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Graphical abstract 

 

 

 

Research Highlights: 

 

 Silver coated transparent flexible polymer substrates (templated with Aluminium soda cans) for 

use in surface enhanced Raman scattering (SERS) applications.  

 

 The sensors perform very well, exhibiting rapid, quantitative and high sensitivity in 10 minutes 

using a simple drop and dry method. 

 

 SERS response is also observed via back excitation (the laser impinging on the back of the 

substrate) with the corresponding spectra exhibiting clear and defined spectral Raman peaks.  

 

 The sensors exhibit sensitive, non-destructive detection of trace amounts of melamine in both 

milk and infant formula. We show comparable sensitivity between the low-cost SERS substrates 

and lab based MS-MS. 

 

Abstract 

This paper demonstrates the reproducible fabrication of transparent Surface Enhanced Raman Scattering (SERS) substrates, 

fabricated by employing an aluminium soda can to template nanostructures on a flexible thermoplastic polymer surface, 
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followed by deposition of a silver over layer. Electron microscopy and finite element modelling simulations strongly 

suggested the SERS response arose at regions of high electromagnetic field strength occurring between metallic clusters 

following illumination by monochromatic radiation. The sensors exhibited rapid, quantitative and high sensitivity, for 

example, 5 x 10-10 M (204 pg/mL) crystal violet detection in 10 minutes using a simple drop and dry method.  We also show 

detection of glucose employing a chemically modified silver surface bearing a pre-deposited SAM layer. The transparent 

substrates permitted back excitation and collection through the substrate which corresponding spectra exhibiting clear and 

defined spectral SERS peaks.  Furthermore, the transparent substrates permitted back excitation and collection through the 

substrate with corresponding spectra exhibiting clear and defined spectral SERS peaks.   Finally, we present the detection of 

trace amounts of melamine in complex media solution (milk and infant formula). We benchmark the sensor performance 

using commercial analytical instrumentation (MS-MS) and show comparable sensitivity between the SERS substrates and 

MS-MS. 

 

Keywords: Nanostructures, surface enhanced Raman scattering, melamine, mass spectroscopy, metal deposition, 

templating. 

 

1. Introduction 

In recent years, advances in nanotechnology and nanofabrication techniques have enabled significant enhancement in a 

variety of analytical sensor devices.  These devices, employing electronic [1-3], electrochemical and optical [4-6] detection 

methods, have provided highly qualitative and sensitive measurements. However, within the environmental and security 

sectors, highly sensitive sensing alone is not enough; rapid on-site molecular identification is also essential.  One analytical 

approach that addresses these criteria is surface enhanced Raman spectroscopy (SERS) [7, 8] which provides both a spectral 

molecular fingerprint and allows for trace analyte detection; with the potential for single molecule sensitivity. [9-14] SERS is 

thus emerging as a powerful technique for remote chemical [15] and biological sensing applications[16].  

SERS enhancement occurs at nanostructured plasmonic surfaces following illumination with monochromatic radiation and 

results from (i) an increase in local electromagnetic field strengths of localised surface plasmons (in nanogaps between metal 

clusters called “hot spots”) and (ii) chemical resonant energy charge transfer[17-20]. For these processes to occur, substrates 

must be capable of supporting plasmonic modes (collective oscillations of metal electrons) and have a nanostructured rough 

surface with well-defined gaps in the region of 10- 100 nm between metallic clusters (to conserve momentum).  To this end, 

fabrication of SERS substrates using top-down approaches including: lithography techniques (Ebeam[21, 22] and 

nanoimprint[23] lithography’s), laser etching[24], film deposition (sputtering, metal evaporation, atomic layer 

deposition)[25, 26] and templating (using anodic aluminium oxide [27], masks[25] or molds[28]) as well as bottom-up 

approaches including chemical synthesis[29], colloid aggregation[30] and self-assembly[31, 32] of metal nanoparticles[33, 

34], nanowires[2, 28] , nanospheres[33, 35, 36], nanorods[37-39], nanotubes[27], nanotriangles[40], nano-urchins[41] and/or 

nanoshells[42] have been reported. 

 While these approaches are elegant and are attractive in research environments for their large SERS enhancement; they are 

limited in that they may be expensive, time consuming, and require complex fabrication approaches which may have low 

throughput.  Consequently, a critical challenge inhibiting the uptake of SERS for sensor applications is the lack of scalable, 

reproducible and fabrication approaches compatible with mass manufacturing.  To address this challenge, we have developed 

a templating approach employing “inherent” nanostructured aluminium (Al) masters (obtained from commercial soda drink 

cans) to template low-cost polymer replicates which are subsequently coated with a thin (30 nm) silver (Ag) layer.  These 
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transparent polymer substrates offer a number of advantages: (i) the simple manufacturing approach is scalable offering the 

potential for low-cost fabrication and thus widespread uptake and applicability. (ii) The fine metallic nanostructures provide 

SERS hot spots upon optical excitation. (iii)  The substrates are transparent and thus are compatible with back excitation and 

collection allowing measurement in liquid environments to be undertaken.  ((iv) the flexible substrates may be easily 

integrated in-line or on-line adding to the suite of spectroscopic process analytical techniques used in smart manufacturing 

4.0 approaches.  (v) Finally, the sensor may be chemically modified to widen the range of molecules that may be detected. 

