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Abstract

Abstract

The work described in this thesis pertains to the area of Collaborative Filtering
and focuses on collaborative filtering datasets and specially-defined portions of
the datasets called views. The high level goal of the work is to better
understand how different characteristics of datasets affects the performance of
collaborative filtering techniques. Datasets, and views, are compared across a
number of different experiments: some relating to techniques and accuracy and

others relating to ideas of performance prediction.
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Chapter 1

Introduction and Overview

1.1 Motivations

Modern information spaces have become more complex where information and
users are linked in numerous ways, both explicitly and implicitly, and where users
are no longer anonymous, but generally have some identification and a context
in which they navigate, search, browse and seek recommendations. This offers
new challenges to information retrieval system designers, both in capturing this
information and using it to provide for a more personalised and effective retrieval

and recommendation experience for a user.

Collaborative filtering provides one approach to recommendation. Generally, col-
laborative filtering techniques make use of one type of information, that is, prior
implicit or explicit ratings that users have given to items. The assumption upon
which collaborative filtering is based is that human preferences are correlated and
thus prediction of future preferences is possible. Specifically, given a set of ratings
by users for items, the aim of collaborative filtering is to predict the ratings of
a particular user, u, for one or more items, i, previously not rated by that user.
The traditional, and prevalent, recommendation paradigm involves a centralised
approach whereby users register with one particular system and provide ratings
for items (explicitly, implicitly or both) and receive recommendations on new

unseen items.

This chapter will give an overview of the research problems which will be ad-
dressed by the work described in this thesis (Section 1.2). The aims of the work
(Section 1.3) and the research challenges that will be addressed are then outlined
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(Section 1.4). The main methodology used (Section 1.5) and the contributions
of the work (Section 1.6) are outlined in the subsequent sections. Finally, an
overview of the topics discussed in each subsequent chapter is given (Section
1.7).

1.2 Open Research Problems

The 1990s saw the first set of publications in the area of collaborative filtering,
although many of the techniques on which the work was based were well-known
from the statistics and information retrieval domains. Work by Goldberg et al.
[82] and Shardanand and Maes [214] introduced the problem domain and the
idea of leveraging user preferences to make recommendations. It was unlikely
that these early pioneers of the area envisaged that, in the space of 20 years,
collaborative filtering techniques would be in widespread use and that a very

large number of models would have been proposed and evaluated.

The focus of the publications in the intervening years has been naturally diverse
but some main themes and problems have remained relatively constant. Some
of the most-studied aspects of the domain have been concerned with improv-
ing the accuracy of recommendations and improving user satisfaction with the

recommendations and with the recommender systems.
The aspects of the domain which this work seeks to address include:

1. The majority of previous research is evaluated using standard, freely-
available datasets and it is generally recognised that techniques will have
different performances given the particular dataset under study. In much
of the work the analysis of the techniques have predominated, with very
little attention given to the characteristics of the datasets and how these

characteristics vary across datasets.

2. There is much evidence from various domains within Information Retrieval
and Recommender System research that there are many factors which can
contribute to effective retrieval and recommendation. Much of the previous
work has focused on developing and evaluating new collaborative filtering
techniques, with the focus predominately on increasing accuracy. Despite
the wealth of research done in this area there remains fruitful avenues for
further research. One such avenue relates to how different algorithms, and

parameter value settings of the same algorithm, might give better or worse

An Analysis of Collaborative Filtering 2
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1.8 Aims

performance depending on the dataset used.

3. Some well-known collaborative filtering problems exist with respect to the
sparsity of the datasets, where typically users only rate a small number
of items and many items receive few or no ratings. Many of the previous
models developed try to overcome this problem with different approaches.
However the characteristics of the datasets has generally not been leveraged

to explain why particular users may not receive good recommendations.

4. Features of collaborative filtering datasets (such as a user’s average rating
value and standard deviation from this average) have been used in many
of the techniques developed. However, such features have rarely been used
to predict how well an approach might perform given the features of some

user or some item.

1.3 Aims

Given the four issues identified in the previous section, the high-level aims of
this work are to identify and analyse the information which can be extracted,
compared and learned across collaborative filtering datasets, and portions of
these datasets. The aim is not only to show that improved accuracy can be
obtained in certain cases, but to better understand why such accuracy may or
may not be achieved. In addition the aim is to examine whether — given the
user, dataset or portion of dataset, in question — the accuracy can be predicted

in advance of recommendation.

1.4 Research Challenges

The focus of this work lies in the areas of collaborative filtering, collaborative
filtering datasets, collaborative filtering parameters (for a memory-based near-
est neighbour approach) and performance prediction. There are four research

challenges identified in these areas:
C1: How to analyse and compare characteristics of different datasets.

C2: How to find the best set of parameters in a nearest neighbourhood approach

for different datasets and portions of datasets.
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C3:

C4:

How to understand, in some way, why particular recommendations for a

user may or may not be accurate.

How to provide a measure of the system’s confidence in the recommenda-

tions given.

The hypotheses are:

H1:

H2:

H3:

Comparison: A comparison between collaborative filtering datasets can be
used to explain the recommendation accuracy likely to be achieved when
using the datasets. (Challenge C1).

Learning Parameters: A genetic algorithm approach can be used to find the
best set of parameters for different collaborative filtering datasets. (Chal-
lenge C2).

Predicting Performance: A set of features can be extracted from the
datasets and can be used to predict the performance of a recommender

system for a particular user. (Challenges C3 and C4).

1.5 Methodology

The methodology is based on standard collaborative filtering techniques, partic-

ularly a Pearson correlation nearest-neighbour approach. The evaluation metrics

used are predominantly mean absolute error (MAE) and coverage, but also the

F1 metric. The machine learning techniques of genetic algorithms and an 1D3

decision tree are also used. Four datasets are considered in each experiment:

MovieLens, last. fm, bookcrossing and Epinions.

1.6 Contributions

The work makes the following contributions:

1.

Specifying the information which can be captured in collaborative datasets
to aid comparison across datasets. (See Chapter 3). (Relating to Hypothesis
1 [H1]). (Published [86, 87]).

2. Extracting feature and “view” information from a number of different
datasets and comparing the features and views across the datasets. (See
all chapters). (Relating to Hypothesis 1 [H1]). (Published [88, 89]).
An Analysis of Collaborative Filtering 4
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3. Using a genetic algorithm to learn the best set of features per dataset in a
nearest-neighbour approach (See Chapter 4 and Chapter 5). (Relating to
Hypothesis 2 [H2]). (Published [90]).

4. Providing a measure of confidence in the predictive accuracy of a recom-
mender system prior to recommendation. (See Chapter 6 and Chapter 7).
(Relating to Hypothesis 3 [H3]). (Published [91, 92]).

1.7 Thesis Overview

Chapter 2 presents an overview of the aspects of collaborative filtering areas that
are most relevant to the work described in this thesis. Chapter 3 provides a
general discussion of collaborative filtering datasets — their characteristics and
an outline of some of the main studies where they have previously been used.
This is followed by a detailed discussion and comparison of the four datasets
used in this work. Finally, specially-defined portions of the four datasets, called
dataset views, are defined and analysed. Chapter 4 outlines a genetic algorithm
approach to learn the best set of values for common parameters in a nearest-
neighbour Pearson correlation approach. Chapter 5 continues this work but con-
siders the genetic algorithm approach applied to the previously-defined dataset
views. Chapter 6 outlines a performance prediction approach to enable a level of
predictive accuracy which could be made available to users prior to recommenda-
tion. The learning approach is based on dataset features which are extracted from
the datasets prior to a learning stage (using decision trees). Chapter 7 returns
again to dataset views, and outlines the results obtained when the performance
prediction approach, outlined in Chapter 6, is applied to dataset views. Chapter
8 concludes the thesis with a summary of the work done, the main contributions

of the work and with a list of some ideas for future, related work.
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Chapter 2

The Case for Collaborative
Filtering

The Models, Techniques, Successes and Challenges

2.1 Introduction

The goal of this chapter is to present an overview of current knowledge in the
many inter-related areas of collaborative filtering relevant to the research work
outlined in this thesis. The layout of the chapter is built upon a generic model
of the main components of a collaborative filtering system. Much of the focus
centres on the approaches that are used for the prediction of recommendations.
Another major focus is on the approaches used to evaluate the collaborative

filtering results.

The outline of the chapter is as follows: firstly a brief overview is given of the dif-
ferent motivations for collaborative filtering research. The area of collaborative
filtering is then described through the use of a model which lists five compo-
nents: Users, [tems, Datasets, Models and Recommendations. The components
of Users, Items and Datasets are first explored in Section 2.4, although most of
the discussion of datasets is deferred to the next chapter (Chapter 3). Section 2.5
contains a discussion of the many collaborative filtering models which have been
proposed. The discussion centres on three main models: memory-based models;
graph-based models and probabilistic models. In addition, three extensions of

these models — in the form of combination approaches, weighting schemes and
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learning approaches — are discussed in separate sub-sections. Finally, Section 2.6
concentrates on issues surrounding the evaluation of the recommended items re-
turned by a collaborative filtering approach. In addition to a predictive-accuracy
focus and a user-centric focus, some work which considers ezplanations and pre-

dictive performance is discussed. Conclusions are presented in Section 2.7.

2.2 Motivations of Collaborative Filtering Re-

search

The original foundations of collaborative filtering emerged from the idea of “au-
tomating the word of mouth process” that commonly occurs within social net-
works [214], i.e., people will seek recommendations on books, CDs, restaurants,

etc., from people with whom they share similar preferences in these areas.

Given a set of users, a set of items, and a set of ratings, collaborative filtering sys-
tems attempt to recommend items to users based on user ratings. Collaborative
filtering systems traditionally make use of one type of information, that is, prior
explicit or implicit ratings that users have given to items. The incorporation of
additional information, particularly content and explicit social information, has
also been considered. To date, application domains have predominantly been con-
cerned with recommending items for sale (e.g., movies, books, music and accom-
modation) and with small amounts of text such as review articles and bookmarks
to websites. The datasets within different domains have their own characteristics,
but they can be predominantly distinguished by the fact that they are both large
and sparse, i.e., in a typical domain, there are many users and many items but
any user will only have given ratings to a small percentage of all items in the

dataset.

For convenience, the problem space is often viewed as a matrix consisting of the
ratings given by each user for the items in a collection, i.e., the matrix consists
of a set of ratings r,,, corresponding to the rating given by a user a to an item
. Using this matrix, the aim of collaborative filtering is to predict the ratings of

a particular user, a, for one or more items not previously rated by that user.

The problem space can alternatively be viewed as a graph where nodes represent
users and items, and nodes and items can be linked by weighted edges in various
ways. Graph-based representations have been used for both recommendation and

social network analysis of collaborative filtering datasets [115, 192, 55].

An Analysis of Collaborative Filtering 8
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Many different approaches to the collaborative filtering task have been investi-
gated, each with their own set of assumptions with respect to the collaborative fil-
tering dataset. Studies have different foci — usually, but not only, to improve pre-
dictive performance. Other issues of interest include: scalability [206, 78, 29, 135,
76, 147, 8, 251]; dealing with sparseness [181, 151, 152, 186, 45, 111]; including ad-
ditional information [239, 61, 183, 50]; trustworthiness [162, 123, 240, 73]; novelty
[252, 173, 247, 199], transparency and explanation [103, 168, 158, 132, 107, 207]
and predicting performance [188, 69, 27].

Similar to software quality in general, and information retrieval system quality
specifically, measures of collaborative filtering quality are typically linked to a
system’s superiority (or non inferiority) in meeting a set of requirements with
respect to one or more metrics. These measures have important consequences in
that the relative merits of systems and algorithms can be compared empirically
and assurances of quality with respect to these metrics can be associated with

systems and algorithms.

2.3 Collaborative Filtering: An Overview

The collaborative filtering task can be viewed as a typical prediction problem, i.e.,
for some user, and some past evidence of the user’s, and other user’s, interests,

predict the user’s interest for some unseen items.

A general model for collaborative filtering can be defined, based on a similar
model in Information Retrieval [11], by:
<U,I,P,M,R(I,u) >

where:

o U is a set of users, generally represented by some unique identifier although

additional demographic information on users may exist.

« [ isaset of items (dependent on the domain) generally represented by some

unique identifier; again, additional information on items may exist.

o P is the dataset (i.e., can be viewed as a matrix of dimension |U| x |I|
containing ratings by users U for items [ where a value in the matrix is

referenced by pui);

e M is the collaborative filtering model(s) used (e.g., correlation methods;

probabilistic models; machine learning approaches); and
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e R(I,u) returns a set of recommended items from / (which may be ranked)

based on P and M, given user wu.

A possible instantiation of the above framework within a movie recommender

domain (the MovieLens100K dataset!) can be specified as follows:

o U consists of a set of 943 users, represented by unique IDs, seeking recom-

2.4

mendations on movies.

I consists of a set of 1682 items (which are movies), represented by a unique

identifier for each movie.

P is the collaborative filtering dataset, Movie Lens100K , containing ratings
by the users U for items I. A rating is an integer value in the range [1 — 5]
indicating a user’s preference value for a movie, from 1, indicating a user
does not like the movie, to 5, indicating that a user loves a movie. The
MovieLens100K dataset contains 100,000 ratings.

M is the model or models used. There exist many possible instantiations
of M. One common approach is to calculate the similarity between users in
U based on the correlation of the ratings they have given to items I. These
similarity values are used to select neighbours and calculate a recommen-

dation value for items.

Based on the output of the model M, R(I,u) returns a ranking of some, or

all, of the items in I which user u has not previously rated.

U: The Users; I: The Items and P: The
Dataset

In collaborative filtering domains, users give ratings to items and these ratings

become the main input to a collaborative filtering model. The ratings may be

in a restricted range, or not, and may be gathered explicitly (for example a star

rating from 1 to 5 for an item) or implicitly (for example the number of times an

item was accessed).

Although traditionally a dataset consisted only of the ratings by users for items,

there are more dimensions to these basic components in some modern datasets,

e.g.,

"http://www.grouplens.org/datasets/movielens/

An Analysis of Collaborative Filtering 10
Datasets
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o content information on the users may be stored and used, for example

demographic information or profile information.

o explicit link information between users may be stored, for example trust

links or friendship links.

o content information on the items may be stored and used, for example
attributes of items, tags associated with items or descriptions or reviews of

items.

a time stamp may be associated with the ratings.

Typically, there are many users and many items in any system and a predominant
feature of collaborative filtering datasets is that they are both large and sparse.
Some approaches deal specifically with sparseness [157], including work to esti-
mate and fill missing data: Rao et al. take advantage of additional information
that is available on users and use a low rank matriz completion approach [191];
Hu et al. and Xue et al. use smoothing approaches [113, 238] and George et
al. [78] and Li et al. [150] use a co-clustering algorithm. Kim et al. develop
a binomial mixture model where the model jointly handles non-random missing

data as well as generating predictions [129].

The large size of the datasets often results in poor performance. Singular Value
Decomposition (SVD) has been used to improve scalability by dimensionality
reduction [33, 206, 16]. Latent factorization techniques have proved to be far
more scalable than other approaches with large datasets [194, 218, 220, 216, 53,
30, 106, 156].

One common characteristic of collaborative filtering datasets seen in earlier work
was called the “cold start” problem and has, in more recent work, been termed
the “long tail” of item distribution within the datasets [10]. This refers to items
which have not received many ratings or users who have not given many ratings.
This may be due to the fact that the users or items are newly introduced to
the dataset or, for items, it may be that the items are unpopular or that they
are niche items. Many studies remove these items from the datasets or modify
models and algorithms to deal with them [209, 114, 131], while other studies
attempt to gather more ratings [249, 5, 51] or attempt to gain some benefit from
the existence of the long tail distribution [212, 182].

Some of the previous work in this area builds on theoretical and mathematical

work on high dimensional spaces and distance measures in the areas of database
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systems [31, 2, 74, 190]. One such result showed that “in high dimensional space,
the concept of proximity, distance, or nearest neighbour may not even be quali-
tatively meaningful” [2], i.e. in high dimensional data distances between all pairs

of points become almost equal.

Recent work by Aharon et al. [5], in an online setting, use a matrix factorization
approach to find users with distinctive tastes who can give feedback (ratings) on
new items. Zhou et al. [249] develop an approach which can be used to elicit
user preferences by having users answer some set of adaptive questions. They
use a functional matrix factorization approach to build a decision tree where
each node in the tree corresponds to a question. Chang et al. [51] also develop
an approach for rating elicitation where users are asked to give a rating to a
cluster of similar items, rather than a single item. Ling et al. [154] use a matrix
factorization approach to combine content and collaborative information; while
Saveski et al. [207] use a similar approach but use the similarity between users
and between items in their matrix factorization approach. Fernandez-Tobias et
al. [72] compare a number of different algorithms using rating data and content

data extracted from DBpedia?.

2.5 M: The Collaborative Filtering Models

A large body of work has concentrated on different collaborative filtering models
(M) and their evaluation and comparison. An overview of three families of col-
laborative filtering models will be given here: memory-based models; graph-based
models; and probabilistic models (including matrix factorization techniques).
Three further sub-sections will discuss variations of these models: one involv-
ing the combination of models and/or data; the second involving the effect of the
modification of the value of parameters in some of the models and finally, the
third, presenting studies which have sought to learn, using genetic algorithms,

the best model, or models and weighting schemes, to use.

2.5.1 Memory-based Models

The most popular and successful early approach to collaborative filtering was

that of a group of techniques which belong to what is termed “memory-based”

’http://wiki.dbpedia.org/
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approaches — which are also called neighbourhood-based approaches. The typical
neighbourhood-based approach uses standard measures to calculate the similarity
between users (for example, mean square difference, Pearson correlation, cosine
similarity etc.) to find a user’s neighbours. Much early work empirically evaluated
variants of the approach [39]. Herlocker et al. tested a classic neighbourhood-
based collaborative filtering algorithm [104]. A number of similarity measures
were used to find neighbours, with a significance threshold used to dampen the
similarity for users who had only rated a few items, choosing the k£ most similar
users as neighbours for prediction and using “deviation from the mean” as the

normalisation method. The components tested included:

 the size of the neighbourhood used.

the similarity measure used to compute the closeness of neighbours.

the threshold over which other users were considered neighbours.

the type of normalisation used on the ratings.

The standard MovieLens100K dataset was used comprising 100,000 movie rat-
ings from 943 users on 1682 items and the mean absolute error metric (MAE)
was used to compare results. The overall observations from the work for the
MovieLens dataset were [104]:

o Use Pearson correlation for the similarity measure.

o Dampen similarity scores between users who have co-rated a small number
of items. A devaluation term above 50 did not appear to improve results.
The devaluation term was used by multiplying two user’s correlation by %
where n is the number of co-rated items between the two users and d is the

devaluation value.

o Normalize user ratings by “deviation from the mean” to account for user’s
rating with slightly different scales, i.e., each user rating is taken as their

raw rating score minus their mean score.

o Use the TopN best neighbours (highest similarity to the test user) for neigh-
bourhood selection. The estimated best range of neighbours (N) was found
to be between 20 and 60.

o Weight neighbour contributions when forming predictions.

Although the approach outlined by Herlocker et al. [104], and the parameters

used, offered good performance, Howe et al. [112] re-evaluated two parameters
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from Herlocker et al’s work — the similarity measure between users and the
normalisation of user ratings — using the MovieLens and Netflix dataset, and
found that Pearson correlation is not necessarily the best similarity metric to
use. They compared cosine vector similarity, Pearson correlation, Spearman cor-
relation, Manhattan distance, Euclidean distance, Loo distance and Hamming
distance. They found that different parameterisations work better for different

datasets.

2.5.2 Graph Models

Several researchers have adopted graph representations to develop recommenda-
tion algorithms. A variety of graphs have been used, including, directed and
two-layered graphs. A number of graph algorithm approaches have been adopted
[3, 115, 96, 137] with recent work focusing on random walk algorithms that rank
vertices (where vertices represent items) [148, 57, 55]. The graph approach has
also been used to integrate sources of evidence and information [239, 61] including

information from social networks [73, 50].

A number of recommender systems based on social networks have been devel-
oped®. Early work induced these social networks from the rating data (for exam-
ple, the common items that users have rated [15, 180, 192]) and by matching user
models and profiles [230]. Recently, online relationships between people have been
used to create social networks and many examples of explicit social networks exist
where relationships between users are explicitly created and where there is con-
tent (comments, images, movies) associated with the users in the social network
[136, 50].

2.5.3 Probabilistic Models

Probability theory has been used in many collaborative filtering approaches [184,
222, 136]. Many of the probabilistic algorithms construct a model of underlying
user preferences from which predictions are inferred. Examples include Bayesian
models [39, 246, 14]; dependency networks [101], social networks [50], aspect

models [108, 109, 97], expectation maximization models [141], clustering models

3 A social network can be defined as a network (or graph) of social entities (e.g. people,
markets, organisations, countries), where the links (or edges) between the entities represent
social relationships and interactions (e.g. friendships, work collaborations, social
collaborations, etc.)
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[228, 28, 1] and models of how people rate items [184]. Other machine learning
approaches have been considered [17, 33, 174, 75|, including deep neural networks
[58], as well as approaches which view the problem as a list-ranking problem
[75, 155], a multi-objective optimisation problem [179] and as a data mining
problem [3, 172].

Based on a probabilistic framework, matrix factorization techniques have become
one of the new standards in collaborative filtering research when dealing with
very large datasets and when scalability is an issue [233, 138, 187, 18, 53, 30, 106,
156, 100, 128]. In general, the idea of a matrix factorization approach is to factor
the rating matrix into two sub-matrices: one related to items and one related to
users [135]. The factorization approach is based on finding K latent factors that
allow prediction of items for some user. The approach is often instantiated as
an optimisation problem. Once the optimisation problem is solved, one vector
represents the user (@) and the second vector represents the item (b) on which
the user will receive a prediction. Each vector has K factors. The prediction for

a user v for item ¢ is: P,; = a;, X b;.

Steck [216] extends a matrix factorization technique by the use of non-linear ac-
tivation functions (often found in neural networks). The model is tailored to
sparse binary data using a binary version of the MovieLens10M and Net flix
datasets. Hernando et al. [106] improve upon a classical matrix factorization ap-
proach using a Bayesian probabilistic model for non-negative matrix factorization.
Their approach provides a way to understand why particular recommendations
were made — which is generally difficult to provide with a matrix factorization

approach.

Liu at al. [156] combine a matrix factorization approach with kernel methods
and multiple kernel learning. They show that their approach captures non-linear
correlations among data which in turn leads to improved accuracy in comparison
to five other techniques. They evaluated the approach on six datasets (three of
which were MovieLens, Jester and Flixzster). The techniques used for compar-
ison to the one-kernel and multiple-kernel matrix factorization approaches were
three memory-based approaches (baseline average, item-based cosine similarity,
item-based Pearson similarity) and two model-based approaches (Singular Value
Decomposition (SVD) and a baseline matrix factorization approach). RMSE was
used as the metric for comparison. Results indicated that the one-kernel and
multiple-kernel matrix factorization approaches outperformed the other baseline

approaches.
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2.5.4 Combination

There is much evidence from various domains within Information Retrieval that
the combination of sources of evidence leads to more effective retrieval [62]. With
respect to recommender systems, Basu et al. claim that “there are many factors
which may influence a person in making choices, and ideally, one would like to
model as many of these factors as possible in a recommendation system” [17].
Although the types of information combined, and the techniques used, vary sub-
stantially across the domains, it has been shown that there are advantages to be
gained from considering more than one source of information or more than one

technique.

There are two main approaches in collaborative filtering combination: the first
approach involves using two or more techniques for each type of data present
and combining/blending the prediction scores of each approach to get a final
prediction score for each recommended item [12, 178, 46, 135, 215, 119, 221, 154].
The second approach involves extracting, or using, additional information (or
features) from the collaborative filtering dataset and incorporating this into the
collaborative filtering approach [180, 175, 204, 231, 113, 198, 183, 67, 136, 50].

In terms of the first approach, the Netflix competition demonstrated that, rather
than a new technique, it was the combination, or blending, of existing techniques,
which resulted in substantial improvements in accuracy [29]. The work demon-
strated that latent factor models, such as matrix factorization, provide better
accuracy, deal with sparsity and large datasets better, provide good scalability
and allow for the incorporation of additional information [135, 76]. Jahrer et al.
[119] further strengthen the argument for a combination of models in their work
where they analyse 18 different algorithms and show that linearly combining a set
of algorithms outperforms any single algorithm. In terms of the second approach,
some work combined, in addition to ratings, context information [198], content
information [183, 67] or both context and content information [126]. Recent stud-
ies have combined different types of data. Examples include the work by Kouki
et al. [136] where user-user, item-item and social information are incorporated
into their recommender system using a hinge-loss markov random field approach
[136]. Chaney et al. use a probabilistic matrix factorization approach to combine

social information with rating information [50].
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2.5.5 Weighting Schemes

A complementary approach to improving performance by the use of one or more
models M involves the investigation of weighting schemes for collaborative filter-
ing where these weighting schemes typically try to model some underlying bias or
feature of the dataset in order to improve prediction accuracy. For example, early
work by Breese et al. [39] and Yu et al. [244] apply an inverse user frequency
weighting to all ratings where items that are rated frequently by many users are
penalised by giving the items a lower weight. Similarly, variance weightings have
been used to increase the influence of items with high variance and decreased
the influence of items with low variance [102, 244]. The idea of a tf-idf weighting
scheme from information retrieval has been used for a (matrix) row normalisation
[127] and as part of a probabilistic framework [231]. Machine learning approaches
have been used to learn the optimal weights to assign to items [54, 124, 192]. O’
Donovan et al. give a higher weighting to user neighbours that have provided
good recommendations in the past [176]. DeBruyn et al. give items which are

recommended more frequently a higher weighting [66].

In general, although the use of some of the weighting schemes for items has
shown improved prediction accuracy (in particular those involving learning), it
has proved difficult to leverage the biases in the datasets to consistently improve
results. There may be a number of reasons for this, including the fact that the
datasets are sparse and that the data may not always be correct. Even if the data
is correct, the underlying preferences that the data “describes” may not always be

consistent, as user tastes and opinions may change over time [142, 42, 235, 232].

Related to the modelling of some underlying bias or features of the dataset in
order to improve prediction accuracy is the work done on analysing the models
to give an indication as to which models are more resilient to malicious attacks
(e.g., “shilling attacks” where ratings are entered into the system to bias results)
(248, 169, 140, 43, 177, 211]. Another related issue is that of trust. O’Donovan
and Smyth [176] state that “profile similarity on its own may not be sufficient”.
They, and others, incorporate trust measures into standard approaches using both
implicit and explicit measures of trust [162, 7, 117, 226, 120, 121, 38, 123, 73].
Yang et al. [240] fuse rating data and trust data by mapping users into two low-
dimensional spaces, i.e., truster space and trustee space, using matrix factorization
techniques. Forsati et al. [73] also use a matrix factorization technique and
incorporate information on trust and distrust into their PushTrust model. Results

show that the PushTrust approach provides more accurate recommendations than
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other baseline matrix factorization approaches. In addition, it was shown that

distrust is beneficial for the recommendation process.

2.5.6 Learning

Given the many models that have been proposed, and the many variations that
exist within these models, some work has applied the evolutionary learning ap-
proach of genetic algorithms* to choose the best models, or combinations of mod-
els, or to choose the best set of weights or parameter values for a particular
technique. Ujjin et al. [227] use a genetic algorithm to find the best “profile”
that describes each user in the dataset. Ko et al. [133] first classify items into
groups using a Bayesian classifier to reduce the dimensions of the space. A genetic
algorithm is used to cluster users in the new lower dimensional space. Hwang et
al. use a genetic algorithm, per user, to learn an optimal weighting scheme for

the collaborative filtering system for each user [116, 118].

Bobadilla et al. [34] use a genetic algorithm to find the best similarity function
between vectors representing user’s ratings for items. The fitness function used is
the Mean Absolute Error (MAE). They use three datasets (MovieLens, Net flix,
FilmAffinity). Results show that recommendations were returned more quickly,
and were of better quality, than the recommendations computed using traditional

collaborative filtering approaches.

2.6 R(I,u): Recommended Items

Irrespective of the approach used, the ability of a system to provide quality rec-
ommendations, R(/,u), is the main measure of effectiveness used in collaborative
filtering systems. Intermediate steps within a particular approach can also be
evaluated. Most experiments have been performed offline with a predictive ac-
curacy focus but some recent work has incorporated online user-centric studies
[213, 199, 70, 98].

