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SPECTRAL DATA FOR SIMPLY PERIODIC SOLUTIONS
OF THE SINH-GORDON EQUATION

SEBASTIAN KLEIN

Abstract. This note summarizes results that were obtained by the author in his ha-
bilitation thesis concerning the development of a spectral theory for simply periodic,
2-dimensional, complex-valued solutions u of the sinh-Gordon equation. Spectral
data for such solutions are defined for periodic Cauchy data on a line (following
Hitchin and Bobenko) and the space of spectral data is described by an asympto-
tic characterization. Using methods of asymptotic estimates, the inverse problem for
the spectral data of such Cauchy data is answered. Finally a Jacobi variety for the
spectral curve is constructed, and this is used to study the asymptotic behavior of the
spectral data corresponding to actual simply periodic solutions of the sinh-Gordon
equation on strips of positive height.
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1. Introduction

The present paper constitutes a summary of the results obtained by the author in
his habilitation thesis [Kl] concerning the development of a spectral theory for simply
periodic, 2-dimensional, complex-valued solutions u of the sinh-Gordon equation. As
such, it describes the constructions involved, and the most important results, along
with the fundamental ideas for their proofs. However, the detailed proofs of the
results (some of which involve relatively lengthy calculations, e.g. to obtain asymptotic
estimates) are referenced from [Kl].

Date: October 25, 2016.
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2 S. KLEIN

The primary object of the investigation are periodic, complex-valued solutions u :
X → C of the 2-dimensional (i.e. X ⊂ C ) sinh-Gordon equation

∆u+ sinh(u) = 0 .

We call such solutions simply periodic when we wish to emphasize the difference to
doubly periodic solutions (which have two linear independent periods). One important
reason why solutions of the sinh-Gordon equation are interesting (apart from their
relation to soliton theory) is that they arise from constant mean curvature surfaces
without umbilical points in the 3-dimensional real space forms.

[Kl] and the present paper set out to develop a spectral theory for simply periodic
solutions of the sinh-Gordon equation. The term “spectral theory” here refers ordi-
narily to a scheme of studying solutions of a given differential operator by looking at
the spectrum of an associated Lax operator. The eigenvalue equation for this oper-
ator can also be interpreted as the zero-curvature equation for a certain connection.
The scheme of spectral theory was first developed for the Korteweg-de Vries equation
(KdV equation). A very accessible account of the spectral theory for the 1-dimensional
Schrödinger operator (which is the Lax operator for the KdV equation), has been given
by Pöschel and Trubowitz in [PT]. This book has been very inspirational for my
study of the spectral theory for the sinh-Gordon equation, and several results in Sec-
tions 3 and 4 on the sinh-Gordon equation are analogous to corresponding results in
[PT] for the 1-dimensional Schrödinger operator.

For the sinh-Gordon equation, the concept of a spectral theory is used in a somewhat
more general sense however, in that one still considers the zero-curvature equation for
a certain (matrix-valued) connection, but the zero-curvature condition can no longer
be interpreted as a eigenvalue equation. We will still take the freedom to use the term
spectral theory also in this case, and to apply the adjective “spectral” to the objects
related to this theory.

The idea of a spectral theory for doubly periodic solutions of the sinh-Gordon equa-
tion has first been applied by Hitchin in [Hi], yielding a classification of the minimal
tori in S3 . His results have later been refined by Bobenko and adapted to constant
mean curvature immersions in all the 3-dimensional space forms. We mention that
Heller has applied Hitchin’s construction of spectral data to compact (closed) im-
mersed surfaces of genus g ≥ 2 in S3 ; he obtains the most interesting results for
surfaces which are “Lawson symmetric”, i.e. which have the symmetry group of one of
the Lawson surfaces; he also obtained constant mean curvature deformations of such
surfaces in S3 . See for example [He1], [He2] and [HeS]. The present work differs from
these previous results in that now simply periodic solutions are considered, rather than
doubly periodic solutions.

One of the most salient differences between the spectral theory for doubly periodic
solutions and for simply periodic solutions of the sinh-Gordon equation is that in the
former case the spectral curve (a complex curve that comprises part of the spectral data
for the sinh-Gordon equation) is of finite geometric genus and can be compactified,
whereas in the latter case, it generally has infinite geometric genus. For this reason the
classical results on compact Riemann surfaces, which were very useful for the study
of doubly periodic solutions, are not applicable in the present setting. We need to
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replace these results with specific arguments for open Riemann surfaces of the type
of the spectral curves. To make such arguments feasible, the behavior of the spectral
curve and of the associated data near its “open ends” needs to be described, and this
is the reason why the asymptotic estimates for the spectral data play a very big role
in the present study.

Unfortunately there are only very few results on open Riemann surfaces with pre-
scribed asymptotics found in the literature. One example would be the book [FKT]
by Feldman/Knörrer/Trubowitz. However, the results in the later part of the
book, which would be very useful to us, depend on very strict geometric hypotheses
for the surface under consideration, see [FKT, Section 5], that are not satisfied for our
spectral curves. For this reason we develop some results analogous to classical results
on compact Riemann surfaces for spectral curves in this work, as needed.

In Section 2, we will construct spectral data for simply periodic solutions u of
the sinh-Gordon equation, or more generally for so-called potentials, i.e. Cauchy data
(u, uy) for the sinh-Gordon equation, where u and uy are periodic functions that are
defined only on a horizontal line. The spectral data consist of a complex curve Σ ,
called the spectral curve, and a positive divisor D on Σ , called the spectral divisor.
While it is possible for the spectral curve to have singularities, we will neglect the
complications caused by them in the present summary; refer to [Kl] for their treatment.

For the construction, we are interested in requiring only as weak regularity condi-
tions for (u, uy) as possible. There are two reasons: First, we are interested in char-
acterizing precisely which divisors on a spectral curve are spectral divisors of some
Cauchy data (u, uy) ; it turns out that every additional differentiability condition im-
posed on (u, uy) reduces the space of divisors by an intricate relationship between its
divisor points. By not imposing more regularity than necessary, we obtain a description
of the space of divisors that is as simple as possible. Second, while any solution u of
the sinh-Gordon equation is infinitely differentiable (in fact even real analytic, because
the sinh-Gordon equation is elliptic) on the interior of its domain, we are also inter-
ested in the behavior of the solution on the boundary of its domain, where its behavior
can be worse. For these reasons we only require (u, uy) ∈ W 1,2([0, 1])× L2([0, 1]) .

In Section 3 we will describe the asymptotic behavior of the spectral data for a
potential (u, uy) . This information is fundamental for all following results.

The inverse problem for spectral data is the question if the solution u from which
the spectral data is derived, or some other quantity associated to u , is determined
uniquely by the spectral data, and how it can be reconstructed from the spectral
data. In Section 4 we solve the inverse problem for the monodromy M(λ) (defined
in Section 3); it turns out that the holomorphic functions comprising the monodromy
can be reconstructed explicitly as infinite sums and products in terms of the spectral
data. After we have shown in Section 5 that the finite type spectral data are dense
in the space of all spectral data (satisfying the asymptotic properties from Section 3),
we are able to solve the inverse problem for actual potentials (u, uy) in Section 6.

It remains to investigate the spectral data for actual simply periodic solutions u
on horizontal strips of positive height, and to do so, we study the flow of the spectral
data under translations orthogonal to the direction of the period. For this purpose,
we construct a Jacobi variety and an Abel map for the spectral curve in Section 7.
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Like in the well-understood case of solutions of finite type, it turns out in Section 8
that the motion of the spectral divisor under translations is linear in the Jacobi co-
ordinates. Using this result, we are finally able to describe the asymptotic behavior
of the spectral data (Σ, D) for actual simply periodic solutions u of the sinh-Gordon
equation. It turns out that they satisfy an exponential asymptotic law, much steeper
than the asymptotic behavior of the spectral data for Cauchy data (u, uy) , as is to be
expected, solutions of the sinh-Gordon equation being real analytic in the interior of
their domain.

Acknowledgements. I would like to express my sincerest gratitude to Professor Mar-
tin Schmidt, who has advised me during the creation of the underlying thesis [Kl]. His
steady support and help has been invaluable to me. I have learned a lot from him. I
would also like to thank Prof. C. Hertling, Dr. A. Klauer and Dr. M. Knopf for helpful
discussions and advice.

2. Spectral data for simply periodic solutions of the sinh-Gordon
equation

Suppose that X is a horizontal strip in the complex plane C with 0 ∈ X and that
u : X → C is a (real or complex) solution of the 2-dimensional sinh-Gordon equation

∆u+ sinh(u) = 0

which is simply periodic with the period 1 in the sense that we have

u(z + 1) = u(z) for all z ∈ X .

