. The other approaches
clearly benefit from a neighborhood search and reduce the gap with FMF.

4.5.5 Real-time Placement of Incoming Tasks

Figure 4.10 compares the solving time quartiles of the different policies (Figure 4.10a)
and the policies enhanced by neighborhood search (Figure 4.10b). Here we consider
only the solving time for placement problems having more than 100 incoming task
during a time-step during of 2 seconds. For each approach is shown the solving time
quartiles using box plots. In this plot, the boxes contain half the solving times. The
median solving is shown with the red segment and the blue dots are outliers. In Fig-
ure 4.10 a) the approaches based on policies only show an almost instantaneous median
solving time that does not exceed 0.1 second. The highest point at the top of each pol-
icy denotes the time for solving the largest peak of thousands tasks. The largest peak
is solved in 1.2s and 1.4s for FMF and SS, and less than 1 seconds for other methods.
NF always answers instantaneously. The NF policy only pays the cost of sorting the
task by duration and then assign them as they come to the next available machine.

Combinatorial Optimisation for Sustainable
Cloud Computing

89 Milan De Cauwer

4. SEMI-ONLINE CONSOLIDATION WITH
UNCERTAIN TASK DURATION 4.5 Empirical Analysis

MRD BFD SS MRR HA FF FMF BFR NF
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

so
lv

in
g
 t

im
e
 i
n
 s

e
co

n
d
s

(a) Policies

BFR MRR MRD HA FF NF SS FMF BFD
0.0

0.5

1.0

1.5

2.0

so
lv

in
g
 t

im
e
 i
n
 s

e
co

n
d
s

(b) Policies + neighborhood search (NS)

Figure 4.10: Solving time (in seconds) of the placement policies when number of
incoming tasks > 100.

Even if FMF is able to allocate new incoming VMs into a new machines without the
need to iterate over all the allocated machines, here FMF pays the price for rearranging
in one list both the incoming tasks and the currently allocated machines. Nevertheless,
since the worst solving time remains below the time step duration FMF is able to
satisfy the on-demand QoS enforce by the semi-online framework. In contrast, in
Figure 4.10 a), the approaches based on policies plus neighborhood search hit the

Combinatorial Optimisation for Sustainable
Cloud Computing

90 Milan De Cauwer

4. SEMI-ONLINE CONSOLIDATION WITH
UNCERTAIN TASK DURATION 4.5 Empirical Analysis

time limit of 2 seconds corresponding to the time step duration. Implicitly, the solver
driven by a neighborhood search tries to improve the given policy solution till the end
without proving the optimality. As noticed before, increasing the time step duration
from 2 secs to 30 secs drastically improves the solution found by less efficient policies
but does not improve the resource usage of FMF. Consequently FMF+NS pays an
unnecessary penalty in terms of computational time.

In summary, with a time step period of 2s, all the heuristics are able to place the
incoming tasks instantaneously and within the time limit. Only NF Heuristic shows
instantaneous placement time in period of peaks of incoming tasks. In this case FMF
shows the 2nd worst placement time but remains below the time limit. This modest
time performance is compensated by a better resource usage.

4.5.6 Comparing Policies

In this section we summarise the performance of the approaches FMF, FF, BFD, MRD
and NF through the radar plot shown in Figure 4.11. The performances of the policies
are compared in term of resource utilisation (axes A, B, C, D, E) and time performance
(axes F, G). For a policy, the closer to the border, the better the policy is performing.
At a glance, we can see that FMF is the best or equal best policy on all axes except
one (and that axis, showing solving time within the time window, does not affect the
quality of the result).

Axis - A. Resource utilisation in the online context.
Axis A represents the total resource utilisation of the the policies in the on-line
context (cf. Section 4.5.3). In this context FF shows the best resource usage. It
is followed by FMF and BFD.

Axis - B. Resource utilisation in a semi-online context.
Axis B shows the benefit of the semi-online context. Compared with the on-
line context it guarantees a placement within a 2 second time-step. In this case,
all policies noticeably improve their resource usage compared with the online
context. The FMF becomes the best policy and shows an improvement of 17%
of its resource utilisation. Even if NF shows the less efficient consolidation it is
this policy that benefits most from the semi-online context and wastes 50% less
resources. From a time step of 2 second to a time step of 30 seconds the policies
do not improve significantly their solution quality (cf. Section 4.5.3).

Axis - C. The impact of neighborhood search.

Combinatorial Optimisation for Sustainable
Cloud Computing

91 Milan De Cauwer

4. SEMI-ONLINE CONSOLIDATION WITH
UNCERTAIN TASK DURATION 4.5 Empirical Analysis

A

B

C

D
E

F

G

7380.0 6760.0 6140.0 5520.0 4900.0

FMF
MRD
NF
FF
BFD

7380.0

6760.0

6140.0

5520.0

4900.0

7380.0

6760.0

6140.0

5520.0

4900.0

7380.0
6760.0

6140.0
5520.0

4900.0

55.0
50.0

45.0
40.0

35.0

1.6

1.2

0.8

0.4

0.0

1.6

1.2

0.8

0.4

0.0

Figure 4.11: Performance of the policies while varying different parameters

Axis C shows the benefit of enhancing the policies with a neighborhood search
heuristic in the semi-online context of 2 seconds time-step. Compares with sin-
gle policies, the benefit of neighborhood search is more noticeable for MRD
and NF the less efficient policies that strengthen the gap between FMF. FMF
shows the best resources utilisation but it only improves its resource utilisation
by 1.5%. This improvement does not change when more time is dedicated to the
neighborhood search (cf. Section 4.5.3).This confirms the quality of the solu-
tions returned by FMF.

Axis - D. Resiliency against task duration uncertainties.
Axis D represents the total resource utilisation in a semi-online context with 2
second time-step and an uncertainty of task duration of 100%. Due to the uncer-
tainty of task duration all policies become less efficient and waste more resource.
However, FMF shows the best resource consolidation even if it degrades its re-
source utilisation by 15%. More importantly the wastage is limited and remains
stable as the uncertainty in the task duration goes from 100% to 300% (cf. Sec-
tion 4.5.4).

Axis - E. Activity Peak Behaviour
Axis E represents the extra resource consumes during the 123rd hour at peaks
of incoming tasks. This time period represents a more challenging placement

Combinatorial Optimisation for Sustainable
Cloud Computing

92 Milan De Cauwer

4. SEMI-ONLINE CONSOLIDATION WITH
UNCERTAIN TASK DURATION 4.6 Conclusion and Limitations

problem since the policies have to deal with a large number of tasks in short
delay. Here, FMF clearly outperforms the other policies. The second best policy
allocates up to 40% more resource than FMF as seen in Section 4.5.2.

Axis - F and G. Algorithm solving time performance.
The last axes show respectively the maximal solving time (F) and the median
solving time (G) for time step receiving more than 100 incoming tasks. The
maximal solving time corresponds to the placement of a peak of thousands tasks.
Here NF answers almost instantaneously. FMF show the slower solving time
even if it remains below 2 seconds (Axis F). In the average case all policies are
qualified as real-time approaches (Axis G and Section 4.5.5).

4.6 Conclusion and Limitations

Workload consolidation is a way to reduce the wastage of resources by clustering tasks
together on a subset of physical machines. In the literature many successful approaches
have studied the problem of workload consolidation from different perspectives. In this
study we tackle the challenge of workload consolidation in the context of on-demand
resource allocation where data centres want to guarantee real-time allocations of users’
tasks. While most of the approaches have envisaged on-line consolidation policies,
placing one task at a time, or batch consolidation optimisation, we consider the work-
load consolidation in the context of semi on-line optimisation. In this new context, we
introduce a novel approach that benefits from the short period time windows to take
more informed decisions while satisfying real-time requirement of on-demand place-
ment QoS.

We have introduced a model allowing us to reason about the dynamics of the problem.
We presented bin packing-inspired heuristics (FF, NF and BF) along with our ad-hoc
algorithm (FMF) that implement semi-online workload consolidation by locally (in
time) minimising resource wastage.

We have seen that our algorithm, FMF, outperforms bin packing-inspired heuristics on
the problem as we have formulated it. After one week of workload consolidation, FMF
saves up to 40% more resources during periods of high resources demand than the best
adapted heuristics enhanced with neighborhood search. The gap between FMF and the
other approaches is more visible in period of peaks of incoming tasks. Moreover, FMF
also shows the best resource utilisation performance when increasing the uncertainty
of task duration or varying the time period of time step. Even if a better resource

Combinatorial Optimisation for Sustainable
Cloud Computing

93 Milan De Cauwer

4. SEMI-ONLINE CONSOLIDATION WITH
UNCERTAIN TASK DURATION 4.6 Conclusion and Limitations

usage comes at the cost of a more time consuming approach, FMF is able to guarantee
on-demand QoS.

The operational setting explored in this chapter abstracts some challenges quite often
faced by cloud providers. It has been reported in the literature that, at decision time,
the incoming workload is not well characterised. This chapter captures the challenge
of missing information regarding task duration. In the next chapter we tackle the lack
of information regarding tasks in terms of CPU and RAM requirements.

Combinatorial Optimisation for Sustainable
Cloud Computing

94 Milan De Cauwer

Chapter 5

Online Consolidation with Uncertain
Task Sizes

Summary. In this chapter we are interested in dealing with uncertain-

ties linked to tasks resource requirements. Accounting for a more com-

plex consolidation environment, we develop in this chapter a methodology

consisting of three main modules: i) a prediction module that forecasts

the maximum resource requirement of a task. ii) a scheduling module that

efficiently allocates tasks to machines; and iii) a monitoring module that

tracks the levels of utilisation of the machines and tasks, and can evict one

or more tasks from the machines for rescheduling if required.

This chapter finds its motivation in cloud operational settings in which the resource
requirements of tasks are estimated rather than fully known at decision time. Facing
incomplete information, a rather large discrepancy can be seen between maximum
resources expected to be consumed by tasks as specified by users and those that are
actually utilised during their lifetime. This is shown to be the case for the data used
in this dissertation. Please refer to Section 2.3.5 for a detailed analysis. We focus
our optimisation models on the description of the real-world cloud system provided by
Google in 2011 [RWH11, RWH12, ARA14].

As a first contribution, we are interested in estimating the peak resource requirements
for tasks incoming in the cloud system. Our claim is that it is possible to leverage
standard machine learning techniques to produce an estimation of the peak resource
consumption of tasks improving on the estimation provided by the users. In turn these
forecasts can be used by an online scheduling policy in order to maximise the overall

95

5. ONLINE CONSOLIDATION WITH
UNCERTAIN TASK SIZES

utilisation of the cluster while minimising the mean waiting time of tasks. The under-
lying idea is to use more accurate information at scheduling time to reduce as much as
possible resource over-provisioning at a level of a machine without sacrificing Quality
of Service.

Unlike other traditional scheduling problems [LYQ06], the actual utilisation of the
machines cannot be known at decision time. The actual consumption of resources
are varying as the tasks are processed. Therefore, the actual utilisation of the ma-
chines can only be computed for the time that has already passed, that is, after making
the scheduling decisions. A significant body of literature in data centre scheduling
is concerned with tasks that can be preempted or paused and migrated on a different
machine [VGC+13, VdBVB11]. The problem tackled here does not admit such prop-
erties. In the problem at hand, an external mechanism is responsible for evicting one or
more tasks from an overloaded machine in order to guarantee quality of service for the
remaining tasks on the same machine. Those evicted tasks are to be resubmitted for
scheduling and processed on a machine from the beginning. In addition, the resource
requirements and the duration of tasks can vary significantly, and the number of tasks
arriving at any time-point could be tens of thousands. The challenge is to efficiently
solve this highly dynamic multi-dimensional online resource constrained scheduling
problem consisting of heterogeneous machines and tasks. For this purpose, it is neces-
sary to mitigate the effects of having uncertainties.

We study the behaviour of classical scheduling policies in this highly dynamic and
uncertain environment. Our focus is laid on the two aforementioned criteria i.e., max-
imising the overall system’s utilisation and minimising a metric reflecting the average
waiting time of tasks in the system. We then design two algorithmic enhancements over
simpler policies and show how one can benefit from them. Naturally, since the actual
requirements of tasks are uncertain at decision time, we study the impact of uncer-
tain information used by the simple policies in contrast to more advanced scheduling
policies. A last aspect discussed in this chapter is related to the eviction mechanism.
Beyond the tasks’ scheduling policies, the implementation of the eviction mechanism
proved to notably influence the performance of the scheduler. The eviction policy im-
plemented in Google’s scheduler selects tasks to evict from an overloaded machine
based on tasks priorities [RWH11]. We claim that this mechanism can drastically im-
pact the quality of the schedule and explore alternative eviction policies.

We provide a method for efficiently scheduling tasks to machines without precise
knowledge of task resource consumption and arrival time, given the user expectations
on resources requirements of their tasks. The method includes three modules: predic-

Combinatorial Optimisation for Sustainable
Cloud Computing

96 Milan De Cauwer

5. ONLINE CONSOLIDATION WITH
UNCERTAIN TASK SIZES 5.1 Methodology

tion, monitoring and scheduling allowing us to improve the performance of a large-
scale cloud computing system. We argue that these modules are necessary in order to
efficiently assess how well-utilized a cluster will be, based on historical data and char-
acteristics of the cluster. We present the results from three different predictors in order
to understand the benefits of more accurate resource predictions on the scheduling pro-
cess. In particular, we apply two machine learning techniques, namely multiple linear
regression and random forest [Bre01] to learn a statistical model predicting resource
requirements of tasks more accurately than the users would. In addition, we analyze an
ad-hoc predictor that assigns to every task a fixed percentage of the user-defined limit.
Moreover, the scheduling process requires that we constantly monitor the state of the
machines in the cluster as well as the current utilisation levels for each task. This infor-
mation is valuable in order to periodically update the prediction models. Furthermore,
the scheduler also needs to know the status of the machines before deciding where to
schedule each task. Finally, we provide a mathematical formulation of the scheduling
problem and propose an adaptive and scalable greedy method for allocating tasks to
machines.

The remainder of the chapter is organised as follows. Section 5.1 introduces our
methodology, including a detailed description of all of its modules in sections 5.2, 5.3
and 5.4. Section 5.5 presents the evaluation and results of the proposed approach.

5.1 Methodology

The main objective of our proposed method is to build a framework in which one can
design and evaluate policies for the online scheduling problem at hand. To evaluate
our approach we simulate the dynamics of an actual cluster of machines. The goal
is to perform efficient online scheduling of tasks on machines subject to operational
constraints, without prior knowledge of each task resource consumption and arrival
times. As input, we are given, a set of jobs composed of tasks, with their attributes,
and the user’s expectations on resource requirements along with custom predictions.

The performance of the scheduling policies will be studied both with an owner-centric
objective function (i.e. maximizing utilisation of the cluster) and in a user-centric
fashion (i.e. minimising waiting time). Both objectives will be defined more formally
in Section 5.3. The suggested approach is build around 3 modules briefly introduced
as follows:

Predict

Combinatorial Optimisation for Sustainable
Cloud Computing

97 Milan De Cauwer

5. ONLINE CONSOLIDATION WITH
UNCERTAIN TASK SIZES 5.2 Prediction Module

This module is responsible for producing estimates on the maximum resource
consumption for each task. For this purpose, we use two machine learning al-
gorithms (e.g. multiple linear regression and random forest) and an ad-hoc tech-
nique. Section 5.2 discusses these technique in more details.

Schedule
This module aims to schedule tasks on machines, while trying to optimize both
machines’ utilisation and tasks’ waiting time. A constraint optimization problem
is formulated and a greedy method is used to decide how the tasks should be
scheduled. Section 5.3 formally defines the problem, the objective functions and
introduces algorithmic components derived to solve the problem.

Monitor
This module constantly monitors the resource consumption of the tasks as well
as the machines, in order to rapidly detect over utilisation of any resource in any
machine and evict tasks if required. See section 5.4 for further details.

Figure 5.1 presents an overview of the proposed methodology. The methodology starts
with a queue of tasks waiting to be scheduled. The tasks are added to the queue as
soon as they arrive and the goal is to empty the queue as soon as possible in order to
minimise task waiting time. Furthermore, given the characteristics of the tasks, the
predictor returns the predicted maximum resource consumption in terms of CPU and
RAM. This information is then passed on to the scheduler which will, in turn, select
a machine and a starting time for the task to be processed. Finally, we implemented
a monitoring module that throughout different events, updates the levels of utilisation
of the machines and tasks, completion time of tasks, resource violation from the tasks
or over utilisation of the machines. When an event occurs, this information is logged
for statistical purposes, and is read by the scheduling module. Moreover, information
is also sent periodically to the predictor model in order to improve its accuracy. This
module is also in charge of triggering task evictions. Further details on these modules
are presented in the next sections.

5.2 Prediction Module

The prediction module aims to estimate the maximum resource consumption of the
tasks in terms of CPU and RAM. We denote the predicted maximum CPU and RAM util-
isation of a task by predCPU and predRAM respectively. Before discussing the pre-
dictor techniques used in this work, it is important to first describe the input attributes,

Combinatorial Optimisation for Sustainable
Cloud Computing

98 Milan De Cauwer

5. ONLINE CONSOLIDATION WITH
UNCERTAIN TASK SIZES 5.2 Prediction Module

Figure 5.1: Overview of the proposed approach structured around three modules :
Prediction, Scheduling and Monitoring.

Combinatorial Optimisation for Sustainable
Cloud Computing

99 Milan De Cauwer

5. ONLINE CONSOLIDATION WITH
UNCERTAIN TASK SIZES 5.2 Prediction Module

used as features for the learning techniques and output variables for this module:

5.2.1 Input

Extracted from the Google dataset presented in Section 2.3.5, the input attributes used
for predicting resource requirements of tasks (i.e., explanatory variables) are:

1. CPU limit: The maximum amount of CPU that a task is expected to use as spec-
ified by a user.

2. RAM limit: The maximum RAM a task is expected to use as specified by a user.

3. Number of tasks: The total number of tasks that belong to a job.

4. Priority: The priority of a task, represented by an integer. The trace uses twelve
task priorities (numbered 0 to 11). Production tasks have High priority (i.e., 9 -
11), tasks of Normal importance have a priority ranging from 2 to 8, and Free

tasks have a priority of 0 or 1 [RTG+12]. High priority tasks are processed before
tasks with low priority. When submitting tasks to the cloud system, end-users
are invited to pay a fee to increase to priority level of their tasks.

5. Scheduling class: The latency sensitivity of a task, represented by a small inte-
ger, ranging from 0 to 3, where 3 represents a more latency sensitive task (e.g.,
serving revenue-generating user requests), and 0 representing non-production
tasks [RWH11].

6. User: The name of the user that submitted the job, represented by an obfus-
cated string [RWH12]. As the prediction is limited to numbers, this string is
transformed to a natural number, where each number represents a unique user.

7. Logical job name: The logical name of the job (i.e., name of the application)
submitted, represented by an opaque base64-encoded string. The trace docu-
mentation states that different executions of the same program will usually have
the same logical name. Similar to the user’s name, this string is transformed to a
unique natural number.

8. Job name: The name of the job submitted, represented by an opaque base64-
encoded string. This attribute is sometimes generated by automated systems to
avoid conflicts (e.g., for MapReduce). In the same fashion as the previous two
variables, the string is transformed to a natural number.

9. Different machine constraint: A binary attribute that indicates whether a task

Combinatorial Optimisation for Sustainable
Cloud Computing

100 Milan De Cauwer

5. ONLINE CONSOLIDATION WITH
UNCERTAIN TASK SIZES 5.2 Prediction Module

from a job must be scheduled to execute on a distinct machine than any other
running task in the job [RWH11].

For completeness, one should note that the non-numeric variables were transformed to
integers, as they could not be used as input for the predictors in their original format.
As an alternative way to proceed, one could use the one-hot-encoding to perform such
a transformation.

