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Combining Two Choice Functions
and Enforcing Natural Properties

Nic Wilson 1

Abstract. This paper considers the problem of combining two
choice functions (CFs), or setwise optimisation functions, based on
use of intersection and composition. Each choice function represents
preference information for an agent, saying, for any subset of a set of
alternatives, which are the preferred, and which are the sub-optimal
alternatives. The aim is to find a combination operation that main-
tains good properties of the choice function. We consider a family
of natural properties of CFs, and analyse which hold for different
classes of CF. We determine relationships between intersection and
composition operations, and find out which properties are maintained
by these combination rules. We go on to show how the most impor-
tant of the CF properties can be enforced or restored, and use this
kind of procedure to define combination operations that then main-
tain the desirable properties.

1 INTRODUCTION

Two of my colleagues, Ian and Jane, are heading for lunch, and need
to decide which canteen to choose. Jane says she’d be happy with
anywhere but Brookfield. Ian doesn’t want to walk too far. I would
like to help them with their decision making process, by suggesting
a set of options. There are some obvious ways of doing this. Firstly,
one could just consider the union of their preferred sets of options;
however, this is rather cautious, and it might well be better to narrow
down the options more. Instead one could consider the intersection
of their sets of options, i.e., the set of canteens which are close, ex-
cepting Brookfield. However, this set may be empty, i.e., there are no
such canteens currently available; in this case, one might instead re-
turn the union. Another approach is to give one of the agents priority,
e.g., Jane, so Ian gets to choose from all options except Brookfield.
Or, to be fairer, one could take the union of this set with that resulting
from giving Ian priority.

This paper considers this kind of task. Each of the two agents is
assumed to have an associated choice function (CF) that will return
a subset (their preferred options) of any set of alternatives, and we
would like to generate a combined CF. There are certain desirable
properties one would like for a CF, and therefore, we would like a
combination operation that maintains these properties.

Although we do not a priori make assumptions about the form
of the CF, our approach is mainly motivated by situations in which
the CF is not very definite, i.e., the options are typically reduced by
the CF, but not to a singleton set. An individual decision maker’s
preferences might be, for instance, a total pre-order over the set of
alternatives. However, we will often only have partial information
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about this, such as a number of constraints on the set of total pre-
orders based on the decision maker’s answers to preference elicita-
tion queries. So our choice function for that decision maker will be
based on this restricted set of total pre-orders, often represented im-
plicitly (and compactly) with a set of constraints.

We consider various ways that choice functions can be generated,
in particular, from partial information about a decision maker’s pref-
erences, and from a binary relation on the set of alternatives. We dis-
cuss a number of natural properties that one might expect of a choice
function, and we analyse which of these properties hold for different
forms of choice function. We show how desirable properties of a CF
can be enforced or restored.

We also analyse which of the properties are maintained by basic
combination operations: union, intersection and composition. In par-
ticular, we point out that the very natural intersection combination
operation can cause some of the natural properties to be lost. How-
ever, this issue can be dealt with by our restoration methods.

Section 2 gives the basic definitions and considers important prop-
erties that one might expect of a choice function. In Section 3, we
consider various important classes of CFs, related to different no-
tions of optimality. The basic combination operations of union, in-
tersection and composition are considered in Section 4, and in Sec-
tion 5 we analyse which of the properties of choice functions are
maintained by the basic combination operations. We consider how
to enforce (or restore) the desirable properties for a CF in Section 6,
and this is applied to combination operations in Section 7. Section 8
concludes.

2 DESIRABLE PROPERTIES OF CFS

We start with definitions of CFs, and then consider classic desirable
properties, along with some weaker versions of the properties.

2.1 Basic definitions of choice functions

Let Ω be a finite set, which is intended to represent a set of alter-
natives, i.e., alternative choices in a decision making problem. We
define a Choice Function (CF) Op over Ω to be a function from 2Ω

to 2Ω satisfying the following property:

(Sub): for all A ⊆ Ω, Op(A) ⊆ A.

In this paper, the main intended interpretation of a choice function
Op will be that it represents (what we know about) the preferred al-
ternatives (e.g., of some agent) in a particular decision making prob-
lem. For set of alternatives A ⊆ Ω, the set Op(A) represents the set
of optimal, i.e., best alternatives among A.



Given choice function Op over Ω, we also consider the comple-
mentary function Op over Ω, given by Op(A) = Ω \ A for A ⊆ Ω.
If Op(A) represents the optimal elements in A, then Op(A) is the
set of sub-optimal elements.

We define the identity function ID on 2Ω by ID(A) = A for all
A ⊆ Ω. This choice function we also refer to as the vacuous CF over
Ω, since, for all A it eliminates no alternatives: no alternative is sub-
optimal. For mathematical reasons, it is also helpful to consider the
null CF EMP on 2Ω defined by EMP(A) = ∅ for all A ⊆ Ω. This is
a choice function that always eliminates all the alternatives.

We define the fixed points Fix(Op) of choice function Op to be
{A ⊆ Ω : Op(A) = A}. These are the sets for which Op is equal to
the vacuous CF. If A ∈ Fix(Op) then Op is, in a sense, uninforma-
tive about A: none of elements of A are preferred to the others.

2.2 Properties and their relationships
Not all choice functions represent sensible decision making attitudes.
There are natural properties that one might assume on a CF. The main
properties of choice functions, that we focus on, are the following
three:

(NE): For non-empty A, Op(A) 6= ∅.
(SMA): If B ⊆ A then Op(A) ∩B ⊆ Op(B).
(IIA): If Op(A) ⊆ B ⊆ A then Op(A) = Op(B).