To explore the versatility of our as-fabricated SERS substrates towards real world applications, e.g., environmental 

monitoring and food security, a variety of different target molecules were selected and analysed.  Initially, 4-

aminothiophenol (4-ABT) and crystal violet (CV)[43]  were selected to characterise SERS effect and allow comparison with 

the published literature.  We show highly sensitive detection of crystal violet with a measured limit of detection of 204 ng/L 

(204 parts per trillion, equivalent to 5 x 10-10 M).  Malachite green was also selected as this and other trimethyldiamine dyes 

are used indiscriminately as antimicrobials in aquaculture, despite the reports of causing serious toxic, carcinogenic and 

mutagenic effects in mammalian cells.[44, 45]  Consequently, the presence of trimethyldiamines are now tightly controlled 

with (MRL) set at 2 µg/L (2 ppb) in water[46].  Glucose was analysed by first capturing the molecule on a substrate pre-

modified with a mixed thiol monolayer in a manner similar to that reported by the Van Duyne group [47].  Finally, melamine 

was selected as it now requires regular monitoring due to its previous use to give a false appearance of high protein levels in 

milk. [48]  Melamine MRLs are now set at 2.5 ppm for food products (including milk) and 1 ppm in infant formulae.[49] We 

demonstrate detection of low concentrations of melamine (100 ppb) spiked into both milk and infant formula solutions 

(without sample pretreatment), using a drop-and-dry sampling technique with a total analysis time of 10 minutes and  

benchmark these results using mass spectroscopy (MS-MS). 

 

2. Material and Methods 

 Material and Reagents 

Polystyrene (PS), 4-aminothiphenol (97%), polyvinylidene fluoride (PVDF), crystal violet (<90% dye content), malachite 

green, benzocaine, 1-decanethiol, mercaptohexanol, glucose and melamine and analytical grade solvents were purchased 

from Sigma-Aldrich (Dublin) and used as received. Polydimethylsiloxane 184 silicon elastomer and curing agent were 

purchased from Sylgard®. PTFE syringe filters (0.45 µm) were purchased from Lab Unlimited (Dublin).  Full-fat milk and 

Aptamil® Follow on Milk infant formula were purchased from a local supermarket. 4-aminothiophenol (4-ABT), 1-

decanethiol (DT) and mercaptohexanol (MH) were prepared by dissolving in ethanol. All standards of crystal violet (CV), 

melamine, and glucose were prepared as required, using deionized water (18.2 MΩ.cm ELGA Pure Lab Ultra systems) and a 

serial dilution method employed to prepare standards in the desired concentration ranges. HPLC primary stock solutions of 

melamine were prepared in deionized water at a concentration of 10 ppm.  Working standards were prepared in the range 0.1 

ppm – 5.0 ppm using deionized water.  For electrospray ionization mass spectrometry (ESI-MS) measurements, milk samples 

were diluted with deionized water (1:10) and passed through a 0.45 µm syringe filter to prevent blockage during infusion. 

Both melamine-spiked and unspiked milk samples were prepared in the same manner. All standard solutions were stored at 

room temperature 18 ºC. 
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 Fabrication of SERS Substrate 

To prepare the Al templates, the outer (printed side) of an Al soda can was sanded using fine (P120, ~125 µm particle size) 

and extra fine (P280, ~50 µm) grade sandpaper to remove the paint then cut into 1 cm2 pieces. This was then followed by a 

polish using The can pieces were then polished with 6 µm and 1 µm alumina slurry, until they appeared shiny, to smoothen 

the deformities caused by sanding the Al surface. Finally, the Al template preparation was finished with a chemical bath (5% 

NaOH, 2-3 minutes) which dissolved the top Al surface. This reduced inhomogeneous surface asperities and removed 

sanding debris. Pellets of PVDF and PS were placed on separate microscope slides and melted on a hotplate. The prepared Al 

masters, see Fig. S1, were then placed onto the melted droplets and pushed downward so the respective polymers wetted the 

Al.  The glass slides were removed from the hotplate and allowed cool whereon the polymers could be easily peeled from 

both the glass slides and Al templates, Fig 1(b), to yield a flexible transparent polymer bases, Fig 1(c). Concerning PDMS 

silicone elastomer, Sylgard 184 base and the curing agent were mixed in a 10:1 ratio and degassed under partial vacuum to 

remove bubbles. In a petri dish, the PDMS pre-polymer was poured over the Al master  and heat cured at 60°C for 1 hour. 

The Al pieces were again peeled from the flexible polymer to yield nanostructured PDMS surfaces.  To complete substrate 

fabrication, a thin Ag layer (30 nm) was then deposited onto the different polymer bases by thermal evaporation (Edwards 

Autocore 500, 3×10-7 bar, ~1.6 A). The thickness and the deposition rate were controlled in situ using a calibrated quartz 

microbalance.  Control substrates were also fabricated as above where the Al master template was replaced with glass slides, 

yielding a smooth unpatterned surface.   

 

 Characterisation of SERS substrates 

Scanning electron microscopy analysis was undertaken to characterize the substrate surface after the fabrication procedure. 

