
Title NimbleCache - low cost, dynamic cache allocation in constrained
edge environments

Authors Chilukuri, Shanti;Pesch, Dirk

Publication date 2021-03

Original Citation Chilukuri, S. and Pesch, D. (2021) 'NimbleCache - Low Cost,
Dynamic Cache Allocation in Constrained Edge Environments',
2021 IEEE Wireless Communications and Networking Conference
(WCNC), Nanjing, China, 29 March-1 April, (7 pp). doi: 10.1109/
WCNC49053.2021.9417473

Type of publication Conference item

Link to publisher's
version

https://ieeexplore.ieee.org/document/9417473 - 10.1109/
WCNC49053.2021.9417473

Rights © 2021 IEEE. Personal use is permitted, but republication/
redistribution requires IEEE permission.

Download date 2024-05-13 05:57:49

Item downloaded
from

https://hdl.handle.net/10468/11038

https://hdl.handle.net/10468/11038


NimbleCache - Low Cost, Dynamic Cache
Allocation in Constrained Edge Environments

Shanti Chilukuri and Dirk Pesch
School of Computer Science and IT, University College Cork, T12 K8AF Cork, Ireland

Email: s.chilukuri@cs.ucc.ie, d.pesch@cs.ucc.ie

Abstract—Edge computing and caching of data in the Internet
of Things (IoT) has several benefits such as reduced energy
consumption by IoT end devices and increased availability of
data and Quality of Service (QoS). In typical IoT scenarios, edge
nodes (gateways) support several end devices, each of which may
produce data in different patterns. In addition, data generated
by different types of end devices varies in the application QoS
requirements while also widely varying in the data access patterns
by IoT services. Managing the data storage resources at edge
nodes in such scenarios is a difficult task, especially since the edge
nodes themselves may have limited computation capability and
storage space. In this paper, we propose a dynamic, differentiated
edge cache allocation strategy called NimbleCache that has
low computational requirements and performs efficient cache
allocation at edge nodes. Based on a Mixture Density Network
(MDN), NimbleCache allocates varying portions of the edge cache
to traffic of different IoT applications to achieve cache hit ratios
very close to the target hit ratio. Simulation results show that
NimbleCache achieves good average cache hit ratio with low
cache space requirement and small computational overhead.

I. INTRODUCTION

Edge computing and caching of data generated by IoT
(Internet of Things) end devices has shown promise in im-
proving quality of service and availability of data and reducing
traffic in the core network [1]. In IoT edge networks, end
devices (producers) generate sensor data that is sent to a
nearby edge nodes (e.g., gateways), which store and process it
before it is requested by consumers. Here, consumers are IoT
services that process the data, control processes, or visualise
data for human consumption. In the IoT, edge nodes are
often miniature computers (e.g., the RaspberryPi) connected
to multiple end devices and have limited computing power
and storage capacity compared to data centre servers.

Commonly, producers generate bursty data due to sleep-
wake cycles [2]. The data may be requested by IoT services
running elsewhere in the network. QoS requirements for such
services may vary widely, from being very tight in terms of
availability, delay and accuracy (e.g., gas sensors) to quite lax
(e.g., weather monitoring), making resource provisioning in
IoT a challenging task. Differentiated cache space allocation at
edge nodes can help meeting requirements for data availability
and speedy access. Cache management involves assigning
different portions of the edge cache to different services. It

This work has received funding in part, from the European Unions Hori-
zon 2020 Research and Innovation Programme under the EDGE COFUND
Marie Sklodowska Curie grant agreement No. 713567 and from the Science
Foundation Ireland under CONNECT Centre grant no. 13/RC/2077.

facilitates meeting QoS requirements (most metrics such as
delay, availability of data etc. are directly effected by the hit
ratio) for services even with dynamic, diverse data generation
and request patterns [3]. The goal of differentiated cache
space allocation is to allocate cache space to achieve a cache
hit ratio (CHR) as close to the desired hit ratio as possible.
In constrained edge environments, the additional goals are
minimizing both the space allocated and the computational
cost for allocation.

Machine Learning(ML), especially Neural Networks (NNs)
and Reinforcement Learning (RL), have been successfully
applied to problems where it is difficult to model data gener-
ation and demand and allocate resources accordingly [4]–[6].
However, optimal resource allocation using NN or RL can be
expensive in terms of memory and computing power required,
especially when done dynamically and frequently to suit
ever-changing network conditions and service requirements.
RL may also take a long time to converge. As such, these
techniques may not be suitable for constrained edge nodes.