Property (NE) (being non-empty) might be viewed as a kind of
consistency requirement: that at least one alternative is optimal (i.e.,
not excluded). Mostly in the social choice literature, a (social) choice
function is defined to be a function 2Ω to 2Ω satisfying (Sub) and
property (NE). We consider functions not satisfying (NE) for a num-
ber of reasons; in particular, because this looser definition makes the
set of choice functions closed under intersection, and because certain
natural notions of optimality, such as being necessarily optimal, and
being possibly strictly optimal (see Section 3.1), do not satisfy (NE).

Property (SMA) can be more simply viewed in terms of the corre-
spond sub-optimality function, in the following equivalent form:

If B ⊆ A then Op(A) ⊇ Op(B).
That is, an element is sub-optimal inA if it is sub-optimal in a subset
of A. Sub-optimality is maintained if we add elements to A, which
is why we use the abbreviation (SMA).

In property (IIA), writing B as A \ C we obtain the following
equivalent form:

If C ⊆ A and Op(A) ∩ C = ∅ then Op(A) = Op(A \ C).
That is, if every element of C is sub-optimal in A, then deleting C
from A does not change the optimal elements. Thus, (IIA) is a form
of independence of irrelevant alternatives, hence the abbreviation.

These properties have been explored for (social) choice functions
including, for instance, their relationship with path independence
(union decomposition); see the survey article [16], and e.g., [1, 8].
Property (SMA) corresponds with Condition H of [1], Sen’s Condi-
tion α [18], and Moulin’s Chernoff Condition [16]. Property (IIA)is
called Condition 0 in [1] and relates with Moulin’s Aizerman prop-
erty [16]. It is shown in [1] that Path Independence is equivalent to
properties (SMA) and (IIA). In [22], computational properties are
analysed of choice functions satisfying properties (SMA) and (IIA).

In addition, we also consider the following weaker properties re-
lated to (SMA) and (IIA).

(IIAa): If Op(A) ⊆ B ⊆ A then Op(A) ⊇ Op(B).
(IIAb): If Op(A) ⊆ B ⊆ A then Op(A) ⊆ Op(B).

(Idem): Idempotence: Op(Op(A)) = Op(A).
(SIdem): Strong Idempotence: If A ⊆ Op(B) then Op(A) = A.

Clearly, property (IIA) is equivalent to the conjunction of proper-
ties (IIAa) and (IIAb). Property (IIA) is equivalent to (IIAa) if one
assumes (SMA), because (SMA) implies (IIAb).

Idempotence (Idem) is saying that the best elements among the
best elements in A are just the best elements in A. Idempotence of
Op is equivalent to the statement that its set of fixed points is equal
to the image of Op, i.e., Fix(Op) = {Op(A) : A ⊆ Ω}. (SIdem) is
a stronger form of idempotence, which additionally assumes that any
subset of a fixed point is a fixed point. One reason for considering
(SIdem) is that it is preserved under composition: see Lemma 7.

Property (SMA) implies strong idempotence; specifically, (SIdem)
corresponds to the cases of (SMA) when one adds the condition
Op(A) ⊇ B to the antecedent of (SMA). Similarly, (IIAb) corre-
sponds to the special case of (SMA) in which we additionally as-
sume Op(A) ⊆ B, and idempotence corresponds to the special case
in which Op(A) = B. Therefore, both (SIdem) and (IIAb) lie be-
tween (SMA) and idempotence.

Neither of (SIdem) or (IIAb) imply the other. Consider Op
over Ω = {a, b, c, d} defined by Op({a, b, c, d}) = {a, b}, and
Op({a, b, c}) = {a}, and for all other C ⊆ Ω, Op(C) = C.
This satisfies strong idempotence (SIdem), but not (IIAb), since
Op({a, b, c, d}) ⊆ {a, b, c} ⊆ {a, b, c, d}, and Op({a, b, c, d}) 6⊆
Op({a, b, c}). Below in Section 3.2 we give example of a choice
function that satisfies (IIAb) but not strong idempotence.

Some consequences of property (SMA)

Below we list some basic consequences of property (SMA).

Lemma 1 Suppose that Op is a choice function over Ω satisfying
property (SMA), and let Y and Z be arbitrary subsets of Ω. Then
(i) Op satisfies property (IIAb) and is strongly idempotent, and thus
also idempotent.
(ii) Op(Y ∩ Z) ⊇ Op(Y ) ∩Op(Z).
(iii) Op(Y ∪ Z) ⊆ Op(Y ) ∪Op(Z).

Regarding (iii), property (SMA) implies Op(Y ∪ Z) ∩ Y ⊆
Op(Y ) and Op(Y ∪Z)∩Z ⊆ Op(Z), so Op(Y ∪Z)∩ (Y ∪Z) ⊆
Op(Y ) ∪Op(Z). Condition (Sub) then implies (iii).

In particular, Lemma 1(iii) implies that Op−1(∅) is closed un-
der union, and so has a unique largest element (where Op−1(∅) =
{Z ⊆ Ω : Op(Z) = ∅}). Also, if Op(Z) = ∅ then for any Y ⊆ Ω,
Op(Y ∪ Z) ⊆ Op(Y ), so, in particular, Op(Y ∪ Z) ⊆ Y (by
Condition (Sub)). If we in addition have property (IIA) then we have
Op(Y ∪ Z) ⊆ Y ⊆ Y ∪ Z, so Op(Y ∪ Z) = Op(Y ). In partic-
ular, for arbitrary X ⊆ Ω we can choose Y = X \ Z leading to
Op(X) = Op(X \ Z).

This leads to the following result concerning the structure of the
set of sets A such that Op(A) is empty, i.e., no best alternatives are
returned. This structure will enable methods for restoring the (NE)
property: see Section 6.2.

Proposition 1 Suppose that Op is a choice function over Ω satis-
fying property (SMA). Then Op−1(∅) is closed under union, and so
has a unique largest element, i.e., there is a unique largest subset Z
of Ω such that Op(Z) = ∅. Let us call this Z, ZOp. For all X ⊆ Ω,
and for all Z ∈ Op−1(∅), Op(X ∪ Z) ⊆ Op(X).