We associate to u the family of linear partial differential equations dFλ = αλ · Fλ
parameterized by the spectral parameter λ ∈ C∗ , where the connection 1-form αλ is
given by

αλ :=
1

4

(
i uy −eu/2 − λ−1 e−u/2

eu/2 + λ e−u/2 −i uy

)
dx

+
i

4

(
−ux eu/2 − λ−1 e−u/2

eu/2 − λ e−u/2 ux

)
dy . (2.1)

The integrability condition for each of these partial differential equations is the Maurer-
Cartan equation dαλ + [αλ ∧ αλ] = 0 for αλ , which turns out to be equivalent to the
sinh-Gordon equation for u . Therefore the differential equation dFλ = αλ · Fλ is
for every λ ∈ C∗ integrable along any period of u . We denote the corresponding
monodromy with base point z0 = 0 , i.e. for the integration along the interval [0, 1] ⊂
X , by M(λ) := Fλ(1) · Fλ(0)−1 . In this way we obtain the monodromy map M :
C∗ → SL(2,C), λ 7→M(λ) . M(λ) depends holomorphically on λ .

We use the monodromy map to construct spectral data for the simply periodic
solution u . The holomorphic function ∆ := trM(λ) : C∗ → C characterizes the
complex curve defined by the eigenvalues of the monodromy, which we call the spectral
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curve:

Σ := { (λ, µ) ∈ C∗ × C
∣∣ det(M(λ)− µ · 1l) = 0 }

= { (λ, µ) ∈ C∗ × C
∣∣µ2 −∆(λ) · µ+ 1 = 0 } . (2.2)

Because detM(λ) = 1 holds for all λ ∈ C∗ , Σ is hyperelliptic by virtue of the
holomorphic involution

σ : Σ→ Σ, (λ, µ) 7→ (λ, µ−1) .

The branch points of this hyperelliptic curve are the zeros of ∆2 − 4 of odd order.
Note that it is possible for Σ to have singularities, they occur exactly at the zeros of
∆2 − 4 of order ≥ 2 .

The spectral curve does not fully determine the monodromy M(λ) because it de-
scribes only its eigenvalues, not the corresponding eigenvectors. The bundle of eigen-
vectors Λ of M(λ) on Σ is a holomorphic line bundle at least on Σ′ , the Riemann
surface of regular points of Σ . In general, such a line bundle is described by a divisor
on Σ , but if Σ has singular points, then the concept of a divisor is not so clear. The
proper concept of divisor to use in this case is that of a generalized divisor introduced
by Hartshorne in [Ha2], i.e. a subsheaf of the sheaf of meromorphic functions on
Σ that is finitely generated over the sheaf of holomorphic functions on Σ . For a
detailed investigation of the structure of the divisor of Λ in the generalized sense, see
[Kl, Section 3]. Note however that by applying a meromorphic transformation on the
spectral curve, it is always possible to move the points in the support of the divisor of
Λ to regular points of Σ . For this reason, we will take the point of view throughout
most of this summary that we consider only those solutions u for which the support
of the divisor of Λ contains only regular points of Σ .

Under this hypothesis, the eigenvector bundle Λ is described by a divisor D in the

classical sense, which we call the spectral divisor. If we write M(λ) =
(
a(λ) b(λ)
c(λ) d(λ)

)
with

the holomorphic functions a, b, c, d : C∗ → C , then Σ → C2, (λ, µ) 7→ (µ−d(λ)
c(λ)

, 1) is

a global meromorphic section of Λ , whence it follows that the spectral divisor is the
polar divisor of the meromorphic function µ−d

c
on Σ . One can show that if a regular

point (λ∗, µ∗) ∈ Σ is in the support of D , hence a pole of µ−d
c

of some order m , then
c has a zero of order exactly m and µ − a has a zero of order at least m at that
point. In particular we have µ∗ = a(λ∗) . It follows that the support of D consists of
exactly those points (λ∗, µ∗) ∈ Σ with c(λ∗) = 0 and µ = a(λ∗) ; the multiplicity of
such a point in D is given by the order of the zero of c at λ = λ∗ .

The spectral curve Σ and the spectral divisor D comprise the spectral data for the
simply periodic solution u of the sinh-Gordon equation.

Example. Let us look at the vacuum, i.e. the most obvious simply periodic solution
u = 0 of the sinh-Gordon equation. It corresponds to a minimal surface of zero
sectional curvature, i.e. to a minimal cylinder. The spectral data for the vacuum are
of importance because we will describe the asymptotic behavior of the spectral data
(for λ→∞ and λ→ 0 ) for general u by comparing the general spectral data to the
spectral data of the vacuum.
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For u = 0 we obtain from Equation (2.1)

α0 =
1

4

(
0 −(1 + λ−1)

1 + λ 0

)
dx+

i

4

(
0 1− λ−1

1− λ 0

)
dy .

Because α0 thus does not depend on x , we can calculate the monodromy of the

vacuum simply as M0(λ) = exp
(

1
4

(
0 −(1+λ−1)

1+λ 0

))
, and from there we obtain

M0(λ) =

(
cos(ζ(λ)) −λ−1/2 sin(ζ(λ))

λ1/2 sin(ζ(λ)) cos(ζ(λ))

)
=:

(
a0(λ) b0(λ)
c0(λ) d0(λ)

)
with

ζ(λ) :=
1

4

(
λ1/2 + λ−1/2

)
. (2.3)

Note that all the entries of M0 are even in λ1/2 , and therefore indeed define holo-
morphic functions in λ ∈ C∗ . We will use the names a0, . . . , d0 for the component
functions of the monodromy of the vacuum throughout the entire paper without any
further reference, and likewise

∆0(λ) := tr(M0(λ)) = 2 cos(ζ(λ)) .

It follows that the spectral curve Σ0 of the vacuum is given by

Σ0 = { (λ, µ) ∈ C∗ × C
∣∣µ = 1

2

(
∆0(λ)±

√
∆0(λ)2 − 4

)
}

= { (λ, µ) ∈ C∗ × C
∣∣µ = e±i ζ(λ) } .

This curve has no branch points above C∗ . It has double points at all those λ ∈ C∗

for which ζ(λ) is an integer multiple of π ; these values of λ are exactly the following:

λk,0 := 8π2k2 + 4πk
√

4π2k2 − 1− 1 with k ∈ ZZ . (2.4)

We have λk,0 ∈ IR for all k ∈ ZZ , moreover we have the following asymptotic
estimates for λk,0 :

λk,0 = 16π2k2 − 2 +O(k−2) for k →∞

and λk,0 =
1

16π2
k−2 +

1

128π4
k−4 +O(k−6) for k → −∞ .

In particular, λk,0 tends to ∞ resp. to 0 for k →∞ resp. k → −∞ .
The points (λ∗, µ∗) in the support of the spectral divisor D0 of the vacuum are

exactly those points for which λ∗ is a zero of c0 and µ = a0(λ∗) holds. It turns out
that c0(λ∗) = 0 holds if and only if λ∗ = λk,0 holds for k ∈ ZZ ; all these zeros are
of order 1 . Moreover we have a0(λk,0) = (−1)k =: µk,0 . Therefore the divisor D0 of
the vacuum is given by its support

{ (λk,0, µk,0) | k ∈ ZZ } ;

all these points have multiplicity 1 in D0 .
Note that the spectral data of the vacuum do not satisfy our general hypothesis that

the divisor points are regular points of the spectral curve; rather all divisor points of
the vacuum lie in double points of the corresponding spectral curve.
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3. Asymptotic behavior of the spectral data

In the present and in the following section, we suppose that only Cauchy data for
the periodic solution u are given. This means that we suppose that we are given
two functions u and uy defined only on one period, namely on the real interval
[0, 1] . As explained in the Introduction, we want the differentiability condition for
the Cauchy data to be as weak as possible. More specifically we require that u is
in the Sobolev space W 1,2([0, 1]) of weakly once-differentiable functions with square-
integrable derivative. We require uy only to be square-integrable, i.e. that uy ∈
L2([0, 1]) holds. We define “mixed derivatives” of u by using both u and uy , e.g. we
define uz = 1

2
(ux−iuy) where ux is the Sobolev derivative of u and uy is the function

from the Cauchy data.
We are interested in Cauchy data that are periodic. Because of u ∈ W 1,2([0, 1]) ,

u is in particular continuous, so individual function values u(x) for x ∈ [0, 1] are
well-defined. The periodicity condition for the function u , which is defined at first
only on [0, 1] is then simply u(0) = u(1) . Note that there is no similar condition for
uy , because uy is only square-integrable, and therefore defined only up to null sets.
We then regard u and uy as being extended periodically to the real line.

In the sequel, we will call such pairs (u, uy) (periodic) potentials. We denote the
space of these potentials by

Pot := { (u, uy) ∈ W 1,2([0, 1])× L2([0, 1]) |u(0) = u(1) } .

Pot becomes a Hilbert space via the inner product

〈(u, uy) , (ũ, ũy)〉Pot := 〈u, ũ〉W 1,2([0,1]) + 〈uy, ũy〉L2([0,1]) for (u, uy), (ũ, ũy) ∈ Pot .