In this paper, we propose a resource allocation mechanism
called NimbleCache which learns the cache space allocation
to yield the desired performance for given data generation
and service request patterns using Mixture Density Networks
(MDNs) and allocates different fractions of edge cache space
to different services accordingly. The aim of NimbleCache is
to achieve a probabilistic CHR which is close to the desired
CHR for all IoT services served by an edge node, with minimal
computational overhead and better cache space utilization at
the edge. MDNs [7] are a type of NNs that solve the problem
of non-Gaussian distributed data by predicting the probability
density of the output as a combination of kernel functions. Our
evaluation results show that NimbleCache results in close to
the desired hit ratios for different data generation and request
patterns. They also show that NimbleCache yields in close to
optimal cache space utilization with reduced computation at
the edge, compared to allocation based on conventional NNs.
The main contributions of this paper are:

• identification of a set of features that effect the CHR in
IoT edge networks, to serve as a basis for cache allocation
using ML in light of bursty data generation and lack of
accurate models of data request patterns.

• NimbleCache, a dynamic, differentiated cache allocation
scheme for edge nodes that yields the desired CHR for
different applications with minimal space allocation and
computational cost.



• comparison of a conventional, optimal NN-based cache
resource allocation approach with NimbleCache in terms
of cache hit ratio and computational expense.

II. RESOURCE ALLOCATION IN CONSTRAINED NETWORKS

In this section, we establish the rationale for finding the
probability density function (PDF) in resource allocation for
constrained network environments followed by a brief intro-
duction to MDNs (Table I gives the notation). While machine
learning for constrained networks can be done by off-loading
the training phase to the cloud [8], the burden of inference
from the resulting model lies with the (edge) node performing
dynamic resource allocation. It is this cost that we focus on.

TABLE I
NOTATION

pdi desired performance at the edge node for the ith application

pi actual performance at the edge node for the ith application

γ minimum allocation unit of the cache

β maximum number of blocks possible per application

ai fraction of cache allocated to the ith application

C total resource (cache space) available at the edge node

∆ overall difference between actual and desired performance

θ computation cost for allocation

n number of applications

In general, the goal of differentiated resource allocation is
to allocate resources such that the overall difference between
the desired performance (pdi for the ith application) and actual
performance (pi) is minimized. If ai is the amount of resource
allocated to the ith application, the goal is -

min{∆}, s.t.
n∑
i=1

ai ≤ C, where ∆ =

n∑
i=1

(pdi − pi) (1)

where n is the number of applications and C is the total
amount of resource available. Several optimization techniques
including those using deep neural networks (DNN) have been
proposed to meet the goal in Eq. 1 [9], [10]. In constrained
environments such as edge nodes, however, the goal is to
maximize the performance while minimizing both resources
allocated and computation cost θ necessary for finding the
optimal allocation. Hence, the goal is -

min{∆,
n∑
i=1

ai, θ}, s.t.

n∑
i=1

ai ≤ C (2)

Minimizing the overall resources allocated while minimiz-
ing ∆ helps mitigate over-allocation beyond performance
saturation. This is particularly useful in edge nodes with
storage space limitations. Considering an edge cache of size C
(which is the resource in this case) and granularity (minimum
allocation unit) of γ, the total number of allocation blocks
is C/γ. The maximum number of possible allocation blocks
for each application (or producer, if data generated by each
producer is used by a separate application) assuming that every
application is allocated at least one block is β, where -

β =
C
γ
− n+ 1, and

C
γ
≥ n (3)

A. The Case for Finding the Probability Density Function

When supervised learning with NNs is used, the net-
work learns a function to map a set of input fea-
tures x={x1, x2, .., xd} to one or more output variables
y={y1, y2, .., yc}. Once the function is learned, it can be used
to predict the output for any input from the same distribution.
A simple approach for network resource allocation with super-
vised learning to minimize both ∆ and the overall resources
allocated involves two steps -

1) Treat the network state S and a possible allocation
vector a as input and predict the performance ∆ as the
output. That is, the goal is to find ∆|S, a. For β possible
allocation blocks and n applications, the number of
predictions to be performed is

(
β
n

)
.

2) Carry out an exhaustive search of the predicted values
and choose the minimal allocation that satisfies some
goal (e.g., maximize fairness or efficiency of allocation).

