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Abstract: Dairy powder breakage has always occurred during production and transportation 

though few studies on it have been published. This paper examines the breakage of infant 

formula using three different processing methods (laboratory high-speed mixing, lab-scale 

pneumatic conveying, and factory-scale blending) and the effect of breakage on powder 

properties. In both mixing and high-velocity pneumatic conveying, particles were broken into 

smaller entities and the particle size of samples significantly decreased. Particle breakage was 

accompanied by a significant decrease in porosity and increase in density and surface free fat. 

This in-turn decreased the rehydration properties of samples, especially for high-speed mixing, 

while breakage had only a small influence on powder flowability. By contrast, some 

agglomeration occurred during blending for short time in the blender and the particle size did 

not decrease (P>0.05) even for blending at longer time, thus, there were only minor impacts 

on physical and functional properties of powders.

Keywords: Dairy powder breakage; Physical characteristics; Rehydration properties; 

Flowability; Specific bulk volume; Powder compressibility

1. Introduction

The production of dairy powders is growing rapidly worldwide. Several physical 

characteristics, including particle size, density, porosity, morphology, surface, and adsorption 

properties, are important to powder functionalities (Bronlund and Paterson, 2004; Fitzpatrick 

et al., 2004; Fu et al., 2012). There are many factors influencing these properties, from 

composition, production processes, transportation, to storage conditions (Finney et al., 2002; 

Ji et al., 2016b; Langrish et al., 2006; Sharma et al., 2012). Currently, most studies on factors 

influencing dairy powder characteristics have mainly focused on the ingredients, the 

parameters during homogenization and spray drying, but ignored powder changes caused by 

mechanical forces. Particle breakage will occur after spray drying due to mechanical forces 

acting on the powder during the post-drying and transportation processes. There are very few 

published works on the breakage of dairy powders. Boiarkina et al. investigated the breakage 

of instant whole milk powder in two different industrial plants with different transport 

systems, i.e. a pneumatic conveying system, and a bucket elevator (Boiarkina et al., 2016). 
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Hanley investigated the disintegration of infant formula agglomerates with large particle sizes 

between 710 μm and 850 μm during pneumatic conveying (Hanley, 2011). 

Particle breakage is the disintegration of powder particles caused by mechanical loads, such 

as impact, shear, and compression/crushing, which is the result of particle-particle and 

particle-equipment interactions (Aarseth, 2004; Zhao et al., 1999). Currently, research on 

particle breakage has mainly focused on the pharmaceutical industry, mining industry, 

catalysts chemical industry using numerical modeling combined with different types of single 

particle breakage tests (Deng and Davé, 2017; Dosta et al., 2016; Gupta et al., 2017; Gupta, 

2017; Norazirah et al., 2016; Shan et al., 2018). There are three breakage mechanisms based 

on the resulting size distribution of child particles: fragmentation/damage, chipping/attrition, 

and fracture (Aarseth, 2004; Ghadiri and Zhang, 2002; Lawn and Swain, 1975). If the 

breakage is excessive, it can lead to a number of serious consequences including but not 

limited to an increase in dust generation (Kalman and Goder, 1998; Oveisi et al., 2013; 

Salman et al., 2002; Wu and Wu, 2017) and loss in functionality and product performance 

(Bemrose and Bridgwater, 1987; Boiarkina et al., 2016; Zumaeta et al., 2005). Specifically, 

fine dust produced may lead to air pollution and plugging of processing equipment, increased 

possibility of dust explosions, loss of product through the production of undersized particles. 

In addition, unwanted changes in bulk density may cause error in volumetric dosing processes, 

worsen wetting and dissolution properties, and influence the surface-sensitivity of catalytic 

particles. Particle size is an essential and important property for dairy powders (Li et al., 

2016b). Thus, particle breakage is a problem that cannot be ignored in dairy powder 

production. However, only a few studies about dairy powder breakage have been published 

and none have investigated the dairy powder breakage patterns.