We can write down the dx-part of the connection 1-form αλ , see Equation (2.1),
also for such potentials (u, uy) ∈ Pot :

αλ =
1

4

(
i uy −eu/2 − λ−1 e−u/2

eu/2 + λ e−u/2 −i uy

)
dx ,

and therefore the construction of spectral data for actual simply periodic solutions u
of the sinh-Gordon equation from Section 2 carries over to periodic potentials. Thus we
obtain a spectral family of monodromies M(λ) : C∗ → SL(2,C) and thereby spectral
data (Σ, D) for any given potential (u, uy) ∈ Pot .

As was explained in the Introduction, the asymptotic behavior of the monodromy
and of the spectral data for λ → ∞ and for λ → 0 is one of the fundamental tools
in the present approach to simply periodic solutions of the sinh-Gordon equation. To
describe this asymptotic behavior for the monodromy M(λ) , we introduce certain
spaces of holomorphic functions on C∗ whose members are characterized by a certain
asymptotic descent rate towards zero for λ→∞ and/or for λ→ 0 .

For this purpose we will consider the Hilbert space `2 of square-summable sequences
(ak)k∈ZZ indexed over the integers; of course, we equip `2 with the Hilbert space norm

‖ak‖`2 :=
(∑

k∈ZZ |ak|2
)1/2

. Moreover, for n,m ∈ ZZ we consider the Hilbert space
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`2
n,m of sequences (ak)k∈ZZ defined by the Hilbert norm

‖ak‖`2n,m
:=

(
−1∑

k=−∞

|km · ak|2 + |a0|2 +
∞∑
k=1

|kn · ak|2
)1/2

.

We also define for k ∈ ZZ , where ζ(λ) is as in Equation (2.3)

Sk :=


{λ ∈ C∗

∣∣ (k − 1
2
)π ≤ |ζ(λ)| ≤ (k + 1

2
)π, |λ| > 1 } for k > 0

{λ ∈ C∗
∣∣ |ζ(λ)| ≤ π

2
} for k = 0

{λ ∈ C∗
∣∣ (−k − 1

2
)π ≤ |ζ(λ)| ≤ (−k + 1

2
)π, |λ| < 1 } for k < 0 .

Note that each Sk is a topological annulus, the Sk cover all of C∗ , and that λk,0 ∈ Sk
holds for every k ∈ ZZ .

We then say that a holomorphic function f : C∗ → C has `2
n,m-asymptotic of type s

(where n,m ∈ ZZ and s ≥ 0 ) if there exists a sequence (ak)k∈ZZ ∈ `2
n,m of non-negative

numbers so that

∀k ∈ ZZ ∀λ ∈ Sk : |f(λ)| ≤ ak · es·| Im(ζ(λ))| (3.1)

holds. We call any such sequence (ak) a bounding sequence for f , and denote the
Banach space of all `2

n,m-asymptotic functions by As(C∗, `pn,m, s) . If the condition
(3.1) holds only for k ≥ 0 resp. only for k ≤ 0 (instead of for all k ∈ ZZ ), we say that
f is `2

n-asymptotic of type s for λ → ∞ resp. `2
m-asymptotic of type s for λ → 0 ,

and we denote the space of such functions by As∞(C∗, `pn, s) resp. by As0(C∗, `pm, s) .
The following theorem, which is of fundamental importance for the entire work,

compares the monodromy M(λ) of a given periodic potential to the monodromy
M0(λ) of the vacuum as described in the Example of Section 2.

Theorem 3.1. Let (u, uy) ∈ Pot be given and M(λ) =
(
a(λ) b(λ)
c(λ) d(λ)

)
be the monodromy

associated to (u, uy) . We put τ := e−u(0)/2 . Then we have

(1) a− a0 ∈ As(C∗, `2
0,0, 1)

(2) b− τ−1 b0 ∈ As∞(C∗, `2
1, 1) and b− τ b0 ∈ As0(C∗, `2

−1, 1)

(3) c− τ c0 ∈ As∞(C∗, `2
−1, 1) and c− τ−1 c0 ∈ As0(C∗, `2

1, 1)

(4) d− d0 ∈ As(C∗, `2
0,0, 1) .

This theorem is proved in [Kl] in several stages: First, a weaker “basic” version is
shown in [Kl, Section 5], where in the place of the `2-sequences in Theorem 3.1 one
only has sequences which converge to zero. The proof of this basic version is based
on a certain regauging of α which makes the leading term of α (with respect to
λ ) independent of u , and thus makes an asymptotic estimate feasible. The proof of
the basic version continues by expressing the regauged monodromy as a power series
in u , estimating the higher order terms of this power series, and eventually applying
Riemann-Lebesgue’s theorem. A different version of the asymptotic estimate for M(λ)
is shown in [Kl, Section 7]: M(λk,0) is asymptotically close to the Fourier coefficients
of uz resp. −uz (multiplied with certain powers of k ). Because the Fourier coefficients
of these L2-functions are square-summable, we obtain `2-estimates for M −M0 , but
only at the special points λk,0 . Nonetheless, by combining both these versions of
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asymptotic estimates for M(λ) it is possible to obtain the asymptotic estimate for
the spectral divisor given in Theorem 3.2(2) below ([Kl, Section 6 and 8]), and then
the infinite sum resp. product formulae for the entries of the monodromy described
in the following section of this paper ([Kl, Section 10]). By the examination of these
formulas one is finally liberated from the special role of the points λk,0 in the `2-
version of the asymptotics and thereby one obtains the final form of the asymptotics
given in Theorem 3.1 (see [Kl, Section 11]).

From Theorem 3.1 it follows that also the spectral data for any given potential
(u, uy) are asymptotically close to the spectral data for the vacuum. This is detailed
in the following theorem.

We say that there exist asymptotically and totally exactly m points in every Sk
with a certain property (where m ∈ IN ), if there exists some N ∈ IN so that Sk
contains exactly m points with this property for every k ∈ ZZ with |k| > N , and
moreover

⋃
|k|≤N Sk contains exactly m · (2N + 1) points with the property.

Theorem 3.2. Let (u, uy) ∈ Pot be given, M(λ) be the monodromy associated to
(u, uy) , ∆ := trM(λ) , and (Σ, D) be the spectral data for (u, uy) .

(1) The function ∆2 − 4 has asymptotically and totally exactly two zeros in every
Sk (counted with multiplicities). They are the branch points resp. the singu-
larities of Σ . It is thus possible to enumerate the zeros of ∆2 − 4 by two
sequences (κk,1)k∈ZZ and (κk,2)k∈ZZ such that κk,ν ∈ Sk holds for |k| large
and ν ∈ {1, 2} , and then we have

κk,ν − λk,0 ∈ `2
−1,3

for ν ∈ {1, 2} .
(2) There is asymptotically and totally exactly one point (λ∗, µ∗) in the support of

D with λ∗ ∈ Sk (counted with multiplicity). It is thus possible to enumerate
the support of D by a sequence (λk, µk)k∈ZZ so that λk ∈ Sk holds for |k|
large, and then we have

λk − λk,0 ∈ `2
−1,3 and µk − µk,0 ∈ `2 .

The proof of part (2) of the above theorem uses only the two preliminary versions
of the asymptotics of the monodromy from [Kl, Sections 5 and 7], see [Kl, Sections 6
and 8]. This fact is important because the asymptotics for the support of the divisor
are used to derive the sum and product formulas which reconstruct M(λ) from the
spectral divisor, which are in turn used, among other things, to obtain the full strength
of the asymptotic estimate for the monodromy in the form of Theorem 3.1. In contrast,
the proof of part (1) of Theorem 3.2 uses the full Theorem 3.1, see [Kl, Section 11].

4. Reconstruction of the monodromy

The inverse problem consists in reconstructing the potential resp. the solution of
the sinh-Gordon equation from the spectral data (Σ, D) . The first step in solving the
inverse problem is to obtain the monodromy function M : C∗ → SL(2,C) from the
spectral data. It turns out that this can be done in a fairly explicit way: The entries
of the matrix-valued function M , seen as holomorphic functions C∗ → C , can be
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expressed as infinite sums or products in terms of the coordinates of the points in the
support of D . By the same approach one also obtains a first small glimpse at u itself,
namely the function value u(0) can be obtained by an explicit formula in terms of the
divisor points.

It will turn out that as long as the spectral divisor D does not contain any points
of multiplicity ≥ 2 , the spectral divisor alone (regarded as a set of points in C∗×C∗ )
already implicitly determines the spectral curve on which it lies uniquely. To facilitate
formulating this insight, we will regard (spectral) divisors D on a curve Σ also as
plain sets of points in C∗ × C∗ with multiplicities in the sequel.

Definition 4.1. Let D be a positive divisor, regarded as a set of points in C∗ × C
with multiplicities.

