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Abstract This study shows how the estimates of production inefficiency and of the marginal

effects of its determinants can be distorted if not accounting for technology and inefficiency

heterogeneity. This is achieved by employing a hierarchical stochastic frontier model with

random parameters both in the production frontier and in the inefficiency distribution and

comparing its results with a conventional frontier model. German dairy farming is used

as a case study and estimation is performed in a Bayesian framework. The results reveal

significant differences in the inefficiencies and the calculated marginal effects of its deter-

minants across the two models. Specifically, it is shown that inefficiency is overestimated

when heterogeneity is not accounted for. An inflation of the means and the variances of

the marginal effects is also observed, with the latter result suggesting that technology het-

erogeneity dominates inefficiency heterogeneity. According to Bayes factors, the employed

hierarchical frontier model is favored by the data when compared to the conventional frontier

model.
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1 Introduction

Measuring the production inefficiency of decision-making units has received much attention

in empirical research during the last decades. This is because the identification of shortfalls

in the efficiency of production can be an informative tool for businesses regarding their

relative performance and the scope for improvements. Equally important is the identification

of the potential sources of inefficiency. Identifying production practices that contribute to

efficiency enhancements can boost firms to adopt them in order to improve their performance.

Additionally, identifying the impact of policies on firms performance can provide policy-

makers with valuable information regarding the impact of their intervention tools. The

importance of measuring firms’ inefficiency and its sources as these are highlighted above,

requires researchers to use quantitative tools that yield precise estimates. Nevertheless, it has

been shown that estimates of inefficiency can be distorted if heterogeneity among individuals

is not taken into account.

For instance, a lot of discussion in the efficiency measurement literature revolves around

the need to account for technology heterogeneity among the decision-making units. This is

because firms may adopt new technologies at a different pace depending on their financial

capacity or manage their production according to their personal cognitive capacity (Tsionas

2002). For this purpose, the Stochastic Frontier Analysis (SFA) tool introduced by Aigner

et al. (1977) and Meeusen and van den Broeck (1977) has been modified to account for

technology heterogeneity and disentangle it from inefficiency. Within the SFA framework, the

random-coefficients model offers a very flexible representation of the production technology

by allowing the slope parameters of the frontier to vary across individuals thus forming a

unique frontier for each of them (Kalirajan and Obwona 1994).

A plethora of empirical applications appear in the inefficiency measurement literature

that account for technology heterogeneity among firms. For instance, Tsionas (2002) and

Huang (2004) assumed that US electric utility companies operate under different technologies

due to discrepancies in the timing that they adopt new technologies. Therefore, they both

specified a random-coefficients frontier model to measure their inefficiency in a Bayesian

framework, with their results revealing that inefficiency estimates are inflated if not ac-
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counting for technology heterogeneity. Karagiannis and Tzouvelekas (2009), measured the

inefficiency of Greek olive-growing farms assuming different technologies due to differences

in their environmental-social characteristics. Their modelling approach involved a random-

coefficients production frontier model and the method of Simulated Maximum Likelihood

(SML) to estimate it, with the results being compared to previous similar studies and not

with a conventional frontier model. Furthermore, Assaf (2011) utilized a random-coefficients

cost frontier model and Bayesian techniques to estimate the UK’s airport industry inef-

ficiency, assuming that technology differences stem from differences in staff training and

business experiences. The empirical findings revealed that technological differences were in-

deed responsible for variation in airports’ inefficiency levels. Njuki et al. (2019) hypothesized

that US agricultural firms employ different technologies due to differences in the production

environment and specified a random-coefficients production frontier to measure their ineffi-

ciency and calculate their productivity using SML. The results pointed towards significant

differences in the inefficiency estimates across the random-coefficients and the conventional

frontier model. Finally, Skevas (2019) used a random-coefficients production frontier model

and Bayesian techniques to estimate the inefficiency of German dairy farms. The technol-

ogy heterogeneity assumption was based on different management practices used by farms

such as their levels of intensification. The results revealed that inefficiency is inflated when

technology heterogeneity is not accounted for.