SEM images were acquired using a calibrated field emission SEM (JSM-7500F, JEOL UK Ltd.) operating at beam voltages 

between 3 and 5 kV. All Raman measurements were recorded using a Confocal Renishaw Raman Microscope equipped with 

a 514 nm Ar ion laser and analysed using Wire 3.0 computer software. The laser spot diameter was ~1 µm at the substrate 

surface and a laser power density of ~7×104 W/cm2 was used. SERS spectra were obtained by averaging 5 random 

accumulations, collected using a 50x magnification (0.75 NA) objective microscope, with a data acquisition time of 10 s, 

over an extended spectral range of 200 cm-1 to 3500 cm-1. The spectrometer was equipped with a computer controlled 

motorised XYZ stage employed to focus and adjust the positioning of the sample on the silver surface. Subtraction of the 

baseline was performed on all spectra to eliminate background noise from the underlying polymer and the recorded spectra 

were imported into Origin® 7.4 (OriginLab) to facilitate data analysis.  

 

 FEM Simulations 

The electromagnetic response of the nanostructure was simulated by the finite element method (FEM) with a commercial 

software package (COMSOL Multiphysics with Wave Optics and CAD Import Modules).  To construct a 3D image of the 

sample, the pixel value (pv) of the greyscale, 16 bit SEM micrograph was converted into height (h) with the following 

algorithm: if pv < 15000, h = 0 and if 15000 ≤ pv ≤ 65000, h = 30*(pv - 15000) /(50000). With this conversion, black areas 

with pixel values below 15000 corresponded to 0 nm and white areas with a pixel value of 65000 to 30 nm. This converted 

image was used as a parametric surface in COMSOL. The 3D geometry was then constructed by intersecting the parametric 

surface with blocks. This resulted in three domains, i.e. the Ag nanocluster with a PVDF substrate and an air superstrate. 

These domains were meshed with tetrahedral elements with a minimum size of 0.03 nm. A total volume of 100 x 100 x 150 
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nm3 was chosen to keep the computational demand manageable for a 3.50 GHz, quad core, 16 GB RAM PC.  The refractive 

index of air, PVDF and Ag were 1; 1.42 and 0.14 +2.91, respectively.[50] A 5 nm perfectly matched layer was considered on 

all sides of the structures, as well as above the air superstrate and below the PVDF substrate. A 514 nm plane wave Einc with 

a power of 1 W (corresponding to an electromagnetic field magnitude of 3×107 V/m) and a polarization along the Y axis was 

inputted and COMSOL solved for full field Etot. The enhancement factor G can be calculated as G= (Etot /Einc). 

 

 SERS Chemical analysis 

To explore the suitability of these substrates for highly sensitive measurements, a series of crystal violet standards ranging 

from 10-7 to 10-10 M were prepared in DI water and deposited via the drop/dry process on the substrates; depositing 50 µl of 

solution onto the substrate and allowing to air dry (10 minutes). All samples were thoroughly rinsed with DI water before 

Raman analysis to remove unadsorbed, clumped molecules that accumulated on the surface of the substrate during the drying 

process. 50 µL aliquots (10-6 M) of malachite green (in DI water), imidacloprid (in methanol and DI water), benzocaine (in 

DI water) and 4-ABT (in 97% ethanol) were also deposited and analysed in a similar manner.  

Glucose:  Glucose detection was undertaken using a similar method to Van Duyne et al.[47] DT/MH (1-decanethiol, 

mercaptohexanol) functionalisation of the Ag surface was first undertaken to yield a mixed thiol self-assembled monolayer 

(SAM). Substrates were incubated in 1 mM DT for 45 minutes followed by incubation in 1 mM MH for 24 hours. A Raman 

analysis was undertaken at this point to obtain the SAM spectra. The substrate is then immersed into 10 mM of aqueous 

glucose solution for 6 hours, air dried and Raman analysis was undertaken.  

Melamine: Working solutions of infant formula were first prepared using manufacturer instructions, then by diluting 1:10 

with D.I. water.  Working solutions of full-fat milk were similarly prepared using a 1:10 dilution step.  Melamine was 

dissolved by sonication using the appropriate working solutions to yield 10 ppm (w/v) stock solutions.   A further 1:10 

dilution was then undertaken to prepare 1 ppm standard solutions. No further sample preparation was undertaken.  A 

drop/dry method was again employed for these experiments; depositing 50 µl of solution onto a substrate and allowing to air 

dry (10 minutes). 

 

 Melamine Direct Infusion EIS-MS Analysis 

As prepared melamine and full-fat milk 10 ppm stock solutions were diluted with appropriate volumes of working solutions 

to yield 0.5, 1, 1.5, 2, 3, 4, & 5 ppm solutions. Both melamine-spiked and unspiked milk samples were diluted with deionized 

water (1:10 dilution) and passed through a 0.45 µm syringe filter to prevent blockage during ESI infusion. Individual 500 µL 

glass syringes (Hamilton – Bonaduz, Schweiz (Gastight ® # 1750)) were then filled with these melamine standards followed 

by infusion into the ESI source of an Agilent 6340 series ion trap mass spectrometer (flow rate of 10 µL min-1).  The 

instrument was calibrated following the manufacturer guidelines and using Agilent ESI Tuning Mix (G2431A 100 ml 

acetonitrile solution for Ion-trap MS). For MS, a positive ESI mode with nebulizer pressure at 15 psi was employed.  