5.2.2 Output

The output variables of this module are predCPU and predRAM which can be
thought as an alternative expected peak consumption to the one provided by the user.
We claim that well-suited machine learning techniques can provide more accurate es-
timates than the user would. For these predictions, two models are defined, one for
each resource. Both models receive the same input attributes for the prediction. We
describe below the three prediction techniques used in this work:

UL% (User Limit Percentage)
This ad-hoc prediction technique learns which fraction of the user’s stated re-
sources limit yields the lowest root mean square error (RMSE) against the actual
peak resource consumption. We motivate the use of such a predictor by referring
back to Figure 2.6 showing that there is a general tendency from users to overes-
timate peak consumption. In order to produce more accurate estimates, we thus
seek to learn and cancel the average peak resource overestimating behaviour.

Finding the values UL% that minimises the RMSE against the actual peak is
done as follows. We considered a set of tasks used for training and incrementally
decreased by 1%, from 99% to 1%, the user stated resources limit. The portion
of the user stated limits that minimises the RMSE against the tasks actual peak
learned by this predictor will be used to produce peak resource estimation for
unseen incoming tasks. For example, if the minimum RMSE is achieved with
40% of the user stated CPU limit, the UL% model will use 40% CPU limit for the
next incoming tasks.

Multiple Linear Regression
This is an extension of simple linear regression, which is a standard approach
that fits a line that minimises the sum of the squared residuals. Multiple linear
regression allows us to predict the value of a response variable (i.e., predCPU
or predRAM) based on the value of the above mentioned explanatory variables.

Combinatorial Optimisation for Sustainable
Cloud Computing

101 Milan De Cauwer

5. ONLINE CONSOLIDATION WITH
UNCERTAIN TASK SIZES 5.2 Prediction Module

The goal of multiple linear regression is to model the relationship between the
explanatory and the response variables.

According to [Wei14], the values of the explanatory variables x are associated
with a value of the response variable y. The regression line for p explanatory
variables x1, x2, ..., xp is defined to be µy = β0 + β1x1 + β2x2 + ...+ βpxp. This
line describes how the mean response, µy, changes with the explanatory vari-
ables. The observed values for y, range about their means µy, and are assumed
to have the same standard deviation, σ. The fitted values estimate the parameters
β0, β1, ..., βp of the regression line. We can interpret βi as the average effect on
y of a one unit increase in xi, holding all other predictors fixed.

The multiple linear regression model is expressed as data = fit + residual, where
the fit term represents the expression β0 +β1x1 +β2x2 + ...+βpxp. Furthermore,
the residual term represents the deviations of the observed values y from their
means µy. The notation for the model deviations is ε.

Formally, the model for multiple linear regression, given n observations, is:

yi = β0 + β1xi1 + β2xi2 + ...+ βpxip + εi for i = 1, 2, ...n

In multiple linear regression each variable can then be calculated independently.
The most efficient way of doing so involves linear algebra. In practice, this can
be easily calculated in R using the lm function, which is part of the stats pack-
age.1 The lm function predicts the output using the Covariance and Standard
Deviation of the underlying data, which can be computed easily.

Random Forest
This is an ensemble learning method that uses trees as building blocks to con-
struct more powerful prediction models, namely many decision trees are con-
structed during the training phase, such that the collection of trees (forest) selects
the average over all the trees. The method merges the concept of bagging and
random selection.

According to [HTF09], bagging or bootstrap aggregation is a technique for re-
ducing the variance of an estimated prediction function. Given a standard train-
ing set D of size n, bagging generates m new training sets Di, each of size
n′, by sampling from D uniformly and with replacement. By sampling with
replacement, some observations may be repeated in each Di. Bagging works

1https://stat.ethz.ch/R-manual/R-devel/library/stats/html/lm.html

Combinatorial Optimisation for Sustainable
Cloud Computing

102 Milan De Cauwer

5. ONLINE CONSOLIDATION WITH
UNCERTAIN TASK SIZES 5.3 Scheduling Module

in particular for high-variance (i.e., high error from sensitivity to small fluctua-
tions in the training set), low-bias (i.e., low error from erroneous assumptions in
the learning algorithm) procedures, such as trees. As in bagging, random forest
builds decision trees on bootstrapped training samples. But when building these
decision trees, each time a split in a tree is considered, a random sample of m
predictors is chosen as split candidates from the full set of p predictors. A fresh
sample of m predictors is taken at each split, and the number of predictors con-
sidered at each split is equal to the square root of the total number of predictors
[SMT09] [JWHT13].

The rationale behind selecting only a small subset of the predictors is that in
many cases there is one strong predictor in the data set, along with a number of
other moderately strong predictors. Therefore, in the collection of bagged trees,
most or all of the trees will use this strong predictor in the top split. Conse-
quently, all of the bagged trees will look highly correlated. Random selection of
variables overcomes this problem by forcing each split to consider only a sub-
set of the predictors. Therefore, on average (p − m)/p of the splits will not
even consider the strong predictor, and thus other predictors will have more of a
chance. This process is called tree decorrelation, thereby making the average of
the resulting trees less variable and hence more reliable [JWHT13].

Another interesting characteristic of random forest is that they do not over fit
due to the law of large numbers [Bre01]. Furthermore, we implemented this
predictor on the R programming language, using the randomForest function,
which is part of a package with the same name.

5.3 Scheduling Module

This module schedules tasks to machines while trying to satisfy a set of constraints sub-
ject to a multi-criteria objective function. Below we describe some notation followed
by the optimization model of the problem that is solved at a given time-point. This
model is focused on the description of the cloud system provided in [RWH11]. This
model is therefore tailored to capture operational constraints relevant to this particular
cloud setting.

Combinatorial Optimisation for Sustainable
Cloud Computing

103 Milan De Cauwer

5. ONLINE CONSOLIDATION WITH
UNCERTAIN TASK SIZES 5.3 Scheduling Module

5.3.1 Mathematical Model

Notation

• Let J be the set of jobs that are currently in the queue. This set is composed of
recently arrived tasks and those that are recently evicted from their previously
assigned machines. A job is represented by a set of tasks.

• Let T be the set of all tasks associated with all jobs that need to be scheduled.

• Let O be the set of all tasks that are already running on the machines. Let oi be
the machine on which task i ∈ O is currently running. Let pi be the time when
task i ∈ O started on machine oi.

• Each task is associated with a priority and a scheduling class that denotes how
important and latency sensitive a task is respectively. Let S be the set of prior-
ities. Let si ∈ S be the priority of task i and let wsi

denote a non-zero positive
integer constant associated with the priority si. Let C the set of scheduling
classes. Let ci ∈ C be the scheduling class of task i and let wci

denote a non-
zero positive integer constant associated with the scheduling class ci. The higher
values of these constants mean that they are more important and latency sensitive
respectively.

• Let ai be the arrival time of task i. Let di be a non-negative integer constant that
denotes the duration for each task i ∈ T ∪ O. Let e be the current time. Let
l = e + ∑

i∈T di + max{(pi + di) | i ∈ O} be a constant that denotes the latest
finish time of any task. Let H = {e, e + 1, . . . , l} be the current horizon during
which tasks should be scheduled.

• Let M be the set of all machines. Let Mi be the set of machines on which task
i ∈ T can be scheduled.

• Let R be the set of resources. In this chapter we only consider CPU and RAM.
Let Cmr be the capacity of machine m ∈M for resource r ∈ R.

• Let qir be the predicted value for resource r ∈ R required by task i ∈ T ∪ O.
Notice that different ways of prediction will have different impact on the actual
utilisation of servers.

• Let F ⊆ J be a set of jobs whose tasks must run on different machines.

Variables. Let xi be an integer variable that denotes the machine on which task i ∈ T
is running. The domain of the variable xi is Mi. Let yi be an integer variable that

Combinatorial Optimisation for Sustainable
Cloud Computing

104 Milan De Cauwer

5. ONLINE CONSOLIDATION WITH
UNCERTAIN TASK SIZES 5.3 Scheduling Module

denotes the time at which task i starts. The domain of yi isH . Let umrh be a continuous
auxiliary variable that denotes the usage of machine m for resource r ∈ R at time
h ∈ H .

Constraints We modeled the following operational constraints:

Assignment Constraint. Each task i ∈ T must be assigned and processed to com-
pletion on a machine. This is trivially satisfied by selecting a value from Mi and
assigning it to xi. Each task is also assigned the time at which it starts executing on
the machine xi by assigning a value to yi from the set H .

Capacity Constraint. The resource utilisation umrh of a machine m cannot exceed its
capacity on resource r at any time h:

∀m∈M∀r∈R∀h∈H : umrh =
∑

∀i∈T ,xi=m
yi≤h<yi+di

qir +
∑

∀i∈O,oi=m
pi≤h<pi+di

qir

∀m∈M∀r∈R∀h∈H : umrh ≤ Cmr.

Conflict Constraint. The tasks associated with any job in F must be scheduled on
different machines:

∀f∈F : |{xi|i ∈ f}| = |f |

.

Objective Function The objective is to minimise the total waiting time. The exper-
imental section will also analyse the impact of the consolidation techniques on the
average machine utilisation.

Waiting Time (WT). Total sum of the tasks’ weighted WT:

WT =
∑
i∈T

wsi
× wci

× (yi − ai)

.

As mentioned in Section 5.2.1 the scheduling class (WSI) is a measure of how
latency-sensitive a task is. On the other hand, the priority (WCI) of the task distin-

Combinatorial Optimisation for Sustainable
Cloud Computing

105 Milan De Cauwer

5. ONLINE CONSOLIDATION WITH
UNCERTAIN TASK SIZES 5.3 Scheduling Module

guishes between free and production tasks. Our measure of the weighted waiting task
has therefore to take into account these two aspects. The coefficients are multiplied
amongst them and then multiplied with the actual waiting time of the task. Minimizing
this quantity allow us to favor tasks with high priority and scheduling class to be
scheduled with minimal waiting time.

Machine Utilisation (MU). Let E = {e, l} ∪ {yi, yi + di|i ∈ T } ∪ {pi, pi + di|pi >
e, i ∈ O} be a set of time-points when the utilisation profile of any machine can
change. Let 〈h1, h2, . . . , hn〉 be an ordered set of time-points such that hk < hk+1,
hk ∈ E, hk+1 ∈ E and n = |E|. Let E∗ = E − {hn}. The cumulative utilisation of a
machine m for resource r is denoted by CUmr and it is computed as follows:

CUmr =
∑

k∈{1..|E∗|}

(umrk/Cmr)·(hk+1 − hk) if umrk > 0
(hk+1 − hk) otherwise.

The average utilisation of a machine for a given resource r of a given cluster is:

MUr =
∑
m∈M CUmr/(Cmr · (hn − h1))

|M |
.

5.3.2 Policies for Online Scheduling

We are considering a complex online scheduling problem for which we have incom-
plete information at decision time. The incompleteness of the information is due to
both the online nature of the problem and the fact that the task resource requirements
are uncertain. This section discusses possible approaches to building policies to solve
the problem at hand. Naturally any scheduling policy to be used in this setting should
be able to reach a decision in a very limited amount of time. In order to guarantee a
good level of reactiveness, fast scheduling techniques based on a complete ordering of
the machines can be used. Amongst these simple policies Random and Round Robin

scheduling policies can be implemented but are expected to perform rather badly in
terms of overall machine utilisation. The reason for that is that these policies natu-
rally spread the workload over the entire cluster of machines, which in turn leads to
machines running far from their maximum capacity.

As an algorithmic enhancement to these simple policies, we implement a greedy
heuristic that tries to spread the workload over a minimal subset of available machines.
This concept is illustrated in Algorithm 7. The algorithm maintains two sets of ma-

Combinatorial Optimisation for Sustainable
Cloud Computing

106 Milan De Cauwer

5. ONLINE CONSOLIDATION WITH
UNCERTAIN TASK SIZES 5.3 Scheduling Module

chines: the set of machines that are ON is denoted by Mo. These machines are cur-
rently running tasks and should be candidates for incoming tasks. On the other hand,
the set of machines that are in standby mode is denoted by Ms. Any machine in Ms is
not currently processing tasks and thus could be switched off.

Algorithm 7: schedule
Input: p ∈ T , Mo, Ms

Output: m, t
1 minw← 0
2 maxw← 2
3 Loop
4 〈m, t〉 ← findMachineTime(p,Mo,minw,maxw)
5 if m == Null then
6 〈m, t〉 ← findMachineTime(p,Ms,minw,maxw)
7 if m 6= Null then
8 Ms ←Ms \ {m}
9 Mo ←Mo ∪ {m}

10 if m == Null then
11 minw← maxw
12 maxw← maxw× 2
13 else
14 return 〈m, t〉

The first idea leveraged here is to find a feasible packing of incoming tasks within
Mo. One could, in fact reduce the set Mo to a single machine and simply extend the
packing as far in time as one needs. This rather extreme case could achieve optimality
in terms of machine utilisation but it would perform very poorly in terms of waiting
time by delaying the execution of tasks by hours. On the other hand, using all the
machines available in the cluster at any point in time would reduce the waiting time
to a non-significant value while decreasing the utilisation of individual machines sig-
nificantly. Our greedy methods implement a way to find a balance between the two
extreme scenarios mentioned above.

To minimise the impact on the average waiting time, we define the initial bounds de-
noted by minw and maxw (Lines 1 and 2). For the experiments reported in this chapter
the initial upper bound on the waiting time is set to a value of 2.0 seconds.2 The proce-
dure is a repeat loop that breaks when a suitable machine and starting time was found
for the task under consideration. The algorithm first tries to find a machine within the

2The mean task waiting time in the trace is approximatively 2 seconds. Setting the upper bound to
2 seconds guarantees that the waiting time in the schedule resulting from our optimisation is at most the
one in the original trace.

Combinatorial Optimisation for Sustainable
Cloud Computing

107 Milan De Cauwer

5. ONLINE CONSOLIDATION WITH
UNCERTAIN TASK SIZES 5.3 Scheduling Module

Algorithm 8: findMachineT ime

Input: p ∈ T , M , minw, maxw
Output: m, t

1 s← 0
2 t← 2
3 while |M | 6= ∅ do
4 m← pop(M)
5 t← consistent(p,m,minw,maxw)
6 if t 6= Null then
7 return 〈m, t〉

8 return 〈Null, Null〉

set of active machines subject to the bounds on the waiting time (Line 4). If no such
machine is found then it tries to find a machine that is in standby mode, and update
the sets Mo and Ms respectively (Line 5–9). If the machine is still not found then the
bounds on waiting time are relaxed (lines 11 and 12) and the above steps are repeated.
This relaxation guarantees that the algorithm terminates since there will be a valid as-
signment by delaying the starting time of the task under consideration. As soon as
a valid assignment is found, the selected machine and the time at which the task is
scheduled is returned (Line 14).

The pool of machines is thus managed as follows: the scheduler might bring a new
machine formerly in standby mode into the subset of busy machines. On the other
hand, the monitoring module might put an idle machine in standby mode if no task
is running on it. Algorithm 8 iteratively selects and removes a machine m from the
set M . The selection operation is implemented as either Random or Round Robin. It
invokes consistent to check if the task p can be scheduled on the selected machine m
within the allowed bounds of waiting time and if it has enough CPU and RAM capacity
to accommodate the task and if it is not currently processing another task coming from
the same job if the job needs to be run on different machines. If the machine is suitable
for the task under examination, the algorithm returns both a pointer to that machine and
the earliest starting time. If the set M becomes empty the algorithm returns without
any machine or time, leaving Algorithm 7 the task of either bringing a new machine
into the set of busy machines or further relaxing the upper bound maxw.

Combinatorial Optimisation for Sustainable
Cloud Computing

108 Milan De Cauwer

5. ONLINE CONSOLIDATION WITH
UNCERTAIN TASK SIZES 5.4 Monitoring Module

Algorithm 9: checkForEviction
Input: m
Output: K

1 K ← []
2 candidates← sort({i ∈ O | oi = m}, order)
3 while overloaded(m) do
4 K ← K ∪ pop(candidates)
5 return K

5.4 Monitoring Module

The primary function of the monitoring module is to observe and record the actual
resource requirements of each task periodically which can be used by both prediction
and scheduling modules. The prediction module can use this recorded data to improve
the prediction function further. The scheduling module can benefit by updating its
resource utilisation profile in two cases: (i) if the maximum resource consumed by a
task is higher than the amount given by predictor module, then the maximum resource
requirement of the task can be updated and hence the utilisation profile; and (ii) if
the task is finished, then the utilisation profile of the machine used by the scheduling
module can also be updated in the cluster.

Another function of this module is to decide the eviction of some task(s) if the resource
requirements of the tasks running on the machine is higher than its maximum capacity.
The selected tasks would be marked for eviction, their execution stopped and sent back
to the Queue of Tasks in order to reduce the level of utilisation of the machine. Note
that any eviction policy has to reach a decision with a knowledge local to each machine.
There are indeed several strategies that one could implement to select candidate tasks
for eviction. The basic strategy, implemented by the providers of the trace consists
in choosing tasks for eviction based on their priority level. The reason for this is
that the system must guarantee a high quality of service for tasks with high priorities.
We explore two alternative implementations of the eviction policy that simply relies
on different orderings of the candidate tasks. Note that these eviction policies are
triggered by resource overload on the machines. It is thus possible for a task to be
repeatedly evicted until the machine frees up some resources. Algorithm 9 thus details
the implementation of line 18 of the simulation Algorithm 10.

We study the following three orderings that could be used on Line 2:

minPrio
This is the policy originally used by the providers of the trace. Tasks are ordered

Combinatorial Optimisation for Sustainable
Cloud Computing

109 Milan De Cauwer

5. ONLINE CONSOLIDATION WITH
UNCERTAIN TASK SIZES 5.4 Monitoring Module

by increasing priority. Tasks with smaller priorities are favored for eviction.

minRunningTime
The tasks are ranked by increasing running time. Tasks that have been running
for the least amount of time are favored. The underlying idea is that one should
avoid evicting tasks that have been running for a long period of time. Eviction
tasks that have been running for long periods of time would impact negatively
the average waiting time.

minNumTask
In this case the candidates are ordered by decreasing actual resource require-
ments. The idea here is to try to favor the eviction of tasks requiring a large
amount of resource, so that we locally minimise the number of evictions.

Algorithm 9 simply sorts the currently running tasks on the machine and greedily mark
for eviction tasks until the machine’s capacity is not exceeded anymore. All these
strategies will be compared in Section 5.5.

To conduct experiments in this complex scheduling environment, we developed an
event-driven simulation framework. This framework handles and maintains a collec-
tion of ordered events related to tasks along a time line. At any point in the simulation,
the collection of events is carefully handled in such a way that it remains ordered by
increasing time stamp. The simulation framework that is used to carry experiments is
described in pseudo-code in Algorithm 10. The simulation is bootstrapped on Line 1
by initializing the queue of events E with the first task arrival selected from the set of
arrival events. We next define the set of events dynamically generated as the simulation
unfolds according to Algorithm 10:

• Arrival. This event simulates a task submitted for scheduling. Upon arrival,
the scheduler is called to assign the task to a machine and decide on the starting
time (Line 5). This step also includes a call to the prediction module that returns
an estimate on the peak values that the task is expected to reach. The scheduler
guarantees to find a pair 〈xt, yt〉 with xt expressing to which machine the task
has been assigned and yt the starting time for the task to be processed on that
machine. We then add, on Line 6, the Start event associated with the current
task at time yt on the simulated time line; meaning that task t is due to start when
the simulation reads that event.

On Lines 7 to 9 we feed to the simulated time line E with as many - evenly
spaced in time - resource Update as we could retrieve from the original
data contained in Google trace. These events are capturing the actual resource

Combinatorial Optimisation for Sustainable
Cloud Computing

110 Milan De Cauwer

5. ONLINE CONSOLIDATION WITH
UNCERTAIN TASK SIZES 5.4 Monitoring Module

consumption of the task at hand. It is recalled that dt is the duration of the task t
and kt is the number of records of resource usages captured by Google traces.