While this is a feasible approach in computing environments
with a large amount of resources, the number of predictions to
be carried out and an exhaustive search of all possible alloca-
tions may be too much to handle in constrained environments,
as
(
β
n

)
grows exponentially with β. Specifically, for a given

number of applications, while a smaller granularity γ results
in higher β and hence higher complexity, a larger γ may result
in over-allocation and waste of space.

An alternative method is to combine the three goals in
Eq. 2 into a single loss function with different weights for
each goal. This is the well-studied weighted-sum scalarization
approach for multi-objective optimization [11]. However, since
application QoS requirements may vary widely in IoT, the
preference given for each of the goals in the optimization may
vary accordingly. This requires training and using different
models for each possible weight combination [12], which may
also not be feasible for constrained edge nodes.

Reinforcement learning [13] is another approach that has
been used widely to solve resource allocation problems. In RL,
the agent (network resource allocator) senses the network’s
current state and takes an action (allocates resources) to
observe a reward (the network performance). By trying out
all possible actions, the agent arrives at an allocation policy
that yields maximum reward. The number of possible actions
(possible resource allocations), may be too large to handle for
constrained devices.

In control applications, NN-based prediction can be used
for the inverse problem where the goal is to choose an input
that gives a desired output. This can be applied to resource
allocation to find the allocation given a desired performance.
Thus, we invert the problem to train a NN to find a|S,∆. This
enables the allocation decision with a single prediction, greatly
reducing the resources consumed by the allocator.

However, inverting the NN input and output is not sufficient
in this case. In the cache allocation problem, there may be
several possible allocations that result in the same hit ratio
for the same network conditions. Here, over-allocation yields
the same performance as an optimal allocation. For multi-



valued functions, the predicted value by a conventional NN
is generally an average of the target values (allocations that
result in a desired performance) [7]. This gives no insight
into the optimal allocation for a desired performance, usually
resulting in excessive allocation.

Instead, we propose that the PDF of the allocation for a
given network state and desired performance should be found.
From the PDF, an allocation that most probably results in
the desired performance can be selected with constant (just
n) predictions for the inverse problem. This is ideal for con-
strained resource allocation as it does not require performance
prediction for

(
β
n

)
allocations or multiple models to be checked

for selecting an optimal strategy. Also, it does not result in
over-allocation like the inverse case where just the allocation
for a state is predicted. We use Mixture Density Networks
which combine a NN model with mixture density models to
predict the conditional PDF of the output variable [7].

B. MDN Concepts

An MDN has two components - the neural network and
the mixture model [7]. The NN can be standard with input
x. The outputs of the NN are the parameters of the Gaussian
distributions denoted by z(x). The mixture model takes these as
input and generates the conditional probability density p(y|x).
In an MDN, the probability density of the output variable is
denoted by a mixture of m kernels as [7] -

p(y|x) =

m∑
i=1

πi(x)φi(y|x) (4)

πi(x) are called the mixing coefficients and φi(y|x) is the
conditional density of ith kernel. The parameters of a mixture
function are denoted by z(x) and consist of three m dimen-
sional vectors:

• the means of the distributions of the c output features
denoted by the vector µi(x) ,

• the variance of the distributions σi(x), assuming a com-
mon variance for components of y exists, and

• the mixing coefficients πi(x)

The mixing coefficients πi(x) must be chosen such that∑m
i=1 πi(x) = 1. While any kernel function can be chosen,

a common choice is a Gaussian function [7]. With a proper
choice of mixing coefficients and Gaussian parameters i.e.,
the means and coefficients, the Gaussian mixture model with
such a kernel can represent any density function quite ac-
curately [14]. The NN part of an MDN is trained to make
this choice. The outputs of the NN are the parameters of the
distributions denoted by z(x). The number of outputs of the
neural network is (c+ 2) ∗m. The output of an MDN is [15]:

p(y|x,w) =

m∑
i=1

πi(x,w)N (µi(x,w), σi(x,w)) (5)

where w is vector of the NN weights and N (µ(x,w), σ(x,w))
is the Gaussian component density. When a single output is re-

quired from the MDN, the mean µi of the component with the
largest central value provides a very good approximation [7]:

y = µi(x) s.t.max
i
{ πi(x)

σi(x)c
} (6)

MDNs have been successfully used in applications such
as parametric speech synthesis [16] and spatio-temporal
vision attention [17]. For more details on MDNs (kernel, loss
function etc.), refer to [15] and [7].