The objective of this study is to investigate the breakage of commercial agglomerated 

infant formula using three processing methods, lab-scale pneumatic conveying, laboratory 

high-speed mixing and factory-scale blending. At the same time, the influences of breakage 

on physical properties and functional properties (rehydration, powder flowability, and specific 

storage volume) of infant formula were investigated. The aim is to build a better 

understanding of dairy powder breakage and its influence.
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2. Material and methods

2.1 Materials 

Two batches of Cow and Gate “follow on milk stage 2” infant milk formulas were 

purchased from a local pharmacy (Cork, Ireland) to complete all the experiments. The 

nominal composition was 56.4% lactose, 20.4% fat, and 9.5% protein in this infant formula. 

2.2 Equipment and powder breakage sample preparation 

An isometric view of the lab-scale pneumatic conveyor (Hanley, 2011) and photos of the 

inside of the laboratory high-speed mixer (Waring, USA) and the factory-scale blender 

(Forberg, F-20, Norway) are presented in Figure 1. Samples were placed in the mixer 

operated at 22,000 rpm for three different durations of 1 min, 2 min, and 7 min (termed 

HSM1, HSM2, and HSM7). Other samples were placed in the Forberg blender for the 

duration of 15 min, 30 min, and 70 min (termed FB15, FB30, and FB70). The processing 

capacities for mixer and blender were 100 g and 1,600 g, respectively. Samples just covered 

the blade of the mixer and the level of the powder was in the middle of the blade in the 

blender. 

The second batch of infant formula samples was blown through the pneumatic conveyor 

with an air velocity of 40 m/s and 50 m/s (termed PC40 and PC50) and feeding rate of 3.0 g/s. 

The diameter of the conveyor was constant at 25 mm, except for a 50 mm diameter terminal 

section (length was 150 mm). There were two horizontal sections linked to a vertical section 

(length was 960 mm) by two 90º bends (bend radii was 300 mm). The pressure of the 

compressed air was controlled to provide different air velocities which were measured with an 

airflow meter (Nixon NL/MIN AIR @ 7 bar’G 1.293kg/m3 20ºC) after the vertical section. 

Samples were poured into the air stream using a funnel and collected into a 10 L powder 

capture with a filter on the top of the capture in order to let the compressed air come out.

It should be noted that the samples used in this study were a packaged product that had 

most likely already undergone breakage during its handling from spray drying through to 

packing and thus this powder was more resistant to breakage than the original spray-dried 
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powder. Therefore, the processing conditions described above are relatively severe and were 

selected to ensure breakage could be expected.

2.3 Particle size distribution and specific surface area

The particle size distribution (PSD) and specific surface area (SSA) were measured by laser 

light scattering using a Malvern Mastersizer 3000 (Malvern Instruments Ltd., Worcestershire, 

UK). Compressed air at 0.2 bar was used to transport and disperse powders through the 

optical cell.  Measurements were performed in triplicate.

2.4 Bulk density, particle density, and porosity

Loose bulk density (ρb) and tapped (100 taps) bulk density (ρtapped) of all samples were 

measured using a Jolting volumeter (Funke Gerber, Berlin, Germany) as per analytical 

methods (Niro, 2006b) from GEA Niro (Gesellschaft für Entstaubungsanlagen, Germany). 

Particle density (ρp) was measured based on GEA Niro (Niro, 2006d) using a Gas Pycnometer 

(Accupyc II 1340 Gas Pycnometer, Micromeritics Instrument Corporation, USA). The 

interparticle porosity (ε) is defined as the fraction of air or void space in the tapped bulk 

volume (Sharma et al., 2012) and was evaluated from Eq. (1).

                             Eq. (1)𝜖 = 1 ―
𝜌𝑡𝑎𝑝𝑝𝑒𝑑

𝜌𝑝

2.5 Scanning electron microscopy (SEM)

The SEM (Zeiss-Supra 40 VP/Gemini Column, Carl Zeiss, Germany) was employed to 

observe the morphology of the samples at 2.00 kV. Samples were mounted on carbon 

adhesive discs attached to SEM specimen stubs and coated with gold ions in a sputter coater 

(K575X Sputter Coater, Quorum Technologies, UK). 