If, in addition, Op satisfies property (IIA), then, for all Y ⊆ Ω,
Op(Y ) = ∅ ⇐⇒ Y ⊆ ZOp. Also, for all Y ⊆ Ω and Z ⊆ ZOp,



Op(Y ) = Op(Y \Z), and Op(Y )∩ZOp = ∅. For any α ∈ Ω\ZOp

and β ∈ ZOp, we have Op({α, β}) = {α}.

3 SOME CLASSES OF CHOICE FUNCTIONS
AND THEIR PROPERTIES

We consider ways of generating choice functions; firstly, in Sec-
tion 3.1, based on different notions of optimality when we have par-
tial information about a decision maker’s preferences; secondly, in
Section 3.2, when we have a binary preference relation between al-
ternatives that may not be transitive. In both cases, we analyse which
of the properties of a CF necessarily hold, for such a class of choice
functions.

3.1 CFs based on a set of total pre-orders

A natural and common way of modelling a decision maker’s prefer-
ences over a set of alternatives Ω, is as a total pre-order over Ω. How-
ever, we will often only have partial information about their prefer-
ences; this can lead to a restricted set of total pre-orders on Ω, e.g.,
all those compatible with the elicited preference information. Given
a set of total pre-orders on Ω, there are quite a number of different
ways of generating a CF over Ω, in particular, the choice functions
POΘ, UDΘ, POUDΘ, PSOΘ, MPOΘ and NOΘ, defined below.

Let Θ be a non-empty set of total pre-orders on Ω. Given < in Θ,
and A ⊆ Ω, we say that α is optimal in A, written α ∈ O<(A),
if α ∈ A and for all β ∈ A, α < β. We say that α is possibly
optimal in A, written α ∈ POΘ(A), if there exists < in Θ such that
α ∈ O<(A). Thus, POΘ(A) =

⋃
<∈Θ O<(A).

Define the pre-order <Θ to be the intersection of all relations in
Θ, with α <Θ β if and only if α < β for all relations < in Θ.
Let �Θ be the strict part of <Θ, so that α �Θ β if and only if
α <Θ β and it is not the case that β <Θ α. We define ≡Θ to be
the corresponding equivalence relation on Ω, given by α ≡Θ β iff
α <Θ β and β <Θ α.

We define UDΘ(A) to be the set of elements ofA that are undom-
inated (with respect to elements in A). Thus α ∈ UDΘ(A) if and
only if α ∈ A and there does not exist β ∈ A with β �Θ α. We also
define POUDΘ(A) to be POΘ(A)∩UDΘ(A), the elements that are
both possibly optimal and undominated.

We define α to be necessarily optimal inA, written α ∈ NOΘ(A),
if α ∈ A and for all β ∈ A, α <Θ β.

Given Θ and < in Θ, we say that α is strictly optimal inA w.r.t. <
if α ∈ A and for all β ∈ A, we have β < α only if β ≡Θ α.
We say that α is possibly strictly optimal in A (given Θ), written
α ∈ PSOΘ(A), if there exists some < in Θ such that α is strictly
optimal in A w.r.t. <.

For α ∈ A, let OptAΘ(α) be the orderings < in Θ that make α
optimal, i.e., are such that α ∈ O<(A). We say that α ∈ MPOΘ(A)
(α is maximally possibly optimal) if there does not exist β ∈ A such
that OptAΘ(β) is a strict superset of OptAΘ(α), i.e., there is no β that
is optimal with respect to more orderings than α.

The set UDΘ(A), a natural generalisation of the Pareto-optimal
elements, appears in many contexts, e.g., [15, 12]. Possibly optimal
(also known as potentially optimal) elements have been considered
in many publications (and sometimes also, the necessarily optimal
elements) such as [11, 3, 9, 10, 22, 5, 4, 6]; The Possibly Strictly Op-
timal function PSOΘ(A) and the MPOΘ(A) have been considered
much less, such as in [21, 17, 20, 19].

Properties of instance classes

For any Θ, choice functions POΘ, UDΘ and POUDΘ satisfy (NE),
(SMA) and (IIA) (see e.g., Proposition 3 of [22]) and thus also
[strong] idempotence.

The choice function PSOΘ satisfies (SMA) (see Lemma 2), and
thus, (IIAb) and (SIdem) and (Idem). It does not generally satisfy
(NE) nor (IIAa) (see the examples below).

The choice function MPOΘ satisfies (NE), (Idem) and (IIA).
However, it does not generally satisfy strong idempotence and thus
not (SMA) either.

The choice function NOΘ satisfies (SMA) (see Lemma 3), and
thus, (IIAb) and (SIdem) and (Idem). (NE) doesn’t generally (or even
usually) hold. Property (IIAa) is equivalent to the conjunction of two
properties:

(IIAa)(i): If ∅ 6= Op(A) ⊆ B ⊆ A then Op(A) ⊇ Op(B).
(IIAa)(ii): If Op(A) = ∅ and B ⊆ A then Op(B) = ∅.

Choice function NOΘ satisfies (IIAa)(i) but not generally (IIAa)(ii).

Lemma 2 Let Ω be a finite set, and let Θ be an arbitrary non-empty
set of total pre-orders Θ on Ω. The choice function PSOΘ over Ω
satisfies property (SMA).

Lemma 3 Let Ω be a finite set, and let Θ be an arbitrary non-empty
set of total pre-orders Θ on Ω. The choice function NOΘ over Ω
satisfies properties (SMA) and (IIAa)(i).

Example

We first give examples that show that NOΘ does not necessarily sat-
isfy (NE) or (IIAa)(ii), (and so neither (IIAa) nor (IIA)). The same
example can be used to show that MPOΘ does not necessarily satisfy
strong idempotence ((SIdem)), and thus not property (SMA) either.