Irrespective of the case-study and the estimation method, all the above studies showed

that the random-coefficients SFA model prevents an overestimation of inefficiency since it

separates it from technology heterogeneity, which is not the case in the conventional SFA

model. Although this is a very important result that fulfils the need to develop methods that

yield precise inefficiency estimates, the related literature does not discuss the implications

of the move from a conventional to a random-coefficients SFA model for the estimates of

the inefficiency determinants. In fact, accounting for technology heterogeneity should not

only result in different inefficiency estimates but could also alter the estimates of the utilized

determinants of inefficiency.

Greene (2005) further discussed the need to account for heterogeneity not only in the

technologies employed by firms but also in their inefficiencies. The need for the latter stems

2
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from the fact the effect of certain firm characteristics on inefficiency may differ across indi-

viduals due to unobserved heterogeneity. For this purpose, Greene (2005) introduced an SFA

model that does not only allow the slope coefficients of the frontier to vary among individuals

but also the coefficients with respect to the utilized inefficiency determinants. Recognizing

the need to account for heterogeneity in both firms technology and inefficiency led several

studies to adopt the model proposed by Greene (2005) in an attempt to get inefficiency

estimates corrected for heterogeneity.

In particular, Agasisti and Johnes (2010) measured the inefficiency of Italian universities

using a random-coefficients cost frontier, while also specifying random-coefficients for the

inefficiency determinants which were allowed to impact both the mean and the variance of

inefficiency. The heterogeneity assumption was mainly related to regional differences among

universities. Estimation was performed using SML and the results revealed that the ineffi-

ciencies of Italian universities were overestimated when ignoring heterogeneity. Additionally,

Barros and Williams (2013) also specified random-coefficients both in the (cost) frontier and

in the inefficiency determinants with their model being estimated using SML. The case study

concerned Mexican banks, which were assumed to be heterogeneous due to discrepancies in

their sizes. As in the study of Agasisti and Johnes (2010), an inflation of inefficiency in the

case where heterogeneity is not taken into account was found. Finally, Feng et al. (2018)

measured the inefficiency of US electric utilities with the hypothesized heterogeneity being

based on differences in firms’ costs and emission intensities. To account for heterogeneity, a

random-coefficients production frontier model was specified along with a random directional

vector for inefficiency. Estimation of the model was carried out using Bayesian techniques

and the discussion of results revolved around the distortions in the estimates of emissions’

shadow prices when ignoring heterogeneity.

However, as in the case of the technology heterogeneity SFA studies, all the aforemen-

tioned studies that adopted the Greene (2005) approach discussed the consequences of ac-

counting for both technology and inefficiency heterogeneity on the inefficiency estimates

and not on the estimates of its determinants. Therefore, this study employs a hierarchical

production frontier model that accounts for technology and inefficiency heterogeneity, and

unlike previous studies, it is the first to discuss the implications for the estimates of the
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inefficiency determinants. For this purpose, a conventional SFA model is also considered

and the differences in the estimates of the inefficiency determinants across the two models

are discussed. Additionally, formal model comparison based on Bayes factors is performed.

The following section presents the model, the Bayesian techniques used to estimate it and

the utilized model comparison framework. The data and the empirical specification are then

described. Presentation of the results follows and the final section concludes.

2 Model & Bayesian Estimation

2.1 Hierarchical production frontier

Let i = 1, ..., N and t = 1, ..., T indicate individuals and time observations, respectively. This

study accounts for technology heterogeneity across individuals by specifying a hierarchical

production frontier by means of random technology parameters:

yit = f(x′it;βi) + vit − uit, (1)

where yit is the logarithm of output, x′it is a vector of the logarithm of K production factors,

βi is the associated vector of random technology parameters, vit is a two-sided noise com-

ponent and uit is the one-sided inefficiency term. Estimation of the hierarchical production

frontier presented in equation (1) requires distributional assumptions on the involved random

components. Starting with the two-sided noise component vit, this study follows the typical

procedure of assuming a Normal distribution with zero mean and precision (i.e. inverse

variance) τ . Coming to the random technology parameters βi, the conventional assumption

of Kalirajan and Obwona (1994) is made as follows:

βi ∼ N (β̄,Ω) (2)

where β̄ is a vector of K parameters that represents the mean of the βis and Ω is a K ×K

error precision matrix (i.e. inverse covariance matrix) for the distribution of the βis.