Lastly, on Line 10 we place the Arrival event associated to the next task
coming into the simulation. From a data loading point of view, this is done
lazily by only adding a task arrival to the queue when the current one has just
been handled.

• Start. This event simulates the task’s execution starting on the machine to
which it has been assigned(Line 12). From this point and on, the task is running
on the machine consuming some resources and thus it is eligible for eviction if
the machine would overload. Moreover, since the task duration is considered
known in our setting, we simply add, on Line 13, a Finish event further down
the simulated time line E at time yt + dt.

• Finish. Once the simulation reaches a Finish event, the associated task is
considered completed and thus removed from the machine freeing any resource
that the task was consuming in the process. This is implemented on Line 15.

• Update. The update event, on Line 17, simulates the variation on the task’s
requirements on both CPU and RAM resources. As stated previously, in most
cases, the actual requirements are less than the amount of resource that were pro-
visioned for the task. Nonetheless, it might happen that the actual consumption
exceeds the provisioned space, as checked on line 18. In that case, the machine
running the task might find itself in a saturated state, which triggers an eviction
of the task itself or, any other task running concurrently on the machine. In ad-
dition, since evictions are triggered when a task requires more resources than
forecasted, we update the predicted peak required when it was underestimated.
In that way, we continuously learn about peak requirements of tasks.
For each tasks marked for eviction, we generate, on Line 20, an Evict event
happening an arbitrarily small delay in milliseconds α further on the simulated
time-line. Several eviction policies are discussed in Section 5.4.

• Evict. This event simply removes any other events related to the evicted task,
on Line 23 and emits a new Arrival event on Line 22. This new Arrival

event is set to happen an arbitrarily small (α) number of ms later in the simula-
tion.

Using the definition of these events, we build a simulated time line of events occurring
in a logical order imposed by the time of occurrence of an event.

Combinatorial Optimisation for Sustainable
Cloud Computing

111 Milan De Cauwer

5. ONLINE CONSOLIDATION WITH
UNCERTAIN TASK SIZES 5.5 Experiments

Algorithm 10: simCluster
1 E ← 〈t0, at,arrival〉)
2 while E 6= ∅ do
3 Pop next event e = 〈t, time, etype〉 from E
4 if etype == arrival then
5 〈xt, yt〉 ← predictAndSchedule(t, time)
6 Insert 〈t, yt,start〉 in E
7 w ← dt/kt
8 for i = 0, i < kt, i+ + do
9 Insert 〈t, yt + w ∗ i, update〉 in E

10 Insert 〈t+ 1, at+1, arrival〉 in E
11 else if etype == start then
12 Add t to the list of running task on xt
13 Insert 〈t, yt + dt,finish〉 in E
14 else if etype == finish then
15 Remove t from xt and update resource usage
16 else if etype == update then
17 Update resource consumption of t on xt
18 K = checkForEvictions(xt)
19 for t′ ∈ K do
20 Insert 〈t′, time+ α,evict〉 in E

21 else if etype == evict then
22 Remove all the events related to t from E
23 Insert 〈t, time+ α,arrival〉 in E

5.5 Experiments

In this chapter, we utilised the first 24 hours of the trace for creating the initial predic-
tion models. Then, we used the next 24 hours for testing the accuracy of our method-
ology. We did not use the entire 29 day trace due to the complexity of the machine
learning techniques together with the complexity of analyzing such large amounts of
data collected in the 29 days. Moreover, previous work shows that the characteristics
of the trace remained similar within the 29 days of the trace [RTG+12]. Thus, we
expect similar results when extending the experiments for the whole duration of the
trace. Finally, we only considered tasks that started and finished within the 48 hours
studied.

Combinatorial Optimisation for Sustainable
Cloud Computing

112 Milan De Cauwer

5. ONLINE CONSOLIDATION WITH
UNCERTAIN TASK SIZES 5.5 Experiments

5.5.1 Experimental Setup and Error Metrics

In order to perform experiments we simulated the trace provided by Google for which
we developed the event-based simulation as described above. The implementation of
the simulation was done using Python 2.7. Experiments were conducted on an 8-core
Intel Xeon E5-2640 Processor (2.50GHz), limited to 8GB RAM.

A task is added to the queue based on its arrival time or when it is evicted from the
machine. A task is removed from the queue as soon as the scheduler allocates it to a
machine. Each task is associated with the actual current values of resource require-
ments which are updated periodically based on the values provided in the trace over its
duration.

In order to predict resource consumption optimally, it is necessary to update the predic-
tion model periodically. As such, we updated the prediction model after each hour of
the simulation, for both CPU and RAM, with the newly measured maximum resource
utilisation of the tasks that finished within that hour, together with their attributes.
This is implemented in order to increase the accuracy of the prediction model over
time. The execution time used by the predictor to update its model was not considered.
Furthermore, we present the results of the scheduler for each 4 hours cumulative time
window.

We computed the significance of the variables (i.e., p-value) of the input variables
for constructing the multiple linear regression model. As all variables have a p-value
lower than 0.005, we used all of them for constructing the model. We also noticed
that the predictor outcome was a negative value for some tasks. We replaced those
values by a new minimum value, which was explained in Section 2.3.5 (i.e., 6.247e-7
in the case of CPU, and 9.53e-7 in the case of RAM). Furthermore, in the case of the
random forest predictor, the number of trees used in the model was set to 100, since
we noticed that increasing the number of trees after this amount did not bring any
benefit in terms of accuracy, but only an increment in the algorithm’s execution time.
Moreover, the number of variables randomly sampled as candidates at each split was
set to 3. This was defined by following a rule of thumb that states that the number of
variables randomly sampled should be equal to the square root of the number of input
attributes, which in our case is 9 [SMT09].

Metrics In order to measure the accuracy of our prediction model, we use two error
metrics: the mean absolute error (MAE) and the root mean squared error (RMSE). The
first measures the average of the absolute errors, where the errors are calculated as the

Combinatorial Optimisation for Sustainable
Cloud Computing

113 Milan De Cauwer

5. ONLINE CONSOLIDATION WITH
UNCERTAIN TASK SIZES 5.5 Experiments

difference between the predicted and the actual value. The latter measures the standard
deviation of the absolute errors. Thus, it gives more weight to large but infrequent
errors [CD14].

Furthermore, we consider the following metrics for measuring the performance of our
scheduler: (i) the number of active machines, (ii) the cumulative average utilisation of
the entire cluster, (iii) the number of evictions for each of the predictors, and (iv) the
average task waiting time. We expect the number of active machines to decrease, while
the utilisation level of the entire cluster to increase, without severely affecting the task
waiting time.

5.5.2 Predicting CPU and RAM Maximum Utilisation

Figure 5.2 and Figure 5.3 shows the MAE and RMSE values for the prediction models
and the user defined limit for the maximum CPU and RAM utilisation. We observe
that all the predictors generate fewer errors for the CPU than the user’s limit. We
observe small absolute differences between the user’s limit and the other prediction
techniques. However, as the values are normalized in the Google trace, a small absolute
difference can represent a large improvement with regards to the actual resource value.
Therefore, we are interested to study whether these can have a significant impact on
the schedulers’ performance.

The figure shows how simple predictors can produce an average reduction in MAE by
39.5% in the case of UL%, and 53.5% when using multiple linear regression (Multiple
LR). Moreover, random forest outperforms the user’s limit in average by 79.8% in
terms of MAE and by 66.1% with regards to RMSE. However, random forest is a very
computational intensive predictor, that requires a significant amount of time for the
creation of its model.

Nevertheless, we are aware that optimizations through parallelisations could decrease
the execution time significantly. Moreover, we observe in Figure 5.3 that the user’s
estimate on the RAM requirement is more accurate than its estimate for CPU. However,
the reduction in error between the three predictors and the user’s limit is higher for RAM

estimates. The average MAE reduction between the user’s limit and UL% is 68%. In
the case of Multiple LR, the average error reduction is by 71.6% for MAE, and 67.3%
for RMSE. Similar to CPU predictors, we notice that random forest produces the lowest
error. Random forest achieves a reduction by 89.6% for MAE and 80.3% for RMSE,
compared to the user’s limit.

Combinatorial Optimisation for Sustainable
Cloud Computing

114 Milan De Cauwer

5. ONLINE CONSOLIDATION WITH
UNCERTAIN TASK SIZES 5.5 Experiments

0 5 10 15 20 25
0

0.02

0.04

0.06

Hour

M
A

E
 v

a
lu

e

Random forest UL
% Multiple LR User limit

0 5 10 15 20 25
0

0.02

0.04

0.06

Hour

R
M

S
E

 v
a
lu

e

Figure 5.2: MAE and RMSE values for all the CPU predictors and user defined limit

We present below the impact of these reductions in the estimations errors and how they
bring large benefits in terms of number of active machines and their utilisation levels.

5.5.3 Evaluating the Scheduling Policies

In this section, we explore the performance of the scheduler using the following poli-
cies: Round-Robin, and Random with and without the greedy algorithm detailed in
Section 5.3.2. Under the hypothesis of perfect information about the peak requirements
of tasks, we show that Algorithm 7 improves significantly the performance of simple
heuristics such as random assignment and round robin assignments. We then drop the
perfect information assumption and analyse the interactions between the scheduler and
the various predictors. Finally, the eviction policies are brought into the picture and
discussed.

Combinatorial Optimisation for Sustainable
Cloud Computing

115 Milan De Cauwer

5. ONLINE CONSOLIDATION WITH
UNCERTAIN TASK SIZES 5.5 Experiments

0 5 10 15 20 25
0

0.02

0.04

0.06

Hour

M
A

E
 v

a
lu

e

Random forest UL
% Multiple LR User limit

0 5 10 15 20 25
0

0.02

0.04

0.06

Hour

R
M

S
E

 v
a

lu
e

Figure 5.3: MAE and RMSE values for all the RAM predictors and user defined limit

5.5.3.1 Polices for Known Peak Resource Requirements

The greedy principle implemented by Algorithm 7 is evaluated in Figure 5.4. This
figure shows the number of machines used over 24 hours to address the workload, by
the random and round robin policies and the same polices applied on a restricted set
of machines using Algorithm 7. As expected, both policies, perform rather poorly in
terms of machines used to process the tasks. This is due to the fact that both policies
naturally spread the tasks over all the machines without trying to somehow optimize
the utilisation of single machines. On the other hand, by applying the same polices
on a restricted set of machines as discussed in Section 5.3.2 the plot clearly shows
the advantage of trying to reuse machines already processing tasks. In fact, in the
case of the round robin policy, the mean number of machines used at the same time
was 7, 935.7 with a maximum of 12, 398 against a mean of 2, 009.8 and maximum of
4, 658 for the restricted counterpart.

Combinatorial Optimisation for Sustainable
Cloud Computing

116 Milan De Cauwer

5. ONLINE CONSOLIDATION WITH
UNCERTAIN TASK SIZES 5.5 Experiments

0 5 10 15 20 25
0

2000

4000

6000

8000

10000

12000

14000

Time (hours)

A
c
ti
v
e

 m
a

c
h

in
e

s

Random restricted Random Round Robin Round Robin restricted

Figure 5.4: Number of machines used by Random and Round Robin polices on the
with and without using the greedy scheme.

Table 5.1: Machine usage statistic for Random, Round Robin policies and their re-
stricted counterparts under perfect information from the predictors.

Random
Random
restricted Round Robin

Round Robin
restricted

Avg used machines 7459.2 2024.9 7935.7 2009.8
Max used machines 11133 4789 12398 4658
Evictions 0 0 0 0
Average WT 0.0 0.0008 0.0 0.0008
Max WT 0.0 1.99 0.0 1.99
CPU Util 41.00% 50.75% 44.10% 61.04%
RAM Util 41.43% 49.96% 47.42% 61.15%

Since we are assuming an oracle providing us with perfect knowledge of the peak
requirements (i.e. tasks’ actual behaviour), the eviction mechanism is never triggered
for all the aforementioned polices. Furthermore, as can be seen in Table 5.1, there
seems to be a trade-off between CPU and RAM utilisation and the average waiting
time. Using our greedy algorithm, we allow tasks to be scheduled within the 2 seconds
window which allows to assign more tasks to a single server. In turn the CPU and RAM

utilisation are much better since we are allowing to tighten the schedules locally on
machines.

Combinatorial Optimisation for Sustainable
Cloud Computing

117 Milan De Cauwer

5. ONLINE CONSOLIDATION WITH
UNCERTAIN TASK SIZES 5.5 Experiments

5.5.3.2 Policy-Predictor Interactions

We now drop the assumption that we can provide the scheduler with perfect prediction
of the tasks’ peak requirements which makes the analysis more difficult but much more
realistic. We discuss the impact of the various predictors on the scheduling decisions.
Figure 5.5 presents the total number of active machines during the 24 hours of our
simulation. The number of active machines is updated every 5 minutes. A machine is
considered active if its CPU or RAM utilisation is higher than 0%. The figure shows the
results for two of the proposed prediction techniques. Results from the ad-hoc predic-
tion technique, namely UL%, are not presented due to limitations of our tool when han-
dling huge numbers of evictions. We ran UL% for 9 hours and noticed almost the same
number of evictions than when running Random forest for 24 hours. Large number
of evictions directly impact the task waiting time, number of active machines, and the
levels of utilisation of the machines, therefore the UL% predictor would undoubtably
have produced the worst results. Moreover, the figure also presents results for a perfect
predictor, namely Actual Peak, and the user limit. The Actual Peak represents a theo-
retical scenario, where the predictor knows the actual maximum resource consumption
for all the incoming tasks. On the other hand, one can think about the user limit as a
practical baseline since it is the only information accessible at scheduling time in the
original description of the problem.

0 5 10 15 20 25
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Time (hour)

Ac
tiv

e
m

ac
hi

ne
s

Random forest
Multiple LR
User limit
Actual peak

Figure 5.5: Active machines (considering windows of 5 minutes)

As expected, Actual Peak achieves the lowest number of active machines at almost any

Combinatorial Optimisation for Sustainable
Cloud Computing

118 Milan De Cauwer

5. ONLINE CONSOLIDATION WITH
UNCERTAIN TASK SIZES 5.5 Experiments

1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

Window step

C
PU

 c
on

su
m

pt
io

n
(M

U
)

Random forest Multiple LR User limit Actual peak

1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

Window step

R
AM

 c
on

su
m

pt
io

n
(M

U
)

Figure 5.6: Cumulative average CPU (left) and RAM (right) utilisation

given time. We observe that Random forest is the second predictor in terms of lowest
number of active machines. In comparison to UL, random forest uses on average 671.9
fewer machines, with a maximum difference of 3,337 fewer machines. Moreover, in
18.9 hours out of the 24 hours studied, Random forest used fewer machines than UL.
The figure also shows that Random forest and Multiple LR have a more consistent
number of active machines than UL. For instance, we noticed two times periods in
which both predictors significantly outperform UL, namely the range between 12.83
and 16.75 hours, and between 18.41 and 19.08 hours, in those two periods the average
difference in terms of active machines between Random forest and UL is more than
2,300 machines.

Nevertheless, in contrast to their results in MAE and RMSE, we notice that the other
two predictors, UL% and Multiple LR, are in most cases outperformed by UL. We
observe thatUL uses on average 1,511 fewer machines than Multiple LR. These results
suggests that MAE and RMSE are not enough to assess the impact of the predictors
when used for scheduling purposes. The high number of machines utilized by Multiple
LR is caused by generally under estimating the actual peak of a task, which causes the
number of evictions and thus the number of machines to increase. However, the time
for which these large machines are active is in many cases only a few minutes, since
the majority of the tasks that are evicted are tasks with short duration.

We present in Figure 5.6 the cumulative average utilisation of every 4 hours for all the
machines in the cluster. We measure the CPU and RAM consumption and observe that
in general Random forest achieves higher average utilisation levels than UL. Random
forest performs best in increasing the average utilisation in 5 out of 6 of the cumulative
time windows, bringing up to 10.08% more utilisation for CPU and 10.39% for RAM

when compared to UL. Furthermore, we notice that the actual peak predictor has, in
the last two measurements, lower levels of utilisation than random forest or the default

Combinatorial Optimisation for Sustainable
Cloud Computing

119 Milan De Cauwer

5. ONLINE CONSOLIDATION WITH
UNCERTAIN TASK SIZES 5.5 Experiments

Table 5.2: Waiting time and number of evictions for tasks of different priorities.

Priorities
free normal high

Multiple LR
WT≤2s 96.43% 98.44% 95.23%
Evictions 36467 78065 1633
mean WT 0.0013s 0.0001s 0.0010s

Random Forest
WT≤2s 97.95% 98.98% 97.20%
Evictions 17834 34209 169
mean WT 0.0013s 0.0004s 0.0008s

User Limit
WT≤2s 98.74% 99.46% 99.60%
Evictions 11645 24606 25
mean WT 0.0016s 0.0007s 0.0020s

user limit predictor. The reason is that the two predictors and the UL have to deal with
evictions, which produces an increase on the overall consumption of the cluster.

The figure also shows that in the case of CPU, there is a maximum difference of 20.17%
for Multiple LR with regards to UL. In the case of RAM, the results are similar, namely
a maximum difference of 21.36% for Multiple LR, when compared to UL. Moreover,
we observed large standard deviations for the all the studied predictors. For instance,
in the case of Random forest the average standard deviation for CPU is 21.68% and for
RAM 22.29%.

In Table 5.2 we study the task waiting time and the number of evictions, while consid-
ering the priorities of the tasks. We highlighted with bold font the best performance
for each of the cases considered. When studying the percentage of tasks with a wait-
ing time (WT) lower or equal to 2 seconds, we noticed a difference between Random
forest and UL of less than 0.8%, for tasks of low and normal priority. In the case of
tasks with high priority, the difference is 2.26%. Moreover, when using UL, the sched-
uler produces the lowest number of evictions regardless of the priority of the task, this
is expected since users tend to over-request the amount of resources that they need.
Random forest and Multiple LR produce the lowest average waiting time for tasks
that were not evicted, however the difference with regards UL is very small, since the
maximum average WT is only 0.0013 seconds. Furthermore, given the high number
of active machines and their lower levels of utilisation, using Multiple LR yields the
highest number of evictions and lowest percentage of tasks being scheduled in less
than 2 seconds.

The waiting time for evicted tasks is high for all the predictors. For instance, the
average WT for evicted tasks with Normal priority is almost 10 minutes when the
scheduler uses the Random forest predictor. The reason this large WT is that when

Combinatorial Optimisation for Sustainable
Cloud Computing

120 Milan De Cauwer

5. ONLINE CONSOLIDATION WITH
UNCERTAIN TASK SIZES 5.5 Experiments

�

Figure 5.7: Aggregated CPU peaks.

our scheduler evicts a task, it only considers the task’s priority, regardless of how long
a task has been running.

To better understand the performance of the predictors, we aggregate the peak CPU

utilisation for all the tasks with the assumption that the waiting time is 0 seconds.
Figure 5.7 presents the results for all the prediction techniques in terms of aggregated
CPU peaks. One can interpret the cumulated actual peaks as the amount of work that
the cloud system has to tackle. For each predictor considered here, we report the
cumulated peaks as expected by the predictor. Visually, the closer a predictor is to
the actual workload, the better the predictor is. We notice that random forest is the
predictor that resembles the most to the Actual Peak. Moreover, we notice that Multiple
LR and UL% reach very low levels of utilisation when compared to the Actual Peak.
The random forest load predictor is the best candidate for accurate forecasts of peak
resource utilisation.

Combinatorial Optimisation for Sustainable
Cloud Computing

121 Milan De Cauwer

5. ONLINE CONSOLIDATION WITH
UNCERTAIN TASK SIZES 5.5 Experiments

5.5.3.3 Eviction policies

The last aspect investigated here is the behaviour of the evictions heuristics discussed in
Section 5.4. As we mentioned in the previous section, when introducing uncertainties
in the problem, one cannot guarantee that there will be no evictions. This is simply
due to the fact that tasks may not behave as the predictor’s expectations leading to a
possibly overloaded machine. Figure 5.8 shows the number of evictions while using
the random forest predictor and the restricted random scheduling policy. The figure
distinguishes the three classes of priority (i.e. low, normal and high), the lower the
number of evictions, the better the eviction policy is.