Let Ω = {a, b, c}. Define total pre-order <1 as ({a, b}, c),
meaning that a and b are equivalent, and both are preferred to c.
Thus, <1 consists of the pairs {(a, b), (b, a), (a, c), (b, c)}. Define
<2 to be the total order (c, a, b). Let Θ12 = {<1,<2}. Then,
NOΘ12({a, b, c}) = ∅ and NOΘ12({a, b}) = NOΘ12({a}) = {a},
which demonstrates that NOΘ12 does not satisfy (NE) or (IIAa)(ii),
(and so neither (IIAa) nor (IIA)).

In addition, MPOΘ12({a, b, c}) = {a, b, c}, but
MPOΘ12({a, b}) = {a}, which shows that MPOΘ12 does
not satisfy strong idempotence, property (SIdem).

We now show that PSOΘ does not necessarily satisfy (NE)
or (IIAa)(i) or (IIAa)(ii), (and so neither (IIAa) nor (IIA)).
PSOΘ12({a, b, c}) = {c} and PSOΘ12({a, c}) = {a, c}, show-
ing that PSOΘ12 does not satisfy (IIAa)(i). Define <3 to be
the total pre-order ({a, c}, b), and let Θ13 = {<1,<3}. Then,
PSOΘ13({a, b, c}) = ∅ and PSOΘ13({a, b}) = PSOΘ13({a}) =
{a}, and so PSOΘ13 does not satisfy (NE) or (IIAa)(ii), (and so nei-
ther (IIAa) nor (IIA)).

3.2 Class of CFs based on an arbitrary binary
relation on Ω

Given relationR on Ω, for anyA ⊆ Ω we can consider the restriction
of R to A (i.e., all pairs (α, β) ∈ R with α, β ∈ A) and its reflexive
and transitive closure RA, and let R′A be strict part of RA, and let
≡R

A be the symmetric part. We can then consider the elements of A
that are undominated with respect to R′A, i.e., the elements α of A



that are such that there does not exist β ∈ A with βR′Aα. Call this
UDR(A). choice function UDR satisfies (NE), because UDR(A) is
always non-empty. Clearly, if α, β ∈ A and α ≡R

A β then α ∈
UDR(A) ⇐⇒ β ∈ UDR(A).

We can consider cycles in A w.r.t. R; specifically, let an R-cycle
in A be a sequence α1, . . . , αk (k ≥ 2) of elements of A such that
αk = α1 and for each i = 1, . . . , k − 1, (αi, αi+1) ∈ R. For
each elements αi and αj in an R-cycle in R we have αi ≡R

A αj .
Thus, if any αi is in UDR(A) then every element in the R-cycle is
in UDR(A).

Note that if α ∈ UDR(A) and (β, α) ∈ RA (or, in particular, if
(β, α) ∈ R and β ∈ A) then α ≡R

A β so β ∈ UDR(A). Also, there
exists an R-cycle in A containing α and β.

Lemma 4 For any R the choice function UDR satisfies property
(IIAb), and thus also idempotence.

The two examples below show that UDR does not necessarily sat-
isfy property (IIAa) (and thus not (IIA) either), and does not neces-
sarily satisfy property (SIdem) and thus not (SMA) either.

Let R1 be the set of pairs {(α, β), (β, γ)}. Then
UDR1({α, β, γ}) = {α}, and UDR1({α, γ}) = {α, γ}.
This shows that UDR1 does not satisfy property (IIAa) and thus not
(IIA) either.

Let R2 be the set of pairs {(α, β), (β, γ), (γ, α)}. Then
UDR2({α, β, γ}) = {α, β, γ}, and UDR2({α, β}) = {α}. This
shows that UDR2 does not satisfy property (SIdem) and thus not
(SMA) either.

In summary, choice function UDR satisfies (NE), (IIAb) and thus
idempotence. WhenR is not transitive, it does not necessarily satisfy
property (IIAa) (and thus (IIA) neither); and it need not satisfy prop-
erty (SIdem) (and thus not (SMA) either). On the other hand, if R is
transitive then R equals <Θ, where Θ is the set of total pre-orders
extending R (see Section 3.1), and UDR equals UDΘ, and thus the
choice function UDR satisfies (NE), (SMA) and (IIA).

4 BASIC COMBINATIONS
The most straight-forward ways of combining choice functions is in
terms of taking the intersections of the sets, taking the union of the
sets, and applying one choice function and then the other. In this sec-
tion we explore the basic properties and connections between these
simple combination operations.

Union and intersection of choice functions: We can define the
union and intersection of functions Op in the obvious way (‘point-
wise’). For instance, we define Op1 ∪ Op2 by (Op1 ∪ Op2)(A) =
Op1(A) ∪Op2(A) for each A ⊆ Ω.

We can also extend the subset relation to such functions, by apply-
ing it for each subset of Ω. Thus, Op1 ⊆ Op2 means for all A ⊆ Ω,
Op1(A) ⊆ Op2(A). We say that Op1 then strengthens Op2, be-
cause Op1 gives a stronger (or at least as strong) result than Op2,
i.e., for each set A, Op1 finds as least as many elements as Op2 to
be suboptimal.

We have Op1 ⊆ Op2 ⇐⇒ Op1 ∪ Op2 = Op2 ⇐⇒ Op1 ∩
Op2 = Op1.

Composition of choice functions: For choice functions Op1 and
Op2 we define the composition choice function Op1◦Op2 (meaning
Op1 followed by Op2) by (Op1 ◦ Op2)(A) = Op2(Op1(A)) for
each A ⊆ Ω.

In the composition Op1 ◦Op2, choice function Op1 is given pri-
ority over Op2, since the first step is to eliminate alternatives with
Op1. Work on combining preference information using priority in-
cludes, for instance, a general framework for combining preference
relations using priority [2], voting rules based on sequential elimina-
tion of alternatives [7]; and a computational technique for preference
inference based on composition of lexicographic orders [20].

