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Abstract 

The aim of this study was to develop a methodology, based on satellite remote 

sensing, to estimate the vegetation Start of Season (SOS) across the whole island 

of Ireland on an annual basis. This growing body of research is known as Land 

Surface Phenology (LSP) monitoring.   

The SOS was estimated for each year from a 7-year time series of 10-day 

composited, 1.2 km reduced resolution MERIS Global Vegetation Index (MGVI) 

data from 2003 to 2009, using the time series analysis software, TIMESAT. The 

selection of a 10-day composite period was guided by in-situ observations of leaf 

unfolding and cloud cover at representative point locations on the island. The 

MGVI time series was smoothed and the SOS metric extracted at a point 

corresponding to 20% of the seasonal MGVI amplitude. The SOS metric was 

extracted on a per pixel basis and gridded for national scale coverage. There were 

consistent spatial patterns in the SOS grids which were replicated on an annual 

basis and were qualitatively linked to variation in landcover. Analysis revealed 

that three statistically separable groups of CORINE Land Cover (CLC) classes 

could be derived from differences in the SOS, namely agricultural and forest land 

cover types, peat bogs, and natural and semi-natural vegetation types. These 

groups demonstrated that managed vegetation, e.g. pastures has a significantly 

earlier SOS than in unmanaged vegetation e.g. natural grasslands. There was also 

interannual spatio-temporal variability in the SOS. Such variability was 

highlighted in a series of anomaly grids showing variation from the 7-year mean 

SOS. An initial climate analysis indicated that an anomalously cold winter and 

spring in 2005/2006, linked to a negative North Atlantic Oscillation index value, 
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delayed the 2006 SOS countrywide, while in other years the SOS anomalies 

showed more complex variation. A correlation study using air temperature as a 

climate variable revealed the spatial complexity of the air temperature-SOS 

relationship across the Republic of Ireland as the timing of maximum correlation 

varied from November to April depending on location.  The SOS was found to 

occur earlier due to warmer winters in the Southeast while it was later with 

warmer winters in the Northwest.  The inverse pattern emerged in the spatial 

patterns of the spring correlates. This contrasting pattern would appear to be 

linked to vegetation management as arable cropping is typically practiced in the 

southeast while there is mixed agriculture and mostly pastures to the west. 

Therefore, land use as well as air temperature appears to be an important 

determinant of national scale patterns in the SOS.     

The TIMESAT tool formed a crucial component of the estimation of SOS across 

the country in all seven years as it minimised the negative impact of noise and 

data dropouts in the MGVI time series by applying a smoothing algorithm. The 

extracted SOS metric was sensitive to temporal and spatial variation in land 

surface vegetation seasonality while the spatial patterns in the gridded SOS 

estimates aligned with those in landcover type. The methodology can be 

extended for a longer time series of FAPAR as MERIS will be replaced by the 

ESA Sentinel mission in 2013, while the availability of full resolution (300m) 

MERIS FAPAR and equivalent sensor products holds the possibility of 

monitoring finer scale seasonality variation.  
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This study has shown the utility of the SOS metric as an indicator of spatio-

temporal variability in vegetation phenology, as well as a correlate of other 

environmental variables such as air temperature.  However, the satellite-based 

method is not seen as a replacement of ground-based observations, but rather as a 

complementary approach to studying vegetation phenology at the national scale. 

In future, the method can be extended to extract other metrics of the seasonal 

cycle in order to gain a more comprehensive view of seasonal vegetation 

development. 
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Chapter 1. Introduction to vegetation phenology 

1.1 Background  

Phenology is chiefly concerned with studying the temporal patterns of biological 

events (de Beurs and Henebry, 2008a). Another similar term is seasonality which 

can describe the timing of events in both biotic and abiotic components of the 

Earth system (Leith, 1974). Therefore, seasonality can influence phenology and 

vice versa, for example, the annual spring thaw in snow-covered regions initiates 

budburst and leaf development in underlying vegetation. The terms, vegetation 

seasonality and phenology are closely related; however their use varies according 

to the discipline of study. Several definitions of phenology exist, the earliest by 

the Greek botanist, Theophrastus (372-288 B.C.):  ‘…Instead every plant must 

possess a certain adjustment to the season, since the season turns out to be more 

responsible [for sprouting] than anything else…’ The Swedish botanist 

Linnaeus, who is regarded as the father of phenology, stated in his Philosophia 

Botanica (1751) ‘that observations of first flowering, leafing, fruiting and leaf-

fall should be made all over Sweden, along with local weather’. The more recent 

and widely accepted definition is by Leith in 1974: “Phenology is generally 

described as the art of observing life cycle phases or activities of plants and 

animals in their temporal occurrence throughout the year” (Leith, 1974). 

However, he defines seasonality as “the occurrence of certain obvious biotic and 

abiotic events or groups of events within a definite limited period or periods of 

the astronomic (solar, calendar) year”. These definitions imply that while 
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seasonal events are expected to occur on an annual basis, phenology is not 

restricted to annual phenomena.  

1.1.1 Phenology as an indicator of climate change and ecosystem health 

Phenology is a ready indicator of the impact of climate change on the biosphere 

(Sweeney et al., 2002).  Indeed, an extension of the growing season in trees and 

shrubs by 10.8 days since the early 1960s has been identified across Europe as a 

result of changes in air temperature over the same time period (Menzel and 

Fabian, 1999). Phenology is also an important economic indicator in sectors such 

as  agriculture and forestry.  Observing the phenology of fruit trees, crops and 

forests can potentially be used in forecasting yield and monitoring the health of 

plants and trees.  However, phenology is also an essential component of 

ecosystem functioning. For example, the timing of onset or duration of a 

phenological phase, or “phenophase”, can trigger other components of the 

ecosystem such as the availability of water, the onset of pests and disease, 

nutrient and carbon uptake and storage in plant biomass ((van Vliet, Overeem et 

al. 2002), Butterfield and Malström, 2009). Furthermore, the lifecycles of groups 

of organisms in an ecosystem are reliant on one another in a process known as 

synchrony (Thackeray et al., 2010).  In terrestrial communities, the ecosystem 

structure is delicately balanced with development of the vegetation canopy (Fitter 

and Fitter, 2002) and the synchrony of life cycles can therefore be easily 

disrupted if phenophases in trees and plants are altered under changing climate 

conditions. 

 

  



  

3 

 

1.1.2 Monitoring vegetation phenologyObservations of the following 

phenological phases are made in the International Phenological Gardens (IPG, 

2005): 

• Leaf unfolding: The first regular surfaces of leaves become visible in 

three or four places on the same plant. The leaf must have emerged from 

the bud up to the leaf stalk.  

• Mayshoot: First sign of the spring sprout in conifers. However the 

needles are not yet expanded 

• St. John’s sprout: The first sprouts of oaks and mountain ashes are 

followed by a second sprout which can be identified by its fresher colour  

• Beginning of flowering: The first flowers emerge in several places on the 

observed plant resulting in the release of pollen by the anthers 

• General flowering: More than half of the flowers on the observed plant 

have blossomed  

• First ripe fruits: The fruits have ripened in several places on the observed 

plant and can be characterised by a definite colour  

• Autumn colouring: More than half the leaves of the observed plant have 

changed their colour due to the drop in air temperature as opposed to 

decolouration accompanying withering in summer due to drought  

• Leaf fall: More than half the leaves of the observed plant have fallen 

 The leaf unfolding stage, which marks the beginning of the growing season, has 

garnered the most interest as it has exhibited strong responses to temperature 

changes over the last few decades. For example, the onset of spring and summer 

phases such as leaf unfolding and flowering has advanced by 2.5 to 6.7 days per 
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ºC warmer spring on the basis of long term (1951-2000) observations of 20 plant 

species across Germany (Menzel, 2003). In a study of four tree species observed 

at the IPG network (Betula pubescens, Prunus avium, Sorbus aucuparia and 

Ribes alpinum) from 1969 to 1998, spring warming (February to April) across 

Europe has been linked to an advance in leafing dates by 8 days (Chmielewski 

and Rotzer, 2001). A later study found that 78% of all leafing, flowering and 

fruiting records had advanced (30% significantly) across Europe from 1971-2000 

(Menzel et al., 2006). Other studies have analysed phenophases in an ensemble 

of taxonomic groups, such as migratory dates in birds and butterfly emergence, 

as well as budburst and leaf unfolding dates in tree species, and have shown an 

advance of spring phenophases in recent decades in the Northern Hemisphere by 

2.8 days per decade (Parmesan, 2007) and across Europe by 2.5 days per decade 

from 1971 to 2000 (Menzel et al., 2006).   

 

In contrast to the systematic observations of phenophases in certain tree species 

conducted at the IPG gardens, other vegetation types such as grasslands do not 

exhibit such readily observable phenophases. Therefore, historical records of 

phenological timing in these vegetation types are less common and evidence to 

support their responses to climate change difficult to find. Much of the data on 

tree phenology across Europe has been from the International Phenological 

Garden (IPG) network which was established in Europe in 1957 to gather 

phenological data from tree species of identical genetic stock (Chmielewski and 

Rotzer, 2001). There are currently 50 IPGs across Europe in which 23 tree 

species are observed (Chmielewski and Rotzer, 2001); six of these sites were 

established in Ireland between 1966 and 1967 (Donnelly et al., 2006), although 
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two of the sites, at  Glenveagh National Park and the Armagh Observatory do not  

actively contribute data to the IPG network. The active Irish IPG gardens are 

located at Valentia Observatory in Co. Kerry, John F. Kennedy Arboretum and 

Johnstown Castle in Co. Wexford and the National Botanic Gardens in Co. 

Dublin. The data are gathered by Met Éireann staff and archived at the IPG 

centre at Humboldt Universität in Berlin (Sweeney et al., 2002). The 

phenological garden network has since been regenerated and expanded (Proctor 

and Donnelly, 2009). The location of the new and expanded network of gardens 

is shown in figure 1.1, while the garden names and the network to which they 

belong is listed in table 1.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 1.1: The locations of the phenological gardens in Ireland 

(Garden names listed in table 1.1) 
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Table 1.1: The current phenological garden network in Ireland, NPN=National Phenology 

Network, IPG=International Phenological Garden 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However professional observer networks such as the IPG network are not the 

only source of ground-based phenology data. For example, the recording of 

phenological phases in plants has been a continual practice for amateur observers 

as far back as the 1730s in the U.K. (Sparks et al., 2000) and a single observer 

has recorded first flowering times of 557 plant species over 47 years in one 

location in south-central England (Fitter and Fitter, 2002).  In western Canada, 

historical databases of flowering data for many native plant species date back to 

the late 1800s (Beaubien and Freeland, 2000). Such datasets are valuable in 

terms of offering historical records on particular plant or tree species but lack the 

spatial coverage offered by more widespread coordinated observer networks or 

Garden No. Network Name 

1 NPN-IE Farnham Estate, Co. Cavan 
2 NPN-IE Lodge Park Walled Garden, Co. Kildare 
3 NPN-IE Airfield Trust, Co. Dublin  
4 NPN-IE Killruddery House, Co. Wicklow 
5 NPN-IE Emo Court, Co. Laois 
6 NPN-IE Irish National Stud Co Ltd, Co. Kildare 
7 NPN-IE Mount Juliet, Co. Kilkenny 
8 NPN-IE Kildalton Horticultural College, Co Kilkenny 
9 NPN-IE Mount Congreve, Co Waterford 
10 NPN-IE Blarney Castle, Co. Cork 
11 NPN-IE Errislannan Manor Gardens, Co. Galway 
13 IPG Valentia Observatory,  Co. Kerry 
14 IPG JFK Arboretum, New Ross,  Co. Wexford 
15 IPG Johnstown Castle,  Co. Wexford 
16 IPG National Botanic Gardens, Co. Dublin 
112 IPG Glenveagh National Park,  Co. Donegal 
113 IPG Ballyhaise College,  Co. Cavan 
114 IPG Williamstown House,  Co. Kildare 
115 IPG Carton Estate ,  Co. Kildare 
116 IPG Enniscoe House, Co. Mayo 
117 IPG Birr Castle,  Co. Offaly 
118 IPG Armagh  Observatory, Co. Armagh, Northern Ireland 
119 IPG Millstreet Country Park,  Co. Cork 
120 IPG Ballynahinch Castle, Connemara,  Co. Galway 
121 IPG Markree Castle,  Co. Sligo 
122 IPG Baronscourt ,Tyrone, Northern Ireland 
123 IPG Mount Stewart, Down, Northern Ireland 
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remote sensing for example. In Ireland, Nature Watch has been established by 

the National Biodiversity Data Centre as an online repository for public sightings 

of phenological events (National Biodiversity Data Centre, 2009). A similar 

initiative, Nature’s Calendar, has been operated by the Woodland Trust and 

Centre for Ecology and Hydrology (CEH) in the U.K since 2000 and now has 

40,000 registered observers (Amano et al., 2010).  There is a spectrum of 

expertise in ground-based observing methods from untrained citizen networks of 

observers in scattered locations to skilled professionals forming a dedicated 

network. However, while they provide extensive spatial coverage and historical 

records on phenology, the citizen networks do not systematically record the same 

plant species over common time periods and tend to be less objective than 

observations from professional networks.  

1.1.3 Phenology and climate  

The observational data from the four active  IPG gardens in Ireland were  

subjected to a preliminary analysis on three of the nine tree species observed at 

the four gardens from 1970 to 2000; Betula pubescens (White or Downy birch), 

Fagus sylvatica ‘Har’ (common beech) and Tilia cordata (Small-leaved lime) 

(Sweeney et al., 2002).  A refinement of the study was later carried out which 

included all nine tree species and applied more rigorous statistical techniques to 

demonstrate relationships between climate and phenology (Sweeney et al., 2008). 

Preliminary results showed that the beginning of the growing season (BGS), 

determined from the date of leaf unfolding, showed the strongest response to 

climate differences. The refined results confirmed that the BGS at all sites has 

become significantly earlier since 1970 for some but not all tree species. At 

Valentia, all species/cultivars, except Betula pubescens are now leafing earlier 
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than in the 1970s (Sweeney et al., 2008) and by 2000 the BGS for Fagus 

sylvatica was occurring at Valentia up to ten days per decade earlier than 30 

years previously. This is one of the most marked increases in any of the 

European IPG sites and, with a later leaf fall date, has caused a lengthening of 

the growing season at Valentia, for that species, by as much as 90 days (Donnelly 

et al., 2006). However, there was little evidence to suggest that the end of the 

growing season (the date of leaf fall) occurred later in any of the other observed 

species (Sweeney et al., 2002). 

 

The length of growing season (LGS) increased significantly across the whole 

European IPG network period from 1959 to 1993. The extension of the season by 

10.8 days has been caused by an advancement of the BGS by 6 days and a delay 

in leaf fall by 4.8 days, linked to increases in air temperature over the same time 

period (Menzel and Fabian, 1999). Similar results have been shown in the 

flowering time of 385 British flowering species, as the average first flowering 

date had advanced by 4.5 days during the 1990s compared to the previous four 

decades (Fitter and Fitter, 2002). It was also shown that for species flowering in 

the spring months, increases in the previous month’s spring temperature were 

correlated with earlier flowering times. More recent evaluations of the phenology 

of 726 UK terrestrial, freshwater and marine spring and summer events have 

proven their advancement at a rate more rapidly than previously thought 

(Thackeray et al., 2010). Of the taxonomic groups examined which included 

plants, invertebrates and vertebrates, leafing, flowering and fruiting dates of 

terrestrial plants showed the most rapid mean rate of change (0.58 days per year) 

and the highest percentage of advancing trends (92.5%).  Such changes have 
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been consistent with warming trends.  Of a 250-year community level index of 

first flowering dates for 405 plant species across Britain, the most recent 25 years 

was 2.2–12.7 days earlier than any other consecutive 25-year period since 1760. 

The mean Central England Temperature (CET) record from February to April 

showed the strongest correlation with the index indicating that a rate of advance 

with temperature of five days per 1°C rise (Amano et al., 2010).  

 

In a study of the phenology of natural vegetation as well as fruit trees and field 

crops from 1961-2000 in Germany, it was found that an increase in average air 

temperature in early spring of 1°C leads to an advanced beginning of growing 

season in annual crops such as maize and sugar beet and in the blossoming of 

fruit trees by about 5 days (Chmielewski et al., 2004). It was concluded that 

climatic changes influenced annual crops and fruit trees in much the same way as 

natural vegetation, demonstrating that a similar physiological response occurs in 

all plants in response to changing air temperatures.  