III. NIMBLECACHE

Considering a typical IoT scenario, all the data gathered
by end devices (producers) is pushed to an edge node which
caches them. The consumers of data (web or mobile appli-
cations or actuators) request data from producers, which are
ideally satisfied by respective edge node caches. We make the
following reasonable assumptions for IoT networks:

• Data generated by producers is bursty. Dynamic alloca-
tion is done periodically based on the data rate during a
(small) unit of time. The average number of data items
generated for the ith application in this time unit is fi.

• The cache receives ri requests per time unit for items of
the ith application.

• The first request for a data item is received after an
average of ti seconds after the data item enters the cache.

• Each cached item of the ith application has an average
lifetime li for which it is useful.

• The cache receives an average of τi requests for a data
item during its lifetime.

These assumptions allow modelling the effect of request
and data arrivals on the CHR fairly well by our chosen NN.
This is established by the results of simulations presented in
Section IV. The chosen parameters are easily measurable by
the edge cache in real-time.

A. NimbleCache Principles

With differentiated caching, the CHR pi of the ith appli-
cation depends on the amount of cache space allotted for
that application, the rate at which data enters the cache and
the rate and pattern with which it is requested [3]. Web and
content caching solutions generally increase the CHR pi of an
application by focusing on the cache replacement mechanism,
so that caching of items is done based on the popularity of
data. For IoT data, a simple FIFO replacement policy suffices,
as more recent data is more valuable compared to older data.
However, the request patterns for different applications are
diverse and data inflow to the edge cache is bursty, with mean
to peak traffic rates that can be more than tenfold [2]. Hence,
the focus of NimbleCache is on allocation of cache space
rather than cache replacement.

To deal with the changing traffic and request patterns,
NimbleCache splits the available cache space C at an edge
node into sections - one for each of the n applications
(producers) it serves. Traffic of the ith application is allotted
ai cache blocks (each of size γ), where a ∈ [1, β]. As the
data generation and request rates for each application vary, ai



is also varied so that CHR is maximized over a period. We
denote the desired (minimum) hit ratio for the ith application
by pdi . For given traffic patterns of a set of n applications, let
the overall gap between the actual and desired hit ratios of
all applications be ∆ as defined in Eq. 1. With conventional
NN-based allocation, the focus is on minimizing the first two
terms of Eq. 2 at the stake of the third. With NimbleCache,
the cost of computation θ is constant and an allocation that
most probably gives the desired CHR is found.

B. NimbleCache in Practice

NimbleCache works in three phases, a test phase for data
gathering, the training phase where the ML agent is trained
and the operations phase where cache allocation is performed
using the ML agent for inference.

1) Data Gathering Phase: NimbleCache starts with edge
nodes measuring the CHR (average during a set time unit) for
varying network and traffic states and different allocations and
building dataset D. The state of the edge traffic St at the tth

time unit is a n element vector, where n is the number of
producers (applications). Each item in this vector is in turn a
state vector sti of the ith application. Table II lists the features
of an application, chosen so that each is easily measurable
by the edge node and reflects the data generation pattern of
the producer and the request pattern of the consumer for an
application. The values of these features are captured and
stored with the allocation ai during time t at the edge cache.

TABLE II
FEATURES OF THE ith APPLICATION

ri avg. number of requests per sec. for all data items

τi avg. number of requests for the same data item during its lifetime

fi number of data items generated by the device per sec.

ti time between first data item from device and request for the same

li avg. data item lifetime

2) Training Phase: As nodes may see diverse network
traffic conditions during training, a model built solely based on
the data gathered by one edge node may not be very accurate.
Training can be done in one of the two following ways:

• Data is sent to a server that centrally trains an agent based
on all the data received from the edge nodes.

• Alternately, a federated learning algorithm such as pro-
posed in [3] can be used to train the agents without
transferring data. This may yield less accurate models,
but has the benefit of lower communication.

Model parameters are then transferred to edge nodes to make
resource allocation decisions. The data gathering and training
phases may be repeated periodically to refine the model
whenever major changes occur in the network as in [3].