2.6 Surface free fat content

The surface free fat (SFF) content of milk powder was measured as per GEA Niro (Niro, 

2006c), which is based on the extraction of the fat on the surface of particles. 

1 2.7 Rehydration properties
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2 2.7.1 Wettability - contact angle

3 Dynamic contact angle was used to quantify the wetting process. This was monitored by an 

4 optical Tensiometer (Attention Theta, Biolin Scientific Ltd., Espoo, Finland) using the sessile 

5 drop spread wetting procedure (Ji et al., 2016a). A powder bed with a smooth surface was 

6 formed by passing a leveler across the surface. A set volume of 10 mL deionized water 

7 droplet was gently dropped onto the surface of the powder bed at room temperature. The 

8 contact angle was recorded as a function of penetrating time which had a total duration of 600 

9 s. Measurements were repeated five times. 

10 2.7.2 Dispersibility – dispersibility index

11 The dispersibility index (DI) of samples was measured as per GEA (Niro, 2006a). The use 

12 of DI is the traditional standard method to measure the percentage of dry matter that passes 

13 through a sieve (180 μm) after mixing for a short time. All the measurements were repeated 

14 three times. In this study, 25 g infant formula sample was added into a 600 mL beaker with 

15 250 mL deionized water at 37 ºC and then mixed vigorously with a spatula for exactly 20 s 

16 making 20 full strokes along the diameter of the beaker in both directions. The reconstituted 

17 samples were then poured onto the 180 μm sieve and the samples that passed through the 

18 sieve were collected for further measurement of dry matter content. The DI was calculated as 

19 Eq. (2):  

20                                Eq. (2)𝐷𝐼 =
𝑊𝑑 × (100 + 𝑊)

𝑤 ×
100 ― 𝑊𝑚

100

21 where w is the weight of the sample, Wd (%, w/w) is the dry matter, Wm (%, w/w) is the free 

22 moisture content of the powder. All the measurements were repeated three times.

23 2.8 Powder flowability - flow function test 

24 The flowability of the powder samples was assessed by measuring their flow function. 

25 Powder flow functions were quantified and analyzed by the powder flow tester (PFT) 

26 (Brookfield Engineering Laboratories, Inc., Middleboro, MA, USA) using the standard flow 

27 function test. Samples were filled into the aluminum trough (with the internal diameter 15.2 

28 cm) of the annular shear cell at room temperature. The axial and torsional speeds for the PFT 

29 were 1.0 mm/s and 1 rev/h, respectively. The uniaxial normal stresses applied were between 

30 0.2 and 4.8 kPa. 

31 2.9 Bulk density under consolidation
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32 Bulk density and its variation under consolidation load is an important property of a 

33 powder. The PFT was used to measure the bulk density of the powders at the consolidation 

34 stresses used in section 2.8 above. The compressibility index (CI) indicates the extent to 

35 which the volume of a powder sample changes under a compressive load and it is used for 

36 analyzing the compressibility of powders during storage (Bhandari et al., 2013; Ji et al., 2017). 

37 The CI was calculated from Eq. (3):

38                           Eq. (3)𝐶𝐼(%) =
𝜌𝑐 ― 𝜌𝑏

𝜌𝑐
× 100

39 where ρb is the loose bulk density without compressing; ρc is the compressed bulk density at 

40 4.838 kPa major principle consolidation stress. All the measurements were repeated in 

41 triplicate. 

42 2.10 Statistical analysis

43 Results were expressed as mean ± standard deviation (SD). One-way analysis of variance 

44 (ANOVA), followed by Turkey’s test, was used to determine the significant differences 

45 (SPSS, IBM, USA). A significance level of P < 0.05 was used throughout the study. 

46 3. Results and discussion

47 Breakage directly affects powder particle size and other physical properties, and as a 

48 consequence, may influence its functional properties, such as the ability to rehydrate, flow 

49 properties and specific storage volume. 