 

The results of Chmielewski and Rotzer for Europe (2001) are similar to those for 

the same time period in North America (Schwartz and Reiter, 2000). However, 

there has not been a continent-wide network of phenological gardens in the 

United States comparable to that of the European IPG network. The USA 

National Phenology Network (NPN) originated in 1956 from a network of lilac 

observers in 12 states on the west coast which amounted to 2,500 observers by 

1972 and spread to the east coast in 1961, which had 300 observers in 1970  

(USA NPN, 2011).  Therefore, due to the limited amount of phenological garden 

data, budburst and leaf fall dates across North America have been simulated 
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using phenological models, stating an average advancement of 5-6 days in spring 

growth (Schwartz and Reiter, 2000). These results show broad agreement over 

two continents with respect to the onset of early spring growth, however 

Schwartz and Reiter (2000) could not make a similar comparison with autumn 

leaf fall dates due to a paucity of phenology data for that time of year. Therefore 

no reliable estimates have been derived from in-situ observations for the length 

of the growing season in North America. 

1.1.4 Phenology and non-climatic factors 

Temperature may not be the only variable influencing the observed trends in 

phenology. Previous research has recognised the problematic issue of multiple, 

non-climatic factors in driving phenological change (de Beurs and Henebry, 

2004, White et al., 2005, Xiao and Moody, 2005). Other than climate change, 

improved fertilisation and the availability of greater amounts of atmospheric CO2 

have also been argued as contributory factors to the observed greening trend. It 

has also been suggested that changing agricultural practices are equal to, if not 

more influential than, climate on global greening patterns (Xiao and Moody, 

2005). For example, the extent to which the phenology of vegetation can be 

altered on a national-scale due to institutional change as was shown in 

Kazakhstan following the collapse of communism and the resulting change  in 

land management practices (de Beurs and Henebry, 2004). 

 

Generally, carbon uptake by growing plants at the beginning of the growing 

season is coincident with a decline in atmospheric carbon dioxide (CO2) which 

can be observed in the global carbon cycle. The interdependence of the 

vegetation growing season and the carbon cycle can be seen in the seasonal 
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variation in CO2 measured at the Mauna Loa Observatory, Hawaii since the 

1960s (Keeling et al., 1996). Figure 1.2 shows this seasonal variation measured 

at Mauna Loa and Mace Head Observatory, Ireland, as well as the general trend 

of increasing CO2 concentration in the atmosphere.  

 

 

 

 

 

 

 

 

 

 

A later seven-day phase shift in the declining part of the cycle was observed and 

attributed to a lengthening of the growing season in Northern Hemisphere 

vegetation. This greening trend, coupled with an increase in the seasonal 

amplitude of atmospheric CO2, indicate increasing CO2 assimilation by terrestrial 

vegetation due to climate warming. Future increases in atmospheric CO2 as a 

result of continued fossil fuel burning and other anthropogenic activities may 

therefore further alter the spatial distribution of vegetation biomes.  For example, 

were CO2 to double in the next 100 years in Russia, new biomes such as 

scrubland, would appear for the first time in European Russia while others, e.g. 

grassland could expand (Belotelov et al., 1996).  
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Figure 1.2: Measurements in Hawaii since 1958 and Mace Head since 1992 show the seasonality 

of the carbon cycle as well as steadily increasing concentrations of atmospheric CO2 
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The urban/rural fabric of an area can also determine phenological timing. For 

urban vegetation, greenup onset occurs earlier and dormancy onset later, relative 

to rural surrounds, driven by an elevated land surface temperature (LST) in urban 

areas (Zhang et al., 2004b). Elevated LST causes mean annual temperatures and 

average spring temperatures to be about 1-3ºC higher than rural surrounds. The 

length of the growing season in  urban areas of the U.S.A. has been found to be 

up to 15 days longer than in rural areas. The impact of the urban heat island on 

vegetation phenology was more pronounced in the U.S.A. than in Europe or Asia 

as the differences in LST between urban and rural areas was greater in the U.S.A. 

(Zhang et al., 2004b).  

1.2 Study aim  

The temporal trends observed in tree phenology in Ireland have been based on 

observations from four phenological gardens located in the southern half of the 

country where tree species have been selected based on the IPG criteria. While 

these studies have been invaluable in demonstrating the changes in phenology of 

trees due to climate change at point locations in Ireland, the results do not reflect 

broad-scale patterns in vegetation phenology across the whole island or in a 

variety of vegetation types. Therefore, the aim of this study was to investigate the 

feasibility of using satellite remote sensing as a tool to characterise these broad-

scale patterns by monitoring vegetation seasonality on a national-scale. This 

study has developed a methodology for monitoring national-scale vegetation 

phenology across the island of Ireland based on low resolution satellite imagery 

acquired on a near daily basis from 2003-2009. A seven year time series of 

satellite imagery permits interannual variation in seasonality patterns to be 
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tracked, with the potential for linking them to trends in climate factors over the 

same time period.   The findings of this study are intended to complement 

existing ground-based observations of vegetation phenology and highlight the 

utility of remote sensing as a broad-scale monitoring tool.  

1.3 Research objectives  

Within the overall aim of this research, it was necessary to choose an appropriate 

time series analysis method and adapt it to a multi-annual image set at an 

appropriate temporal and spatial resolution in order to characterise and 

investigate spatio-temporal patterns in the vegetation Start of Season (SOS) 

across the island of Ireland. It was necessary to gather MGVI data, acquired at an 

appropriate temporal and spatial resolution, to achieve the national-scale aims of 

the study. The link between interannual variability in SOS and climate was also 

explored using air temperature as a climate variable.  In order to achieve the 

study aim, a number of sub-objectives were established which guided the 

research in a stepwise approach:  

1. To identify a sensor with near daily medium spatial resolution image 

acquisition over Ireland, which would permit the use of a vegetation 

index (VI) with maximal sensitivity to changes in the seasonality of land 

surface vegetation.  

2. To select an appropriate composite period for the daily VI data that would 

minimise the data loss due to cloud while retaining sensitivity to 

vegetation seasonality changes. Criteria used to guide the selection of a 

composite period were based on ground-based observations of tree 

greening and cloud cover at representative point locations on the island. 
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3.  To establish the most appropriate methodology for the systematic 

extraction of a SOS measure from the time series of VI data. 

4.  To describe both qualitatively and quantitatively the spatio-temporal 

patterns in the vegetation SOS across the island of Ireland. In order to 

achieve this objective, SOS spatial patterns were first characterised 

descriptively and then explanatory factors such as landcover were used to 

statistically analyse the degree of similarity in SOS between different 

landcover types.   

5. To explore the consistency in the estimated SOS between managed and 

natural landcover types. As vegetation seasonality is closely linked to 

landcover and land use, there would be differences expected in SOS 

between natural and managed vegetation.  

6. To determine if statistically significant relationships exist between 

climate variables based on air temperature and the SOS given the proven 

dependence between growing season timing in Northern high latitudes 

and air temperature variation.  

The thesis is composed of seven chapters. The first chapter is a background 

introduction to the science of phenology which describes in-situ phenology 

monitoring and the outcomes from the last few decades of research, both in 

Ireland and further afield. The second chapter introduces the physical principles 

underlying optical satellite remote sensing of vegetation and the methods that 

have evolved to monitor vegetation phenology at a variety of spatial and 

temporal scales.  Chapter three identifies the implications of cloud cover over 

Ireland for vegetation seasonality monitoring and how techniques such as time 

compositing were used to generate sufficient cloud-free imagery of the whole 
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island to allow the national-scale aims of the study to be achieved.  Chapter four 

describes a methodology to extract seasonality metrics from the time series of 

satellite-derived data. Chapter five examines the spatio-temporal patterns in 

vegetation seasonality in the data generated from the time series analysis and 

demonstrates the link between landcover and climate with the spatio-temporal 

patterns observed. Chapter six is an analysis of gridded air temperature 

measurements provided by Met Éireann linking them to variability in SOS over 

the 7-year period of the study.   Raw air temperatures as well as growing degree 

days were used to explore the SOS-climate interactions. The final chapter 

highlights the major findings of the thesis and assesses the significance of the 

work in the wider context of land surface phenology studies.  The future of the 

research discipline is discussed in terms of upcoming vegetation monitoring 

satellite sensors.  The task of validating satellite-derived phenology products 

with ground-based sensors is also described as is Ireland’s potential contribution 

to this growing field of international research. 
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Chapter 2. Satellite remote sensing of vegetation 

2.1 The Physical Principles of Remote Sensing  

Electromagnetic radiation (EMR) is energy propagated through space via electric 

and magnetic fields. The electromagnetic spectrum (figure 2.1) is the expanse of 

that energy encompassing cosmic rays, gamma rays, X-rays and ultraviolet to 

visible and infrared radiation including microwave energy (EROS, 2011).  

However, the visible, infrared and microwave wavelengths of the spectrum are 

most useful for space-based remote sensing as gamma, x-rays and ultraviolet rays 

are attenuated by the Earth’s atmosphere and are poorly transmitted through 

space. Therefore remote sensing systems such as satellite sensors have been 

designed to measure radiation in very narrow parts of the visible to microwave 

spectrum which allows them to record information about distant objects.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.1: The Electromagnetic Spectrum (John 

Hopkins University, 2011) 



  

17 

 

The wavelike characteristics of electromagnetic radiation form the basis of the 

electromagnetic spectrum (Mather, 1999). The characteristics and behaviour of 

EMR depends on its wavelength, therefore, data about a target object recorded in 

one part of the spectrum, differs from that in other wavelengths of the spectrum 

(SEDAC, 2011). Unlike other wave types which require a medium to travel 

through, e.g. water waves, electromagnetic waves can travel through a vacuum. It 

is this key concept that allows space-borne sensors to record EMR reflected or 

emitted from an Earth-based target located a considerable distance from the 

sensor. The Sun is the main source of EMR. As incident solar radiation 

encounters the Earth’s surface, it is transmitted, absorbed or reflected. Some of 

the absorbed component heats the surface and is reradiated as infrared radiation 

(figure 2.2). However, not all the reflected solar or reradiated thermal radiation 

escapes the Earth’s atmosphere. The processes of absorption, transmission and 

reflectance modify incoming solar radiation as it propagates through the 

atmosphere, for instance, gas molecules scatter and absorb some EMR.  

 

 

 

 

 

 

 

 

 

 

 
Figure 2.2: Solar Radiation is subject to varying atmospheric 
processes in the Earth's Atmosphere (Ackerman and Whittaker, 

2011) 

 



  

18 

 

The energy incident on the Earth’s surface follows the principle of conservation 

of energy:  

Incident Energy = Reflected energy + Absorbed energy + Transmitted energy 

As reflected energy propagates away from the surface of the Earth, it is 

attenuated (weakened) to some degree by the Earth’s atmosphere however; the 

exact magnitude of this is usually unknown. Therefore, the principle of 

conservation of energy is used as a basis to construct radiative transfer equations 

to deduce the unknown quantitative of reflected, absorbed or transmitted solar 

energy when the incident energy is known. Inversely, incident radiation can also 

be derived from satellite reflectance data when the values of the other three 

parameters are known.  In analysing the reflectance properties of an object, the 

remote sensing analyst can infer its spectral characteristics. Some of the various 

physical surfaces encountered by a space-borne satellite sensor are illustrated in 

figure 2.3.  

 

 

 

 

 

 

 

 

 

These surfaces exhibit different physical properties which will determine the 

nature of interaction with incident energy, and as a result, the proportion of 

Figure 2.3: Reflectance from Earth surface features in the remote 

sensing process (CRISP, 2001) 
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energy reflected. When a surface is smooth, such as a paved road, it reflects 

radiation in one direction behaving much like a mirror.  This type of reflectance, 

directed equally in one direction, is known as isotropic reflectance and reflectors 

of this nature can appear as bright surfaces in satellite imagery if energy is 

reflected in the direction of the satellite sensor; otherwise they appear dark. 

However, in the case of a rough surface, such as a tree canopy, the reflected 

radiation will be diffused unequally in many directions, causing surface 

reflectance to vary with the angle of observation; this is known as anisotropic 

reflectance. In order to account for anisotropy, a correction factor known as the 

bidirectional reflectance distribution function (BRDF) is applied to satellite-

measured reflectance data.  

2.1.1 Overview of Optical Remote Sensing  

The optical spectrum spans the visible (blue, green and red) and near-infrared 

wavelengths of the electromagnetic spectrum from 400 to 900 nm. As there is a 

continuum of EMR in the spectrum, a spectral signature for a surface can be 

defined by regular measurements of reflectance at closely–spaced intervals 

within defined wavelength intervals, or bandwidths. This segmentation of the 

spectrum into discrete parts is exploited by multispectral remote sensing, 

providing a tool for readily identifying different surfaces in the same image scene 

by inspection of their spectral signatures. Depending on the sensor’s spectral 

resolution, i.e. the wavelength of electromagnetic waves measured by a sensor, 

how close together the measurement intervals are and the bandwidth of the 

intervals, the spectral signature of an object can be refined to varying levels of 

detail. Therefore, the use of multispectral images for distinguishing surface 

materials increases with the sensor’s spectral range and spectral resolution. 
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Greater spectral resolution results in a clearer separation among the surface 

objects. Hyperspectral sensors measure radiation in very finely-spaced intervals 

and are used to identify subtle differences between surface materials, e.g. 

identification of different rock types. Coarser differences in surface features, e.g., 

grass, soil, snow or bare rock, are easily defined by wider spectral bands 

carefully positioned in the spectrum to exploit the different spectral properties of 

these features. This principle of multispectral remote sensing is illustrated in the 

spectral signatures of figure 2.4 as the percentage reflectance varies according to 

the type of surface material; healthy vegetation is clearly distinguishable from 

clear water in the red and infrared portion of the spectrum (between 0.7 and 1.0 

µm) but is barely distinguishable from turbid water in the green spectrum (0.6-

0.7 µm). Multispectral analysis permits the characterisation of different surfaces 

in satellite imagery, for example urban from rural areas, distinguishing forests 

from fields as well as many other natural and artificial surface categorisations.   

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Multispectral remote sensing. The spectral response of clear water 

and vegetation are clearly distinguishable with increasing wavelength in the 

near infrared (>.7 µm) (CRISP 2001). 
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2.1.2 Further Concepts in Optical Remote Sensing 

The Instantaneous Field Of View (IFOV) of a satellite sensor is a measure of the 

ground area covered by the sensor as it scans across the swath width. Therefore, 

the IFOV is smaller in the centre of the image swath and larger at its edges. The 

IFOV is an important determinant of the sensor’s spatial resolution, which 

indicates the minimum size of the objects that can be identified and thus the 

detail depicted in a satellite image. The spatial resolution is maximised at the 

sensor’s nadir while it degrades towards the edges due to the high angle of 

observation of the instrument and the resultant increase in the IFOV, however 

pixels are later resampled to the same spatial resolution across the image scene. 

The spatial resolution is measured in metres and determines the dimensions of 

the basic image unit, the pixel, which is an averaged percentage energy value per 

unit area.  

The orbit of a remote sensing satellite describes its movement along a fixed path 

in navigating around the globe. Low Earth observation satellites are normally 

near-polar orbiting so that they scan the Earth in strips as they descend in a 

North- South and ascend in a South-North direction across the Equator.  The 

rotation of the Earth in an easterly direction below the sensor ensures that the 

entire Earth surface is imaged over a period of time. As the satellite always 

follows the same orbit, imagery is acquired on a regular and repeatable basis 

although differences in solar illumination conditions at the time of image 

acquisition can be mistakenly interpreted as changing surface conditions.  To 

minimise this effect, Earth observation satellites are sun-synchronous in orbit. A 

sun-synchronous orbit will ensure that imagery is acquired at the same mean 

local solar time for any point on the Earth’s surface at the same time each year. 
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However, seasonal variations in the angle of solar illumination means that 

illumination conditions are different even for imagery acquired at the same time 

of day, especially at higher latitudes. The reliance of optical sensors on the Sun 

as a source of illumination prevents them from functioning at night. Clouds pose 

a further challenge as water vapour absorbs near infrared radiation and reflects 

visible light; therefore, acquiring clear imagery of the Earth’s surface is 

impossible in the optical domain where cloud cover is present.  

2.2. Monitoring Vegetation Using Optical Sensors 

Healthy, living, green vegetation synthesises food through a series of complex 

chemical reactions, harnessing carbon dioxide in the atmosphere and releasing 

oxygen in a process called photosynthesis. Chemical reactions driving the 

process take place in the presence of the chlorophyll in the leaf and are activated 

by incident solar radiation (Campbell, 2002). Photosynthesising plants strongly 

absorb light in the red portion of the visible spectrum and strongly scatter it in 

the near infrared portion, as can be seen from the spectral signature of vegetation 

in figure 2.4. This differential reflectance of light is due to the internal leaf 

structure of plants (Campbell, 2002). The inverse relationship in reflectance 

between the red and infrared spectrum is captured in the location of the Red Edge 

Position (REP) which marks the transition from red absorption to near infrared 

reflection. The accurate detection of red and near infrared reflectance and the 

determination of the REP forms the basis for the construction of vegetation 

indices (see section 2.3). The scattering of light in a vegetation canopy can be 

more complex than that from an individual leaf. However, as internal reflection 

occurs between the soil and various canopy layers, and reflection shadows are 
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created between them. Indeed, it has been shown that the strength of the satellite-

measured NIR reflectance from coniferous trees is determined by the canopy 

volume due to this internal scattering effect (Danson and Curran, 1993).   