3) Operations Phase: Irrespective of how training happens,
prediction of CHR based on the model and cache allocation
based on prediction has to be done by edge nodes. This cost
of inference is much less for NimbleCache than for a NN-
based method. In a conventional NN-based allocation, the NN
is trained with the set of features in Table II with cache

allocation ai as input and the resulting hit ratio as output.
During the operations phase, each edge node periodically
measures network state parameters, request and data pattern
given in Table II. It then predicts the hit ratio for different
possible allocations and chooses the minimum allocation that
minimizes ∆ from the

(
β
n

)
possible combinations.

In contrast, NimbleCache works on the inverse problem.
The input to the NimbleCache agent during training is the set
of features in Table II and the observed hit ratio pi and the
output is the cache allocation ai. During the operations phase,
NimbleCache periodically measures features in Table II and
predicts values of ai for any application with a given desired
hit ratio pdi . Note that the observed hit ratio pi that is part
of the training set is replaced by the desired hit ratio pdi for
prediction. NimbleCache yields the PDF of the allocation that
leads to the desired hit ratio. As discussed in Section II-B,
the solution can be taken as the mean of the component with
the largest central value predicted by the NimbleCache agent.
If this allocation is not feasible (there is not enough cache
space to be allocated), a different allocation can be chosen as
the PDF of the allocation that leads to the desired hit ratio is
known. This requires no extra training or predictions.

IV. SIMULATION RESULTS

To evaluate the performance of NimbleCache, we simulated
our approach using ndnSIM, an ns-3-based network simulator
for ICN networks. Information Centric Networking (ICN) is a
networking paradigm where the routing is based on the name
of requested data rather than IP addresses. As routing is based
on the name, no or minimal resolution is necessary. Name-
based routing suits applications where the number of devices
is large and dynamic as device registration is not needed.
In-network caching increases availability of data and reduces
data retrieval times. These features make ICN an attractive
choice for IoT applications [18]. Named Data Networking
(NDN, [19]) is a popular ICN architecture that we use for
NimbleCache. However, the principle behind NimbleCache
can be used for host-centric network architectures as well.

TABLE III
PARAMETERS OF THE NETWORKS TRAINED

Parameter FwdNN RevNN MDN
number of hidden layers 1 2 3

activation function sigmoid sigmoid, ReLU tanh

units in hidden layers 8x8 8x8x8 16x32x32x32

initial learning rate 0.01 0.01 0.0001

batch size 16 16 128

We simulated typical scenarios with different types of de-
vices common in smart campuses/homes. Bursty device traffic
was generated using the traffic patterns taken from [2]. To
generate sample training data, we considered three applications
(producers) in different scenarios with diverse data genera-
tion patterns and network topologies. The device locations
were random in an area of 100x100 m, with the edge node
roughly at the centre. The link between the edge node and



producers was WiFi (IEEE 802.11a) with loss as per the ns-3
HybridBuildingsPropagationLossModel. The ti and li values
were varied from 1 to 10 seconds with τi varying from 1
to 5 (Table II). The value of ri was varied from 5 to 20 per
second and request arrivals were Poisson. The features of each
application were captured after every 100 simulation seconds.
We considered two edge cache sizes, 250 (with a granularity γ
of 25) and 1000 items (with two granularities of 25 and 100).
While these numbers may be much larger in real world, it
does not effect the efficacy of NimbleCache as long as enough
training data is gathered from similar scenarios as those for
which allocation needs to be done. After data gathering, we
trained three networks:

• FwdNN, to predict the CHR given the allocation and
system state to know the optimal allocation in terms of
performance and allocated space,

• RevNN, to predict the allocation for a desired CHR and
• NimbleCache (using MDN), to predict the PDF of space

allocation for a desired CHR.

The model parameters for each of these networks are given
in Table III. First, we evaluated performance of FwdNN
in predicting CHR for given traffic conditions and alloca-
tion. The mean-squared-log-error (MSLE) after training was
≈5%. Figure 1 illustrates this by showing values predicted in
comparison with actual values for eight network states and
allocations. It can be be seen that FwdNN can predict the hit
ratio in all scenarios (states) with reasonable accuracy.

Fig. 1. Predictions of CHR for different network states by FwdNN

Next, we considered two values of γ (minimum allocation
unit of the cache) - 25 and 100 for the same cache size (1000
items). For γ = 25, the maximum number of units possible
per application (β) is 38 and for γ = 100, β = 8 from Eq. 3.
FwdNN was used for predicting the value of ∆ for all possible
allocations (8436 and 56 for γ = 25 and 100 respectively)
and the allocation that leads to the minimum value of ∆ with
minimum possible allocated space is chosen. We call this the
optimal policy as this is the minimal allocation that can give
the best value of ∆.