As can be seen in the figure, evicting tasks based on their priority level seems to be
a sensible policy to minimise the overall number of evictions. It can be assumed that
tasks with higher priorities are also the ones that have the longest duration thus the
behaviour of both min priority and min running time policies are rather similar.

low priority normal priority high priority
0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

E
v
ic

ti
o

n
s

min priority

min num of tasks

min running time

Figure 5.8: Performance of the eviction policies across different classes of priority.
Tasks were scheduled with the restricted random policy couple with the random forest
predictor.

Furthermore, we can see that trying to locally minimise the number of evictions with
the min num tasks yields the highest number of eviction. This suggests that informa-
tion available locally on a machine is too partial to minimise the number of evictions
globally.

Combinatorial Optimisation for Sustainable
Cloud Computing

122 Milan De Cauwer

5. ONLINE CONSOLIDATION WITH
UNCERTAIN TASK SIZES 5.6 Conclusion and Limitations

5.6 Conclusion and Limitations

In this chapter we proposed a method that addresses the problem of online scheduling
of tasks under several operational constraints. The problem is to efficiently allocate
tasks with multiple resource requirements on heterogeneous machines. The objective
is to maximise the utilisation of the machines while minimising the waiting time of the
tasks. Although, the estimated peak resource requirements of these tasks are provided
by users, the actual peak requirements can vary significantly. Mostly, these require-
ments are over-estimated resulting in allocating more resources which results in the
poor performance of the cluster. Also, when these requirements are under-estimated,
cumulative requirements of the tasks running on a machine can exceed its capacity.
Consequently one or more tasks need to be evicted, which are then again scheduled on
the cluster leading to the poor performance of the cluster.

We further studied the impact of different prediction techniques when scheduling and
evicting tasks using different heuristics. We discovered that reductions in resource
prediction errors do not always bring benefits. This is because of the large number of
task evictions caused by continuously under provisioning the amount of resources task
would need in order to reduce the estimation errors. Moreover, this causes an increase
in the task waiting time and a decrease in the overall cluster utilisation, since new
machines need to be activated in order to handle the evicted tasks. Our results show
that the Random forest predictor significantly surpasses the default user limit for almost
all metrics considered, bringing a reduction in terms of number of active machines by
up to 3,337, and increasing the average cumulative utilisation of the cluster by 7.72%
for both resources considered, CPU and RAM.

Overall, the best configuration of our methodology for the studied trace was observed
when predicting resource requirements using random forest, scheduling using re-
stricted version of round robin and evicting tasks based on their priorities. As claimed
in sub-thesis 2, discussed in Section 1.4, machine learning can be used to, at least par-
tially, produce more accurate input data for the subsequent optimisation model. This
leads to an overall better consolidation behaviour in this complex real-world cloud
setting.

In this chapter, we modeled the problem of online workload consolidation as a con-
strained scheduling problem. Although we investigated the dynamics of evicting and
rescheduling tasks, we did not capture the possibility, often desirable, to allow tasks’
executions to be paused, the task migrated to another machine and finally resumed.
This is the object of the next chapter for which task migrations are allowed.

Combinatorial Optimisation for Sustainable
Cloud Computing

123 Milan De Cauwer

Chapter 6

Proactive Consolidation with VM
Migrations

Summary. In this chapter we explore a relaxed workload consolidation

problem in which tasks are allowed to be migrated from a physical host to

another one. Known as dynamic workload consolidation, the optimisation

challenge tackled here is to keep servers well utilised by deciding which

virtual machines to migrate, where to migrate, when to migrate, and, when

and which servers are to be switched on/off. Achieving this goal optimally

requires the capability of predicting the future time-variable resource de-

mands of VMs accurately and computing the plan for migrating VMs for

efficient workload consolidation quickly. We developed an optimisation

model coined the Proactive Workload Consolidation Problem (PWCP).

Solving the problem as a monolithic offline problem with infinite time win-

dows is impossible due to the impractibility of forecasting demands and

the intractability of finding optimal assignments of VMs to servers. We

formulate the PWCP in a more realistic way by defining a time window

of a given size in which the information is known accurately and solve

a, possibly infinite, sequence of optimisation problems moving forward in

time.

In this chapter, we discuss a consolidation problem that can be classified as a dynamic
consolidation problem. This is due to the nature of the workload under consideration.
Tasks forming the workload considered in this chapter are subject to time varying re-
source requirements. More importantly, tasks may be migrated from a host machine to
another one in order to improve consolidation. The wide adoption of cloud solutions

124

6. PROACTIVE CONSOLIDATION WITH VM
MIGRATIONS

6.1 The Proactive Workload Consolidation
Problem

has raised the challenge maintaining control over the Quality-of-Service (QoS) expe-
rienced by end-users. The computing resources provided by cloud operators must be
accessible at all time and must guarantee a certain level of performance. To that end,
both parties contractually agree on terms defining the service level agreements (SLAs).
More information on QoS can be found in [SBK+16].

The online and dynamic nature of the problem raises challenges linked to partial infor-
mation at decision time. One of the questions we investigate is how far one is required
to look ahead in terms of the number time-periods and still retain the minimum energy
cost of a given horizon without violating Service Level Agreements (SLAs).

We perform investigations to understand the relationship between the number of time-
periods considered in one optimisation step and migration limits on the SLAs, energy
cost, server transition cost and migration cost. The advantages of answering this ques-
tion are twofold: (1) The size of the optimisation problem reduces as the number of
time-periods reduces, which can help in finding good quality solutions quickly; (2)
The overall accuracy of the forecasting technique increases as the length of the hori-
zon reduces, which can help in finding more reliable solutions. Therefore, we aim at
studying the trade-off between the quantity of locally available information versus the
quality of a dynamic workload consolidation policy.

We perform an empirical study to understand the relationship between input parame-
ters such as the number of time-periods in a single optimisation step and migration-
limits (impacting the QoS) on the outputs of workload consolidation over a given time-
horizon like the number of SLAs violations, energy cost, server-states transition cost,
and migration cost. Our results suggest that if we look ahead by only a few time-
periods then it can lead to significantly more efficient resource utilisation over the
entire horizon and consequently higher energy efficiency and very few service level
violations.

6.1 The Proactive Workload Consolidation Problem

The Proactive Workload Consolidation Problem (PWCP) aims to assign a server to
each VM based on not only their current demands but also their future demands over
upcoming time-periods. The objective is to minimise the energy cost over a given time
horizon without violating SLAs. Ideally one would like to make sure that this holds
for all time-periods up to h, where h represents an arbitrary large number of time-
periods. Therefore, the aim is to find the right value of w that allows us to achieve

Combinatorial Optimisation for Sustainable
Cloud Computing

125 Milan De Cauwer

6. PROACTIVE CONSOLIDATION WITH VM
MIGRATIONS

6.1 The Proactive Workload Consolidation
Problem

that by solving a sequence of optimisation problems moving forward in time. In the
following, we introduce an optimisation model for the PWCP.

Let V = {v1, . . . , vn} be the set of VMs, S = {s1, . . . , sm} be the set of servers
and T = {p1, . . . , ph} be the set of time-periods. Here p0 represents the time-period
preceding decision time, p1 is the current time-period for which we want to assign
VMs to servers, and p2 to pw, where w ≤ h, are the future time-periods which we want
to consider now to plan for future migrations. We must guarantee that the VMs have
enough resources at each time period.

The actual prediction of the resource demands of VMs is out of the scope of this
chapter. We, therefore, use the historical resource requirements of the VMs that orig-
inate from the Green Data Centre of Business & Decision Eolas located in Grenoble,
France, which deals with web applications, e-commerce, e-business, e-administration,
etc, where the CPU usage of a VM changes over time while the memory usage is con-
stant over time. Detailed information on the data set can be found in [CMOS13a].

Virtual Machines. A VM vi is characterised by memory consumption Mit and CPU

consumption Uit at time-period t, a set Ai ⊆ S of allowed servers where it can be
hosted, and a potential initial server denoted by Iservi. While solving the problem at
time t, vi has been allocated the Iservi by the decision taken in the previous optimisa-
tion step.

Servers. A server sj can be in two different states: ON or STBY (stand-by). It is
characterised by:

• A CPU capacity Umaxj and a memory capacity Mmaxj .

• A fixed cost of usage Eminj (in Watt) when the server is ON.

• A unit cost τj per unit of CPU usage.

• A basic CPU consumption Caj when it is ON to run the operating system and
other permanent tasks.

• An energy consumption Esbyj when it is in state STBY.

• An energy consumption Estaj to change the state of servers from STBY to ON.

• An energy consumption Estoj to change the state of servers from ON to STBY.

• A maximum number Nmaxj of virtual machines that can be allocated to it at
any time-period.

• A set of periods Pj ⊆ T during which sj is forced to be ON.

Combinatorial Optimisation for Sustainable
Cloud Computing

126 Milan De Cauwer

6. PROACTIVE CONSOLIDATION WITH VM
MIGRATIONS 6.2 An Integer Linear Model for the PWCP

Figure 6.1: A solution of PWCP over three time-periods

• A potential initial state Istatej ∈ {0, 1}.

If a server is ON, its minimum cost is Eminj + τjCaj . Therefore, for the sake of
simplicity, to compute the fixed energy cost of an active server we include the basic
consumption Caj in Eminj and denote that by Emin′j = Eminj + τjCaj . We also
shift the CPU capacity of a server and denote that by Umax′j = Umaxj − Caj .

Migrations. The maximum number of changes of servers amongst all virtual machines
from one time-period to the next is denoted by N and the cost of a migration by Cmig.

This problem can be seen as a series of packing problems, one per time period, in
two dimensions (CPU and memory). These packing problems are coupled by both the
migration constraints and the cost for changing the state of a server. Figure 6.1 gives
an overview of the problem. This example has four servers, each shown by a rectangle
whose dimensions represent the CPU and memory capacities of that server. A VM is a
small rectangle whose height (its CPU) varies from one period to the next. Therefore,
the sum of the heights (CPU) must fit within the capacity of the server they are assigned
to. In this scenario, the CPU needs of some virtual machines decreases allowing us to
find better packings and possibly turn off two servers at t+ 1.

6.2 An Integer Linear Model for the PWCP

We reformulate the integer linear model of the PWCP that was first introduced
in [CMOS13b] in which the following variables are used: xijt ∈ {0, 1} indicates
whether virtual machine vi is placed on server sj at time t. cpujt ∈ [0, Umax′j] gives
the CPU consumption of sj at period t. ojt ∈ {0, 1} is set to 1 if sj is ON at time t, 0
otherwise. btojt ∈ {0, 1} is set to 1 if sj was in STBY at t − 1 and is turned ON at t.
otbjt ∈ {0, 1} is set to 1 if sj was in ON at t− 1 and is put STBY at t. ait ∈ {0, 1} is

Combinatorial Optimisation for Sustainable
Cloud Computing

127 Milan De Cauwer

6. PROACTIVE CONSOLIDATION WITH VM
MIGRATIONS 6.2 An Integer Linear Model for the PWCP

set to 1 if vi is on a different server at t than the one it was using at t − 1. The model
is summarised in Model (6.1).

Minimize
∑
sj∈SE

∑
t∈T (Estajbtojt + Estojotbjt + τjcpujt + Emin

′
jojt)+

Cmig(∑
vi∈VM

∑
t∈T ait)

(6.1.1) ∑
sj∈SE xijt =1 (∀ vi ∈ VM, pt ∈ T)

(6.1.2) xijt =0 (∀ vi ∈ VM, pt ∈ T, sj /∈ SAi)
(6.1.3) xijt ≤ojt (∀ vi ∈ VM, pt ∈ T, sj ∈ SE)
(6.1.4) cpujt =∑

vi∈VM Uitxijt(∀ sj ∈ SE, pt ∈ T)
(6.1.5) cpujt ≤Umax′jojt (∀ sj ∈ SE, pt ∈ T)
(6.1.6) ∑

vi∈VM Mitxijt≤Mmaxjojt (∀ sj ∈ SE, pt ∈ T)
(6.1.7) ∑

vi∈VM xijt ≤Nmaxjojt (∀ sj ∈ SE, pt ∈ T)
(6.1.8) ait ≥xijt − xijt−1 (∀ vi ∈ VM, sj ∈ SE, pt ∈ T)
(6.1.9) ∑

vi∈VM ait ≤N (∀ pt ∈ T)
(6.1.10)btojt ≥ojt − ojt−1 (∀ sj ∈ SE, pt ∈ T)
(6.1.11)otbjt ≥ojt−1 − ojt (∀ sj ∈ SE, pt ∈ T)
(6.1.12)ojt =1 (∀ sj ∈ SE, pt ∈ Pj)
(6.1.13)xij0 =0 (∀ vi ∈ VM, sj ∈ SE − {Iservi})
(6.1.14)xi,Iservi,0 =1 (∀ vi ∈ VM)
(6.1.15)oj0 =Istatej (∀ sj ∈ SE)

(6.1)

Constraint (6.1.1) states that a VM has to be on a server at any time; Constraints (6.1.2)
enforces the forbidden servers for each VM; Constraints (6.1.3) enforces a server to be
ON if it is hosting at least one VM; Constraints (6.1.4) links the CPU load of a server
to the VMs assigned to it. Constraints (6.1.5–6.1.7) are the resource constraints (CPU,
memory and cardinality) of each server; Constraints (6.1.8,6.1.9) allow us to count the
number of migrations and state the limit on N ; Constraints (6.1.10,6.1.11) keeps track
of the change of states of the servers; Constraints (6.1.12) states the periods where a
server has to be ON; Finally constraints(6.1.13–6.1.15) enforce the initial state (t = 0).
The number of constraints of this model is dominated by the n × m × h number of
constraints (6.1.8) and constraints (6.1.3).

To cope with the dynamical nature of the problem, sub-models extracted from
Model (6.1) Mod will be repeatedly solved within a fixed horizon window with size
w < T . We use Modh1 to denote the problem’s formulation (6.1). We use Modt+wt to
denote a restriction of the original model on a set of consecutive time periods between
{t .. t + w}. For each time-period t ∈ {0 .. h − w}, Modt+wt is solved within a fixed
horizon window with size w < T . At each iteration the current time period is shifted
by one which eventually leads to a feasible solution for the original model.

This myopic way of solving the original model has drawbacks:

Combinatorial Optimisation for Sustainable
Cloud Computing

128 Milan De Cauwer

6. PROACTIVE CONSOLIDATION WITH VM
MIGRATIONS 6.3 Empirical Analysis

Max Migration = 0

0

2

4

6

8

10

w

EC

MC TC

VC

●

●

● ●

●●

●

● ●

●

●

●

● ●

●

●

●

● ●

●

●

●

● ●

●

Max Migration = 4

0

2

4

6

8

10

w

EC

MC TC

VC

●

●

● ●

●●
●

● ●

●

●

●

● ●

●

●

●

● ●

●

●

●

● ●

●

Max Migration = 8

0

2

4

6

8

10

w

EC

MC TC

VC

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

● ●

●

Figure 6.2: Varying window size w over selected values of N . Each value of w ∈
{0, 2, 4, 6, 8, 10} corresponds to a different line style.

1. There is no opportunity to prove that the computed solution of the original model
is optimal. We rather approximate optimality on an infinite time line.

2. It can lead to non-feasible restrictions of the original problem. This is mainly
due to the fact that the feasibility of Modt+wt largely depends on the solution of
Modt−1+w

t−1 . In order to deal with infeasible restrictions of the problem, one must
relax the SLA constraints, in order to be able to compute a valid assignment from
VMs to servers.

Relaxing the SLA constraints can be done in two ways. The first approach is to set
the maximum number of migrations to |V | allowing one to migrate as many VMs as
needed. The other approach is to relax the maximum workload that a server can handle.
It is clear that these two approaches impact the quality of service delivered to clients
respectively by saturating the network within the data centre, or overloading server
capacity over one or several time periods. For the sake of conciseness only the former
strategy will be presented here.

6.3 Empirical Analysis

We investigate the impact of the tightness of the migration constraint and the length
of the selected time-window on the outcome of the PWCP. We vary the values of w,
i.e. the number of time periods considered in a single optimisation step, and the value
of N that is impacting the level of tightness of the SLAs constraint. Note that every
different value of N gives rise to an instance of the problem with possibly a very
different optimal solution.

Combinatorial Optimisation for Sustainable
Cloud Computing

129 Milan De Cauwer

6. PROACTIVE CONSOLIDATION WITH VM
MIGRATIONS 6.3 Empirical Analysis

Finally in order to evaluate the performance of the optimisation process for each of the
combination of (w,N) we compute electricity Cost (EC), migration cost (MC) and
transition cost (TC) - induced over the complete full time horizon. In addition, since
the iterative solving process can lead to infeasibility, we also compute the proportion
of times SLAs were violated (V C). These different metrics can be read on a star plot
for which each line can be thought of as a measure of the various features of a solution
given by the couple (w,N).

We first illustrate the impact of sequentially solving PWCP with different window
sizes. Figure 6.2 shows the performance in terms of cost and SLA violations of so-
lutions computed under various window size regimes (w ∈ {0, 2, 4, 6, 8, 10}). Each
of these regimes is represented with a different line style on the figure. It can be ob-
served that when the VMs are assigned to servers without any knowledge about future
requirements (i.e., w = 0), it performs badly in terms of EC in most of the cases. It

Window Size = 1

0
2

4

6

8

10

k

EC

MC TC

VC

●

●

● ●

●
●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

Window Size = 2

0
2

4

6

8

10

k

EC

MC TC

VC

●

●

● ●

●
●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

Window Size = 5

0
2

4

6

8

10

k

EC

MC TC

VC

●

●

● ●

●

●
●

● ●

●

●

●

●
●

●

●

●

● ●

●

●

●

● ●

●

Window Size = 10

0
2

4

6

8

10

k

EC

MC TC

VC

●

●

● ●

●
●●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

● ●

●

Figure 6.3: Varying the migration limits (k) over selected values of w. Each value of
k ∈ {0, 2, 4, 6, 8, 10} corresponds to a different line style.

Combinatorial Optimisation for Sustainable
Cloud Computing

130 Milan De Cauwer

6. PROACTIVE CONSOLIDATION WITH VM
MIGRATIONS 6.3 Empirical Analysis

can also be observed that, in general, introducing more time periods in one optimisa-
tion step helps in finding solutions with a lower EC. This is due to the fact that the
more time periods one considers in one optimisation step, the more future-aware the
solution will be.

Figure 6.2 shows that both parameters N and w have an impact on the proportion of
optimisation steps leading to non-satisfiable models (V C). On the one hand, it is harder
to find a solution to a very tight problem (i.e. small values ofN), and on the other hand,
restricting the window size (i.e. small values ofw) makes the optimisation process very
myopic to future changes and might drive the solution towards infeasible regions. One
should also note that, for N = 0 and w = 0, the problem is too constrained to find
solutions without breaking the migration constraint. As previously noted, when this
is the case, we relax the constraint for the current time period allowing VMs to move
dramatically to other servers. We thus observe that this case performs very well in
terms of electricity cost and shows higher migration and transition costs.