In this section four aspects of recommender system evaluation will be considered.
Firstly, the standard approach of offline predictive accuracy evaluation will be

presented. User-centric evaluation will then be discussed. Finally two related

4Genetic algorithms are stochastic search techniques that evaluate a population of
solutions (individuals) over a number of iterations (generations) and at each iteration,
evaluate how good (or fit) each solution is [110, 81].
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areas will be presented: offering an explanation of why recommendations were
made; and using predictive techniques to improve the quality of the recommen-

dations made.

2.6.1 Predictive Accuracy Focus

A number of studies have been carried out in order to compare, from a predictive
accuracy perspective, the quality of the recommendations produced by various
collaborative filtering algorithms. This generally involves one of two evaluation
approaches: an error-based approach and an approach which evaluates a top-N

list of ranked recommendations.

It is important to note that only studies using the same datasets and the same
evaluation approach can be meaningfully compared. As typically there are many
parameters in different methods and evaluation approaches, we often cannot be

fully confident that the comparisons across different studies are fully valid.

Generally most experiments adopt the same testing methodology of decomposing
a known collection of ratings by users over a range of items into two disjoint
subsets. The first set (the training set, and usually the larger) is used to generate
recommendations for items corresponding to those in the smaller set (the test or
ground truth set). The generated recommendations are then compared in some

way to the actual ratings in the test set.

Many of the datasets to date do not have a test and train portion and so it is left
to individual experiments to decide on how to decompose the dataset. The main
variability is in the size of the training and test set. Approaches include different
percentile splits, (e.g., 10:90; 20:80; etc.) or a leave-one-out approach where
recommendation is sought on only one item. Each different split will typically
impact the error measurement. Many recent studies use a 5-fold cross validation
approach. With this approach, users are partitioned into five sets. For each user
in each set, 20% of the user’s ratings are randomly chosen as the test ratings. The
remaining ratings, in addition to all the ratings in the other partitions, become

the training ratings.

2.6.1.1 Error-based Approaches

In most work, error-based approaches are used to measure the ability of the

system to provide a recommendation on a given item (coverage) and to measure
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the correctness of the recommendation generated for a given item by the system

(accuracy). Specifically:

e coverage is a measure of the ability of the system to provide a recommen-

dation on a given item.

e accuracy is a measure of the correctness of the recommendations generated

by the system.

Coverage is usually computed as a percentage of the items for which the system
is able to provide a recommendation. The most commonly used accuracy metrics
include mean absolute error (MAE), normalised MAE (NMAE), and root mean
square error (RMSE) — all of which compare the exact rating value given to an
item by a user to the exact value predicted for the item by the system. The closer

the two values are, the lower the error.

The MAE score is defined as:

iy | (i — )|
N

(2.1)

where for N test items on which the system returns predictions, p; is the predicted
rating for item ¢ from the collaborative filtering system and r; is the actual rating

given by a user to item 1.

For several of the metrics there are two variants: overall and per-user; with overall
error, the overall error of all predictions for all users is averaged together; with
per-user error the error per user is averaged first, and then all user averages
are subsequently averaged. Schein et al. found that averaging errors overall or
per-user can give conflicting results [209]. Correlation measures between ratings
and predictions can also be used. Sarwar et al. claim that correlation measures
and metrics such as MAE, RMSE, and NMAE track each other closely [205].
Work by Zhang et al. concentrates on reducing the complexity of the evaluation

calculations [245].

Said et al. [197] compare results across three common recommender frameworks
and find that, when using the same algorithms, RMSE values can differ by more
than 10% across frameworks. They use the study to motivate the need for con-

trolled evaluation across studies.

There has been criticism of the error-based approach, focussing on two main

beliefs: that the recommendations which have the least error are not necessarily
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the most useful [167]; and that a ranked list of recommendations (e.g. top-1, top-
5) more fully reflects the real-world usage of recommender systems where items

are recommended but their predicted value is not important [60].

2.6.1.2 Top-N Approaches

Top-N approaches aim to measure coverage and accuracy by adopting the In-
formation Retrieval metrics of precision and recall. Top-N approaches are the
standard evaluation approach in Information Retrieval but there are many dif-
ferences between Information Retrieval and collaborative filtering experimental
settings. One of the largest differences is in the definition of item relevance, as this
can only be defined per user, whereas in the information retrieval experimental

setting, relevance can be taken as a ground-truth for all queries in a collection.

To evaluate the top-N recommendations, Sarwar et al. [205] use modified versions
of precision, recall and F1 metrics where items are divided into two sets — test
set and top-N set. Items that appear in both sets are members of the hit set.

: size of hit set sl : size of hit set
Recall is defined as (J77 05 5;) and precision is defined as (275777 e)-

The F1 measure is then defined as usual as: (2Xprecisionxrecall)

precision+recall

Cremonesi et al. [60] present work that highlights approaches which perform
well when evaluated with an RMSE metric but do not perform similarly with a
top-N evaluation. They compare item-based neighbour models with latent factor
models using the MovieLens and Net flixz datasets. They note some problems
with a top-N approach, notably that the most popular items in a dataset can bias
the precision and recall results. This was also noted by Celma et al. [48] with
the last. fm dataset. Cremonesi et al. overcame this bias by removing the very

popular items from the dataset [60].

Bellogin et al. [26] state that there is variability in the way top-N evaluation
methodologies are carried out and that this means results are not comparable
across different studies. The biggest variability relates to what they refer to
as the “amount of unknown relevance that is added to the test set”. That is,
the many user-item pairings that have no rating and are often assumed, in the
absence of any other knowledge, to not be relevant. They compare five test-
ing methodologies with three collaborative filtering approaches (user-based and
item-based neighbourhood approaches and a matrix factorization approach) and

three different metrics (Precision, Recall and Normalized Discounted Cumulative

Gain).
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Herlocker et al. [105] give a comprehensive overview of testing and evaluation
methodologies. They compare a large number of evaluation metrics including:
mean absolute error, Pearson correlation, Spearman rank correlation, area under-
neath a ROC-4 and ROC-5 curve, half life utility metric, mean average precision
at relevant documents and NDPM (normalized distance-based performance mea-
sure) metric. One of their contributions was to show that, for a given dataset,
some metrics may be strongly correlated while other classes of metrics are un-
correlated. They argued the case for recommender systems not only focusing on
accuracy but also on wusefulness in terms of coverage, learning rate, serendipity,
novelty and confidence. In addition they discussed metrics which can only be

measured by user evaluation of recommender systems.

2.6.2 User-Centric Focus

Studies have shown that the most accurate recommendations are not necessarily
the most useful from a user perspective [252, 167, 158]. For example, Bollen et al.
[37] show that large sets of good (accurate) recommendations do not necessarily
result in higher user satisfaction. Many authors claim that the focus on predictive
accuracy, as a measure of recommender system quality, has been detrimental to
the field [167, 199, 132].

User-centric studies have focused on including explanations [224, 158]; generating
a more diverse (serendipitous) list of recommendations [252, 77, 143]; generating
a more novel list of recommendations [49, 225]; motivating users to rate items

[20]; and motivating users to state preferences [166].

Pu and Chen develop an overall model to allow for user evaluation of recommender
system quality so that different studies can use a common set of measures [188].
The model can thus facilitate meaningful comparisons between studies. The
model contains eight different categories of measures: perceived quality of recom-
mended items; interaction adequacy; interface adequacy; perceived ease of use;
perceived usefulness; control /transparency; attitude; and behavioural intentions.
The perceived quality of the recommended items category consists of measures
such as perceived accuracy, familiarity, novelty, attractiveness, enjoyableness, di-

versity and content compatibility.

Cremonesi et al. [59] carried out a study where 210 users evaluated seven rec-
ommender systems. Each recommender system differed in the algorithm used

but each had the same user interface and the same dataset in an effort to re-
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duce the number of factors that might influence results. The focus of the work
was to compare the user’s perceived quality of the results (using the metrics of
accuracy, novelty and overall satisfaction) against the evaluated quality of the
results using standard accuracy metrics. Results show that the user’s perceived
accuracy of the recommendations did not correlate with the evaluated accuracy

of the recommendations.

A recent trend is to evaluate quality from a user’s perspective using an online
system and “real” users [37, 199, 70, 98]. This approach has the added benefit of
being amenable to traditional predictive accuracy evaluation. Ekstrand et al. in
two studies, using the MovieLens online system, allow users to choose different
recommender algorithms [70, 71]. Users are asked to evaluate the quality of
the recommendations (a list of recommended items) produced by the different

recommender algorithms.

The first study [70] asked users to compare the outputs of three recommender
algorithms (item-item, user-user and SVD) with respect to novelty, diversity ac-
curacy, satisfaction and the degree of personalisation they felt was present in the
returned recommended items. In addition, objective measures of the algorithm’s
performance — with respect to accuracy, novelty and diversity — were also per-
formed. 582 users were involved in the study over 81 days. Results showed that
novelty, when it was present, had a significant negative influence and decreased
user satisfaction. As a result the user-user algorithm was less-liked as it produced
more novel recommendations than the other two algorithms. This was despite
the fact that, in the objective measures, it was found that its predictive accuracy
was comparable to the other two algorithms. There was no difference noticed in
the user’s satisfaction with respect to the item-item or the SVD algorithm. The
diversity of the items recommended had a significant positive influence on user

satisfaction.

The second study allowed users to choose between recommender algorithms [71].
They tested four algorithms: a non-personalised baseline algorithm; a group-
based approach where recommendations were made with respect to the groups
or categories of items that users like; an item-item memory-based algorithm;
and a matrix factorization approach. Results, based on the analysis of system
logs, showed that most users did switch recommender algorithms and that most
users preferred a matrix factorization algorithm, followed by an item-item model-
based algorithm. Offline evaluation of the algorithms was also performed where

it was found that the predictive accuracy followed a pattern similar to the user’s
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preferences, with the matrix factorization algorithm being the most accurate,
followed by the item-item model-based algorithm. The authors also wished to
ascertain if it was possible to predict user’s switching behaviour or a preferred

user algorithm but they did not find any significant predictors.

Harper et al. [98] perform a similar study, again using the MovieLens system,
where users are allowed experiment with different options to find a recommen-
dation algorithm (or weighted combination of algorithms) that they are happy
with. Two weights were used: one derived from the popularity of items and the
second derived from the age (or newness) of items. Offline evaluation was also
performed. Results found that, by varying both the popularity and age weights,
most users were happier with the returned recommendations in comparison to
the control. Results suggested that there was no “one size fits all” set of weights

(for popularity or age) where users converged in their preferences.

2.6.3 Explanations

Related to user-centric evaluation is the concept of recommender system explana-
tions. Herlocker et al. [103] argue that explanations provide transparency to the
“black box” recommender system process. They claim that the incorporation of
transparency could extend the application domains of recommender systems to
more high-cost, high-risk domains. They note that there are two main challenges
in achieving recommender system explanations: the extraction of meaningful ex-
planations and the presentation of the explanations. Bilgic and Mooney define a
good explanation as “one which accurately illuminates the reasons behind a rec-
ommendation and allows users to correctly differentiate between sound proposals
and inadequately justified selections” [32]. Tintarev [223] identifies seven differ-
ent characteristics of explanations: that they should be transparent, scrutable,

trustworthy, effective, persuasive, efficient, and provide user satisfaction.

Much of the early work provided explanations which were derived from summaries
of items, summaries of user’s neighbours or used text content from the extended
dataset, if available [32, 217, 229, 158]. For example, Bilgic and Mooney [32]
used both content and collaborative information and tested three types of expla-
nations: keywords (based on a content match of the current item and the content
of a user’s profile); neighbours (where neighbour ratings for the recommended
items are classified into good, neutral and bad and presented in a bar chart);

and influence (which lists the items rated by the user that had the most impact
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on forming the recommendation). A user study was designed with 34 subjects.
They found that the neighbour-based explanation caused users to overestimate
the quality of a recommended item. The keyword explanations and the influence
explanations were found to be significantly more effective at allowing users to
accurately estimate the quality of a recommended item. In experiments by Her-
locker et al. [103], with the MovieLens web-based movie recommender system
and 210 users, most users liked having an explanation facility. However, they were
unable to prove or disprove whether having an explanation facility improved per-
formance. The explanations extracted consisted of rating histograms, indications
of past performance, comparisons to similarly-rated items, and domain specific

content features. Rating histograms proved most popular [103].

More recently, trees and the visualisation of trees have been used for explanations.
Hernando et al. [107] use the similarity of items (calculated by the Pearson cor-
relation formula) to explain why certain item recommendations are made. The
similarity of items is represented visually as a tree, where each node in the tree
corresponds to an item. Edges exist from nodes, representing items a user has
already rated, to nodes representing new recommended items. Thus the authors
can provide more than a single explanation in any one visualisation. Chang et al.
[52] propose a model combining machine learning approaches and crowdsourcing
to provide better explanations. Although users found that the resulting expla-
nations provided a better user experience, the explanations did not lead to more
effective decision-making with respect to accepting a recommendation from the

system.

2.6.4 Performance Prediction

Query performance prediction in Information Retrieval aims to predict the ef-
fectiveness of a given query with respect to a retrieval system and a document
collection [242, 250]. If query performance can be predicted in advance of, or dur-
ing, retrieval, then retrieval results may be improved for specific types of queries.
Two categories of performance prediction algorithms are studied in Information
Retrieval: pre-retrieval and post-retrieval. The aim of pre-retrieval performance
prediction is to estimate the performance of a query before any documents are
retrieved. In contrast, post-retrieval performance prediction uses the ranked list
of documents, or performance scores, returned from the search system to predict

performance.
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Examples of post-retrieval approaches are those proposed by Cronen-Townsend
et al. using a clarity score [63], those proposed by Amati et al. using a mea-
sure of query difficulty to predict query performance [9] and approaches using the
distributions of scores in the ranked list of documents returned by the system
[185, 64]. He and Ounis present a pre-retrieval approach using a list of statistical
values which can be derived from the query prior to retrieval [99]. Pre-retrieval
approaches are generally less computationally expensive than post-retrieval ap-
proaches but, as they are not using the returned information from the search

system, they are generally less accurate than post-retrieval approaches.

Bellogin et al. apply techniques from the area of performance prediction in In-
formation Retrieval to the collaborative filtering domain [24]. They modify the
clarity score used in performance prediction in Information Retrieval to define per-
formance predictors for recommender systems. The clarity score can be viewed
as the difference between a user model and the background model. The idea is
that a user model which is similar to the background model is a sign of ambiguity

as it is too similar to the background model to be distinguished from it.

In further experiments, Bellogin et al. use the clarity score to dynamically weight
neighbour’s contributions based on the prediction of the neighbour’s performance
using the clarity score [25]. A collaborative filtering approach using this dynamic
weighting is compared to a standard collaborative filtering approach without
dynamic neighbour weighting. Results showed improved accuracy when using
small neighbourhood sizes and comparable accuracy with larger neighbourhood

sizes.

Bellogin et al. [27] present a more comprehensive set of predictors in more recent
work where 14 neighbour performance predictors (including the variation of the
clarity score reported previously) are evaluated with respect to their predictive
power and their usefulness as weights to improve the accuracy of a memory-based
approach. Many of the performance predictors are based on ideas of trust in other
studies. The MovieLensl00K, MovieLensl M and Yahoo! music datasets were
used in testing. Correlations were found between many of the performance pre-
dictors and the metrics used. However, when implementing a collaborative filter-
ing nearest-neighbour approach, accuracy results (RMSE) did not often improve

when a weighting of neighbours took place based on the performance predictors.

Ekstrand et al. [69] aimed to ascertain if it was possible to predict which individ-
ual algorithm would work best for users, given features of users in the dataset.

The motivations for their work was based on the idea that various algorithms
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would give better results for different users and that algorithms differ in which
predictions they get wrong. They considered five algorithms: a baseline item-
user mean, item-item nearest neighbour, user-user nearest neighbour, SVD and
a tag-based (content) recommender. They considered three user features: log of
a user’s rating count, average user rating and variance of user’s ratings. They
found that an item-item nearest neighbour approach performed best when there
was a high number of user ratings and high user rating variance and decreased

in performance when the average rating value was high [69].

Matuszyk et al. [163] build on the work by Ekstrand et al. [69], and others, in
developing an approach to predict which collaborative filtering approach would
perform best on a dataset. They used dataset measures relating to sparsity
and user co-rating distributions (and their combination) to test the correlation
between these measures and the target variable (RMSE value). The RMSE value
is calculated from the outputs of a user-based approach and a matrix factorization
approach. Four datasets were tested (MovieLensl0M, Epinions, Netflixz and
Flizster) where 1000 users were randomly sampled from each dataset. Results
validated the use of the combination of two measures as the basis for a linear

regression model for prediction.

2.7 Conclusions

This chapter has endeavoured to give a synopsis of the main themes in, and the
contributors to, the collaborative filtering domain. It can be seen that many
approaches borrow ideas and models from Information Retrieval and Machine
Learning, adopting these to the unique characteristics of the collaborative filter-
ing problem. It has been argued that the main focus in collaborative filtering
to date has been on the collaborative filtering models: the development of new
models, or the application of existing models, or the combination of models. This
focus has been driven primarily by the goal of increasing the predictive accuracy
of recommendations. This has resulted in the comparison of a wide range of
techniques. Generally an effort has been made to compare techniques across the
same datasets and using the same standard evaluation approach. Some studies
however have had different foci: user centric recommendation; trust-based rec-

ommendation; providing explanations and predictive performance for example.

Although much progress has been achieved it can be seen from some recent studies

that the main themes of focus remain the same. As such, there remain many open
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challenges within the field and ample opportunity for further work.
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Chapter 3

Comparing and Contrasting

Collaborative Filtering Datasets

3.1 Introduction

This chapter presents and compares the four datasets used in this work, in ad-
dition to outlining previous studies that have used these datasets. The basic
characteristics of the datasets — relating to the size of the datasets and the do-
main of the datasets — are first introduced and compared across the datasets.
References to collaborative filtering research, where the datasets have been pre-

viously used, are listed.

The first comparison of the datasets involves using a standard split of the data into
training and testing sets and a standard Pearson correlation nearest-neighbour
collaborative filtering approach. The metrics of MAE and coverage are used to
compare results across the datasets. The second comparison replicates the first,
but uses different splits of training and testing data. The third comparison fixes
the split of training and test data and compares the datasets using a number of

different collaborative filtering approaches.

The fourth comparison considers each dataset in terms of splits or “views” of the
dataset where each view represents a split of the dataset into three sub datasets.
Previous work using views in collaborative filtering domains is also outlined. In
this work, two views are defined: one relating to the number of ratings users
have given to items and the second relating to the number of ratings items have

received. A standard split of training and test data and the standard Pearson
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correlation nearest-neighbour collaborative filtering approach is used with all of
the resulting six views. The metric of MAE is used to compare results across

views and datasets.

The contributions of the work in this chapter are in the comparison of datasets

and views.

3.2 Introducing the Four Datasets used in this
Work

Early work in collaborative filtering used a limited number of datasets. Most
notably, the FachMovie and MovielLens datasets were used in many studies.
In the last few years, several other datasets have become available, many having
additional information with which to work. Many collaborative filtering studies
compare approaches across a number of datasets. The dataset being used may
dictate, to some extent, the approach that is most suited to that dataset. For
example, if a dataset is very large then matrix factorization techniques may often
be used; if a dataset contains trust or friendship links then a graph-based approach
may be used. Often, if the approach allows, the MovieLens dataset is used as a

benchmark dataset.

The four datasets used in this work are: MovieLens, bookcrossing, last.fm
and FEpinitons. The motivations behind choosing these datasets is to have a
benchmark standard dataset — which is MovieLens — and to have a large
degree of variability in the other datasets chosen in terms of domain, number
of users, number of items, and sparsity. In addition, it is important that the
datasets used are freely available. Although additional information is available
for some of the datasets (e.g. item information or trust links) this is not used
in the work outlined here as the goal is to compare, as much as possible, “like
with like”. Therefore, for each dataset, the focus is on the data available from
the triple of <user, item, rating>. An high-level overview and comparison of the

datasets used is given in Table 3.1.

Other datasets which have been used frequently in studies are Flixster, Netflix
and Jester. Flixster! is an online social networking site focused on movies which

allows users rate movies and connect to other users. All users are given a set of

lyww.flixster.com
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Table 3.1: Comparison of datasets used.

MovieLens | bookcrossing | last.fm | Epinions
Domain Movies Books Music Products
Num. Users | 943 77805 3080 40163
Num. Items | 1682 185968 30520 139738
%Sparsity 87.66% 99.9% 99.1% 99.9%
Value Range | 1-5 1-10 1to 7939 | 1-5

50 movies to rate but they can rate additional movies also. Jamali et al. [121]
performed a crawl of Flixster? and created a dataset containing 1M users, 49K
items and 8.2M ratings. In addition, it contains 26.7M social relationship links

between users.

Netflix is a streaming movie service. The goal of the Netflix competition, an-
nounced in 2006, was to improve the prediction accuracy (in terms of RMSE) of
the Netflix movie recommendation system by 10%3 [29, 21, 22, 135]. Since that
time, the Netflix dataset has been used as a standard dataset in collaborative
filtering studies [48, 202, 203, 44, 147, 146, 179]. The dataset differs from earlier
datasets such as FachMovie and MovieLens, in its size. The training set made
available for the competition consisted of more than 100 million ratings from
about 500K users on more than 17K movies. Ratings are on a scale of 1 to 5.
Salakhutdinov et al. summarise the characteristics of the Netflix dataset [203] as

follows:

“This dataset is interesting for several reasons. First, it is very large, and very
sparse (98.8% sparse). Second, the dataset is very imbalanced with highly non-
uniform samples. It includes users with over 10,000 ratings as well as users who

rated fewer than 5 movies.”

Many studies have used the Netflix dataset, particularly those that are testing
scalable models for collaborative filtering and require a large dataset [53, 50, 73,

156, 106]. In addition, recent studies on the cold start problem have used Netflix
[5].

Jester is an online joke recommender system, which uses a technique called
Figentaste.* Initially a user is asked to rate eight jokes by using a rating bar

and following this, recommendations of jokes will be displayed. Goldberg et al.

2 Available at: http://www.cs.ubc.ca/~jamalim/datasets/
3http://www.netflixprize.com
‘http://eigentaste.berkeley.edu/
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[83] make available three datasets from Jester.® In addition to publications from

the Figentaste group, a number of other studies have used the Jester dataset
[171, 243, 85, 149].

3.2.1 The MovieLens Dataset

The most widely used dataset in early studies [39, 33, 75, 184, 153] was the
EachMovie dataset® made available by the Digital Equipment Corporation
(DEC). The data was collected by DEC from a research movie recommender
system which ran for 18 months [164]. The dataset has over 70,000 users, and
2.8 million ratings. The FachMovie dataset was used to seed the MovielLens
dataset which has been used in numerous studies, from early work [84, 102]
onwards [205, 170, 149, 125, 113, 112, 36, 186, 67, 44, 111].

The MovieLens dataset, made freely available by the GroupLens research
project” at the University of Minnesota, has been used extensively in collabora-
tive filtering work. MovieLens is a movie rating dataset with ratings on a scale

of 1 to 5. Three datasets are available:
e 100K: 100,000 ratings
e 1M: 1 million ratings
e 10M: 10 million ratings

The MovieLens dataset used in this work is MovieLens 100K available from
the groupslens.org website. The distribution of the ratings for the MovieLens
dataset are shown in Figure 3.1 where it can be seen that the majority of items

have ratings in the range [3 — 5].

3.2.2 The bookcrossing Dataset

The bookcrossing website® was launched in 2001 with the aim of tracking and
sharing books, connecting people together, storing data on people’s likes in a
book domain and people’s summaries of books. Ratings are integer values in the

range [1 — 10].

Shttp://www.ieor.berkeley.edu/~goldberg/jester-data
Shttp://www.cs.cmu.edu/~lebanon/IR-1lab/data.html
"http://grouplens.org/datasets/movielens/
8http://www.bookcrossing.com
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Figure 3.1: Distribution of MovieLens ratings.

In a 4-week crawl in 2004, Ziegler et al. [252] gathered data on 278,858
bookcrossing members, 271,379 distinct ISBNs (items) and 1,157,112 implicit
and explicit ratings. The information was fully anonymised and made available
for download.” Li et al. use a subset of the dataset by Ziegler [151]. They
randomly extracted 500 users who had rated the top-1000 books with the most
ratings. They normalised the rating scales so that the ratings were in the range
[1—5].

A number of studies have compared results across bookcrossing and other
datasets. Wang et al. [231] use a probabilistic user-item model, testing the
model using the bookcrossing dataset as well as the FachMovie and MovieLens
datasets. Park and Tuzhilin [182] test many different models with different
combinations of derived features from the bookcrossing and MovieLens
datasets. They use two evaluation metrics: MAE and RMSE. Xu compares the
performance of their approach, using bookcrossing and MovieLens datasets,
where similarity between users is calculated based on a bipartite network

representation [236].

Christoffel et al. [55] aimed to increase both accuracy and diversity in their study
comparing results across three datasets (MovieLens, bookcrossing and iPlayer
training logs which are not freely available). They investigated a vertex ranking
approach using random walk sampling techniques; results were promising with

respect to both accuracy and diversity.

The bookcrossing dataset used in this work is that available from the work by
Ziegler et al. [252]. Some minor pre-processing of the data was done to remove

some incorrect data entries. The distribution of the ratings for the bookcrossing

http://www.informatik.uni-freiburg.de/~cziegler/BX/
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dataset are shown in Figure 3.2. The distribution shows a similar trend to the
MovieLens one, with a large proportion of the ratings associated with higher
(“liked”) values. This indicates that users were more likely to rate positively

than negatively.
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Figure 3.2: Distribution of bookcrossing ratings.

3.2.3 The last.fm Dataset

The music recommender site last. fm!® provides an API which allows for the
download and use of information on listeners, their playcounts, tags, artists and
songs. A number of authors have downloaded datasets from last. fm and made

the datasets freely available.

The dataset downloaded by Konstas et al. [134] consists of 3148 users, 30520
tracks, 12565 tags and 5616 friendship links among the users collected. Unlike
many other datasets, playcounts (the number of times a user listened to a track)
are used instead of an explicit rating value from some defined scale. The approach
used in gathering the data was: collect the top 50 most popular artists in the 34
largest countries; for each of these artists, collect the 50 most popular albums;
and, for each track per album, collect the top 50 “fans”. The number of users
was reduced by only including users that had at least one friendship link within
the existing list of users. All tracks that had been listened to by less than 8 users

were removed.

Celma [47] downloaded two datasets from last. fm: one of 1000 users and a second
of 360,000 users. The dataset consists of tuples containing <user, timestamp,

artist, song>.

Onttp://www.last.fm/
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Jin and Chen [123] use the last.fm dataset available from the Grouplens site.!!
The dataset contains relationships between users and tags on items (musicians)
for 1892 users and 17632 items (musicians). There are 12717 friend relationships

between users and 11946 tags.

Many other studies have used last.fm data [68, 19, 13, 122, 80, 219, 93] with a

number of different approaches.

The last. fm dataset used in this work is that collected by Konstas et al. [134].12
The distribution of the playcounts for this dataset are shown in Figure 3.3. It can
be seen that the dataset has a very long tail distribution due to the playcount
being stored rather than a discrete rating value being stored. Konstas et al. [134]
describes this as: “Contrary to standard collaborative systems which use bounded
ratings ... in our case playcount ranges from 1 to 11640, following a power-law

distribution common to human activities” [237].

As can be seen from Figure 3.3, the majority of playcounts are in the range
[1 — 100]. Specifically, approximately 94% of the playcounts are in the range
[1 —90] and approximately 86% of playcounts are in the range [1 — 50].
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Figure 3.3: Distribution of last. fm playcounts.

Our intuition was that it did not make sense to work with the raw playcount data
because of this long tail distribution. In a collaborative filtering scenario it would
mean that the relatively few ratings in the long tail would bias the results for the
majority of users. Other authors also modified the raw playcounts in some way.
Konstas used the raw playcounts but weighted other binary measures (friend-
ship links and user tags) using the average user playcount value to ensure these

measures would not be underestimated due to large playcount values [134]. A

Unttp://grouplens.org/datasets/hetrec-2011/
2http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/index.html
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very different approach was used by Bellogin et al. who considered any playcount

greater than 2 as an indicator of a positive preference [23].

Celma uses a reduced user artist matrix and normalises the playcounts to lie
within the range [1 — 5]. This is achieved by first computing the cumulative
distribution of artist playcounts in a user profile. Artists in the top 80% to 100%
of the distribution are given a score of 5, artists in the 60% to 80% range are

given a score of 4, etc. [47].