Nitrogen was used as the drying gas under a flow of 5 L min-1 and a temperature of 325 °C.  Acquisition and analysis of data 

were performed with Agilent ChemStation LC and 6300 Series Trap Control (version 6.2).  Library building and spectral 

matching were conducted using DataAnalysis™ and LibraryEditor™ software (Bruker Daltonik GmbH).  ESI-MS conditions 

were initially optimized by directly infusing melamine standard (0.1 – 200 ppm) and varying the amplitude for both MS2 and 

MS3. The optimized conditions for the MS2 fragmentation of precursor ion [m/z 127] was determined to have an amplitude of 

0.5 and the optimized conditions for MS3 fragmentation was determined to be an amplitude of 0.4. 
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3. Results and Discussion 

 Substrate Fabrication 

 Briefly, a polished soda can (cf. methods section) was used to template a pre-polymer generating a nanostructured surface, 

illustrated schematically in Fig. 1 (a). After the templating process, the polymer was released from the glass support and the 

Al template easily peeled away to yield a flexible transparent polymer base, Fig. 1 (b-c). Ag was then thermally deposited 

(30 nm) onto nanopatterned polymer substrates to complete substrate fabrication, Fig. 1 (d).  SEM analysis was undertaken 

following substrate preparation.  PVDF substrates that were fabricated with Al templates that had only been sanded, i.e. no 

polishing, displayed micron-sized defects and scratches across the substrate surface. However, the addition of polishing steps 

(alumina slurry followed by a NaOH wash) greatly eliminated these defects and the substrates exhibited a nanostructured and 

relatively defect free surface. Fabrication included removing the Al can’s print using rough sandpaper. As expected, this 

process yielded micron-sized scratches across the Al surface. Subsequently, Raman enhancement was negligible from these 

substrates, as a result of the large surface roughness. The introduction of polishing steps (alumina slurry followed by a NaOH 

wash) smoothened the surface and greatly reduced the sanding scratches, producing polymer substrates that yielded a 

considerable SERS effect. Fig. 1 (d) shows a typical SEM micrograph of a portion of a fully prepared PVDF substrate 

following Ag deposition. From SEM analysis the size distribution of the Ag nano-structures was estimated to be roughly 60 ± 

20 nm while the gaps between the clusters were estimated to be on the order of 10 ± 5 nm (inset Fig. 1 (d)) with the Ag 

nanostructures uniformly distributed over the entire PVDF surface. These well-defined structures, comprising such small 

separations between clusters, are expected to deliver a high yield of hot-spots, making them very attractive and suitable for 

SERS sensing.  Visual inspection of the fabricated SERS substrates displayed a uniform non-reflective finish, suggesting a 

roughened surface.  By contrast, un-templated “smooth” control substrates displayed a mirror finish following Ag deposition. 

 

 Structural Characterisation Substrate Characterisation 

Three different polymers PVDF, PS and PDMS were assessed for fabrication of the SERS substrate. PDMS was selected 

since it is a well-characterised material that is well known to replicate and template nanostructure surfaces.[51, 52] Similarly, 

PS has also been employed to template nanostructures[27] as it is known to form forming rigid homogenous surfaces, while 

PVDF was selected as it is a known piezoelectric polymer.[53]  SERS analysis was first undertaken on bare Ag substrates, 

Fig S2, i.e. no molecule deposition. This allows the examination the Raman active modes of the three selected polymers. As 

expected, all three polymers produced the same roughened Ag surface from the Al master, however the SERS responses were 

not equivalent. It was observed that the more SERS active the polymer was, the more it interfered with the SERS response of 

the deposited molecule. Then we employed both CV and 4-ABT to compare and evaluate the SERS properties of each 

polymer substrate, see Fig S3. These experiments demonstrated that PVDF produced the optimal SERS surface, providing 

the largest SERS enhancement for both molecules and the least background interference. We established that PDMS 

produced a high signal enhancement, similar to PVDF, but had poor adhesion to the deposited Ag (failed tape test). PS was 

rigid but fragile (shattered easily under stress) and produced a considerably weaker SERS response. We also explored direct 

deposition of Ag onto polished Al substrates directly. The results (see Fig. S2) show that the Al substrate appeared to quench 

the SERS enhancement of CV, resulting in a reduced SERS response.  We also explored using the Al master as the substrate, 

by depositing Ag directly onto the polished Al surface. Fig. S4 shows a comparison between a PVDF substrate and the Al 

substrate. There is a slight response from the nanostructured metal, however the spectrum has considerable changes when 
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compared to the polymer substrate. Weak signals are observed for the strongest vibrations modes at 1620, 1386 and 915 cm-1 

from the Al sample and a number of characteristic CV peaks are not detected. The non-plasmonic Al metal appears to quench 

the SERS enhancement of CV provided by electromagnetic effect, resulting in a reduced SERS response. 