(1) We say that D is asymptotic if there exists a sequence (λk, µk)k∈ZZ that enu-
merates the points of D with their multiplicities, and so that

λk − λk,0 ∈ `2
−1,3 and µk − µk,0 ∈ `2

0,0 (4.1)

holds.
(2) If D is asymptotic, we say that D is non-special, if for every k, k̃ ∈ ZZ with

λk = λk̃ we also have µk = µk̃ .

If D is the spectral divisor of a potential (u, uy) ∈ Pot , it follows from Theo-
rem 3.2(2) that D is asymptotic, and because the present summary operates under
the general hypothesis that no points of D are in singularities of the underlying spec-
tral curve, the support of D consists of those points (λ∗, µ∗) for which c(λ∗) = 0 and
µ∗ = a(λ∗) holds (see Section 2), whence we can conclude immediately that D is also
non-special.

The following theorem describes the reconstruction of the monodromy M(λ) and
also of the value of u(0) from the spectral data. In particular, the reconstruction
of the function c , whose zeros are known by the λ-components of the points in the
spectral divisor, is in a way an adaption of Hadamard’s Factorization Theorem to the
present situation. The most significant difference between Hadamard’s Theorem and
our situation is that the former concerns entire functions with zeros accumulating at
λ =∞ , whereas we are interested in holomorphic functions on C∗ whose zeros accu-
mulate near both λ = ∞ and λ = 0 . Notice that akin to Hadamard’s Factorization
Theorem we also obtain an explicit representation of c as an infinite product.

Theorem 4.2. Let D be a non-special, asymptotic divisor on a spectral curve Σ .
Then D is enumerated by a sequence (λk, µk)k∈ZZ with the asymptotic behavior of
(4.1). We define τ ∈ C∗ and holomorphic functions a, b, c, d : C∗ → C in the following
way, where the involved infinite products and sums converge absolutely:

(i)

τ =

(∏
k∈ZZ

λk,0
λk

)1/2

.



SPECTRAL DATA FOR SIMPLY PERIODIC SOLUTIONS OF SINH-GORDON 11

(ii)

c(λ) =
1

4
τ (λ− λ0) ·

∞∏
k=1

λk − λ
16 π2 k2

·
∞∏
k=1

λ− λ−k
λ

.

(iii) If the λk are pairwise unequal (i.e. c has no zeros of order ≥ 2 ), then the
function a is obtained by the simple formula

a(λ) =
∑
k∈ZZ

µk · c(λ)

c′(λk) · (λ− λk)
.

If some of the λk are equal (i.e. c has zeros of higher order), then we need

a more complicated method to reconstruct a : For all k ∈ ZZ let dk := #{ k̃ ∈
ZZ |λk̃ = λk } = ordλk(c) be the multiplicity of λk in the support of D , and let
Λ := { k ∈ ZZ | dk ≥ 2 } be the set of the indices k of the λk of higher order.
Λ is finite. For each k ∈ Λ , (λk, µk) cannot be a branch point of Σ ,1 and
therefore we can regard µ as a holomorphic function in λ on a neighborhood
of (λk, µk) . We then choose tk,1, . . . , tk,dk ∈ C so that with

Ak(λ) :=

dk∑
j=1

tk,j ·
c(λ)

(λ− λk)j

we have

A
(`)
k (λk) = µ(`)(λk) for ` ∈ {0, . . . , dk − 1} .

Then

a(λ) =
∑
k∈ZZ\Λ

µk · c(λ)

c′(λk) · (λ− λk)
+
∑
k∈Λ

1

dk
Ak(λ) .

(iv) The function d is obtained analogously to a , with µ and µk replaced by µ−1

and µ−1
k , respectively.

(v) Finally b is determined in terms of the other functions by the equation ad −
bc = 1 .

Then the holomorphic functions a, b, c, d : C∗ → C are uniquely characterized by
the following two properties: They have the asymptotic behavior described in Theo-
rem 3.1(1)–(4), and D is the divisor so that the λk are all the zeros of c (with
multiplicity) and µk = a(λk) .

Moreover, if D is the spectral divisor of some potential (u, uy) ∈ Pot , then M(λ) :=(
a(λ) b(λ)
c(λ) d(λ)

)
is the monodromy of (u, uy) . Moreover e−u(0)/2 = τ holds; the latter

formula uniquely determines u(0) up to an integer multiple of 2πi .

The proof of this theorem is worked out in detail in [Kl, Sections 6, 10 and 12],
but the ideas are as follows: One can prove that there exists up to sign at most one
holomorphic function c : C∗ → C which satisfies the asymptotics of Theorem 3.1(3)
(with whatsoever value of τ ) and which has zeros exactly at the λk (counted with

1This is true only under the general hypothesis that no divisor points occur in singularities of Σ ,
which we made at the beginning of this summary. For the general case it is again necessary to regard
the spectral divisor as a generalized divisor, for the details see [Kl, Sections 3 and 12].
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multiplicity). Moreover, if such a function c exists, then a holomorphic function a :
C∗ → C with the asymptotics of Theorem 3.1(1) is uniquely determined by prescribing
for every k ∈ ZZ the values of a(λk), a

′(λk), . . . , a
(dk−1)(λk) . This shows that a, . . . , d

are uniquely determined by the properties given in the theorem.
On the other hand, it follows from the asymptotic assessments (4.1) that the infinite

product defining τ converges in C absolutely, that Λ is finite and that the infinite
product resp. sums defining c , a and d in the theorem converge absolutely and locally
uniformly in λ ∈ C∗ , thus they indeed define holomorphic functions C∗ → C . It is
easy to check that the zeros of c are exactly the λk (counted with multiplicity), and
that the equation a(λk) = µk holds of order at least dk . Moreover one sees that
b = ad−1

c
is holomorphic on C∗ , even at the zeros of c . By a more involved analysis

of the asymptotic behavior of the infinite sums and products involved in the definition
of the holomorphic functions a, b, c, d , one obtains that these functions satisfy the
asymptotic properties of Theorem 3.1(1)–(4); this result is also ultimately derived
from the asymptotic behavior of λk and µk .

Under the hypothesis of this summary that no spectral divisor points occur in sin-
gularities of the spectral curve, the spectral divisor D of some (u, uy) ∈ Pot is related

to the spectral monodromy M(λ) =
(
a(λ) b(λ)
c(λ) d(λ)

)
of that potential by the fact that

for any point (λ∗, µ∗) in the support of D , say of order m , the function c has a
zero at λ∗ exactly of order m , and µ− a(λ) has a zero at (λ∗, µ∗) at least of order
m (see Section 2). Because the functions a, . . . , d are uniquely determined by these
properties and their asymptotic behavior (Theorem 3.1), it follows that the functions
a, . . . , d defined in Theorem 4.2 are indeed the entries of the monodromy of (u, uy) .
Because τ is uniquely determined by the asymptotic behavior of c , we also obtain
the formula e−u(0)/2 = τ .

Note that in Theorem 4.2, the spectral curve Σ resp. the holomorphic local function
µ is only used in the reconstruction in the case that some of the λk are equal. Because
the divisor D is non-special, this can happen only if D contains points with multi-
plicity ≥ 2 . If this is not the case, then the functions a, . . . , d : C∗ → C are already
uniquely determined by the point set supp(D) . Because these functions determine
the spectral curve Σ by means of Equation (2.2) via the function ∆ = trM = a+ d ,
we arrive at the following Corollary:

Corollary 4.3. Let (u, uy) ∈ Pot be a potential and (Σ, D) be the corresponding
spectral data. If D does not contain any points of multiplicity ≥ 2 , then the set
supp(D) ⊂ C∗ × C∗ already uniquely determines the spectral curve Σ .

5. Divisors of finite type

Next we address the inverse problem for potentials, i.e. we would like to show that
for given data (Σ, D) , where Σ is a hyperelliptic complex curve above C∗ with the
asymptotic behavior of Theorem 3.2(1), and D is a non-special, asymptotic divisor
on Σ , there exists one and (essentially) only one potential (u, uy) ∈ Pot such that
(Σ, D) are the spectral data of (u, uy) .
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To prove that this is indeed the case, we will use the fact that the inverse problem is
already well-understood in a certain special case, namely the case where the potential
is of finite type. (Among the potentials of finite type are those which belong to doubly
periodic solutions of the sinh-Gordon equation; among them there are in turn the
potentials corresponding to CMC tori, which have been classified by Pinkall/Sterling
and Hitchin.) To be able to apply the already known facts on finite type potentials,
we show that the finite type potentials resp. spectral data are dense in the space of all
potentials resp. spectral data. One of course expects this result to be true from the
experience with other integrable systems, but to my knowledge, no explicit proof for
the case of the sinh-Gordon integrable system is yet found in the literature. It turns
out that a natural proof of this statement can be given in the context of the present
paper.