Optical satellite sensors employed for the monitoring of vegetation are designed 

to measure reflectance using spectral bands in the visible (400 nm – 700 nm) and 

near (700-1100 nm) to mid (1100 – 3000 nm) infrared portion of the 

electromagnetic spectrum. Satellite sensors that are commonly employed for 

vegetation monitoring are briefly described below and their characteristics 

summarised in table 2.1. The sensors can be broadly categorised into three 

groups determined by their spatial resolution. Coarse spatial resolution sensors (> 

1km) offer daily global coverage of large areas but in low spatial detail. Medium 

spatial resolution sensors (250m-1km) image the globe in one to three days but 

generally offer better spectral range and resolution and finer image detail than 

broad coverage sensors.  High spatial resolution sensors (1- 250m) can take 

approximately two weeks to acquire global image data but provide a higher level 

of spatial detail with a moderate spectral range and resolution. Very high spatial 

resolution sensors (≤ 1m) allow extremely precise spatial details to be resolved in 

narrow-swath imagery, however this is typically in a limited range of spectral 

bands and they are therefore rarely used in vegetation monitoring applications. 
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Table 2.1: Current optical sensors used for vegetation monitoring (FR=Full Resolution, RR=Reduced Resolution, VIS=Visible, NIR=Near Infrared, 

TIR=Thermal Infrared, LWIR=Long Wave Infrared, PAN=Panchromatic)

Platform Sensor Launch 

date 

Orbit 

Altitude 

(km) 

Swath 

Width 

(km) 

Revisit 

Time 

(days) 

Spatial & Spectral Resolution Band 

Arrangement 

Status 

No. of 

bands 

Spatial resolution 

(Metres) 

Spectral Range 

(nm) 

Access Cost 

Envisat MERIS 2002 800 1150 
(FR)/ 575 
(RR) 

3 15 300 (FR)/ 1200 (RR) VIS  (412-775) 
NIR (865-900) 

1-12 (VIS) 
13-15 (NIR  

G-POD No charge 

Terra  MODIS 1999 705 2330 1-2 36 250 (bands 1-2) 
500  (bands 3-7) 
1000 (bands 8-36) 

VIS (405-753) 
NIR (841-1250) 
 

1,3,4,8-15 (VIS) 
2,5,16-19 (NIR) 

Different  online 
archive depending 
on desired product 
No charge 

Aqua 2002 

NOAA10,11,12
,14, METOP 

AVHRR 2 1986-2006 817-870 3000 0.5 5 1100 (FR)/ 4000 (RR) VIS (580-680) 
NIR (725-1100, 1580-
1640) 

1(VIS), 2 (NIR), 3 
(SWIR), 4-5 (TIR) 

Global datasets 
freely available 

AVHRR 3 6 

1 (VIS) 
2, 3A (NIR) 
3B, 4,5 (TIR) 

SPOT 4 VEGETATION 1998 832 2250 1  4 1000 
 

VIS ( 430-470, 610-
680),NIR (780-890) 

1-2 (VIS) 
3 (NIR) 

On request from 
SPOT with costing 

SPOT 5 2002 

Orbview-2 SeaWiFS 1997 705 2801(FR)/
1502(RR) 

1 8 1100 (FR)/4500 (RR) VIS (402-785) 
NIR (845-885) 

1-7 (VIS) 
8 (NIR) 

Freely available for 
research 

Landsat 5 Thematic 
Mapper (TM) 

1984 705 185 16 7 
 

30 (bands 1-5,7) 
120 (band 6) 

VIS (450-900) 
NIR (1550-1750) 
TIR  (10,400-12,500) 
 

1-4 (VIS),5(NIR), 
6 (TIR),  7 (FIR) 
 

Freely available for 
research:  
USGS Earth 
Explorer tool  

Landsat 7 Enhanced 
Thematic 
Mapper (ETM) 

1999 705 183 16 8 30 (bands 1-5,7) 
60 (band 6) 
 15 (band 8) Same as Landsat 5 with: 

LWIR (2,090-2,350) 
Pan (520-900) 

1-4 (VIS), 5 
(SWIR), 6 (TIR), 
7 (LWIR), 8 
(PAN) 
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2.2.1 Broad scale monitoring sensors 

Broad scale coverage satellite sensors are designed to gather large quantities of data 

at coarse spatial resolutions in order to examine global-scale Earth surface processes 

(Reed et al., 1994). These sensors tend to have fewer spectral bands operating over a 

narrower spectral range. As these sensors image large areas of the Earth in one pass, 

they have a high revisit frequency of once or twice daily. Broad scale satellite 

sensors discussed here are the Advanced Very High Resolution Radiometer 

(AVHRR), Système Probatoire d’Observation de la Terre (SPOT) VEGETATION 

and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). 

2.2.1.1 National Oceanic and Atmospheric Administration (NOAA) 

Advanced Very High Resolution Radiometer (AVHRR), NOAA-AVHRR.  

The NOAA -AVHRR sensors are mounted on near-polar orbiting, sun-synchronous 

weather satellites and have been in operation since 1982.  Advantages for 

monitoring vegetation dynamics are the high temporal frequency of NOAA satellites 

and their broad scale coverage afforded by a swath width of 1.1 km, which resulted 

in AVHRR images being the only data suitable for global-scale remote sensing of 

vegetation in the 1980s and 1990s (Townshend et al., 1985).  Numerous studies on 

global scale vegetation dynamics have resulted (Chen et al., 2005, Xiao and Moody, 

2005, Maignan et al., 2008, Reed et al., 1994). Some issues with atmospheric 

interference have arisen in the use of AVHRR data. Early studies noted the error in 

AVHRR 2 data due to interference from cloud cover (Justice et al., 1985). In 

attempting to rectify this problem a thermal infrared band was included in AVHRR 
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3 for the improved detection of cloud. Nevertheless, it is still suggested that the 

broad width of the red and near infrared spectral bands (580–680 nm; 720 –1100 

nm), which include the spectral region of water absorption, remain sensitive to 

fluctuations in seasonal water vapour in the atmosphere (Kawamura et al., 2004). 

More recent AVHRR datasets, such as the Global Inventory Mapping and 

Monitoring Studies (GIMMS), have been enhanced through the implementation of 

atmospheric adjustments and more precise angular measurements (Julien and 

Sobrino, 2009).  

2.2.1.2 SPOT VEGETATION  

The VEGETATION 1 sensor was launched in 1998 followed by VEGETATION 2 

in 2002, carried on board SPOT satellites 4 and 5 respectively.  The sensors are 

uniquely designed for the purpose of global vegetation monitoring. The orbit is near-

polar and sun-synchronous, descending across the Equator at 10:30 a.m. local solar 

time. Data applications include the study of atmosphere-biosphere exchanges, for 

example the exchanges of heat between the land and atmosphere which are 

influenced by vegetation dynamics, as well as land cover mapping, ecosystem 

production estimates and the modelling of nutrient cycling through the biosphere. 

The SPOT VEGETATION instruments have four spectral bands:  blue for 

atmospheric correction, red and near infrared for photosynthetic monitoring and 

shortwave infrared for vegetation moisture content. This band arrangement is 

identical to that of the SPOT HRVIR (High-Resolution Visible & Infrared) and 

HRV (High-Resolution Visible) instruments; however these replace the blue band 
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with green. Mid to high latitudes (above and below 35° North and South) are imaged 

at least once a day at a spatial resolution of one kilometre. The SPOT 

VEGETATION bandwidth is quite large for red (70 nm) and near infrared (110 nm) 

compared to the narrower bandwidth offered by other sensors such as Envisat 

MERIS (10 nm) or Terra/Aqua MODIS (3.75-15 nm).  

2.2.1.3 National Aeronautics and Space Administration (NASA) Sea-viewing 

Wide Field-of-view Sensor (SeaWiFs) 

The SeaWiFS sensor is mounted onboard the OrbView-2 spacecraft which has been 

in operation since 1997, in a sun-synchronous, near- polar orbit, passing the Equator 

at 12 noon local solar time. Reflectance is measured in eight spectral bands ranging 

from the blue to the near infrared (Feldman, 2011).  As it is designed to monitor 

oceanic processes such as rate of photosynthesis in microscopic ocean plants, 

terrestrial chlorophyll amounts can also be readily measured (Hooker et al., 1992). 

The data are recorded at two levels of resolution, 1.1 km local area coverage (LAC) 

and 4.5 km global area coverage (GAC), and global coverage is complete in two 

days.  The terrestrial vegetation information gathered by the sensor has been 

implemented in the study of large scale vegetation dynamics at a spatial resolution 

of two kilometres (Gobron et al., 2006a). 

2.2.2 Regional scale monitoring sensors 

The medium spatial resolution satellite sensors were developed to compensate for 

the lack of spatial and spectral resolution offered by coarser spatial resolution, 

broad-scale coverage sensors. Technological advancements in the design of medium 
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spatial resolution satellite sensors also allowed more onboard data storage and 

lighter payloads. The regional scale sensor has a typical spatial resolution of 

somewhere between 200 and 500 metres and has a large array of finely-tuned 

spectral bands. In covering smaller areas of the Earth in greater detail, medium 

resolution satellites have a more infrequent revisit time, between 1 and 3 days, than 

broad scale satellites. Here the MERIS and MODIS medium spatial resolution 

satellite sensors are discussed. 

2.2.2.1 Terra/Aqua (MODIS) Moderate-Resolution Imaging 

Spectroradiometer  

The Moderate-Resolution Imaging Spectroradiometer (MODIS), aboard NASA 

satellites,  Terra launched in 1999 and Aqua launched in 2002, acquires data in 36 

spectral bands, covering a spectral range from the visible to the near, mid and 

shortwave infrared as well as thermal infrared. As the sensor platforms, Terra and 

Aqua, cross the Equator in opposite directions a few hours apart, the same area can 

be viewed by both sensors in the morning and afternoon; the whole Earth’s surface 

being imaged in 1 to 2 days (Maccherone, 2011). This capability allows the satellites 

to monitor events twice daily over the Equator with increasing regularity towards the 

Poles. MODIS has ground spatial resolutions of 250m, 500m and 1km, depending 

on the spectral band (see table 2.1).  

2.2.2.2. Envisat (MERIS) Medium Resolution Imaging Spectrometer  

The Medium Resolution Imaging Spectrometer (MERIS), launched in 2002, is an 

oceanic and terrestrial monitoring sensor aboard the Envisat platform which is in a 
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sun-synchronous, near-polar orbit with an acquisition time of 10 a.m. mean local 

solar time (ESA, 2006a). The MERIS sensor can be classed as a coarse or medium 

spatial resolution sensor as data are acquired at full spatial resolution (300m) and 

reduced spatial resolution of (1.2 km) at the sub satellite point (ESA, 2006b). Global 

coverage is achieved in 3 days, data are acquired in 15 spectral bands, and the bands 

are programmable in order to alter the bandwidth for different applications (see table 

2.2). Although the sensor was primarily designed as an ocean-colour monitoring 

sensor, terrestrial parameters such as the amount of photosynthetically active 

radiation are also derived (Rast and Bezy, 1999). Surface reflectance values in bands 

5, 8 and 13 detect chlorophyll content in plant tissues, while band 2 is sensitive to 

atmosphere. A combination of these bands is used to produce measures of vegetation 

growth (ESA, 2006a).  
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Table 2.2: MERIS spectral band characteristics (ESA, 2005) 

Band 

Number 

Spectral region 

(nm) 

Band Width 

(nm) 

Application 

1 412.5 10 Yellow substance and detrital pigments 

2 442.5 10 Chlorophyll absorption maximum 

3 490 10 Chlorophyll and other pigments 

4 510 10 Suspended sediment, red tides 

5 560 10 Chlorophyll absorption minimum 

6 620 10 Suspended sediment 

7 665 10 Chlorophyll absorption & fluorescence 
reference 

8 681.25 7.5 Chlorophyll fluorescence peak 

9 708.75 10 Fluorescence reference, atmosphere 
corrections 

10 753.75 7.5 Vegetation, cloud 

11 760.63 3.75 O2 R- branch absorption band 

12 778.75 15 Atmosphere corrections 

13 865 20 Vegetation, water vapour reference 

14 885 10 Atmosphere corrections 

15 900 10 Water vapour, land 

 

 

2.2.3 Local Scale Monitoring 

Local-scale monitoring sensors are capable of high detail imagery of small areas. 

The concept of smaller, special purpose sensors addressed the need for precision 

applications of remotely-sensed data for specific users, e.g. linking fieldwork 

findings to satellite observations and vice versa, as well as applications in disaster 

relief and emergency responses.  Here, the Landsat satellite systems are discussed 

because of their significance as predecessors to the more recently developed, 
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privately-operated very high spatial resolution IKONOS, Quickbird and WorldView-

1 sensors.  

2.2.3.1 Landsat Multi Spectral Scanner (MSS) and Thematic Mapper 

(TM/ETM+) 

Landsat satellites provide a long time series of remotely sensed imagery from 

Landsat 1 in 1972 to the present Landsat 7 since 1999. The first five Landsat 

missions carried a MSS with four spectral bands covering the green, red and near 

infrared portions of the spectrum, however Landsat 3 also carried a fifth thermal 

band (Campbell, 2002).  The MSS IFOV is 68 by 83 metres producing a pixel of 

79m spatial resolution at nadir which was later improved to 30m in the Thematic 

Mapper (TM) from Landsat 5 onwards. This spatial resolution is of particular 

advantage in small areas of heterogeneous vegetation, but the 16-day  revisit time is 

insufficient to detect rapid surface change especially under consistently cloudy areas 

(Justice et al., 1985). Two near infrared bands are used to cover a broad width of the 

spectrum (400nm), in comparison to MERIS which also has two near infrared bands 

but a much narrower region (135nm) or MODIS which has six bands in an equally 

broad spectrum (409 nm). Therefore, the temporal resolution and spectral range of 

the Landsat sensors is not appropriate for monitoring vegetation seasonality at fine 

temporal resolution over large areas. However, the Landsat spatial resolution  is 

advantageous for comparison to ground-based measures of vegetation growth 

especially on a local scale e.g. deciduous forest stands in southern New England, 

United States  (Fisher et al., 2006).  
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2.2.3.2 GeoEye-1, IKONOS, Quickbird, WorldView-1 and WorldView-2 

The very high spatial resolution satellite sensors such as GeoEye-1, IKONOS, 

Quickbird and WorldView are commercial Earth-imaging satellites which have 

evolved from military technology designed to acquire very high detailed imagery of 

small areas for surveillance purposes (Campbell, 2002).  The IKONOS system was 

launched in 1999, Quickbird in 2001, WorldView-1 in 2007, GeoEye-1 in 2008 and 

WorldView-2 in 2009. The sensors acquire data in panchromatic and/or 

multispectral mode. In panchromatic mode, IKONOS acquires data at 0.82m spatial 

resolution and Quickbird at 0.61m resolution, while in multispectral mode, IKONOS 

imagery is at 4m spatial resolution and Quickbird is 2.44 m.  WorldView-1 operates 

in panchromatic mode only (400-900 nm) and gathers imagery at 0.5m spatial 

resolution. However, WorldView-2 is an 8-band multi-spectral sensor which 

provides 0.46m panchromatic resolution and 1.85m multispectral resolution. 

GeoEye-1 has the finest spatial resolution of these sensors in panchromatic mode 

(0.41m, resampled to 0.5m for all users except the US government) while it acquires 

1.65m multispectral imagery. In order to provide fine detail coverage of small areas, 

the image swath of these sensors is narrow compared to lower spatial resolution 

sensors. For example, the swath is only 11 km wide for IKONOS, 15.2 km for 

GeoEye-1, 16.4 km for WorldView-2, 16.5 km for Quickbird and 17.7 km for 

WorldView-1. The IKONOS and GeoEye-1 systems are marketed under the brand 

name GeoEye (GeoEye, 2011) and the Quickbird, WorldView-1 and WorldView-2 

sensors form a constellation of sensors operated by DigitalGlobe (DigitalGlobe, 
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2011). Applications of such high spatial resolution imagery include disaster relief, 

emergency planning, risk assessment, monitoring emergency response, damage 

assessment and recovery, change detection and in-depth image analysis.  