To get a better understanding of the trade-off between energy cost of a solution and
quality of service, in Figure 6.4a and Figure 6.4b one can see values of the aggregation
of energy and transition cost (EC + TC) and the migration cost function of the num-
ber of time periods and the maximum number of migration respectively. The figures
reported here are an aggregation of local optima as suggested in Section 6.2. If one
thinks of the migration cost as a good indicator of the QoS levels, then we see clearly
that these two component are somehow conflicting with each other. As the number

EC + TC and MC function of w

w

●

●

●

●
● ● ●

● ● ● ●

●

E
C

 +
 T

C

0 5 10 15 20 25 30

26
00

0
28

00
0

30
00

0
32

00
0

34
00

0
36

00
0

38
00

0

−
50

0
50

10
0

15
0

20
0

25
0

M
C● EC + TC

MC

(a) Split of the costs function of w

EC + TC and MC function of N

N

●

●

●

●

●

● ● ●

●

●

● ● ●

E
C

 +
 T

C

0 5 10 15

25
00

0
30

00
0

35
00

0

0
10

0
20

0
M

C● EC + TC
MC

(b) Split of the costs function of N

Figure 6.4: Trade-off between energy cost of a solution and Quality of Service.

Combinatorial Optimisation for Sustainable
Cloud Computing

131 Milan De Cauwer

6. PROACTIVE CONSOLIDATION WITH VM
MIGRATIONS 6.4 Conclusion and Limitations

●
●

●

●

●

●

● ● ● ● ●

0 1 2 3 4 5 6 7 10 12 15
w

Migration Constraint Violation

●
●

●

●

●

● ● ● ●
● ● ● ●

0 1 2 3 4 5 6 7 8 9 10 12 15
N

0
0.

01
0.

02
0.

03
0.

04
V

C

●

●

VC(w)
VC(N)

Figure 6.5: VC function of N and w

of time periods w (resp. N) rises, we observe that the solutions are showing dramatic
improvements in terms of electricity cost. This is due to the opportunity to build so-
lutions in which VMs are more easily moved from one server to another one. On the
downside, if the solution admits too many migrations users may experience degraded
quality of service.

The last aspect discussed in this section is the number of times the solving process
has to relax the migration constraint over the various setting of the couple (w,N).
Figure 6.5 suggests that iterative solving violates the migration constraints up to 4% of
the time restricted models. These figures are respectively reached for small values of
both parameters. For problems less tightly constrained or more future aware, the risk
to violate the migration constraint tends to zero, guaranteeing a proper QoS level.

6.4 Conclusion and Limitations

In this chapter we have presented a formulation of the Proactive Workload Consolida-
tion Problem. This problem differs from traditionally studied workload consolidation
problems due to its dynamic nature and its incomplete information at decision time.
We developed a model accounting for these aspects and investigated various combina-
tion of both the size of the window in which the optimisation process takes place and

Combinatorial Optimisation for Sustainable
Cloud Computing

132 Milan De Cauwer

6. PROACTIVE CONSOLIDATION WITH VM
MIGRATIONS 6.4 Conclusion and Limitations

the tightness of the migration constraint. We have found that by looking only a few
time periods ahead, it is possible to achieve significant reductions in terms of energy
cost if the problem is not too tightly constrained. As a downside, we have shown that
if too few time periods are considered within the window, the optimisation process lo-
cally drives the solution towards infeasible solutions. This is in particular true for tight
problems for which the user might experience lower QoS.

There are also other aspects that one needs to consider when dealing with predicted
demands for multiple time-periods. If the predicted demands of virtual machines are
over-estimated then in the planning phase it might not be possible to compute feasible
solutions even though there might exist one when the actual demands are known.

Combinatorial Optimisation for Sustainable
Cloud Computing

133 Milan De Cauwer

Chapter 7

On Bin Packing Instances

Summary. This chapter shifts the focus on generating bin packing in-

stances that can be used to further study and generalise previous results.

We present a benchmark generator for bin packing instances based on the

well-known Weibull distribution. Using the shape and scale parameters

of this distribution we can generate benchmarks that contain a variety of

item size distributions. We show that real-world bin packing benchmarks

can be modeled extremely well using our approach. We also study both

systematic and heuristic bin packing methods under a variety of Weibull

settings. We observe that for all bin capacities, the number of bins required

in an optimal solution increases as the Weibull shape parameter increases.

However, for each bin capacity, there is a range of Weibull shape settings,

corresponding to different item size distributions, for which bin packing is

hard for a CP-based method.

The motivation for the work presented in this chapter comes from the variety of pack-
ing related problems studied in previous chapters. Indeed, the various workload con-
solidation problems discussed in this dissertation far have a rather strong connection to
the bin packing problem. In previous chapters, we have used data coming from real-
world applications of cloud systems to benchmark approaches to solve these problems.
In this chapter, we wish to open a discussion on generating synthetic benchmarks for
the one dimensional bin packing problem. In turn, these could be used to further anal-
yse the various problems presented in this dissertation.

While there are many benchmark suites for bin packing in the literature [Fal96, Kor03,
SKJ97, SW97, SW98, WG96], these are all artificial and lacking a practical basis.
Typically, as for example in the benchmarks by Scholl and Klein [SKJ97], item sizes

134

7. ON BIN PACKING INSTANCES 7.1 The Weibull Distribution

are generated using either uniform or normal distributions. As Gent has pointed out,
current benchmark suites in this area are often unrealistic and trivial to solve [Gen98].
This claim also is found in a paper by Richard E. Korf [Kor02]. Regin et al. [RR11]
have called for more realistic suites for use in studying large-scale data centre prob-
lems. It is this requirement that this chapter seeks to address.

Section 7.1 presents a parameterisable benchmark generator for bin packing instances
based on the Weibull distribution [Wei51]. Using the shape and scale parameters of
this distribution a variety of item size distributions can be generated. In Section 7.2
we show that a number of real-world bin packing benchmarks can be modeled well
using this approach. We study the behaviour of both systematic (Section 7.3) and
heuristic (Section 7.4) bin packing methods under a variety of settings. We show that
our framework allows for very controlled experiments in a bin packing setting in which
the distribution of item sizes can be precisely controlled. We discuss how the difficulty
of bin packing is affected by the item size distribution and by bin capacity. Specifically,
we observed that for all bin capacities, the number of bins required in an optimal
solution increases as the Weibull shape parameter increases. However, for each bin
capacity, it seems that there is a range of Weibull shape settings, corresponding to
different item size distributions, for which bin packing is hard for a CP-based method.

7.1 The Weibull Distribution

In probability theory, the Weibull distribution is a continuous probability distribution.
It is named after Waloddi Weibull, who presented the distribution in a seminal con-
tribution in 1951 [Wei51]. The Weibull distribution is defined by a shape parameter,
k > 0, and a scale parameter, λ > 0. The probability density function, f(x;λ, k), of a
random variable x distributed according to a Weibull distribution is defined as follows:

f(x;λ, k) =


k
λ
· (x

λ
)k−1 · e−(x/λ)k

x ≥ 0,

0, otherwise.

The Weibull distribution can model many situations that naturally occur in a vari-
ety of problem domains involving distributions of time horizons, time slots or lot
sizes [Wei51]. Figures 7.1a and 7.1b present several examples of different distributions
that can be obtained by instantiating the Weibull distribution. Figure 7.1a presents four
different distributions for small values of the shape parameter, k. Clearly very different
regimes are possible, some exhibiting extremely high skew around the value specified

Combinatorial Optimisation for Sustainable
Cloud Computing

135 Milan De Cauwer

7. ON BIN PACKING INSTANCES 7.1 The Weibull Distribution

by the distribution’s scale parameter, λ. In Figure 7.1b, larger values of the shape
parameter are considered.

0 500 1000 1500 2000 2500

0.
00

00
0.

00
05

0.
00

10
0.

00
15

density.default(x = type_50)

Item sizes

D
en

si
ty

O
O
O
O

shape = 0.5, scale = 1000.0
shape = 1.0, scale = 1000.0
shape = 1.5, scale = 1000.0
shape = 5.0, scale = 1000.0

(a) Small shape parameters

0 500 1000 1500

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6
0.

00
7

density.default(x = d1)

Item sizes

D
en

si
ty

O
O
O
O

shape = 9.0, scale = 1000.0
shape = 12.0, scale = 1000.0
shape = 15.0, scale = 1000.0
shape = 18.0, scale = 1000.0

(b) Larger shape parameters

Figure 7.1: Weibull distributions

Combinatorial Optimisation for Sustainable
Cloud Computing

136 Milan De Cauwer

7. ON BIN PACKING INSTANCES
7.2 Fitting Weibull Distributions to Real-world

Instances

In this chapter we propose using the Weibull distribution as the basis for a parame-
terisable benchmark generator for bin packing instances in which the item sizes are
generated according to a Weibull distribution parameterised by specific values of k
and λ. Using these parameters a variety of item size distributions can be generated. In
Section 7.2 we show that some real-world bin packing benchmarks can be modelled
extremely well using a Weibull distribution.

7.2 Fitting Weibull Distributions to Real-world In-
stances

In this section we demonstrate the flexibility of the Weibull distribution in fitting to a
variety of bin packing problems coming from real-world applications. In Section 7.2.1
we show a specific example of how well the Weibull distribution can fit to a problem
instance arising from the 2012 ROADEF/EURO Challenge. This example will show,
visually, the quality of the fit that can be obtained. However, in Section 7.2.2 we
present a more rigorous analysis of the goodness-of-fit that can be achieved through
the use of two standard statistical tests.

7.2.1 An Example Problem in Data Centre Management

The 2012 ROADEF/EURO Challenge1 is concerned with the problem of machine re-
assignment, with data and sponsorship coming from Google. The subject of the chal-
lenge is to find a best-cost mapping of processes, which have specific resource require-
ments, onto machines, such that a variety of constraints are satisfied. A core element
of the problem are bin packing constraints stating that the total amount of a given re-
source required by the processes assigned to a machine does not exceed the amount
available.

An important element of this challenge is the mapping of processes to machines such
that the availability of each resource on the machine is not exceeded by the require-
ments of the set of services assigned to it. This subproblem is a multi-capacity bin
packing problem: each machine is a bin with many elements defined by the set of
resources available, and each process corresponds to an item that consumes different
amounts of each resource.

1http://challenge.roadef.org/2012/en/index.php

Combinatorial Optimisation for Sustainable
Cloud Computing

137 Milan De Cauwer

http://challenge.roadef.org/2012/en/index.php

7. ON BIN PACKING INSTANCES
7.2 Fitting Weibull Distributions to Real-world

Instances

0 50000 100000 150000

0e
+

00
1e

−
05

2e
−

05
3e

−
05

4e
−

05
5e

−
05

6e
−

05

density.default(x = d10)

N = 1000 Bandwidth = 2663

D
en

si
ty

O
O

sh = 0.763, sc = 11520.247
g10

Figure 7.2: An example of the quality of fit one can achieve when using a Weibull dis-
tribution for a real-world bin packing problem. Here we present the data and Weibull
fit associated with Resource 10 of instance a2(5) from the 2012 ROADEF/EURO
Challenge sponsored by Google.

Figure 7.2 presents an example probability distribution for Resource 10 from instance
a2(5) of the benchmarks available for the ROADEF/EURO Challenge. The proba-
bility density function that corresponds to the actual data is plotted as a line. We can
see clearly that this distribution is extremely skewed, with the majority of the proba-
bility mass coming from smaller items. Another characteristic of the data is the spread
along the x-axis, showing that the range of likely item sizes spans several orders-of-
magnitude, and there is a very small possibility of encountering extremely large items.

We used R, the open-source statistical computing platform [The], to fit a Weibull distri-
bution to this data, using maximum likelihood fitting [Mar]. Specifically, we have used
the R Weibull Distribution Maximum Likelihood Fitting implementation by Wessa,
which is available as an online service [Wes]. The resulting Weibull is presented in
Figure 7.2 as the circles imposed on the density function from the data. By observa-
tion we can see that the fit is extremely good. In the next section we will study the
quality of fit more rigorously, demonstrating that it is statistically significant.

Combinatorial Optimisation for Sustainable
Cloud Computing

138 Milan De Cauwer

7. ON BIN PACKING INSTANCES
7.2 Fitting Weibull Distributions to Real-world

Instances

7.2.2 Verifying the Goodness-of-Fit

We study a variety of benchmark bin packing problems. As mentioned above, the 2012
ROADEF/EURO Challenge provides a publicly available set of problem instances that
contains many bin packing instances. In addition to those, we consider real-world ex-
amination timetabling benchmarks. The bin packing component of these problems in-
volves scheduling examinations (items) involving specified numbers of students (item
sizes), into rooms of specified capacity (bin capacities) within time-slots (number of
bins). We consider the data sets available from universities in Toronto, Melbourne and
Nottingham [QBM+09]. These are available from the OR library.2

We used two goodness-of-fit tests to evaluate whether or not the Weibull distribution is
capable of modeling the distribution of item sizes in these data sets. We discuss each
of these tests in the following sections.

The Kolmogorov-Smirnov Test. The two-sided Kolmogorov-Smirnov (KS) test is a
non-parametric test for the equality of continuous, one-dimensional, probability distri-
butions3. As implemented in R, this test requires two sample sets: one representing the
observed data, and the other representing a sample from the hypothesised distribution.
In our setting, the observed data is represented by the item sizes from the benchmark
we wish to model, while the second set is a vector of items generated according to
the best-fit Weibull distribution with parameters (shape and scale) estimated from the
observed data [Ric05]. The null hypothesis of this statistical test is that the two data

sets come from the same underlying distribution. For a 95% level of confidence, if the
p-value from the test is at least 0.05, then we cannot reject the null hypothesis.

The KS test was performed on all instances from our exam timetabling (ETT) and
ROADEF/EURO benchmark suites; the details of a randomly selected subset are pre-
sented in Table 7.1. We can see that most of the ETT item size distributions can be ac-
curately modeled by a Weibull distribution since the corresponding p-values are above
5% (highlighted in bold). However, the KS test clearly rejects the null hypothesis for
the ROADEF/EURO instances, most likely due to a both the size of the data sets and
the presence of outliers in the tail of the distribution.

It is known that when dealing with large data sets with a small number of large outliers,
this test tends to underestimate the p-value. This means that even if the null hypothesis
is rejected the candidate distribution might still characterise the data set [MLDMD11].

2http://people.brunel.ac.uk/∼mastjjb/jeb/info.html
3http://mathworld.wolfram.com/Kolmogorov-SmirnovTest.html

Combinatorial Optimisation for Sustainable
Cloud Computing

139 Milan De Cauwer

http://people.brunel.ac.uk/~mastjjb/jeb/info.html
http://mathworld.wolfram.com/Kolmogorov-SmirnovTest.html

7. ON BIN PACKING INSTANCES 7.3 Systematic Search for Bin Packing

For this reason we use the χ2 test to further validate the results.

The χ2 Test. As a complementary approach, we used the χ2 goodness-of-fit test
which is less sensitive to outliers in the sample data.4 The null hypothesis is that the
observed and expected distributions are not statistically different.

The procedure requires grouping items into γ categories according to their size. Based
on these categories, we can compute the expected number of values in each category,
assuming that the item sizes are drawn from a Weibull distribution with shape and scale
parameters estimated from the data set. The χ2 statistic is then computed as:

χ2 =
γ∑
i=1

(Oi − Ei)2/Ei,

from which we can obtain the corresponding p-value, whereOi andEi are the observed
and expected frequencies of each category i, respectively. We model the tail of the
distribution, in the standard way, by building a wider category that counts all items in
the tail of the distribution. The other γ − 1 categories are equally sized.

As shown in Table 7.1, the null hypothesis cannot be rejected for any of the benchmarks
that are presented. Therefore, the conclusion is that the Weibull distribution provides a
good fit for the item size distributions in the benchmark instances we considered. We
conjecture that it will also do so in very many other cases encountered in practice.

7.3 Systematic Search for Bin Packing

We consider the performance of a systematic constraint-based bin packing method on
a wide number of classes of Weibull-based bin packing benchmarks. Our experiment
involved varying the parameters of the Weibull distribution so that item sets for bin
packing instances could be generated. A range of bin capacities were studied. The
details of the experimental setup are described in Section 7.3.1.

7.3.1 Bin Packing Instances and Solver

We considered problems instances involving 100 items. We fixed the scale parameter,
λ, of the Weibull to 1000. As experimental parameters we varied both the capacity of

4http://mathworld.wolfram.com/Chi-SquaredTest.html

Combinatorial Optimisation for Sustainable
Cloud Computing

140 Milan De Cauwer

http://mathworld.wolfram.com/Chi-SquaredTest.html

7. ON BIN PACKING INSTANCES 7.3 Systematic Search for Bin Packing

Table 7.1: The parameters of the best-fit Weibull distributions obtained for randomly
selected instances of a number of real-world examination timetabling benchmarks.

Weibull Best-fit KS test χ2 test
Set Instance shape scale p-value #(cat) lbTail p-value

E
T

T

Nott 1.044 43.270 0.7864 7 100 0.059
MelA 0.946 109.214 0.091 10 427 0.073
MelB 0.951 117.158 0.079 5 47 0.051
Cars 1.052 85.438 0.037 18 53 0.109
hec 1.139 138.362 0.436 10 293 0.204
yor 1.421 37.049 0.062 7 117 0.068

R
A

O
D

E
F

a12
3 0.447 104,346.70 0.005 30 163,000 0.105

a13
3 0.549 88,267.85 0.001 15 54,800 0.068

a25
1 0.562 67,029.83 0.000 30 470,000 0.768

a24
4 0.334 103,228.30 0.001 30 500,000 0.051

b3
6 0.725 40,469.74 0.000 20 185,000 0.060
b5

3 0.454 91,563.28 0.000 30 140,000 0.088

the bins and the shape of the Weibull distribution, generating 100 instances for each
combination of parameters. The capacities we considered were c × max(I), where
c ∈ [1.0, 1.1, . . . , 1.9, 2.0] and max(I) is the maximum item size encountered in the
instance. Therefore, the capacity of the bins considered were at least equal to the
largest item, or at most twice that size.

For the shape parameter of the Weibull we considered a very large range:
[0.1, 0.2, . . . , 19.9], yielding 199 settings of this parameter. By fixing the scale param-
eter to 1000 we considered item sizes that could span over three orders-of-magnitude.
To build our problem generator we used the Boost library [Boo]. This is a C++ API
that includes type definitions for random number generators and a Weibull distribu-
tion, which is parameterized by the random number generator, the shape and the scale.
Iteration capabilities for traversing the distribution of generated values are also pro-
vided. We generated 100 instances for each combination of shape and scale, giving
199 classes of item sets, providing 19,900 item sets. For each of these sets we gen-
erated bin packing instances by taking each set and associating it with a bin capacity
in the range described above. In this way we could be sure that as we changed bin
capacity, the specific sets of items to be considered was controlled.

Constraint-based bin packing Model. For our experiments we have used Gecode
3.7.0 [Gec06]. The bin packing model used is the most efficient one included in the
Gecode distribution for finding the minimum number of bins for a given bin packing
instance [STL12]. This model employs the L1 lower bound on the minimum number
of bins by Martello and Toth [MT90a].

Combinatorial Optimisation for Sustainable
Cloud Computing

141 Milan De Cauwer

7. ON BIN PACKING INSTANCES 7.3 Systematic Search for Bin Packing

It uses an upper bound based on the first-fit bin packing heuristic which packs each
item into the first bin with sufficient capacity.

The model uses the following variables: one variable to represent the number of bins
used to pack the items; one variable per item representing which bin the item is as-
signed to; and a variable per bin representing its load. The main constraint included
in the model is the global bin packing constraint proposed by Paul Shaw [Sha04], en-
forcing that the packing of items into bins corresponds to the load variables. Those
items whose size is greater than half of the bin capacity are directly placed into differ-
ent bins. If a solution uses a number of bins smaller than the upper bound, then the
load associated with unused bins is set to 0, and symmetry breaking constraints en-
sure that this reasoning applies to the lexicographically last variables first. Additional
symmetry breaking constraints ensure that search avoids different solutions involving
permutations of items with equal size.

The search strategy used is as follows. The variable representing the number of bins
used in the solution is labelled first, and in increasing order, thus ensuring that the first
solution found is optimal. The variables representing the item assignments to bins, and
the load on each bin, are then labelled using the complete decreasing best fit strategy
proposed by Gent and Walsh [GW97], which tries to place the items into those bins
with sufficient but least free space. In our experiments a timeout of 10 seconds is used
to ensure that our experiments take a reasonable amount of time. We verified that
increasing this to five minutes does not significantly increase the proportion of solved
instances. However, of course, for some classes a large number of time-outs were
observed, so further empirical study is needed in those cases.