For the work in this thesis, various normalisations were considered for the last. fm
dataset, the motivation being to map the playcount values to ratings in a set range
where the majority of playcounts would be distinguished more clearly from each
other. After some experimentation, the log normalisation shown in Equation 3.1

was used.

ratingvalue = log,,(1 + playcount) (3.1)

With this normalisation, values are in the range [0.3 — 3.89]. These real values
are then mapped to discrete values in the range [1 — 12] based on 12 “buckets”,
where the first 11 buckets contain values in steps of 0.3, e.g. playcounts in the
range >= 0.3 and < 0.6 are mapped to 1, playcounts in the range >= 0.6 and
< 0.9 are mapped to 2, etc. The final bucket (with value 12) contains playcount
values >= 3.6. Figure 3.4 shows the new distribution of the dataset values using
this normalisation and mapping. The long tail of the distribution still exists but,
up to when the long tail begins at values 5 and 6, the ratings show a distribution

more similar to the MovieLens and bookcrossing rating distributions.
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Figure 3.4: Distribution of log normalised last. fm playcounts.
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3.2 Introducing the Four Datasets used in this Work

3.2.4 The Epinions Dataset

3 is a review site for a large range of items, from garden products to

Epinions!
electronics, with a total of 25 product categories. Richardson [196] crawled the
site to create a dataset and this dataset was subsequently used in work by Jamali
et al. [121]. This dataset contains 71K users, 104K items and 575K ratings. In

addition it contains H08K social relations.

Massa and Bhattacharje [162, 159, 160, 161] create a freely-available Epinions
dataset!* consisting of 49290 users who have both reviews and ratings on items
and have explicitly specified the users whose reviews they found useful (with
the terminology of “trust” and “web of trust” used). Ray and Mahanti use this
dataset and concentrate on improving prediction accuracy by incorporating trust
measures [195]. Tyler et al. use a similar representation and consider the concept
of trust [226]. Chaney et al. [50] evaluate a probabilistic matrix factorization
model incorporating social information using six datasets, one of which is the
Epinions dataset from Massa et al. [160]. Forsati et al. [73] also incorporate
social information relating to trust. Using the Epinions dataset, they evalu-
ate a number of matrix factorization techniques when social trust and distrust

information is incorporated into the model.

The Epinions dataset used in this work is that used by Massa et al. [162]"
but not the extended Epinions dataset. The distribution of the ratings for the

Epinions dataset are shown in Figures 3.5.
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Figure 3.5: Distribution of Epinions ratings: Number of Ratings by Users.

As can be seen from the graph, the majority of ratings are high ratings (4 or 5).
Massa et al. [161] comment on this fact saying: “The Epinions dataset contains
mostly 5 as rating value and most of the users provided few ratings (cold start

users).”

By, epinions.com

Ynttp://www.trustlet.org/epinions.html
5http://www.trustlet.org/epinions.html
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Table 3.2: Comparison 1: Average MAEs and % Coverage for each dataset:
Pearson Correlation Approach (10/90 Split).

Dataset avg MAE | % coverage
MovieLens | 0.733 98.58
last. fm 0.699 75.93
bookcrossing | 1.529 56.07
Epinions 0.9 62.09

3.3 Comparison of the Four Datasets

The first comparison involves using the same single collaborative filtering ap-

proach, testing methodology and evaluation metrics across the four datasets.

The collaborative filtering approach used is a Pearson correlation nearest-
neighbour approach, to find the top-60 similar neighbours. A weighted average
of these neighbour’s ratings of test items is used to produce a predicted value for

the removed test items.

A standard testing methodology is used where 10% of users and, if possible, 10%
of the items of these users are removed (called a 10/90 split). These user-item
pairs become the test set on which recommendations are sought. The remainder
of the dataset is used to generate recommendations. The collaborative filtering
run is repeated 10 times per user where, for each run, up to 10% of the user’s

items are randomly chosen as the test items.

The evaluation metrics used are MAE and coverage. A MAE score is calculated
based on the actual ratings the user has given the items versus the predicted
ratings the collaborative filtering approach produced. Coverage is calculated
based on the ratio of test items for which predictions can be found. The MAE

and coverage results, per user, are averaged over the 10 runs.

Table 3.2 lists the average MAEs and percentage coverage for each dataset. The
MovieLens dataset has the best combination of low MAE and high coverage.
The last. fm dataset has a good MAE value but has a lower coverage value than
seen for the MovieLens dataset. Although the MAE values for the Epinions
dataset seem reasonable, the coverage is not very good. It can be seen that the
bookcrossing dataset has a high MAE value and a very low coverage value in
comparison to the MAEs and coverage for the other three datasets. This has
been corroborated by other studies [182].

The second comparison used maintains the same collaborative filtering approach
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3.8 Comparison of the Four Datasets

Table 3.3: Comparison 2: Average MAEs and % Coverage for the MovieLens
dataset with different test and train Splits: Pearson Correlation Approach.

% TestUsers | avg MAE | % coverage
20 0.740 97.817
30 0.741 97.897
40 0.740 98.088
50 0.747 98.079
60 0.750 98.188
70 0.762 98.035
80 0.785 96.968
90 0.840 90.613

Table 3.4: Comparison 2: Average MAEs and % Coverage for the last. fm dataset
with different test/train Splits: Pearson Correlation Approach.

% TestUsers | avg MAE | % coverage
20 0.698 76.480
30 0.710 76.055
40 0.717 75.039
50 0.731 73.472
60 0.750 70.864
70 0.781 66.295
80 0.833 54.779
90 0.946 38.188

(Pearson correlation approach) and the same evaluation metrics (MAE and cov-
erage) but, for the testing methodology, different percentages of test users are
chosen, varying from 20% to 90% of test users (10% already having been tested
in the previous comparison). As the number of test users increases, there is a

reduced number of users from which to form neighbours and predictions.

The MovieLens results (Table 3.3) show very good performance for all data test
splits, degrading mostly — as expected — at the 90/10 split.

The last. fm dataset results (Table 3.4) show that MAE and coverage are main-
tained at good values up to the 60% split of test users. After this point, coverage
values decrease and MAE values increase until, at the split of 90% test users the
MAE value is 0.946 and the coverage value is only 38.188%.

The bookcrossing dataset results (Table 3.5) are poor in general and very poor
in particular for coverage — even at the 20% split of test users. The coverage
degrades very sharply to only 5.548% at the 90% split of test users. For the few
predictions that are being made for each of the splits, the accuracy remains fairly
stable (though poor) at around 1.4 and 1.5.
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Table 3.5: Comparison 2: Average MAEs and % Coverage for the bookcrossing
dataset with different test and train Splits: Pearson Correlation Approach.

% TestUsers | avg MAE | % coverage
20 1.491 21.670

30 1.489 20.508

40 1.538 18.916

50 1.494 18.390

60 1.512 14.827

70 1.553 12.471

80 1.535 11.616

90 1.596 5.548

Table 3.6: Comparison 2: Average MAEs and % Coverage for the Epinions
dataset with different test and train Splits: Pearson Correlation Approach.

% TestUsers | avg MAE | % coverage
20 0.913 39.637
30 0.935 32.993
40 0.878 40.714
50 0.991 35.582
60 1.017 35.713
70 0.966 26.276
80 0.894 29.936
90 0.892 22.194

The results for the Epinions dataset (Table 3.6), while not as bad, have a similar
pattern to the bookcrossing results. Coverage is poor for all splits and decreases
as the percentage of test users increases. For the few predictions that can be

made, accuracy is generally reasonable, being in the range [0.878 — 1.017].

The third comparison uses a number of different collaborative filtering
approaches. The testing methodology is fixed at a 20/80 split (20% of users are
used as test users) and results are shown for one run only. An average over ten
runs would give a more accurate value but the relative comparisons between

techniques should be mostly similar. One evaluation metric is used (MAE).

The different collaborative filtering approaches used are a subset of those available

in the PREA toolkit [145] and are:
o Baseline: random: predicting uniformly randomly from the score range.

o Baseline: test user average: predicting using the average of the current test

user’s ratings.

o Baseline: test item average: predicting using the average of current test
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3.4 Comparisons based on Dataset Views

Table 3.7: Average MAEs for each dataset with a number of techniques.

MovieLens | last.fm | bookcrossing | Epinions
Baseline: random 1.3827 2.5479 2.8719 1.6170
Baseline: test user avg | 0.8354 0.5899 1.2842 0.9370
Baseline: test item avg | 0.8141 1.188 1.6333 0.8979
UserDft: (Pear. Corr.) | 0.7380 0.6553 | 1.7926 0.9667
ItemDft: (Pear. Corr.) | 0.7175 0.6420 | 1.7823 0.9612
NME: 0.7791 0.6494 | 2.5713 1.0709
PMEF: 0.8126 0.6708 | 1.2800 0.9053
Bayesian PMF: 0.7481 0.61011 | 1.6143 0.9497

user’s item ratings.
 usrDft: User-based Pearson Correlation (memory-based technique).
o itemDft: Item-based Pearson Correlation (memory-based technique).
« NMF: Nonnegative Matrix Factorization [144].
« PMF: Probabilistic Matrix Factorization [201].
« Bayesian PMF: Bayesian Probabilistic Matrix Factorization [200].

Considering the results in Table 3.7, and firstly comparing the collaborative fil-
tering approaches against the baseline approaches, it can be seen that, for the
last. fm and Epinions datasets, the baseline approach gives better results, using

user average and item average respectively.

Secondly, similar results can be seen when comparing the MAE results in Table 3.2
and the MAE results for the UserDrf technique (user-based Pearson correlation

as used in the Comparison 1 and Comparison 2 experiments) in Table 3.7.

Thirdly, comparing the MAE results for the five collaborative filtering techniques
in Table 3.7 we can see that there is no clear “winner” across all datasets in
terms of a best overall technique, although PMF performs best for two of the

four datasets.

3.4 Comparisons based on Dataset Views

Many authors have considered what can be termed “views” of datasets. In par-
ticular there has been, from the early days of collaborative filtering, interest in

certain types of views, for example:
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« new or “cold start” users, defined as users with very few ratings (typically
five to ten ratings) [210, 208, 193, 6, 35].

o “grey sheep” users, defined as those users whose preferences are not similar
to other users [56, 41, 79].

o “long tail” of recommender systems, defined as the items which receive few

or no ratings and are thus unlikely to be recommended [182, 241].

The studies considering dataset views have generally been concerned with pro-
viding accurate recommendations to users who belong to these different views
and contrasting the performance obtained with these views against average per-

formance.

3.4.1 Dataset Views considered in Past Studies

Huang et al. present a two-layer graph model where one layer of nodes corre-
sponds to users and one layer of nodes corresponds to items [115]. The goal is to
compare how well different collaborative filtering approaches deal with the spar-
sity problem and the cold start problem for new users (using data from a Chinese

online bookstore).

Park and Tuzhilin [182] use a set of features which they name “derived variables”
as part of their experiments on the “long tail” of recommender systems, where
there are increased error rates associated with recommending items in the “long
tail”. They define eleven derived variables, including: average rating given by
users to an item; average popularity of items rated by users; average rating value
given to items, etc. They use Weka,'0 an open source data mining toolkit [95].
They test many different models with different combinations of the derived fea-
tures and with two datasets (MovieLens and bookcrossing), using two evaluation

metrics (MAE and RMSE).

Massa and Avensani [161] evaluate their work on trust propagation using a num-
ber of metrics and a number of views of the Epinitons dataset. They define views
as “different portions of the dataset” which can be defined over users, over items

and over ratings. They consider the following views:
» Complete dataset (all users).

o Cold start users, which they defined as users who provided 1 to 4 ratings.

Yhttp://www.cs.waikato.ac.nz/ml/weka/
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3.4 Comparisons based on Dataset Views

Table 3.8: Comparison of Views: Massa et al. [160].

View MAE | Ratings Coverage (%)
All users 0.843 | 51.28

Cold start users 1.094 | 3.22

Heavy raters 0.850 | 57.45

Opinionated users | 1.2 50

Black sheep 1.235 | 55.74

Niche items 0.835 | 12.16

Controversial items | 1.515 | 45.42

o Heavy raters, which they defined as users who provided more than 10 rat-

ings.

e Opinionated users, which they defined as users who provided more than 10

ratings and who have a standard deviation which is greater than 1.5.

o Black sheep users, which they defined as users who provided more than 4
ratings and for which the average distance of their rating on some item ¢ is

greater than 1.
o Niche items, which they defined as items which received less than 5 ratings.

o Controversial items, which they defined as items which received ratings

whose standard deviation is greater than 1.5.

They consider a number of techniques, including a trust-based technique. They
use a leave-one-out methodology and evaluate results using measures of accuracy
and ratings coverage (the percentage of items that are predictable). Results are

shown in Table 3.8 for the standard Pearson correlation approach only.

Guo et al. [94] use similar definitions to Massa et al. [161] with the focus of
using trust information to give more accurate results to users in the absence of
sufficient explicit ratings. Results are contrasted with a view of all users. Three
datasets are used (Epinions, Flizster and FilmTrust'”) with a leave-one-out
testing methodology. Accuracy is evaluated using mean absolute error (MAE)
and ratings coverage. Results shown in Table 3.9 are for the Epinions dataset
using a baseline collaborative filtering approach. The lowest MAEs are seen for
the views of All users, Heavy raters and Niche items but, while All users and
Heavy raters views have reasonable coverage (51.24% and 57.41% respectively),
the Heavy raters view has very poor coverage (12.16%). The worst MAEs are

seen for the views of Black sheep and Controversial items, as expected.

"Movie rating and review site: no longer available
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Table 3.9: Comparison of Views: Guo et al. [94].

View MAE | Ratings Coverage (%)
All users 0.876 | 51.24

Cold start users 1.032 | 3.22

Heavy raters 0.873 | H7.41

Opinionated users | 1.120 | 49.99

Black sheep 1.246 | 55.72

Niche items 0.835 | 12.16

Controversial items | 1.598 | 45.40

Cremonesi et al. considers item popularity bias and compare the accuracy of
a number of approaches using the MovieLens and Net fliz datasets [60]. They
find that, when recommending items in the long-tail of item distribution, accuracy
can be improved if the dimensionality of a PureSVD model is increased and, in

general, the performance of a PureSVD model was one of the best.

3.4.2 MovieLens, last.fm, bookcrossing and Epinions Views

The comparison considered here is to define two sets of similar views across the
four datasets. Using these views the aim is to compare results when using a
standard collaborative filtering testing methodology across a number of experi-
ments, with the aim of ascertaining the differences across views within datasets

and across datasets.
The steps in the methodology are as follows:

1. Define and create the views for each dataset. This involves deciding on the
cut-off point within the view definitions. The views chosen are listed and
defined in Table 3.10.

2. Use the same collaborative filtering approach, same testing methodology

and same evaluation metrics for each view. In particular:

(a) the PREA implementation of the user-user Pearson correlation ap-

proach is used.
(b) a 20% test set and 80% train set is used.
(c) the evaluation metric used is MAE.

For the user rating views and the popular item views, initially, the number of

ratings for each user and the popularity of the items rated, were normalised
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3.4 Comparisons based on Dataset Views

Table 3.10: General Definition of Dataset Views

View Name Definition

User Rating Views The number of ratings a user has given, that is, the
number of items a user has rated or the number of
times a user has listened to an item.

Popular Item Views The popularity of the items a user has rated, which
is based on the number of ratings each item has re-
ceived (and not considering the actual rating value).
It may be the case that some users will have rated a
combination of popular and non-popular items.

Table 3.11: Definitions of low, medium and high Dataset Views

View Name | Definition

low value < limatl

medium value >= limitl and value <= limit2
high value > limit2

using min/max normalisation so that each is represented by a real number in the
range [0 — 1]. Three views are defined, based on the average value (avg) and the
standard deviation (stdev) of the number of ratings and of the item popularity.
The motivation for this was to try to use features of the data rather than imposing
more arbitrary cut-off points (e.g. steps of 0.1 or 0.2 or ratings greater than a

certain value). The limits used are, for a constant, k:
1. limitl = avg - k. If limitl < O then limitl = avg.
2. limit2 = avg + k. If limit2 > 1, then limit2 = avg.

For each dataset, the constant k is defined as stdev/2.0. However, if this results
in any value falling outside the range of [0.0—1.0], & is set to 0 for that range band
only. For each user, each value (where the value, value, is either the rating value
or the item popularity value) is then compared with these limits and belongs to

one of three views given the definitions in Table 3.11.

3.4.2.1 Results

Using the view definitions in Table 3.11, the results for MovieLens (Table 3.12),
last.fm (Table 3.13), bookcrossing (Table 3.14) and Epinions (Table 3.15)
datasets with the user rating views are outlined. Each table lists, per view, the

number of users, items and ratings, the rating density and the MAE.

As can be seen from Table 3.12 and Table 3.13, for the MovieLens and last.fm
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Table 3.12: User Rating Views: MovieLens.
View #Users | #Items | #Ratings | RatingDensity | MAE
low 416 1026 13678 3.20% 0.8167
medium | 311 1396 30387 7.00% 0.7622
high 216 1653 55935 15.67% 0.7199
Table 3.13: User Rating Views: last.fm.

View #Users | #Items | #Ratings | RatingDensity | MAE
low 895 27304 130923 0.54% 0.9128
medium | 951 29974 223174 0.78% 0.809

high 1018 29558 316551 1.05% 0.7652

Table 3.14: User Rating Views: bookcrossing.
View #Users | #Items | #Ratings | RatingDensity | MAE
low 8291 38134 67634 0.02% 1.8184
medium | 1796 51493 68326 0.07% 1.9473
high 607 82339 100205 0.20% 1.9503
Table 3.15: User Rating Views: Epinions.

View #Users | #Items | #Ratings | RatingDensity | MAE
low 29910 47528 153964 0.01% 1.167

medium | 5912 47501 141309 0.05% 1.0801
high 4341 109902 | 369551 0.08% 0.9689

datasets, each of the three views created is of a comparatively similar size with
respect to the number of users and the number of items. In contrast, for the other

two datasets, there are far more users and items in some views than others.

The MAESs for the three different views for MovieLens, last.fm and Epinions
datasets show a similar, expected, pattern — the MAE for the low user rating
view is highest and the MAE for the high user rating view is lowest, with the
MAE for the medium user rating view falling between both extremes. The MAEs
for the bookcrossing views do not vary significantly, despite large differences in

the number of ratings and rating density across the views.

It is interesting to compare the MAEs in the high user rating view with the
average MAE over a random subset of users (for the same 20/80 split), as was
used in the second comparison experiment (where different splits of training and
test data were used). For the MovieLens dataset, the average MAE from Table
3.3 is 0.740 in comparison to 0.7199 MAE for the MovieLens high user rating

view.

For the last.fm, bookcrossing and Epinions datasets, the opposite is the case,
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Table 3.16: Popular Item Views: Movielens.

View #Users | #Items | #Ratings | RatingDensity | MAE
low 317 1676 57643 10.85% 0.7463
medium | 337 1281 29554 6.85% 0.7335
high 289 929 12803 4.77% 0.7809

Table 3.17: Popular Item Views: last.fm.
View #Users | #Items | #Ratings | RatingDensity | MAE

low 912 29187 189484 0.71% 0.7835
medium | 1112 30131 262636 0.78% 0.7732
high 840 27172 218528 0.96% 0.8735

Table 3.18: Popular Item Views: bookcrossing.
View #Users | #Items | #Ratings | RatingDensity | MAE

low 3653 105175 130560 0.03% 1.9657
medium | 5113 47822 94483 0.04% 1.7103
high 1928 5680 11122 0.10% 1.8983

with the MAE of the randomly chosen set of users being lower than that of the
high user rating views (0.698 for the full dataset versus 0.7652 for the high user
rating view for the last. fm dataset; 1.49 for the full dataset versus 1.9503 for the
high user rating view for the bookcrossing dataset and 0.913 for the full dataset
versus 0.9689 for the high user rating view for the Epinions dataset).

For the popular item views, the size and density details of the views, and the

corresponding MAEs per view, are shown in Tables 3.16, 3.17, 3.18 and 3.19.

For the MovieLens dataset (Table 3.16), the number of users in each view is sim-
ilar. The rating density in the low popular item view is much higher than that in
the high popular item view (10.85% versus 4.77%). There is not a large difference
in MAEs across the three views (0.7463, 0.7335, 0.7809). On checking coverage
across the three views, it was found to be similar also (98.24%, 97.64% and 95.3%
respectively for the three views). In this case, apart from a slightly poorer perfor-
mance with the high popular item view, it appears that the popularity of items

does not affect the accuracy of results.

For the last.fm dataset (Table 3.17), a similar scenario exists with respect to a
relatively equal number of users per view. The high popular item view has a higher
rating density but it is also the view which has the highest MAE (0.8735 versus
0.7835 and 0.7732 for the medium and high popular item views respectively).
The MAEs of the other two views are comparable. Again, the coverage of each
view is comparable (69.33%, 70.878% and 72.47% respectively).
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Table 3.19: Popular Item Views: Epinions.

View #Users | #Items | #Ratings | RatingDensity | MAE
low 12990 87415 151619 0.01% 1.163

medium | 20360 90377 443630 0.02% 0.9678
high 6813 16869 69575 0.06% 1.0879

For the bookcrossing dataset (Table 3.18), the medium popular item view has the
largest number of users, the lowest MAE values and the highest coverage (19.49%
versus 12.1% for the low popular item view and 6.49% for the high popular item

view).

For the Epinions dataset (Table 3.19), the medium popular item view has sub-
stantially more users than the other two views. The MAE of this view is lower
than that of the other two views, and the coverage is the highest of the views,
but this may not be due to the item popularity. The coverage of the second and
third view (41.72% and 38.1% respectively) are much higher than that of the first
view (9.764%).

In summary, for the popular item views, the medium view in each of the four
view datasets performs as well as, and usually better than, the other two views.
We can assume this view contains no, or very few, extremes with respect to
the popularity of the items that the users in these views have rated — that is,
no large number of very unpopular or very popular items and consequently, the

performance is better for these users.

3.5 Conclusions, Contributions and Future
Work

This chapter has presented a detailed overview of the collaborative filtering
datasets under study in this work, with the aim of contrasting and comparing
the basic characteristics of these datasets. The comparisons are done with the
complete datasets as well as with defined portions of the datasets, called views.
Standard collaborative filtering approaches, methodology and metrics are used
for the comparisons in order to ensure that any differences noted in the results
are due to the datasets and not to the approach used. The datasets used are
freely available and have been employed in previous studies; these studies are

detailed in addition to studies relating to dataset views.
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3.5 Conclusions, Contributions and Future Work

From the experiments in this chapter it has been found that:

e There are different rating distributions across the four datasets; this gives

an early indication that performance across the four datasets may differ.

o There are variations among the “baseline” MAEs, found with a 10/90 split
of test and training data and using a standard collaborative filtering ap-
proach. In particular, the MovieLens dataset has the best performance,
followed by the last.fm dataset, followed by the Epinions dataset. The
bookcrossing dataset has the poorest performance in this experiment. For
each of the datasets, this gives a “baseline” MAE value with which to com-
pare future MAE results. It leads us to expect to see a similar ordering of

performance for the four datasets in future experiments.

« When changes are made to the percentage split of training and test data,
it can be seen that, in all but the Epinions dataset, as the training data
decreases, the MAE increases. The largest increase across different splits is
seen for the last. fm dataset. The results for the Epinions dataset show no
clear pattern, which gives us an early indication that results for this dataset

across future experiments may not follow an expected pattern.

o When different collaborative filtering techniques are explored in addition to
baseline techniques, there was no one technique which performed best across
all four datasets. The technique used in this work, user-based Pearson cor-
relation, performed well, and quite close to the best-performing techniques
in most cases. For this reason the technique was seen as a viable approach

for further experiments.

o When considering the user rating views for three of the four datasets (all
but the bookcrossing dataset), the performance shown was as expected
given the definition of the views, i.e., high user rating views gave the best
performance and low user rating views gave the worst performance, which
was worse than the baseline performance. These results are useful to check
the validity of the views created and as a baseline comparison for future

experiments.

o When considering three popular item views for each of the four datasets,
the intuition is not as clear with respect to how performance is affected
by the existence or otherwise of popular items. It was shown that, in all
four datasets, it was the medium popular item views that gave the best

performance. This indicates that views containing mostly unpopular or
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mostly popular items do not perform as well. These results are useful in
helping us understand the popular item views. In addition, the results are

useful as baseline comparisons for future experiments.

The contributions of the work outlined in this chapter relate to providing an
overview and analysis of the characteristics of the datasets and views used in the
work and in providing baseline performance results. This contribution motivates
the need to analyse the characteristics of datasets further. Future work could

consider additional views and additional datasets.

The datasets and views outlined here will be considered in the subsequent chap-
ters. The next two chapters will consider parameter variations in the collaborative
filtering approach used and the chapters following that will consider features of

the datasets and views and how these may be used for performance prediction.
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Chapter 4

Learning Neighbourhood-based
Collaborative Filtering

Parameters

4.1 Introduction

The work outlined in this chapter uses a genetic algorithm approach to learn
the optimal set of parameters for a neighbourhood-based collaborative filtering
approach. The motivation is to assess whether different datasets require different
parameter settings. Parameters are evolved for the entire four datasets which
were outlined in the previous chapter: MovielLens, bookcrossing, last.fm and

Epinions.

The chapter outline is as follows: firstly, in Section 4.2 the motivations of learning
neighbourhood-based collaborative filtering parameters are briefly outlined, in
addition to a brief overview of genetic algorithms. Some previous work using
a genetic algorithm approach within the area of collaborative filtering is also
outlined. The methodology used to learn the parameter values is then presented
in Section 4.3. The genetic algorithm approach, associated genetic algorithm
parameters and the collaborative filtering parameters which are to be learned are
outlined in this section. Results are then presented in Section 4.4 for all four
datasets using the parameters outlined. The parameter values obtained by the
genetic algorithm approach are evaluated using a standard training and test set
and the standard memory-based collaborative filtering approach. In Section 4.4.3

the suitability of the problem to a genetic algorithm approach is considered based

o1
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on the average and best fitness found at each generation for each dataset. Finally
a discussion of the results and conclusions are presented in Sections 4.5 and 4.6

respectively.

4.2 Motivations

Since Herlocker et al’s comprehensive investigation of collaborative filtering pa-
rameters for the MovieLens dataset [102, 104], there has been mostly general
acceptance that these parameters are the best for that dataset when using a
nearest-neighbourhood approach. The space of possible parameter values and
their combinations explored by Herlocker et al. were large and the exploration
was done in an exhaustive manner. In recent years there are many new collabo-
rative filtering datasets available, with potentially different characteristics to the
MovieLens dataset. The motivation for this work is to ascertain if similar param-
eter values are useful for datasets other than the MovieLens dataset. This will

give an insight into the generalisability of the settings used across the datasets.

The approach adopted in this work involves the use of a genetic algorithm to
learn the best set of collaborative filtering parameters — rather than using the
methodology of an exhaustive combination of different parameter values. Ge-
netic algorithms are stochastic search techniques that evaluate a population of
solutions (individuals) over a number of iterations (generations) and, at each
iteration, evaluate how good (or fit) each solution is [110, 81]. Based on this eval-
uation, some simple operations are performed on the solutions to create a new,
“better” population for the next iteration. The process continues until a satis-
factory solution is found or until a set number of iterations have been reached.
The terminology and technique is based on the principles of evolution via natural
selection. The process begins with a set of solutions, the population, which is rep-
resented by chromosomes. Generally, this initial population is created randomly.
A fitness function is used to evaluate each solution. Based on this fitness function,
a proportion of the solutions are picked for the next generation. Operations of
crossover and mutation are performed on the solutions to create new solutions for
the next generation (analogous to reproduction). The process is repeated many

times until some stopping criteria is met.

Some work has applied genetic algorithms in the collaborative filtering domain.
Hwang et al. [116, 118] use a genetic algorithm, per user, to learn an optimal

weighting scheme for the collaborative filtering system for each user. Both col-
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laborative and inferred content information is used (a user’s rating for an item
is taken as a rating for the features of that item). In comparison to a tradi-
tional collaborative filtering approach, improvements were seen with the genetic
algorithm approach (using the metrics of precision, recall and the F1 measure).
da Silva at al. [65] use a genetic algorithm to find the best combination of rec-
ommendations given the output of six different collaborative filtering techniques.
The fitness function used is a combination of RMSE, a weight assigned to each
technique giving a measure of the technique’s importance, and a weight indicat-
ing the quantity of user ratings available. The work described in this chapter
is unique in using a genetic algorithm to search the space of possible parameter

values.