2.3 Vegetation Indices and their application to vegetation 

monitoring 

Meaningful data about the biophysical properties, state and health of living green 

vegetation can be derived from a mathematical combination of red and near infrared 

reflectance values to produce a vegetation index (VI). Though the VI is 

mathematically derived to produce a single value, its interpretation is based on the 

actual physical characteristics of the vegetation surface. Generally, the VI is 

designed to indicate the presence of green vegetation in an image, the higher the 

value, the higher the vegetative content. The VI data can act as a proxy for other 

vegetation parameters such as plant biomass and growth vigour (Butterfield and 

Malmstrom, 2009). The methods used to derive VIs vary in complexity as much as 

the input satellite data used to generate them. A selection of these indices is briefly 

described below in order of complexity and represents an evolution in the techniques 

used to derive VI data. 

2.3.1 Simple vegetation Indices 

 2.3.1.1 Simple Ratio (SR) Index 

The SR index represents the inverse relationship between spectral reflectance from 

growing vegetation in the red and near infrared spectrum (equation 1). The band 
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ratio method is effective because it produces a single value which is a function of the 

contrast between the two bands’ reflectance. The SR is limited to the range 

0≤SR<∞. 

Equation 1: the Simple Ratio (SR) index is the basic ratio of red to near infrared reflectance  
SR=NIR/R   

Where,  

NIR is near-infrared reflectance  

R is visible-red reflectance 

The most vegetated surfaces have a SR value of approximately 10 and non-vegetated 

surfaces, e.g. bare soil a SR value closer to 1.25 (Pinty and Verstraete, 1992). The 

varying magnitude of this ratio is useful in qualitatively assessing the abundance and 

vigour of vegetation over an area, as well as in the discrimination of vegetated from 

non-vegetated surfaces. The weakness of this simple, linear combination is that any 

error in the red and near infrared sensor measurements due to atmospheric or angular 

interference is included in the measurement.  

2.3.1.2 Normalised Difference Vegetation Index (NDVI) 

The NDVI captures the contrast between the visible-red and near-infrared 

reflectance of vegetation canopies (equation 2), much like the SR index, except that 

its range is limited between -1 and +1.  

Equation 2: The NDVI ratio is based on the normalised differences in red and near infrared 

reflectance 
NDVI= (NIR-RED)/ (NIR+RED) 

NDVI values in the range 0.1 to 1.0 represent increasing amounts of vegetation; 

however Huete et al. (2002) found the upper limits of the MODIS NDVI to be 
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clearly defined at 0.90. The effectiveness of this index is in its simplicity in that it 

uses the principle of band ratios to exploit the inverse red/near infrared relationship, 

and it is normalised to allow direct comparison of images from different locations. 

The resulting ratio is sensitive to the physiological state of the plant and its growth 

stage. However, the weakness of the NDVI, like the SR index, is its sensitivity to 

factors other than the plants growth such as atmospheric turbidity and soil 

brightness. The fact that NDVI values derived from different sensors are not easily 

comparable (due to different bandwidths of red and NIR sensors) and nonlinear in 

that values saturate in densely vegetated areas (Huete et al., 2002), leads to problems 

with its use. Furthermore, it has been suggested that the inherent complexity of the 

vegetation spectral response is lost in the NDVI ratio method and too simply 

summarised in a single number (Pinty and Verstraete, 1998).  Nevertheless, NDVI 

remains one of the most widely used indices to discriminate green vegetation.   

Comparisons of NDVI from different sensors is difficult because bandwidths and 

viewing angle vary according to the sensor, and hence provide non-comparable 

information about the vegetative state. The same is true in comparing values of 

NDVI over a period of time when external factors are constantly changing. In a 

comparison study of MODIS derived NDVI and the NDVI derived from the 

AVHRR, the MODIS index was proved to be more robust to changes in biome type, 

particularly in a humid atmosphere where the AVHRR-NIR band is distorted by 

atmospheric water vapour (Huete et al., 2002).  This result was verified in 

comparing NDVI derived from AVHRR GIMMS (Global Inventory Modelling and 
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Mapping Studies) with MODIS NDVI and SPOT VEGETATION (VGT) NDVI for 

a time series of overlapping years from 2000 to 2007 for both semi-arid and humid 

zones of the African Sahel (Fensholt et al., 2009). The slope values resulting from a 

linear least squares regression trend analysis of the average annual NDVI profiles 

differed considerably, especially in zones of different precipitation amounts. The 

SPOT VGT NDVI had positive slope values while the MODIS NDVI had negative 

slope values in areas of medium density vegetation (>1000 mm rainfall), but 

inconsistencies arising from the VGT 1 to the VGT 2 switch in 2003 may have 

influenced results. The AVHRR GIMMS NDVI and MODIS NDVI regression slope 

values were closer in the semi-arid areas than in zones of higher humidity. This 

suggests that comparing NDVI trends from different sensors becomes less reliable 

with increasing humidity.   

2.3.2 Intermediate Vegetation Indices 

2.3.2.1 Global Environmental Monitoring Index (GEMI) 

Initial research on minimising the influence of atmospheric processes like scattering 

and absorption, focused on the NDVI and Simple Ratio (SR) index values, and 

incorporated mathematical parameters in the index calculation to simulate the 

atmosphere (Pinty and Verstraete, 1992). The goal of the Global Environmental 

Monitoring Index (GEMI) was to maximise the transmission of spectral information 

through the atmosphere so that the ratio of the top of atmosphere (TOA) reflectance 

to surface reflectance would be as close to 1 as possible. The mathematical formula 
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to derive the GEMI from red and near infrared reflectance data is shown in equation 

3.  

Equation 3: The non-linear index GEMI which contains the same spectral input information as 
SR or NDVI but with atmospheric interference accounted for 
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The values of the GEMI index vary between 0 and + 1 over continental areas, 

equivalent to the SR range between 1 and infinity, or NDVI between 0 and + 1. 

However, although there is no loss of vegetation information in the GEMI 

calculation, it is less sensitive to atmospheric interference than NDVI because the 

relative influence of atmospheric processes such as scattering and absorption have 

been removed. Additionally, for the first time in vegetation index design, GEMI 

accounted for soil optical properties, as well as atmospheric effects for a globally-

averaged standard atmosphere. This resulted in high sensitivity of the index to bright 

surfaces such as desert soils, snow and clouds (Verstraete and Pinty, 1996). 

2.3.2.2 Soil Adjusted Vegetation Index (SAVI) 

The goal of the SAVI was to minimise the influence of soil brightness in spectral 

vegetation indices using red and near-infrared wavelengths (Huete, 1988). This 
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advancement minimised some of the uncertainty in simple VIs since it reduces 

interference from the background reflectance of the soil surface underlying the 

vegetation which, in the case of non-soil adjusted indices, contributes to a mixed 

soil-vegetation spectral response. The SAVI combination of red and near infrared 

reflectance values and a soil parameter can be seen in equation 4.  

Equation 4: the SAVI accounts for soil optical properties and so is useful in arid or sparsely-

vegetated areas 
SAVI= [NIR-R/NIR+R+L] [1+L] 

Where L is an empirically-determined soil-adjustment parameter. 

 SAVI is used in partially vegetated areas such as arid ecosystems as it is more 

sensitive than the NDVI to variation in vegetative cover (Huete, 1988). 

2.3.2.3 Tasselled Cap 

The aim of the Tasselled Cap technique is to separate out soil reflectance data from 

vegetation reflectance data in two-dimensional data space so that the major 

components of an agricultural scene in one dimension are clearly separable from the 

background, redundant information. It was pioneered by Kauth and Thomas (1976) 

working on combinations of four bands from the Multispectral Scanner Subsystem 

(MSS) onboard Landsat 1, 2, 3, 4 and 5. The four output bands conceived by Kauth 

and Thomas (1976) are termed ‘brightness, ‘greenness’, ‘yellowness’ and ‘non 

such’. The advantages of the Tasselled Cap transformation is that the first two 

bands, brightness and greenness, contain most of the useful information on an 

agricultural scene. In plotting data for an entire growing season in two-dimensions, 

the distribution of these values takes a consistent form, that of a cap-like shape. The 
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information contained in the ‘yellowness’ band is of little use, describing unhealthy 

and withering vegetation, the ‘non such’ band represents atmospheric noise.  

2.3.3Optimised Vegetation Indices 

The SR index, NDVI, GEMI, SAVI and Tasselled Cap indices have been widely 

used to date. However, the idea of an optimal spectral index was conceived in order 

to integrate physical modelling with remotely-sensed reflectance measurements 

which could be targeted for specific end user applications, satellite instruments and 

vegetation parameters (Verstraete and Pinty, 1996). The advantage of an optimal 

spectral index is in the ability to set fixed values for the parameters which artificially 

change the measurement from that which would be expected from a pure vegetation 

spectral response. For instance, parameter values for soil brightness and atmospheric 

scattering can be set in a radiative transfer equation for which the solution is 

provided by the sensor-derived reflectance measurements. The remaining unknown 

value is the vegetation parameter itself, which is easily solved by inverse modelling.  

In this way, the vegetation index is the component of the equation whose value 

represents the vegetation photosynthetic activity alone. Therefore it is very sensitive 

to the presence and state of the vegetation cover but insensitive to external factors. 

However, the parameters must be tuned for sensor-specific characteristics, which 

therefore require prior knowledge of a sensor for optimisation (Verstraete and Pinty, 

1996). An example of an optimal index is the MERIS Global Vegetation Index 

(MGVI) which has been optimised to estimate a biophysical variable of vegetation 
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growth known as the Fraction of Absorbed Photosynthetically Active Radiation 

(FAPAR) (Gobron et al., 1999, Govaerts et al., 1999). 

2.3.3.1 MERIS Global Vegetation Index (MGVI) 

The MGVI algorithm has been designed to exhibit maximum sensitivity to the 

presence of green vegetation, and minimal sensitivity to atmospheric interference, 

soil brightness and angles of illumination and observation. The MGVI acts as an 

integrated indicator of the vegetation cover in terms of photosynthetic activity and 

vegetation health (Gobron et al., 1999).  The index has evolved from theoretical 

work on optimal spectral indices such as the GEMI, which showed the benefits of 

optimising indices for specific applications and sensors rather than applying the 

generic NDVI (Verstraete and Pinty, 1996, Pinty and Verstraete, 1992). The theory 

was put into practice with the advent of sensors like MERIS and MODIS which 

provided the required technical specification for designing optimal indices, e.g. the 

presence of a blue spectral band.  Feasibility studies were carried out on MERIS data 

to optimise an index for the Fraction of Absorbed Photosynthetically Active 

Radiation (FAPAR) (Govaerts et al., 1999). Subsequent work focused on the 

physical and mathematical basis for an index optimised for the MERIS sensor and to 

estimate FAPAR which became known as the MERIS Global Vegetation Index 

(MGVI) (Gobron et al., 1999). The design of the generic FAPAR algorithm is 

described from equations 5-6 (Joint Research Centre (JRC), 2011). The calculation 

of FAPAR from red, near infrared and blue reflectance values follows a two step 



 

 

41 

 

procedure, the first of which normalises the top of atmosphere (toa) channel values 

by the anisotropy function to take into account the angular effects (Eq. 5).  

Equation 5: The rectification of red and near infrared reflectance values 
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where λi stands for the wavelength (blue (442 nm), red (681 nm) or near-infrared 

(865 nm)) of spectral band i, and ρtoa(Ω0, Ωv, λi) denotes the Bidirectional 

Reflectance Factor (BRF) values measured by the sensor in the spectral band λi, as a 

function of the actual geometry of illumination (Ω0) and observation (Ωv). The 

spectral anisotropy reflectance function, F(Ω0, Ωv, kλi, Ω
HG
λi, ρλic), represents the 

shape of the radiance field. The triplet (kλi, Ω
HG
λi, ρλic) is the bidirectional reflectance 

model (called the RPV model). In the case of MERIS FAPAR, illumination 

conditions are simulated at solar zenith angles at 20° and 50°, and observation 

angles at a satellite zenith angle of 0° and 25°  (Gobron et al., 1999). The 

rectification of the red and near infrared band is then carried out:  
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The rectification process produces estimated values of red and near infrared spectral 

reflectance emerging at the top of the canopy (toc) corrected for atmospheric and 

angular radiative effects. The rectified red and near infrared bands are then 

combined together in the second step of the procedure using a mathematical formula 

to generate the FAPAR values (Eq. 6) (Gobron et al., 2006a).  
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Equation 6: The calculation of FAPAR from the rectified reflectance values 
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Where the coefficients l0,m of polynomial g0 have been optimized a priori to force 

g0(ρRred, ρRnir) to take on values as close as possible to the FAPAR simulated in 

various plant canopy scenarios used to train the algorithm.  Once the coefficients are 

optimized for a specific sensor, the inputs of the algorithm are the BRF values in the 

blue, red and near-infrared bands and the observation and illumination angles values. 

The JRC MERIS FAPAR is determined from direct incoming radiation and is 

estimated for green leaves without the background absorption of woody materials 

such as tree bark (Gobron and Verstraete, 2008 ).   In contrast the NASA MODIS 

FAPAR is a measure of both direct and diffuse radiation and would therefore be 

expected to produce slightly different estimates of absorbed PAR in the vegetation 

canopy.  

 

The Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) is a 

biogeophysical measure of vegetation growth but is a unitless value that estimates 

the fraction of the incoming solar radiation at the top of the vegetation canopy. 

Numerical values of FAPAR are scaled continuously in ever increasing amounts of 

vegetation from 0 (non-vegetated) to 1 (fully vegetated).  The typical range of 

FAPAR for a beech forest (Fagus Sylvatica) measured from May to June from 

SeaWiFS data is from 0.2 to 0.9, while it is around 0.4 for much of the year in 
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evergreen-dominated vegetation (Quercus ilex) with higher peaks in April and 

November  (Gobron et al., 2006b). The surface area receiving the Photosynthetically 

Active Radiation (PAR) is determined by the leaf area of the vegetation canopy 

estimated by the Leaf Area Index (LAI), therefore FAPAR is largely controlled by 

LAI (Arndt et al., 2010). The LAI has been found to be a better correlate of the REP 

than pure reflectance data or NDVI  (Danson and Plummer, 1995). In this way, there 

is a quantifiable relationship linking VI data with other biogeophysical parameters 

such as LAI and FAPAR which require sensor-specific algorithms to model. In a 

comparison of the performance of the JRC, MODIS, CYCLOPES and 

GLOBCARBON FAPAR products over Northern Eurasia in the year 2000 

(McCallum et al., 2010), the MODIS, CYCLOPES and JRC FAPAR values were 

consistent for croplands and deciduous broadleaf forests but in other cover types 

such as needle leaf and mixed forests, there tended to be noticeable differences. 

Overall, for Northern Eurasia in the year 2000, the JRC FAPAR was found to be the 

most conservative estimate of FAPAR which can be applied across all landcover 

types, in contrast to the other products which were inconsistent when compared 

between land cover types.  It was also noted that MODIS and CYCLOPES FAPAR 

values were, on average, higher than FAPAR values from the other two methods due 

to the algorithm design or sensor-related differences. Similarly, in comparing 

MERIS and MODIS FAPAR over local sites and at the regional scale across the 

Iberian Peninsula, the MODIS values were consistently higher than MERIS FAPAR 

and they also showed higher regional spatial variability. Additionally, there was 
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seasonality in the correlation between the datasets with higher values in summer and 

lower values in winter (Seixas et al., 2009). In an assessment of the performance of 

two JRC-FAPAR products, SeaWiFs and MERIS, over a number of European sites 

in 2003 (Gobron et al., 2003), it was shown that the average difference between the 

products is within the stated accuracy range of the JRC FAPAR product (±0.1 

FAPAR).  These studies have confirmed that there appears to be a consistency to the 

MERIS FAPAR product when applied to a variety of vegetation types and spatial 

scales which was not present in the other sensor FAPAR products. The FAPAR has 

been recognised by the Global Climate Observing System (GCOS) as one of 16 

terrestrial Essential Climate Variables. As an integrated indicator of the physical, 

physiological and biochemical status of the plant cover, satellite-derived FAPAR has 

been applied to the study of vegetation dynamics at a variety of spatial and temporal 

scales (Gobron et al., 2005a, 2005b, and 2007, Verstraete et al., 2008) and has been 

used as a proxy measure of gross primary productivity (Jung et al., 2008). For 

instance, the FAPAR has been used in drought detection (Gobron et al., 2005) and to 

highlight global and regional anomalies in vegetation productivity (Arndt et al., 

2010). In the 2009 global FAPAR anomalies, areas of the southern hemisphere were 

shown to be suffering severe drought while areas of the Northern Hemisphere 

experienced favourable growing conditions. There were however, consistent 

negative anomalies between 30°S and 50 °S which were related to increased aridity 

associated with the Southern Oscillation Index (SOI). Globally-averaged FAPAR 

anomalies from 2000 to 2009 have revealed a decline in the FAPAR from 2000 to 
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2003 and since 2007 which may be indicative of a reduction in CO2 assimilation by 

vegetation (Gobron et al., 2010). 