RevNN and NimbleCache were then used for predicting the
allocation for each state with a desired CHR pd of 1 for all
applications. In the case of NimbleCache since the output is
a set of mixing component parameters (32 components, based

on the suggestions in [7]), the mean of the component with the
largest central value was taken as the output as discussed in
Section II-B. Figure 2 depicts the total cache space allocated
(i.e.,

∑n
i=1 ai) by each of these schemes as a percentage of

the total space allocated by the optimal policy (which uses
FwdNN) for γ = 100. It can be seen that NimbleCache
allocates less space compared to RevNN in all scenarios.

Fig. 2. Cache Space Allocated for Different Scenarios (C=1000, γ=100)

Fig. 3. Cache Space Allocated for Different Scenarios (C=1000, γ=25)

Figure 3 shows the total space allocated for γ = 25 for
the same set of scenarios as in Figure 2. As this is a finer
granularity, the effects of over-allocation are reduced for all
policies. The benefit of NimbleCache is clearer here. While
optimal allocation would require 8436 possible combinations
to be checked, NimbleCache allocates space closer to the
optimal allocation with just one prediction per application.
Simulating the network with the allocations suggested by each
of the three schemes confirms that all three schemes result in
a ∆ of 0 (CHR of 1 for all applications) for this cache size.
Hence, NimbleCache can achieve a CHR comparable to that
of the optimal allotment policy with much less computation.
The relative performance of the three schemes in meeting the
optimization goal (Eq. 2) can be seen in Figure 4.

In some cases, it may not be possible to allocate space for all
applications to have a CHR of 1. In such cases, the allocation
can be done by choosing a different (lower) CHR for one or
more applications. With NimbleCache, this can be done by
choosing a different space allocation value from the PDF of
the allocation predicted for a target CHR of 1. We chose an
allocation value (for each application) of

ai = µi(s)− σi(s) s.t. max
i
{πi(s)
σi(s)

} (7)



Fig. 4. Optimization Goal Achievement (C=1000, γ=25)

Here, the suffix i refers to the value of the ith mixture
component. The resulting value of ∆ is plotted in Figure 5. In
addition to the values of ∆ for the optimal and NimbleCache
schemes, the values for a simple rate-proportional space allo-
cation (proportional to the rate of incoming data rate for each
application) is also plotted. The RevNN scheme is not plotted
as the values suggested by the scheme are not feasible to be
allotted (for a desired hit ratio of 1). This is because RevNN
gives the average of several possible allocations that result in
the desired performance and it is infeasible to allocate these
predicted values (i.e.,

∑n
i=1 ai > C) for all applications.

In Figure 5 it can be seen that NimbleCache gives a
value of ∆ close to the optimal allocation in all cases. The
total area allocated in all cases is the entire cache (250
items). NimbleCache and rate-proportional allocation require a
single prediction per application, while the optimal allocation
requires 56 predictions. Hence, NimbleCache gives a good
balance between the three optimization goals (Eq. 2), as shown
in Figure 6.

Fig. 5. ∆ for different allocation strategies (C=250, γ=25)

In Table III it can be seen that the MDN used for
NimbleCache requires more hidden layers than FwdNN or
RevNN. Also, while FwdNN and RevNN predict a single
value, NimbleCache predicts the parameters of each Gaussian
component (3 parameters each for 32 mixture components
for this simulation setup). Hence the model (the weights
and biases of the MDN) that has to be stored at the edge
cache requires more space compared to FwdNN and RevNN.
However, the saving in cache space can be quite substantial

Fig. 6. Optimization Goal Achievement (C=250, γ=25)

with NimbleCache as shown in Figures 2 and 3. Moreover,
the PDF predicted by NimbleCache makes a myriad of choices
possible for probabilistic space allocation with a single model.

V. RELATED WORK

Differentiated caching for web servers was explored by [20]
and many others. Differentiated caching with diverse QoS
requirements using a control theoretic approach to allocate
cache space in proxy servers such that the a CHR close to the
target CHR is achieved for each application has been proposed
in [21]. The crux of these works is that cache partitioning can
support differentiated QoS for different applications. Drawing
on this, we propose a cache partitioning mechanism that is
particularly suited to IoT networks with bursty data generation,
varying request patterns and unpredictable channel conditions.