In addition to the hierarchical specification of the production frontier presented in equa-

tion (1) that takes into account technology heterogeneity, a similar approach is followed to

also account for inefficiency heterogeneity. Specifically, the one-sided inefficiency term is

4
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assumed to follow the typical truncated-Normal distribution as in Battese and Coelli (1995),

which is further complemented by a random parameter specification for the mean of the

distribution:

uit ∼ N+(z′itδi, ϕ) (3)

δi ∼ N (δ̄,Ψ) (4)

where zit is a vector of L individual-specific socio-economic characteristics that can affect

inefficiency, δi is the associated vector of random parameters, ϕ is the precision parameter

of the distribution of inefficiency, δ̄ is a vector of L parameters that represents the mean of

the δis, and Ψ is a L×L error precision matrix of the distribution of the δis. The last step

needed to estimate the model in equations (1-4) is to specify the functional form f(x′it;βi)

from equation (1). A Cobb-Douglas specification is used so that the logarithm of output

in equation (1) is a linear function of individual-specific parameters and the logarithms

of inputs. The Cobb-Douglas specification is preferred against the more flexible translog

for two main reasons: 1) given the large number of production factors associated with the

subsequently utilized dataset, employing a translog specification would entail a very large

number of individual-specific parameters and 2) the number of parameters to be estimated in

Ω (i.e. K×K) in a translog specification would increase significantly as opposed to a Cobb-

Douglas specification. For the above reasons, the majority of studies estimating random

technology parameter frontiers also specify a Cobb-Douglas functional form (Kalirajan and

Obwona (1994); Tsionas (2002), Huang (2004); Karagiannis and Tzouvelekas (2009)). A

final note is that a constant term can’t be included in both the x and the z vectors. This

is because identification of two individual-specific and time-invariant random parameters is

impossible. Hence, in the application that follows a constant term is only included in the

vector x.

Despite some minor modelling differences, taking into account both technology and in-

efficiency heterogeneity as this is done in the model in equations (1-4) has been the subject

of a few studies including Greene (2005), Agasisti and Johnes (2010), Barros and Williams

(2013) and Feng et al. (2018). However, the aforementioned studies only discussed the im-

pact of accounting for both technology and inefficiency heterogeneity on the inefficiency

estimates, with their main conclusion being that ignoring heterogeneity inflates inefficiency.
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Nevertheless, the present study further argues that ignoring technology and inefficiency het-

erogeneity can also impact the magnitude and the variation of the marginal effects of the

utilized socio-economic characteristics on inefficiency yielding misleading conclusions that

are used by businesses/policy-makers.

To derive the marginal effects of the variables in z on inefficiency, one needs to calculate

the derivative of inefficiency with respect to each z covariate. Given the truncated-Normal

distribution imposed on inefficiency, its expected value is:

E(uit) = z′itδi + ϕ−1/2 φ(ϕ1/2z′itδi)
Φ(ϕ1/2z′itδi)

(5)

where φ(·) is the standard Normal density function and Φ(·) is the standard Normal cumu-

lative distribution function. The derivative of the expected value of inefficiency with respect

to the lth variable contained in z is calculated as:

∂E(uit)
∂zitl

= δil

[
1− φ(ϕ1/2z′itδi)

Φ(ϕ1/2z′itδi)

(
ϕ1/2z′it + φ(ϕ1/2z′itδi)

Φ(ϕ1/2z′itδi)

)]
(6)