7.3.2 Small Weibull Shape Parameter Values

In this section we explore the behaviour of a systematic search on bin packing instances
generated using our Weibull-based approach when considering small values of the dis-
tribution’s shape parameter, specifically values ranging from 0.5 to 5.0 in steps of 0.1.
Figure 7.3 presents the results – Figure 7.3a and Figure 7.3b present the average time
required to those instances solved within the timeout, and the proportion of instances
involved, respectively. In these plots we only consider capacity factors 1.0, 1.5, and
2.0.

It is clear that the shape factor, which defines the spread of item sizes, has a dramatic
impact on the average time taken to find the optimal solution to a bin packing instance.
By referring back to Figure 7.1a one can observe how the distribution of item sizes is

Combinatorial Optimisation for Sustainable
Cloud Computing

142 Milan De Cauwer

7. ON BIN PACKING INSTANCES 7.3 Systematic Search for Bin Packing

 0

 50

 100

 150

 200

 250

 300

 350

 400

0.5 1.0 2.0 3.0 4.0 5.0

m
ill

is
ec

on
ds

shape factor

c = 1.0
c = 1.5
c = 2.0

(a) Average running time for instances that did not timeout.

 0

 20

 40

 60

 80

 100

0.5 1.0 2.0 3.0 4.0 5.0

pe
rc

en
ta

ge

shape factor

c = 1.0
c = 1.5
c = 2.0

(b) Percentage of instances solved within the timeout.

Figure 7.3: Average runtime and percentage of solved instances for values of the shape
parameter in the 0.5,. . . ,5.0 range.

Combinatorial Optimisation for Sustainable
Cloud Computing

143 Milan De Cauwer

7. ON BIN PACKING INSTANCES 7.3 Systematic Search for Bin Packing

changing. The lower values of the shape parameters correspond to distributions that
have greater skew towards smaller items. As the shape parameter increases, consider
value 1.5, there is a much greater range of possible item sizes. Once we get to higher
shape values, consider value 5.0, the distribution of item sizes becomes more symmet-
ric.

This shift in item size distribution impacts the difficulty of bin packing earlier when
the capacity of the bin is smaller. Consider the effort required when the bin capacity
is equal to the largest item, i.e. capacity factor 1.0, in Figure 7.3a. The range of
shapes over which these problems are hard is quite narrow, and we shall see in the
next section, that this is influenced by the bin capacity associated with the problem
instance. This difficulty arises from the interaction between item size distribution and
bin capacity whereby finding the best combinations of items to place in the same bin
becomes challenging. As the shape parameter increases, the range of item sizes again
decreases which, given the small bin capacity, makes the instance easy once more. For
a bin capacity equal to the largest item size the hard region corresponds to values of
Weibull shape between 1.5 and 3.0. Increasing the capacity of the bins dramatically
increases the computational challenge of the problems, since again, search effort is
invested in finding a good combination of items to fit into each bin. Clearly, from
Figure 7.3a, we can see that problem difficulty increases as bin capacity increases.

Using our proposed Weibull-based model for generating bin packing instances we
claim that not only can one model some real-world bin packing settings, as shown
earlier in this chapter, but it is possible to carry out very controlled experiments on
the behaviour of bin packing methods, studying the effect of the various aspects of the
problem, such as bin capacity and item size distribution in isolation, or together.

7.3.3 Full Range of Shape Parameters

We have also performed a more wide-ranging study of the interaction between the
shape of the Weibull distribution, bin capacity, and the hardness of bin packing for a
systematic method. In this section we will briefly present a set of experiments that
exhibit the various behaviours discussed above. We consider all values of the shape
parameter in our data set, 0.1 ≤ k ≤ 19.9. Figure 7.1b shows how the distributions
with larger shape parameter values differ from those with the smaller values studied
above. Essentially, these distributions have lower spread shown by successively taller
density functions centering towards the value of the scale parameter.

Figure 7.4 presents both the average running time (Figure 7.4a) of the instances solved

Combinatorial Optimisation for Sustainable
Cloud Computing

144 Milan De Cauwer

7. ON BIN PACKING INSTANCES 7.4 Bin Packing Heuristics

within the timeout and the percentage of instances that this corresponds to (Fig-
ure 7.4b). The average number of bins associated with these instances is presented
in Figure 7.5.

Again, in these plots we can see that, as before, problem difficulty peaks at a specific
value of Weibull shape for different values of capacity (Figure 7.4). From Figure 7.5,
which presents the average number of bins in an optimal solution, we can extract the
average number of items per bin for each class, since all of our instances have 100
items. As before, the range of shapes over which search efforts are hard, correspond
to specific ranges of numbers of bins (or average number of items per bin). Therefore,
there is an obvious interrelationship between bin capacity, item size distribution, and
both problem hardness and numbers of items per bin.

7.4 Bin Packing Heuristics

Our earlier experiments considered the performance of a systematic search method
for bin packing. In this section, for completeness, we use the same set of in-
stances to present bin packing performance when using some well-known heuristics:
MAXREST, FIRSTFIT, BESTFIT and NEXTFIT. Briefly these heuristics operate as
follows. MAXREST places the next item into the bin with maximum remaining space
capacity; FIRSTFIT places the next item into the first bin that can accommodate it;
BESTFIT places the next item into the bin that will have the least remaining capac-
ity once the item has been accommodated by it; finally, NEXTFIT keeps the last bin
open and creates a new bin if the next item cannot be accommodated in the current
bin, which it will then close. For our experiments we used a publicly available imple-
mentation of these heuristics by Rieck.5 Because our benchmark generator produces
instances that have items sorted in decreasing order of size, the difference in perfor-
mance between MAXREST, FIRSTFIT, and BESTFIT is very small, so we will only
present results for MAXREST, while NEXTFIT will be presented separately.

Figure 7.6 presents the results, in each case showing the difference in the average
number of bins as compared with the optimal value found by the systematic search
method used earlier. A representative set of results for MAXREST, FIRSTFIT, and
BESTFIT are presented in Figure 7.6a using MAXREST as the example, while those
for NEXTFIT are presented in Figure 7.6b. Interestingly the quality of the solutions
found using the MAXREST, FIRSTFIT, and BESTFIT heuristics closely follows the

5http://bastian.rieck.ru/uni/bin_packing/

Combinatorial Optimisation for Sustainable
Cloud Computing

145 Milan De Cauwer

http://bastian.rieck.ru/uni/bin_packing/

7. ON BIN PACKING INSTANCES 7.4 Bin Packing Heuristics

 0

 500

 1000

 1500

 2000

2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0

m
ill

is
ec

on
ds

shape factor

c = 1.0
c = 1.1
c = 1.2
c = 1.3
c = 1.4
c = 1.5
c = 1.6
c = 1.7
c = 1.8
c = 1.9
c = 2.0

(a) Average running time for instances that did not timeout.

 0

 20

 40

 60

 80

 100

2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0

pe
rc

en
ta

ge

shape factor

c = 1.0
c = 1.1
c = 1.2
c = 1.3
c = 1.4
c = 1.5
c = 1.6
c = 1.7
c = 1.8
c = 1.9
c = 2.0

(b) Percentage of instances solved within the timeout.

Figure 7.4: Average runtime and percentage of solved instances for values of the shape
parameter for range of Weibull shapes that is sufficiently wide to exhibit the easy-hard-
easy behaviour in search effort.

Combinatorial Optimisation for Sustainable
Cloud Computing

146 Milan De Cauwer

7. ON BIN PACKING INSTANCES 7.5 Conclusion and Limitations

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0

nu
m

be
r

of
 b

in
s

shape factor

c = 1.0
c = 1.1
c = 1.2
c = 1.3
c = 1.4
c = 1.5
c = 1.6
c = 1.7
c = 1.8
c = 1.9
c = 2.0

Figure 7.5: Average number of bins associated with the optimal solutions to the in-
stances presented in Figure 7.4.

difficulty of the problem when using a systematic solver. This makes intuitive sense,
since for these problems, finding a good combination of items to give a good quality
solution is difficult.

This performance contrasts starkly with that of the NEXTFIT heuristic (Figure 7.6b)
which does significantly worse than optimal across almost all values of Weibull shape.
While, the greediness of this heuristic does not pay off, the more considered reasoning
used by the other heuristic does, except when the problem is even challenging for
systematic search.

7.5 Conclusion and Limitations

In this chapter we have presented a parameterisable benchmark generator for bin pack-
ing instances based on the well-known Weibull distribution. The motivation for our
work in this area comes from the domain of data centre optimisation and, in particu-
lar, workload consolidation which can be viewed as multi-capacity bin packing. We
have demonstrated how our approach can very accurately model real-world bin pack-
ing problems, e.g. those from the ROADEF/EURO Challenge, and from real-world

Combinatorial Optimisation for Sustainable
Cloud Computing

147 Milan De Cauwer

7. ON BIN PACKING INSTANCES 7.5 Conclusion and Limitations

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0

nu
m

be
r

of
 b

in
s

shape factor

c = 1.0
c = 1.1
c = 1.2
c = 1.3
c = 1.4
c = 1.5
c = 1.6
c = 1.7
c = 1.8
c = 1.9
c = 2.0

(a) The difference in the average number of bins in solutions found using heuristics
like MAXREST, FIRSTFIT, or BESTFIT. Because these perform similarly we only
present results for MAXREST.

 0

 5

 10

 15

 20

 25

2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0

nu
m

be
r

of
 b

in
s

shape factor

c = 1.0
c = 1.1
c = 1.2
c = 1.3
c = 1.4
c = 1.5
c = 1.6
c = 1.7
c = 1.8
c = 1.9
c = 2.0

(b) The difference in the average number of bins in solutions found using NEXTFIT.

Figure 7.6: The difference in the average number of bins required by each of the heuris-
tics and the optimal solutions - if a heuristic finds the optimal solution the difference is
0.Combinatorial Optimisation for Sustainable
Cloud Computing

148 Milan De Cauwer

7. ON BIN PACKING INSTANCES 7.5 Conclusion and Limitations

examination timetabling problems. We also presented an empirical analysis of both
systematic search and heuristic methods for bin packing based on a large benchmark
suite generated using our approach, showing a variety of interesting behaviours that
are otherwise difficult to observe systematically. We observed that for all bin capaci-
ties, the number of bins required in an optimal solution increases as the Weibull shape
parameter increases. However, for each bin capacity, there is a range of Weibull shape
settings, corresponding to different item size distributions, for which bin packing is
hard for a CP-based method.

The model we have presented here can, of course, be trivially extended to produce
benchmark generators for a variety of other important problems, such as knapsacks,
multi-processor scheduling, job shop scheduling, timetabling, to name but a few.

Combinatorial Optimisation for Sustainable
Cloud Computing

149 Milan De Cauwer

Chapter 8

Conclusions and Further Work

Summary. This chapter concludes the discussion by first coming back

to the two sub-thesis defended in this dissertation and drawing some con-

clusions. We then outline some possible ways the work presented in this

dissertation could be extended.

8.1 Conclusion

Throughout this dissertation we have explored various workload consolidation models
and optimisation techniques to reduce the economic and ecological footprints of cloud
systems. Under the assumption that more efficient consolidation translates into a more
energy efficient system, we have developed a number of novel approaches to workload
consolidation. In particular, we have discussed the two following claims.

Sub-thesis 1. To date a full body of literature is focused on optimising energy con-

sumption in cloud computing infrastructures. Many approaches rely on well-known

combinatorial problems, either studied on their own or in the context of an other ap-

plication. We claim that static workload consolidation can be seen as an novel variant

of the bin packing problem. As such, this combinatorial problem needs to be formally

described and solving approaches studied. We show that static consolidation on its

own is an efficient tool for reducing resource wastage in data centres.

Defence. Chapter 3 employed mathematical modeling to formally express a core work-
load consolidation problem found in many applications pertaining to cloud systems.
We explored a number of techniques from the realm of operations research and con-
straint programming to solve this core consolidation problem in an offline context.

150

8. CONCLUSIONS AND FURTHER WORK 8.2 Future Work

Chapter 4 expanded on the latter by casting it in a semi-online setting in which in-
formation is only partially known at decision time. We developed a set of solving
approaches tailored to provide solutions to the consolidation problem under severe
computational time limits. Although the latter aspect is often ignored in the literature,
cloud providers need to implement fast decision making policies.

Sub-thesis 2. A common issue in the daily operation of data centres is dealing with in-

complete or even missing information regarding the nature of the workload that needs

to be consolidated. We claim that some missing information can be at least partially

retrieved with standard machine learning techniques and successfully used within op-

timisation processes.

Defence. In Chapter 5, we discussed a consolidation problem for which uncertain-
ties are coming from unknown object sizes at decision time. The specific application
studied there needed to take into account object eviction to avoid over allocating ma-
chines. We explored the interactions between standard machine learning models used
to retrieve missing information and the outcome of consolidation policies. In addition,
Chapter 6, the nature of the uncertainty differed from previous chapters in the sense
that the size of the objects is varying in time. The information available at decision
time was restricted by the online nature of the problem. In this chapter we discussed a
rather different consolidation problem in which workload can be migrated in order to
retain a minimum energy cost while satisfying operational constraints.

8.2 Future Work

The work presented in this dissertation could be extended in a number of ways.

8.2.1 Workload Consolidation as a Component to Complex Cloud
Systems

Although the focus of this dissertation was put on core workload consolidation
problems, a large body of literature is focused on modeling and optimising cloud
systems in a much larger scope. At the level of data centres, many challenges
ranging from modeling intra- and inter-data centres networking throughput and la-
tency [GHMP08, SLX10, PY10], to optimising non-linear and continuous models for
the thermal behaviour within data centres must be tackled [CCMO15, CSG11, SC11].

Combinatorial Optimisation for Sustainable
Cloud Computing

151 Milan De Cauwer

8. CONCLUSIONS AND FURTHER WORK 8.2 Future Work

We abstracted many of these aspects relevant to daily operations in cloud settings in
order to focus the analyses on core workload consolidation problems. Introducing
these elements within the workload consolidation models studied here would reveal
that consolidation problems exhibit conflicting objectives. For instance, we provide in
Chapter 4 and Chapter 5 evidence that there is a trade-off between aggressive workload
consolidation and average delay in starting time of tasks. Another example of the many
trade-offs that can be studied in cloud environments can be found in Chapter 6 in which
we explored the balance between electricity cost and number of migrations allowed in
the system.

These trade-offs should be understood and studied in terms of multi-objective prob-
lems [XF10, PB13]. Approaching the problems discussed in this dissertation from
such an angle would allow decision makers to choose a given consolidation level with
full knowledge of possible trade-offs.

8.2.2 Competitive Analysis

This dissertation features a variety of workload consolidation problems for which we
developed online or semi-online algorithms. These approaches were empirically eval-
uated on various data sets extracted from real world cloud computing environments.
Although these approaches have been shown to perform well, there is much scope for
deriving stronger properties on their behavior through competitive analysis. Competi-
tive analysis allows one to measure the performance gap between an online algorithm
oblivious to incoming inputs and an optimal offline algorithm having access to all fu-
ture inputs [Fia98]. Similar approaches could specifically be applied to the online or
semi-online optimisation models discussed in Chapter 4 and 5. There is an opportunity
for such analysis on algorithms discussed in these sections.

8.2.3 Understanding Prediction/Optimisation Interactions

A number of chapters in this dissertation leverage machine learning to retrieve missing
or incomplete information needed to ease the decision process. This particularly the
case in Chapter 4 in which statistical assumptions are made on the duration of tasks.
Similarly, Chapter 5 models stochastic tasks sizes within the same context. There the
use of machine learning techniques was explicitly leveraged to feed information to
heuristics responsible for allocating tasks to machines.

Combinatorial Optimisation for Sustainable
Cloud Computing

152 Milan De Cauwer

8. CONCLUSIONS AND FURTHER WORK 8.2 Future Work

It is in general not obvious how to characterise the link between information quality as
an input to the optimisation step versus the quality of solutions returned by the opti-
miser [IOS12b]. As an illustration of the latter claim, we note very different behaviors
in Chapter 4 and Chapter 5 respectively. In Chapter 4, the experimental section shows
evidence that uncertainty on input data has a rather limited impact on the outcome of
the optimisation process. In this application, there is a negative sub linear relationship
between uncertainty and solution quality achieved in the optimisation step. On the
other hand, in a different context, Chapter 5 shows that hard capacity constraints can
be broken due to uncertain task sizes. Uncertainties in the input data is shown to have
a rather large impact on the consolidation process.

Finding a systematic way to characterise the function from input data uncertainties to
quality of the consolidation process could help developing business practices in such
a way that the price of accessing cloud structures is a function of a priori information
on the tasks to be scheduled.

Combinatorial Optimisation for Sustainable
Cloud Computing

153 Milan De Cauwer

References

[ACBO18] Vincent Armant, Milan De Cauwer, Kenneth N. Brown, and Barry
O’Sullivan. Semi-online task assignment policies for workload con-
solidation in cloud computing systems. Future Generation Computer

Systems, 82:89–103, 2018.

[AFG+09] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy H. Katz, Andrew Konwinski, Gunho Lee, David A. Patterson,
Ariel Rabkin, Ion Stoica, and Matei Zaharia. Above the clouds: A berke-
ley view of cloud computing. Technical Report UCB/EECS-2009-28,
EECS Department, University of California, Berkeley, Feb 2009.

[AGH+15] Raja Wasim Ahmad, Abdullah Gani, Siti Hafizah Ab Hamid, Muham-
mad Shiraz, Abdullah Yousafzai, and Feng Xia. A survey on virtual
machine migration and server consolidation frameworks for cloud data
centers. J. Network and Computer Applications, 52:11–25, 2015.

[ARA14] Omar Arif Abdul-Rahman and Kento Aida. Towards understanding the
usage behavior of Google cloud users: the mice and elephants phe-
nomenon. In IEEE International Conference on Cloud Computing Tech-

nology and Science (CloudCom), pages 272–277, Singapore, December
2014.

[ARGA04] Adriana C. F. Alvim, Celso C. Ribeiro, Fred Glover, and Dario J. Aloise.
A hybrid improvement heuristic for the one-dimensional bin packing
problem. Journal of Heuristics, 10(2):205–229, 2004.

[BB10a] Anton Beloglazov and Rajkumar Buyya. Energy efficient allocation of
virtual machines in cloud data centers. In 10th IEEE/ACM International

Conference on Cluster, Cloud and Grid Computing, CCGrid 2010, 17-

20 May 2010, Melbourne, Victoria, Australia, pages 577–578, 2010.

154

REFERENCES

[BB10b] Anton Beloglazov and Rajkumar Buyya. Energy efficient resource
management in virtualized cloud data centers. In Proceedings of the

2010 10th IEEE/ACM International Conference on Cluster, Cloud and

Grid Computing, CCGRID ’10, pages 826–831, Washington, DC, USA,
2010. IEEE Computer Society.

[BB12] Anton Beloglazov and Rajkumar Buyya. Optimal online deterministic
algorithms and adaptive heuristics for energy and performance efficient
dynamic consolidation of virtual machines in cloud data centers. Con-

curr. Comput. : Pract. Exper., 24(13):1397–1420, September 2012.

[BB13] János Balogh and József Békési. Semi-on-line bin packing: a short
overview and a new lower bound. Central European Journal of Op-

erations Research, 21(4):685–698, Dec 2013.

[BBA10] Rajkumar Buyya, Anton Beloglazov, and Jemal Abawajy. Energy-
efficient management of data center resources for cloud computing: A
vision, architectural elements, and open challenges. arXiv:1006.0308,
2010.