50 3.1 Powder physical properties

51 3.1.1 Particle size and specific surface area

52 The particle size and SSA of samples are shown in Figure 2 and Table 1, respectively. 

53 After breakage, the particle size of PC and HSM samples was significantly smaller than that 

54 of control samples (P<0.05). Meanwhile, with the increase of treatment time (in the HSM 

55 group) or air velocities (in the PC group), the particle size decreased gradually. For the 

56 pneumatic conveyor, particle size fell from 126 μm to 117.3 μm (at a conveying speed of 40 

57 m/s) and to 109.3 μm for a speed of 50 m/s. For the high-speed mixer, breakage was 

58 significant too with particle size falling from 143 μm progressively to 65.4 μm for 

59 lengthening mixing times. The significant differences in SSA were also found in those two 

60 groups (P<0.05) and SSA increased with the decrease of particle size. The SSA was doubled 

61 after breakage for 7 min by the high-speed mixer. By contrast, powder in the Forberg blender 

62 was relatively unaffected by breakage with marginal changes in mean size for different 
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63 blending times (P>0.05); particle size increased slightly for short blending times but then fell 

64 back at longer times.

65 In order to further investigate the breakage patterns of samples during the three processing 

66 methods, the percentage change in three different sizes, D10, D50 and D90 for each system and 

67 condition and PSD plots were analyzed and shown in Figure 3 and Figure 4, respectively. The 

68 HSM and PC samples had much higher decreased ratios than FB samples, which illustrates 

69 that particles of HSM and PC group disintegrated much more than the FB group of particles. 

70 In pneumatic conveying, there was a similar decrease in all these sizes; a 5% decrease at 40 

71 m/s and a 13% decrease at 50 m/s. This implies that all particles broke proportionally and the 

72 dispersion in size remained approximately the same. For the mixer, longer mixing times 

73 produced increasingly larger changes in these three size points ranging from 14% at the 

74 shortest time to over 45% at the longest time and their PSD plots shifted towards smaller 

75 values. Meanwhile, for this device, the D10 size always experienced a larger decrease than the 

76 D50 and D90 (P<0.05), which means all particles were broken with the production of more fine 

77 particles. The breakage during mixing and pneumatic conveying is typically associated with 

78 high-magnitude loading conditions, where the stresses applied to the particle exceed the 

79 particle strength and generate free surface area (Kotzur et al., 2018). On the contrary for the 

80 Forberg blender, the D10, D50 and D90 of FB15 and FB30 were slightly increased compared to 

81 their control sample. This result might be because some agglomeration occurred resulting in 

82 the decrease of fine particles and a slight increase of particle size.

83 Particle size is an important characteristic of dairy powder as it is closely related to many 

84 other characteristics, such as appearance, rehydration, flowability, and density (Fitzpatrick et 

85 al., 2004; Sharma et al., 2012). The SSA values might affect the water sorption behaviors as 

86 the large surface area of particles meant more area for water molecules to attach. 

87 3.1.2 Bulk density, particle density, and porosity

88 The density and porosity values of samples are shown in Table 1. Powder bulk density is 

89 used for calculating the volumetric capacity of packing materials. It was shown that the bulk 

90 density of most broken samples significantly increased compared to control samples, and the 

91 porosity significantly decreased (P<0.05). After breakage, small particles that were broken 

92 from the original particles possibly filled void spaces between large particles, which caused 

93 the increase of the bulk density and the decrease of the porosity. The bulk density and 

94 porosity of some FB samples also changed (P<0.05), which suggests that blending did 

95 influence structure even though the particle size did not decrease. 
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96 Particle density is the mass per unit volume of a particle, excluding the open pores but 

97 including the closed pores (Sharma et al., 2012). After breakage, the particle density of PC 

98 and HSM samples increased (P<0.05). The SEM micrographs of some samples are shown in 

99 Figure 5. From micrographs, there were a lot of pores inside particles. Thus, the breakage did 

100 not only break solid bridges within agglomerated particles resulting in decreased particle size 

101 and increased bulk density, but also broke primary particles exposing internal stomata leading 

102 to the increase of the particle density.