2.3.3.2 MODIS Enhanced Vegetation Index (EVI) 

The MODIS EVI and NDVI are both globally produced indices at 250m, 1km and 

500m spatial resolutions which complement each other in terms of temporal and 

spatial coverage. The MODIS NDVI was designed to extend the AVHRR NDVI 

time series, and the EVI has optimised the vegetation signal to respond more 

effectively to high biomass regions where NDVI tended to saturate (Kawamura et 

al., 2005). Overall, the MODIS EVI has improved vegetation monitoring through 

careful removal of the canopy background signal and corrections for Raleigh 

scattering and ozone absorption (Huete et al., 2002).  Whereas the NDVI is 

chlorophyll sensitive, the EVI is more sensitive to variation in the canopy structure, 

including leaf area index (LAI), canopy type, plant physiognomy, and canopy 

architecture (Huete et al., 2002, Boyd et al., 2011). The EVI atmospheric correction 

also utilises blue band data using the wavelength dependency concept of aerosol 

scattering (Huete et al., 2002).   

2.3.3.3 Advantages of optimised indices for vegetation monitoring  

The inclusion of the blue band in atmospheric correction for MODIS EVI and the 

MERIS GVI is a clear advantage over simpler VIs, such as the NDVI derived from 

the AVHRR which does not have an automated correction procedure in the absence 

of a blue channel. Techniques such as bidirectionally-adjusted reflectance values and 

radiative transfer modelling have minimised the influence of changing angles of 
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illumination and observation, atmospheric interference and soil background 

reflectance on the VI value. The MGVI has been shown to be a better indicator of 

the impact of the 2003 European-wide drought in the seasonality of vegetation in 

comparison to the NDVI. For a site of agricultural crops near Chartres, France, it 

was shown that there were greater noise levels in the NDVI time series which made 

it difficult to detect annual vegetation seasonality compared to the MGVI. In the 

drought year of 2003, any potential NDVI response to the drought was masked by 

such noise (Gobron et al., 2005). Huete et al. (2002) compared the difference of 

MODIS NDVI with that of MODIS EVI across different biomes, from humid 

tropical to arid. Though the NDVI and EVI contain similar information on several 

variables of vegetation growth such as Leaf Area Index (LAI), Photosynthetically 

Active Radiation (PAR) and chlorophyll activity, EVI was found to exhibit 

increased sensitivity in densely vegetated areas. Additionally, the EVI had been 

better designed than NDVI in separating out reflectance from the background 

canopy (underlying leaf litter and rock substrates) from the photosynthetically active 

leaf canopy.  

2.4 Remote Sensing of Land Surface Phenology (LSP) 

Repeatable and large-scale measures of vegetation growth from satellite sensors 

have provided a global view of landcover change and vegetation ecosystem 

dynamics (Justice et al., 1985, Townshend et al., 1985). The study of phenology, in 

particular, has benefited from the synthesis of satellite and ground-based measures 
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(Soudani et al., 2008, Studer et al., 2007). The term Land Surface Phenology (LSP) 

has been conceived to describe the study of the spatio-temporal development of the 

vegetated land surface as revealed by synoptic space borne sensors (White et al., 

2009). This definition is distinct from traditional definitions of phenology which 

refer to specific life cycle events in individual plants or species (see section1.1). 

However, although the observed patterns in remotely sensed phenology are still 

related to biological phenomena, they are distinct from ground-based events owing 

to the aggregation of information at moderate (500m) to coarse (25km) spatial 

resolutions  (Friedl et al., 2010). An important characteristic of LSP monitoring, 

which distinguishes it from ground-based phenology observations is that remotely-

sensed phenological patterns are observed from multiple vegetation systems and not 

a single plant or tree species. These patterns can also be influenced by spatio-

temporal changes in agricultural practices, and other human influences such as 

urbanisation (White et al., 2005). Therefore, the multiple factors driving land surface 

phenology are different from those that would be expected in an analysis of an 

individual tree or plant, e.g. local climate (White et al., 2005).  

2.4.1 Background to LSP studies  

The spatial coverage and the regularity of satellite imagery were cited as the major 

factors for using satellite remote sensing as a tool for global-scale phenological 

monitoring (Cleland et al., 2007). From the early 1980s, vegetation dynamics, in 

particular spatial and temporal changes in global vegetation phenology, were 

observable using coarse spatial resolution sensors (> 1km) such as the NOAA-
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AVHRR (Justice et al., 1985). Coarse-spatial resolution data are still favoured for 

global-scale phenological monitoring, especially owing to the availability of long 

time series products and global coverage (Julien and Sobrino, 2009, Stöckli and 

Vidale, 2004). From the late 1990s onwards, the medium spatial resolution sensors 

have been used for studying regional and local scale phenological patterns. For 

example, 16-day composites of the 1 km MODIS EVI were used to show 

phenological variability with climate in northern mid and high latitudes across 

Europe, Asia and North America in 2001 (Zhang et al., 2004a). At coarser spatial 

resolutions, 10-day composites of SeaWiFS FAPAR (2 km spatial resolution) were 

used to characterise growing season cycles from 1998 to 2004 at local sites of 

various land cover types in Europe, South Africa and North America (Verstraete et 

al., 2008) and from 1998 to 2000 over forest vegetation in Europe (Gobron et al., 

2006b). In some cases, where local-scale analysis for comparison to field 

measurements has been possible with the use of full spatial resolution MERIS and 

MODIS data (250-300m) (Wardlow et al., 2007, Soudani et al., 2008, Gobron et al., 

2005). However optimal field-level monitoring requires Landsat-like spatial 

resolutions, e.g. fused MERIS full resolution (300m) and Landsat TM-5 imagery 

(25m) has shown promising results in studying heterogeneous landscapes in the 

Netherlands due to the combined spectral and spatial resolution of both sensors 

(Zurita-Milla et al., 2009).  
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2.4.2 Monitoring LSP by phenological metrics 

Phenological metrics parameterise the seasonal cycle of vegetation growth so that 

discrete points in the seasonal cycle can be identified and quantified. These metrics 

can be interpreted as an event in the phenological cycle, but cannot necessarily be 

explicitly related to a ground-based phenological measure. For example, the 

beginning of measurable photosynthesis is frequently described by the vegetation 

Start of Season (SOS), but as of yet there is no quantifiable relationship between the 

SOS metric and a similar ground-based event. Among researchers, there is no 

general agreement about what defines the start of a growing season. The difficulty in 

establishing such a relationship is the species-specific nature of phenological events 

which do not occur at the same time, or in the same manner, across all species.  One 

of the uncertainties surrounding the use of SOS from an optimised VI is that its 

relation to vegetation phenology has not been defined in contrast to the more widely 

used NDVI. For example, in deciduous vegetation and snow-free conditions the 

NDVI-derived SOS is generally responsive to the development of leaf foliage, and 

the NDVI would start increasing after bud-burst (L. Eklundh, 2011, pers. comm.). 

However, the MGVI, for example, would be expected to behave differently as it is 

an estimate of uptake of Photosynthetically Active Radiation (PAR) in the 

vegetation canopy as opposed to NDVI which has not been tuned for any specific 

vegetation parameter. Therefore, this creates uncertainty when attempting to relate 

the SOS to a specific ground-based phenological event. The general problem of 

comparing satellite-derived metrics with ground-based events is also a consequence 
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of the large number of external influencing factors inherent in satellite-derived data 

(White et al., 2005),  compared to the strict standards set for in-situ phenological 

observations by the IPG network (IPG, 2005). Additionally, comparing field 

observations with pixel-derived metrics presents a spatial conflict since the former 

are relative to small areas, e.g. 1-100m, and the latter typically areas of a few 

hundred metres or square kilometers.  Due to these shortcomings, it has been 

suggested that it is more appropriate to compare growing season events from 

different remote sensing products to achieve coherency between them, rather than 

direct comparison with ground observations (Verstraete et al., 2008). Nevertheless, 

efforts to establish a global network of ground validation sites for satellite-derived 

phenology products are underway with the establishment of the Committee on Earth 

Observation Satellites (CEOS) Working Group on Calibration and Validation 

(WGCV) Land Product Validation (LPV) subgroup, which should yield 

considerably more insight into satellite-derived phenology validation methods 

(Nickeson, 2011). However, discussions on accuracy and bias in remotely-sensed 

phenology products, and how to achieve consistency between the different sensors’ 

products are ongoing, and as yet no consensus has been achieved between the 

various users of these products on accuracy issues. This debate is summarised in a 

recent web-based discussion hosted by the CEOS-LPV subgroup. The discussion 

centred on the nuances of LSP studies and the current challenges facing this field of 

study, in particular the difficulties experienced in relating satellite-based findings to 
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those from ground-based phenology studies (Vegetation Index and Phenology (VIP) 

Research Group, 2011).      

 Despite the difficulties in establishing a protocol for validation of LSP metrics with 

ground-based measures, phenology metrics have been shown to adequately 

demonstrate the expected phenological characteristics of different vegetation types 

from spring wheat to tropical rainforest. The level of interannual variation in these 

characteristics can then be discerned from multiannual time series (Reed et al., 

1994). The variability in phenology metrics can also be related to changes in 

climatic factors  such as land surface temperature (Zhang et al., 2004a). They can be 

used as correlates of climate variables (de Beurs and Henebry, 2008b, Xiao and 

Moody, 2005), or as inputs to global biosphere-climate models. Remotely-sensed 

interpretations of land surface phenology are particularly important to parameterise 

such models for the influence of vegetation phenology on the natural cycles  of 

water, energy, carbon, and other trace gases (Friedl et al., 2010).  

2.4.3 Global to continental scale trends in land surface phenology  

As described in Chapter 1 (section 1.1.2) for ground-based measures, evidence for 

an earlier greening trend in some regions has been found from satellite-derived data.  

Most of the global-scale analysis on trends in phenology has been carried out using 

the NOAA-AVHRR sensor (Xiao and Moody, 2005, Justice et al., 1985, White et 

al., 2005). Justice et al. (1985) used NDVI derived from the AVHRR sensors to 

compare global phenological trends between April 1982 and November 1983. They 

used a global scale equivalent of the NDVI called the Global Vegetation Index 
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(GVI) but found anomalously high GVI values occurred over certain regions of the 

globe (northern high latitudes) due to low angles of solar illumination as well as 

depression of the vegetation index value due to atmospheric attenuation. Later work 

with the newer Pathfinder AVHRR-NDVI dataset by Xiao and Moody (2005) 

revealed significant greening trends in the northern mid to high latitudes for a 17 

year period from 1982-1998 which globally exhibits a strong latitudinal and 

longitudinal variability. The Pathfinder dataset was an improvement on previous 

versions of the AVHRR NDVI as any residual noise associated with atmospheric 

effects, orbital drift effects, inter sensor variations, and stratospheric aerosol effects 

was minimised by a series of corrections, including temporal compositing, spatial 

compositing, orbital correction, and climate correction (Xiao and Moody, 2005). 

Continental scale studies over China, Africa, North America  and Europe have 

employed MODIS (Zhang et al., 2004a, Wardlow et al., 2007), MERIS and 

SeaWiFS (Gobron et al., 2006a, Gobron et al., 2005) and NOAA-AVHRR data 

(Brown et al., 2010, Reed and Brown, 2005). These sensors generally provide a 

compromise between revisit time, spatial resolution, global coverage and free 

availability of the datasets. Combining datasets from two different sensors of similar 

spatial resolution is not uncommon, exploiting the spectral properties of both sensors 

and increasing the time period over which data can be gathered (Zurita-Milla et al., 

2007). For example, the fusion of Landsat and MERIS full resolution imagery was 

successfully used to generate MERIS-based vegetation indices at Landsat-like 

spatial and MERIS-like spectral and temporal resolution (Zurita-Milla et al., 2009).  
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2.4.4 Monitoring phenology in an agricultural context 

Phenology and agriculture are closely linked through knowledge of the crop 

calendar which varies according to the genetic characteristics of the crop, local 

climate, soil type and agricultural practices of a particular region (Campbell, 2002).  

However, crop cycles can be modified by changes in climate. Therefore, it is 

important to monitor phenology in an agricultural context as well as in natural tree 

species. Crop phenological parameters such as the start and end of growing season 

are important determinants of crop management plans in order to intensify or 

diversify agricultural practices (Brown et al., 2010). Monitoring these parameters in 

agricultural areas over long time periods can indicate changes in food productivity, 

and hence early warnings for crises in the developing world such as food shortages, 

or indicate mass shifts in cultivation systems following institutional change (Brown 

et al., 2010, de Beurs and Henebry, 2004). Crop growth models which integrate 

satellite data with meteorological and other environmental information are 

implemented in the Crop Growth Monitoring System (CGMS) of the Monitoring 

Agriculture with Remote Sensing (MARS) project of the European Commission 

(Genovese et al., 2001). This information is used to forecast crop yields on a 

national and regional scale. Crop growth is monitored using remote sensing on a 

systematic basis and findings published for the 27 EU member states in monthly 

bulletins (Monitoring Agriculture with Remote Sensing (MARS), 2011). Japanese 

rice paddy fields have been monitored using MODIS EVI data for the 2002 growing 

season (Sakamoto et al., 2005), as have rice and wheat fields across various sites in 
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Europe using Envisat MERIS and SeaWiFS from 1998 to 2004 (Gobron et al., 

2005). These studies show that seasonal rice cycles are quite strong, exhibiting 

growth from April onward, reaching maturity in late August followed by a sharp 

decline in activity in September with crop cultivation. As they are heavily irrigated, 

annual cycles were reproducible and consistent so that climatic factors have less 

impact in determining cycle changes due to artificial water availability.  This is in 

contrast to natural vegetation such as in beech forests (Fagus sylvatica) at Hesse, 

France (Gobron et al., 2006b). There, the seasonal cycle exhibits a surge in growth 

in early summer followed by two gradual dips in vegetation activity corresponding 

to late summer and early autumn. Although there is more variation in the growth 

cycle than for rice cultivation, the interannual variability is not large, provided no 

stress event such as drought occurs, and environmental conditions remain normal. 

These studies show the utility of using time series of vegetation indices such as the 

MODIS EVI and MERIS GVI for monitoring annual cycles of photosynthetic 

activity in cultivated and natural environments. The impact of climate anomalies 

such as drought, and human-induced change in the growth cycle by irrigation has 

been effectively monitored using optimised vegetation indices.  Satellite remote 

sensing provides the means to monitor the phenology of the crop cycle at fine 

temporal and spatial resolutions which has practical benefits for agro meteorological 

forecasting, crop yield assessment and drought detection. Aside from practical uses 

to gather statistics and inform land use managers, monitoring vegetation phenology 

in agriculture also has implications for carbon accounting. As an Annex 1 signatory 
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to the UN Framework Convention on Climate Change (UNFCCC), Ireland is among 

many countries obliged to report an annual inventory of its greenhouse gas (GHG) 

emissions and removals. Moreover under the Kyoto protocol such reporting is also 

required for the first commitment period 2008-2012. For all countries committed to 

limiting their GHG emissions it is vital that carbon emission/sequestration estimates 

are accurate and calculated from routinely and systematically data collected such as 

that from space-based systems.  

2.4.5 Monitoring the vegetation Start of Season (SOS)  

White et al. (2009) proposed a conceptual definition for the SOS metric as the first 

sustained increase in values of satellite-derived VI time series after a prolonged 

period of reduced photosynthetic activity. Similarly, Reed et al. (1994) proposed an 

interpretation of the timing of onset of greenness metric as the beginning of 

measurable photosynthesis. The SOS has been widely studied as it provides both a 

convenient phenological marker for studying land cover dynamics and climate 

variation, and has generally been responsive to large-scale climate oscillations such 

as the Inter Tropical Convergence Zone (ITCZ) (Jönsson and Eklundh, 2002) and 

the North Atlantic Oscillation (NAO) index (Julien and Sobrino, 2009). In contrast, 

coherent spatial patterns in End of Season (EOS) have proven difficult to detect in 

satellite imagery and ground-based evidence shows that leaf fall and decolouration 

has demonstrated little variation with climate (Cleland et al., 2007, Menzel, 2003). 

The length of growing season (LGS) can be estimated from the SOS and EOS, 

although the difficulties in characterising EOS potentially create uncertainty in 



 

 

56 

 

interpreting the LGS.  There have been many methods devised to estimate the SOS 

which have been adapted for different sensor products and in some cases tailored for 

specific ground-based events. In a relative comparison of the SOS across North 

America, derived using 10 different methodologies, the first observed leaf was most 

similar in timing to the ensemble of SOS estimates, although the SOS defined by 

some methods tended to be earlier, sometimes by several weeks (White et al., 2009). 