Different Ag film thicknesses (10, 30 and 50 nm) on PVDF substrates were also explored.  SEM analysis of the 10 nm Ag 

substrates showed large separations between Ag clusters while the spectra obtained from different locations varied 

significantly and produced very little SERS enhancement (see Fig. S5 (a-b)).  SEM analysis of the 50 nm Ag substrates 

showed an almost continuous film with small numbers of separations visible and corresponding spectra exhibiting lower 

SERS enhancement compared to the 30 nm thick films, due to the lack of hot spots (see Fig. S5 (c-d)). Finally, 30 nm thick 

Ag films exhibited excellent SERS response, and were thus selected for use in this work and will be discussed in detail 

below.  

 

 Simulations 

Concerning the 30 nm thick Ag deposited films, Fig. 2 (a) shows a typical SEM image of a portion of a substrate.  The 

dimensions of the Ag clusters were roughly 60 ± 20 nm while the separations between the clusters were estimated to be 10 ± 

5 nm.  Finite element method simulations were undertaken to explore if these metal-dielectric-metal nanogap structures were 

sufficient to produce localised significant electric field enhancements and consequently act as hotspots when illuminated with 

incident light (514 nm).  A portion of a SEM image highlighted by the dashed box in Fig. 2 (a) was imported and rendered in 

Comsol Multiphysics™ see Fig. 2 (b).  Fig. 2 (c) shows the total electric field map 2 nm above the surface when the sample 

is illuminated with a light polarized along the y-axis. As can be seen, a very high electric field (E ~ 108 V/m) is concentrated 

on the edges of the Ag nanoclusters that are perpendicular to the axis of polarization of the incident light.  A cross section of 

the substrate, Fig. S6, shows that the field enhancement is not confined to the surface of the nanoclusters but rather extends to 

the whole gap. This is characteristic of coupling of the individual localised surface plasmon modes of the adjacent 

nanoclusters.  These simulations confirm that the substrates fabricated using the templates technique should be sufficient to 

create nanogaps that will, on illumination, create electromagnetic hot spots and that most of the SERS signal recorded from 

the sample will originate from molecules located in these nanogaps.  

 

 SERS Characterisation 

 To validate the simulation model and confirm that the origin of the observed SERS responses arose from the metal-

dielectric-metal nanogap structures, a number of control experiments were undertaken:  (i) smooth substrates were prepared 

by depositing 30 nm of Ag onto smooth PVDF films, i.e., no templated nanostructures and (ii) Ag-coated nanostructured 

PVDF samples in the absence of CV.  Spectra obtained following front “top excitation” are shown in Fig. 3 (a). No 

appreciable Raman signals were observed from the control experiments (black and green spectra, respectively).  By contrast, 

spectra recorded using Ag coated nanostructured PVDF substrates in the presence of CV (blue spectrum) show a significant 

SERS response.  Such results strongly support the simulation model suggesting that the nanogap structures between 

nanostructured Ag clusters created hotspots for efficient SERS enhancement to occur.  The exhibited spectral peaks at 914, 

1176, 1376 and 1618 cm-1 for CV were assigned (see, Table S1) and compared to those exhibited in bulk Raman spectra (see, 

Fig. S7) and were in accordance with previously reported values [12, 54].   

The intensity of the SERS enhancements of particular Raman modes depends on the formation of, and interaction between, 

the Ag surface and the adsorbed molecule. To calculate the enhancement factor (EF), CV vibrations at 1620, 1175 and 914 
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cm-1 from Fig. 3 (a) and Fig. S7 (bulk CV Raman spectrum) were analysed.  A detailed description of EF calculations is 

provided in the supporting information section.  Briefly, EF values were calculated using the equation: [55] 

 

𝑬𝑭 =
𝑰𝑺𝑬𝑹𝑺 / 𝑵𝑺𝑼𝑹𝑭

𝑰𝑵𝑹 / 𝑵𝑽𝑶𝑳
 

Where I is the intensity of a band in the SERS spectrum (ISERS) and the normal Raman spectrum (INR), and N is the average 

number of molecules, in the scattering volume, adsorbed on SERS substrate (NSURF) and in the CV powder (NVOL).  For the 

vibrational peak at ~1620 cm2 the intensities for SERS and Raman are 126,215 and 2,008 a.u. respectively, and the 

enhancement factor was calculated as 2.41×106. The vibrational bands at 1175 cm-1 and 913 cm-1 exhibited EFs of 1.62×106 

and 1.36×106 respectively. Such enhancements compare well with those reported in the literature [43, 56, 57].  However, CV 

exhibits a maximum absorption peak at 590 nm.[58] Theoretically, the 514 nm laser used in these experiments could increase 

the observed SERS enhancements, due to resonance effects at this wavelength, i.e., a chemical effect. To explore if this is the 

case, analysis was undertaken on the non-resonant molecule, 4-ABT, and the enhancement factor calculated was consistent to 

that shown here (cf: Supp info).  It was found that the EF values for the non-resonant 4-ABT molecule were similar to those 

of resonant CV.  Thus we consider the SERS enhancements observed with these substrates arise predominantly from an 

electromagnetic effect.   