An excellent overview of machine learning techniques for
next generation wireless networks is given in [22], while [8]
identifies the main impediments in applying machine learning
to IoT. Low computational capabilities of IoT devices, the need
for quick convergence and decision-making are among the
challenges identified. Cloud-based ML frameworks are often
used for training in resource constrained IoT networks. While
we agree that training can be off-loaded to the cloud, we
focus not on the training cost, but on the cost of inference.
As inference from the model needs to be done frequently
and dynamically at the edge node performing the resource
allocation, the cost can be quite substantial.

Deep learning for resource allocation in networks has been
studied by several researchers as an optimization problem
with a single goal(e.g, [4]), while multi-objective optimiza-
tion was studied by a few. Of particular relevance to our
problem is [23], which focuses both on cache allocation
and transmission rate in content-centric IoT networks for
improving the Quality of Experience dynamically using deep
RL. However, deep RL maybe too complex and slow to
converge for IoT nodes [8]. Pareto Q-learning [24] proposes
the use of Q-learning for finding the entire Pareto front, but
requires a Q-table to store quality of the state-action pairs.
This is very memory-intensive, especially when the number
of possible (network) states and actions (possible allocations)
is large and may not be feasible at edge nodes. In [25],
the authors explore deep reinforcement learning for making



caching decisions adaptively. Their focus is efficient delivery
of data in content delivery networks (CDNs). CDNs differ a
lot from IoT networks in the data and request patterns and
QoS requirements such as delay. In this paper, we focus on
those aspects that play a major role in IoT networks.

A deep learning-based model to predict object popularity
and replace cache contents is proposed in [26]. However,
web page access requests and QoS requirements are very
different from those of IoT. We also propose a cache allocation
policy to competing applications. While we consider FIFO as
the most apt policy for most IoT applications, any replace-
ment policy including [26] can be used in NimbleCache. In
[27], authors propose service differentiation in IoT caches by
dividing applications in vehicular networks into two types,
infotainment applications and safety-critical applications. They
propose dynamically allocating different portions of the cache
to each application type and applying different replacement
schemes to suit each request pattern. In contrast, we consider
per-application allocation of cache space and a much wider set
of features that takes into account varying request and bursty
data generation patterns typical in IoT scenarios. In addition,
our goal is to optimize resources at the edge. While predicting
PDFs (Probability Density Functions) has been studied for
other applications [16], [17], to the best of our knowledge,
this is the first paper that studies the feasibility of resource
allocation using PDF prediction in constrained networks.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a set of parameters that effect
the edge cache hit ratio in IoT networks and an MDN-
based dynamic, differentiated cache space allocation scheme
called NimbleCache. NimbleCache predicts the PDF of the
cache space that results in a desired hit ratio for a given
network state with constant, low computation cost. This is
used to achieve a desired cache hit ratio with minimal cache
space allocation. Simulation results show that NimbleCache
results in performance and space savings close to the optimal
allocation policy with much less computation cost. In future,
we plan to compare NimbleCache with deep RL and multi-
objective RL methods and include prioritization of data.

REFERENCES

[1] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang, “A
survey on mobile edge networks: Convergence of computing, caching
and communications,” IEEE Access, vol. 5, pp. 6757–6779, 2017.

[2] A. Sivanathan, D. Sherratt, H. H. Gharakheili, A. Radford, C. Wije-
nayake, A. Vishwanath, and V. Sivaraman, “Characterizing and classi-
fying iot traffic in smart cities and campuses,” in 2017 IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS), May
2017, pp. 559–564.

[3] Shanti Chilukuri and Dirk Pesch, “Achieving optimal cache utility in
constrained wireless networks through federated learning,” in The 21st
IEEE International Symposium on A World of Wireless, Mobile and
Multimedia Networks (IEEE WOWMOM 2020), 2020.

[4] H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos,
“Learning to optimize: Training deep neural networks for wireless
resource management,” in 2017 IEEE 18th International Workshop
on Signal Processing Advances in Wireless Communications (SPAWC),
2017, pp. 1–6.

[5] H. Ye, G. Y. Li, and B. F. Juang, “Deep reinforcement learning based
resource allocation for v2v communications,” IEEE Transactions on
Vehicular Technology, vol. 68, no. 4, pp. 3163–3173, 2019.