103 3.1.3 Surface free fat 

104 The surface free fat (SFF) content of samples is shown in Table 1. After breakage, the SFF 

105 of some samples were significantly increased (P<0.05), especially for HSM samples, PC50 

106 and FB70. Meanwhile, the SFF increased gradually with the increase of the processing time. 

107 HSM7 had the highest SFF, 1.88±0.04%, which was four times more than the control sample. 

108 Powder particles generally consist of a continuous mass of amorphous lactose and other 

109 components in which fat globules and proteins are embedded (Sharma et al., 2012). The 

110 unprotected fat on particles covers the outermost surface and, beneath it fat bound to protein 

111 or proteins is present (Kim et al., 2003; Nijdam and Langrish, 2006). Particle breakage 

112 produced more surface area and liberated more free fat, which resulted in an increase of the 

113 SFF. The increase in SFF of the Forberg blender samples might be because the inter-particle 

114 contact was sufficient to break fat globules on the surface. At the same time, it might explain 

115 the small increases in particle size as the fat acts as a binder inducing some agglomeration. 

116 The increase of the SFF might affect the rehydration properties, especially for the wettability, 

117 as the SFF influences the surface hydrophobicity of powders.

118 3.2 Rehydration properties 

119 3.2.1 Wettability - contact angles

120 Wettability is the ability of particles to imbibe a liquid and overcome the surface tension 

121 between them based on the capillary force (Forny et al., 2011; Ji et al., 2015; Ji et al., 2016a; 

122 Richard et al., 2013). The contact angle is usually used as a primary parameter to indicate the 

123 degree of the wetting process with a small contact angle (θ < 90º) representing good 

124 wettability and a large angle (θ > 90º) corresponding to poor wettability (Yuan and Lee, 2013). 

125 It is important to monitor the change of contact angle until reaching an equilibrium angle to 

126 quantify the wettability of powders as wetting behavior is a dynamic procedure (Crowley et 

127 al., 2015). The penetrating time for water droplets to disappear and curves of contact angle as 

128 a function of penetrating time are shown in Figure 6. There was no significant difference in 

129 the penetrating time between FB samples, and water droplets were absorbed in 0.75 s. For 
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130 PC40 and PC50 samples, droplets took 1.94 and 2.95 s to disappear, respectively; while the 

131 PC0 sample took around 0.94 s. These significant differences(P<0.05) mean when the air 

132 velocity is high enough, pneumatic conveying samples have poorer wettability compared to 

133 the control sample. The HSM samples exhibited extremely poor wetting behaviors with 

134 penetration times of 4 s, 35 s, and 5 min for HSM1, HSM2, and HSM7, respectively. Figure 

135 6B also showed that the changes in contact angles of PC and HSM samples were significantly 

136 slower than that of control samples. Thus, broken samples had poor wettability compared to 

137 control samples and as the degree of breakage increased, the wettability became worse. 

138 There are two steps for the wetting process of powders. The first step is the replacement of 

139 gas by water so the interface of powder-gas is replaced by the interface of powder-water. 

140 Secondly, inward diffusion of the liquid occurs through the capillary structures of the porous 

141 powder particle (Yuan and Lee, 2013). It is usually believed that wettability improves with 

142 larger particle size with higher bed porosity (Hogekamp and Schubert, 2003). The significant 

143 decrease of the particle size and porosity, as well as the increase of the SFF, especially for the 

144 HSM samples, is most likely the main reason for the poor wettability. Lower porosity with a 

145 small capillary radius between particles and greater surface hydrophobicity due to higher SFF 

146 inhibited water penetration into the powders, thus slowing down the wetting process.