[BFF+10] Peter Bodik, Armando Fox, Michael J. Franklin, Michael I. Jordan, and
David A. Patterson. Characterizing, modeling, and generating workload
spikes for stateful services. In Proceedings of the 1st ACM Symposium

on Cloud Computing, SoCC ’10, pages 241–252, New York, NY, USA,
2010. ACM.

[BGG+10] Andreas Berl, Erol Gelenbe, Marco Di Girolamo, Giovanni Giuliani,
Hermann de Meer, Dang Minh Quan, and Kostas Pentikousis. Energy-
efficient cloud computing. Comput. J., 53(7):1045–1051, 2010.

[BJ70] George Box and Gwilym Jenkins. Time series analysis: Forecasting and

control. Holden-Day, 1970.

[BJK14] Sebastian Berndt, Klaus Jansen, and Kim-Manuel Klein. Fully dynamic
bin packing revisited. CoRR, abs/1411.0960, 2014.

[BJM09] Cynthia Barnhart, Hai Jiang, and Lavanya Marla. OPTIMIZATION AP-
PROACHES TO AIRLINE INDUSTRY CHALLENGES: airline sched-
ule planning and recovery. In Cynthia Barnhart, Uwe Clausen, Ulrich
Lauther, and Rolf H. Möhring, editors, Models and Algorithms for Opti-

mization in Logistics, 21.06. - 26.06.2009, volume 09261 of Dagstuhl

Combinatorial Optimisation for Sustainable
Cloud Computing

155 Milan De Cauwer

REFERENCES

Seminar Proceedings. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, Germany, 2009.

[BKA+87] Gru Brundtland, Mansour Khalid, Susanna Agnelli, Sali Al-Athel,
Bernard Chidzero, Lamina Fadika, Volker Hauff, Istvan Lang, Ma Shi-
jun, Margarita Morino de Botero, Magendra Singh, Saburo Okita, and
And Others. Our Common Future (’Brundtland report’). Oxford Paper-
back Reference. Oxford University Press, USA, May 1987.

[BKB07] Norman Bobroff, Andrzej Kochut, and Kirk Beaty. Dynamic placement
of virtual machines for managing SLA violations. In Integrated Network

Management, 2007. IM’07. 10th IFIP/IEEE International Symposium

on, pages 119–128. IEEE, 2007.

[Boo] Boost: free peer-reviewed portable C++ source libraries. Version 1.47.0.
http://www.boost.org/.

[Bre01] L. Breiman. Random forests. In Machine Learning, 45:1, pages 5–32.
Springer, 2001.

[CC09] Jonathan D. Cryer and Kung-Sik Chan. Time Series Analysis With Ap-

plications in R. Springer, New York, 2009. ISBN 978-0-387-75958-6.

[CCG+13] Edward Coffman, János Csirik, Gábor Galambos, Silvano Martello, and
Daniele Vigo. Bin Packing Approximation Algorithms: Survey and
Classification. In Panos M. Pardalos, Ding-Zhu Du, and Ronald L. Gra-
ham, editors, Handbook of Combinatorial Optimization, pages 455–531.
Springer New York, 2013.

[CCMO15] Danuta Sorina Chisca, Ignacio Castiñeiras, Deepak Mehta, and Barry
O’Sullivan. On energy- and cooling-aware data centre workload man-
agement. In 15th IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing, CCGrid 2015, Shenzhen, China, May 4-

7, 2015, pages 1111–1114. IEEE Computer Society, 2015.

[CCO12] Ignacio Castiñeiras, Milan De Cauwer, and Barry O’Sullivan. Weibull-
based benchmarks for bin packing. In Principles and Practice of Con-

straint Programming - 18th International Conference, CP 2012, Québec

City, QC, Canada, October 8-12, 2012. Proceedings, pages 207–222,
2012.

[CCZ14] Michele Conforti, Gerard Cornuejols, and Giacomo Zambelli. Integer

Programming. Springer Publishing Company, Incorporated, 2014.

Combinatorial Optimisation for Sustainable
Cloud Computing

156 Milan De Cauwer

REFERENCES

[CD14] T. Chai and R. R. Draxler. Root mean square error (RMSE) or mean
absolute error (MAE)?. Geoscientific Model Development Discussions,
7(1):1525–1534, 2014.

[CDP05] Amip J. Shah Chandrakant D. Patel. Cost model for planning, develop-
ment and operation of a data center. Technical report, Internet Systems
and Storage Laboratory HP Laboratories Palo Alto, june 2005.

[CENC03] Javier Contreras, Rosario Espínola, Francisco J. Nogales, and Antonio J.
Conejo. Arima models to predict next-day electricity prices. IEEE Tre-

ansaction on Power Systems, pages 1014–1020, 2003.

[CGJ97] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Approximation
algorithms for NP-hard problems. chapter Approximation Algorithms
for Bin Packing: A Survey, pages 46–93. PWS Publishing Co., Boston,
MA, USA, 1997.

[CJCG+13a] Edward G. Coffman Jr., János Csirik, Gábor Galambos, Silvano
Martello, and Daniele Vigo. Bin Packing Approximation Algorithms:

Survey and Classification, pages 455–531. Springer New York, New
York, NY, 2013.

[CJCG+13b] EdwardG. Coffman Jr., Janos Csirik, Gabor Galambos, Silvano
Martello, and Daniele Vigo. Bin packing approximation algorithms:
Survey and classification. Handbook of Combinatorial Optimization,
pages 455–531, 2013.

[CJK+99] János Csirik, David S. Johnson, Claire Kenyon, Peter W. Shor, and
Richard R. Weber. A self organizing bin packing heuristic. In Algorithm

Engineering and Experimentation, International Workshop ALENEX

’99, Baltimore, MD, USA, January 15-16, 1999, Selected Papers, pages
246–265, 1999.

[CJT16] Valentina Cacchiani, Feng Jiang, and Paolo Toth. Timetable optimiza-
tion for high-speed trains at Chinese railways. Electronic Notes in Dis-

crete Mathematics, 55:29–32, 2016.

[CK04] Chandra Chekuri and Sanjeev Khanna. On multidimensional packing
problems. SIAM J. Comput., 33(4):837–851, April 2004.

[CMO+14] Milan De Cauwer, Deepak Mehta, Barry O’Sullivan, Helmut Simonis,
and Hadrien Cambazard. Proactive workload consolidation for reduc-
ing energy cost over a given time horizon. In 14th IEEE/ACM Inter-

Combinatorial Optimisation for Sustainable
Cloud Computing

157 Milan De Cauwer

REFERENCES

national Symposium on Cluster, Cloud and Grid Computing, CCGrid

2014, Chicago, IL, USA, May 26-29, 2014, pages 558–561, 2014.

[CMO16] Milan De Cauwer, Deepak Mehta, and Barry O’Sullivan. The temporal
bin packing problem: An application to workload management in data
centres. In 28th IEEE International Conference on Tools with Artifi-

cial Intelligence, ICTAI 2016, San Jose, CA, USA, November 6-8, 2016,
pages 157–164. IEEE Computer Society, 2016.

[CMOS13a] Hadrien Cambazard, Deepak Mehta, Barry O’Sullivan, and Helmut Si-
monis. Bin packing with linear usage costs - an application to energy
management in data centres. In Christian Schulte, editor, Principles and

Practice of Constraint Programming - 19th International Conference,

CP 2013, Uppsala, Sweden, September 16-20, 2013. Proceedings, vol-
ume 8124 of Lecture Notes in Computer Science, pages 47–62. Springer,
2013.

[CMOS13b] Hadrien Cambazard, Deepak Mehta, Barry O’Sullivan, and Helmut Si-
monis. Constraint programming based large neighbourhood search for
energy minimisation in data centres. In GECON, pages 44–59, 2013.

[CO10] Hadrien Cambazard and Barry O’Sullivan. Propagating the bin pack-
ing constraint using linear programming. In David Cohen, editor, CP,
volume 6308 of Lecture Notes in Computer Science, pages 129–136.
Springer, 2010.

[CO13] Milan De Cauwer and Barry O’Sullivan. A study of electricity price
features on distributed internet data centers. In Jörn Altmann, Kurt
Vanmechelen, and Omer F. Rana, editors, Economics of Grids, Clouds,

Systems, and Services - 10th International Conference, GECON 2013,

Zaragoza, Spain, September 18-20, 2013. Proceedings, volume 8193 of
Lecture Notes in Computer Science, pages 60–73. Springer, 2013.

[CPL10] CPLEX Team. IBM ILOG CPLEX Optimizer.
urlhttp://www-01.ibm.com/software/integration/optimization/cplex-
optimizer/, Last 2010.

[CPW07] S. J. F. Chang, S. H. Patel, and J. M. Withers. An optimization model
to determine data center locations for the army enterprise. In MIL-

COM 2007 - IEEE Military Communications Conference, pages 1–8,
Oct 2007.

Combinatorial Optimisation for Sustainable
Cloud Computing

158 Milan De Cauwer

REFERENCES

[CSG11] Paolo Cremonesi, Andrea Sansottera, and Stefano Gualandi. On the
cooling-aware workload placement problem. In Proceedings of the 8th

AAAI Conference on AI for Data Center Management and Cloud Com-

puting, AAAIWS’11-08, pages 2–7. AAAI Press, 2011.

[CT12] Valentina Cacchiani and Paolo Toth. Nominal and robust train
timetabling problems. European Journal of Operational Research,
219(3):727–737, 2012.

[dC98] J.M. Valério de Carvalho. Exact solution of cutting stock problems using
column generation and branch-and-bound. International Transactions in

Operational Research, 5(1):35–44, 1998.

[DC12] D. S. Dias and L. H. M. K. Costa. Online traffic-aware virtual machine
placement in data center networks. In 2012 Global Information Infras-

tructure and Networking Symposium (GIIS), pages 1–8, Dec 2012.

[DKC12] S. Di, D. Kondo, and W. Cirne. Characterization and Comparison of
Cloud versus Grid Workloads. IEEE International Conference on Clus-

ter Computing (CLUSTER), pages 230–238, 2012.

[DKC13] S. Di, D. Kondo, and F. Cappello. Characterizing Cloud Applications on
a Google Data Center. International Conference on Parallel Processing

(ICPP), pages 468–473, 2013.

[DKF13] Sheng Di, Derrick Kondo, and Cappello Franck. Characterizing cloud
applications on a Google data center. In 42nd International Conference

on Parallel Processing (ICPP), Lyon, France, October 2013.

[DRP05] Emilie Danna, Edward Rothberg, and Claude Le Pape. Exploring relax-
ation induced neighborhoods to improve mip solutions. Mathematical

Programming, 102(1):71–90, 2005.

[DSD10] Julien Dupuis, Pierre Schaus, and Yves Deville. Consistency check for
the bin packing constraint revisited. In Lodi et al. [LMT10], pages 117–
122.

[DWC10] Tharam Dillon, Chen Wu, and Elizabeth Chang. Cloud computing:
Issues and challenges. In Proceedings of the 2010 24th IEEE Inter-

national Conference on Advanced Information Networking and Appli-

cations, AINA ’10, pages 27–33, Washington, DC, USA, 2010. IEEE
Computer Society.

Combinatorial Optimisation for Sustainable
Cloud Computing

159 Milan De Cauwer

REFERENCES

[DWF16] M. Dayarathna, Y. Wen, and R. Fan. Data center energy consump-
tion modeling: A survey. IEEE Communications Surveys Tutorials,
18(1):732–794, Firstquarter 2016.

[Dyc90] Harald Dyckhoff. A typology of cutting and packing problems. Euro-

pean Journal of Operational Research, 44(2):145–159, 1990.

[ES10] Nasser A. El-Sherbeny. Vehicle routing with time windows: An
overview of exact, heuristic and metaheuristic methods. Journal of King

Saud University - Science, 22(3):123 – 131, 2010.

[Fal96] Emanuel Falkenauer. A hybrid grouping genetic algorithm for bin pack-
ing. Journal of Heuristics, 2(1):5–30, 1996.

[Fia98] Amos Fiat. Online Algorithms: The State of the Art (Lecture Notes in

Computer Science). Springer, September 1998.

[FL86] D. K. Friesen and M. A. Langston. Variable sized bin packing. SIAM

Journal on Computing, 15(1):222–230, 1986.

[FNCR11] Tiago C. Ferreto, Marco A.S. Netto, Rodrigo N. Calheiros, and Caesar
A.F. De Rose. Server consolidation with migration control for virtual-
ized data centers. Future Generation Computer Systems, 27(8):1027 –
1034, 2011.

[Gec06] Gecode Team. Gecode: Generic constraint development environment,
2006. Available from http://www.gecode.org.

[Gen98] Ian P. Gent. Heuristic solution of open bin packing problems. Journal

of Heuristics, 3(4):299–304, 1998.

[GHMP08] Albert Greenberg, James Hamilton, David A. Maltz, and Parveen Pa-
tel. The cost of a cloud: Research problems in data center networks.
SIGCOMM Comput. Commun. Rev., 39(1):68–73, December 2008.

[GHMP09] Albert G. Greenberg, James R. Hamilton, David A. Maltz, and Parveen
Patel. The cost of a cloud: research problems in data center networks.
Computer Communication Review, 39(1):68–73, 2009.

[GHZ13] C. Ghribi, M. Hadji, and D. Zeghlache. Energy efficient VM scheduling
for cloud data centers: Exact allocation and migration algorithms. In
2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and

Grid Computing, pages 671–678, May 2013.

Combinatorial Optimisation for Sustainable
Cloud Computing

160 Milan De Cauwer

REFERENCES

[GP10] Stéphane Grandcolas and Cédric Pinto. A sat encoding for multi-
dimensional packing problems. In Lodi et al. [LMT10], pages 141–146.

[GW95] Gábor Galambos and Gerhard J. Woeginger. On-line bin packing — a
restricted survey. Zeitschrift für Operations Research, 42(1):25–45, Feb
1995.

[GW97] Ian P. Gent and Toby Walsh. From approximate to optimal solutions:
constructing pruning and propagation rules. In International joint con-

ference on Artifical intelligence, pages 1396–1401, 1997.

[HDL11] Fabien Hermenier, Sophie Demassey, and Xavier Lorca. Bin repacking
scheduling in virtualized datacenters. In Jimmy Ho-Man Lee, editor,
CP, volume 6876 of Lecture Notes in Computer Science, pages 27–41.
Springer, 2011.

[HI15] Ranjani C. Hemanandhini I.G. A survey on VM consolidation for en-
ergy efficient green cloud computing. International Journal of Emerging

Technology in Computer Science and Electronics., 19, December 2015.

[HLLz05] Zheng Hua, Xie Li, and Zhang Li-zi. Electricity price forecasting based
on garch model in deregulated market. In Power Engineering Confer-

ence, 2005. IPEC 2005. The 7th International, pages 1–410, 2005.

[HLW11] Yufan Ho, Pangfeng Liu, and Jan-Jan Wu. Server consolidation al-
gorithms with bounded migration cost and performance guarantees in
cloud computing. In UCC, pages 154–161. IEEE Computer Society,
2011.

[HOO10] Emmanuel Hebrard, Eoin O’Mahony, and Barry O’Sullivan. Constraint
programming and combinatorial optimisation in numberjack. In Pro-

ceedings of the 7th International Conference on Integration of AI and

OR Techniques in Constraint Programming for Combinatorial Opti-

mization Problems, CPAIOR’10, pages 181–185, Berlin, Heidelberg,
2010. Springer-Verlag.

[HPS01] H. S. Hippert, C. E. Pedreira, and R. C. Souza. Neural networks for
short-term load forecasting: A review and evaluation. Power Systems,

IEEE Transactions on, 16(1):44–55, 2001.

[HTF09] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statisti-

cal Learning: Data Mining, Inference, and Prediction. Second Edition.
Springer, 2009.

Combinatorial Optimisation for Sustainable
Cloud Computing

161 Milan De Cauwer

REFERENCES

[ICM+16] Jesus Omana Iglesias, Milan De Cauwer, Deepak Mehta, Barry
O’Sullivan, and Liam Murphy. Increasing task consolidation efficiency
by using more accurate resource estimations. Future Generation Comp.

Syst., 56:407–420, 2016.

[IL09] Zoran Ivkovic and Errol L. Lloyd. Fully dynamic bin packing. In S.S.
Ravi and Sandeep K. Shukla, editors, Fundamental Problems in Com-

puting, pages 407–434. Springer Netherlands, 2009.

[IMC+14] Jesus Omana Iglesias, Liam Murphy, Milan De Cauwer, Deepak Mehta,
and Barry O’Sullivan. A methodology for online consolidation of tasks
through more accurate resource estimations. In Proceedings of the 7th

IEEE/ACM International Conference on Utility and Cloud Computing,

UCC 2014, London, United Kingdom, December 8-11, 2014, pages 89–
98, 2014.

[IOS12a] Georgiana Ifrim, Barry O’Sullivan, and Helmut Simonis. Properties of
energy-price forecasts for scheduling. In CP, pages 957–972, 2012.

[IOS12b] Georgiana Ifrim, Barry O’Sullivan, and Helmut Simonis. Properties of
energy-price forecasts for scheduling. In Principles and Practice of Con-

straint Programming - 18th International Conference, CP 2012, Québec

City, QC, Canada, October 8-12, 2012. Proceedings, pages 957–972,
2012.

[JB09] Hai Jiang and Cynthia Barnhart. Dynamic airline scheduling. Trans-

portation Science, 43(3):336–354, 2009.

[JK13] Klaus Jansen and Kim-Manuel Klein. A robust afptas for online bin
packing with polynomial migration,. In Proceedings of the 40th Interna-

tional Conference on Automata, Languages, and Programming - Volume

Part I, ICALP’13, pages 589–600, Berlin, Heidelberg, 2013. Springer-
Verlag.

[JW12] Patrick Jaillet and Michael R. Wagner. Online Optimization. Springer
Publishing Company, Incorporated, 2012.

[JWHT13] G. James, D. Witten, T. Hastie, and R. Tibshirani. An Introduction to

Statistical Learning with Application in R. Springer, 2013.

[KBSW11] Jonathan G. Koomey, Stephen Berard, Marla Sanchez, and Henry Wong.
Implications of historical trends in the electrical efficiency of computing.
IEEE Annals of the History of Computing, 33(3):46–54, 2011.

Combinatorial Optimisation for Sustainable
Cloud Computing

162 Milan De Cauwer

REFERENCES

[Koo08] Jonathan G Koomey. Worldwide electricity used in data centers. Envi-

ronmental Research Letters, 3(3):034008 (8pp), 2008.

[Kor02] Richard E. Korf. A new algorithm for optimal bin packing. In Proceed-

ings of the Eighteenth National Conference on Artificial Intelligence and

Fourteenth Conference on Innovative Applications of Artificial Intelli-

gence, July 28 - August 1, 2002, Edmonton, Alberta, Canada., pages
731–736, 2002.

[Kor03] Richard E. Korf. An improved algorithm for optimal bin packing. In
Proceedings of the 18th international joint conference on Artificial in-

telligence, pages 1252–1258, 2003.

[Lar84] Harold Larnder. Or forum—the origin of operational research. Opera-

tions Research, 32(2):465–476, 1984.

[LC12] Zitao Liu and Sangyeun Cho. Characterizing machines and workloads
on a Google cluster. In 8th International Workshop on Scheduling and

Resource Management for Parallel and Distributed Systems (SRMPDS),
Pittsburgh, PA, USA, September 2012.

[LCW11] Chinyao Low, Yahsueh Chen, and Mingchang Wu. Understanding the
determinants of cloud computing adoption. Industrial Management and

Data Systems, 111(7):1006–1023, 2011.

[LL85] C. C. Lee and D. T. Lee. A simple on-line bin-packing algorithm. J.

ACM, 32(3):562–572, July 1985.

[LL99] Steven H. Low and David E. Lapsley. Optimization flow control, i: Basic
algorithm and convergence. IEEE/ACM Transactions on networking,
7(6):861–874, 1999.