 

 Back excitation 

 A key advantage of the Ag coated PVDF substrates is that they are optically transparent in the visible spectrum which 

enables back excitation (though substrate) SERS measurements to be undertaken.  Such a capability is important for many 

industrial in-line process analytical monitoring techniques (PAT) used in smart manufacturing 4.0 approaches.  Back 

excitation SERS measurements, i.e. illumination and collection through the back facet of the substrate were undertaken; see 

Fig. 3 (b). A typical SERS spectrum using back excitation from 10-6 M CV (red spectrum) is shown and exhibited 

characteristic spectral peaks at 914, 1176, 1376 and 1618 cm-1 as described previously. In the absence of CV (green 

spectrum), there is a weak signal contribution from the PVDF, but it does not cause any significant SERS interferences, as 

expected from the front excitation experiments in Fig. S3.  Fig. 3 (c) shows a direct comparison between the front and back 

excitation intensities for the peak at 1620 cm-1. Although there is a threefold decrease in the measured intensity (compared 

with front excitation), since these spectra were acquired through a thick PVDF base, (3 mm) we believe that if thinner 

substrates were employed (by optimizing the fabrication process further), reduced light scattering within the substrates would 

result in a larger measured SERS enhancements.  

 

To explore back excitation further, a 50 µL droplet of CV (10-6 M) was deposited onto a substrate and overlaid with a glass 

coverslip to form a fluid-type cell with a thickness of ~ 100 µm, see inset image of Fig. 4 (b). If the molecule was simply 

dropped on the surface and allowed dry, due to the surface hydrophobicity, there would be very little wetting and we would 

observe localised pre-concentration of the target analyte on the Ag surface [27, 59]. In this case, we spread the droplet across 

the Ag surface using the cover slip, i.e. undertaking the SERS measurements through the back of the polymer with liquid on 

the metal surface. We believe that as the liquid dries, the CV molecules can pre-concentrate in the remaining liquid also that 

slower the drying process allows the CV molecules to adsorb more evenly across the entire surface.  A number of SERS 

spectra were acquired (in the same position) through the polymer substrate over a 45-minute time frame.  Fig. 4 (a) shows a 

waterfall plot of CV spectra.  During these experiments, a SERS response was observed after 1 minute and, as expected, 
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higher SERS signal intensities were observed with increasing time and eventually saturated. Fig. 4 (b) illustrates a plot of 

peak area (913 cm-1 calculated using a Lorentzian function) vs. time; yielding a linear relation (R2 of 0.98). We suggest that 

the increase in signal arises from the pre-concentration adsorption of the CV molecules to the metal surface, as the droplet 

dries. These results strongly The ability of these substrates to undertake SERS in liquid samples supports the suggestion that 

these transparent polymer substrates could find use in future in-line measurement applications required in process analytical 

technologies.  This ability to undertake back excitation SERS could also open up other new remote sensing application areas 

if, for example, the substrates are integrated with optical emitters or at the end of optical fibers such enabling, e.g., in-vivo 

measurements or used for in-line measurement. 

 

 Quantitative analysis 

Concerning quantitative analysis, a series of CV standards ranging from 10-7 to 10-10 M were prepared. (cf: material and 

methods).  SERS spectra were obtained by measuring and averaging five different locations on a substrate for each 

concentration.  The averages of five spectra for each concentration are presented in Fig. 5 (a). As illustrated, all the 

characteristic CV peaks are well defined (even at such low concentrations 5 x 10-10).  The vibration peak at 915 cm-1 was 

selected for calibration measurements and the peak area (averaged for each standard) was determined using a Lorentz 

function in Origin® 7.4 (OriginLab) and plotted versus log of concentration to obtain a quantitative calibration curve, see 

Fig. 5 (b). Regression analysis was then undertaken and a correlation coefficient (R2) of 0.9794 was obtained with a 

measured limit of detection of 5 x 10-10 M.  The results show that the SERS substrates permit rapid analysis times (~10 min 

from sample deposition). To evaluate the reproducibility and homogeneity of the substrates, Fig. 5 (c) shows a waterfall 

graph for at 48 spectra (10-6 M CV concentration) taken from 4 random locations in grids of 10 µm2 (12 spectrum per grid) 

on a single substrate (north, south, east and west separated by 5 mm). The relative standard deviation for each of the peaks; 

1620, 1587, 1174 and 913 cm-1, were calculated as less than 15%.   

 

 Versatility & stability 

 To evaluate the versatility of the SERS substrate, various chemicals were analysed from different application fields; 

imidacloprid (neonicotinoid pesticide), melamine (previously used as a food adulterant), malachite green (agricultural 

antibiotic) and benzocaine (pharmaceutical molecule), see Fig. 5 (d). The characteristic SERS peaks of all four molecules, in 

aqueous solution at a concentration of 10-6 M, are clearly resolved and correlate well to those reported in the literature. [38, 