Definition 5.1. Let (Σ, D) be given, where Σ is a hyperelliptic complex curve above
C∗ with the asymptotic behavior of Theorem 3.2(1), and D is a non-special, asymp-
totic divisor on Σ .

We then say that (Σ, D) is of finite type if the following two conditions hold:

(1) Σ has finite geometric genus (i.e. only finitely many of the double points of the
spectral curve of the vacuum have “opened up” into a pair of branch points
with positive distance).

(2) All but finitely many of the points in the support of D lie in double points of
Σ .

We also say that a potential (u, uy) ∈ Pot is of finite type, if the corresponding
spectral data are of finite type.

Thus spectral data (Σ, D) look like the spectral data of the vacuum at all but
finitely many of the divisor points. Note also that finite type spectral data (like the
vacuum spectral data) do not satisfy our general hypothesis that all divisor points
are in regular points of the spectral data. Strictly speaking, one would therefore need
to consider generalized divisors to be able to handle finite type spectral data in our
setting. For the purposes of the present summary paper, we will again ignore the
technical complications arising from this fact, however.

Definition 5.2. Let D be an asymptotic divisor and suppose that supp(D) is enu-
merated by the sequence (λk, µk)k∈ZZ in such a way that (4.1) holds. We say that D
is tame if the λk are pairwise unequal.

To simplify our construction, we restrict our consideration to tame divisors. Any
tame divisor is necessarily non-special, and by Corollary 4.3 a tame divisor uniquely
determines its spectral curve. When working with tame divisors it therefore suffices to
consider the divisor itself as a point set in C∗×C∗ , without considering the underlying
spectral curve. It is clear that the set of tame divisors is open and dense in the space
of all asymptotic divisors. To show that the finite type spectral data are dense in the
space of all spectral data, it therefore suffices to show that the finite type tame divisors
are dense in the space of all tame asymptotic divisors.
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Theorem 5.3. The set of finite type spectral data is dense in the space of all spectral
data.

More specifically, for any tame divisor D , enumerated by the sequence (λk, µk)k∈ZZ
with (4.1), and any ε > 0 there exists a tame divisor D∗ of finite type, enumerated
by the sequence (λ∗k, µ

∗
k)k∈ZZ with (4.1), so that

‖λ∗k − λk‖`2−1,3
+ ‖µ∗k − µk‖`20,0 < ε (5.1)

holds. Moreover for given N ∈ IN , the divisor D∗ can be chosen such that

∀ k ∈ ZZ, |k| ≤ N : λ∗k = λk, µ
∗
k = µk

holds.

The detailed proof of this theorem is found in [Kl, Section 13]. It is based on an
application of the Banach Fixed Point Theorem. We want to find a spectral curve
Σ∗ such that (λk, µk) ∈ Σ∗ holds for |k| ≤ N and such that Σ∗ has a double point
near λk,0 for each k with |k| > N . The latter condition means: Denoting the trace
function of Σ∗ by ∆∗ , there are zeros (ηk)|k|>N of ∆′ for which ∆(ηk) = 2(−1)k

holds. We seek to construct this trace function ∆∗ so that the corresponding spectral
curve Σ∗ (defined by Equation (2.2)) has the desired properties.

Because the λk are pairwise unequal (D being tame), one can show similarly as in
the proof of the reconstruction of the function a in Theorem 4.2 that for any sequence
(zk)k∈ZZ ∈ `2

0,0 there exists one and only one holomorphic function ∆ : C∗ → C with

∆−∆0 ∈ As(C∗, `2
0,0, 1) and

∆(λk) = 2(−1)k + zk for all k ∈ ZZ .

We will use the Banach Fixed Point Theorem to determine (zk) so that the corres-
ponding function ∆ has the desired properties. For this purpose we fix N ∈ IN and
consider the Banach space BN of square-summable sequences (zk)|k|>N , equipped
with the `2-norm. For given (zk) ∈ BN we construct another sequence (z̃k) ∈ BN

in the following way: Let ∆ : C∗ → C be the holomorphic function with ∆ −∆0 ∈
As(C∗, `2

0,0, 1) and

∆(λk) =

{
µk + µ−1

k for |k| ≤ N

2(−1)k + zk for |k| > N
.

It can be shown that the zero set of ∆′ can be enumerated (with multiplicities) by a
sequence (ηk)k∈ZZ so that ηk − λk,0 ∈ `2

−1,3 holds and then by one more zero η∗ ∈ C∗ .
We then define a new sequence (z̃k)|k|>N by

z̃k := zk−
(
∆(ηk)− 2(−1)k

)
.

It can be shown that (z̃k) ∈ `2
0,0 holds. Thus we define the iteration map Φ : BN →

BN , (zk) 7→ (z̃k) .
One then shows by a detailed analysis of the asymptotic behavior of all the quantities

involved that Φ is Lipschitz continuous on any closed ball in BN and one also obtains
an estimate for the value of the Lipschitz constant (in dependence on N and the radius
of the ball). It follows from this investigation that if N is chosen large enough, and
moreover some δ > 0 is chosen small enough, then Φ maps the closed ball of radius
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δ in BN into itself, and is a contraction on that ball. It follows by the Banach Fixed
Point Theorem that Φ has one and only one fixed point (z∗k)|k|>N in this ball.

If we let ∆∗ and (η∗k) be the objects defined above for this sequence (z∗k) , then we
have ∆∗(η∗k) = 2(−1)k for |k| > N , and therefore the spectral curve Σ∗ corresponding
to ∆∗ has a double point at η∗k for every k with |k| > N . Therefore the divisor D∗

the support of which is given by (λ∗k, µ
∗
k) with

λ∗k :=

{
λk for |k| ≤ N

η∗k for |k| > N
and µ∗k :=

{
µk for |k| ≤ N

(−1)k for |k| > N

is asymptotic and of finite type, and satisfies (5.1) provided that N is chosen large
enough also in relation to ε .

6. The inverse problem for potentials

After we have shown that the finite type divisors are dense in all asymptotic divisors,
we are now ready to discuss the inverse problem for potentials. We show that the
potential (u, uy) ∈ Pot is uniquely determined by its spectral divisor D , at least in
the case where D is tame.

To phrase this statement more precisely, let us denote by Div the space of asymptotic
divisors. In view of Definition 4.1(1) it seems tempting to identify Div with the
Banach space `2

−1,3⊕ `2
0,0 . However, we need to be careful because the enumeration of

the support of D by a sequence (λk, µk)k∈ZZ is only unique up to reordering finitely
many of the elements. Thus we define a distance on Div in the following way: For

given D[1], D[2] ∈ Div with corresponding enumerations (λ
[ν]
k , µ

[ν]
k )k∈ZZ of supp(D[ν])

( ν ∈ {1, 2} ) so that (4.1) holds we put

‖D[1] −D[2]‖Div := inf
σ1,σ2∈P (ZZ)

(∥∥∥λ[1]
σ1(k) − λ

[2]
σ2(k)

∥∥∥2

`2−1,3

+
∥∥∥µ[1]

σ1(k) − µ
[2]
σ2(k)

∥∥∥2

`20,0

)1/2

.

Here P (ZZ) denotes the group of finite permutations of ZZ , i.e. of those permutations
σ : ZZ→ ZZ for which the set ZZ \ Fix(σ) is finite.

We also consider the open and dense subset Divtame of tame divisors in Div . More-
over we say that a potential (u, uy) is tame if the corresponding spectral divisor is
tame. We denote the subset of tame potentials in Pot by Pottame . It will turn out
that also Pottame is an open and dense subset of Pot .

Our object of interest in the present section is the map Φ : Pot → Div that maps
each potential (u, uy) onto the corresponding spectral divisor D . The statement
about the inverse problem is expressed by the following theorem:

Theorem 6.1. Φ|Pottame : Pottame → Divtame is a diffeomorphism onto an open and
dense subset of Divtame .

Remark 6.2. Φ is not immersive at potentials (u, uy) ∈ Pot \ Pottame . This is
true even under our general hypothesis for this summary that the spectral divisor
corresponding to (u, uy) should not contain any singular points of Σ . Indeed, if a
point occurs in the support of D with multiplicity ≥ 2 , there is an entire family of
integral curves of x-translation in Div that intersect in D , and therefore Φ cannot
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be immersive. To make Φ an immersion (and consequently a local diffeomorphism)
near such points, we would need to replace the range Div of Φ by a suitable blow-up
at its singularities (see e.g. [Ha1], p. 163ff.). We do not carry out such a construction
here.

The reason why the image of Φ|Pottame is not all of Divtame is that even though
any tame divisor D ∈ Divtame is non-special, it is possible for D to become special
under x-translation. If this occurs, the potential corresponding to D has a singu-
larity for the corresponding value of x , and thus D does not belong to a potential
(u, uy) ∈ Pot in our sense. The investigation of sinh-Gordon potentials with singulari-
ties, corresponding to divisors D ∈ Div which become special under x-translation for
some value of x , would be extremely interesting in view of studying compact constant
mean curvature surfaces.