[LLM03] Martine Labbé, Gilbert Laporte, and Silvano Martello. Upper bounds
and algorithms for the maximum cardinality bin packing problem. Eu-

ropean Journal of Operational Research, 149(3):490 – 498, 2003.

[LLRL12] Jie Li, Zuyi Li, Kui Ren, and Xue Liu. Towards optimal electric de-
mand management for internet data centers. IEEE Trans. Smart Grid,
3(1):183–192, 2012.

[LMT10] Andrea Lodi, Michela Milano, and Paolo Toth, editors. Integration of

AI and OR Techniques in Constraint Programming for Combinatorial

Optimization Problems, 7th International Conference, CPAIOR 2010,

Combinatorial Optimisation for Sustainable
Cloud Computing

163 Milan De Cauwer

REFERENCES

Bologna, Italy, June 14-18, 2010. Proceedings, volume 6140 of Lecture

Notes in Computer Science. Springer, 2010.

[LTC14a] Yusen Li, Xueyan Tang, and Wentong Cai. Let’s depart together: Effi-
cient play request dispatching in cloud gaming. In 13th Annual Work-

shop on Network and Systems Support for Games, NetGames 2014,

Nagoya, Japan, December 4-5, 2014, pages 1–6, 2014.

[LTC14b] Yusen Li, Xueyan Tang, and Wentong Cai. On dynamic bin packing for
resource allocation in the cloud. In 26th ACM Symposium on Parallelism

in Algorithms and Architectures, SPAA ’14, Prague, Czech Republic -

June 23 - 25, 2014, pages 2–11, 2014.

[LYQ06] M. Li, B. Yu, and M.i Qi. Pgga: A predictable and grouped genetic
algorithm for job scheduling. Future Generation Computer Systems,
22(5):588 – 599, 2006.

[Mar] Marco R. Steenberger. Maximum likelihood programming in R.

[MBS+11] Eric R. Masanet, Richard E. Brown, Arman Shehabi, Jonathan G.
Koomey, and Bruce Nordman. Estimating the energy use and efficiency
potential of U.S. data centers. Proceedings of the IEEE, 99(8):1440–
1453, 2011.

[MHL+13] Aniruddha Marathe, Rachel Harris, David K. Lowenthal, Bronis R.
de Supinski, Barry Rountree, Martin Schulz, and Xin Yuan. A com-
parative study of high-performance computing on the cloud. In Pro-

ceedings of the 22Nd International Symposium on High-performance

Parallel and Distributed Computing, HPDC ’13, pages 239–250, New
York, NY, USA, 2013. ACM.

[MLDMD11] Jean-Baptiste Denis Marie Laure Delignette-Muller, Regis Pouillot and
Christophe Dutang. Use of the package fitdistrplus to specify a distribu-

tion from non-censored or censored data, April 2011.

[MMS90] Mark S. Manasse, Lyle A. McGeoch, and Daniel Dominic Sleator. Com-
petitive algorithms for server problems. J. Algorithms, 11(2):208–230,
1990.

[MT90a] S. Martello and P. Toth. Lower bounds and reduction procedures for the
bin packing problem. Discrete Appl. Math., 28:59–70, 1990.

Combinatorial Optimisation for Sustainable
Cloud Computing

164 Milan De Cauwer

REFERENCES

[MT90b] Silvano Martello and Paolo Toth. Knapsack Problems: Algorithms and

Computer Implementations. John Wiley & Sons, Inc., 1990.

[NSB+07a] Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand,
Gregory J. Duck, and Guido Tack. Minizinc: Towards a standard CP
modelling language. In Christian Bessiere, editor, CP, volume 4741 of
Lecture Notes in Computer Science, pages 529–543. Springer, 2007.

[NSB+07b] Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand,
Gregory J. Duck, and Guido Tack. Minizinc: Towards a standard CP
modelling language. In Proceedings of the 13th International Confer-

ence on Principles and Practice of Constraint Programming, CP’07,
pages 529–543, Berlin, Heidelberg, 2007. Springer-Verlag.

[NW13] Alexandra M. Newman and Martin Weiss. A survey of linear and mixed-
integer optimization tutorials. INFORMS Trans. Education, 14(1):26–
38, 2013.

[Par66] D. F. Parkhill. The challenge of the computer utility. Addison-Wesley
Professional, USA, 1966.

[PB13] Fabio López Pires and Benjamín Barán. Multi-objective virtual machine
placement with service level agreement: A memetic algorithm approach.
In Proceedings of the 2013 IEEE/ACM 6th International Conference on

Utility and Cloud Computing, UCC ’13, pages 203–210, Washington,
DC, USA, 2013. IEEE Computer Society.

[PCG+10] Nicolas Poggi, David Carrera, Ricard Gavalda, Jordi Torres, and Eduard
Ayguade. Characterization of workload and resource consumption for
an online travel and booking site. In Proceedings of the IEEE Inter-

national Symposium on Workload Characterization (IISWC’10), IISWC
’10, pages 1–10, Washington, DC, USA, 2010. IEEE Computer Society.

[PGGM13] Victor Pillac, Michel Gendreau, Christelle Guéret, and Andrés L.
Medaglia. A review of dynamic vehicle routing problems. European

Journal of Operational Research, 225(1):1 – 11, 2013.

[PY10] Jing Tai Piao and Jun Yan. A network-aware virtual machine placement
and migration approach in cloud computing. In Proceedings of the 2010

Ninth International Conference on Grid and Cloud Computing, GCC
’10, pages 87–92, Washington, DC, USA, 2010. IEEE Computer Soci-
ety.

Combinatorial Optimisation for Sustainable
Cloud Computing

165 Milan De Cauwer

REFERENCES

[QBM+09] R. Qu, E. K. Burke, B. Mccollum, L. T. Merlot, and S. Y. Lee. A survey
of search methodologies and automated system development for exami-
nation timetabling. J. of Scheduling, 12(1):55–89, February 2009.

[QLM12] Haiyang Qian, Fu Li, and Deep Medhi. On energy-aware aggregation of
dynamic temporal demand in cloud computing. In COMSNETS, pages
1–6, 2012.

[QWB+09] Asfandyar Qureshi, Rick Weber, Hari Balakrishnan, John V. Guttag, and
Bruce V. Maggs. Cutting the electric bill for internet-scale systems. In
SIGCOMM, pages 123–134, 2009.

[RB] Rashid Mohammed Roken and Masood A. Badri. Time series models
for forecasting monthly electricity peak-load for Dubai.

[RBW06] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Con-

straint Programming. Foundations of Artificial Intelligence. Elsevier,
New York, NY, USA, 2006.

[Ric05] Vitto Rici. Fitting distribution with R, 2005.

[RKS+08] N. Roy, J. S. Kinnebrew, N. Shankaran, G. Biswas, and D. C. Schmidt.
Toward effective multi-capacity resource allocation in distributed real-
time and embedded systems. In 2008 11th IEEE International Sympo-

sium on Object and Component-Oriented Real-Time Distributed Com-

puting (ISORC), pages 124–128, May 2008.

[RLXL10] Lei Rao, Xue Liu, Le Xie, and Wenyu Liu. Minimizing electricity cost:
Optimization of distributed internet data centers in a multi-electricity-
market environment. In INFOCOM, pages 1145–1153, 2010.

[RR11] Jean-Charles Régin and Mohamed Rezgui. Discussion about constraint
programming bin packing models. In Proceedings of the AIDC Work-

shop, 2011.

[RTG+12] Charles Reiss, Alexey Tumanov, Gregory R. Ganger, Randy H. Katz,
and Michael A. Kozuch. Heterogeneity and dynamicity of clouds at
scale: Google trace analysis. In ACM Symposium on Cloud Computing

(SoCC), San Jose, CA, USA, 2012.

[RWH11] Charles Reiss, John Wilkes, and Joseph L. Hellerstein. Google cluster-
usage traces: format + schema. Technical report, Google Inc., Mountain
View, CA, USA, 2011.

Combinatorial Optimisation for Sustainable
Cloud Computing

166 Milan De Cauwer

REFERENCES

[RWH12] Charles Reiss, John Wilkes, and Joseph L. Hellerstein. Obfuscatory ob-
scanturism: making workload traces of commercially-sensitive systems
safe to release. In 3rd International Workshop on Cloud Management

(CLOUDMAN), pages 1279–1286, Maui, HI, USA, April 2012. IEEE.

[Sah04] Nikolaos V. Sahinidis. Optimization under uncertainty: state-of-the-art
and opportunities. Computers And Chemical Engineering, 28(6):971 –
983, 2004. FOCAPO 2003 Special issue.

[SBK+16] Damián Serrano, Sara Bouchenak, Yousri Kouki, Frederico Alvares
de Oliveira Jr., Thomas Ledoux, Jonathan Lejeune, Julien Sopena, Lu-
ciana Arantes, and Pierre Sens. SLA guarantees for cloud services. Fu-

ture Gener. Comput. Syst., 54(C):233–246, January 2016.

[SC11] Andrea Sansottera and Paolo Cremonesi. Cooling-aware workload
placement with performance constraints. Perform. Eval., 68(11):1232–
1246, 2011.

[Sch09] P. Schaus. Solving Balancing and Bin-Packing Problems with Constraint

Programming. PhD thesis, Université Catholique de Louvain-la-Neuve,
2009.

[Sha04] Paul Shaw. A constraint for bin packing. In Wallace [Wal04], pages
648–662.

[SKJ97] Armin Scholl, Robert Klein, and Christian Jürgens. Bison: A fast hybrid
procedure for exactly solving the one-dimensional bin packing problem.
Computers & Operations Research, 24(7):627–645, 1997.

[SLX10] Yunfei Shang, Dan Li, and Mingwei Xu. Energy-aware routing in data
center network. In Green Networking, pages 1–8, 2010.

[SMT09] C. Strobl, J. Malley, and G. Tutz. An introduction to recursive parti-
tioning: Rational, application, and characteristics of classification and
regression trees, bagging, and random forests. In Psychological Meth-

ods, 14:4, pages 323–348, 2009.

[SO08] Helmut Simonis and Barry O’Sullivan. Search strategies for rectangle
packing. In Peter J. Stuckey, editor, CP, volume 5202 of Lecture Notes

in Computer Science, pages 52–66. Springer, 2008.

Combinatorial Optimisation for Sustainable
Cloud Computing

167 Milan De Cauwer

REFERENCES

[SO11] Helmut Simonis and Barry O’Sullivan. Almost square packing. In To-
bias Achterberg and J. Christopher Beck, editors, CPAIOR, volume 6697
of Lecture Notes in Computer Science, pages 196–209. Springer, 2011.

[Spa03] James C. Spall. Introduction to Stochastic Search and Optimization.
John Wiley & Sons, Inc., New York, NY, USA, 1 edition, 2003.

[SS10] Jörg Strebel and Alexander Stage. An economic decision model for busi-
ness software application deployment on hybrid cloud environments.
In Multikonferenz Wirtschaftsinformatik, MKWI 2010, Göttingen, 23.-

25.2.2010, Proceedings, pages 195–206, 2010.

[STL10] Christian Schulte, Guido Tack, and Mikael Z. Lagerkvist. Modeling and
programming with gecode, 2010.

[STL12] C. Schulte, G. Tack, and M. Z. Lagerkvist. Modeling and Programming
with Gecode, 2012. http://www.gecode.org/doc-latest/

MPG.pdf.

[SW97] P. Schwerin and G. Wäscher. The bin-packing problem: A problem gen-
erator and some numerical experiments with ffd packing and mtp. Inter-

national Transactions in Operational Research, 4(5-6):377–389, 1997.

[SW98] P. Schwerin and G. Wäscher. A New Lower Bound for the Bin-Packing

Problem and its Integration Into MTP. Martin-Luther-Univ., 1998.

[SY08] Yongqiang Shi and Deshi Ye. Online bin packing with arbitrary release
times. Theoretical Computer Science, 390(1):110 – 119, 2008.

[The] The R project for statistical computing. Version 1.47.0.
http://www.r-project.org/.

[Tim02] Christian Timpe. Solving planning and scheduling problems with com-
bined integer and constraint programming. OR Spectrum, 24(4):431–
448, Nov 2002.

[TZWX10] Zhongfu Tan, Jinliang Zhang, Jianhui Wang, and Jun Xu. Day-ahead
electricity price forecasting using wavelet transform combined with
arima and garch models. Applied Energy, 87(11):3606–3610, 2010.

[VdBVB11] R. Van den Bossche, K. Vanmechelen, and J. Broeckhove. An evalu-
ation of the benefits of fine-grained value-based scheduling on general
purpose clusters. Future Generation Computer Systems, 27(1):1 – 9,
2011.

Combinatorial Optimisation for Sustainable
Cloud Computing

168 Milan De Cauwer

http://www.gecode.org/doc-latest/MPG.pdf
http://www.gecode.org/doc-latest/MPG.pdf

REFERENCES

[VGC+13] Susan V. Vrbsky, M. Galloway, R. Carr, R. Nori, and D. Grubic. De-
creasing power consumption with energy efficient data aware strategies.
Future Generation Computer Systems, 29(5):1152 – 1163, 2013. Special
section: Hybrid Cloud Computing.

[Vid04] Alfio Vidotto. Online constraint solving and rectangle packing. In Wal-
lace [Wal04], page 807.

[Wal04] Mark Wallace, editor. Principles and Practice of Constraint Program-

ming - CP 2004, 10th International Conference, CP 2004, Toronto,

Canada, September 27 - October 1, 2004, Proceedings, volume 3258
of Lecture Notes in Computer Science. Springer, 2004.

[Wei51] Walodi Weibull. A statistical distribution function of wide applicability.
Journal of Appl. Mech.-Transactions, 18(3):293–297, 1951.

[Wei14] Sanford Weisberg. Applied linear regression. John Wiley & Sons, 2014.

[Wes] Wessa, P. (2011), Free Statistics Software, Office for Research Develop-
ment and Education, version 1.1.23-r7. http://www.wessa.net/.

[WG96] G. Wäscher and T. Gau. Heuristics for the integer one-dimensional cut-
ting stock problem: A computational study. OR Spectrum, 18(3):131–
144, 1996.

[WG04] Wayne L Winston and Jeffrey B Goldberg. Operations research: ap-

plications and algorithms, volume 3. Thomson/Brooks/Cole Belmonte
Calif Calif, 2004.

[WGM+17] Mohamed Wahbi, Diarmuid Grimes, Deepak Mehta, Kenneth N. Brown,
and Barry O’Sullivan. A distributed optimization method for the geo-
graphically distributed data centres problem. In Domenico Salvagnin
and Michele Lombardi, editors, Integration of AI and OR Techniques

in Constraint Programming - 14th International Conference, CPAIOR

2017, Padua, Italy, June 5-8, 2017, Proceedings, volume 10335 of Lec-

ture Notes in Computer Science, pages 147–166. Springer, 2017.

[WTAPB15] Andreas Wolke, Boldbaatar Tsend-Ayush, Carl Pfeiffer, and Martin
Bichler. More than bin packing: Dynamic resource allocation strategies
in cloud data centers. Information Systems, 52:83 – 95, 2015. Special
Issue on Selected Papers from {SISAP} 2013.

Combinatorial Optimisation for Sustainable
Cloud Computing

169 Milan De Cauwer

REFERENCES

[WTTL12] Grant Wu, Maolin Tang, Yu-Chu Tian, and Wei Li. Energy-Efficient Vir-

tual Machine Placement in Data Centers by Genetic Algorithm, pages
315–32. Springer Berlin Heidelberg, Berlin, Heidel berg, 2012.

[WW11] Annegret K. Wagler and Robert Weismantel. The Combinatorics of

Modeling and Analyzing Biological Systems, volume 10. Kluwer Aca-
demic Publishers, Hingham, MA, USA, June 2011.

[XF10] Jing Xu and Jose A. B. Fortes. Multi-objective virtual machine place-
ment in virtualized data center environments. In Proceedings of the

2010 IEEE/ACM Int’L Conference on Green Computing and Communi-

cations & Int’L Conference on Cyber, Physical and Social Computing,
GREENCOM-CPSCOM ’10, pages 179–188, Washington, DC, USA,
2010. IEEE Computer Society.

[YSL04] H.Y. Yamin, S.M. Shahidehpour, and Z. Li. Adaptive short-term electric-
ity price forecasting using artificial neural networks in the restructured
power markets. International Journal of Electrical Power & Energy

Systems, 26(8):571–581, 2004.

[ZCB10] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud computing: state-of-
the-art and research challenges. J. Internet Services and Applications,
1(1):7–18, 2010.

Combinatorial Optimisation for Sustainable
Cloud Computing

170 Milan De Cauwer

	List of Figures
	List of Tables
	Abstract
	Declaration
	Acknowledgements
	Introduction
	Context
	Cloud Computing, Data Centres and Workload Management Systems.
	Key Challenges
	Thesis Statement and Contributions
	Structure of the Dissertation

	Background, Related Work and Datasets
	Overview
	Constraint Optimisation Problems
	Definitions
	Optimal and Sub-optimal Solutions
	Online, Semi-online and Offline Optimisation
	Modeling and Solving Constraint Optimisation Problems
	Front-end Modeling Tools
	Back-end Solvers

	Optimisation Problems in Cloud Computing Systems
	Cost Models for Data Centres
	Managing Workloads in Data Centres
	Workload Consolidation and Virtualisation Technologies
	Workload Consolidation as a Packing Problem
	Extracting Evaluation Datasets
	Data Extraction
	Characterising the Workload

	Workload Management in Geographically Distributed Clouds
	Models for Electricity Prices and Price Prediction Errors
	Minimizing Data Centre Electricity Cost
	Analysis

	Conclusion

	A Generalisation of Bin Packing as a Core Consolidation Problem
	The Temporal bin packing Problem
	Packing Versus Temporal Models
	Packing Model (pa)
	Temporal Model (tp)

	Breaking Symmetry
	Breaking Symmetry on the pa model.
	Breaking Symmetry on the tp model.

	Lower and Upper Bounds
	Empirical Analysis
	Experimental setup
	Instances
	Analysis

	Conclusion and Limitations

	Semi-online Consolidation with Uncertain Task Duration
	Semi-Online Resource Wastage Minimisation
	The Semi-Online Framework
	The Monitor Module
	The Solver Module
	Illustrating the Consolidation of Machine Run Times

	Packing Heuristics
	A novel placement policy: First Merged Fit (FMF)
	Illustration
	The First Merged Fit Algorithm

	Local Search
	Empirical Analysis
	Overall Allocated Resources
	Resource Allocation During Peak Activity Periods
	Resource Allocation under Varying Time Step Duration
	Resource Allocation under Uncertain Task Duration
	Real-time Placement of Incoming Tasks
	Comparing Policies

	Conclusion and Limitations

	Online Consolidation with Uncertain Task Sizes
	Methodology
	Prediction Module
	Input
	Output

	Scheduling Module
	Mathematical Model
	Policies for Online Scheduling

	Monitoring Module
	Experiments
	Experimental Setup and Error Metrics
	Predicting CPU and RAM Maximum Utilisation
	Evaluating the Scheduling Policies
	Polices for Known Peak Resource Requirements
	Policy-Predictor Interactions
	Eviction policies

	Conclusion and Limitations

	Proactive Consolidation with VM Migrations
	The Proactive Workload Consolidation Problem
	An Integer Linear Model for the PWCP
	Empirical Analysis
	Conclusion and Limitations

	On Bin Packing Instances
	The Weibull Distribution
	Fitting Weibull Distributions to Real-world Instances
	An Example Problem in Data Centre Management
	Verifying the Goodness-of-Fit

	Systematic Search for Bin Packing
	Bin Packing Instances and Solver
	Small Weibull Shape Parameter Values
	Full Range of Shape Parameters

	Bin Packing Heuristics
	Conclusion and Limitations

	Conclusions and Further Work
	Conclusion
	Future Work
	Workload Consolidation as a Component to Complex Cloud Systems
	Competitive Analysis
	Understanding Prediction/Optimisation Interactions