An important characteristic of the marginal effect presented in equation (6) is that it does not

only vary due to differences in the socio-economic characteristics of individuals, but also due

to random variation in the associated parameters δi. At the same time, the marginal effect

is calculated after the production frontier has been adjusted for technology heterogeneity as

equations (1-2) manifest. Finally, it is noted in passing that the expected value of inefficiency

in equation (5) is unconditional on the composed residual eit, where eit = vit+uit. Calculating

the marginal effects of the z variables on the unconditional or the conditional expectation

of inefficiency is still an open issue in the efficiency literature. For instance, Wang (2002)

and Kumbhakar and Sun (2013) present the calculation of marginal effects unconditionally

and conditionally on the composed residual, respectively. Given that in the present study

the inefficiency scores are obtained unconditional on the composed residual, as it is the case

with the data augmentation techniques used in the utilized Bayesian framework, the marginal

effects are also evaluated on the unconditional expectation. This argument is similar to the

one presented in Kumbhakar and Sun (2013) when justifying the use of the conditional

expectation in a frequentist setting.
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2.2 Bayesian estimation

A Bayesian method is used to estimate the model in equations (1-4). The parameters to
be estimated are τ, β̄,Ω, ϕ, δ̄, and Ψ. The βis, uits and δis are the latent data and can be
obtained as by-products of the utilized sampler. The complete-data likelihood of the model
is:

p({yit}, {βi},{uit}, {δi}|{xit}, {zit}, τ, β̄,Ω, ϕ, δ̄,Ψ)

= τNT/2

(2π)NT/2
exp

{
− τ

2

N∑
i=1

T∑
t=1

(vit)2
}

× |Ω|N/2

(2π)NK/2
exp

{
− 1

2

N∑
i=1

(βi − β̄)′Ω(βi − β̄)
}

× ϕNT/2

(2π)NT/2
N∑
i=1

T∑
t=1

Φ(ϕ1/2z′itδi)
exp

{
− ϕ

2

N∑
i=1

T∑
t=1

(uit − z′itδi)2
}

× |Ψ|N/2

(2π)NL/2
exp

{
− 1

2

N∑
i=1

(δi − δ̄)′Ψ(δi − δ̄)
}

(7)

The first factor of the complete-data likelihood comes from the fact that each vit follows a Normal

distribution, while the second factor is due to the multivariate Normal distribution imposed on

βi. The third factor is due to the truncated-Normal distribution imposed on each uit. Finally, the

fourth factor is because of the multivariate Normal distribution imposed on δi. The joint posterior

density of the model’s parameters and the latent variables is expressed as:

π(τ, β̄,Ω, ϕ, δ̄,Ψ,{βi}, {uit}, {δi}|{yit}, {xit}, {zit}

∝ p({yit}, {βi}, {uit}, {δi}|{xit}, {zit}, τ, β̄,Ω, ϕ, δ̄,Ψ)

× p(τ)× p(β̄)× p(Ω)× p(ϕ)× p(δ̄)× p(Ψ)

(8)

where the first factor is the complete-data likelihood specified in equation (7) and the second factor

consists of the product of the prior distributions of the parameters to be estimated. As in Koop

et al. (1995), Markov Chain Monte Carlo (MCMC) techniques are used to draw samples from the

posterior. Furthermore, the latent data are integrated from the likelihood using data augmentation

(Tanner and Wong 1987).
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2.3 Alternative models, Bayes factors & posterior probabilities

In addition to the hierarchical production frontier presented in subsection 2.1, the typical stochastic

frontier with fixed technology and inefficiency parameters (i.e βi = β and δi = δ) is also considered.