147 3.2.2 Dispersibility - dispersibility index

148 Dispersibility is also an important step in the rehydration process, as it is necessary for 

149 particles to be dispersed into the liquid before dissolving (Galet et al., 2004; Goalard et al., 

150 2006). Figure 7 illustrates the influence of breakage on the DI of samples. For PC and HSM 

151 samples, the DI significantly decreased compared to control samples and decreased gradually 

152 with the increase of treatment time. While, for FB samples, there was no significant 

153 difference between the DI. The substantial decrease of particle size and porosity, and 

154 increased SFF might be the reason for the deterioration of the dispersibility of broken samples 

155 by slowing down the penetration of water into the powder.

156 3.3 Flow properties

157 For spray-dried dairy powder, the flow properties are very important in handling and 

158 processing operations (Kim et al., 2005; Peleg, 1977). The measured powder flow functions 

159 are presented in Figure 8. The flow functions show that all powder samples were essentially 

160 easy-flowing. It also shows that breakage had only a small influence on the flow functions. 

161 For the PC and HSM samples, it shows that breakage resulted in a small reduction in powder 

162 flowability. However, the FB powders displayed the poorest flowability relative to the others, 

163 even though there was little or no breakage.
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164 Flow properties of dairy powders depend on their composition, in particular surface 

165 composition and physical characteristics, such as particle size distribution, porosity, particle 

166 shape, surface properties, and water content (Crowley et al., 2014; Janjatović et al., 2012; 

167 Kim et al., 2005). The SFF of powders increased after breakage, which could be one of the 

168 reasons for the small decrease in powder flowability. SFF influences powder stickiness and 

169 liquid fat can form liquid bridges between individual particles reducing flowability (Kim et al., 

170 2005; Peleg, 1977; Sharma et al., 2012). Furthermore, particle size decreased and bulk density 

171 increased after breakage, which meant more particle surface area was available for cohesive 

172 and frictional forces to resist flow. Thus powder flowability was reduced. However, overall, 

173 the powder flow functions showed that the powder breakage observed did not have a major 

174 impact on powder flowability. 

175 3.4 Specific bulk volume and powder compressibility 

176 The specific bulk volume and how it is influenced by consolidation is an important powder 

177 functionality, as it influences the storage volume required to store a given mass of powder. 

178 Furthermore, for infant formula, the specific bulk volume influences the size of product 

179 containers and the scoop volume requirement for the preparation of infant milk (Hanley, 2011; 

180 Li et al., 2016a). The loose specific bulk volume is presented in Table 2 (This is the inverse of 

181 loose bulk density). It shows that the breakage occurring during pneumatic conveying and 

182 high-speed mixing significantly reduced the specific bulk volume requirement by about 3 to 

183 11%. It also shows little or no reduction in specific bulk volume for the Forberg blender, as 

184 there was little or no breakage. 

185 Figure 9 shows how bulk density varies for the different powder samples under 

186 consolidation. As expected, consolidation resulted in higher bulk densities for all the samples. 

187 Like the loose powder case, Figure 9 shows that breakage resulted in higher bulk densities for 

188 all consolidations. This shows that breakage resulted in reduced specific bulk volume 

189 requirements under consolidations tested. 

190 The compressibility index (CI) was calculated using the bulk density data (at 4.838 kPa 

191 major principle consolidation stress). A high CI indicates the potential for high 

192 compressibility of powders during storage or transportation (Crowley et al., 2014). Table 2 

193 presents the CI of the different powder samples, which shows values mainly in the range of 

194 26 to 29%, due to increases in bulk density during consolidation. Table 2 also shows that 

195 there was no significant relationship between breakage and the CI of the samples, which 

196 means that breakage had no influence on the compressibility of samples, even with the 

197 significant decrease in particle size and porosity. This is in-part due to the definition of CI in 
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198 Eq. (3). Even though the compressed bulk density (ρc) is higher with greater breakage, the 

199 loose bulk density (ρb) is also higher, resulting in no clear relationship between breakage and 

200 CI.

201 4. Conclusion

202 A study was performed on the particle breakage of commercial infant formula during three 

203 different processing methods (lab-scale pneumatic conveyor, laboratory high-speed mixer and 

204 Forberg blender), and how the breakage influenced the powder physical properties and 

205 functional properties (rehydration, flowability, and storage volume). The Forberg blender had 

206 a relatively small effect on particle size, even for very long blending times, but it did cause a 

207 gradual increase in SFF content, which may explain the small increases in average particle 

208 size observed. There were only minor impacts on the physical and functional properties of 

209 powder blended in the Forberg blender due to the minor changes in particle size. 