[6] Z. Xu, Y. Wang, J. Tang, J. Wang, and M. C. Gursoy, “A deep
reinforcement learning based framework for power-efficient resource
allocation in cloud rans,” in 2017 IEEE International Conference on
Communications (ICC). IEEE, 2017, pp. 1–6.

[7] C. M. Bishop, “Mixture density networks,” 1994.
[8] T. Park, N. Abuzainab, and W. Saad, “Learning how to communicate in

the internet of things: Finite resources and heterogeneity,” IEEE Access,
vol. 4, pp. 7063–7073, 2016.

[9] H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos,
“Learning to optimize: Training deep neural networks for interference
management,” IEEE Transactions on Signal Processing, vol. 66, no. 20,
pp. 5438–5453, 2018.

[10] M. Eisen, C. Zhang, L. F. Chamon, D. D. Lee, and A. Ribeiro, “Learning
optimal resource allocations in wireless systems,” IEEE Transactions on
Signal Processing, vol. 67, no. 10, pp. 2775–2790, 2019.

[11] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
Cambridge University press, 2004.

[12] A. Dosovitskiy and J. Djolonga, “You only train once:
Loss-conditional training of deep networks,” in International
Conference on Learning Representations, 2020. [Online]. Available:
https://openreview.net/forum?id=HyxY6JHKwr

[13] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: A Bradford Book, 2018.

[14] G. J. McLachlan and D. Peel, Finite Mixture Models. Wiley Series in
Probability and Statistics, 2000.

[15] C. M. Bishop, Pattern Recognition and Machine Learning. Springer.
[16] H. Zen and A. Senior, “Deep mixture density networks for acoustic

modeling in statistical parametric speech synthesis,” in 2014 IEEE
international conference on acoustics, speech and signal processing
(ICASSP). IEEE, 2014, pp. 3844–3848.

[17] L. Bazzani, H. Larochelle, and L. Torresani, “Recurrent mixture
density network for spatiotemporal visual attention,” arXiv preprint
arXiv:1603.08199, 2016.

[18] J. Quevedo, D. Corujo, and R. Aguiar, “A case for icn usage in iot
environments,” in 2014 IEEE Global Communications Conference, Dec
2014, pp. 2770–2775.

[19] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, P. Crowley, C. Pa-
padopoulos, L. Wang, B. Zhang et al., “Named data networking,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 3, pp. 66–73,
2014.

[20] Wenzhong Chen, P. Martin, and H. Hassanein, “Differentiated caching
of dynamic content using effective page classification,” in IEEE Inter-
national Conference on Performance, Computing, and Communications,
2004, 2004, pp. 293–298.

[21] Y. Lu, T. F. Abdelzaher, C. Lu, and G. Tao, “An adaptive control
framework for qos guarantees and its application to differentiated
caching,” IEEE 2002 Tenth IEEE International Workshop on Quality
of Service (Cat. No.02EX564), pp. 23–32, 2002.

[22] J. Wang, C. Jiang, H. Zhang, Y. Ren, K.-C. Chen, and L. Hanzo, “Thirty
years of machine learning: The road to pareto-optimal next-generation
wireless networks,” arXiv preprint arXiv:1902.01946, 2019.

[23] X. He, K. Wang, H. Huang, T. Miyazaki, Y. Wang, and S. Guo, “Green
resource allocation based on deep reinforcement learning in content-
centric iot,” IEEE Transactions on Emerging Topics in Computing, pp.
1–1, 2018.

[24] K. Van Moffaert and A. Nowé, “Multi-objective reinforcement learning
using sets of pareto dominating policies,” The Journal of Machine
Learning Research, vol. 15, no. 1, pp. 3483–3512, 2014.

[25] A. Sadeghi, G. Wang, and G. B. Giannakis, “Deep reinforcement learn-
ing for adaptive caching in hierarchical content delivery networks,” IEEE
Transactions on Cognitive Communications and Networking, vol. 5,
no. 4, pp. 1024–1033, 2019.

[26] A. Narayanan, S. Verma, E. Ramadan, P. Babaie, and Z.-L. Zhang,
“Deepcache: A deep learning based framework for content caching,”
08 2018, pp. 48–53.

[27] V. S. Varanasi and S. Chilukuri, “Adaptive differentiated edge caching
with machine learning for v2x communication,” in 2019 11th Interna-
tional Conference on Communication Systems Networks (COMSNETS),
Jan 2019, pp. 481–484.