The proof of Theorem 6.1 is set out in [Kl, Sections 14 and 15]. It is based on two
different building blocks.

The first building block are the divisors of finite type. It has been shown by
Bobenko [Bo, Theorem 4.1] (also compare the explicit construction in terms of vector-
valued Baker-Akhiezer functions by Knopf in [Kn1, Proposition 4.34]) that if D is
an asymptotic divisor of finite type, so that the x-translation D(x) of D exists and
is non-special for every x ∈ [0, 1] , then there exists one and only one (u, uy) ∈ Pot
with Φ((u, uy)) = D .

Here we mean by the translation D(x0) of the spectral divisor D corresponding
to (u, uy) ∈ Pot by x0 ∈ [0, 1] the spectral divisor of the translated potential (u(x+
x0), uy(x + x0)) ∈ Pot . The corresponding motion of the coordinates λk, µk of the
points in the support of D can be described by differential equations in the λk and
µk . Because a divisor point that is located in a double point of the spectral curve
does not move at all under translations, only finitely many coordinate functions are
actually in motion under translation in the case of a finite type divisor. Thus we can
define D(x) for divisors D of finite type at least for small |x| without reference to
a potential (u, uy) . Note that if D is of finite type, then D(x) also is of finite type
whenever D(x) is defined.

Using the fact (Theorem 5.3) that the set of finite type tame divisors is dense in
Divtame , one can also show that the set Divft,xtame of finite type divisors D so that
D(x) is defined and tame for every x ∈ [0, 1] is dense in Divtame . Because any
tame divisor is non-special, the mentioned result by Bobenko implies that for any
D ∈ Divft,xtame there exists one and only one (u, uy) ∈ Pot with Φ((u, uy)) = D .

The second building block is a symplectic basis for the tangent space T(u,uy)Pot for
(u, uy) ∈ Pottame . The corresponding coordinates are analogous to the coordinates on
finite-dimensional symplectic spaces given by Darboux’s Theorem, therefore we will
call this basis Darboux coordinates even in the present, infinite-dimensional setting.
We equip T(u,uy)Pot with the non-degenerate symplectic form

Ω : T(u,uy)Pot× T(u,uy)Pot→ C,
(

(δu, δuy) , (δ̃u, δ̃uy)
)
7→
∫ 1

0

(
δu · δ̃uy − δ̃u · δuy

)
dx .

(6.1)
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Then it was shown by M. Knopf in [Kn2], together with the author in [Kl, Section 14]
that there exists a symplectic basis (vk, wk)k∈ZZ of T(u,uy)Pot with respect to Ω which
can be defined explicitly in terms of u and the “extended frame” of (u, uy) (i.e. of
the solution Fλ of the partial differential equation F ′λ = αλ Fλ with Fλ(0) = 1l ).
Moreover if we denote by D the spectral divisor of (u, uy) , and enumerate its support
by a sequence (λk, µk)k∈ZZ as in Definition 4.1(1) once more, we regard λk and µk
as complex-valued functions defined at least on a neighborhood of (u, uy) in Pottame .
Then we can think of Φ as the map (u, uy) 7→ (λk, µk)k∈ZZ , and the tangent space
TDDiv is spanned by the variations δλk and δµk , where k ∈ ZZ . In these terms we
define the non-degenerate symplectic form

Ω̃ : TDDiv × TDDiv→ C,
(

(δλk, δµk) , (δ̃λk, δ̃µk)
)
7→ i

2

∑
k∈ZZ

(
δλk
λk
· δ̃µk
µk
− δ̃λk

λk
· δµk
µk

)

on TDDiv . By Knopf and the author it was moreover shown at the cited locations

that for (δu, δuy) , (δ̃u, δ̃uy) ∈ T(u,uy)Pot , we have

Ω
(

(δu, δuy) , (δ̃u, δ̃uy)
)

= Ω̃
(

(δλk, δµk) , (δ̃λk, δ̃µk)
)
, (6.2)

where (δλk, δµk) is the variation of (λk, µk) corresponding to (δu, δuy) .
Using these two building blocks, one can prove Theorem 6.1, i.e. that Φ|Pottame is

a diffeomorphism. We first note that it is clear from the construction of the spectral
data that Φ is smooth in the “weak” sense that all the coordinate functions λk, µk of
the spectral divisor are smooth near (u, uy) . For given (u, uy) ∈ Pottame we thus have
a “weak” derivative of Φ at (u, uy) , namely the linear map Φ′((u, uy)) : T(u,uy)Pot→
TDDiv , where D := Φ((u, uy)) . It follows from Equation (6.2) that Φ′((u, uy)) is in

fact a symplectomorphism between (T(u,uy)Pot,Ω) and (TDDiv, Ω̃) .
To prove that Φ is also differentiable at (u, uy) in the stronger sense, namely as

a map between Banach spaces, and that Φ is in fact a local diffeomorphism near
(u, uy) , we need to show more, however: We need to show that the linear map
Φ′((u, uy)) is continuous, and has a continuous inverse. For this we consider the
symplectic basis (vk, wk)k∈ZZ of T(u,uy)Pot mentioned above. Using its explicit rep-
resentation, we can calculate its image under Φ′((u, uy)) ; by an asymptotic analysis
of the components of the extended frame Fλ which comprise the vk and wk one
can show that the image of (vk, wk) is asymptotically close to the symplectic basis
(δλk, δµk)k∈ZZ of TDDiv . The asymptotic error turns out to be sufficiently small to
permit the conclusion that Φ′((u, uy)) is bounded and has a bounded inverse. There-
fore Φ|Pottame : Pottame → Divtame is a local diffeomorphism onto an open subset of
Divtame by the Inverse Function Theorem.

Because of the cited result on finite type divisors due to Bobenko, the image of
Φ|Pottame contains all of Divft,xtame , and is therefore also dense in Divtame . It remains
to show the injectivity of Φ|Pottame . This follows because the divisors in Divft,xtame
have only one pre-image (the “uniqueness” part of the result by Bobenko), Divft,xtame
is dense in Divtame , and Φ|Pottame is a local diffeomorphism. Thus the proof of
Theorem 6.1 is concluded.



18 S. KLEIN

Corollary 6.3. (1) The set of potentials of finite type in Pottame is dense in
Pottame .

(2) The set of divisors D ∈ Divtame such that D(x) exists and is tame for all
x ∈ [0, 1] is open and dense in Divtame .

7. The Jacobi variety of the spectral curve

In the preceding two sections we solved the inverse problem for potentials, i.e. we
saw that a potential (u, uy) can be reconstructed uniquely from the spectral data
(Σ, D) (at least if D is tame). But the starting point for the present investigation
was not potentials, i.e. Cauchy data for the sinh-Gordon equation, but rather actual
simply periodic solutions u of the sinh-Gordon equation defined on a horizontal strip
in C . Therefore we would like to understand how such an actual solution might be
reconstructed from the spectral data.

Suppose u : X → C is a simply periodic solution of the sinh-Gordon equation,
where X ⊂ C is a horizontal strip in C . The preceding results have shown how
to reconstruct u on the horizontal line through some z0 ∈ X from the spectral
data (Σz0 , Dz0) constructed from the monodromy at the base point z0 (instead of
z0 = 0 , as we considered previously), or equivalently, from the spectral data (in the
previous sense, via the monodromy at the base point z = 0 ) of the translated potential
z 7→ u(z + z0) . One approach to the reconstruction of u in its entirety is therefore
via the study of how the spectral data (Σ, D) change under such a translation of the
potential.

Let us denote the monodromy of the translated potential by Mz0(λ) , and the mon-
odromy of the original potential by M(λ) = Mz0=0(λ) . One can show that then
Mz0(λ) = Fλ(z0) ·M(λ) · Fλ(z0)−1 holds (where Fλ : X → SL(2,C) is the “extended
frame”, i.e. the solution of dFλ = αλ ·Fλ with Fλ(0) = 1l ). Therefore the eigenvalues
of the monodromy M(λ) , and hence the spectral curve Σ , does not change at all
under translation.

However the eigenvectors of the monodromy, which are described by the spectral
divisor D , of course do change under translation. It is possible to describe the motion
of the divisor points under translation by a system of differential equations for the
coordinate functions λk and µk of the divisor points. However, it turns out that this
system is not locally Lipschitz continuous near infinite-type divisors when regarded on
the appropriate Banach space Div (locally isomorphic to `2

−1,3⊕`2
0,0 ), so to understand

the motion of the λk and µk well, one needs different coordinates.
In the case of finite type divisors, it is well-known that the translations correspond

to linear motions in the Jacobi coordinates of a partial desingularization of the spectral
curve (which is of finite genus in that setting). To transfer this fact to our present
situation (where even the normalization of the spectral curve generally has infinite
genus), we need to construct a version of the Jacobi variety and the Abel map (hence
of Jacobi coordinates) for the infinite-genus curve Σ .