From this point on, the former model will be called the ’Hierarchical Frontier’ and the latter the

’Simple Frontier’. Following Kass and Raftery (1995), Bayes factors are used to infer which of the

two models (M1 or M2) fits the data best:

BF = p(D|M1)
p(D|M2)

P (M2)
P (M1) (9)

where D represents the data, p(D|M1) and p(D|M2) are the marginal likelihoods of the two

models and P (M1) and P (M2) are the prior probabilities of the models. Placing equal prior

model probabilities, the calculation of Bayes factor reduces to the ratio of the marginal likelihoods

of the two models:

BF = p(D|M1)
p(D|M2) =

∫
p(D|θ1,M1) p(θ1|M1) dθ1∫
p(D|θ2,M2) p(θ2|M2) dθ2

(10)

where θ is a vector that contains all the parameters to be estimated in each model. The logarithm

of each marginal likelihood can be obtained using the Laplace-Metropolis estimator as in Lewis and

Raftery (1997):

log
[
p(D|Mj)

]
≈ P

2 log[2π] + 1
2 log

[∣∣H∗|]+ log π
[
θ∗j
]

+ log p
[
D|θ∗j

] (11)

where j is an index for the considered models, P equals the number of parameters in θj , θ∗j is

an estimator of θj that maximizes the likelihood p(D|θ∗j ) and H∗ is the Hessian of the likelihood

evaluated at θ∗j . Finally, assuming that the set of models considered is exhaustive, posterior model

probabilities are obtained using Bayes factors and the fact that the two posterior model probabilities

sum to unity.

3 Data & empirical specification

3.1 Data & model specification

The utilized dataset comes from the Farm Accountancy Data Network and is a panel of 6,732

observations of 748 specialized German dairy farms covering the period 2001-2009. The Cobb-

Douglas specification, including also a time trend t, is written as follows:

log yit = βi0 +
∑
k

βik log xitk + γit+ vit − uit (12)

8
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The output (yit) consists of revenues from cow’s milk, meat and crop products. Six inputs are used.

The capital input (K) is specified as the deflated value of buildings and machinery, the labor input

(L) as the total working hours and the land input (A) as the total hectares of utilized area. The

intermediate input (M) represents the total deflated value of seeds and plants, fertilizers, pesticides,

energy, veterinary costs, other crop-specific costs, forestry-specific costs, feed for pigs and poultry,

contract work and other direct inputs. The animal input (S) is specified as the total number of

livestock units and the feed input (F) as the deflated value of purchased feed1. The time trend (t)

aims to capture technological progress/regress. Finally, the variables in the vector z in equation (3)

that are allowed to impact inefficiency are the economic size of farms measured in European Size

Units (ESU), the total amount of subsidies that farms receive (the majority of which are decoupled

from production) and stock density, defined as livestock units per hectare. Summary statistics of

the variables appear in Table 1. Prior to estimation, the data for output and inputs are normalized

by their geometric means, while the time trend variable is normalized by its arithmetic mean.

Table 1 Summary statistics of the utilized variables

Variable Mean Std. dev. Min Max

y (e1,000) 133.17 151.92 13.60 3635.66

K (e1,000) 169.28 151.83 1.85 2617.92

L (1,000 hours) 3.27 3.09 0.97 77.00

A (hectares) 58.92 57.86 9.88 1058

M (e1,000) 45.30 50.06 6.59 1258.30

S (livestock units) 92.02 82.72 20.65 1579.50

F (e1,000) 19.62 29.21 0.05 740.92

ESU (100 ESU) 0.75 0.78 0.16 18.17

Subsidies (e100,000) 0.24 0.27 0.08 6.44

Density (livestock/hectare) 2.03 0.66 0.41 9.23

3.2 Prior specification

The priors for the parameters to be estimated are specified as follows:

1Price indices from EUROSTAT are used for the deflation of revenues and values of outputs and inputs.

9
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⇒ A Gamma prior is used for the precision τ with p(τ) = ba

Γ(a)τ
a−1e−bτ . The shape and rate

hyperparameters are set equal to 0.001. The same prior distribution is used for the prior of

the precision parameter ϕ (p(ϕ)). However, since this precision parameter corresponds to a

latent equation, the shape and rate hyperparameters are set equal to 4 and 0.5, respectively,

making this prior a bit more informative. The need to place a more informative prior on such

a parameter is highlighted in Fernandez et al. (1997), who warn that a non-informative prior

may lead to a posterior that is not proper. This is also emphasized in Van den Broeck et al.