The methods for SOS estimation will be described in more detail in Chapter 4.  

Other aspects of the seasonal cycle can be described by different phenological 

metrics. For example, the integral of the area below a fitted time series curve is an 

indicator of vegetation productivity (Jönsson and Eklundh, 2004).  

2.5 Conclusion  

This chapter outlined the physical principles and technical bases for a satellite-based 

approach to vegetation seasonality monitoring.  Owing to the variety of temporal, 

spatial and spectral resolutions offered by the suite of optical satellite sensors 

discussed, the selection of an appropriate sensor product for such a task is not trivial. 

The difficulty in selection is compounded by data access, and availability of 

appropriate geophysical products from the chosen sensor. The NDVI, although 

widely used, is subject to considerable uncertainty in terms of parameterisation for 

specific biophysical properties of the vegetation canopy and is sensitive to error in 

angles of illumination and observation and saturates at high values. In contrast the 

MGVI has been optimised to represent the FAPAR, a widely recognised 
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biogeophysical parameter which is directly linked to the state and productivity of the 

vegetation system. 

A new direction for global vegetation phenology research has been established in the 

discipline of land surface phenology which gives an overview of spatial-temporal 

changes in vegetation phenology at multiple spatial scales. This is in contrast to 

finite, point measures of phenological stages in tree species on which historical 

records are based. Yet LSP has not been monitored on a national scale in Ireland, 

nor in many other countries, to date. Therefore, there is an opportunity to contribute 

to and benefit from this growing field of international research. Potential benefits of 

a space-based approach include broad-scale coverage of terrestrial vegetation, 

systematic measurements of vegetation canopy reflectance and multiannual time 

series data. However, there are specific challenges to LSP monitoring in Ireland. For 

instance, cloud cover is present on daily basis across some or the entire island, and 

the landcover is predominately grassland interspersed with small areas of 

agriculture, natural and semi-natural vegetation, and therefore heterogeneous and 

fragmented in nature.  Together these limitations mean that vegetation seasonality 

cannot be monitored with daily frequency on a national scale by near-polar orbiting 

satellites nor can vegetation seasonality measures be representative of pure 

vegetation species.  

 

Despite such challenges, LSP measures can potentially complement ground-based 

observations. As was described in the previous chapter, current methods of 
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phenological observation in Ireland are entirely ground-based, at the IPG sites, and 

although the network has been greatly expanded, national-scale phenological 

monitoring of multiple land cover types is only possible using remote sensing 

technology. A combination of land surface and ground-based measures has the 

potential for an integrated approach for future phenological monitoring. The 

extension of the growing season which has already been demonstrated for certain 

tree species at the IPG gardens could possibly increase the carbon storage capacity 

in terrestrial vegetation and reduce GHG emissions, with subsequent impacts on 

national carbon budgeting activities. This is particularly important for agricultural 

systems as Ireland is obliged to report its GHG emissions and removals as an Annex 

1 signatory to the UNFCC.  
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Chapter 3. The implications of cloud cover for vegetation 

seasonality monitoring 

Regional-scale studies of vegetation phenology have been facilitated by the 

availability of multi-annual time series of satellite imagery (Reed et al., 1994, Reed 

and Brown, 2005). Here, seven years of MERIS Global Vegetation Index (MGVI) 

data have been obtained over Ireland from the ESA-ESRIN G-POD service for a 

national-scale study of vegetation seasonality. The MGVI has been selected for this 

study to capitalise on advances in VI optimisation techniques which reduce error in 

empirically-based indices such as the NDVI and because it can be measured in-situ 

with ground-based sensors if necessary. The justification for selection of this MERIS 

product will be outlined in further detail in this chapter.  

 

A time-compositing algorithm was applied to the daily MGVI data in the G-POD to 

overcome the presence of data gaps in the daily imagery. However, in order to 

define an appropriate time-compositing interval, an analysis of ancillary data was 

required. These included weekly in-situ phenological observations of a number of  

tree species in a forest stand, daily observations of cloud cover trends at a 

representative location on the island, as well as analysis of cloud in composited 

imagery themselves. The first section of this chapter (3.1-3.3) will describe how 

estimates of the beginning of growing season from in-situ observations of vegetation 

phenology, combined with observations of cloud cover, were used to refine the 
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composite period length. This was followed by an analysis of the satellite imagery 

themselves to determine the appropriate composite period length. The second 

section of this chapter (3.4) documents the validation of the remotely-sensed 

vegetation index data using an independent satellite-derived cloud mask.  The need 

for validation has been driven by concerns about the quality of the MGVI time series 

data and the potential of undetected cloud cover to reduce their quality. A condensed 

version of this chapter has been submitted as a paper to a special issue of the Journal 

of Irish Geography, based on the proceedings of the joint Irish Earth Observation 

(IEOS)/Remote Sensing and Photogrammetry Society (RSPSoc) 2010 annual 

conference, University College Cork, Ireland.  

3.1 Time compositing high temporal frequency satellite data 

3.1.1 The aims of time-compositing satellite data 

The aim of the compositing process is to combine consecutive satellite images over 

a period of time in order to generate as much cloud-free imagery as possible 

(O'Connor et al., 2008). Satellite imagery can be time-composited to fill in the gaps 

created by clouds or other effects such as cloud shadow and poor atmospheric 

corrections (Pinty et al., 2002). Therefore, the resulting composite image is more 

spatially-consistent and consists of cloud-free, or best quality, pixels from several 

scenes (Justice et al., 1985).  
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Some compositing schemes have been designed specifically for certain sensors, or to 

attain optimal pixel conditions for specific surface products. For example, the 

MODIS vegetation index compositing algorithm aims to standardise the variability 

in sensor view and solar illumination angle by favouring near-nadir value selection 

(van Leeuwen et al., 1999). Image pixels acquired under near-nadir viewing 

geometries are favoured because the atmospheric path is shortest and the spatial 

resolution of pixels degrades off-nadir (Cihlar et al., 1994).  A generic time-

compositing scheme has been designed by Pinty et al. (2002) for applications to a 

variety of daily satellite surface products, e.g. MGVI or surface albedo. The 

technique rejects poor-quality pixels using a series of pixel flags which indicate the 

pixel state, e.g. cloud, water and bright surface flags, in daily imagery (Gobron et al., 

2007). Generally, a good compositing method ensures that the value selected over 

the compositing interval is the most representative of the surface state during that 

interval (Pinty et al., 2002). Therefore, composited values should be consistent 

enough from one period to the next to ensure that robust time-series analysis can be 

conducted (Huete et al., 2002). 

 

Many studies typically advocate the use of days to estimate phenological events 

even when using composite data. For example, White et al. (2009) estimated Start of 

Season (SOS) by day of year across North America using 15-day NDVI composites, 

and daily trends in European growing seasons were also derived from 15-day 

composites (Julien and Sobrino, 2009).  The use of a composite period, rather than 
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days, avoids bias towards any particular day within the composite (Zhang et al., 

2004a), although it may introduce uncertainty in estimating phenological events by 

day of year (Thayn and Price, 2008). Furthermore, authors using a 10-day MERIS 

FAPAR products have also reported growing season events in decads (Verstraete et 

al., 2008).  

3.1.2 The factors influencing composite period selection  

There are two important factors which determine the number of days in the 

composite interval. Firstly, the interval must be within the time period during which 

significant surface change can occur. Secondly, there must a sufficient number of 

cloud-free days in the interval to provide enough valid data to fill the gaps created 

by missing data (Pinty et al., 2002). Therefore, an appropriate composite period is 

selected, not only with a good understanding of the rate of change of the surface 

cover, but also of the temporal trends in causes of missing data such as cloud. 

Moreover, the link between composite period and the size of study area is also an 

important consideration. For example, 4-day and 8-day composites of MODIS 

LAI/FAPAR were examined, for monitoring the transition of phenological phases in 

vegetation, over a selection of 1200×1200 km tiles in North America (Yang et al., 

2006). While a 4 to 8 day interval is appropriate for such local-scale applications, 

global studies employ very long periods to attain cloud-free conditions worldwide, 

e.g. a 4-week period (Justice et al., 1985). Therefore, though shorter composite 

periods give fine-scale temporal measurements, an extended period is required to 

account for cloud cover over large areas. Compositing periods of 4, 8 and16 days in 
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the case of MODIS LAI, EVI and NDVI (Huete et al., 2002, Yang et al., 2006), 10 

days and monthly for MERIS and SeaWiFS products (Gobron et al., 2006b) and 14 

days for AVHRR NDVI (Reed et al., 1994) have been used in remote sensing 

phenology studies. 

3.2 Primary data  

3.2.1 The Joint Research Centre (JRC) FAPAR products 

The Institute for Environment and Sustainability, within the JRC of the European 

Commission in Italy, has generated FAPAR products for Western Europe using a 

range of satellite sensors (SeaWiFS, MODIS, MERIS and MISR). The longest time 

series of the JRC FAPAR product has been generated from SeaWiFS data at 2.17 

km spatial resolution from 1997, followed by the 1.1 km resolution MODIS product 

since 1999 and the 1.2 km MERIS FAPAR product since May 2002 (pers comm, 

Gobron, 2009). The JRC MERIS FAPAR was chosen as an appropriate satellite 

product for this study, as SeaWiFS FAPAR, though over a longer time series, is at a 

coarser spatial resolution (2.17 km), and the MODIS FAPAR, at a slightly higher 

spatial resolution (1.1 km), is not an operational JRC product but was only used in a 

feasibility study of the JRC algorithm.  The NASA MODIS FAPAR is produced 

instead at Boston University, using a slightly different algorithm, which has proven 

to be comparable to JRC FAPAR for most landcover types but exhibits differences 

in mixed and needle leaf forests (McCallum et al., 2010), as described in section 

2.3.3.1. The time-composited, full resolution (300m) MERIS FAPAR product was 
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still under development as an operational product for ESA data users at the time of 

writing. Therefore, the time-composited Reduced Resolution (RR) MERIS FAPAR 

product was selected for this study.  There are three advantages of using the RR 

product. It is an easily accessible and fully processed MERIS level 3 product which 

can be time-composited over periods specified by the user. The RR MGVI is at an 

appropriate spatial resolution to address the national-scale aims of this feasibility 

study. Therefore, provided the methodology is successful with the RR product, 

higher spatial resolution products can be used in future studies. The disadvantage of 

the RR product arises from the heterogeneity of Irish landcover at this pixel scale. 

The estimated error of the MERIS FAPAR product is ±0.1 (unitless) (Gobron et al., 

2003). This error is a combination of errors arising from radiometric calibration 

uncertainties, whose values depend on the year as the reprocessing of MERIS data is 

ongoing. However, current accuracy (25/5/2011) tends to be on average less than 

0.03.  There is also error coming from the optimization procedure itself which is 

approximately 0.05 (N.Gobron, 2011, pers comm). 

3.2.2 The advantages of the Medium Resolution Imaging Spectrometer (MERIS) for 

vegetation monitoring  

The MERIS sensor was briefly introduced in Chapter 2 (section 2.2.2.2).  There are 

four key technical characteristics of the MERIS instrument which make it suitable 

for vegetation monitoring. Firstly, Envisat has global coverage every three days, 

with near-daily passes over Ireland. Secondly, MERIS has a wide image swath 

(1150 km) capable of capturing the full 280 km width of Ireland in one pass. The 
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RMS absolute MERIS geolocation error remains within the range of 212 ± 22 

meters (Jackson et al., 2011), or approximately one sixth of a reduced resolution 

pixel.  Thirdly, the range of narrow spectral bands in the visible to near infrared 

spectral region (412 to 900 nm) enables precise measurements to be made of 

red/near infrared absorption and reflectance by vegetation, and fourthly, the presence 

of a blue spectral band, sensitive to aerosol scattering, enables more robust 

atmospheric corrections (Rast and Bezy, 1999).  

3.2.3 Acquiring a time series of MERIS FAPAR over Ireland 

3.2.3.1 The ESA-ESRIN G-POD 

The ESA / ESRIN G-POD facility is widely used for the dissemination of both ESA 

and third-party mission data products to the scientific community via an online web 

portal1. Computing resources are distributed to a number of processing nodes, 

enabling large volumes of data to be parallel-processed at high speeds (ESA G-POD 

Team, 2008). A number of ESA Earth Observation data products can be accessed 

via the G-POD services menu, access to these products being granted through 

registration and approval from the service. An ESA category 1  ( ID: 5199) proposal 

for academic research, requesting access to the time series of reduced resolution 

MGVI products over Ireland since the beginning of the MERIS mission, was 

submitted to the G-POD administrator.  Initially, requests for the data were 

submitted as tasks directly to the G-POD portal, where the results were published 

instantaneously. This was useful for generating the product for specific months and 

                                                
1
 http://gpod.eo.esa.int/ 
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years during the testing phase.  However, once the data requirements had been 

determined, a scheduled service was arranged.  A publishing server was set up 

locally to download the requested MGVI time series, via a secure ftp site, due to the 

large volume of data generated. The data were delivered approximately two weeks 

after acquisition. The process of MGVI production and provision to G-POD users is 

summarised in figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Stages in the Reduced Resolution (RR) MGVI product generation using the ESA-

ESRIN G-POD  

 

 

 

MGVI (MERIS Global Vegetation Index) algorithm developed by JRC 

MGVI images are generated for Ireland over a spatial window (latitude 51ºN - 
56ºN and longitude 5ºW - 11ºW)  

MGVI algorithm integrated with input RR MERIS imagery in the G-POD  

User downloads RR MGVI from the G-POD storage elements  

G-POD distributes computing requirements over several nodes 
 

Daily MGVI values are time-composited on a per-pixel basis using the FAPAR time 
composite algorithm integrated with the G-POD  



 

 

67 

 

3.2.3.2. The FAPAR time-composite algorithm 

The FAPAR time-composite algorithm was integrated with the processing 

capabilities of the ESA G-POD so that multi-annual time series of the composited 

product could be generated within the stated geographical window (Pinty et al., 

2002). In equation 3.1 and 3.2, the time composite algorithm is described. 

Equation 3.7: The calculation of the temporal average of the daily valid values in the composite 

period 
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Equation 3.8: The average deviation of the valid values in the composite period 
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The term T  represents the number of valid clear sky values during the compositing 

period of N days.  The term, )(tS  is the daily product value at time (t), s  is the 

temporal average index value, and T
S

∆ is the average deviation of the distribution. 

The value selected as most representative for the N-day period, ŝ , is the one that 

minimises the quantity StS −)( , i.e. the daily value closest to the mean of valid 

values. This initial step is applied twice so that )(tS values which exceed the range 

T
SS ∆± are excluded as outliers (Pinty et al., 2002). For a spatial window of daily 

images, the algorithm generates an array of values for each N-day period, where 

each pixel value is regarded as the most representative of the period. In the case 
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where a valid value does not exist for the N-day period, pixel flags state the reason 

why.  The final time-composite product is composed of the composite values, along 

with arrays of pixel flags where no valid data are returned. Both arrays of valid data 

and pixel flags are provided with measures associated with conditions of value 

acquisition such as the geometry of illumination and observation, and the date of 

value acquisition (Pinty et al., 2002). In the case of only one valid value during the 

composite period, it is automatically selected by the algorithm and in the case of two 

valid values, the largest one is chosen. Temporal uncertainty increases with fewer 

valid values during the composite period because there are insufficient daily data to 

generate valid statistics and because of the above assumptions (Pinty et al., 2002). 

The temporal uncertainty in the composited MGVI value is given as the temporal 

deviation value, and included in the time composite product. The advantage of the 

FAPAR time composite algorithm is the unbiased selection of a representative value 

based on its favourable statistical properties which is an improvement on the widely 

used Maximum Value Composite (MVC) technique which assumes a negative bias 

of NDVI (Holben, 1986). Another advantage of the FAPAR time composite 

algorithm is the inclusion of statistics per pixel in the final product, which can be 

used for further statistical analysis of the time-composited values.  

3.3 Methods and data for composite period selection 

The selection of an appropriate time-composite interval for this study has been 

guided by the following two criteria: 
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1. Minimising the length of the composite period to be concurrent with the rate of 

spring greening in surface vegetation. 

2. The inclusion of a sufficient number of days in the composite period so that each 

pixel will have at least one cloud-free day in the period and therefore a valid value 

For the first criterion, in-situ observations of vegetation seasonality and for the 

second criterion, daily cloud amounts at a representative location on the island, were 

used to optimise the time composite period.  

3.3.1 In-situ phenological data  

The aim of the field campaign was to investigate how the composite period could be 

tuned to the temporal dynamics of spring greenup in mixed woodland vegetation. In 

particular, it was intended to investigate how frequently observations need to be 

made so that the rate of change of phenological stages from dormancy to budburst to 

leafout could be monitored across different tree species.  