4.1 Relationships between intersection and
composition

The intersection and the two compositions are often very different
from each other. However, they do have the same set of fixed points,
which is equal to the intersection of the fixed points of the CFs. (This
doesn’t require any additional assumption on the CFs.)

Proposition 2 Consider choice functions Op1 and Op2 over Ω.
Then Fix(Op1 ◦ Op2) = Fix(Op2 ◦ Op1) = Fix(Op1 ∩ Op2) =
Fix(Op1) ∩ Fix(Op2).

A clear disadvantage of the composition as a combination opera-
tion is that it is not symmetric between the two CFs (i.e., composi-
tion is not commutative); Op1 ◦ Op2 is giving priority to Op1, and
thus typically gives effectively more importance to Op1 than to Op2.
Because of that, it is natural to consider the intersection of the two
compositions, as this restores symmetry between Op1 and Op2. The
result below shows that this doesn’t lead to a new combination opera-
tion, at least when each choice function satisfies property (SMA): the
intersection of the two compositions is just equal to the intersection
of the CFs.

Proposition 3 When choice functions Op1 and Op2 over Ω satisfy
property (SMA) then Op1 ∩ Op2 = (Op1 ◦ Op2) ∩ (Op2 ◦ Op1),
i.e., for all A ⊆ Ω,

Op1(A) ∩Op2(A) = Op2(Op1(A)) ∩Op1(Op2(A)).

For CFs satisfying property (SMA), Proposition 3 implies that
Op1 and Op2 commute if and only if both compositions are equal
to the intersection. We now explore some situations when the two
choice functions commute, i.e., when the two compositions are
equal. Proposition 4 shows that this happens when the intersection
satisfies property (IIA). Proposition 5 gives another sufficient condi-
tion for the CFs to commute.

Proposition 4 Let Op1 and Op2 be choice functions over Ω, and
suppose that their intersection satisfies property (IIA) and that Op1

is idempotent. Then Op1 ◦Op2 = Op1 ∩Op2. Thus, if Op2 is also
idempotent then Op1 and Op2 commute: Op1 ◦Op2 = Op2 ◦Op1.

An example of this is when, for some Θ, Op1 = POΘ and Op2 =
UDΘ (see Section 3.1). The intersection POUDΘ satisfies property
(IIA) which implies, by this proposition, that choice functions POΘ

and UDΘ commute.

Proof: Let Op = Op1 ∩ Op2. Consider any A ⊆ Ω. We have
Op(A) ⊆ Op1(A) ⊆ A, using Condition (Sub). Applying property
(IIA) for Op gives Op(Op1(A)) = Op(A), i.e., Op1(Op1(A)) ∩
Op2(Op1(A)) = Op(A). Using idempotence of Op1 and Condi-
tion (Sub) for Op2 gives Op2(Op1(A)) = Op(A). By the same
argument, if Op2 is also idempotent then Op2 ◦Op1 = Op1 ∩Op2

and so Op1 ◦Op2 = Op2 ◦Op1. 2



Proposition 5 Assume that choice functions Op1 and Op2 over Ω
satisfy properties (SMA) and (IIA), and that for all A ⊆ Ω, either
Op1(A) ⊆ Op2(A) or Op1(A) ⊇ Op2(A). Then Op1 ◦ Op2 =
Op2 ◦Op1 = Op1 ∩Op2.

4.2 Further iteration
One might wonder if anything new is obtained with iterated appli-
cation of two choice functions, and application of intersection. Thus
turns out not to the case (assuming the CFs satisfy property (SMA)).
Strong idempotence implies that Op1(Op1(A) ∩ Op2(A)) equals
Op1(A) ∩ Op2(A), and Op1(Op2(Op1(A))) = Op2(Op1(A)).
Also, idempotence implies Op2(Op2(Op1(A))) = Op2(Op1(A)).

Let Op1 and Op2 be CFs over Ω, both satisfying strong idempo-
tence (SIdem). Consider a sequence Op = Opm1

◦ · · · ◦ Opmk
,

(with k ≥ 1) where each mi ∈ {1, 2}. If each mi = 1 then
Op = Op1; if each mi = 2 then Op = Op2; else, if m1 = 1 then
Op = Op1◦Op2; and otherwise, ifm1 = 2, then Op = Op2◦Op1.

4.3 Some further desirable properties of a
combination

As well as the properties on choice functions, there are further natural
properties that one would hope for with a combination operation for
CFs. Suppose that we have Op as some kind of combination of Op1

and Op2, i.e., Op = Op1 ⊗ Op2, for some combination operation
⊗.

• commutativity of combination, i.e., Op1 ⊗Op2 = Op2 ⊗Op1.

• Op(A) ⊆ Op1(A) ∪Op2(A).

This is equivalent to Op(A) ⊇ Op1(A) ∩ Op2(A), i.e., if Op1

and Op2 both say that α is sub-optimal in A, then α should be sub-
optimal in A with Op.

Conversely, we can posit the following property: if Op1 and Op2

both say that α is optimal in A then α should be optimal in A with
Op:

• Op(A) ⊇ Op1(A) ∩Op2(A).

The conjunction of the two previous properties is:

• Op1(A) ∩Op2(A) ⊆ Op(A) ⊆ Op1(A) ∪Op2(A).

Below are two consequences of this pair of properties.

• If A is a fixed point of Op1 then Op(A) = Op2(A).
• If Op1(A) = Op2(A) then Op(A) = Op2(A).

5 COMBINATIONS MAINTAINING
PROPERTIES

We will consider a number of different combination operations for
CFs: intersection, union, two compositions and the union of compo-
sitions. (We do not further consider the intersection of the two com-
positions, since, it is equal to the intersection when the input choice
functions satisfy property (SMA), by Proposition 3.)