(1994) and Griffin and Steel (2007), who use a truncated-Normal distribution for inefficiency,

as also the present study does.

⇒ A multivariate Normal prior is placed on β̄ with p(β̄) = |P |1/2

(2π)K/2 exp
{
− 1

2(β̄−m)′P (β̄−m)
}
.

The prior means m are set equal to zero and the precision matrix P is diagonal with its

diagonal entries taking the value of 0.001. The same prior distribution and parameterization

is used for the prior of the vector δ̄ (p(δ̄)).

⇒ A Wishart prior is used for Ω with p(Ω) = |Ω|
n−K−1

2 |V −1|n/2

2nK/2ΓK(n/2) exp
{
− 1

2 tr(V
−1Ω)

}
, where n

stands for the degrees of freedom, V is a scale matrix, ΓK is the multivariate Gamma function

and tr is the trace function. n is set equal to K and V is diagonal (IK) as in Tsionas (2002).

The same prior density and parameterization is used for the prior of the matrix Ψ (p(Ψ̄)).

4 Results

The results reported in the section are based on 100,000 MCMC iterations. To prevent autocor-

relation and dependence of posterior samples, the first 10,000 iterations are deleted and each 2th

is stored. The posterior moments of the elasticities (i.e. β and β̄) and the precision parameters

as well as model comparison quantities from the simple and the hierarchical frontier models are

presented in Table 22,3. All output elasticities are positive with their magnitudes exhibiting some

differences across the two models. Nevertheless, both models point towards livestock units being

2The hierarchical frontier is also estimated using a translog specification. However, most second-order terms

are "statistically insignificant", while the posterior model probabilities present overwhelming evidence in

favor of the Cobb-Douglas specification of the hierarchical frontier. The results can be provided upon

request. Note also that the robustness checks with regards to the model specification and the performed test

concern only the hierarchical frontier as results from the simple frontier are only presented for comparison.
3The posterior mean of Ω from the hierarchical frontier model is presented in Table A1 in the Appendix.
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the most influential input for farms. Additionally, the estimate with respect to time trend is the

same across the two models and suggests that, on average, Dutch dairy farms face technological

progress during the study period. The same conclusions as above are drawn by Skevas et al. (2018b)

for the case of German dairy farms. The estimates with respect to the precision parameters can

provide important information regarding the proportion of variation in output and inefficiency that

is explained by the two models. Both precisions are higher in the hierarchical model. Given that

variance is the inverse of precision, the last result suggests that unexplained variation in output

and inefficiency is lower in the hierarchical model. This holds particularly for the case of output as

the respective precision parameter is 7 times larger when compared to the simple frontier. This is

a first indication of the superiority of the hierarchical frontier. Additionally, the estimates of the

marginal log likelihood and the calculated posterior model probabilities clearly indicate that the

hierarchical frontier fits the data better than the simple frontier.

Table 2 Posterior moments and model comparison for the two frontier models

Simple Frontier Hierarchical Frontier

Variable Mean Std. dev. 95% Interval Mean Std. dev. 95% Interval

intercept 0.128 0.009 [0.110, 0.145] 0.062 0.008 [0.046, 0.078]

log_K 0.072 0.003 [0.066, 0.078] 0.029 0.008 [0.014, 0.044]

log_L 0.102 0.008 [0.087, 0.118] 0.044 0.014 [0.017, 0.071]

log_A 0.032 0.011 [0.011, 0.055] 0.174 0.017 [0.141, 0.208]

log_M 0.331 0.009 [0.314, 0.348] 0.145 0.013 [0.119, 0.171]

log_S 0.366 0.013 [0.340, 0.392] 0.403 0.019 [0.365, 0.440]

log_F 0.117 0.003 [0.110, 0.124] 0.159 0.008 [0.144, 0.175]

t 0.031 0.001 [0.029, 0.033] 0.031 0.002 [0.028, 0.035]

τ 49.365 2.612 [44.573, 54.671] 356.894 36.670 [292.298, 436.206]