60-63] The stability of the PVDF polymer substrates was also assessed. Substrates were found to be stable following 

immersion in a wide range of acids (acetic, nitric, hydrochloric sulfuric and phosphoric acids) as well as most bases. They 

also upheld their integrity after prolonged exposure to both polar and non-polar solvents (methanol, ethanol, DMSO, toluene 

and hexane) for up to 20 minutes.  However, a notable exception was that PVDF had low resistances to sodium hydroxide 

and acetone. Exposure to these solutions caused breakdown of the polymer base and deformation of the Ag surface.  It was 

found that a single Al substrate may also be re-used to template multiple PVDF SERS substrates.  Fig. S8 (a) shows spectra 

obtained from substrates templated with both a pristine and re-used Al master. although there is a slight decrease in the 

intensity of the spectrum obtained from the second replicate sample, The close reproducibility of the data indicated that the 

templating procedure does not damage the aluminum template.  Polymer SERS substrates were also cleaned using a 

combination of a sonicated solvent wash (5 mins in isopropanol/ 5 mins in ethanol) followed by exposure to UV-ozone (20 
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min at ambient pressure) and re-used for analysis of 10-6  M CV (at least four times) without any signal degradation, see Fig. 

S8 (b).  

 

The SERS substrates may also be applied to molecules, such as glucose, that have a poor binding affinity for the substrates 

Ag surface.  In a manner similar to that reported by the Van Duyne group [47], a mixed self-assembled monolayer of 

mercaptohexanol and decanethiol was first employed to partition glucose from solution at a SERS sensor surface. The two 

thiols, having different length hydrocarbon chains, created “pockets” in the monolayer, shown schematically in Fig. 6 (a), 

which promoted glucose partitioning to this modified surface via the formation of both Van Der Vaal and hydrogen bonding 

interactions.  Fig. 6 (b) shows a typical spectrum obtained for the as-deposited SAM layer (control sample, black spectrum) 

exhibiting a weak SERS response with peaks at 1122, 891 and 710 cm-1.  Following immersion in a 10 mMol glucose 

solution for 6 hours and air drying, a spectrum for the combined SAM / sequestered glucose layer was observed (dotted line 

spectrum). This spectrum contains vibrational peaks from both the SAM layer and glucose analyte. Finally, the glucose 

spectrum, obtained by subtracting the SAM spectrum from the combined glucose/SAM spectrum, is presented (blue 

spectrum). The resulting spectrum exhibited characteristic glucose peaks at 1434 1123, 1065, 912, 893, 710 and 542 cm-1, 

which compare with both the literature and a characteristic Raman spectrum obtained from bulk glucose (see Fig. S9) [64].   

 

Finally, a case study was undertaken to demonstrate the suitability of these substrates for real world applications, e.g in food 

security.  Melamine, a food adulterant, previously used to falsify protein content in milk products in China[65, 66] and which 

is known to be difficult to detect was selected for this study. [49]   A typical SERS spectrum for 1 ppm melamine in 

deionized water is presented in Fig. 7 (a).  The characteristic peak observed at ~702 cm-1 is attributed to the breathing mode 

and in plane deformation of the triazine ring[67, 68] while the 855 cm-1 peak is attributed to the out of plane ring 

deformation.[69]  These peaks correspond well with reported values.[68]  Fig. 7 (b) shows spectra obtained from 1 ppm 

melamine-spiked into both milk and baby formula (diluted 1/100 as described in the experimental section).  Control samples 

of diluted milk and baby formula were also analysed and the absence of SERS responses from these solutions showed that 

other large biomolecules (fats, proteins etc.) present in these solutions would not interfere with the melamine analysis  By 

contrast, the melamine-spiked milk and baby formula samples exhibited characteristic melamine peaks, clearly 

distinguishable from the pristine solution spectra, confirming the presence of melamine even at very low concentrations, i.e., 

1 ppm.  A drop and dry approach was again adopted, the total analysis time was under 10 minutes and a LOD of 0.1 ppm was 

measured experimentally.  These results suggest that these substrates may offer the possibility for the rapid detection of 

analytes in the field, with a limit of detection similar to gold standard laboratory-based techniques such as mass spectrometry.   

 

To this end, the SERS detection method was benchmarked against electrospray ionization mass spectrometry (ESI-MS).  The 

spiked melamine solutions were analysed with the MS, operated in single reaction monitoring positive mode, and the ion 

charge control function used to optimize both MS2 and MS3 fragmentation. Total ion count, MS2 and MS3 data were 

obtained.  Fig. 8 (a) shows MS2 and MS3 mass spectra obtained for the direct infusion of melamine standard (0.1 ppm) spiked 

into deionised water. Fig. 8 (b) shows MS2 and MS3 mass spectra obtained for the direct infusion of melamine standard (10 

ppm) spiked in a diluted (1 in 10, DI) milk sample. MS2 fragmentation of precursor ion at m/z 127 yielded five predominant 

characteristic product ions at m/z 109, 97, 84, 85 and 69 while MS3 fragmentation of product ions at m/z 109 yielded the 

predominant product at m/z 81. The spectra obtained for MS2 and MS3 for melamine correlated with spectra obtained in 
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previously published studies[70]. In agreement with the SERS study, no trace of melamine was found in control pristine milk 

samples.   