We will analyse which of the properties described in Section 2.2
are maintained by these different combinations. Formally, a property
P on CFs (over a set of alternatives Ω) is maintained by a com-
bination operation ⊗ (on CFs) if Op1 ⊗ Op2 satisfies property P
whenever both Op1 and Op2 satisfy P .

Lemma 5 shows that the union combination maintains properties
(SMA), (IIA), and the property of being a subset of a given CF. Union
maintains also the non-empty property (NE). Perhaps surprisingly,
union does not maintain strong idempotence, as shown with an ex-
ample at the end of this section.

Lemma 5 Consider choice functions Op1, Op2 and Op′. Then the
following hold:

1. If Op1 ⊆ Op′ and Op2 ⊆ Op′ then Op1 ∪Op2 ⊆ Op′.
2. If Op1 and Op2 both satisfy property (SMA) then Op1 ∪ Op2

satisfies property (SMA).
3. If Op1 and Op2 both satisfy property (IIA) then Op1 ∪ Op2 sat-

isfies property (IIA).
4. If Op1 and Op2 both satisfy property (IIAa) then Op1 ∪ Op2

satisfies property (IIAa).
5. If Op1 and Op2 both satisfy property (NE) then Op1 ∪ Op2 sat-

isfies property (NE).

Intersection maintains property (SMA), and strong idempotence,
but not (NE) or (IIA) (see the examples below). In fact, Proposition 4
suggests that the intersection will not usually satisfy property (IIA),
since, it implies (under the very weak assumption of idempotence)
that if the intersection satisfies (IIA) then the CFs commute, which
presumably only rather rarely occurs.

Lemma 6 Intersection of choice functions maintains property
(SMA), and maintains strong idempotence.

Proof: Let Op1 and Op2 be CFs over Ω, with B,A ⊆ Ω. First as-
sume thatB ⊆ A and property (SMA) holds for Op1 and Op2. Then,
for i = 1, 2, Opi(A) ∩ B ⊆ Opi(B). Thus, Op1(A) ∩ Op2(A) ∩
B ⊆ Op1(B) ∩ Op2(B), showing that (SMA) holds also for the
intersection.

Now assume that strong idempotence holds for Op1 and Op2,
and that A ⊆ Op1(B) ∩ Op2(B). Then, A ⊆ Op1(B) and A ⊆
Op2(B), so, by strong idempotence of Op1 and Op2, Op1(A) = A
and Op2(A) = A. Thus, Op1(A) ∩ Op2(A) = A, showing strong
idempotence for the intersection. 2

It is clear that composition maintains (NE). The following result
shows that strong idempotence is maintained by composition. Ex-
amples below show that composition does not maintain properties
(SMA) or (IIA).

Lemma 7 Suppose that both choice functions Op1 and Op2 satisfy
strong idempotence (SIdem). Then the composition Op1 ◦ Op2 also
satisfies (SIdem). In particular, the composition is idempotent.

Examples showing properties not being maintained

In the examples below, we use only total orderings on Ω = {a, b, c},
and abbreviate a total ordering such as (b, a, c) to just bac. For in-
stance, we can consider a set of orderings Θ = {abc, cab}, and the
associated CF based on possibly optimal alternatives, PO{abc,cab}
(see Section 3.1). Recall that for any Θ, the choice function POΘ

satisfies the properties in Section 2.2, in particular, properties (NE),
(SMA) and (IIA). Now, a is the top element in the total order abc, and
c is the top element in cab, so the set of possibly optimal elements in
Ω = {a, b, c}, PO{abc,cab}({a, b, c}), is {a, c}. If we are interested
in {a, b} then we consider the restrictions of the two orderings to this



set, giving the pair of orderings {ab, ab}, so a is better than b in both
orderings, and hence, PO{abc,cab}({a, b}), is {a}.

Let Op1 be PO{abc,bca}, and let Op2 be PO{abc,cab}. We write
Op1∩2 for Op1 ∩ Op2, and Op1◦2 for Op1 ◦ Op2, and Op2◦1
for Op2 ◦ Op1. It can be shown that Op1◦2 ⊆ Op2◦1 and so,
because of Proposition 3, Op1∩2 = Op1◦2. It can be seen that
Op1◦2({a, b, c}) = {a}, and Op1◦2({a, c}) = {a, c}, which
implies that neither the composition Op1◦2, nor the intersection
Op1∩2 satisfy property (IIA) (specifically, (IIAa)). Op2◦1({b, c}) =
{b}, and, Op2◦1({a, b, c}) = {a, c}, and thus, Op2◦1({a, b, c}) ∩
{b, c} = {c}, which implies that Op2◦1 does not satisfy property
(SMA).

Now let Op3 = PO{abc,acb} and let Op4 = PO{bac,cab}.
Op3∩4({a, b, c}) = {a} ∩ {b, c} = ∅, so Op3∩4 does not satisfy
(NE). Because Op3∩4({a, b}) = {a} ∩ {a, b} 6= ∅, so Op3∩4 does
not satisfy property (IIA) (more specifically, it doesn’t satisfy prop-
erty (IIAa)(ii)).

Lemma 7 implies that Op3◦4 and Op4◦3 both satisfy strong idem-
potence. However, their union, Op

⋃
◦

34 = Op3◦4 ∪ Op4◦3 does
not satisfy strong idempotence, because Op

⋃
◦

34 ({a, b, c}) = {a} ∪
{b, c} = {a, b, c}, but Op

⋃
◦

34 ({a, b}) = {a} 6= {a, b}. Thus,
the union combination does not maintain strong idempotence. Also,
the union of compositions does not maintain properties (SMA) and
strong idempotence.

We sum up these results as follows.

Theorem 1 • Union maintains properties (NE), (SMA) and (IIA).
• Intersection maintains (SMA) and strong idempotence but not

(NE) or (IIA).
• Composition maintains (NE) and strong idempotence, but not

(SMA) or (IIA).
• Union of composition maintains (NE), but not strong idempotence,

or (SMA).