4.3 Methodology

The collaborative filtering technique used is a standard memory-based nearest-

neighbourhood approach consisting of the following steps:

o A portion of users are chosen as the test users and a portion of their items
are withheld as test items. The task is to generate predictions for the

withheld test items for the test users.

 Using a similarity function (Pearson correlation, Spearman rank correlation
or cosine similarity), users similar to the test users are found (which are
called the test users’ neighbours). Deviation from the mean is used to
normalise user ratings. Similarity scores between users are “dampened” if

the number of items co-rated by two users is below a certain significance
threshold.

o Using a prediction formula, predictions for test items are calculated using a
function based on the neighbour’s ratings for the test items, the neighbour’s
similarity score with the test user, the neighbour’s mean ratings and the

test user’s mean rating.

e The accuracy of the predictions are calculated based on the predicted rat-
ings calculated by the system and the actual ratings given to the test items
in the withheld set. The mean absolute error (MAE) metric is used where
the overall error of all predictions for all users are averaged together per

run.
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For the genetic algorithm, a set of parameters are chosen and their representation

(position)

in the chromosome is decided. The parameters initially chosen are

based on a subset of those tested in the work by Herlocker et al. [104]. The

flow of control of the genetic algorithm is depicted in Figure 4.1 where, for each

generation:

1. Pick

test users and test items. The same test users and items are used

to evaluate all individuals in a generation, but a new set of test users and

items are picked for a new generation to avoid over-fitting for one set of test

users and test items.

2. Randomly generate a population of individuals, of a fixed size.

3. Calculate the fitness of each individual, where each individual represents a

set of values for the parameters tested. For each individual:

(a)

(b)

Set all of the collaborative filtering parameters to the values indicated

in the individual.

Find nearest neighbours and make predictions for the test users and

items based on the set of parameter values.

Calculate the average MAE (mean absolute error) score for the test
users and items and return this as the fitness score of the individual.
The genetic algorithm for this experiment is required to minimise the
fitness score, that is, the lower the MAE value the better (more fit) a

solution is.

4. Perform the genetic algorithm operations of crossover, mutation and selec-

tion:

The crossover operator used is single point crossover and the crossover
rate is 80%.

The mutation rate is set at 2%.

The selection operator used is roulette wheel selection based on MAE

scores (as the fitness value).
The population size is 20 for experiment 1 and 200 for experiment 2.

The genetic algorithm iterates for 12 generations for experiment 1 and

for 50 generations for experiment 2.

The parameters tested per position in the chromosome are:
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Dataset
| | !

Pick test users Seed population

| and test items (randomly)

. New test set
Mutation (5%) I—]
Initial population

t Evaluation
Single Point | New population | (CF component)
Crossover (80%)
t
Roulette Wheel
Selection

Return best
solution

Figure 4.1: Flow of control of GA experiment.

o sigT, the significance threshold, which is an integer in the range 0 to 100.
This is used when calculating the similarity between users so as to dampen
the similarity between two users if the number of co-rated items between the
users is less than this threshold [104, 165, 157, 139]. The dampening used is
that described by Herlocker [104]: multiply the similarity score between two
users by % where n is the number of co-rated items between the two users
and d is the significance threshold. Note that if the significance threshold
value is 0 it will imply that this dampening will not be used. A value of
n = 100 is chosen as the limit for dampening as it does not seem reasonable
to dampen a similarity score if the number of co-rated items is greater than
100.

o sim, the similarity option, which is an integer value in the range 0 to 2.
This indicates which similarity function should be used to find the similarity

between users. The options are:
— 0: Spearman rank correlation.
— 1: Pearson correlation.
— 2: Cosine similarity.

e P, the predict option, which is an integer value in the range 0 to 3 indicating
which version of a prediction formula is used, and what users are involved,
in the prediction. As shown in Table 4.1, when P is 1 or 3, then the most

similar top-N neighbours to the current user, for some N, will be used to
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Table 4.1: Values for Parameter P.

P avg. co-rated | avg. all items | other
items parameter
requried
correlation 0 2 corr’T
threshold
top-N 1 3 N
neighbours

form predictions. When P is 0 or 2 then correlation thresholding is used,
that is, all users who have a similarity to the current user, greater than
some threshold, are used to form predictions. The difference within each
approach (1/3 and 0/2) is whether, when calculating the average rating
value of users, these averages are calculated over all the ratings a user has
given to all the items the user has rated (P = 2 or P = 3) or whether the

average is calculated only over the ratings given to co-rated items between

the current user and each of the other users (P =0 or P = 1).

e N, the top-N walue, which is an integer in the range 0 to 300. As shown
in Table 4.1, this is used when the option of using top-N (option 1 or 3) is
chosen and indicates the number of neighbours that will be used to form a

prediction.

e corrT, the correlation threshold value, which is a real value in the range
[0.0 — 0.35]. As shown in Table 4.1, this is used when the predict option
of correlation thresholding (option 0 or 2) is chosen. The limit of 0.35 was

chosen as, in reality, user similarities would rarely be greater than this.

An open source Python genetic algorithm framework was used (Pyevolve 0.5')

with the neighbourhood-based collaborative filtering technique implemented in

Python.

4.4 Results

Two sets of experiments are performed. In the first experiment various parameters
of the collaborative filtering approach are held constant to reduce the complexity
of the search space and aid analysis on a smaller set of parameters. The second

experiment uses all the parameters specified in the Methodology section (Section

Thttp://sourceforge.net /projects/Pyevolve
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4.3). The goal of the experiments, in each case, is to find the individual (set of
parameter values), or the average of the best set of individuals, with the lowest
MAE score (called GA MAE). The best individual, or average of the best set
of individuals is evaluated using the metrics of MAE (called Avg. MAE), F1,

coverage and precision-at-1.

For the second set of experiments, using all the parameters specified in Section
4.3, an additional evaluation is performed to test the suitability of the genetic
algorithm approach to the problem. Specifically, for each generation, the average
fitness (the average MAE) versus the best fitness (lowest MAE) in that generation
is graphed.

4.4.1 Experiment 1: Reduced Search Space: 4 parameters

The parameters held constant for the first experiment are:
« Pearson correlation is used as a similarity measure (option 1 for sim).

e The means of test users and neighbours are calculated over co-rated items

(option 0 or 1 for the predict option, P).

o The rating threshold, that is, the number of ratings a user must have in
order to be included as a test user, remains constant for each dataset (10 for
the MovieLens, last. fm and Epinions datasets, and 1 for the bookcrossing
dataset).

Therefore the parameters considered by the genetic algorithm are:

o sigT, the significance threshold value, for dampening similarity scores of

users with a small number of co-rated items.

o P, the prediction option used, in this case, whether top-N is used (1) or not
(0).
e N, the top-N value when top-N is selected (i.e. when top-Nis 1).

o corrT, the correlation threshold value when correlation thresholding is used
(i.e., when top-N is 0).

A population size of 20 is used and results are presented after 12 generations of

the genetic algorithm.

Results for the four datasets are summarised in Table 4.2 which shows the sum-

mary of the best set of individuals found across all generations. These are the
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Table 4.2: Experiment 1: Learning 4 parameters.

Dataset sigT' | P | N | corrT | GA MAE

MovieLens | 29 1 | 196 | n/a 0.685
bookcrossing | 16 0 | n/a | 0.09 6.79
last.fm 11 0 | n/a|0.064 | 0.6735
Epinions 9 0 | n/a|0.04 2.8

individuals with the lowest MAE. Where a parameter value is not applicable (e.g.
a value for N when top-N has a value of 0, i.e. top-N is not chosen) ‘n/a’ is in-
serted. The final columns holds the average fitness score (MAE) of the best set
of individuals found by the genetic algorithm approach. A set is used rather than
the single best individual, and averages found over the set where appropriate,
as there are often small differences across the top set of individuals (e.g. in the
threshold value).

As illustrated in Table 4.2, for all but the MovieLens dataset, P is 0, meaning
that correlation thresholding, and not top-N, is used to select neighbours. The
correlation threshold value is very low in all three cases, indicating that any user
with a Pearson correlation value greater than this corrT' value is chosen as a

neighbour. For the MovieLens dataset the number of neighbours chosen is quite
high (196).

For the bookcrossing dataset, the MAE score is very high in comparison to the
other datasets. For many test users in the bookcrossing dataset the data is too
sparse to find neighbours similar to the test users. The usual approach in this
case is to return the test user’s average rating as the prediction score, as this is
better than returning a zero or no rating. However from a learning perspective
this would be misleading, as some good results could be due to factors outside
those being tested by the genetic algorithm. As a result, when no neighbours can
be found, a prediction of zero is returned. This inflates all MAE scores but is
particularly noticeable in the bookcrossing dataset. The genetic algorithm will
always try to find the lowest score and, as the dataset runs are independent of
each other, it does not affect the results if the best MAE for one dataset is much
higher than the best MAE for another dataset.

The MAE returned by the genetic algorithm gives an idea of how the parameters
performed in a number of different runs. To test the parameters more fully,
further collaborative filtering runs were performed and a number of evaluation
metrics used. In particular, for ten runs for each dataset and for the best set of

parameters, measures of MAE, coverage, F1 and precision-at-1 were calculated.
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Table 4.3: Experiment 1: Further Evaluation of Best set of GA Parameters.

Dataset GA MAE | Avg. Avg. F1 Precision-
MAE Coverage at-1

MovieLens 0.685 0.721 99.37% 0.6367 | 1

bookcrossing | 6.79 1.46 8.08% 0.0382 | 1

last.fm 0.6735 0.802 20.38% 0.89 1

Epinions 2.8 0.884 35.35% 0.166 |1

The results are shown in Table 4.3 and indicate that, for the MovieLens and
last. fm datasets, the average MAE over 10 runs is higher than the best found
by the genetic algorithm, whereas the opposite is true for the bookcrossing and
Epinions datasets, with the average MAE over 10 runs much lower than the
best found by the genetic algorithm. The coverage results show that in general,
for all but the MovieLens dataset, coverage is low, and particularly low for the
bookcrossing dataset. The F1 results show a somewhat different trend to the
MAE results. Both the last.fm and MovieLens datasets have good F1 scores
but the bookcrossing and Epinions datasets do not. This is not surprising for the
bookcrossing dataset; however, it is more surprising for the Epinions dataset.
It can perhaps be explained by the GA MAE indicating that the solution found
is not good for all test users. The precision-at-1 results show that it is easy, for
all datasets, and for all test users, for the systems to be correct in the highest

rated-item they recommend (i.e. the test users have rated this item positively).

4.4.2 Experiment 2: Learning 5 parameters

Table 4.4 outlines the results for all the parameters specified in the methodology,
that is:

sigT, the significance threshold value, as before.

o P, the prediction formula option, an integer in the range [0 — 3] indicating
the prediction formula used (top-N, correlation thresholding, means over

co-rated items or not).

e N, the top-N value when top-N is selected (i.e. when P, the prediction

option, is 1 or 3).

o corrT, the correlation threshold value when top-N is not used (i.e. when P,

the prediction option, is 0 or 2).
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Table 4.4: Experiment 2: Learning 5 parameters.

Dataset sigT P | N |corrT sim | GA MAE
MovieLens | 67 1 | 164 | n/a 1 0.635
bookcrossing | 2 or 3 2 | n/a | 0.000621 | 2 4.81
last.fm 4or15 |0 |n/a|0.00118 |2 0.589
Epinions 0,1or2|2 [n/a|0.00265 |2 1.774

e sim, an integer in the range [0 — 2], to indicate the similarity measure
used: Spearman rank correlation, Pearson correlation, and cosine similarity

respectively.

For this experiment, a population size of 200 is used and results are presented
after 50 generations. As in the previous experiment, the rating threshold (the
number of ratings a user must have in order to be included as a test user) remains
constant for each dataset (10 for the MovieLens, last. fm and Epinions datasets,

and 1 for the bookcrossing dataset).

Table 4.4 shows the result for the four datasets. For all but the MovieLens
dataset, the same (or very similar) parameter values exist in the best six or ten
individuals in the population. There was more variability in the top six best
individuals for the MovieLens dataset and therefore the result reported is the
average of the best two solutions. For the last. fm results, for the top six solutions,
four of the solutions had sigT = 15 and two of the solutions had sigT = 4. All
of the top six solutions had the same values for all remaining parameters. For
the Epinions dataset, although very low values for sigT were chosen, there was

no consistent value chosen across the top 10 best solutions.

The prediction formula chosen was correlation thresholding (option 0 or 2) for all
but the MovieLens dataset. Where correlation thresholding is chosen, the thresh-
old values for all three datasets is very low (0.000621, 0.00118 and 0.002665).

For the bookcrossing and Epiniton datasets, means are calculated over all the
items a user has rated, and not just the co-rated items (option 2), whereas for
the last.fm datasets a user’s mean is calculated over the co-rated items (option
0).

For the MovieLens dataset, for the best two solutions, top-N is chosen as the
prediction formula with a high value for N (N = 164), as was found previously
and shown in Table 4.2. However, correlation thresholding was chosen for some
of the best 10 solutions — which indicates that both prediction formulae perform

equally well for this dataset.
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Table 4.5: Experiment 2: Evaluation of the Best set of GA Parameters.

Dataset GA MAE | Avg. Avg. F1 Precision-
MAE Coverage at-1

MovieLens 0.635 0.7333 99.5% 0.6392 | 1

bookcrossing | 4.81 1.4384 15.72% 0.0814 | 1

s1gl = 2

last.fm 0.589 0.6194 99.79% 0918 |1

sigT = 15

Epinions 1.774 0.8729 36.59% 0.2284 | 1

sigl =1

The similarity option (option 1) of Pearson correlation is chosen for just the
MovieLens dataset. For the remaining three datasets, the similarity option of
cosine similarity (option 2) was chosen consistently across the best solutions for

each dataset.

For the significance threshold parameter, sigT’, mostly a small value was chosen
except for the MovieLens dataset which has the highest threshold value across
all the datasets (67). Some of the best solutions for the last. fm dataset also had
a higher threshold value of 15. This was the one parameter that did not converge

to a common value across the top 10 best solutions.

The GA MAESs are similar or slightly lower than those in the results in Table 4.2
— notably the GA MAE for both the bookcrossing and Epinions datasets are
lower. This could be due to the larger population size and the longer number of

generations in addition to the extra parameter used (sim).

Table 4.5 shows results averaged over ten runs in comparison to the best MAE
found by the genetic algorithm (using the best set of solutions found per dataset).
Where one or more options existed with respect to a parameter value, the pa-
rameter and value chosen is listed (e.g., sigT equals 15 is chosen for the last.fm
dataset). It can be seen from Table 4.5 that in two cases (bookcrossing and
Epinions) the average MAE over ten runs is much lower than the GA MAE.
However in both of these cases the average coverage is quite low. As noticed in
the previous results with four parameters, (Table 4.3), the average MAE for the
MovieLens dataset is higher than the GA MAE and the average coverage is high.
The same is true for the last. fm dataset results with the average MAE over 10
runs being higher than the GA MAE but with high coverage.

Table 4.6 compares the MAEs found, when using the four parameter values

learned (Experiment 1), when using the five parameter values learned (Exper-
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Table 4.6: Comparing MAEs across Experiments.

Dataset Common Exp. 1 Exp. 2
Parameters | Parameters | Parameters
MovieLens 0.733 0.721 0.733
bookcrossing | 1.529 1.46 1.438
last.fm 0.699 0.802 0.619
Epinions 0.9 0.884 0.8729

iment 2), and when a common set of parameters were used across all datasets
(Results from Table 3.2 in Chapter 3). All results are generated with a 10% split
of test data and a 90% split of training data. It can be seen that, apart from the
last. fm dataset when learning four parameters, comparable (and mostly better)
performance is found when using the parameter values learned by the genetic
algorithm approach. It should be noted that the parameter values learned for the
MovieLens dataset in Experiment 2 (Table 4.4) are very similar to those used in
the experiments in Chapter 3 where Pearson correlation was used to find similar
users and neighbour selection was by a top-N approach (with N = 60). This

explains the similar MAEs across experiments.

4.4.3 The Suitability of the Problem to a Genetic Algo-
rithm Approach

Figures 4.2, 4.3, 4.4 and 4.5 shows the variation in fitness for populations for the
MovieLens, last.fm, bookcrossing and Epinions datasets respectively (popu-
lation size of 200 and 50 generations). As already mentioned, lower MAE is

associated with higher fitness.

As expected, the average fitness per generation is worse than the best fitness
per generation. Also as the generations continue, the average fitness improves.
Unusually, it can be seen that there is very little change in the best fitness over
the generations shown. There may be a number of reasons for this but the most
plausible are that there are multiple solutions which are equally good at solving
the problem and that it is easy to find a good set of solutions quickly given the
small number of parameters (5) and the small number of possible values for many
of these parameters. This suggests that a GA approach can find a good set of
parameters quickly and thus that the problem is not too difficult.
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Figure 4.2: Average and best fitness of MovieLens population at each generation.
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Figure 4.3: Average and best fitness of last. fm population at each generation.
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Figure 4.4: Average and best fitness of bookcrossing population at each genera-
tion.
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Figure 4.5: Average and best fitness of Epinions population at each generation.

4.5 Discussion of Results

Results show that the genetic algorithm does converge to useful results, some of
which agree with commonly-used parameter values: for example, the MovieLens
parameter values. However, some unexpected parameter values were selected:
for example, low significance threshold values (in the range [0 — 16]) are selected
for the bookcrossing, last.fm and Epinions datasets in both experiments. This
indicates that dampening the similarity measure between users with a small num-
ber of co-rated items is not useful for the bookcrossing, last.fm and Epinions
datasets, whereas doing so is beneficial in the MovieLens case. This makes in-
tuitive sense, in particular for the bookcrossing dataset, where the dataset is
extremely sparse and where any evidence, even between users with only a few
co-rated items, is better than the common case of having no evidence available

to find similar users.

Also seen in the results is the selection of many neighbours (the N or corrT
parameter) to perform prediction. Choosing the top-N neighbours for prediction
is only selected for the MowvieLens dataset, but in both experiments a high value
of N is chosen (N = 196 and N = 164). For the other three datasets, correlation
thresholding is chosen, with very low corrT values in the range [0.000621 — 0.09].
However from an efficiency perspective, it may not always be possible to include

so many neighbours when calculating predictions.

In Experiment 2, cosine similarity was chosen for three of the four datasets, with
Pearson correlation similarity chosen for the MovieLens dataset. This suggests

that the dominance of Pearson correlation as a similarity function is not always
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justified.

It could be argued in some instances that the field of recommendation has moved
past a complete reliance on the neighbourhood-based model outlined here and
that the recent focus is on matrix factorization models and incorporating addi-
tional information that is available — for example, content information [154] and
social information gleaned from the online social interactions between users (e.g.
trust [73]). Whilst this is undoubtedly an avenue of work which can potentially
overcome many of the disadvantages associated with a pure collaborative filtering
approach, there is still scope, as witnessed by recent literature [197, 70, 131] and
the availability of newer datasets, to continue investigation into the assumptions
and parameter values chosen for the basic collaborative filtering approach. It is

from such a perspective that the work outlined here was undertaken.

4.6 Conclusions, Contributions and Future
Work

This chapter outlined a genetic algorithm approach which was used to learn an
optimal set of parameters for four datasets in a nearest-neighbour collaborative
filtering approach. The sample space of parameters, and their possible values,
and the potential combinations of different parameters, was considered too large
and unwieldy to perform a brute force analysis of the problem. For this reason
a genetic algorithm approach was adopted where each individual represented a
set of values for a chosen set of parameters. The fitness of each individual was
calculated by running a collaborative filtering approach on a test set using the
parameter values specified in the individual and calculating the mean absolute
error (MAE) of the results. Initially, a reduced set of parameters were learned; a
second experiment allowed a greater range of options for the similarity functions
and prediction functions. Although the approach is computationally expensive it
only needs to be carried out once per dataset. The suitability of the problem to

a genetic algorithm approach was also considered.

The contributions of this work are in the use of a genetic algorithm approach
to learn the best set of parameter values across the four datasets. The same
approach will be used in the next chapter but, in that chapter, views of each of
the four datasets will be considered and parameters will be evolved and evaluated

for each view.

65 Josephine Griffith



4. LEARNING NEIGHBOURHOOD-BASED COLLABORATIVE FILTERING PARAMETERS

In addition, the parameters chosen for each dataset will be used in Chapters 6 and
7 which focus on another machine learning approach — this time concentrating on
learning features of the dataset and views which, for any user with these feature
values, may be useful in predicting how well a collaborative filtering technique

will perform for that user.

Future work could involve looking at additional parameters or adding constraints
to the existing parameters: for example, reducing the higher range of values
allowed for the number of neighbours, N, chosen when using a top-N approach;
or reducing the lower range of values allowed for the threshold value when using
a correlation thresholding approach. This would stop the convergence to values

that are too large (e.g., N) or too low (e.g., corrT).
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Chapter 5

Learning Neighbourhood-based
Collaborative Filtering

Parameters: Dataset Views

5.1 Introduction

This chapter will present further experiments performed on learning the best
set of parameters for the Pearson Correlation Nearest-Neighbour Collaborative
Filtering approach. The experiments in this chapter will focus on dataset views.
Specifically, a genetic algorithm approach will be used to find the optimal set of

parameters for all the views previously specified, if possible, for the four datasets.

The outline of the chapter is as follows: the motivations, and an overview, of
the work is presented in Section 5.2. An overview of the methodology is given
in Section 5.3. Results are split according to the two different sets of views:
Section 5.4 presents results, where possible, for the 12 user rating views; Section
5.5 presents results, where possible, for the 12 popular item views. Section 5.6
compares the results for each view across the four datasets. A discussion of the

results (Section 5.7) and conclusions (Section 5.8) are finally presented.
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5.2 Motivations and Overview

As outlined in the previous chapter on parameter value selection, the same sets
of experiments were performed on each of the four different datasets under con-
sideration. The idea of “dataset views”, presented in Chapter 3, is reconsidered
here in this chapter to allow (1) comparisons across views for the same datasets
and (2) comparisons across potentially similar views in each of the four datasets.
The aim is to ascertain if there are differences across dataset views. Two different

sets of views are considered, as defined in Table 3.10 in Chapter 3:
o User Rating Views.
o Popular Item views.

Each dataset is partitioned into three views — low, medium and high — as
defined in Table 3.11 in Chapter 3.

5.3 Methodology

The same methodology, as used in Chapter 4, is used for this experiment and is

as follows:

1. Pick test users and test items from a dataset view: the same test users, and
their items, are used to evaluate all individuals in a generation. A new set

of test users and items are picked per generation to avoid over-fitting.

2. Randomly generate a fixed-size population of individuals where each indi-

vidual represents a set of values for the parameters tested.
3. Calculate the fitness of each individual as follows:

(a) Set all of the collaborative filtering parameters to the values indicated

in the individual.

(b) Find the nearest neighbours and make predictions for the test users

and their items based on these parameter values.

(c) Calculate the average MAE (mean absolute error) score for the test
users and items and return this as the fitness score of the individual.
The genetic algorithm for this experiment is required to minimise the
fitness score, that is, the lower the MAE value the better (more fit) a

solution is.
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It was noticed that an additional parameter outside the parameters of the collab-
orative filtering approach was also affecting the overall performance. It has been
shown in previous work [23] that the methodology used for selecting test users
(Step 1) affects the predictive accuracy of the results. This relates to which users
are included in the test set — specifically, the number of ratings a user must have
to be included in the test set. As the dataset views, and in particular the user
rating views, have, by definition, different levels of sparsity, it is important not to
apply the same threshold, with respect to the number of ratings a user has, to all
views. For this reason, for these experiments with dataset views, a sixth parame-
ter, rateT), is included. The rateT parameter is defined as an integer value in the
range [1-40]. The rateT value is used when picking the users to form the test set.
Only users who have rated greater than rateT items will be included in the test
set. It is expected that this value will be low for sparse views. The experiment
(evolving the rateT parameter) is also performed for each of the four full datasets.
This will ensure a fairer comparison across the full dataset results and the view
results. In the previous experiments, in Chapter 4, the rating threshold value was
kept constant when evolving for the other parameter values. A summary of the

six parameters evolved is presented in Table 5.1.

Table 5.1: The six parameters which will be evolved.

Parameter Parameter Description
Symbol
rateT the minimum number of items a user must have rated in
order to be included in the test set (i.e., be considered as
a test user).

sigT the significance threshold value which is used to “dampen”
the similarity scores of users with a small number of co-
rated items.

P the prediction option used, in this case, whether top-NV is
used (1 or 3) or whether correlation thresholding is used (0
or 2).

N the top-N value when top-N is selected (i.e., when P is 1
or 3).

corrT the correlation threshold value when correlation threshold-
ing is selected (i.e., when P is 0 or 2).

sim the similarity function used to find similar users. The sim-

ilarity functions which can be selected are: Spearman rank
correlation (0), Pearson correlation (1) or Cosine similarity

2).

For each experiment, the same genetic algorithm settings as used in Chapter 4

are again used and are summarised in Table 5.2.
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Table 5.2: The GA Settings.

Genetic Algorithm Setting | Value

Population Size 100

Number of generations 50

Crossover Operator Single point crossover
Crossover Rate 80%

Mutation Rate 2%

Each set of results (evolved parameter values) are evaluated using two evaluation

measures:

1. Average MAE (Avg. MAE), which is the MAE found when the evolved
parameters are used for a sample set of users from a view using the standard

collaborative filtering approach. The MAE value is averaged over 10 runs.
The lower the MAE value the better.

2. F1 score, which incorporates a measure of both the accuracy and coverage
and can distinguish between parameter values which might produce a good
MAE value but not a good coverage value. The higher the F1 score the
better. As for the average MAE, the F1 value is averaged for 10 runs
of a standard collaborative filtering approach using the evolved parameter

values.

Comparisons are performed with the parameters learned per dataset view and
the parameters for the full dataset, with the aim of ascertaining whether bet-
ter accuracy can be found per view, using these parameters, than the accuracy
found with the parameters for the full dataset. This will indicate if there is any
advantage to be gained in learning parameters per view or if using the parame-
ters learned across the full dataset works as well. In addition, in Section 5.6, a
comparison will be performed across datasets, per view, to ascertain if there is

any similarity with the parameters chosen per view across the four datasets.

5.4 Results: User Rating Views

Results in this section show comparisons for the three user rating views for each
of the four datasets. In addition, results when evolving six parameters for the
entire datasets are included to aid the comparisons. We expect, to some extent,
that the mean absolute error (MAE) will increase as the number of ratings in a

view decreases. In addition, we are interested in noting the changes, if any, in
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the parameter values chosen per view and the effect the parameter values have

on the mean absolute error (MAE) and F1 scores.

Table 5.3 presents the results for the MovieLens dataset where it can be seen
that, as expected, the low user rating view has a higher MAE value and a lower
F1 score than the other views. Also, as expected, the threshold values for the
low user rating view are lower than those of the other two views. The parameter
values chosen for the full dataset have most similarity with the parameters chosen
for the medium user rating view — with the most noticeable difference being that
top-N was chosen over correlation thresholding using the full dataset parameter
values (as was found previously in Chapter 4). It can be seen from Table 5.4
when considering M AE only, that the only case where there appears to be an
advantage in learning the parameters per view is with the medium user rating

view.

Table 5.3: Learning parameters for the MovieLens User Rating Views.

View rateT | sigT | P | N | corrT | sim | GA Avg. | F1
MAE | MAE

Full 21 37 1 |215 | n/a 0 0.6207 | 0.724 | 0.654

Dataset

low 5 3 0 |n/a|0.009 |2 0.565 | 0.826 | 0.604

medium | 39 85 0 |n/a|0.055 |0 0.580 | 0.751 | 0.627

high 10 39 0 |n/a|0.126 |0 0.582 | 0.7288 | 0.618

Table 5.4: Comparison of MAEs: MowvieLens User Rating Views.

MAE
View View Parameters | Full Dataset Parameters
low 0.8269 0.8167
medium | 0.7515 0.7622
high 0.7288 0.7199

Table 5.5 presents the results for the last.fm dataset. Apart from the rating
threshold value (rateT’) for all views and the significance threshold value (sigT)
for the high user rating view, there is consistency among the other parameter
values chosen. We do not see the same pattern as in the MovielLens dataset,
where the value of the ratel” threshold is lower for the low user rating view.
Across views, we can see that, with similar parameter values, there is a difference
in the MAE values — with MAE values increasing across high to low user rating
views. In addition, there is consistency across the view parameter values chosen

and the parameter values chosen for the full dataset. The best MAE result is
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seen for the full dataset parameter values when tested on the full dataset (MAE
of 0.642).