210 Significant particle breakage occurred in the pneumatic conveyor and the high-speed 

211 laboratory mixer, and the longer or the more intense the processing, the greater was the 

212 breakage. Particle breakage was accompanied by an increase in SFF content and bulk density. 

213 This in-turn impacted on powder rehydration in particular. Particle breakage caused a major 

214 reduction in powder wettability, especially for the high-speed mixer at longer times where 

215 much breakage occurred. This was most likely due to the combined effect of increased SFF 

216 and smaller particle size. These results emphasize the importance of controlling breakage 

217 levels in processing to maintain rehydration properties. Particle breakage increased bulk 

218 density, which in-turn reduced specific bulk storage volume by about 3 to 11%. Breakage in 

219 the high-speed mixer and pneumatic conveyor did not have a major impact on powder 

220 flowability, where there was only a minor negative impact observed.
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Figure1. An isometric view of the lab-scale pneumatic conveyor (A) and the inside of the Forberg 

blender (B) and laboratory high-speed mixer (C).
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Figure 2. The particle size ([D3,2]) of powder samples. PC: broken by pneumatic conveying under the 

air velocity of 40 m/s and 50 m/s. FB: broken by the Forberg blender for 15 min, 30 min, and 70 min. 

HSM: broken by the laboratory high-speed mixer for 1 min, 2 min, and 7 min. Different a-d values 

within each group (PC, FB and HSM) are significantly different at P<0.05.
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Figure 3. Percent decreases in different kinds of particle sizes (D10, D50, and D90) of samples. D10, D50, 

and D90 mean 10%, 50%, and 90% of the sample are below this diameter, separately. PC: broken by 

pneumatic conveying under the air velocity of 40 m/s and 50 m/s. FB: broken by the Forberg blender 

for 15 min, 30 min, and 70 min. HSM: broken by the laboratory high-speed mixer for 1 min, 2 min, 

and 7 min. Different a-c values within each group (PC, FB and HSM) are significantly different at 

P<0.05.
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Figure 4. The particle size distribution plots of samples. PC: broken by pneumatic conveying under 

the air velocity of 40 m/s and 50 m/s; FB: broken by the Forberg blender for 15 min, 30 min, and 70 

min. HSM: broken by the laboratory high-speed mixer for 1 min, 2 min, and 7 min.
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Figure 5. The SEM micrographs of control powder sample (A-B) and broken samples by the 

laboratory high-speed mixer for 7 min (C-F).
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Figure 6. A: The penetrating time takes for water droplets to be absorbed. B: The change of contact 

angle as a function of penetrating time in approx. 20 ºC temperature. PC: broken by pneumatic 

conveying under the air velocity of 40 m/s and 50 m/s. FB: broken by the Forberg blender for 15 min, 

30 min, and 70 min. HSM: broken by the laboratory high-speed mixer for 1 min, 2 min, and 7 min. 

Different a-c values within each group (PC, FB and HSM) are significantly different at P<0.05.

 

 

 

Journal Pre-proof



Figure 7. Dispersibility index for samples. PC: broken by pneumatic conveying under the air velocity 

of 40 m/s and 50 m/s. FB: broken by the Forberg blender for 15 min, 30 min, and 70 min. HSM: 

broken by the laboratory high-speed mixer for 1 min, 2 min, and 7 min. Different a-d values within 

each group (PC, FB and HSM) are significantly different at P<0.05.
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Figure 8. Unconfined strength as a function of major principal consolidating stress for infant formula 

samples. PC: broken by pneumatic conveying under the air velocity of 40 m/s and 50 m/s. FB: broken 

by the Forberg blender for 15 min, 30 min, and 70 min. HSM: broken by the laboratory high-speed 

mixer for 1 min, 2 min, and 7 min.
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Figure 9. Bulk density as a function of major principal consolidating stress for infant formula samples. 