3.3.1.1 Description of Site 

The location of the phenological field study, in an area of mixed woodland in 

Currabinny Wood, Cork Harbour, can be seen in figure 3.2. The forest is managed 

by Coillte, the national forestry management agency, who has recorded 1890 as the 

earliest planting year in Currabinny Wood and 1979 as the most recent. The Wood  

is 34.9 Hectares (1 ha = 10, 000 m2) of mixed forest, which is 79 m above sea-level 

at its highest point (Coillte, 2003). There is an assemblage of  deciduous tree 

species, such as Oak (Quercus robur), Ash (Fraxinus excelsior), Horse Chestnut 

(Aesculus hippocastanum), Sycamore (Acer pseudoplatanus)), Beech (Fagus 
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sylvatica) and Birch (Betula pubescens), varying in age from 100-year old mature 

trees to younger 30-year old trees. The woodland is fringed by Cork Harbour to the 

North, East and South and bordered by agricultural land to the West. The site was 

chosen due to the presence of a large number of tree species for sampling and its 

proximity to the CMRC (approx. 10 km. distance), practical for weekly visits to the 

site. 

 

 

  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Location of in-situ field observations, Currabinny Wood, Co. Cork with an image of 

the area acquired on the 8th of June, 2008 from Google Earth 

 

3.3.1.2 The recording of phenological data  

A sample of eighteen trees from six different species, three trees per species, was 

selected and monitored on a weekly basis from March to May of 2008 and from late 
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February to May, 2009. The tree species sampled were Oak, Ash, Horse Chestnut, 

Sycamore, Beech and Birch. The deciduous species were chosen for monitoring as 

the budburst and leafout phenological stages are more readily observed than the 

equivalent phenological stages in coniferous species. Initially, the age, orientation, 

height, health and location of each tree was estimated by noting broad categories 

from young to middle-aged to old and approximate height. The Beginning of Leaf 

unfolding (BO) is one of the most commonly recorded phases at the Irish IPG sites 

and is recorded with the appearance of several leaves across the tree canopy (IPG, 

2005). However, such a small amount of leaf unfolding was difficult to observe from 

the ground in the high tree canopy. Therefore, the date when 50% of the tree crown 

was estimated to have unfolded leaves was recorded, and deemed to be the 

beginning of the growing season (BGS). The date of site visit when 50% of the 

leaves had unfolded in each tree was noted, as well as the percentage of leaves 

unfolded in the canopy on every other site visit. Site visits continued until the 

canopies had reached maximum leaf cover. Other than phenological observations, a 

combination of a field journal, photographic documentation of the greening stages 

per tree and GPS-measured waypoints formed part of the field study. The 

observations recorded at each site visit and the field journal is shown in appendix A. 

 

A field journal was initiated on the first site visit to record the location and species 

of each tree, the direction it faced (aspect) and the estimate of age and health. This 

was followed by observations on other site visits such as the weather conditions, a 



 

 

72 

 

general description of the tree canopy, the change observed since the previous 

observations, the appearance of other flowers, the dense understorey of ferns and 

other shrubs as well as hedgerows which would be expected to contribute to the 

overall greening signal as viewed by a satellite sensor.  

 

Photographs of the greening stages of some of the observed trees were taken on 

every site visit to document the progression of spring greening in the canopy, and 

were used to support the estimates of the timing of budburst and leafout. These trees 

were marked so that the same tree was photographed on a weekly basis. Photographs 

were taken from the same position each week for further consistency.  

A GPS was used to gather way points in geographic coordinates (latitude/longitude) 

at regular intervals along the perimeter of the woodland.  These points were 

converted to a shapefile (.shp) using the ArcMap software. The shapefile was 

overlaid on a MERIS image to identify the pixels which corresponded to the site of 

fieldwork. As can be seen in figure 3.3, this was useful to relate pixel values to the 

phenological observations. However, Currabinny Wood crosses two pixels in which 

surrounding water and other vegetation types contribute to the reflectance measures 

used to derive FAPAR. 
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Figure 3.3: the Currabinny GPS points show the perimeter of the field site in relation to the 

coastline and the corresponding MGVI pixels. Currabinny Wood crosses two pixels in which 

surrounding water and other vegetation types contribute to the FAPAR response.  

 

3.3.1.3 The rate of change in mixed woodland vegetation 

Table 3.1 summarises the timing of the field BGS (timing of 50% unfolded leaves) 

in each tree species as observed at the field site in 2008 and 2009. Of the three trees 

per species, the tree with the earliest leaf unfolding and the latest leaf unfolding 

dates were selected in each year to show the annual range in leaf unfolding dates. 

The results show that for each species, the earliest and latest BGS events were 

between 3 and 17 days earlier in 2009 than in 2008. The dates for the Horse 

Chestnut tree were the same in both years; for all three sample trees. 
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Table 3.1: The earliest and latest BO of the sampled tree species in 2008 and 2009 

 Year Beech Birch Ash Oak Sycamore Horse C. 

Earliest BGS 

2008 07-May 09-Apr 14-May 09-Apr 09-Apr 09-Apr 
2009 27-Apr 06-Apr 11-May 06-Apr 24-Mar 06-Apr 

Latest BGS 

2008 14-May 14-May 22-May 24-Apr 14-May 09-Apr 
2009 05-May 27-Apr 18-May 14-Apr 27-Apr 06-Apr 

 

3.3.1.4 The inter-species variation in the timing of leafout 

From table 3.1, it is evident that all tree species, except Horse Chestnut (Horse C.), 

produced leaves earlier in 2009 than in 2008 but the extent of the difference was not 

the same in all tree species. The rate of greening in the most common tree species in 

the woodland, Beech and Birch, is shown for both years in figure 3.4. The 

percentage of unfolded leaves observed on each site visit was averaged over the 

three trees per species. The cumulative percentage leaf cover is shown from the first 

observation until the tree canopy had 100% leaf cover, i.e. no further observable 

change in leaf cover on subsequent site visits. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: The average rate of leafout in the Beech and Birch trees in 2008 and 2009. The % 

leaf cover was estimated weekly and the values are plotted cumulatively until the canopies had 

100% leaf cover (Day 50 represents the 20th February, 2008 and 2009 while day 150 represents 

May 30
th 

in 2008 and May 29
th

 in 2009). 
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The annual curves show that the rate of change is not consistent between years as the 

2008 estimates (blue line) reveal a slow leafout initially followed by a quick rise 

from about day 125. The same effect is observed in 2009 (green line), but the surge 

of growth is less apparent and occurs earlier around day 115.  The inter-species 

variation is evident by observing the difference in two curves from the same year. In 

2008, the percentage of leaves accumulated in Birch trees (diamond symbol) is 

greater than in the Beech trees (rectangle symbol) up until day 115. The Beech 

percentage leaf cover then exceeds the Birch until both had maximum leaf cover 

towards the end of spring. In 2009, the leaf cover in both species was similar until 

about day 90 when the Birch increased in green canopy cover and maintained a 

thicker canopy than the Beech tree until the end of observations. These results show 

that in comparing both years, earlier growth was detected in 2009 than in 2008 for 

both Beech and Birch, but that within years, the Birch trees consistently greenup 

more rapidly than the Beech trees in this sample. Although these findings are based 

on two years of data and only three trees per species, they would be expected to 

represent the tree phenology in the area. 

3.3.1.5 The photographic documentation of leaf unfolding in a tree canopy 

The photographic data provided a visual record of the percentage of canopy cover of 

an individual tree, which supported estimates made in the field. A handheld digital 

camera was used to record the onset of growth in a Birch tree at Currabinny wood, 

in weekly intervals, from the first observation on 3/3/09 to the last observation on 

11/5/09, can be seen in Figure 3.5 (A)-(H). The point from which the digital images 
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were taken was constant but the variation in daily illumination conditions can affect 

visual interpretation so that some stages appear more or less green than is suggested 

by the percentage estimates. 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Various phases in onset of the beginning of leaf unfolding (BO) in Birch (Betula 

pubescens). (A) Birch in dormancy, (B) Budburst, (C) 20% BO, (D) 40% BO,  (E) 50% BO, (F) 

70% BO,  (G) 90% BO,  (H) 100% BO. 

 

3.3.1.6 Fieldwork findings 

A weekly revisit time was adequate to observe  seasonality change, in terms of the 

percentage leafout. This suggested that a 7-day composite period would be optimal 

to monitor the BGS.  However, it was necessary to verify whether  combining daily 

MGVI data over a 7-day interval would produce enough cloud-free imagery for a 

national-scale study. Firstly, daily cloud observations at a representative location on 

the island were acquired to examine seasonal and annual cloud cover over 7-day 

intervals.  
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3.3.2 Armagh Observatory cloud data 

Human observer networks are used to record a number of cloud variables, such as 

percentage cloud cover, to validate satellite observations of cloud cover, as well as a 

means to understanding daily cloud cycles (Chambers et al., 2004). Ground 

observations of cloud cover are provided at a number of weather stations throughout 

the country, but the data are provided on a request basis only and at cost from the 

Irish Meteorological service, Met Éireann.  However, a readily available and free 

source of cloud observation data, dating back over 200 years, is available to the 

public from the Armagh Observatory Meteorological Station in Northern Ireland. 

The inland location of the Observatory (shown in figure 3.6) is also representative of 

the island in terms of its situation away from any coastal and upland influences in 

cloud formation. The observations are daily at 9 a.m. and are archived online where 

they are available to download for general use2. Cloud cover is estimated on a scale 

from zero to eight okta, where eight okta represents a fully-clouded sky. The current 

observer has been recording observations since 1998. 

 

 

 

 

                                                
2
 http://climate.arm.ac.uk/main.html 
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Figure 3.6: Location of Armagh Observatory, site of daily cloud estimates 

 

3.3.2.1 Temporal patterns in cloud cover at Armagh Observatory 

The first aim of using daily Armagh cloud observation was to investigate interannual 

trends in cloud cover during the growing season (February to October), and, 

secondly, to find out by how much cloud cover varied during the growing season. 

For this, the daily observations were averaged over seven days for three full growing 

seasons from 2005 to 2007. The temporal trends in cloud cover at Armagh, averaged 

over 7-day intervals are shown in figure 3.7. 
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Figure 3.7: The 7-day average cloud cover amounts (Okta) observed at Armagh Observatory 

for the growing season of 2005 to 2007 

 

From figure 3.7, it is difficult to discern seasonal trends in cloud cover because of 

the high variability in the 7-day averaged values. However, in 2006 and 2007 the 

period from March to June appears to have the lowest cloud cover followed by a 

shorter period in July and August, while there is no seasonal trend apparent in 

2005.The 2006 and 2007 trends agree with averaged monthly satellite-derived cloud 

cover over Ireland, during the period 1983-1994, which show that April and May 

had the lowest average cloud cover (Pallé and Butler, 2001). Therefore, the 2005 

cloud cover would appear to be anomalous. Owing to the high extent of cloudiness 

in the 7-day averaged values of the Armagh data, it would be unlikely to find a 

cloud-free day in every MERIS image pixel during 7-day intervals. Therefore, a 

longer interval of ten days was analysed further (figure 3.8).   
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Figure 3.8: Same as in figure 3.7 but using a 10-day averaging period 

 

The 10-day averaging period was applied to daily Armagh data, as shown in figure 

3.8. A smoother temporal trend was produced from the 10-day averages, revealing 

the interannual and seasonal cloud cover variability. As suggested by figure 3.6 in 

2007 (red line), the cloud cover was very low in April and May compared with the 

other two years. The inter-comparison of 10-day and 7-day averaged values of 

Armagh cloud observations showed that a longer averaging period produced a 

smoother cloud trend.  However, in order to select the period which maximised the 

chance of finding a pixel with at least one cloud-free day in the period, it was 

necessary to analyse the number of cloud-cover periods per image pixel in a time 

series of 7-day and 10-day composite images.  

 

In order to verify whether the Armagh cloud observations were a good indicator of 

island-wide cloud trends as detected in the MGVI composite images, and hence a 

suitable cloud dataset to inform the selection of a composite period, the Armagh 

Observatory observations were initially averaged over 10-day periods and compared 

with cloud amounts in MGVI 10-day image composites for the whole island over the 
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same time period: the beginning of February to the end of October, 2007.  This 

period was chosen as monthly weather summaries showed that low cloud amounts 

were present across the country from the beginning of April to the beginning of 

June, 2007, owing to higher than normal sunshine hours (Andrade et al., 2011). 

Figure 3.9 illustrates the results of this comparison exercise. 

 

 

 

 

 

 

  

It is evident that cloud observations at Armagh are in reasonably good qualitative 

agreement with cloud amounts detected by MERIS over the whole island, except for 

the early spring period (March – April), where island-wide cloud trends, as detected 

in the MGVI, were extremely low (between 0 and 10 % for March, April and May) 

in contrast to reasonably large amounts of cloud cover observed at Armagh (between 

4 and 7 Okta). Therefore, a representative year was chosen from the three years 

examined, on which to base the selection of a composite period for the MGVI data.  

Owing to the anomalously low cloud amounts in 2007 and the absence of seasonal 

variation in cloud cover in 2005, these were not considered appropriate years for 

Figure 3.9: A comparison of cloud estimates at Armagh with the percentage of cloud-flagged 

pixels per MGVI 10-day composite for the growing season, beginning 1st of February and ending, 

31st of October, 2007. 
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informing the selection of a composite period. Therefore, the period from March 1st 

to June 29th, 2006 was selected to compare cloud cover in 10-day and 7-day 

composite MGVI data and select an appropriate composite period. 

3.3.2.2 Temporal analysis of cloud-flagged pixels in 10-day and 7-day 

MERIS image composites 

Firstly, temporal analysis was conducted on the percentage of image pixels that were 

cloud-covered from March 1st to June 29th, 2006. Secondly, spatio-temporal analysis 

over the same period was used to reveal the spatial pattern in cloud-cover across the 

island. For the temporal analysis, the percentage of cloud-flagged land pixels in each 

composite image was calculated and plotted for each period in the time series, as can 

be seen in figure 3.10. Then, a threshold of 10% cloud-covered land pixels was 

selected as an acceptable minimum level of potential data loss. Less than 10% cloud 

cover was achieved on 77% of the 10-day composites, compared with 50% of the 7-

day composites.  This suggests that there will be fewer data gaps due to cloud in 10-

day imagery than in 7-day imagery.  
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Figure 3.10: A comparison of the percentage of MERIS pixels over the island of Ireland that 

are cloud-covered per 7-day and 10-day composite period during spring 2006 (Day 1 represents 

March 1
st
 and day 121, June 29

th
). 

 

3.3.2.3 Spatio-temporal analysis of cloud-flagged pixels in 10-day and 7-day 

MERIS image composites 

In the previous analysis, the temporal trend of cloud in different composite periods 

was examined. However, the spatial distribution of the cloud across the island was 

not shown. For this, binary images of the cloud and non-cloud pixels for each image 

composite were created using the cloud flag information. The number of cloud flags 

per pixel in a time-series of eighteen 7-day and thirteen 10-day composite images 

from March 1st to June 29th, 2006 was then calculated. This was carried out  for both 

water and land pixels, as can be seen in figure 3.11 (a) and (b).  Both images have a 

maximum of six cloud flags per pixel over the test period, i.e., there were no valid 

data for six composite periods.  The surrounding ocean has relatively fewer cloud 

periods, but this is an artefact of MERIS processing rather than any meteorological 
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(a) (b) 

occurrence  as cloud pixels over the ocean had already been removed from the scene 

before the MGVI cloud-detection algorithm was applied across the image (ESA, 

2006b).  

 

 

 

 

 

 

 

 

 

 

 

 

From figure 3.11(a) and (b), the occurrence of cloud appears to follow a spatial trend 

across the island. The East coast appears to have the lowest amount of cloud relative 

to the rest of the island while the Northwest, West and Midlands tend to have more 

cloud than anywhere else. Small concentrations of cloud appear over the coastal 

peninsulas in the southwest, while some western coastal areas are almost totally 

cloud-free in both images. A frequency distribution of the number of cloud flags 

reported per pixel during the test period is presented in figure 3.12. 

 

Figure 3.11: The number of cloud-covered composite periods per pixel over the island of Ireland 

in the period, March 1st to June 29th, 2006 (a) using 7-day composites and (b) using 10-day 

composites. 
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Although both composite periods had a maximum of six cloud-covered periods in 

the March-June period, the percentage of image pixels per number of cloud-covered 

periods was quite different. For example, 52 % of the 10-day cloud composite image 

pixels had no cloud-covered periods, compared to 32% of the pixels in the 7-day 

image composite. However, 22% of the 7-day cloud composite pixels had two 

cloud-covered periods, compared to only 12% of the 10-day cloud composite pixels. 