 

The SERS substrates exhibited a similar sensitivity to the ESI-MS data for melamine in water (LOD, 0.1 ppm) and for 

melamine detection in diluted milk samples (1 ppm). These results are very encouraging and demonstrate that our fabricated 

SERS substrates exhibit sensitivities comparable to the gold standard analytical technique. However, the ESI-MS samples 

did require the use of a syringe filter to remove any large interferences in the milk including proteins and lipids that masked 

the melamine signal. SERS, on the other hand, had the ability to selectively detect melamine in spiked milk samples without 

sample pretreatment (due to the lack of a background signal).  These results strongly support the assertation that SERS 

substrates offer the possibility for rapid and low-cost detection of target analytes in complex media, in remote settings.  

 

Conclusion 

In conclusion, we demonstrated the reproducible fabrication of a polymer based SERS substrate; nanostructured using a soda 

can as a template. The Ag coated PVDF exhibited strong SERS enhancement with good metal adhesion compared to PDMS 

and PS polymers. Simulations and control experiments confirmed that the Raman signal arose from the gaps (“hot spots”) 

between the Ag clusters throughout the Ag layer.  The substrates exhibited an enhancement factor of ~106 and that the signals 

observed with these substrates arose predominantly from an electromagnetic effect.  The transparent substrates also permitted 

back excitation and collection through the substrate which corresponding spectra exhibiting clear and defined spectral SERS 

peaks.  The versatility of the sensors was demonstrated by detection of a wide variety of analytes on pristine Ag surfaces.  

The sensors exhibited rapid, quantitative and high sensitivity, for example, 5 x 10-10 M (204 pg/mL) crystal violet detection 

in 10 minutes using a simple drop and dry method.  We also show detection of glucose employing a chemically modified Ag 

surface bearing a pre-deposited SAM layer.  Finally, we present the detection of trace amounts of melamine in complex 

media solution (milk and infant formula) and show the sensor sensitivity is comparable with commercial analytical 

instrumentation (MS-MS). On-going work is now focusing on exploring these sensor substrates to detect, identify and 

measure trace amounts of pesticides in aqueous solutions for use in food safety, applications. 
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Figure Captions: 

 

Fig. 1: (a) Schematic outlining the fabrication of the Ag-covered nanostructured PVDF SERS substrates. (b) Image of Al easily 

peeling off the templated polymer. (c) Flexible PVDF substrate. (d) SEM image of a PVDF substrate template with the 

nanostructured Al with 30 nm of Ag deposited over the surface. Inset: Substrate at a higher magnification. 

 

Fig. 2: (a) SEM image obtained from a PVDF substrate coated with 30 nm Ag. (b) 3D geometry constructed by intersecting the 

parametric surface from the SEM image with blocks using COMSOL (c) FEM simulation showing highly localised electric field 

enhancements at the metal-dielectric-metal nanogap structures. To avoid possible artifacts at the interface metal/dielectric, the 

image shows the total electric field at a distance of 2 nm above the surface of the sample 

 

Fig. 3: (a) SERS spectra obtained from 10-6 M CV following front excitation on substrates 30 nm Ag (blue) and control 

experiments in the absence of nanostructure (black) and nanostructured substrates in the absence of CV (green).  (b) SERS 

spectra obtained from 10-6 M CV following back excitation on substrates 30 nm Ag (red) and control experiments in the absence 

of nanostructure (black) and nanostructured substrates in the absence of CV (green).  Chart comparing the front and back 

excitation intensities at peak 1620 cm-1 for the control experiments in a and b. 

 

Fig. 4: (a) Waterfall of SERS spectra recorded for 10-6 M CV in solution in a single spot over 45 minutes (b) Graph showing the 

linear relationship between peak area (at 913 cm-1) Vs. droplet drying time. 

 

Fig. 5: (a) SERS spectra recorded for different CV concentrations ranging from 5 x 10-10 M to 1 x 10-7 M (204 pg/mL –40.8 

ng/mL). (b) Graph showing semilog liner relationship between peak area (at 915 cm-1, calculated using a lorentzian function) and 

concentration of CV (c) 48 separate SERS spectra (10-6 M CV concentration) taken at 4 random locations on a single substrate 

(north south east and west separated by 5 mm) in grids of 10 µm2 illustrating substrate surface homogeneity. (d)  SERS spectra of 

four representative molecules: imidacloprid, melamine, malachite green and benzocaine. 

 

Fig. 6: (a) Schematic showing partitioning of glucose at a mixed thiol surface and (b) SERS spectra of the mixed monolayer 

without (black line) and with (dotted line) glucose followed by background subtraction to show a glucose only spectrum (blue). 

 

Fig. 7: SERS spectra of (a) 1 ppm melamine spiked in water (b) 1 ppm melamine spiked in milk and baby powder, with no pre-

treatment 

 

Fig. 8: Mass spectra of melamine standards spiked into (a) deionized water (0.1 ppm) and (b) milk sample (10 ppm), infused into 

the ESI source (heated) of an Agilent 6340 series ion trap mass spectrometer: (i) M+H+ precursor ion at m/z 127; (ii) MS2 

fragmentation of precursor ion at [m/z 127] to yield five predominant characteristic product ions at m/z 109,  m/z 97, m/z 84, m/z 

85 and m/z 69; (iii) MS3 fragmentation of product ions at m/z 109 to yield the predominant product at m/z 81. 
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