6 ENFORCING PROPERTIES AND
RESTORING CONSISTENCY (NE)

Properties (SMA) and (IIA) are very desirable properties of a choice
function, as is (NE). However, applying intersection or composition
operations can mean that some of these properties can be lost, as
shown in the last section. In addition, as shown in Section 3, some
natural ways of generating CFs can lack one of more of these proper-
ties. It is therefore natural to consider ways of changing a CF to make
it have such a property. For properties (SMA) and (IIA), it seems
natural to strengthen the CF to enforce the property, as discussed in
Section 6.1. This is not possible for property (NE), and instead we
need a way of replacing an empty value of Op by a non-empty one:
see Section 6.2. In Section 6.3 we consider how to combine enforc-
ing (SMA) and (IIA) with restoring (NE), so that all three properties
are satisfied.

6.1 Enforcing properties through maximal
strengthenings

Suppose that a choice function Op does not satisfy a desirable prop-
erty P . One can attempt to enforce this property by changing Op to
Op′ that does satisfy P . Our focus here is on strengthening Op to
make it satisfy P ; in this way, if α is viewed as sub-optimal in a set
A w.r.t. Op (i.e., α /∈ Op(A)), then it will be suboptimal w.r.t. Op′

(α /∈ Op′(A)).

Suppose that propertyP is such that (a) union maintains a property
P and (b) the null choice function EMP satisfies P . Consider any
arbitrary choice function Op. Let Op(P ) be the union of all choice
functions Op′ such that (i) Op′ satisfiesP and (ii) Op′ ⊆ Op. (Since
EMP satisfiesP and EMP ⊆ Op, there exists at least one such choice
function Op′.)

Clearly, we have Op(P ) ⊆ Op. Also, since union maintains prop-
erty P , choice function Op(P ) satisfies property P . Moreover, the
definition implies that if any choice function Op′ is such that (i) and
(ii) hold, then Op′ ⊆ Op(P ). Thus, Op(P ) is the maximal strength-
ening of Op that satisfies propertyP , where maximal means maximal
with respect to the relation ⊆ between CFs. In other words, Op(P )

is the weakest strengthening of Op that satisfies property P . We say
that Op(P ) is the maximal P -strengthening of Op. Note that if Op
satisfies property P then Op(P ) = Op. In particular, enforcing P for
Op(P ) leaves it unchanged; thus enforcing property P is an idempo-
tent operation.

This notion of maximal P -strengthening can be applied to prop-
erty (SMA), to property (IIA), and to the conjunction of properties
(SMA) and (IIA). By Lemma 5, union maintains property (SMA)
and property (IIA), and hence union maintains also the conjunc-
tion of properties (SMA) and property (IIA). EMP satisfies property
(SMA) and property (IIA) (and hence also the conjunction of the
two properties). Thus, we can consider, for choice function Op, its
maximal strengthening Op(SMA) satisfying (SMA), and Op(IIA), its
maximal strengthening satisfying (IIA), and Op(SMA-IIA), its maxi-
mal strengthening satisfying both (SMA) and (IIA).

The definitions imply that (Op(SMA))(SMA-IIA) = Op(SMA-IIA).
It can be shown that if Op satisfies (SMA) then enforcing (IIA)
preserves (SMA), and also preserves (NE) if that holds as well.
Thus, in fact, as stated by the proposition below, (Op(SMA))(IIA) =
(Op(SMA))(SMA-IIA) = Op(SMA-IIA), so to enforce both properties
(SMA) and (IIA), we can first enforce (SMA) and then enforce (IIA).

Proposition 6 For any choice function Op,

(Op(SMA))(IIA) = (Op(SMA))(SMA-IIA) = Op(SMA-IIA).

If Op satisfies property (SMA) then one can give a characterisa-
tion of Op(SMA-IIA): briefly, Op(SMA-IIA)(A) is equal to Op(C),
where C is the (unique) largest set such that Op(C) ⊆ A ⊆ C.

Enforcing property (SMA)

It is possible to give a simple explicit formula for Op(SMA), the result
of enforcing property (SMA) on choice function Op. To understand
Op(SMA), it is helpful to consider property (SMA) in terms of the
associated sub-optimality function Op: if B ⊆ A then Op(A) ⊇
Op(B). Based on this, one can see that Op

(SMA)
, the associated

sub-optimality function for Op(SMA), is given by Op
(SMA)

(A) =⋃
B⊆A Op(B), which leads to Op(SMA)(A) =

⋂
B⊆A(Opt(B) ∪

(A \B)).

6.2 Restoring consistency (non-empty property
(NE))

Suppose that we have a choice function Op that does not satisfy prop-
erty (NE), so that for some A ⊆ Ω, Op(A) = ∅. We cannot restore
(NE) in the same way that we enforced the properties in Section 6.1,
since if Op fails to satisfy (NE) and Op′ ⊆ Op then Op′ fails to



satisfy (NE) (since Op(A) = ∅ implies Op′(A) = ∅). Instead we
need to weaken Op rather than strengthen it.

The basic idea of our approach here is to replace empty values
by a default value; that is, if Op(A) = ∅, we reset Op(A) to some
default value for Op(A). Often this default value will just be A, i.e.,
we don’t assume that any element of A is sub-optimal. In the case
of the combination Op of two choice functions Op1 and Op2, we
will make the default value equal to Op1(A)∪Op2(A), in order the
satisfy a property in Section 4.3.