Let us review the construction of the Jacobi variety for compact Riemann surfaces
(see for example [FK], Section III.6): Let X be a compact Riemann surface, say of
genus g ≥ 1 , and let (Ak, Bk)k=1,...,g be a canonical homology basis of X , i.e. (Ak, Bk)
is a basis of the homology group H1(X,ZZ) with the intersection properties Ak×B` =
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δk` (Kronecker delta), Ak × A` = 0 = Bk × B` for k, ` ∈ {1, . . . , g} . Then there
exists a canonical basis (ωk)k=1,...,g of the vector space Ω(X) of holomorphic 1-forms
on X that is dual to (Ak) in the sense that

∫
Ak
ω` = δk` holds. To any given positive

divisor D = {P1, . . . , Pg} of degree g on X , we then associate the quantity

ϕ̃(D) :=

(
g∑

k=1

∫ Pk

P0

ω`

)
`=1,...,g

∈ Cg ,

where P0 ∈ X is the “origin point”, which we hold fixed. Because these integrals
depend on the homology class of the paths of integration from P0 to Pk we choose,
the quantity ϕ̃(D) is only defined modulo the period lattice

Γ :=

〈(∫
Ak

ω`

)
`=1,...,g

,

(∫
Bk

ω`

)
`=1,...,g

〉
ZZ

⊂ Cg .

Thus we obtain the Jacobi variety Jac(X) := Cg/Γ of X and by projecting the values
of ϕ̃ onto Jac(X) the Abel map ϕ : Divg(X)→ Jac(X) , where Divg(X) denotes the
space of positive divisors of degree g on X .

We need to generalize this construction for the spectral curve Σ . In particular we
need to deal with the fact that Σ is not compact, and its homology group is generally
infinite dimensional. In particular the space Cg occurring in the treatment of the
compact case as universal cover of the Jacobi variety will need to be replaced by an
infinite-dimensional Banach space, and the sum defining the Abel map will be an
infinite sum. To ensure its convergence, we will need to impose a condition on the
divisors we admit for the Abel map, and this condition is precisely the asymptotic
condition for the space Div given in Definition 4.1(1).

For the purposes of this summary paper, we will ignore the second complication that
would need to be addressed, namely that Σ can have singularities. In other words,
in the present and the following section we will always suppose that Σ does not have
any singularities and thus is a Riemann surface.

Let Σ be the spectral curve corresponding to some potential (u, uy) ∈ Pot satisfying
the above hypothesis. We enumerate the branching points of Σ by two sequences
(κk,1)k∈ZZ and (κk,2)k∈ZZ as in Theorem 3.2(1). Because Σ is a Riemann surface, we
have κk,1 6= κk,2 for all k ∈ ZZ . We now fix a homology basis for Σ : For k ∈ ZZ
we let Ak be a small, non-trivial cycle in Σ that encircles the pair of branch points
κk,1 and κk,2 of Σ , but no other branch points. For k 6= 0 there exists another cycle
Bk that encircles the branch points κk,1 and κk=0,1 , and no others. A final cycle B0

comes from the observation that
√
λ is a global parameter on Σ away from the branch

points. Because the Riemann surface associated to
√
λ has branch points in λ = 0

and λ = ∞ , we see that Σ also has branch points there, and thus there is another
non-trivial cycle B0 that encircles these two branch points. We choose the orientation
of all these cycles so that their intersection numbers satisfy Ak × A` = 0 = Bk × B`

and Ak × B` = δk` (Kronecker delta) for all k, ` . Then (Ak, Bk)k∈ZZ is a canonical
basis of the homology of Σ .

One can show that Σ is parabolic in the sense of Ahlfors and Nevanlinna (see
for example [FKT, Chapter 1]), and from this fact it follows that there exists a basis
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(ωn)n∈ZZ of the space Ω(Σ) ∩ L2(Σ, T ∗Σ) of square-integrable, holomorphic 1-forms
on Σ that is dual to the canonical basis of the homology (Ak, Bk) in the sense that∫
Ak
ωn = δk,n (Kronecker delta) holds. However, as it is described in [Kl, Chapter 17

and the first half of Chapter 18], for our specific situation with Σ being a spectral
curve, it is possible to give an explicit description of the ωn as a linear combination
of infinite products. This explicit description is useful because by its investigation one
can show that the ωn show a steeper descent towards zero for λ→ 0 and λ→∞ than
is expressed by the fact that they are square-integrable alone. This steeper asymptotic
behavior turns out to be crucial for the construction of the Abel map.

We consider the periods corresponding to the ωn , i.e. for k, n ∈ ZZ we let

α[k]
n :=

∫
Ak

ωn = δk,n and β[k]
n :=

∫
Bk

ωn .

Using the explicit description of the ωn that was mentioned above, it can be shown

(see [Kl, Theorem 18.7(1)]) that the β
[k]
n satisfy the asymptotic property(

β[k]
n · (κn,1 − κn,2)

)
n∈ZZ ∈ `

2
−1,3 for every k ∈ ZZ .

Thus we are led to consider the Banach space

J̃ac(Σ) := { (an)n∈ZZ
∣∣ an · (κn,1 − κn,2) ∈ `2

−1,3 }

with the norm

‖an‖J̃ac(Σ) := ‖an · (κn,1 − κn,2)‖`2−1,3
for (an) ∈ J̃ac(Σ) .

Then we have (α
[k]
n )n∈ZZ, (β

[k]
n )n∈ZZ ∈ J̃ac(Σ) for every k ∈ ZZ . For this reason we

use J̃ac(Σ) in the place of Cg in the construction of the Jacobi variety. It should

be mentioned that J̃ac(Σ) is a Banach space only under our hypothesis that Σ is
regular. In the more general case where Σ has singularities, ‖ · ‖J̃ac(Σ) is only a semi-

norm, and thus J̃ac(Σ) becomes only a topological vector space with the induced
(non-Hausdorff) topology.

We now fix an asymptotic divisor Do on Σ which will serve as the origin divisor
for the construction of the Abel map. To ensure that the infinite sum that will define
the Abel map converges, we need to restrict the integration paths we consider. For
this purpose we denote by C the set of sequences (γk)k∈ZZ where each γk is a curve
in Σ running from a point (λok, µ

o
k) ∈ Σ to another point (λk, µk) ∈ Σ , such that

(λok, µ
o
k)k∈ZZ equals the support of Do and the divisor D with support (λk, µk)k∈ZZ

is another asymptotic divisor; moreover for large |k| the curve γk winds around no
branch points of Σ but κk,1 and κk,2 , and there is a number mγ ∈ IN (depending
on γ but not on k ) so that the winding number of any γk around any branch point
of Σ′ is at most mγ . In this situation we call D the divisor induced by the sequence
of curves (γk)k∈ZZ . Every asymptotic divisor on Σ is induced by some (γk) ∈ C in
this sense.
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We let Γ be the abelian group corresponding to the periods of all closed loops in
C , i.e.

Γ :=

{∑
k∈ZZ

(ak α
[k] + bk β

[k])

∣∣∣∣∣ ak, bk ∈ ZZ
∃N,m ∈ IN ∀k ∈ ZZ, |k| > N : |ak| ≤ m, bk = 0

}
.

Then Γ is an abelian subgroup of J̃ac(Σ) . However, Γ is not a discrete subset

of J̃ac(Σ) ( 0 is an accumulation point of Γ ). Despite this fact we call Γ the period

lattice of Σ , and we call the topological quotient space Jac(Σ) := J̃ac(Σ)/Γ the Jacobi

variety of Σ . We denote the canonical projection map by π : J̃ac(Σ)→ Jac(Σ) .
The situation with Γ being non-discrete is similar to the one encountered by

McKean and Trubowitz in [MT] concerning the Jacobi variety for the integrable
system associated to Hill’s operator: There the period lattice is also not discrete in
the respective Banach space, and the Jacobi variety is compact (topologically, it is a
product of infinitely many circles) and therefore does not carry the structure of an
infinite dimensional manifold, see the discussion in [MT], p. 154.

The following statement is shown via a detailed asymptotic analysis of the integral∫
γk
ωn for (γk) ∈ C , again involving the result on the asymptotic descent of the ωn

near λ = 0 and λ =∞ , see [Kl, Sections 16, 17, and Theorem 18.5]: For (γk)k∈ZZ ∈ C
and n ∈ ZZ , the infinite sum

∑
k∈ZZ

∫
γk
ωn converges absolutely in C , and if we define

ϕ̃n : C→ C, (γk)k∈ZZ 7→
∑
k∈ZZ

∫
γk

ωn ,

we have (
ϕ̃n((γk))

)
n∈ZZ ∈ J̃ac(Σ) .

We thus define ϕ̃ : C→ J̃ac(Σ), (γk)k∈ZZ 7→
(
ϕ̃n((γk))

)
n∈ZZ .