Table 5.5: Learning parameters for the last. fm User Rating Views.

View rateT | sigT | P | N | corrT | sim | GA Avg. | F1
MAE | MAE

Full 25 10 2 | n/a|0.004 |2 0.617 | 0.642 | 0.918

Dataset

low 21 1 2 | n/a|0.0083 | 2 0.963 | 0.7596 | 0.802

medium | 9 0 |n/a|0.006 |2 0.697 | 0.681 | 0.924

high 18 22 0 |n/a|0.002 |2 0.645 | 0.655 | 0.945

It can be seen from Table 5.6 that, for the medium user rating view, there is a
small advantage gained in using the parameters which were learned for that view
rather than using the full dataset parameters. There is a far greater advantage
seen in using the parameters which were learned for the high user rating view

rather than using the full dataset parameters for that view (0.655 versus 0.763).

Table 5.6: Comparison of MAEs: last. fm User Rating Views.

MAE
View View Parameters | Full Dataset Parameters
low 0.7596 0.7469
medium | 0.681 0.699
high 0.655 0.763

Table 5.7 presents the results for the bookcrossing dataset. As expected, the
MAE values for the bookcrossing dataset are high, with the best GA MAE found
for the high user rating view (4.96). Although the MAE results are better when
the parameters are tested, this is because only a small number of predictions are
made and the coverage is very low, as can be seen from the extremely low F1
scores (coverage is around 2%, 8% and 30% respectively for the low, medium
and high user rating views). Although this is not ideal it is better to get results

when possible even if, due to the nature of the dataset, this is not very often.

Apart from the same similarity option being chosen for all views, some variations
across the values chosen for all of the other parameter values for the bookcrossing
views can be observed. For predictions, the medium user rating view differs from
the other two views in having a top-N approach chosen and there are variations

in the threshold values for all views.

There are some notable differences when comparing the view parameters with

those chosen for the full dataset, in particular the similarity option and the thresh-
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old values. The view parameter values do seem to work consistently well for each
view, as can be seen in Table 5.8 where there is no major variability across the
MAE results for views. For each view, the MAE per view is lower when using the
view parameters than when using the parameters learned over the full dataset. In
the bookcrossing case therefore, for the user rating views, there is an advantage

gained in learning parameters per rating view.

Table 5.7: Learning parameters for the bookcrossing User Rating Views.

View rateT | sigT | P | N | corrT | sim | GA Avg. | F1
MAE | MAE

Full 9 12 2 |[n/a|0.0024 | 2 4.88 1.413 | 0.204

Dataset

low 5 8 2 |n/a|0.011 |1 6.71 1.3647 | 0.013

medium | 17 16 3 [133 | n/a 1 6.66 1.334 | 0.065

high 15 4 0 |n/a|0.018 |1 4.96 1.3371 | 0.27

Table 5.8: Comparison of MAEs: bookcrossing User Rating Views.

MAE
View View Parameters | Full Dataset Parameters
low 1.364 1.8184
medium | 1.334 1.9473
high 1.337 1.9503

Table 5.9 presents the results for the Epinions dataset — without results for the
first view due to the fact that the low user rating view dataset was too sparse
to evolve parameters for that view. There are consistencies amongst some of
the parameter values chosen for the other two views (with the same correlation
thresholding approach and the same similarity approach chosen in both). All
three threshold values (rateT’, sigT" and corrT) are higher for the high user
rating view. These parameter values lead to a much better MAE value for the
high user rating view in comparison to the medium user rating view. A similar
trend is noticed when comparing actual MAEs and F1 scores, with the high user

rating view having better results.

When comparing the MAE results of the two views using the parameters evolved
per view and the parameters evolved per dataset (Table 5.10), it can be seen that,
similar to the bookcrossing dataset, and two of the three last. fm views, there is

an advantage gained in learning parameters for the Epinions views.

In summary, for all but the MovieLens dataset and the last.fm low user rating

view, there was an advantage gained in learning the parameter values specific to
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Table 5.9: Learning parameters for the Epinions User Rating Views.

View rateT |sigT | P | N | corrT | sim | GA Avg. | F1
MAE | MAE
Full 3 12 2 |[n/a|0.002 |2 1.89 0.8877 | 0.26
Dataset
low n/a
medium | 13 0 2 | n/a|0.04 1 3.21 0.95 0.110
high 35 4 2 | n/a|0.23 1 1.86 0.8304 | 0.420
Table 5.10: Comparison of MAEs: Epinions User Rating Views.
MAE
View View Parameters \ Full Dataset Parameters
low n/a
medium | 0.95 1.080
high 0.83 0.968

each of the user rating views for the datasets. For the MovielLens dataset this
advantage was shown for the medium user rating view only. In only one case,
the low user rating view of the Epinions dataset, was it not possible to evolve

parameters for the view due to the sparsity of the view.

5.5 Results: Popular Item Views

This section outlines the results when the same sets of experiments are performed
on three views (low, medium, high) which are based on the popularity of items
(the number of ratings items receive). In these views, the data in the high
popular item view is characterised by user’s ratings of very popular items; in
comparison, the data in the low popular item view is characterised by user’s
ratings of unpopular items. For some of the views it was not possible to evolve a
value for the rating threshold parameter. In these cases, a rating threshold value

of 1 was held constant.

Table 5.11 presents the results for the MovieLens dataset where it can be seen
that there are variations in some of the parameter values. The rating threshold
value varies from low (1) to higher (15 and 20) for the low, medium and high
views respectively. The calculated average MAE values for each view are similar
(0.7432, 0.7487 and 0.7658), with the high popular item view having the worst
average MAE. It seems therefore that the differences in the view parameters are

significant in terms of maintaining a similar MAFE across views.
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Table 5.11: Learning parameters for the MovieLens Popular Item Views.

View rateT | sigT | P | N | corrT | sim | GA Avg. | F1
MAE | MAE

Full 21 37 1 | 215 | n/a 0 0.6207 | 0.724 | 0.654

Dataset

low 1 20 3 160 |n/a 1 0.564 | 0.7432 | 0.596

medium | 15 94 0 | n/a|0.0075 | 1 0.533 | 0.7487 | 0.614

high 20 29 1 272 | n/a 0 0.500 | 0.7658 | 0.622

Table 5.12 compares the MAE results across the MovieLens popular item views
using the parameters evolved per view and the parameters which were evolved for
the entire MovieLens dataset. It is only for the high popular item view that any
advantage of evolving parameters per view is noticed, with a lower MAE (0.7658)
when using the view parameters than when using the full dataset parameters
(0.7809). We recall that, for the MovieLens user rating views it was only for the
medium user rating view that an advantage of using the view parameters was
noticed. We can summarise that, for the MovieLens dataset, the parameters
learned using the full dataset are mostly good and sufficient for both the user
rating views and the item popularity views (with the exception of the medium
user rating view and the high popular item view, where some advantage is seen

when using the view parameters).

Table 5.12: Comparison of MAEs: MovieLens Popular Item Views.

MAE
View View Parameters | Full Dataset Parameters
low 0.7432 0.7463
medium | 0.7487 0.7335
high 0.7658 0.7809

Table 5.13 presents the results for the last. fm dataset for the popular item views.
There is consistency among the parameter values chosen for some of the three
views (e.g. the similarity option). The significance threshold is low, or not used
at all, for all views (0, 4 and 9), while the rateT threshold is quite high for all
views (17, 26 and 29). The average MAE values increase from the low to the
high popular item views, with the high popular item view having a much higher
MAE (0.7277) than that seen with the other two views. This was also seen with

the high popular item view in the MovieLens dataset.

Comparing the results when using the parameter values evolved per view with
the results when using the parameter values evolved for the full dataset, it can

be seen that there are some consistencies across the parameter values chosen.
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Table 5.13: Learning parameters for the last. fm Popular Item Views.

View rateT |sigT | P | N | corrT | sim | GA Avg. | F1
MAE | MAE

Full 25 10 2 |[n/a|0.004 |2 0.617 | 0.642 | 0.918

Dataset

low 17 0 2 [ n/a|0.0016 |2 0.6474 | 0.6354 | 0.909

medium | 26 4 0 | n/a|0.0085 |2 0.6479 | 0.6659 | 0.92

high 29 9 0 | n/a | 0.0008 |2 0.7267 | 0.7277 | 0.915

Table 5.14 compares the MAE results across the last.fm popular item views
when using the parameters which were evolved per view and the parameters
which were evolved for the entire last. fm dataset. For the low and high popular
item views, and to a lesser extent the medium popular item view (with only a
marginal difference), using the evolved parameters per view gives lower errors.
Thus, similar to the situation for the user rating views, for the last.fm dataset

there is an advantage in evolving parameters for all views.

Table 5.14: Comparison of MAEs: last.fm Popular Item Views.

MAE
View View Parameters | Full Dataset Parameters
low 0.6354 0.6535
medium | 0.6659 0.6679
high 0.7277 0.741

Table 5.15 presents the results for the bookcrossing dataset for the low and
medium popular item views. It was not possible to evolve parameters for the
high popular item view given the methodology used, as there was an insufficient
number of ratings, per user, to generate test and training sets (that is, users
do not have many popular items rated in this view). In addition, for the low
and medium popular item views, it was not possible (for the same reason) to
evolve a value for the rating threshold (rateT’) parameter. The rating threshold
value was therefore kept constant at 1. This was deemed preferable to changing
the methodology or the definition of dataset views for this dataset only. To
ensure a fair comparison, solutions were evolved for the full bookcrossing dataset
with the rating threshold (rateT’) also set to 1. The results for the full dataset,
with rateT = 1, are very similar to those reported in Table 5.7 apart from the
significance threshold, which, when the rating threshold is 1, is also 1 (rateT = 12
in Table 5.7).

As expected, the average MAE values for the bookcrossing dataset are high across

both dataset views and the coverage, when testing the parameters, is low (17%
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and 26% respectively for the low and medium popular item views). Comparing
the view parameters with those chosen for the full dataset, the main difference is
seen with the values chosen for the thresholds.

Table 5.15: Learning parameters for the bookcrossing Popular Item Views: rateT
held constant.

View rateT | sigT | P | N | corrT | sim | GA Avg. | F1
MAE | MAE

Full 1 2 2 [ n/a|0.0029 |2 4.90 1.456 | 0.068

Dataset

low 1 6 2 |[n/a|0.0071 | 2 5.444 | 1.418 | 0.083

medium | 1 5 0 | n/a|0.0003 |2 4448 | 1.396 | 0.144

high n/a

Table 5.16 illustrates that, based on very similar MAEs obtained for the low and
medium popular item views (with an advantage only gained for the low view),
there is very little merit in evolving parameters per view for these two popular
item views. This is not surprising given the strong similarity of the parameter

chosen for the views and the parameters chosen for the full dataset.

Table 5.16: Comparison of MAEs: bookcrossing Popular Item Views.

MAE
View View Parameters | Full Dataset Parameters
low 1.418 1.4374
medium | 1.396 1.376
high n/a

For the popular item views for the Epinions dataset it was again not possible
to evolve the rating threshold (rateT’) parameter and therefore it was kept at a
constant value of 1. Again, parameters were evolved for the full Epinions dataset
when the rating threshold value was held constant at 1. Table 5.17 presents the

results for the three Epinions popular item views and the full dataset.

We see some consistencies between the parameter values, with P = 2 chosen
for all views and for the full dataset. In addition, very low, to no, significance
threshold values (sigT") are chosen for the sigT parameter for each of the views
and for the full dataset. The correlation threshold values vary the most across
the views and full dataset, with an extremely low value chosen for the medium
popular item view (0.0003). The similarity option chosen varies between 1 and
2. The F'1 scores across views are low and the best F1 results are found for the
medium popular item view (0.266). The best average MAE results are seen for

the low and medium popular item views.

77 Josephine Griffith



5. LEARNING NEIGHBOURHOOD-BASED COLLABORATIVE FILTERING PARAMETERS:
DATASET VIEWS

Table 5.17: Learning parameters for the Epinions Popular Item Views: rateT
held constant.

View rateT |sigT | P | N | corrT | sim | GA Avg. | F1
MAE | MAE

Full 1 2 2 | n/a|0.0112 | 2 1.876 | 0.8827 | 0.201

Dataset

low 1 2 2 | n/a|0.0524 |1 3.087 | 0.8289 | 0.02

medium | 1 0 2 | n/a|0.0003 | 2 1.623 | 0.8706 | 0.266

high 1 1 2 |n/a|0301 |1 1.655 | 0.9443 | 0.162

From Table 5.18, when comparing the MAE values, when the view parameters
versus the full dataset parameters are used, it can be seen that, for the low
popular item view, the difference in the corrT and sim values lead to better
performance for the view parameters. There is a marginal advantage noted when
using the view parameters for the medium popular item view but no advantage

in using the view parameters for the high popular item view.

Table 5.18: Comparison of MAEs: Epinions Popular Item Views.

MAE
View View Parameters | Full Dataset Parameters
low 0.8289 0.886
medium | 0.8706 0.8788
high 0.9943 0.9707

Unlike the results for the user rating views where, apart from the MovieLens
dataset and the last.fm low user rating view, it was shown that there was an
advantage in evolving the parameters for all of the other user rating views, it
is only for the last.fm popular item views, and the Epinions low popular item
view, that a consistent advantage in evolving the parameters for the popular item

views is seen.

5.6 Results: Comparing Evolved Parameters

Across Views

There are no obvious trends when comparing, where possible, the parameters
evolved per view across each dataset. The following tables summarise the results

across views (rather than across datasets).

Considering the low user rating views across three datasets (results could not be

evolved for this view for the Epinions dataset) it can be seen (Table 5.19) that,
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although there are some similarities across parameter values, there are no obvious

trends visible for the three datasets.

Table 5.19: low User Rating View: Parameters for three Datasets.

Dataset | rateT | sigT | P | N corrT | sim | Avg. F1
MAE

ml ) 3 0 |n/a|0.009 |2 0.826 | 0.604

Lfm 21 1 2 | n/a|0.0083 |2 0.7596 | 0.802

bz ) 8 2 |n/a|0.011 |1 1.3647 | 0.013

epn n/a

Table 5.20: medium User Rating View: Parameters for four Datasets.

Dataset | rateT | sigT | P | N corrT | sim | Avg. F1
MAE

ml 39 85 0 [n/a|0.055 |0 0.751 | 0.627

Lfm 9 4 0 |[n/a|0.006 |2 0.681 | 0.924

bz 17 16 3 [ 133 | n/a 1 1.334 | 0.065

epn 13 0 2 |n/a|0.04 1 0.95 0.110

Table 5.21: high User Rating View: Parameters for four Datasets.

Dataset | rateT |sigT | P | N | corrT | sim | Avg. | F1
MAE

ml 10 39 0 [n/a|0.126 |0 0.7288 | 0.618

Lfm 18 22 0 |[n/a|0.002 |2 0.655 | 0.945

bx 15 4 0 [n/a|0.018 |1 1.3371 | 0.27

epn 35 4 2 | n/a|0.23 1 0.8304 | 0.42

Considering the medium (Table 5.20) and high (Table 5.21) user rating views
across all four datasets it can be seen that, although there are some similar
parameters (notably correlation thresholding for the high user rating view, with

P =0or P=2), in most cases different parameter values are chosen per dataset.

For the low popular item views, it can be seen from Table 5.22 that the parameters
for the MovieLens dataset are most different to those for all other views. (Recall
that the rating threshold values could not be evolved for the bookcrossing or

Epinions datasets for this view).

For the medium popular item view (Table 5.23) there are no obvious trends in the
parameter values chosen across all four datasets. Similarly, for the high popular
item view (Table 5.24) there are no obvious patterns visible with respect to the
parameter values chosen across the three dataset views (recall that it was not
possible to evolve parameters for the high popular item view for the bookcrossing

dataset). This suggests that the views do not share common characteristics.
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Table 5.22: Low Popular Item View: Parameters for four Datasets.

Dataset | rateT |sigT | P | N | corrT | sim | Avg. | F1
MAE

ml 1 20 3 160 |n/a 1 0.7432 | 0.596

lfm 17 0 2 | n/a|0.0016 |2 0.6354 | 0.909

bx n/a 6 2 |n/a|0.0071 | 2 1.418 | 0.083

epn n/a 2 2 |n/a|0.0524 |1 0.8289 | 0.02

Table 5.23: Medium Popular Item View: Parameters for four Datasets.

Dataset | rateT |sigT | P | N | corrT | sim | Avg. | F1
MAE

ml 15 94 0 [n/a|0.0075 |1 0.7487 | 0.614

Lfm 26 4 0 |[n/a|0.0085 |2 0.6659 | 0.92

bx n/a 5 0 | n/a| 0.0003 |2 1.396 | 0.144

epn n/a 0 2 | n/a| 0.0003 |2 0.8706 | 0.266

Table 5.24: High Popular Item View: Parameters for three Datasets.
Dataset | rateT | sigT | P | N | corrT | sim | Avg. F1

MAE
ml 20 29 [1 [272][n/a |0 0.7658 | 0.622
Lfm 29 9 0 [n/a[0.0008 |2 0.7277 | 0.915
bx n/a
epn n/a |1 |2 |n/a]0301 |1 ]0.9443 | 0.162

5.7 Discussion of Results

For the MovieLens dataset, in the majority of cases, the parameters learned for
the entire dataset are as good as or better than those learned per view — leading
to the conclusion that, for this dataset, there is no advantage in learning per

view.

For the last. fm, bookcrossing and Epinions datasets, there are, for the user rat-
ing views, and where parameters could be evolved, advantages gained in learning
per view rather than learning for the entire dataset. For the last.fm popular
item views and the Epinions low popular item view, there are advantages gained
in learning per view rather than learning for the entire dataset (but with only
a marginal improvement for the last.fm medium popular item view). In com-
parison, for the other datasets and the popular item views, there is a less clear

advantage in learning parameters for all views.

For the low popular item views across all four datasets, there was an advantage

seen in evolving parameters per view rather than using the parameters evolved
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for the full dataset (though this advantage was very marginal for the MovieLens

low user rating view).

For the medium popular item views across all four datasets there was no, to a
very marginal (in the case of the last. fm and Epinions datasets), advantage seen
in evolving parameters per view rather than using the parameters evolved for the
full dataset.

For the high popular item views, parameters could not be evolved for the
bookcrossing dataset. For the last.fm and MovieLens datasets there was an
advantage seen in evolving parameters per view rather than using the parameters
evolved for the full dataset. This was not true for the high popular item views

for the Epinions dataset.

In all, there were 22 views where parameters could be evolved. For 16 of these
22 views, it can be seen that there is an advantage in evolving parameters per
view rather than using the parameters evolved for the full dataset (though only

a marginal advantage in 4 of the 16 cases).

Furthermore, it was not found that general trends in parameter selection were
visible across comparable dataset views (e.g., the four low, medium and high
views), leading to the conclusion that each dataset view is very unique in its
own right and that similar views, across datasets, appear to maintain the unique

characteristics of the full datasets.

5.8 Conclusions, Contributions and Future
Work

This chapter presents the results when considering the experiments of the pre-
vious chapter — learning the best set of parameters per dataset using a genetic
algorithm approach — using different views (where possible) of the four datasets
(user rating views and popular item views) — where each dataset is split, for each
view, into low, medium and high views, as defined in Chapter 3 (Table 3.10 and
Table 3.11).

It was found that, apart from two MovieLens views (low and high) and one
last.fm view (low), evolving parameters for the user rating views gave better
performance than using the parameters that were evolved for the full dataset.

The advantage gained in evolving parameters per popular item was sometimes
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marginal. However, there were only three (of 11) popular item views where evolv-
ing parameters per view did not do as well, or better, than using the parameters

evolved for the entire dataset.

The results for the Movie Lens views suggest that different parameter settings can
give comparable performance across views. That is, although the view parameters
and full dataset parameters differ, a similar level of performance (MAE value)

can be achieved with both the view parameters and the full dataset parameters.

No general trends were found in the parameter values selected across comparable
dataset views (e.g., the four low, medium and high views) so that no general set

of parameter values per view is possible.
The contributions of the chapter are two-fold:

« Demonstrating that evolving parameters specific to dataset views, for 16 of
22 views, gives better performance than using the parameters evolved for

the full dataset views.

o Demonstrating that the views of each dataset maintain the characteristics
of the full dataset and the parameter values evolved for the views (i.e., low,
medium, high), are not similar across datasets. In many cases, apart from
the MovieLens dataset, the parameters evolved per view are most similar

to the parameters evolved for the full dataset.

Future work could consider further testing of the view parameters (for example,
testing the performance of the high view with the low view parameters, etc.) and

consider additional views.
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Chapter 6

A Machine Learning-based
Approach to Performance

Prediction

6.1 Introduction

The focus of the work described in this chapter is performance prediction in a
collaborative filtering domain. The aim is to predict, per user, the performance
of a collaborative filtering system — so that this information can be presented
to a user in advance of recommendation. The performance prediction approach
involves deriving statistical measures from the user rating information in the
dataset and using a machine learning approach to learn general rules about the

predictive accuracy of these derived measures.

The outline of the chapter is as follows: some general motivations of the approach
are first presented in Section 6.2. Section 6.3 presents a general overview of the
approach taken, outlining the steps undertaken to extract the user information
(statistical measures) from each dataset and the approach taken to learn the
performance prediction rules. Details on how the rules are evaluated is presented
in Section 6.4. Results are then presented for each of the four datasets in Section
6.5. A discussion of the results and conclusions are presented in Sections 6.6 and

6.7 respectively.
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6.2 Motivations

Recommender systems generally have information at their disposal which can be
used to offer information to users on the predicted, or likely, quality (or accuracy)
of the results that will be returned to them. Some work in Information Retrieval
in the area of performance prediction does this by aiming to predict the accuracy
of the results that are likely to be achieved, given some input query [242, 250;
these ideas from Information Retrieval have also been adapted to the collaborative

filtering domain [24].

In the Information Retrieval domain, given a user query, a document collection
and an Information Retrieval system, the quality of the retrieval system is usually
defined in terms of retrieving documents relevant to the query and not retrieving
documents which are not relevant to the query. Systems are generally evaluated
using metrics such as precision and recall. In addition, some approaches consider
the relative quality of the information returned, ranking results based on both
predictive accuracy metrics and information quality measures. Information qual-
ity measures have included link analysis of hyperlinked documents [40], finding

authorities and hubs [130] and incorporating user behaviour [4].

The aim of the performance prediction work described in this chapter attempts
to test the validity of a collaborative filtering performance prediction approach.
It does not attempt to improve the prediction result by incorporating the perfor-
mance prediction information in the collaborative filtering algorithm, as Bellogin
et al. do [24, 23]. It also differs from Bellogin et al. in that it does not directly
map concepts such as the clarity score from IR and concepts of trust from pre-
vious collaborative filtering work. Instead, statistical measures of the user rating
information are derived from the dataset and a machine learning approach is
used to learn general rules about the predictive accuracy of the derived statistical

values.

Previous work that is most similar to the approach described here was carried
out by Ekstrand et al. [69] and Matuszyk et al. [163]. In the work by Ekstrand
et al., three user features were considered: the log of a user’s rating count, a
user’s average rating and the variance of user’s ratings. Ekstrand et al. aimed
to ascertain if it was possible to predict which individual algorithm would work
best for users given these three user features. Matuszyk et al. [163] build, in
part, on the work described here and the work described by Ekstrand et al.
[69]. Matuszyk et al. [163] define three measures derived from the dataset, test
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for the most predictive measure or combination of measures, and use the best
performing measure as part of a linear regression model to derive a formula that
predicts whether a user-based or matrix-factorization-based approach will work

best for a given dataset.

6.3 Performance Prediction Approach

Figure 6.1 outlines a general overview of the approach undertaken in this work
where, per user, derived measures of the user’s rating information, along with the
rating information of other users, are used in a rule which returns a prediction (a
predicted MAE score) on how well the system can produce recommendations for
the user. The four different datasets outlined in Chapter 3 are tested with this

scenario: MovieLens, last.fm, bookcrossing and Epinions.

' Extract
rating

user

ratings
Predict

accuracy

of output
for user

Extract
rating
*1 information
from
all ratings

Figure 6.1: Performance prediction scenario in a collaborative filtering domain.

6.3.1 Learning the Performance Prediction Rules
Figure 6.2 gives an overview of the steps involved in learning, per dataset, rules
which can be used to predict, per user, the performance of the system.

Initially a holdout set of test users (up to 10% depending on the dataset) is
removed to be used to evaluate the rules learned (as will be described in Section

6.4). The remainder of the dataset comprises the training data.
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Figure 6.2: Steps to learn the performance prediction rules.

6.3.1.1 Extract Rating Information

A number of aspects of the user rating information, called features, are extracted

from the collaborative filtering datasets. The motivation is to choose aspects

of the user rating history that would seem likely to affect a user’s prediction

accuracy. The data extracted range from simple calculations (such as the average

user rating) to values derived using some item and neighbour information.

A list of the eight features follows, with details and formulae where required, and

with a shorthand name for each feature which will make the subsequent rules

more readable:

1.

2.

numRatings: the number of ratings a user has given.

avgRating: the average rating a user has given to all the items they have

rated.

stdev: the standard deviation of the average rating a user has given.

. numNeighs: the number of neighbours a user has. This is calculated by

first using a Pearson correlation similarity measure to find the similarity
between users. Any user with similarity to the current user above a set

threshold (in this case 0.1) is counted as a neighbour.

stm30neighs: the average similarity of each user to their top closest 30
neighbours (using the Pearson correlation similarity values and, having or-

dered by similarity, picking the top 30 users).

popltems: the popularity of the items each user has rated. This popularity

measure is based on the number of ratings each item has received (and not

An Analysis of Collaborative Filtering 86
Datasets



6.3 Performance Prediction Approach

considering the actual rating value). The formula per user a is:

M numRatings;
M

(6.1)

for M items rated by the user a and numRatings; being the number of

ratings item ¢ has received from all users in the dataset.

7. likedItems: how well-liked by all users are the items rated by the current
user. This measure is calculated using the actual rating value given to

items. The formula used per user a is:

Zi]\il avgV al;

= (6.2)

for M items rated by the user a and avgV al; being the average rating value

item 7 has received from all users in the dataset who have rated item 7.

8. tfidf: the importance, or influence, of a user in a dataset. This is based
on the idea of term frequency and inverse document frequency (from the
domain of IR) and is the proportion of items a user has rated multiplied by
how frequently-rated those items are in the dataset. Frequently-rated items
get low values (similar to the IDF component in Information Retrieval,
where frequently occurring terms across all documents receive lower scores).

The formula used is:

numRatings, o % (log numU sers ) (6.3)

numltems o] numRatings;

for M items rated by a user a, where numltems is the number of items in
the dataset and numRatings, is the number of ratings user a has given,
i.e. this is the ratio of the number of ratings the user gave over the number
of ratings the user could have given (all items); numUsers is the number
of users in the dataset and numRatings; is the number of ratings item ¢
received, i.e., this is the ratio of the number of ratings an item could have
received (a rating from all users in the dataset) over the number of ratings

it did received.

The feature values are all normalised by min/max normalisation to be in the
range [0.0-1.0].
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6.3.1.2 Collaborative Filtering Technique

For each training and test user, in each of the four datasets, the feature values
outlined in Section 6.3.1.1 are extracted. In addition, some score which repre-
sents how well a collaborative filtering system can predict items for these users
is required for learning and testing. The machine learning approach will learn
relative to this score, ideally associating some feature values with low scores and
other features values with high scores, and thus finding the predictive power of

the features in terms of the accuracy score.

This experiment requires a measurement which is comparable across the four
datasets, and which can be suitably averaged so that it can be used as a score over
which the machine learning approach will learn. Initial experiments performed
using the MAE (see Equation 2.1 in Chapter 2) found it was suitable, as it is
reasonably strict while being widely-used and well-understood. In order to obtain
a MAE score per training and test user, a collaborative filtering system is required
to produce recommendations for a portion of ratings removed from the user’s
ratings. Any standard collaborative filtering technique can be used. For this
experiment, a nearest neighbour collaborative filtering technique was employed,
using Pearson correlation to find similar neighbours and using a weighted average

of the neighbour’s ratings of test items to produce recommendations.

6.3.1.3 Create Training and Test Tuples

As previously mentioned, 10% of the dataset is withheld for testing purposes (the
holdout set). To allow for the comparison between the actual and predicted MAE
scores, a collaborative filtering system is used to produce predictions for a set of
items for the users. A MAE score is calculated based on the ratings the user has
given the items versus the ratings the collaborative filtering approach produced.
The collaborative filtering run is repeated 10 times per user where, for each run,
up to 10% of the user’s items are randomly chosen as the test items. Finally,

accuracy scores, per user, are averaged over the 10 runs.