Consider a situation in which Op satisfies properties (SMA) and
(IIA). Then Proposition 1 shows that there exists a unique largest set
ZOp with Op(ZOp) = ∅, and also shows that Op(A) = ∅ for all
A ⊆ ZOp. The following result implies that we can restore consis-
tency whilst preserving properties (SMA) and (IIA). The idea is to
replace the empty values (relating to all subsets of ZOp) by the val-
ues of a choice function Op′ over ZOp, where Op′ satisfies (SMA),
(IIA) and (NE). We call this grafting Op′ onto Op, and Op′ is called
the graft.

Proposition 7 Assume that choice function Op over Ω satisfies
properties (SMA) and (IIA). Let ZOp be the union of all subsets Z
of Ω such that Op(Z) = ∅, and let Op′ be a choice function over
ZOp that satisfies properties (SMA), (IIA) and (NE).

Define Op′′ by Op′′(B) = Op′(B) if B ⊆ ZOp, and otherwise,
define Op′′(B) = Op(B). Then Op′′ satisfies properties (SMA),
(IIA) and (NE).

Thus, if Op satisfies (SMA) and (IIA), and if the default values
(Op′) form a CF over ZOp that satisfies (SMA), (IIA) and (NE),
then grafting Op′ onto Op preserves properties (SMA) and (IIA),
and restores (NE). In particular, using a default value of A for A,
corresponds to the graft Op′ being the identity choice function ID on
ZOp (where ID satisfies (SMA), (IIA) and (NE)).

6.3 Simultaneously, enforcing (SMA) and (IIA),
and restoring consistency

Putting the results of Section 6.1 and 6.2 together gives a general way
of enforcing properties (SMA) and (IIA), and restoring consistency
(NE) for an arbitrary CF: we first enforce (SMA), then enforce (IIA)
(see Section 6.1) and then restore consistency (see Section 6.2). By
Propositions 6 and 7, the result will satisfy (SMA), (IIA) and (NE).
(Of course, if the initial CF already satisfies (SMA), then there is no
need to enforce (SMA), and, as observed earlier, doing so will make
not change.)

In the remainder of the section we briefly discuss variations of
the general method described above. Note that enforcing (SMA) can
mean that property (NE) is lost. An example of this is Op4◦3 in the
example at the end of Section 5, which satisfies (NE) but we have
(Op4◦3)(SMA)({a, b, c}) = ∅ so that (NE) no longer holds after en-
forcing (SMA). Also, if the CF already has property (SMA), then
restoring consistency (NE) can lose property (SMA). For instance,
if we restore consistency to (Op4◦3)(SMA), by grafting ID, then we
lose property (SMA).

If one has a way of enforcing (SMA) at the same time as restoring
consistency, then one can do so, and then enforce (IIA) on the re-
sult, and again we’ll have all three of the properties. More generally,
we could add extra operations before enforcing (SMA) and (IIA),
and restoring consistency, i.e., pre-processing steps before the gen-
eral method above. For instance we could first restore consistency
and then apply (SMA); or we could apply (SMA) and then restore
consistency.

7 COMBINATIONS THROUGH ENFORCING
AND RESTORING PROPERTIES

Let us assume that input choice functions Op1 and Op2 satisfy prop-
erties (NE), (SMA) and (IIA). As shown in Section 5, the union com-
bination maintains these three properties, as well as the properties in
Section 4.3. However, union will often seem an excessively conser-
vative combination operation. For approaches based on intersection
and composition we will use the methods described in Section 6.

7.1 Intersection

The intersection combination operation maintains property (SMA)
but not (IIA) or (NE) (see Theorem 1). One natural and simple ap-
proach is to first enforce (IIA), and then restore (NE) by grafting
Op1 ∪Op2 (restricted to the part with empty values) onto the result,
as shown by Proposition 7. This ensures that the three properties are
satisfied, and the resulting CF is also a strengthening of the union
Op1 ∪Op2 (see Section 4.3).

However, there are situations in which enforcing (IIA) to an in-
consistent choice function Op leads to somewhat drastic results.
In particular, if Op(Ω) = ∅ then enforcing (IIA) will lead to
the choice function EMP, which returns always the empty set. So,
then grafting on the union will lead to the final combination being
just the union. For example, with Op3 and Op4 from Section 5,
Op3∩4({a, b, c}) = ∅, so Op

(IIA)
3∩4 is just EMP over Ω = {a, b, c},

leading to the combination being just union, which in this case is just
the vacuous choice function ID over Ω.

An alternative approach for enforcing/restoring the properties is to
first restore consistency to the intersection (by grafting on the union),
then enforce properties (SMA) and (IIA), and (if necessary) restore
consistency again. In the case of Op3∩4 this leads to a stronger result,
with the combination ending up equal to Op3.

7.2 Union of composition

Similar considerations and approaches apply to a combination based
on the union of the two compositions. One can enforce (SMA) and
(IIA), and (if necessary) restore consistency by grafting on the union.
Or, one could first enforce (SMA) and restore consistency, before ap-
plying this sequence. In addition, one could apply such a sequence of
operators to each composition separately, and take the union (which
preserves the three properties).

8 DISCUSSION

We have derived methods, for the combination of a pair of choice
functions, that maintain the desirable properties (SMA), (IIA) and
(NE). There are many potential avenues of future research, for in-
stance: deeper analysis and comparison of these different combina-
tion methods; computational issues, i.e., how one computes the value
of the combination when applied to a given an input set of alter-
natives A; extending our approaches to the case of more than two
agents. It would also be interesting to consider the effect of enforc-
ing/restoring the desirable properties on the CFs based on certain
optimality definitions (see Section 3), such as maximally possibly
optimal and possibly strictly optimal.

It could be possible to apply belief merging approaches e.g., [14,
13], for each given subset of alternatives A, and then enforce/restore
desirable properties to the resulting CF.



The current paper assumes that the preference inputs are choice
functions. If instead, the preference inputs are binary preference re-
lations, then one can let R be the union of these relations, gener-
ate combined choice function UDR (see Section 3.2), and then en-
force/restore the desirable properties, using the methods in Section 6.
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