ϕ 5.498 2.759 [0.976, 10.489] 6.055 1.568 [3.373, 9.158]

Marginal log likelihood Marginal log likelihood

3464.783 9853.422

Posterior model probability Posterior model probability

0.000 1.000

11

Page 12 of 22

URL: https://mc.manuscriptcentral.com/ape

Submitted Manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

The two models also produce different inefficiency estimates. Average inefficiency across all

individuals and time is 0.113 in the simple frontier and 0.077 in the hierarchical frontier. That is,

when heterogeneity is not taken into account it is absorbed by the inefficiency component resulting

in its inflation. This is a well-documented result in the literature (Tsionas (2002) and Barros and

Williams (2013)). Figure 1 presents histograms of the individuals’ inefficiency estimates produced

by the simple frontier (left panel) and the hierarchical frontier (right panel). Obviously, lower

inefficiency estimates are observed in the hierarchical model as the bulk of the observations are

closer to zero. Note also that the maximum value of inefficiency is higher in the simple frontier.

Additionally, a closer look at Figure 1 reveals a striking result; variation in inefficiency is higher

in the simple frontier, which is unexpected given that only the hierarchical frontier accounts for

heterogeneity in inefficiency by specifying the random parameters δi. However, given that the

hierarchical frontier accounts for both technology and inefficiency heterogeneity, this result suggests

that technology heterogeneity dominates inefficiency heterogeneity resulting in low variation in the

individual’s inefficiency scores.

Fig. 1 Histograms of the inefficiency estimates in the two frontier models

The posterior moments of the determinants of inefficiency from the simple and the hierarchical

frontier (i.e. δ and δ̄) appear in Table 34. As mentioned earlier, the hierarchical frontier does not

contain an intercept in its inefficiency specification due to identification issues arising when a model

contains two individual-specific time-invariant random components.

4The posterior mean of Ψ from the hierarchical frontier model appears in Table A2 in the Appendix.
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Table 3 Posterior moments of inefficiency determinants in the two frontier models

Simple Frontier Hierarchical Frontier

Variable Mean Std. dev. 95% Interval Mean Std. dev. 95% Interval

intercept 0.529 0.229 [0.062, 1.148] - - -

ESU -2.179 1.948 [-7.776, -0.715] -0.720 0.271 [-1.367, -0.289]

subsidies 1.595 1.453 [0.429, 5.917] 0.863 0.398 [0.198, 1.828]

density -0.960 0.923 [-3.405, -0.289] -0.995 0.320 [-1.771, -0.544]

The results reveal that ESU and density are negatively related to inefficiency, while subsidies exhibit

a positive link. Such findings are also reported by Alvarez and del Corral (2010) and Skevas et al.

(2018a) for dairy farms. The results further suggest that the parameter estimates of the inefficiency

determinants are severely inflated in the simple frontier, which does not account for heterogeneity.

The only exemption concerns the estimate with respect to the density variable, which is almost

the same in the two models. Naturally, this inflation is also observed in the associated marginal

effects of the inefficiency determinants. These are calculated according to equation (6) and their

histograms are presented in Figure 2.

The left panel contains the histograms of the marginal effects from the simple frontier and the

right panel the associated histograms from the hierarchical frontier. The average marginal effect

of ESU on inefficiency across all individuals is -0.073 in the simple and -0.023 in the hierarchical

frontier (upper left and right figures). Regarding subsidies, its average marginal effect is 0.053 and

0.024 in the simple and the hierarchical frontier, respectively (middle left and right figures). Finally,

the marginal effect of density on inefficiency is -0.030 both in the simple and in the hierarchical

frontier, on average (lower left and right figures). Presentation of histograms of the marginal

effects facilitates making inferences regarding their variation across individuals. Note that the

marginal effects in the simple frontier vary only due to differences in the utilized socio-economic

characteristics of individuals, whereas in the hierarchical frontier vary also due to heterogeneity

in the respective parameters (i.e. δi). As striking as in the case of inefficiency, the marginal

effects in the hierarchical frontier are more concentrated around the reported means suggesting a