Of the remaining 90% of training users, a collaborative filtering approach was
repeatedly re-run using 10% of these users and 10% of the rated items for each
user — so that an average MAE over the recommendations for the removed items
can be calculated for each user (comparing actual with predicted scores). For any

given user in the training set, their user ID — along with their average MAE value

An Analysis of Collaborative Filtering 88
Datasets



6.4 Fvaluation: Testing the Rules

and the eight aforementioned features (from Section 6.3.1.1) — comprise the user

tuples in the training dataset.

6.3.1.4 Machine Learning Technique

All the data in this experiment is numeric. The target variable (the MAE) is
known for each training tuple and therefore a supervised machine learning ap-
proach is suited to the problem. Often, a neural network approach would be used
in the classification scenario where labelled numeric data exists. However, we
wish to understand the underlying patterns and correlations between the feature
values and precision scores. We therefore require a technique which will produce
one or more rules. The technique used is regression trees, which are similar to
ordinary decision trees except they can be used with numeric data [234]. The
regression tree used is the model tree inducer M5 [189]. The machine learning
package WEKA is used which has an implementation of M5 [234].

The results of performing feature selection, where some subset of features are
selected prior to running the MJ5' approach, is also tested. A feature selection
stage typically reduces the complexity of the rules produced, that is, the number
of features used in the rules. Due to feature selection, the most predictive features
with respect to the class (MAE) are chosen. This usually results in simpler rules.
As the rules are to be used either prior to, or in conjunction with, producing
recommendations, the quicker a performance prediction measure can be generated
the better — and thus simpler rules are generally better if the accuracy of the

rules with feature selection are comparable to the rules without feature selection.

6.4 Evaluation: Testing the Rules

To test whether the rules produced by the machine learning technique are predic-
tive of system performance, the holdout set of test users is used. Figure 6.3 gives
an overview of the steps involved in the comparison of the actual and predicted
performance for the holdout set of test users. This test is repeated twice - once
for the predicted performance with the rule potentially using all eight features and
once for the predicted performance with the rule learned after feature selection

has taken place.

Firstly a predicted MAE based on the feature values and the learned rules are
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Figure 6.3: Steps to test the performance prediction rules.

produced for each user in the holdout set. These are the predicted MAE values,
with one prediction value per user. As described previously, a collaborative fil-
tering approach is used to produce predictions for a set of items for the same
users and a MAE score is calculated based on the ratings the user has given the
items versus the ratings the collaborative filtering approach produced. These
are the actual MAEs per user in the holdout set. Thus there are two lists per
dataset, where each list contains a user ID and an associated MAE score: the
actual accuracy list, where the MAE scores are based on the average of 10 runs
of the collaborative filtering system; and the predicted accuracy list, where the
MAE scores are based on the learned rules and feature values. Both lists —
actual MAEs and predicted MAEs — are sorted by user ID and are compared to
ascertain how accurate the performance prediction approach is. This comparison

is done in three ways:

1. Finding the Pearson correlation between the two lists. To ascertain if this
correlation value is meaningful and statistically significant, two tests are

performed:

(a) Plot the actual and predicted MAE scores to show how well, or not,
the values are correlated. A regression line is calculated by finding
the linear equation that best fits the data by having the smallest over-
all distance from the regression line to the actual and predicted data
points. A straight regression line indicates a linear trend between the
actual and predicted values. How well the equation fits the data is
represented by the R? score, which indicates how close all the points

are to the regression equation.

(b) T-tests (with p < 0.05) are performed between the actual and pre-

dicted lists to ascertain if the correlation value obtained is statistically
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Table 6.1: Average MAEs for each dataset: Pearson Correlation Approach (10/90
Split).

Dataset avg MAE
MovieLens | 0.733

last. fm 0.699
bookcrossing | 1.529
Epinions 0.9

significant or not. If p < 0.05 is found for a pair of lists, this indicates
that the probability of obtaining the calculated correlation coefficient
by chance is less than 5%.

2. Finding the MAE between the two lists, where a lower MAE will indicate
a smaller difference between the actual and predicted scores. This approach

is a quite strict comparison of both lists as it penalises small variations in

MAE values.

3. Dividing the actual MAE list into two sets, based on the average MAE
(avgmae) for the dataset (as previously listed in Chapter 3 and repeated in
Table 6.1). All values below this threshold (i.e., < avgmae) are considered
as cases where the system returned good results. All values at, or above, the
threshold are considered as cases where the system returned poor results.
The idea is to compare the level of agreement between the actual scores
in both sets with the corresponding predicted scores. This approach does
not penalise small variations in MAE (apart from small variations at the
threshold value) and thus gives a less strict comparison of the actual and
predicted lists in terms of the percentage of good results predicted correctly

and the percentage of poor results predicted correctly.

6.5 Results

6.5.1 MovieLens

For the MovieLens dataset, using the training data, the same rule is found with

and without feature selection:

mae = 1.176 x stdev — 0.4696 x sim30neighs + 0.6233 (6.4)
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where stdev is the standard deviation of the user’s ratings and sim30neighs is the
average similarity to the top closest 30 neighbours. There are 188 test users in the
holdout test set for the MovieLens dataset. With these users, actual MAEs are
found by producing recommendations for the user’s test items using the standard
collaborative filtering testing scenario. Predicted MAEs are found using the rule
learned (6.4). The two lists of predicted and actual MAEs are compared. The

results from the three evaluation scenarios are:

e The Pearson correlation of the two lists is 0.7573, showing a high positive

correlation between the actual and predicted accuracy scores.

o The MAE of the two lists is 0.0896 which shows a very low error between

the actual and predicted accuracy scores.

o Taking the threshold between poor and good recommendations to be the
best average found with the dataset, 0.733 (from Table 6.1), the percentage
of accuracy scores predicted correctly as good (with MAE scores < 0.733) is
83%. This can be explained as follows: in the holdout set of 188 test users,
100 test users have an actual MAE value below the average MAE of 0.733.
Using the rule learned, the prediction for 83% of these 100 users is a MAE
value less than 0.733. The percentage of accuracy scores predicted correctly
as poor (>= 0.733) is 81.6%. This indicates that, for a high percentage of

the test users (82%), performance was predicted correctly as good or poor.

With respect to the significance of the Pearson correlation result, the Pearson
correlation value of 0.7573 was shown to be statistically significant, with p < 0.05.
The scatter plot in Figure 6.4 indicates that there is a reasonably strong fit
between the actual and predicted accuracy scores with R? = 0.5735. The low R?
score may be due to the existence of “outliers”, that is, points that are not close
to the R? regression line. These outliers are clearly visible on the scatter plot. In

particular two extreme outliers can be seen at actual MAE of 0.759 and predicted

MAE of 1.62 and at actual MAE of 0.82 and predicted MAE of 1.45.

6.5.2 last.fm

For the last. fm dataset, two different rules are chosen with and without feature

selection. Without a feature selection stage, all eight features are used in the
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Figure 6.4: MovieLens predicted vs actual MAE values.

following rule:

if stdev > 0.023 and stdev <= 0.052 :

mae = —0.2107 x numRatings + 0.0835 x avgRating
+5.7989 x stdev — 0.0008 * numNeighs
+0.1236 * stm30neighs — 0.0645 * popltems
+0.2374 % likedItems + 0.1269 x t fidf + 0.2486

elseif stdev <= 0.037 :

mae = —0.7632 x numRatings + 0.0954 x avgRating
+12.4511 * stdev + 0.0717 x numNeighs
+0.0118 * stm30neighs — 0.1185 * popltems
+0.0055 * likedItems + 0.5257 * t fidf + 0.4655

else :

mae = 0.2352 x avgRating + 4.019 x stdev — 0.3319 x numNeighs
+0.4502 * stm30neighs + 0.4589 x likedItems
+0.1465 * t fidf + 0.0673

After feature selection has taken place, only the features of stdev and likedItems
(how well-liked by all users are the items rated by the current user) appear in the

resulting rule which otherwise is quite similar to the rule with all features:

1f stdev > 0.023 and stdev <= 0.052 :

mae = 5.9468 x stdev + 0.2964 * likedItems + 0.1699
elseif stdev <= 0.037 :

mae = 11.8169 x stdev + 0.0097 x likedItems + 0.2697
elserf stdev <= 0.102 :

mae = 5.3223 x stdev + 0.4547 x likedItems + 0.0848

(6.6)

else :
mae = 3.7526 * stdev + 0.7158
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There are 154 test users in the holdout test set for the last.fm dataset. Using
these withheld test users, actual MAEs are found using the standard collaborative
filtering testing scenario and predicted MAEs are found using both rules (6.5 and
6.6). The results of comparing the actual and predicted MAEs using the three

evaluation scenarios are:

e The Pearson correlation of the two lists with Rule 6.5 is 0.9396 and with
Rule 6.6 is 0.9392, showing a high positive correlation between the actual
and predicted accuracy scores for both rules with both correlations shown
to be statistically significant (with p < 0.05). Figure 6.5 and Figure 6.6
both illustrate a very good fit between the actual and predicted values with
high R? values of 0.8829 and 0.8822 respectively.

e The MAE of the two lists is 0.0782 with Rule 6.5 and 0.07815 with Rule
6.6, which shows very low errors between the actual and predicted accuracy

scores.

o The average MAE, from Table 6.1, is 0.699 and this is taken as the threshold
between poor and good recommendations. Using this, and with Rule 6.5 and
Rule 6.6, the percentage of test users whose accuracy scores are correctly
predicted as good is 94.5%. The percentage of test users whose accuracy
scores are correctly predicted as poor is 73.33% using Rule 6.5 and 68.89%
using Rule 6.6 (feature selection). Therefore, for this dataset, performance
can be predicted correctly as good or poor for a high percentage of the test
users (88% using Rule 6.5 and 87% using Rule 6.6 (feature selection)).
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Figure 6.5: last.fm predicted (all features) vs actual MAE values.
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Figure 6.6: last.fm predicted (with feature selection) vs actual MAE values.

6.5.3 bookcrossing

For the bookcrossing dataset, with no feature selection, the rule learned is:

mae = —0.6619 x avgRating 4+ 3.6863 * stdev (6.7)
—1.0334 x stm30neighs 4+ 1.9451
After a feature selection stage, the rule learned is similar but without the
avgRating feature and with the feature of numNeighs instead of sim30neighs,
and is:
mae = 3.8997 x stdev — 2.5184 x numNeighs + 1.1465 (6.8)

Using the withheld 440 bookcrossing test users, and finding the actual and pre-
dicted MAE scores as before, the results of comparing the actual and predicted

MAESs using the three evaluation scenarios are:

e The Pearson correlation between the two lists of actual and predicted MAE
scores is 0.1745 and 0.1648 using Rule 6.7 and Rule 6.8 respectively, which
is a very low positive correlation and is statistically significant. The scatter
plots for the actual and predicted values are shown in Figure 6.7 for Rule
6.7 (all features) and in Figure 6.8 for Rule 6.8 (with feature selection). It
can be seen that, in both cases, there is a very poor fit with most of the
data, which is reflected by the poor R? scores of 0.0305 and 0.0272.

o The MAE of the two lists is 0.89 and 0.8857 using Rule 6.7 and Rule 6.8
respectively, which is a high error, denoting large inaccuracies between the

two lists.

» Using the best average MAE found for the dataset from Table 6.1 (1.529),
the percentage correctly identified as good is 46.13% using Rule 6.7 and
48.71% using Rule 6.8. The percentage correctly identified as poor is 71.15%
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using Rule 6.7 and 65.38% using Rule 6.8. Given that there are so many

high MAE values, it is easier to be “correct” when guessing that the rec-

ommendation will be poor and so this result is not as positive as it may

seern.

Overall, the evaluation demonstrates that poor predictive rules were learned for
the bookcrossing dataset.
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Figure 6.8: bookcrossing predicted (with feature selection) vs actual MAE values.
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6.5.4 Epinions

For the Epinions dataset, without a feature selection stage, all eight features are

included in the rule chosen:

if numNeighs <= 0.001 :

mae =
—5.7112 x numRatings — 0.0007 x avgRating + 1.0566 * stdev
40.0025 x numNeighs — 0.0032 x stm30netghs — 1.5156 * popltems
+0.0009 * likedItems + 25.6855 * t fidf 4 0.9547

else :

mae =

0.732 x numRatings — 0.2741 x avgRating + 0.9879 * stdev
—0.6722 x sim30neighs — 0.4284 % popltems + 0.5871 x likedItems

—0.7109 * ¢ fidf + 0.3741
(6.9)

After a feature selection stage, the rule learned only involves the two features of

stdev and stm30neighs and is:

1f sim30neighs <= 0.088 :
mae = 1.0144 x stdev — 0.0029 % stm30netghs + 0.7543

(6.10)
else :

mae = 0.9192 x stdev — 0.3447 x sim30neighs + 0.5926

There are 239 test users in the holdout test set for the Epinions dataset. The
results of comparing the actual and predicted MAEs using the three evaluation

scenarios are:

o The Pearson correlations of the lists are 0.2017 when using Rule 6.9 (all
features) and 0.2958 when using Rule 6.10 (feature selection), showing a
weak positive correlation between the actual and predicted results. This is
highlighted in the corresponding scatter plots in Figure 6.9 and Figure 6.10
and with the R? values of 0.0407 and 0.0875. Both correlation results are

statistically significant.

o The average difference of the MAE scores between the two lists is 0.5012
(Rule 6.9) and 0.4786 (Rule 6.10).

o The average MAE accuracy found for the Epinions dataset (Table 6.1) is
0.9. The percentage correctly identified as good is low using both Rule 6.9
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(29.22%) and Rule 6.10 (29.87%). The percentage correctly identified as
poor is 80% using both Rule 6.9 and Rule 6.10.

Thus, in general, poor results were found for the Epinions dataset, demonstrating

that poor predictive rules were learned for the Epinions dataset.
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Figure 6.10: Epinions predicted (with feature selection) vs actual MAE values.

6.5.5 Performance Prediction Scenario

Given the results outlined in the previous sections we can be confident of good
performance prediction results in at least two of the datasets (MovieLens and
last. fm) for both good and poor performance prediction. Although not tested in
this work, where good results exist, the following user scenario would be a viable

approach to performance prediction:

1. Perform the pre-processing steps per dataset to learn rules by extracting
the user feature values, by finding the average MAE per train user and per

dataset and by creating the training tuples.
2. Learn the performance prediction rule.

3. Per user, use the learned rule and feature values for that user to produce a

performance prediction score.
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4. The performance prediction score can be returned to the user with an expla-
nation of what it means (e.g., a lower MAE score is better) or a prediction
of good or poor performance can be given. This can be found by comparing
the predicted MAE value to the average MAE value for the dataset. As
in the evaluation scenario, if the predicted MAE is lower than the average
MAE then a prediction of good can be returned; if the predicted MAE is
equal to or higher than the average MAE, then a prediction of poor can be

returned.

6.6 Discussion of Results

Given the differences in the dataset characteristics, it is not surprising that there
is no full agreement in terms of the features selected and the rules found for
each dataset. However there are some similar trends in the features selected
and some of the same features are selected across datasets. In particular, the
standard deviation feature (stdev) is part of the rule for all datasets (with and
without feature selection) and the sim30neighs feature is part of five rules. For
two of the datasets, last.fm and Epinions, all eight features were part of the
rule (without a feature selection stage). For many of the other rules, only two or
three features were chosen. With feature selection, for all four dataset rules, only
two features were chosen per rule and these features were two of the following
four: stdev for all datasets and in addition, stm30neighs for the MovieLens and
Epinions dataset; likedItems for the last.fm dataset and numNeighs for the

bookcrossing dataset.

Results for both the MovieLens and last.fm datasets are very encouraging,
showing very good performance across all three evaluation methods. For the two
strictest evaluations, high correlations and low errors were found. The results for
the bookcrossing dataset were very poor in comparison to this. For the Epinions
dataset, the positive correlations were better than in the bookcrossing case but
overall a disappointing level of accuracy was obtained with the rules learned for
this dataset.
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6.7 Conclusions, Contributions and Future
Work

The experiment described in this chapter views an aspect of collaborative filtering
quality in terms of a performance prediction approach. The approach outlined
extracts information (feature values) which describe the user in the dataset. The
user feature values are used, in conjunction with a MAE score, to learn rules.
These rules, with the associated feature values, can be used to predict the per-
formance of the system for a user, that is, how likely it is that either good or bad
recommendations be returned to a particular user. As in the work in previous
chapters, four datasets were investigated: MowvieLens, last.fm, bookcrossing,

and Epinions.

Results show some performance prediction possibilities for both the MovieLens
and last.fm datasets — with high correlations and low errors and good per-
centage accuracies for good and poor predictions, and all statistically significant
correlations. However, the opposite was true for the other two datasets, where

weak correlations and high errors were noticeable.

The contributions of the work described in this chapter are in the development of a
machine learning performance prediction approach per user and in demonstrating
good accuracy with this approach for the MovieLens and last. fm datasets. The
work described in the next chapter continues this work but learns rules per dataset

views and compares the view rules with the rules learned for the full datasets.

An interesting avenue for future research is to analyse the stability of the good
performance prediction rules as the dataset grows (for example, when new ratings
are added) for the MovieLens and last. fm datasets. For the other two datasets,
where poor rules were learned, a potential avenue for future work is to explore

other features that may lead to better rules.
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Chapter 7

A Machine Learning-based
Approach to Performance

Prediction with Dataset Views

7.1 Introduction

This chapter will present further experiments on learning the features per view
(and per dataset) that can potentially provide a better measure of predictive
performance. Specifically, the goal is to extract sets of features per view and
learn, using a decision tree approach, which features are most useful for predicting
the accuracy of the results. As presented in previous chapters, both user ratings

views and popular item views are considered.

Firstly, motivations are presented in Section 7.2. A brief summary of the method-
ology is given in Section 7.3, which is mostly unchanged from that used in the pre-
vious chapter when considering the approach with each of the four full datasets.
Results are presented for the user rating views in Section 7.4, followed by results
for the popular item views in Section 7.5. Section 7.6 presents a discussion of the

results and conclusions are presented in Section 7.7.

101



7. A MACHINE LEARNING-BASED APPROACH TO PERFORMANCE PREDICTION WITH
DATASET VIEWS

7.2 Motivations and Overview

As outlined in the previous chapter, the same sets of experiments were performed
on each of the four full datasets under consideration. Some differences in results
were noted across the datasets and the approach was shown to work well for two of
the four datasets (MovieLens and last. fm datasets). Two weaknesses with these
experiments were identified as (1) the comparison is not “like with like” across
datasets and (2) characteristics of the full dataset may hide some of the potential
of the approach. The idea of “dataset views”, presented in Chapter 3 and Chapter
5, is revisited in this chapter to test if a better performance prediction approach
can be found when considering dataset views rather than the full datasets. In
addition, outcomes can be compared across similar dataset views and trends in

the rules learned, per dataset view, may be apparent.

In the dataset view approach, features are extracted from each dataset view and
a machine learning approach uses these features to learn which, if any, features
can provide a measure of predictive performance. The motivation is that, for a
particular user, it can be ascertained which view best matches the user profile
and this information can then be employed to extract the features of that user

which can be used to predict performance before recommendation takes place.

As presented in Chapter 3, and defined in Table 3.10 and Table 3.11, low, medium

and high views are considered for both user rating views and popular item views.

7.3 Methodology Review

In this experiment eight features are extracted for a subset of users for each of
the dataset views. These features are the same features that were used in the

previous chapter for each of the full datasets and are summarised in Table 7.1.

Data from a view is split into a testing and a training set. The training set is

used to train a machine learning approach and contains:
e userlD.
« normalised values of the eight feature values for each user.

o average MAE found when predictions are made, by a collaborative filtering

approach, for some of the items the user rated.
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Table 7.1: Features extracted per Dataset View.

Feature Feature Description

Name

numRatings | The number of ratings a user has given.

avgRating The average rating a user has given.

stdev The standard deviation of the average rating a user has given.

numNeighs | The number of neighbours a user has (above a threshold of
0.1).

stm30neighs | The average similarity of a user to the top closest 30 neigh-
bours.

popltems The popularity of the items a user has rated (which is based
on the number of ratings each item has received).

likedItems How well-liked, by all users, are the items rated by a current
user.

tfidf The importance, or influence, of a user in a dataset (using a
formula based on the Information Retrieval formula of tfidf)
as defined previously in Chapter 6.

The machine learning approach, as before, is a M5 regression tree. Rules are
learned from the training set, with and without a feature selection stage. In the
feature selection stage the best set of features are first extracted from the dataset
and only those selected features are used to generate a rule. For comparison
purposes, the rule previously learned for the entire dataset is used to highlight if
there is any merit in learning rules per view over learning one rule for the entire

dataset. Therefore, per view, there are three rules evaluated:

1. view rule which has been learned with potentially all eight features from

the view training data.

2. view rule which has been learned after a feature selection stage has been

performed on the view training data (i.e., a subset of the eight features are
used).

3. full dataset rule with feature selection, which has been learned with training

data from the entire dataset (and reported in the previous chapter).

All rules (full dataset and view rules) are listed fully in Appendix A — and so
many will be omitted here for brevity. For the user rating views, the rules, with
feature selection, will be listed for all but the last.fm user rating views. For
the popular item views, only the rules, with feature selection, for the Epinions

dataset are listed in the chapter.

Each of the three rules are evaluated using a holdout test set which contains
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just the data for each view. In the previous chapter, the full dataset rule was
evaluated with the holdout set taken from the full dataset. Here, the full dataset
rule with feature selection will be evaluated with the holdout set taken only
from the current view. Per view, the holdout test data contains a user ID, the
normalised values of the eight feature values for that user and an actual MAE
associated with the user. The actual MAE score is calculated using a standard
collaborative filtering approach. There are approximately 100 users in each of
the holdout sets per view. The holdout set is used as input to each of the rules
produced by the M5 regression tree and the output of the rule is a MAE value.
The MAE value calculated by the rule will be referred to as the predicted MAE

value.
Four lists of MAE scores are calculated with the holdout set which comprise:

1. actual MAE values (from the holdout set), using the standard collaborative
filtering approach.

2. predicted MAE values using the view rule which has been learned with
potentially all eight features from the view training data (referred to as No

Feature Selection).

3. predicted MAE values using the view rule which has been learned after a
feature selection stage has been performed, and using the view training data

(referred to as Feature Selection).

4. predicted MAFE values using the full dataset rule (with feature selection)
which has been learned with training data from the entire dataset (Chapter
6).

These results (lists of MAE scores) are evaluated as follows:

1. the correlations between each of the three rule-based predicted MAE values
and the actual MAE values are found using the Pearson correlation formula.
If the Pearson correlation value is positive, then the higher the Pearson

correlation value the more positive the correlation is.

2. we calculate the average of the difference between the actual and predicted
MAE values for each of the three rule-based predictions and the actual
predictions. The lower the average MAE value the smaller the difference
between the actual and predicted MAE values. This evaluation is quite strict
in looking, as it does, for a small (or no) difference, between the actual and

predicted errors.
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As performed in Chapter 6, to measure the significance of the results T-tests (with
p < 0.05) are performed between the actual and predicted MAE lists to ascertain
if the correlation and average MAE values obtained are statistically significant or
not. If p < 0.05 is found for a pair of lists this indicates that the probability of

obtaining the calculated values by chance is less than 5%.

Scatter plots and regression lines, with R? values superimposed, were used in
the evaluation of the results in Chapter 6. The R? value is calculated from an
equation that best fits the data by having the smallest overall distance from the
regression line to the actual and predicted data points. Therefore, how well the
equation fits the data can be represented by the R? value which indicates how
close all the points are to the regression equation. Rather than generating a very
large number of scatter plots, the R? values are instead summarised in tables
for each set of results. The scatter plot of the best performing rule, per view, is

shown in Appendix B.

In the previous chapter a third evaluation was performed with respect to the
percentage of good and poor recommendations that were predicted correctly. As
seen there, the Pearson correlation and average MAE evaluation measures never
gave a better indication of performance than the third evaluation and so, given
the number of results to evaluate, it was not deemed necessary to include this

third evaluation of the view results.
There are three main aspects of the results which will be commented on:

e The best performing rule, per view, based on the Pearson correlation values,

average MAE values, T-test results and R? values.

e The difference in performance of the rules learned with and without feature

selection.

o The difference in the results using the view rule to the results when using
the full dataset rule (from Chapter 6).
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7.4 Results: Predicting Performance for the

User Rating Views

7.4.1 MovieLens User Rating Views

For the MovieLens dataset and the low user rating view, an almost identical
rule to that learned for the full dataset is found, with the features stdev and

stm30neighs selected. The rule for the full dataset is:

mae = 1.176 * stdev — 0.4696 * sim30neighs + 0.6233. (7.1)

The rule for the low user rating view (with and without feature selection) is:

mae = 0.9649 * stdev — 0.5272 x sim30neighs + 0.7575. (7.2)

Similarly, the rule learned for the medium user rating view (after feature selec-
tion) is similar to that learned for the full dataset but with the addition of the

avgRating feature:

mae = —0.4131xavgRating+0.8057xstdev—0.4751xsim30neighs+1.0403. (7.3)

For the high user rating view, the rule (after feature selection) includes the
stdev feature, as for the full dataset rule, but a different neighbour feature, that
is, the numNeighs feature (the number of neighbours) is used instead of the

sim30neighs feature (the similarity to the top 30 neighbours):

mae = 0.8282 * stdev — 0.5826 * numNeighs + 0.8722. (7.4)

Table 7.2, 7.3 and 7.4 presents the results for the MovielLens dataset views,
comparing the Pearson correlation of the MAE lists (actual and predicted lists
of MAESs), the average mean absolute error (MAE) difference between the MAE
lists, and the R? values across the predicted and actual lists of errors. Also shown
is the Pearson correlation, mean absolute error and R? values when the rule for
the entire dataset is applied to the same test users of each view. In addition,
the results from Chapter 6, for the full dataset rule are repeated in the tables for

comparison. Statistically significant results (found using T-tests with p < 0.05)
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are highlighted in bold.

Table 7.2: Learning MovieLens Features for User Rating Views: Pearson Corre-
lation comparison.

View No Foa ti{;le forFZ;ine Rule for Full Dataset
Selection Selection

low 0.76184 0.76184 0.7677

medium 0.9092 0.8987 0.9021

high 0.9599 0.9062 0.9364

full dataset | n/a n/a 0.757

Table 7.3: Learning MovieLens Features for User Rating Views: MAE compar-

ison.
View No Fea ti{;le forF\e[;iflvre Rule for Full Dataset
Selection Selection
low 0.1220 0.1220 0.1367
medium 0.0586 0.0618 0.0867
high 0.0317 0.0474 0.1044
full dataset | n/a n/a 0.089

Table 7.4: Learning MovieLens Features for User Rating Views: R? comparison.

View No Foa tlli_{rl(lele forFZ;ine Rule for Full Dataset
Selection Selection

low 0.5804 0.5804 0.5893

medium 0.8266 0.8076 0.8139

high 0.9213 0.8211 0.8768

full dataset | n/a n/a 0.5735

7.4.1.1 Best Performing Rule

It can be seen from Tables 7.2, 7.3 and 7.4 that results overall for all rules are
mostly good, with high correlations between the predicted and actual errors, low

average MAE errors and, for all but the low user rating view, high R? values.

The low user rating view has the worst performance with lower correlations,
values and higher average MAE errors than the other two views, these being

statistically significant.

The results for the full dataset rule, per view, are also statistically significant;

which suggests that the full dataset rule is a good rule for all views. Section B.1
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in Appendix B shows the scatter plots of the results of the full dataset rule with

each of the three views.

Although, not shown to be statistically significant, the good results for the
medium, and in particular the high, user rating views, without feature selec-
tion, suggest that these rules are good rules which give good performance for

these views.

7.4.1.2 Rules with and without Feature Selection

Tables A.1, A.2 and A.3 in Appendix A lists all the MovieLens rules with and
without feature selection. As mentioned previously, the same rule was learned
for the low user rating view, with and without feature selection. For the two
other views, the rules without feature selection contain more features and results
show that these rules, without a feature selection stage, perform better in all

evaluations than the rules with a feature selection stage.

7.4.1.3 View Results versus Full Dataset Results

Comparing the actual MAE values and predicted MAE values using the full
dataset rule for all three views gives very good results for the medium and high
user rating views and good, but less accurate, results for the low user rating view.
All of these results are statistically significant (with p < 0.05). This contrasts
with the results found with the full dataset rule and a holdout set taken from the
full dataset where (1) results are not statistically significant and (2) results are

more comparable to those found for the low user rating view.