We denote the space of asymptotic divisors on Σ by Div(Σ) and we let τ : C →
Div(Σ) be the surjective map that associates to each (γk)k∈ZZ ∈ C the divisor induced
by (γk) . Then there exists one and only one map ϕ : Div(Σ)→ Jac(Σ) with ϕ ◦ τ =
π ◦ ϕ̃ , i.e. so that the following diagram commutes (see [Kl, Theorem 18.7(2)]):

CDo

ϕ̃ //

τ

��

J̃ac(Σ)

π

��
Div(Σ) ϕ

// Jac(Σ)

We call ϕ the Abel map of Σ . It is clear that change of the origin divisor Do

corresponds to a linear transformation of ϕ (see [Kl, Theorem 18.7(3)]).

The space J̃ac(Σ) plays the role of a tangent space for the Jacobi variety Jac(Σ) .
In our setting where the period lattice Γ is not discrete, the tangent space of Jac(Σ)
is not unique however, and similarly as it is the case for Hill’s equation as studied by
McKean and Trubowitz in [MT], we need to pass to a larger tangent space so that
the flow of translations of the potential (which we will study via the Jacobi variety in
the following section) is tangential to Jac(Σ) . This corresponds to a larger space of
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curve tuples C(1) and a larger Banach space J̃ac
(1)

(Σ) . In fact McKean and Trubowitz
construct in [MT] an entire ascending family of tangent spaces for their Jacobi variety,
which correspond to the higher flows of the integrable system associated with Hill’s
equation. In our setting we cannot define more than the first extension described in
the following proposition, because our potentials are only once weakly differentiable,
in contrast to the infinitely differentiable potentials in [MT].

Explicitly, let C(1) be the set of sequences (γk)k∈ZZ where each γk is a curve in
Σ running from a point (λok, µ

o
k) ∈ Σ to another point (λk, µk) ∈ Σ , such that

(λok, µ
o
k)k∈ZZ equals the support of Do and the divisor D with support (λk, µk)k∈ZZ

is another asymptotic divisor; moreover for large |k| the curve γk winds around no
branch points of Σ but κk,1 and κk,2 and there is a number mγ ∈ IN (depending on
γ but not on k ) so that the winding number of any γk around any branch point or
puncture of Σ′ is at most mγ · |k| . Then we define the Banach space

J̃ac
(1)

(Σ) := { (an)n∈ZZ
∣∣ an · (κn,1 − κn,2) ∈ `2

−2,2 }
and the maps

ϕ̃(1)
n : C(1) → C, (γk)k∈ZZ 7→

∑
k∈ZZ

∫
γk

ωn .

Essentially in the same way as above one shows (see [Kl, Proposition 18.10]) that the

sum defining ϕ̃
(1)
n is still absolutely convergent and that

(
ϕ̃

(1)
n ((γk))

)
n∈ZZ ∈ J̃ac

(1)
(Σ)

holds for any (γk)k∈ZZ ∈ C(1) . Thus we obtain an extended Jacobi coordinate map

ϕ̃(1) : C(1) → J̃ac
(1)

(Σ), (γk)k∈ZZ 7→
(
ϕ̃(1)
n ((γk))

)
n∈ZZ .

Clearly J̃ac(Σ) ⊂ J̃ac
(1)

(Σ) and ϕ̃(1)|C = ϕ̃ holds.

8. Translations of divisors, and the asymptotic behavior of spectral
data for simply periodic solutions

We are now ready to describe the motion of the points of asymptotic divisors under
translation (in the sense explained at the beginning of Section 7) in terms of Jacobi
coordinates. For this purpose we continue to use the notations of the previous setting.
For spectral data (Σ, D) of a simply periodic solution u of the sinh-Gordon equation,
we denote by D(x) resp. D(y) the spectral divisor of the solution u translated in
x-direction resp. in y-direction (also see the discussion at the beginning of the previous
section). For the construction of the Abel map on the spectral curve Σ , we fix the
origin divisor as Do := D(0) = D .

In the sequel we will look at the derivatives ∂ϕn

∂x
and ∂ϕn

∂y
of the n-th Jacobi coor-

dinate ϕn . For these derivatives to make sense, we need to define Jacobi coordinates
ϕn of D(x) resp. D(y) at least for small |x| resp. |y| for all n ∈ ZZ . For this purpose
we write the support of D(x) as (λk(x), µk(x))k∈ZZ for small |x| and then consider
for fixed x and all k ∈ ZZ the curve γx,k : [0, x] → Σ, t 7→ (λk(t), µk(t)) . Because
the spectral map Pot → Div is asymptotically close to the Fourier transform of the
potential, γx=1,k winds |k| times around the pair of branch points κk,1 , κk,2 for
|k| large; it follows that we do not have (γx,k) ∈ C , but we do have (γx,k) ∈ C(1) .
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Therefore we can define Jacobi coordinates for the translation in x-direction in the
vicinity of D(0) by

ϕn(x) := ϕ̃(1)
n (γx,k) for n ∈ ZZ .

A similar construction applies for the translation in y-direction; here it is relevant that
for large |k| the divisor point (λk(y), µk(y)) remains close to the pair of branch points
κk,1 , κk,2 for sufficiently small |y| because the asymptotic estimates then apply to
the translated potentials uniformly.

We denote by ∂ϕn

∂x
resp. ∂ϕn

∂y
the derivative of the Jacobi coordinate ϕn(x) resp. ϕn(y)

with respect to x resp. y .
The following theorem expresses that like in the finite-type setting, also in our

present situation where the spectral curve is of infinite geometric genus, the transla-
tions of the divisor correspond to linear motions in the Jacobi variety.

Theorem 8.1. There exist sequences axn, a
y
n ∈ `2

−1,−1 (dependent only on the spectral
curve Σ ) so that under translation of the potential u in the direction of x resp. y ,
the Jacobi coordinates ϕn (n ∈ ZZ ) follow the differential equations

∂ϕn
∂x

= n+ axn ,

∂ϕn
∂y

= −i|n|+ ayn .

Moreover we have axn = 0 for |n| large, and for every n ∈ ZZ , ∂ϕn

∂x
corresponds to a

member of the period lattice, i.e. there exists a cycle Zn of Σ so that ∂ϕn

∂x
=
∫
Zn
ωn

holds.

The statement that ∂ϕn

∂x
is a member of the period lattice of Σ corresponds to the

fact that the solution u of the sinh-Gordon equation is periodic in the x-direction.
This is why there is no analogous statement for ∂ϕn

∂y
in general.

At the heart of the proof of Theorem 8.1, which is detailed in [Kl, Section 19], is a
general construction of linear flows in the Picard variety of a Riemann surface X (the
space of isomorphy classes of line bundles on X ) known as the Krichever construction.
In fact it turns out that the vector fields ∂ϕn

∂x
and ∂ϕn

∂y
can be constructed on Σ via

the Krichever construction by marking the points λ = 0 and λ =∞ and prescribing
suitable Laurent series with poles of order 1 around these points.

Because solutions of the sinh-Gordon equation are real analytic on the interior of
their domain of definition, we expect that spectral data (Σ, D) corresponding to
simply periodic solution of the sinh-Gordon equation on a horizontal strip of positive
height to have a far better asymptotic behavior than the relatively mild asymptotic
law for spectral data of potentials (u, uy) ∈ Pot with merely u ∈ W 1,2([0, 1]) and
uy ∈ L2([0, 1]) that was found in Theorem 3.2. More specifically, we expect both the
distance of branch points κk,1 − κk,2 of the spectral curve Σ and the distance of the
corresponding spectral divisor points to the branch points to fall off exponentially for
k → ±∞ . The following theorem shows that our expectations are correct:
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Theorem 8.2. Let y0, ε > 0 , X = { z ∈ C
∣∣ | Im(z)| < y0 + ε } the horizontal strip in

C of height 2(y0+ε) , and u : X → C be a simply periodic solution of the sinh-Gordon
equation ∆u+ sinh(u) = 0 . We let Σ be the spectral curve corresponding to u (with
branch points κn,ν , and κn,∗ := 1

2
(κn,1 + κn,2) ) and let D := {(λn, µn)}n∈ZZ be the

spectral divisor of u with the starting point z0 = 0 .
Then there exists a constant C > 0 and a sequence (sn)n∈ZZ ∈ `2

0,0 of real numbers
so that

|κn,1 − κn,2| ≤ C e−2π (1−sn) |n| y0 ,

|λn − κn,∗| ≤ C e−2π (1−sn) |n| y0 ,

and |µn − (−1)n| ≤ C e−π (1−sn) |n| y0 .

The proof of this theorem is described in [Kl, Section 20]. It is based on the de-
scription of the flow of the Jacobi coordinates under translations in Theorem 8.1, in
conjunction with a careful analysis of the asymptotic behavior of the Abel map.
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