PC: broken by pneumatic conveying under the air velocity of 40 m/s and 50 m/s. FB: broken by the 

Forberg blender for 15 min, 30 min, and 70 min. HSM: broken by the laboratory high-speed mixer for 

1 min, 2 min, and 7 min.
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Highlights

 High-speed mixing and pneumatic conveying caused significant breakage of agglomerated 

infant formula

 Powder breakage caused increased bulk density and surface free fat

 Powder breakage decreased the rehydration properties of powders, but had only a small 

influence on powder flowability

 Factory-scale blending had little influence on physical properties of agglomerated infant 

formula
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Table1. Properties of infant formula samples.

Samples SSA 

(m²/kg)

Bulk density 

(Kg/L)

Particle density 

(Kg/L)

Porosity 

(%)

SFF(%)

PC0 47.6c±0.8 0.492c±0.003 1.2571b±0.0008 55.80a±0.08 1.183b±0.012

PC40 51.2b±0.8 0.506b±0.001 1.2619a±0.0008 53.47b±0.03 1.238ab±0.029

PC50 55.0a±0.3 0.517a±0.001 1.2627a±0.0053 52.50c±0.02 1.308a±0.001

FB0 42.0a±0.7 0.532b±0.003 1.2119c±0.0004  50.89a±0.03 0.460d±0.018

FB15 40.2ab±0.9 0.532b±0.005 1.2199a±0.0007 50.30b±0.03 0.503c±0.001

FB30 39.0b±0.4 0.541ab±0.009 1.2125c±0.0002 50.87a±0.11 0.569b±0.004

FB70 42.3a±1.5 0.555a±0.006 1.2185b±0.0005 48.81c±0.12 0.645a±0.003

HSM0 42.0d±0.7 0.532c±0.003 1.2119d±0.0004 50.89a±0.03 0.460d±0.018

HSM1 54.8c±0.8 0.580b±0.007 1.2203c±0.0003 45.64b±0.15 0.947c±0.019

HSM2 62.6b±1.3 0.586b±0.006 1.2285b±0.0005 45.15c±0.06 1.233b±0.039

HSM7 91.8a±0.6 0.600a±0.005 1.2311a±0.0004 44.88c±0.14 1.884a±0.041

1. PC: broken by pneumatic conveying under the air velocity of 40 m/s and 50 m/s. FB: broken by the 
Forberg blender for 15 min, 30 min, and 70 min. HSM: broken by the laboratory high-speed mixer for 1 
min, 2 min, and 7 min. 

2. Values are mean ± standard deviation (n=3).
3. a-d different values within columns in each group (PC, FB and HSM) are significantly different at P<0.05.
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Table 2. Loose specific bulk volume and compressibility index of infant formula samples.

Samples Loose specific bulk volume (L/kg) CI (%)

PC0 2.031a±0.001 25.8a±0.7

PC40 1.976b±0.003 27.6a±0.4

PC50 1.934c±0.005 26.5a±0.1

  FB0 1.88a±0.01 26.5a±0.8

FB15 1.88a±0.02 28.3a±2.9

FB30 1.85a±0.03 28.4a±2.1

FB70 1.80b±0.02 28.9a±0.3

HSM0 1.88a±0.01 26.5a±0.8

HSM1 1.72b±0.02 25.6a±0.1

HSM2 1.71bc±0.02 29.3a±0.2

HSM7 1.67c±0.01 24.7a±0.3

1. PC: broken by pneumatic conveying under the air velocity of 40 m/s and 50 m/s. FB: broken by the 
Forberg blender for 15 min, 30 min, and 70 min. HSM: broken by the laboratory high-speed mixer for 1 
min, 2 min, and 7 min.

2. Values are mean ± standard deviation (n=3).
3. a-c different values within columns in each group (PC, FB and HSM) are significantly different at 

P<0.05.
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