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ABSTRACT
Monitoring user interaction activities provides the basis for creating
a user model that can be used to predict user behaviour and enable
user assistant services. The BaranC framework provides compo-
nents that perform UI monitoring (and collect all associated context
data), builds a user model, and supports services that make use of
the user model. In this case study, a Next-App prediction service
is built to demonstrate the use of the framework and to evaluate
the usefulness of such a prediction service. Next-App analyses a
user’s data, learns patterns, makes a model for a user, and finally
predicts based on the user model and current context, what applica-
tion(s) the user is likely to want to use. The prediction is pro-active
and dynamic; it is dynamic both in responding to the current con-
text, and also in that it responds to changes in the user model, as
might occur over time as a user’s habits change. Initial evaluation
of Next-App indicates a high-level of satisfaction with the service.

CCS Concepts
•Human-centered computing→ User models;

1. INTRODUCTION
The exponential growth in the number of mobile applications

available leads to more applications on smart devices. Apple re-
ports about one million apps released1 and that the number of app
downloads has reached 100 billion2. Based on the classification
of [3], context has two main types, representational (e.g. time, lo-
cation) and interactional (e.g. clicks, usage). It has been shown
that contextual factors strongly influence user recommendations
[1]. Most current work [2, 4] seems to focus on recommending an
application to install based on the context and only considers rep-
resentational context such as location, time, etc. Interactional con-
text (e.g. the sequence of applications, music, etc.) has been used,
however, for predicting future actions [8]. These approaches do not
seem to attempt recommendations based on both interactional and

1http://goo.gl/yMySLB
2http://goo.gl/rTNE80
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Figure 1: The Overview of How Next-App service Cooperate
with the Baran Framework

representational context information. Most proposed recommen-
dation services seem to ignore user profile and user habits. This
paper describes a light-weight recommender service. This service
analyses the data obtained by monitoring a user’s interaction with
a smartphone, learns how the user uses applications, and makes
a predictive model. The recommender service uses the BaranC
framework [7] that provides user’s interaction data, enriched with
the context information. What distinguishes our work from existing
work is that we focus on how applications are used by an individ-
ual user in context, and we then recommend, based on the user’s
habits, a list of applications the user is likely to want to use next.
For instance, Alice regularly calls Bob at the weekend, between 6-
9 P.M., more specifically when she is at home, and not listening
to the radio. An intelligent and context-aware service can analyse
the user’s current situation, predict a possible action the user might
want to do next, and prepare some basics (e.g. checking network
quality, sufficient credit to call, etc.) for that action.

BaranC [5, 6] is a cloud-based, service-oriented, user monitor-
ing and data analysis framework. It transparently, efficiently, and
implicitly records a user’s activities (interactional context) and rep-
resentational context. It analyses the collected data, extracts in-
formation and knowledge from the raw data, and enables other IT
systems to use the information in order to provide personalized as-
sistant services to a user. The current BaranC [7] supports 3rd party
services which can use BaranC’s monitoring and user model as the
basis for providing useful user services. BaranC is based on a user
model, the User Digital Imprint (UDI), which is a manageable, flex-
ible, and scalable data structure that holds various types of data and
information. The main purpose of the UDI is to record the user’s
digital imprint and by that we mean to record all dynamic user in-
teraction with digital devices. Each user has a UDI model that can
be requested by a 3rd party service. BaranC gives the user full con-
trol of the data collection and sharing, so it is the user who decides
which service can access which data and for how long [7].



Figure 2: Next-App Notification User Interface Showing a List
of Predictions

2. APPLICATION RECOMMENDATION SER-
VICE (NEXT-APP)

A simple case study demonstrates how a 3rd party service can
cooperate with BaranC framework (Figure 1). A service is de-
signed to analyse a user’s data and make a predictive model of
what application a user is more likely to require next, based on the
current context. The service has four components: Data Handler,
Pattern Recognizer, Rule Learner, and Recommender components.
An Android application (Next-App; Figure 2) is implemented to
use this service. Once a user starts using Next-App, and provides
it the required permissions to access his/her data, the Next-App ap-
plication can then request the user model (UDI) from the BaranC
framework. The Data Handler component periodically requests an
up-to-date data for the user. The Pattern Recognizer component
then extracts patterns of frequent use (the user’s habits) from the
data. The Rule Learner component extracts rules from the history
of application usage (taking into consideration the context data as
the observers of the classification) using the Association Rule tech-
nique, and then creates a predictive model for each user. The pre-
dictive model can be used by the Recommender component in or-
der to predict the next N applications the user is likely to use based
on the context. The Next-App application is a notification based
service. It pro-actively predicts and shows a notification contain-
ing a list of recommendations. Our algorithm increases/decreases
the frequency of generating predictions based on the device usage
pattern in order to save battery life. This avoids unnecessary gen-
eration of predictions when the device is unlikely to be in use.

3. EVALUATION
Six users were enlisted as users of the Next-App service in order

to evaluate the prediction accuracy of the service. As the service
is designed to use the user’s model (UDI) for prediction, an as-
sumption is that each participant already has a UDI model in the
BaranC framework. The six evaluation users have two months data
recorded in the BaranC framework, and the prediction is based on
analysing this data. Next-App pro-actively predicts the next ap-
plication, based on the current context, and provides the recom-
mendation in the notification bar (Figure 2). We count how many
times a user uses our prediction(s) to open an application. Next-
App provides an in-app rating service that lets a user indicates a
like or dislike for the list of recommendations. Figure 3 presents
the acceptance rate of the predictions, the positive (number of likes)
and negative (number of dislikes) ratings recorded by the in in-app
rating. This shows that, on average, the users take approximately
30% of the predictions. It also shows that the service gets a good
positive rating versus negative rating. In addition, we provided a
questionnaire to each user in order to get their opinion about the
service presentation and its usefulness. Figure 4 shows a summary
of the questionnaire feedback. It indicates positive feedback for the
service’s presentation, usefulness, and prediction accuracy.

4. CONCLUSION
Next-App is a 3rd party service that predicts the next applica-

Figure 3: Service Evaluation Result

Figure 4: Service Evaluation Result

tion(s) a user is likely to use based on the current context. The Next-
App service demonstrates the ease of implementing a 3rd party ser-
vice based on the BaranC framework, and shows how analysing a
user’s device interaction data can produce a useful user model that
can be the basis for a personalized dynamic prediction service. The
Next-App service has been implemented, evaluated by users and
found to be a useful service.
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