It seems that, by moving the low user rating data into its own view (the low user
rating view), this results in better performance for the other two views (using
either the full dataset rule or the view rule). Overall, for the MovieLens dataset,
as the rule for the full dataset performs comparably well on all views, there does

not seem to be any advantage in learning rules per user rating view.

7.4.2 last.fm User Rating Views

For the last.fm dataset, the full rule for the dataset involves the two features
stdev and likedItems (see Appendix A for the rule). Using feature selection,

all three views include the stdev feature but otherwise there is variation across
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the views with respect to the features used. For the low user rating view, with
feature selection, the additional features of numRatings and avgRating are also

included:

mae = —0.1843xnum Ratings+0.2024xavg Rating+1.6805%stdev+0.6954. (7.5)

For the medium user rating view, in addition to the stdev feature, the features of
numNeighs and likedItems are included in the rule when using feature selection.
For the high user rating view, in addition to the stdev feature, the features of

likedItems and tfidf are included in the rule when using feature selection (see

Table A.5 and Table A.6 in Appendix A).

Table 7.5, Table 7.6 and Table 7.7 outline the results for the last.fm dataset
using the Pearson correlation, average mean absolute error (MAE) difference,
and R? values across the predicted and actual lists of errors. Also shown is the
Pearson correlation, mean absolute error and R? values when the full dataset rule
is applied to the same users in the holdout set of each view. As before, the results
from the previous Chapter, for the full dataset rule, are repeated in the tables

for comparison. Statistically significant results (found with T-tests for p < 0.05)
are highlighted in bold.

Table 7.5: Learning last. fm Features for User Rating Views: Pearson Correlation
comparison.

View No Foa tlljrl:ale forF\e/;(:lVre Rule for Full Dataset
Selection Selection

low 0.7140 0.7626 0.8100

medium 0.8938 0.9235 0.9222

high 0.3125 0.9606 0.9641

full dataset | n/a n/a 0.9392

Table 7.6: Learning last. fm Features for User Rating Views: MAE comparison.

View No Feati{rl:ele forF\(:;:lVre Rule for Full Dataset
Selection Selection
low 0.1682 0.1616 0.2802
medium 0.0856 0.0764 0.0668
high 0.1241 0.0496 0.3179
full dataset | n/a n/a 0.0777
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Table 7.7: Learning last. fm Features for User Rating Views: R? comparison.

View No Featlil;le forFZell(:lvre Rule for Full Dataset
Selection Selection

low 0.5098 0.5816 0.656

medium 0.7989 0.8528 0.8504

high 0.0976 0.9227 0.9295

full dataset | n/a n/a 0.8822

7.4.2.1 Best Performing Rule

In general, across nearly all views and rules, good (statistically significant) results

are seen with high correlations, low average MAE errors and high R? values.

For the low user rating view, the full dataset rule performs best for this view,
even though the MAE error is higher for the full dataset rule than for the view

rules.

For the medium user rating view, the view rule with feature selection does the
best for this view, although the full dataset rule performs almost as well. Similar
to this, for the high user rating view, both the view rule with feature selection, and
the full dataset rule, do very well, with the full dataset rule showing better Pearson
correlation and R? results. However the MAE value is quite high (0.3179) which
suggests that the view rule would be better in this case, having a comparable

Pearson correlation value and R? value.

In summary, for the last. fm user rating views: for the low user rating view, the
full dataset rule performs best; for the medium and high user rating views, the
view rule with feature selection performs best. The scatter plots of the output

for these three best-performing rules are shown in Section B.2 in Appendix B.

7.4.2.2 Rules with and without Feature Selection

For the high user rating view, the view rule without feature selection does par-
ticularly badly (with poor correlation, MAE and R? values). It seems that, in
this case, the rule learned using six features (all but the features of numNeighs
and likedItems) is not very good at predicting performance. In comparison, the
view rule with feature selection performs very well for this view (0.9606 Pearson
correlation value with an R? value of 0.9227). In fact for the three views, the view

rule with feature selection does better than the rule without feature selection in
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all cases.

7.4.2.3 View Results versus Full Dataset Results

Using a holdout set taken randomly from the full dataset, and the rule learned
for the full dataset (with feature selection), it was seen in the previous chapter
that the Pearson correlation value between the results of the predicted and actual
errors was 0.9392, the R? value was 0.8822, and the average MAE was 0.0776.
Comparing this correlation with the results from the view rules, we can see that
only the high user rating view rule with feature selection does better than this

— and does better across the MAE and R? measures.

Similar to the MovieLens results, we can summarise that the rule learned for
the full dataset does very well on all user rating views. However, unlike the
MovieLens results, there is a much clearer advantage in learning rules for the

high user rating view.

7.4.3 bookcrossing User Rating Views

For the bookcrossing dataset, the features in the full dataset rule are stdev and

numNetghs with the rule:

mae = 3.8997 * stdev — 2.5184 x numNeighs + 1.1465. (7.6)

The rules learned, with feature selection, are very simple with only a few features.
The rule for the low user rating view after a feature selection stage has occurred

is:

mae = 2.2468 * stdev + 2.582 * popltems + 0.9153 x t fidf + 0.5574. (7.7)

For the medium user rating view (after a feature selection stage), the rule learned

has only one feature:

mae = 2.656 x stdev + 0.9346. (7.8)

For the high user rating view (after a feature selection stage), two features are
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selected — stdev and sim30neighs — in the rule:

mae = 1.4905 x stdev — 0.7754 * sim30neighs + 1.7113. (7.9)

Tables 7.8, 7.9 and 7.10 present the results of the user rating views from the
bookcrossing dataset and the results when the rule for the entire dataset is applied
to the same holdout set of test users for each view. The results from Chapter 6,
for the full dataset rule (with feature selection) and tested with the full dataset,
are repeated in the tables to aid the comparison. Statistically significant results
are highlighted in bold (found with T-tests with p < 0.05).

7.4.3.1 Best Performing Rule

It may be recalled from the previous chapter — and can be seen in the Tables
here — that, with the full dataset rule with feature selection, the results for the
bookcrossing dataset are very poor. The results here show poor performance per
view, with both the view and full dataset rule, and all results are statistically
significant. In fact, the rule for the full dataset does particularly badly with the
medium and high user rating views, with negative correlations in both cases.
However, some results are better than those seen previously for the bookcrossing
dataset: the full dataset rule with the low user rating view data and the view

rule (with and without feature selection) for the medium user rating view.

For the low user rating view, very weak positive correlations, very low R? values
and high MAEs are noticeable.

The best results for the medium user rating view is given by the view rule with
feature selection. Very similar results are given by both view rules for the high
user rating view, with a marginal advantage in correlation values seen for the
view rule without feature selection. Scatter plots for the best performing rules
for all three user rating views can be found in Section B.3 in Appendix B and

show the existence of many outliers.

In summary, two rules show some potential in terms of good performance (corre-
lations > 0.2) — the full dataset rule with the low user rating view and the view

rule (with feature selection) for the medium user rating view.
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7.4.3.2 Rules with and without Feature Selection

In general, the results of the rules learned per view, with and without feature

selection, are comparable across all evaluation measures.

For the low user rating view, the view rule, with and without feature selection,
show extremely weak positive correlations, very low R? values and high MAEs.
For the medium user rating view, the view rule with feature selection provides
optimal results (correlation of 0.2861). The performance of the view rules for the
high user rating view, while not as poor as the low user rating view, are still
worse than that found with the full dataset rule evaluated on the full dataset
(0.1648 correlation).

7.4.3.3 View Results versus Full Dataset Results

The rule learned, with feature selection, for the entire dataset did not perform
well in the evaluations on the holdout set taken from the full dataset, with a
Pearson correlation of 0.1648, an R? value of 0.0272 and a MAE value of 0.8901.
It can be seen from the tables of results, that it is only when the full dataset
rule is used for the holdout test users in the low user rating view that a better
correlation value and R? value is achieved, though not a better MAE value. It
can be seen that the rule for the full dataset performed very badly with the
medium and high user rating views. Thus, there is a clear advantage, for both
the medium and high user rating views, in learning rules per view rather than

using the full dataset rule for these views.

Table 7.8: Learning bookcrossing Features for User Rating Views: Pearson Cor-
relation comparison.

View No Foa tlfl{rl;le forFZ:zflvre Rule for Full Dataset
Selection Selection
low 0.0710 0.0659 0.2076
medium 0.2660 0.2861 -0.1329
high 0.1083 0.1020 -0.0659
full dataset | n/a n/a 0.1648
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Table 7.9: Learning bookcrossing Features for User Rating Views: MAE com-
parison.

View No Foa ti}ge forFZ:zjlvre Rule for Full Dataset
Selection Selection

low 1.0129 0.9866 0.9674

medium 1.3605 1.3405 1.4462

high 0.8091 0.8090 1.2116

full dataset | n/a n/a 0.8901

Table 7.10: Learning bookcrossing Features for User Rating Views: R? compar-

ison.
View No Foa ti}:e forFZ;iflvre Rule for Full Dataset
Selection Selection
low 0.005 0.0043 0.0431
medium 0.0708 0.0819 0.0177
high 0.0117 0.0104 0.0043
full dataset | n/a n/a 0.0272

7.4.4 Epinions User Rating Views

For the Epinions dataset, the features in the full dataset rule are stdev and

stm30neighs. If sim30neighs <= 0.088 then the rule is:

mae = 1.0144 x stdev — 0.0029 * stm30neighs + 0.7543. (7.10)
Otherwise, the rule is:
mae = 0.9192 x stdev — 0.3447 * sim30neighs + 0.5926. (7.11)

For the low user rating view, the rule with feature selection stage includes the

features of avgRating and stm30neighs:

mae = —1.3555 x avgRating — 1.6249 x sim30neighs + 3.8482.

Similar rules for both the medium and high user rating views are learned, with

the avgRating feature chosen along with the stdev feature. For the medium user

rating view the rule is:

mae = —0.7319 x avgRating + 0.6352 * stdev + 1.2994.
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For the high user rating view, the rule learned is:

mae = —0.3552 x avgRating + 0.7918 * stdev + 0.8502. (7.14)

7.4.4.1 Best Performing Rule

It can be seen from Tables 7.11, 7.12 and 7.13 that the view rules (with and
without feature selection) for the high user rating view gives the best results,

with the best Pearson correlation and R? values seen for the rule with no feature
selection (correlation of 0.507 and R? value of 0.2572).

In contrast, the view rule with feature selection, for the low user rating view, gives
the worst results, with a negative correlation value, the highest average MAE
(0.9631) across the Epinions results and the lowest R? value (0.0012) across the
Epinions results. It should be noted however that the number of users in the
holdout test set was very small for this view (only 24 users) and so the evaluation

results cannot be given too much credence.

For the medium user rating view, the view rule with feature selection gives better

performance than the other two rules.

We can summarise that learning rules for the medium and high user rating views
offers advantages over using the full dataset rule. Also, the high user rating view
gives a very positive result given that the full dataset rule, as tested in Chapter
6, did not give good results for the Epinions dataset (with a correlation value of
0.2958). The scatter plots for the best performing rules are shown in Section B.4
in Appendix B.

7.4.4.2 Rules with and without Feature Selection

It is only for the medium user rating view that the view rule with feature selection
does better than the view rule without feature selection. As discussed already,
for the low user rating view, the view rule with feature selection does extremely
poorly (with a negative correlation between the actual and predicted errors). The
view rule without feature selection for the high user rating view has a better
correlation value and R? value than the view rule with feature selection, but the

opposite is true of the MAE values.

Even though the rule for the high user rating view with feature selection is very

similar to that of the medium user rating view with feature selection, the results
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for the high user rating view are much better — leading again to the conclusion

that it is the characteristics of the data in the view that lead to the improvement.

7.4.4.3 View Results versus Full Dataset Results

The view rules for the high user rating view perform much better than the full
dataset rule on this view. Although the improvement is not as big, this is also true
for the medium user rating view. This large difference, between the performance
of the view rules and the full dataset rule, has not been seen previously with
any of the other dataset’s rating views. One explanation may be identified when
considering the features in each of the rules (see Appendix A) where it can be
seen that, although the full dataset rule contains the sim30neighs feature, this is
only contained in the low user rating view rules. The stm30neighs feature may
be the cause of the poor performance seen for both the full dataset rule and for

the low user rating view rule.

Table 7.11: Learning Epinions Features for User Rating Views: Pearson Corre-
lation comparison.

View No Feati{rl;le forFZ::lvre Rule for Full Dataset
Selection Selection

low 0.2886 -0.0348 0.1971

medium 0.1009 0.2329 0.2021

high 0.5072 0.4955 0.1804

full dataset | n/a n/a 0.2958

Table 7.12: Learning Epinions Features for User Rating Views: MAE Compari-

son.
View Rule for View
No Foature Foature Rule for Full Dataset
Selection Selection
low 0.7599 0.9631 0.3836
medium 0.3918 0.5696 0.7254
high 0.3328 0.2987 0.3790
full dataset | n/a n/a 0.4786
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Table 7.13: Learning Epinions Features for User Rating Views: R? comparison.

View No Foa ti};le forF\ef:lere Rule for Full Dataset
Selection Selection

low 0.0833 0.0012 0.0388

medium 0.0102 0.0542 0.0408

high 0.2572 0.2455 0.0325

fulldataset | n/a n/a 0.0875

7.4.5 User Rating Views Summary

In summary, for the user rating views, some of the main findings were:

« Some features were commonly chosen across many views. The stdev feature
was the most common feature across all rules, being present in 22 of the
24 view rules. The only user rating view rule that did not have the stdev

feature were the two view rules for the low view in the Epinions dataset.

o For some views, the rules learned for that view do better than using the
rule learned for the full dataset — for example the rules for the high user

rating views in both the Epinions and last. fm datasets.

o For the high user rating view in the Epinions dataset, much better results
were found for this view when using the rule learned after a feature selection

stage than for the other two views or found previously for the full dataset.

e In some cases, although the view rules performed well they did not perform
better than the rules learned using the full dataset rule — for example, the

MowvieLens user rating views.

7.5 Results:

Popular Item Views

Predicting Performance for the

Based on training data containing the same sets of features per user, rules are
learned for each popular item view in order to predict performance (via a MAE
score) given the rule and the feature values. For each of the three popular item
views for the four datasets, approximately 100 users are randomly selected as the
holdout set of test users. Predicted and actual MAEs are computed for these test

users using the same methodology as in the previous section.
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7.5.1 MovieLens Popular Item Views

For the MovieLens dataset the rule for the full dataset is (as listed in the previous
section):

mae = 1.176 * stdev — 0.4696 * sim30neighs + 0.6233. (7.15)

For the low popular item view with feature selection, the same two features of
stdev and sim30neighs are included as in the full dataset rule (See Table A.1 in
Appendix A) and these two features are chosen for the view rule (the rule with
and without feature selection was the same) for the low user rating view. The rule
learned for the medium popular item view, with feature selection, uses the stdev
feature again, in addition to the feature of numNeighs. For the high popular
item view, with feature selection, the rule includes the stdev and sim30neighs
features — similar to many of the previous MovieLens view rules — and also

includes the feature likedltems.

7.5.1.1 Best Performing Rule

The Pearson correlation values in Table 7.14 show strong positive correlations
across all rule results. Similarly, high R? values and low MAE errors can be seen

in Tables 7.15 and 7.16 respectively.

The full dataset rule does best with the low and high popular item views, while
the view rule without feature selection, does best for the medium popular item
view. Scatter plots for these best performing rules are shown in Section B.1 in

Appendix B.

In contrast to the user rating views, for the popular item views, the low view has
better performance than the high view, where the opposite was true for the user

rating views.

7.5.1.2 Rules with and without Feature Selection

In two of the three views (low and medium), the view rule without feature se-
lection does better than the view rule with feature selection. From Appendix
A, it can be seen that the low popular item view rule is the largest of all the
MovieLens rules, containing all eight features. The medium popular item view,
while not as complex as the low popular item view, contains six of the eight

possible features.
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The high popular item views, with and without feature selection, are very similar
— the view rule without feature selection has the popltems feature, which is
not present in the view rule with feature selection. The view rule with feature

selection does better than the view rule without feature selection.

7.5.1.3 View Results versus Full Dataset Results

As mentioned, the full dataset rule does better for the low and high popular item
views. When the full dataset rule was used with the holdout set taken from the
full dataset (Chapter 6), a Pearson correlation value of 0.7573, R? value of 0.5735
and MAE value of 0.0896 were found. All but the high popular item view does
better than this, irrespective of the rule used. Again, there is evidence of the full
dataset rule doing better when evaluated on views rather than when evaluated
on the full dataset.

Table 7.14: Learning MovieLens Features for Popular Item Views: Pearson
Correlation comparison.

View No Foa ti};le forFZ;(zlvre Rule for Full Dataset
Selection Selection

low 0.8477 0.8357 0.8606

medium 0.8456 0.8364 0.8316

high 0.6313 0.6927 0.7436

full dataset | n/a n/a 0.757

Table 7.15: Learning MovieLens Features for Popular Item Views: MAE com-

parison.
View No Foa tli{rl;le forF\ef;(zjlvre Rule for Full Dataset
Selection Selection
low 0.0739 0.0737 0.0701
medium 0.0912 0.0944 0.1401
high 0.1127 0.1069 0.1222
full dataset | n/a n/a 0.089

7.5.2 lastf.fm Popular Item Views

As can be seen from the list of rules in Table A.5 and Table A.6 in Appendix
A, the popular item view rules for the medium and high views for the last.fm

dataset use many of the available eight features and have quite long rules. In
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Table 7.16: Learning MovieLens Features for Popular Item Views: R? compari-
son.

View o Featitle forFZ;‘z:’l"re Rule for Full Dataset
Selection Selection

low 0.7185 0.6984 0.7406

medium 0.715 0.6994 0.6915

high 0.3986 0.4798 0.553

full dataset | n/a n/a 0.5735

comparison, the last. fm rule for the full dataset with feature selection, although

more complex, uses only two features: stdev and likedItems.

Tables 7.17, 7.18 and 7.19 present results showing high correlation values, high
R? values and low MAE error values across all of the rules. The results for all

view rules, and the full dataset rule, are statistically significant.

7.5.2.1 Best Performing Rule

In all cases, the full dataset rule gives better performance than the view rules —
although, for the medium popular item view, the difference between the results
for the view rule with feature selection and the full dataset rule is very marginal
(0.8974 vs 0.8999 Pearson correlation). Unlike the MovieLens popular item
views, the best performance is seen for the last.fm high popular item views.
Comparing the popular item view results to the user rating view results for the
last.fm dataset, it can be seen that the former shows less variability across the

results obtained.

7.5.2.2 Rules with and without Feature Selection

For all three views, the view rule with feature selection does better than the view
rule without feature selection. From Appendix A, differences across the view
rules, with and without feature selection, can be noticed — and these differences,

given the results, appear to be significant.

7.5.2.3 View Results versus Full Dataset Results

Although all rules perform well, as already mentioned, the full dataset rule per-

forms best for each of the views, with a marginal improvement over the medium
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popular item view rule with feature selection.

The performance of the full dataset rule, when evaluated on a holdout set taken
randomly from the full dataset, was very good, with a Pearson correlation of
0.9392, R? value of 0.8822 and MAE error of 0.0776. Although some results with
higher R? values and lower errors can be seen in the Tables (the results for five
views show lower MAEs than 0.077) there is no result which has a higher Pearson
correlation value.

Table 7.17: Learning last. fm Features for Popular Item Views: Pearson Corre-
lation comparison.

View No Foa tlfl{rl;le forFZ;(teerre Rule for Full Dataset
Selection Selection

low 0.8427 0.8614 0.8937

medium 0.8846 0.8974 0.8999

high 0.8986 0.9144 0.9212

full dataset | n/a n/a 0.9392

Table 7.18: Learning last. fm Features for Popular Item Views: MAE comparison.

View No Foa tlfl{rl;le forF\e[;(Zflvre Rule for Full Dataset
Selection Selection

low 0.0912 0.0868 0.1205

medium 0.0694 0.0688 0.1516

high 0.0676 0.0655 0.0691

full dataset | n/a n/a 0.0776

Table 7.19: Learning last. fm Features for Popular Item Views: R? comparison.

View No Foa ti};le forFZ;lere Rule for Full Dataset
Selection Selection

low 0.71 0.742 0.7987

medium 0.7825 0.8054 0.8098

high 0.8075 0.8361 0.8486

full dataset | n/a n/a 0.8822

7.5.3 bookcrossing Popular Item Views

For the bookcrossing popular item views, it was not possible to test the high

popular item view due to an insufficient amount of data. The rules for the low
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and medium popular item views can be found in Tables A.7 and A.8 in Appendix
A. For the low popular item view, the rule learned after a feature selection stage is
more complex than the rule without feature selection, although both rules involve

the same three features of avgRating, stdev and sim30neighs.

The rule for the medium popular item view, with and without a feature selection

stage, is the same and involves the features of avgRating and stdev:

mae = —0.934 x avgRating + 1.9012 x stdev + 1.8404. (7.16)

Table 7.20 presents the Pearson correlation results for the bookcrossing popular
item views, where positive correlations are shown, even though correlations are
low. Table 7.22 presents the corresponding R? values which are also low. Table
7.21 presents the MAE results for the low and medium popular item views where,

in all cases, MAEs are high. All results are statistically significant.

A similar pattern of results has already been seen for the three bookcrossing user

rating views.

Table 7.20: Learning bookcrossing Features for Popular Item Views: Pearson
Correlation comparison.

View No Featlljl'l;le forFZ;(zz’re Rule for Full Dataset
Selection Selection

low 0.4367 0.24024 0.4259

medium 0.3616 0.3616 0.2933

high n/a

full dataset | n/a | n/a | 0.1648

Table 7.21: Learning bookcrossing Features for Popular Item Views: MAE com-

parison.
View Rule for View
No Foature Foature Rule for Full Dataset
Selection Selection
low 1.131 1.2635 1.2037
medium 0.7648 0.7648 0.9850
high n/a
full dataset | n/a | n/a 0.89
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Table 7.22: Learning bookcrossing Features for Popular Item Views: R? compar-
ison.

View No Fon ti‘ge forFZ;‘z’l"re Rule for Full Dataset
Selection Selection

low 0.1907 0.0577 0.1814

medium 0.1308 0.1308 0.086

high n/a

full dataset | n/a [ n/a [ 0.0272

7.5.3.1 Best Performing Rule

Although results are not as good as those seen with the MovieLens or last.fm
popular item views, there is better performance seen with the low and medium
views than has been seen for the full dataset. This was also true with the low

and medium user rating views for the bookcrossing dataset.

The best performing rule is seen for the low popular item view rule without
feature selection, which gives a Pearson correlation value of 0.4367 and an R?
value of 0.1907. The full dataset rule evaluated on the low popular item view has

results comparable to this.

The view rule for the medium popular item view, while not performing as well
as this, does better than the full dataset rule evaluated on the medium popular

item view.

We conclude that, for the bookcrossing dataset, across both the user rating view
and popular item view experiments, although results in general are poor, im-

provements can be gained by learning rules for the low and medium views.

7.5.3.2 Rules with and without Feature Selection

As the medium popular item rule is the same with and without feature selection,
the only comparison to make is with the low popular item view. For this view,
the rule without feature selection did the best. As already discussed, this rule is

quite simple, containing the three features: avgRating, stdev and sim30neighs.
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7.5.3.3 View Results versus Full Dataset Results

Unlike many of the previous results, better performance is seen for the view rules
than for the full dataset rule, when the rules are evaluated with a holdout set

from the view dataset.

When the full dataset rule is evaluated with a holdout set from the full dataset
the Pearson correlation value is 0.1648, with an R? value of 0.0272. Both views,
with all rules, do better than this.

7.5.4 Epinions Popular Item Views

For the Epinions popular item views, the rules learned with feature selection
are quite similar across the three views, with the feature of stdev chosen for all
three views (as well as being chosen for the full dataset rule). In addition, the
feature of numRatings is chosen for the medium and high popular item views.
In comparison to the rules for many of the previous popular item views, the

Epinions popular item rules are quite simple.

For example, for the low popular item view, with feature selection, the rule is:

mae = 1.5679 * stdev + 0.511. (7.17)

For the medium popular item view with feature selection, if numRatings <=
0.049 then the rule is:

mae = —8.1707 x numRatings + 1.0088 * stdev + 0.9451. (7.18)
else the rule is:

mae = —0.1673 * numRatings + 1.0876 * stdev + 0.54. (7.19)

For the high popular item view, when using feature selection, the rule is:

mae = —0.608 * numRatings + 0.6557 * stdev + 0.925. (7.20)

Table 7.23, Table 7.24 and Table 7.25 presents the results for the three Epinions

popular item views. For all views, and all rules, the correlation values are positive
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and very similar (all falling within the range [0.3 — 0.39]).

7.5.4.1 Best Performing Rule

For the low and high popular item views, the full dataset rule performs best.
For the medium popular item view, the view rule with feature selection performs
best. Comparing these results with those of the user rating views for the Epinions
dataset, it may be recalled that the rule for the high user rating view with feature
selection gave results which performed better than the rule for the full dataset.

This scenario recurs for the medium popular item view.

7.5.4.2 Rules with and without Feature Selection

For the low popular item view, the rule without feature selection performs best
whereas, for the medium and high popular item views, the rule with feature

selection performs best.

7.5.4.3 View Results versus Full Dataset Results

As already mentioned, the full dataset rule performs best with the low and high
popular item views. In all cases, the results of the evaluation of all rules on the
view holdout sets gives better performance than that seen when the full dataset
rule was evaluated using a holdout set from the full dataset. This was also the case
for the bookcrossing popular item views, where the poor performance obtained

with the full dataset evaluation was improved upon when considering views.

Table 7.23: Learning Epinions Features for Popular Item Views: Pearson Cor-
relation comparison.

View No Foa ti*l(lele forFZ;(zjlvre Rule for Full Dataset
Selection Selection
low 0.3355 0.3206 0.3401
medium 0.3331 0.3822 0.3249
high 0.3080 0.3246 0.3392
full dataset | n/a n/a 0.2958
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Table 7.24: Learning Epinions Features for Popular Item Views: MAE compar-

ison.
View No Featlflirltlele forFZ;ijlvre Rule for Full Dataset
Selection Selection
low 0.6084 0.6131 0.2885
medium 0.4424 0.4331 0.389
high 0.274 0.2786 0.6366
full dataset | n/a n/a 0.4786

Table 7.25: Learning Epinions Features for Popular Item Views: R? comparison.

View No Featli'l;le forFZ;iflvre Rule for Full Dataset
Selection Selection

low 0.6084 0.6131 0.2885

medium 0.4424 0.4331 0.389

high 0.274 0.2786 0.6366

full dataset | n/a n/a 0.0875

7.5.5 Popular Item Views Summary

In summary, for the popular item views, some of the main findings were:

Some features were commonly chosen across many views. Similar to the
user rating views, the stdev feature was the most common feature chosen

across all rules, being present in all of the 22 popular item view rules.

For all but the last.fm dataset views, there was, in each of the other
datasets, at least one view where an advantage was gained in learning rules
per view rather than using the full dataset rule for that view. These views
were the MovieLens medium popular item view, the bookcrossing low and

medium popular item views, and the Epinions medium popular item view.

For all popular item views in the Epinions dataset, and the low and
medium popular item views in the bookcrossing dataset, much better per-
formance was seen from all rules with the view holdout data than that seen
with the full dataset rule and the holdout data from the full dataset.

As seen for many of the user rating views, in some cases, although the view
rules performed well, they did not perform better than the rules learned
using the full dataset. This was particularly true of the last. fm popular

item view rules.
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7.6 Discussion of Results

For the MovieLens dataset, in the majority of cases, the rules learned for the
entire dataset are as good or better than those learned per view — leading to
the conclusion that, for this dataset, there was no advantage in learning rules for

performance prediction per view.

For the last. fm user rating views, there are, in two of the three cases, advantages
gained in learning per view rather than learning for the entire dataset. However,
for the last. fm popular item views, although the view rules perform well, the full

dataset rule does better across the three views.

For the bookcrossing dataset, trends already seen for the entire dataset were vis-
ible for the user rating and popular item views. However, improved performance
was found with the rules learned for the medium user rating view and the low
and medium popular item views, showing better performance than that found

with the full dataset rule on the views or on the full dataset.