lower variation when compared to those derived from the simple frontier. This is again because

technology heterogeneity dominates inefficiency heterogeneity in the hierarchical frontier resulting

in very low variation in the associated marginal effects.
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Fig. 2 Histograms of the marginal effects of ESU, subsidies and density on inefficiency across

the two frontier models

5 Conclusions

The goal of this study is to present the distortions in inefficiency and in the estimates of its

determinants when technology and inefficiency heterogeneity across individuals is not taken into

account. For this purpose, a hierarchical frontier model with random parameters that allow for

both technology and inefficiency heterogeneity across units is used, and its results are compared

with a conventional frontier model that completely ignores heterogeneity. Data on German dairy

14

Page 15 of 22

URL: https://mc.manuscriptcentral.com/ape

Submitted Manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

farms are used and the two models are estimated using Bayesian techniques.

The empirical findings reveal that the inefficiency estimates are inflated if heterogeneity is not

taken into account. This is because the inefficiency component also absorbs firm heterogeneity

providing a warning to studies measuring the inefficiency of decision-making units that ignorance

of heterogeneity can result in misleading inefficiency estimates. Additionally, there is evidence that

technology heterogeneity dominates inefficiency heterogeneity. Specifically, although the employed

hierarchical frontier model allows for inefficiency heterogeneity, the inefficiency estimates from the

conventional frontier model exhibit higher variation. This implies that the main source of firm

heterogeneity concerns technology differences rather than discrepancies in the way their socio-

economic factors impact them.

The aforementioned distortions in the inefficiency estimates are also observed in the estimates

of their determinants. Specifically, it is shown that the magnitude of the marginal effects of the

utilized socio-economic characteristics on inefficiency are inflated if heterogeneity is not accounted

for. Again, this finding provides a signal to studies searching for the sources of inefficiency that

ignorance of heterogeneity yields imprecise results. The dominance of technology heterogeneity is

also evident in the variation of the marginal effects as this is very low in the hierarchical frontier

model.

Apart from the theoretical appeal of the hierarchical frontier model that comes from the rather

realistic assumption of firm heterogeneity, it is shown that the model fits the utilized data better

than the simple frontier model according to the derived posterior model probabilities. Although the

data are old, the results are contemporary and relevant for researchers as they reveal the distortions

and the related misleading inferences that can efficiency studies that ignore firm heterogeneity make.

From a policy perspective though, it would worth mentioning that the results of this study regarding

the inefficiency estimates are outdated for informing businesses or policy-makers. However, some

policy implications can be provided based on the relationships between some of the utilized socio-

economic characteristics and inefficiency. This holds particularly for subsidies and density because

the provision of subsidies and measures targeting farmers’ stock density remain a central theme in

modern agricultural policy, with lessons from past experiences being of particular importance.

In terms of subsidies, two of the key instruments of the Common Agricultural Policy (CAP) for

the Post-2020 period include the "Complementary Income Support for Young Farmers (CISYF)"

and the "Complementary Redistributive Income Support for Sustainability (CRISS)". The former

provides income support to young farmers in the form of annual decoupled payments per eligible
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hectare, and the latter includes redistribution of decoupled payments from bigger to smaller or

medium-sized farms to improve sustainability (European Commission 2020). The results from this

study point towards a positive link between subsidies (which almost exclusively consist of decoupled

payments) and inefficiency, which can be because such income-support payments lower farmers’

motivation to work efficiently. Therefore, this result provides a warning that decoupled payments,

although boosting farmers income, can at the same time decrease the efficiency of production.

Regarding density, the CAP Post-2020 in order to enhance farms’ environmental performance aims

to introduce a mandatory "greening" component of direct payments that will support sustainable

management. However, in order to receive it farms will need to extensify their production through

lower stocking density (European Commission 2020). The present study’s empirical findings report

a negative link among stock density and inefficiency. Hence, this result provides a signal that,

although extensive schemes can improve the environmental performance, this can come at a loss of

efficiency in production.

.
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