For the Epinions dataset, there were cases where a clear advantage was gained
in learning per view rather than learning for the entire dataset. These cases were

the medium and high user rating views and the medium popular item view.

In addition, it was found that there were some commonalities among the features
chosen across views. In particular, the stdev feature was chosen for all views but

two.

In three of the four datasets, it was found that the rule performance generally
increased from the low to the high user rating views. This trend was not noted

for the popular item views.

7.7 Conclusions, Contributions and Future
Work

This chapter presents the results of considering the experiments of the previous
chapter — using a decision tree to learn the features that can potentially provide
a measure of predictive performance — when applied to six different views (where
possible) of the four datasets based on the number of ratings a user gave in the
dataset and the number of ratings an item received in the dataset. Although the

full dataset rule sometimes prevailed over the rules learned per view, there were
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many cases where the latter did better than the full dataset rule. It was found
that the performance of the full dataset rule was often better when evaluated

with the view data than when it was evaluated with data from the full dataset.

The contributions of the work described in this chapter are in the further analy-
sis of the datasets by considering dataset views and by showing some merit in
learning rules per view. Future work, considering additional views as mentioned
in Chapter 3, could find that some views are more useful than others with respect
to allowing for better performance prediction. In addition, as outlined in Chapter
6, other features not considered in this work may be more useful for some of the

datasets or views.
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Chapter 8

Conclusions and Future Work

8.1 Summary and Contributions

In order to facilitate legitimate comparative analysis, collaborative filtering re-
search is dependent on available datasets. Early work in collaborative filter-
ing used a restricted collection of datasets, most notably, the FachMovie and
MovieLens datasets. Recently, due to the prevalence of recommender systems in
many domains, several further datasets have become available, to download or to
obtain via an API (although the MovieLens dataset has continued to be widely
used). Many collaborative filtering studies compare their models and techniques
across a number of datasets. The basic characteristics of the datasets, such as
the number of users, the number of items and the number of ratings (sparsity)

dictates to some extent the approach that is most suited to that dataset.

In this work, the focus has been on four commonly-used datasets which are anal-
ysed from different perspectives. The datasets used in this work are: MovieLens,
bookcrossing, last. fm and Epinions. For each dataset, the focus is on the data
available from the triple of <user, item, rating>. The motivations behind choos-
ing these datasets is to have a benchmark standard dataset (MovieLens) and to
have a large degree of variability in the other datasets chosen, in terms of domain,

number of users, number of items, and sparsity.

In addition to the four full datasets, specially-defined portions of the datasets,
called “views”, are considered. Two types of views are considered: one based on

the number of user ratings and the second based on the popularity of items.
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The hypotheses explored in this work were:

H1: Comparison: A comparison between collaborative filtering datasets can be
used to explain the recommendation accuracy likely to be achieved when

using the datasets.

H2: Learning Parameters: A genetic algorithm approach can be used to find the

best set of parameters for different collaborative filtering datasets.

H3: Predicting Performance: A set of features can be extracted from the
datasets and can be used to predict the performance of a recommender

system for a particular user.

The first set of experiments, detailed in Chapter 3, and corresponding to hypoth-
esis H1, compared the datasets and views by using standard collaborative filter-
ing approaches and standard testing methodologies. Results showed that: there
are different rating distributions across the four datasets; there are variations
in MAEs across datasets when using the same baseline technique and baseline
testing methodologies; there was no one technique that performed best across all
datasets; as expected, the low user rating views had the worst performance and
the high user rating views had the best performance; and the medium popular
item views gave the best performance across all datasets. This work has been
published in part [86, 87, 88, 89.

The second set of experiments, corresponding to hypothesis H2, compared the
ideal set of parameter values for a Pearson correlation nearest neighbourhood
approach for the four datasets and views. A genetic algorithm approach was
used to find these parameters per dataset (Chapter 4) and for each of the six
views, where possible, per dataset (Chapter 5). The suitability of the problem
to a genetic algorithm approach was also investigated. Results showed that for
the full datasets, the genetic algorithm converged to useful results which did not
always agree with previous results (e.g., a very low significance threshold value
was selected for the bookcrossing, last. fm and Epinions datasets). In addition,
some broad similarities were seen across all datasets. Results for the dataset
views showed that, apart from the MovieLens dataset views, improved results
were shown when the parameters which were evolved per view were used instead
of the parameters which were evolved using the full dataset. This demonstrated
that there was an advantage in considering the dataset at the level of views. It
was also seen that there were no major trends visible in the parameters that were

chosen for the equivalent views in the four different datasets. The work described
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in these chapters has been published in part [90].

The third set of experiments, corresponding to hypothesis H3, compared the
effectiveness of a performance prediction technique across all datasets (Chapter
6) and, where possible, across each of the six views per dataset (Chapter 7).
The performance prediction technique was based on extracting features repre-
senting users and items from the dataset and using these, and a decision tree
machine learning approach, to find rules to represent the likely error associated
with predictions for any given user. Results for the full datasets showed some
accuracy with this approach for the MovieLens and last. fm datasets; the accu-
racy, in many cases, was not good for the bookcrossing and Epinions datasets.
Some similar trends in the features selected for the full datasets were also found.
For example, the standard deviation of user’s ratings from their average rating
(stdev) is part of the rule for all datasets (with and without feature selection).
With feature selection, for all four dataset rules, only two features were chosen
per rule, these being two of the following four: stdev for all datasets and, in
addition, sim30neighs for the MovielLens and Epinions dataset; ltkedltems for
the last. fm dataset and numNeighs for the bookcrossing dataset. Results for
the dataset views showed that only in some cases were the rules learned per view
as good as or better than those learned for the full dataset. Exceptions were the
last. fm and Epinions datasets, where, in some cases, advantages gained in learn-
ing per view rather than learning for the entire dataset were noticed. In addition,
it was not found that general trends in predictive performance was visible across
comparable dataset views (e.g., the four low, medium and high views), leading
to the conclusion that each dataset is very unique in its own right. This work has
been published in part [91, 92]. The following sections summarise the results for

each of the four datasets.

8.1.1 MowvielLens

When considering the full datasets, the MovieLens dataset had, in most cases,
the best MAE, coverage and F1 results across all experiments. When consid-
ering the MovieLens views, the user rating views (along with the last. fm and
Epinions user rating views), showed expected behaviour, with MAE values de-
creasing from the low to the high views. For the popular item views, the medium
view showed the best MAEs for all four datasets

With respect to learning collaborative filtering parameters for the full dataset with
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a Pearson correlation nearest-neighbour approach, the results for the MovieLens
dataset were often different to the other datasets, with larger thresholds, different
similarities and different neighbour selection approaches to the other datasets
being chosen. In the majority of cases, the parameters learned for the entire
dataset are as good as or better than those learned per view — leading to the
conclusion that for this dataset there was no advantage in learning per view.
Unlike the other datasets it was found that, for the MovieLens dataset different

parameter values often performed equally well to each other.

With respect to predicting performance for the full MovieLens dataset, good
performance was found with the rules learned showing the viability of the ap-
proach for this dataset. In the majority of cases, the rules learned for the entire
dataset were shown to be as good, or better, than those learned per view leading
to the conclusion that, for this dataset, there was no advantage in learning rules

for performance prediction per view.

8.1.2 last.fm

When considering the full dataset, the last. fm dataset generally performed well
with closest similarity in performance to the MovieLens dataset. When consid-
ering last. fm user rating views, MAE values decreased from low to high views
and the medium popular item view did better than the low or high popular item

views, as was also seen with other datasets.

When learning parameters for the Pearson correlation, nearest-neighbour ap-
proach, there were commonalities in the parameters chosen across the last.fm,
bookcrossing and Epinions datasets, with the same similarity measure being
chosen and correlation thresholding (with a low threshold) being chosen. Results
showed improved performance with the parameters learned for the full dataset.
Also, results showed improved performance when parameters were learned for

both the user rating and popular item views.

Similar to the MovieLens dataset, when rules were learned for the entire dataset
in order to predict performance, very good performance was demonstrated. With
respect to predicting performance per views, for the last.fm user rating views,
there are, in two of the three cases, advantages gained in learning per view rather
than learning for the entire dataset. However, for the last. fm popular item views,
although the view rules perform well, the full dataset rule does better across the

three views.
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8.1.3 bookcrossing

In general, the bookcrossing dataset gave very poor performance across the ma-
jority of all experiments. Some improvement was noted when learning collabo-
rative filtering parameters for the full dataset for a Pearson correlation nearest-
neighbour approach and some further improvements were noted when learning
these parameters per user rating and popular item views. There was no merit
found in the rules learned to predict performance using the full dataset. Im-
proved performance was found with the rules learned for the medium user rating
view and the low and medium popular item views, showing better performance
than that found with the full dataset rule on the views or on the full dataset.

8.1.4 Epinions

The results of the Epinions dataset were generally the second worst across most
experiments. The results for the full dataset and views did however demonstrate
patterns similar to those found with the other datasets. With respect to learning
collaborative filtering parameters for the full dataset for a Pearson correlation
nearest-neighbour approach, some of the parameters chosen were similar to those
chosen for the last. fm and bookcrossing datasets, with very low thresholds being
chosen (as was the case for the bookcrossing dataset). Some improvement was
noted (in terms of MAE) with the learned parameters. There was, in four of
five cases, an advantage in evolving parameters per view rather than evolving

parameters for the full dataset.

With respect to predicting performance per dataset, a poor level of performance
was achieved with the rule for the full dataset. However, when learning rules
to predict performance per views, there were cases where a clear advantage was
gained in learning per view rather than learning for the entire dataset. These
cases were the medium and high user rating views and the medium popular item

view.

8.2 Future Work

As can be witnessed by the large number of research studies that still focus
on collaborative filtering techniques and performance, research into the area of

collaborative filtering, while mature, has by no means reached a steady-state.
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Indeed the prevalence of recommender systems in online systems will ensure that
the area remains a fruitful one for research for many years. It is expected that
many of the topics discussed in Chapter 2 will continue to see advances in the

years to come.

Based on the work outlined in this thesis, a few avenues for immediate future

work arise from the results obtained:

1. An exploration of other datasets, in particular the Net flix dataset which
is becoming a standard benchmark dataset in addition to the MovieLens

dataset.

2. An exploration, using the techniques and approaches presented in this work,

of further user and item features that can be used for learning.

3. Based on ideas from Ekstrand et al. [69], an exploration of the suitability

of a particular algorithm for a user, based on certain user features.

4. Based on ideas from recent work by Matuszyk et al. [163], an exploration of
whether some of the techniques outlined in this work can be used to predict

the suitability of a particular algorithm to a particular dataset.

8.3 Conclusion

This thesis has contributed to the state-of-the-art in the area of collaborative
filtering by 1) the comparison of collaborative filtering datasets and views and
by 2) the specification and testing of approaches which can be used to allow for
this comparison and to highlight the suitability, or not, of approaches for specific
datasets and views. The work in this thesis has shown, using four representative
datasets from the many available, that the accuracy (in terms of collaborative
filtering techniques and parameter settings) and success (in terms of performance
prediction) of approaches is dependent on the characteristics of the dataset, or
view, used. This leads to the conclusion that collaborative filtering techniques
and approaches should be chosen based on the characteristics of the dataset, or

portion of dataset (view), being used to allow for better accuracy and success.
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A. RULES LEARNT FOR DATASETS AND DATASET VIEWS

Table A.1: MovieLens Low Views

Full Dataset Rule (with feature selection):
mae = 1.176 * stdev - 0.4696 * sim30neighs + 0.6233

Low User Rating View

No Feature Selection

Feature Selection

mae =
0.9649 * stdev
-0.5272 * sim30neighs
+0.7575

mae =
0.9649 * stdev
-0.5272 * sim30neighs
+0.7575

Low Popular Item View

No Feature Selection

Feature Selection

if sim30neighs > 0.523:

mae =

0.0394*numRatings

- 0.1351*avgRating

+ 0.8437*stdev - 0.0293*numNeighs
- 0.6261*sim30neighs - 0.0334*tfidf
+ 0.9437

elif stdev > 0.293 and

numNeighs > 0.379:

mae =

0.9096*numRatings
+0.8092*avgRating
+0.6328%*stdev -0.3588*numNeighs
+1.1443*sim30neighs

- 0.7393*popltems
-0.2041*likedItems -1.3488*tfidf

+ 0.4179

elif stdev <= 0.295:

mae =

-1.0794*numRatings +0.2941*stdev
-0.6232*numNeighs
+0.3772*sim30neighs
+0.3688*popltems -1.9057*likedItems
+3.4198*tfidf + 2.1763

else:

mae =
49.9328*numRatings
-8.5524*numNeighs

- 551.6456*tfidf + 2.881

mae =
0.7927*stdev - 0.5101*sim30neighs +
0.7731
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Table A.2: MovieLens Medium Views

Full Dataset Rule (with feature selection):
mae = 1.176 * stdev - 0.4696 * sim30neighs + 0.6233

Medium User Rating View

No Feature Selection

Feature Selection

mae =
0.3685 * numRatings
- 0.4029 * avgRating
+ 0.8051 * stdev

- 0.596 * sim30neighs
- 0.173 * tfidf

+ 0.9522

mae =
-0.4131 * avgRating
+0.8057 * stdev
-0.4751 * sim30neighs
+1.0403

Medium Popular Item View

No Feature Selection

Feature Selection

mae =
0.9014 * numRatings
-0.3267 * avgRating
+0.7541 * stdev
-0.716 * numNeighs
-0.1679 * sim30neighs
-0.6703 * tfidf
+1.0565

mae =
0.8069 * stdev
-0.4962 * numNeighs
+0.7385
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A. RULES LEARNT FOR DATASETS AND DATASET VIEWS

Table A.3: MovieLens High Views

Full Dataset Rule (with feature selection):
mae = 1.176 * stdev - 0.4696 * sim30neighs + 0.6233

High User Rating View

No Feature Selection

Feature Selection

mae =
-0.4505 * numRatings
+ 0.8436 * stdev

- 0.522 * sim30neighs
- 0.1998 * popltems
+ 0.3794 * tfidf

+ 0.9777

mae =
0.8282 * stdev
-0.5826 * numNeighs
+0.8722

High Popular Item View

No Feature Selection

Feature Selection

mae=
0.5346 * stdev

- 0.4774 * sim30neighs
- 0.5329 * popltems

- 1.2301 * likedItems
+ 2.2246

mae =
0.5414 * stdev

- 0.3677 * sim30neighs
- 0.6673 * likedItems
+ 1.3251
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Table A.4: last.fm Low Views

Full Dataset Rule (with feature selection):

if stdev > 0.023 and stdev <= 0.052:

mae = 5.9468 * stdev + 0.2964 * likedItems + 0.1699

elif stdev <= 0.037:

mae = 11.8169 * stdev + 0.0097 * likedItems + 0.2697

elif stdev <= 0.102:

mae = 5.3223 * stdev + 0.4547 * likedItems + 0.0848

else:

mae = 3.7526 * stdev + 0.7158

Low User Rating View

No Feature Selection

Feature Selection

mae =

- 1.3521 * numRatings

+ 0.3402 * avgRating

+ 1.3614 * stdev

+ 0.5418 * numNeighs

+ 0.273 * sim30neighs

- 0.5857 *popltems

+ 0.5458 * tfidf + 1.1357

mae =

- 0.1843 * numRatings

+ 0.2024 * avgRating

+ 1.6805 * stdev + 0.6954

Low Popular Item View

No Feature Selection

Feature Selection

mae =
- 0.3142 * numRatings

+ 0.1275 * avgRating

+ 2.6256 * stdev

+ 0.2132 * numNeighs

- 0.2732 * popltems + 0.726

mae =
-0.1613 * numRatings

+ 2.5988 * stdev

- 0.1882 * popltems

+ 0.3527 * likedItems + 0.4827
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A. RULES LEARNT FOR DATASETS AND DATASET VIEWS

Table A.5: last.fm Medium Views

Full Dataset Rule (with feature selection):

if stdev > 0.023 and stdev <= 0.052:

mae = 5.9468 * stdev + 0.2964 * likedItems + 0.1699

elif stdev <= 0.037:

mae = 11.8169 * stdev + 0.0097 * likedItems + 0.2697

elif stdev <= 0.102:

mae = 5.3223 * stdev + 0.4547 * likedItems + 0.0848

else:
mae = 3.7526 * stdev + 0.7158

Medium User Rating View

No Feature Selection

Feature Selection

mae =

1.597 * numRatings

+ 0.3766 * avgRating
+ 3.0639 * stdev

+ 0.2604 * numNeighs
+ 0.6291 * sim30neighs
- 0.4241 * popltems

- 1.0675 * tfidf - 0.336

if stdev <= 0.051:

mae =

5.5721 * stdev

+0.0843 * numNeighs
+0.3627 * likedItems + 0.1436
else:

mae =

3.2693 * stdev

+0.204 * numNeighs

+0.4239 * likedItems + 0.1429

Medium Popular Item View

No Feature Selection

Feature Selection

if stdev <= 0.088:

mae =

-1.2591 * numRatings

+ 0.0036 * avgRating

+ 3.3026 * stdev

+ 0.2004 * numNeighs

+ 0.0068 * sim30neighs

- 0.2447 * popltems

+ 0.4818 * likedItems

+ 0.7969 * tfidf + 0.5389
else:

mae =

0.4656 * avgRating

+ 1.635 * stdev

- 0.3585 * numNeighs

+ 0.5708 * sim30neighs + 0.4336

if stdev <= 0.088:

mae =

-0.1998 * numRatings

+ 3.3316 * stdev

+ 0.4381 * likedItems + 0.225

else:

mae =

-0.1068 * numRatings

+ 2.2254 * stdev + 0.6818
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Table A.6: last.fm High Views

Full Dataset Rule (with feature selection):

if stdev > 0.023 and stdev <= 0.052:

mae = 5.9468 * stdev + 0.2964 * likedItems + 0.1699

elif stdev <= 0.037:

mae = 11.8169 * stdev + 0.0097 * likedItems + 0.2697

elif stdev <= 0.102:

mae = 5.3223 * stdev + 0.4547 * likedItems + 0.0848

else:
mae = 3.7526 * stdev + 0.7158

High User Rating View

No Feature Selection

Feature Selection

if stdev <= 0.108:

mae = - 0.4428 * numRatings
+ 0.0044 * avgRating

+ 3.0104 * stdev

+ 0.0082 * sim30neighs

+ 0.3088 * likedItems

+ 0.1376 * tfidf + 0.3712
else:

mae = 0.2979 * avgRating

+ 1.342 * stdev

+ 0.4635 * sim30neighs + 0.2695

if stdev <= 0.108:

mae =

2.984 * stdev

+ 0.3128 * likedItems

- 0.1437 * tdf + 0.2112
else:

mae = 1.636 * stdev

- 0.1218 * tfdf

+ 0.6712

High Popular Item View

No Feature Selection

Feature Selection

if stdev <= 0.064:

mae = -0.1971 * numRatings

+ 0.0749 * avgRating + 5.4698 * stdev
-0.2809 * numNeighs

if stdev <= 0.064 and tfidf > 0.253:
mae =

5.4895 * stdev

-0.1132 * tadf

+ 0.0162 * sim30neighs + 0.5199
+ 0.084 * tfidf + 0.7735 else:
elif stdev <= 0.112: mae = 2.9873 * stdev
mae = 0.0425 * avgRating + 0.6537
+ 0.3076 * stdev
+ 0.2726 * numNeighs
+ 0.0689 * sim30neighs + 0.5784
else:
mae = 2.3181 * stdev
- 1.0812 * numNeighs + 1.8519
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A. RULES LEARNT FOR DATASETS AND DATASET VIEWS

Table A.7: bookcrossing Low Views

Full Dataset Rule (with feature selection):
mae = 3.8997 * stdev - 2.5184 * numNeighs + 1.1465

Low User Rating View

No Feature Selection

Feature Selection

mae =
-3.7004 * numRatings
+ 2.9308 * stdev

- 0.9074 * sim30neighs
+ 3.5972 * popltems
+ 4.5203 * tfidf

+ 2.061

mae =

2.2468 * stdev

+ 2.582 * popltems
+ 0.9153 * tfidf

+ 0.5574

Low Popular Item View

No Feature Selection

Feature Selection

mae =
-1.4897 * avgRating

+ 2.8979 * stdev

- 1.2747 * sim30neighs
+ 3.3326

if stdev <= 0.13:

mae =

-1.1566 * avgRating
+ 0.164 * stdev

- 0.8372 * sim30neighs
+ 2.8912

elif avgRating > 0.697:
mae =

-0.2262 * avgRating

+ 2.1832 * stdev

- 2.0624 * sim30neighs
+ 3.1436

elif sim30neighs <= 0.927:
mae =

-3.2483 * sim30neighs

+ 4.662

elif sim30neighs <= 0.999
mae =

23.0951 * sim30neighs

- 20.0274

else:
mae = 6.1741
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Table A.8: bookcrossing Medium Views

Full Dataset Rule (with feature selection):
mae = 3.8997 * stdev - 2.5184 * numNeighs + 1.1465

Medium User Rating View

No Feature Selection

Feature Selection

mae =

-2.731 * numRatings
+ 2.6345 * stdev

+ 2.0196 * tfidf

+ 1.8652

mae =
2.656 * stdev
+ 0.9346

Medium Popular Item View

No Feature Selection

Feature Selection

mae =
-0.934 * avgRating
+ 1.9012 * stdev
+ 1.8404

mae =
-0.934 * avgRating
+ 1.9012 * stdev
+ 1.8404

Table A.9: bookcrossing High Views

Full Dataset Rule (with feature selection):
mae = 3.8997 * stdev - 2.5184 * numNeighs + 1.1465

High User Rating View

No Feature Selection

Feature Selection

mae =
-0.6019 * avgRating
+ 1.3822 * stdev

- 0.8193 * sim30neighs
+ 2.2583

mae =
1.4905 * stdev

- 0.7754 * sim30neighs
+ 1.7113

High Popular Item View

No Feature Selection

Feature Selection

n/a

n/a
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A. RULES LEARNT FOR DATASETS AND DATASET VIEWS

Table A.10: Epinions Low Views

Full Dataset Rule (with feature selection):

if sim30neighs <= 0.088:

mae = 1.0144 * stdev - 0.0029 * sim30neighs + 0.7543

else:

mae = 0.9192 * stdev - 0.3447 * sim30neighs + 0.5926

Low User Rating View

No Feature Selection

Feature Selection

mae =
-1.4289 * numRatings
- 1.7169 * avgRating

- 0.9543 * numNeighs
- 1.5202 * sim30neighs
+ 2.03 * popltems

+ 1.5731 * tfidf

+ 4.3035

mae =
-1.3555 * avgRating

- 1.6249 * sim30neighs
+ 3.8482

Low Popular Item View

No Feature Selection

Feature Selection

mae = mae =
-1.3873 * avgRating 1.5679 * stdev
+ 1.6299 * stdev + 0.511
+ 2.4723 * tfidf
- 0.3672
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Table A.11: Epinions Medium Views

Full Dataset Rule (with feature selection):

if sim30neighs <= 0.088:

mae = 1.0144 * stdev - 0.0029 * sim30neighs + 0.7543

else:

mae = 0.9192 * stdev - 0.3447 * sim30neighs + 0.5926

Medium User Rating View

No Feature Selection

Feature Selection

mae =

-1.1111 * avgRating
+ 0.6502 * stdev

+ 0.8606 * tfidf

+ 0.9166

mae =

-0.7319 * avgRating
+ 0.6352 * stdev

+ 1.2994

Medium Popular Item View

No Feature Selection
if numRatings <= 0.049:
mae =

-8.8396 * numRatings
+ 1.0277 * stdev

- 0.3377 * likedItems
+ 1.1223

else:

mae =

-0.2885 * numRatings
- 0.5179 * avgRating

Feature Selection

if numRatings <= 0.049:
mae =

-8.1707 * numRatings

+ 1.0088 * stdev

+ 0.9451

else:

mae =

-0.1673 * numRatings
+ 1.0876 * stdev

+ 1.0685 * stdev + 0.54
- 0.2577 * likedItems
+ 0.6619 * tfidf
+ 0.5515
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A. RULES LEARNT FOR DATASETS AND DATASET VIEWS

Table A.12: Epinions High Views

Full Dataset Rule (with feature selection):

if sim30neighs <= 0.088:

mae = 1.0144 * stdev - 0.0029 * sim30neighs + 0.7543

else:

mae = 0.9192 * stdev - 0.3447 * sim30neighs + 0.5926

High User Rating View

No Feature Selection

Feature Selection

mae =
-0.3469 * numRatings
- 0.6207 * avgRating
+ 0.8533 * stdev
-0.2255 * likedItems
+ 0.5589 * tfidf

+ 0.6808

mae =
-0.3552 * avgRating
+ 0.7918 * stdev

+ 0.8502

High Popular Item View

No Feature Selection

Feature Selection

mae =
-0.6413 * numRatings
+ 0.8304 * stdev

+ 1.321 * tfidf
-0.1734

mae =
-0.608 * numRatings
+ 0.6557 * stdev

+ 0.925
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Appendix B

Scatter Plots for Best Performing

Rules for Dataset Views

B.1 Scatter Plots for MovieLens Views: Best

Performing Rules
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Figure B.1: MovieLens low user rating view: Full Dataset Rule Scatter Plot.
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Figure B.2: MovieLens medium user rating view: Full Dataset Rule Scatter
Plot.
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Figure B.3: MovieLens high user rating view: Full Dataset Rule Scatter Plot.
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Figure B.4: MovieLens low popular item view: Full Dataset Rule Scatter Plot.
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Figure B.5:

B.1 Scatter Plots for MovieLens Views: Best Performing Rules
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MovieLens medium popular item view: View Rule with All Features

Scatter Plot.
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MovieLens high popular item view: Full Dataset Rule Scatter Plot.

175 Josephine Griffith



B. SCATTER PLOTS FOR BEST PERFORMING RULES FOR DATASET VIEWS

B.2 Scatter Plots for last.fm Views: Best Per-

forming Rules
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Figure B.7: last. fm low user rating view: Full Dataset Rule Scatter Plot.
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Figure B.8: last. fm medium user rating view: View Rule with Feature Selection
Scatter Plot.
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Figure B.9:

B.2 Scatter Plots for last.fm Views: Best Performing Rules
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last.fm high user rating view: View Rule with Feature Selection

Scatter Plot.
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Figure B.10: last. fm low popular item view: Full Dataset Rule Scatter Plot.
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last. fm medium popular item view: Full Dataset Rule Scatter Plot.
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Figure B.12: last. fm high popular item view: Full Dataset Rule Scatter Plot.
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B.38 Scatter Plots for bookcrossing Views: Best Performing Rules

B.3 Scatter Plots for bookcrossing Views: Best

Performing Rules

35
°
3
°
W 2.5 .
g
°
ERE P AP
R I S AT
S15 @ OO g
@ @ S e R2=00431
= , LN
1 8o
A e® _o . °
[ ] ® [ ] ®
0.5 °
°
0
0 05 1 15 2 25

actual MAE

Figure B.13: bookcrossing low user rating view: Full Dataset Rule Scatter Plot.
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Figure B.14: bookcrossing medium user rating view: View Rule with Feature
Selection Scatter Plot.
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Figure B.15: bookcrossing high user rating view: View Rule with All Features
Scatter Plot.
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Figure B.16: bookcrossing low popular item view: View Rule with All Features
Scatter Plot.
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Figure B.17: bookcrossing medium popular item view: View Rule Scatter Plot
(with and without feature selection the same).
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B.4 Scatter Plots for Epinions Views: Best Performing Rules

B.4 Scatter Plots for Epinions Views: Best Per-

forming Rules
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Figure B.18: Epinions low user rating view: Full Dataset Rule Scatter Plot.
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Figure B.19: Epinions medium user rating view: View Rule with Feature Selec-
tion Scatter Plot.
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Figure B.20: Epinions high user rating view: View Rule with All Features Scatter
Plot.
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Figure B.21: Epinions low popular item views: Full Dataset Rule Scatter Plot.
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Figure B.22: Epinions medium popular item views: View Rule with Feature
Selection Scatter Plot.

An Analysis of Collaborative Filtering 182
Datasets



B.4 Scatter Plots for Epinions Views: Best Performing Rules

° [ ]
[ ]
° RI=0.1117 o
o ® 2
.......... @
W | o am@®E _af ™ . 09 ..
< o
2 ) ‘....- .“ 5
3 d .‘o. ¢
k] ”... ° ®
E .‘.
s [ ]
o 9
[ ]
1.5 2 2.5

actual MAE

Figure B.23: Epinions high popular item views: Full Dataset Rule Scatter Plot.
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