Overall, there were a lower percentage of 10-day image pixels with one or more 

cloud-covered periods than 7-day image pixels. Therefore the 10-day period would 

be expected to offer better temporal coverage than the 7-day composite as it 

maximises the number of cloud-free days per pixel within the composite.  

 

 

Figure 3.12: A frequency distribution of the number of cloud flags per pixel in a 

time series of eighteen 7-day and thirteen 10-day composite images in the period, 

March 1st to June 29th, 2006 



 

 

86 

 

3.3.2.4 Generating annual cloud composite images from MERIS data 

The spatial distribution of cloud discussed above is only indicative of cloud cover 

during four months of 2006. In order to investigate the spatial distribution of cloud 

detected by the MERIS cloud mask and the MGVI cloud detection algorithm across 

the island on an annual basis, the same method was applied, as described in the 

previous section, to annual time series of the 10-day image composites, i.e. thirty-six 

10-day periods per year, which are shown in figure 3.13   (a)-(g).  
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Figure 3.13: Annual 10-day cloud composites generated over the island of Ireland using both 

cloud flags derived from the MERIS cloud mask and the MGVI cloud-detection algorithm  (A) 

2003, (B) 2004, (C) 2005, (D) 2006 (E) 2007, (F) 2008, (G) 2009. The colour bar indicates the 

number of cloud-covered 10-day periods from a total of 36 
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In figure 3.13, there are consistent spatial patterns to the annual images. For 

example; the Northwest, West and Southwest are dominated by areas of high cloud 

concentrations. There are also high cloud amounts over the Wicklow Mountains. All 

these areas are upland and mountainous suggesting that orographic cloud (generated 

by moist air rising and cooling over mountains) is routinely detected in MGVI 

pixels. In figure 3.14, the percentage of cloud-covered periods per pixel, one 

selected for each region across the island, has been derived from the cloud 

composite imagery in figure 3.13. The spatial pattern in cloud cover is characterised 

by a high number of cloud-covered periods in the southwest, west and northwest and 

in the east over the Wicklow Mountains. The column chart in figure 3.14 

demonstrates the higher frequency of cloud cover over mountains within each year 

as the highest proportions of cloud-covered periods occur in the Wicklow Mountains 

Figure 3.14: The percentage of cloud-covered 10-day periods per pixel from 2003 to 

2009. The pixels were selected from each region of the country to show variability in 

cloud cover per year 
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followed by upland areas the northwest and west. In contrast, the south, southeast 

and east have a much smaller number of cloud-covered periods from the annual 

total. This relative difference in cloud-cover detected by MERIS cloud screening and 

MGVI cloud-detection has implications for the selection of local sites for satellite 

based phenological monitoring. The appropriate composite period at a regional scale 

would require further examination if phenological events are to be monitored 

without cloud preventing detection of changes in the VI time series. This is 

particularly the case in mountainous regions of the western seaboard, along the 

northern coast and over the Wicklow Mountains. However, areas with fewer cloud-

covered periods, e.g. Midlands, will have comparatively fewer data lost due to 

cloud, and would therefore be more suited to satellite-derived phenological 

monitoring.   

3.3.3 Summary of composite period selection 

Cloud cover in the daily MGVI grids was the main justification for compositing the 

daily data, while ensuring the interval was also suited to tracking spatio-temporal 

variability in the vegetation BGS. However, there were considerable implications of 

shortening or extending the period. In extending the period, there are spatial gains in 

terms of coverage of cloud-free imagery. Yet, the period could not be extended 

indefinitely due to the reduced-sensitivity of the composite value to spatio-temporal 

variation in vegetation growth. Minimising the time period would have the opposite 

effect of maximising the sensitivity of the VI measure at the expense of cloud-free 

imagery. This was evident even in a 10-day period when data gaps still appeared in 
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the MGVI time series. Time-compositing inevitably adds uncertainty to studies of 

vegetation seasonality from remotely-sensed data, but is a necessary requirement for 

temperate mid-latitude regions given the reduced spatial and temporal coverage of 

valid MGVI data in the daily imagery.  

3.4 Verification of MGVI clear sky values with the METEOSAT 

cloud mask  

This section describes a validation of the effectiveness of the MGVI cloud screening 

strategy. The need for this validation exercise has been driven by the appearance of 

noise in the MGVI time series which may be caused by undetected cloud in MERIS 

pixels. Initial analysis of single pixel 10-day composite MGVI time series data 

showed that the transition between adjacent data points was not smooth but tended 

to be highly variable over short time periods. This resulted in frequent positive and 

negative spikes in the time series. An example of the instability in the MGVI time 

series is given in figure 3.15 (a). Although a smoothing function can be fit to the raw 

time series data (figure 3.15 b), noise in the underlying time series may still detract 

from the ability to accurately determine vegetation seasonality parameters (Eklundh 

and Jönsson, 2010).  
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Previous concerns have been raised about the effectiveness of the MERIS cloud 

mask in that thin clouds are not consistently detected over land, while ice and snow 

are frequently mistaken for cloud (MERIS, 2006). These shortcomings have been 

recently documented in relation to land surface applications (Gomez-Chova et al., 

2007). In order to ascertain the impact of these limitations on the quality of daily 

MGVI values within the 10-day composite, the METEOSAT Cloud Mask (CLM) 

was selected as a suitable independent cloud product for the comparison study. The 

daily valid MGVI values were compared to coincident CLM pixels, and the daily 

values of the allegedly cloud-free MGVI pixels were examined to investigate 

whether spikes of noise appeared where there was cloud in the CLM pixel.   

3.4.1 Cloud detection in the MGVI product  

Detection of cloud relies upon well known physical features in remotely sensed 

imagery, namely that they have a high albedo and low temperature (Gomez-Chova 

et al., 2007). Their presence in an image is detected by a set of thresholds in spectral 

bands, e.g. the thermal infrared because it is sensitive to cloud temperature,  in order 

to discriminate them from other surfaces such as snow, ice and sand (Menghua and 

Figure 3.15: (a): The blue line represents the raw MGVI time series.  (b) The thick black line shows 

the fitted smoothing function. 
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Wei, 2006). Although the application of thresholds is a generally accepted method of 

cloud detection in the optical spectrum, the setting of specific threshold values is 

influenced by the sensor’s spectral range.  For example, the METEOSAT SEVIRI 

(Spinning Enhanced Visible Infra-Red Imager) sensor has been designed solely for 

meteorological applications, and therefore has the potential to detect types of cloud 

which the MERIS sensor cannot. The MERIS spectral range (0.4-0.9 µm) covers the 

visible to near infrared spectrum in narrow bandwidths while the SEVIRI instrument 

covers  the same range, as well as the water vapour absorption region (5.7-7.1 µm), 

but in wider intervals. Furthermore, the SEVIRI cloud detection algorithm uses a 

combination of thirty-four threshold tests, combined with weather forecast data and 

radiative transfer model outputs (EUMETSAT, 2007). This is a more complex 

cloud-detection strategy than the simple threshold test on which the MGVI cloud-

detection algorithm is based (Equation 9.3). The MGVI undergoes two distinct cloud 

screening stages, the application of the MERIS cloud mask to raw MERIS imagery 

followed by a scene analysis by the MGVI cloud-detection algorithm. Raw MERIS 

pixels represent TOA radiance values which are categorised into four surface types; 

ocean, land, bright surface over ocean and bright surface over land, based on their 

radiometric characteristics. Cloud is separated from other bright surfaces at this level 

using land surface and cloud top pressure tests in MERIS bands 10 (centered at 

753.75 nm) and 11(centered at 760.63 nm)  (Santer et al., 1997).  Following the 

separation of cloud from land and ocean pixels, the land pixels are fed into the land 

branch of the processing chain. Here, atmospheric-corrections are applied and the 
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pixels are cloud-screened. A series of tests is done on the ratio of Rayleigh-corrected 

reflectance at different wavelengths, the results of which are used to index a decision 

tree identifying cloud pixels. The MERIS cloud mask is constructed on the basis of 

positively identified cloud pixels (ESA, 2006b). After further surface-specific 

atmospheric corrections, e.g. over areas of dense, dark vegetation, the FAPAR 

algorithm is applied to land pixels (ESA, 2006b). Internal MGVI spectral tests, one 

of which identifies pixels of clouds, snow and ice, provides the per-pixel flag 

information in the time-composited product (Pinty et al., 2002). The cloud spectral 

test relies on thresholds in three MERIS bands and is described below (Gobron et al., 

2004). 

Equation 3.3 the MGVI threshold test for cloud, snow and ice detection 
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Where ρ  =BRF values and BLU= Blue band (442.5 nm), RED=Red band (681.25 

nm) and NIR=near infrared band (865 nm) 

3.4.2 The selection of the METEOSAT Cloud Mask (CLM) 

EUMETSAT has been responsible for the operation of the METEOSAT satellite 

series since 1995, including the acquisition, processing, dissemination and archiving 

of the data, a task previously carried out by ESA (EUMETSAT, 2001). Due to the 

equatorial location of the geostationary orbit, the maximum latitude visible to the 

satellite is 81.27° N/S, and imagery of Ireland is acquired  (EUMETSAT, 2001).  
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The data are acquired in thirty minute intervals as SEVIRI records a line of image 

data on every rotation. The sensor measures reflectance across three spectral 

wavebands; the visible (VIS) data are acquired at 2.5 km spatial resolution while the 

thermal infrared (IR) and the water vapour (WV) absorption bands acquire data at 5 

km spatial resolution. The optimal spatial resolution of the sensor (3 km) is 

maintained at the sub-satellite point but degrades with distance (Pers comm, 

Richards, 3/11/2009). The METEOSAT-derived meteorological products were 

acquired from the Meteorological Archive and Retrieval Facility (MARF). Two 

cloud products were considered for this work, the Clear Sky Radiance (CSR) 

product which contains the percentage of clear sky in an image pixel and the Cloud 

Mask (CLM) product which only distinguishes cloud from clear sky areas 

(EUMETSAT, 2001). Although the CSR product gives more precise cloud 

information than the CLM, it is a coarser spatial resolution product.  The CLM was 

selected for this work as it has a finer grid resolution and, since the launch of 

Meteosat-8 in 2006, data are acquired every fifteen minutes (Pers comm, Richards, 

3/11/2009).  

3.4.3The analysis of MGVI clear-sky values using the CLM  

Daily valid MGVI data, i.e. non-cloud pixels, were compared to the CLM pixels for 

the same day and time defined as land, ocean and cloud. A sample of fifty daily 

METEOSAT CLM grids corresponding to five 10-day MGVI composite periods 

were selected for the comparison study. As the MERIS time-composite pixels were 

acquired on different days, over-pass times of the MERIS sensor had to be 
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confirmed so that coincident METEOSAT CLM data could be acquired. This 

information was obtained indirectly from an analysis of the solar zenith and azimuth 

angles provided per pixel in the MGVI composite product and corresponding time of 

day (UTC) calculated using the NOAA solar calculator (Cornwall et al., 2010). 

Although the acquisition time varied, even for pixels acquired on the same day 

within the composite image, the daily difference was not greater than the time 

interval between METEOSAT acquisitions. This can be seen from the calculated 

solar times in table 3.2 for five pixels in one composite image during the period, 

January 21st-30th. The difference in acquisition times between pixels on the far left 

and far right of the image is 38 seconds on the 29th January and 5 seconds on the 21st 

January. The full list of overpass times for MERIS and the corresponding 

METEOSAT acquisitions are given in Appendix B. 

Table 3.2: The acquisition times of MERIS sensor per pixel during the composite period from 

21st to the 30th January, 2006. 

Pixel position Day of month Solar time (UTC) 

Upper Left  29 11:41:02 

Upper Right 29 11:40:40 

Lower Left 21 10:53:47 

Lower Right 21 10:53:52 

Centre 26 11:36:32 
 

3.4.3.1 The five comparison tests  

The daily CLM grids were ordered in NetCDF format, using the online MARF tool, 

for the nearest time to the MERIS over-pass time, calculated from a pixel which was 

valid on that day. Next, the CLM cloud mask was remapped and resampled to a 1.2 

km grid, equivalent in size to the MGVI grid over Ireland. For each day within the 
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MGVI composite period valid pixel values were extracted and compared to their 

CLM counterparts. The criteria for the five tests are summarised in table 3.3. The 

number of pixels corresponding to each test result was calculated as a percentage of 

the total number of daily valid pixels or the total number of daily invalid pixels, 

depending on the test. The 21st January 2006, was selected as a day to illustrate the 

remapping output and the results of the comparison tests as it was a relatively clear 

day across the island, with a high number of the time-composited values for this 10-

day period (January 21st -30th) chosen on this day. The number of clear sky values 

extracted from the daily MGVI (dMGVI) can be seen in figure 3.16 (a) and the 

remapped CLM output with the dMGVI grid and computed test results in Figure 

3.16 (b). A small number of MGVI pixels remain outside the extent of the CLM grid 

and therefore retain a value of 0. 

Table 3.3: New pixel values assigned based on the comparison of coincident METEOSAT and 

MGVI pixels (note that an ocean mask prevents MGVI being calculated over open water) and 

the five test results from 21st January, 2006  

 

 

 

 

 

 

 

 

 

Test Description Pixels (%) 

1 Valid MGVI with CLM land 95 

2 Invalid MGVI with CLM cloud 46 

3 Valid MGVI with CLM cloud 4 

4 Invalid MGVI with CLM land 31 

5 Invalid MGVI with CLM ocean 23 
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Figure 3.16: (a): The dMGVI grid on the 21
st
 January, 2006. The 

representative MGVI pixels selected on that day to represent the composite 

period are shown in white, (b): The 21st January, 2006, result grid from the 

comparison of MGVI and METEOSAT CLM 11 a.m. grid: The grid pixel 

values correspond to the appropriate test number: 0 is un-compared value, 1 is 

valid MGVI and land, 2 is invalid MGVI and cloud, 3 is valid MGVI and 

cloud, 4 is invalid MGVI and land, 5 is invalid MGVI and ocean.  

 

(a) 

(b) 
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Given the relatively clear conditions on 21st January, 2006 , almost all the valid 

MGVI pixels corresponded to METEOSAT clear sky (95% in test 1), while only a 

very small proportion (4% in test 3) were defined as METEOSAT cloud, mostly 

under scattered cloud over land. Of the invalid MGVI pixels, a third of them (31% in 

test 4) occurred in areas identified as cloud-free land by METEOSAT, while  a 

greater number were identified as cloud (46% in test 2). This indicates that factors 

other than cloud determine valid value selection. The remaining invalid MGVI 

values (23%) were in ocean pixels (table 3.3).  

 

 

 

 

 

3.4.3.2 The verification of MGVI by the METEOSAT CLM for the total 

sample 

This analysis was expanded to a 50-day sample, i.e. fifty daily CLM subsets and five 

10-day MGVI composites, January 21st-30th, April 21st-30th, June 20th-29th, 

September 28th-October 7th and November 27th-December 6th, from 2006. These 

periods were selected to capture the annual variation in cloud cover across the 

island. There were no valid MGVI values available on twelve days of the fifty-day 

sample so only thirty-eight grid comparisons could be carried out. In table 3.4, the 

results of the validation tests for the daily valid MGVI are presented. The addition of 
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test results does not equal 100% in some cases due to the presence of MGVI pixels 

outside the extent of the CLM grid. 

Table 3.4: The sample percentage values for test 1 and 3 were calculated from the number of 
pixels identified by each test as a percentage of valid MGVI values on that day. The mean test 

results per composite period are also included. 
Date Total MGVI 

daily  

valid pix 

CLM cloud-covered but valid MGVI 

pix (test 3) 

CLM land and 

valid  

MGVI pix (test 

1) 

Test 3 (%) Test 1 (%) 

20060121 16384 598 15637 4 95 

20060123 1130 1130 0 100 0 

20060124 1545 141 1404 9 91 

20060126 2110 445 1599 21 76 

20060127 1956 106 1798 5 92 

20060129 33630 4515 28838 13 86 

Comp. Mean 25 73 

20060421 5 5 0 100 0 

20060423 13048 7892 4937 60 38 

20060425 7465 5821 1473 78 20 

20060426 2551 2055 491 81 19 

20060427 259 38 192 15 74 

20060428 35841 1543 34032 4 95 

20060429 2522 1035 1410 41 56 

Comp. Mean 54 43 

20060621 10573 8432 2132 80 20 

20060622 6713 5726 923 85 14 

20060623 3435 2483 949 72 28 

20060624 2080 2018 48 97 2 

20060625 21641 14893 6651 69 31 

20060626 6723 5438 1230 81 18 

20060627 1346 1160 138 86 10 

20060628 5960 5911 37 99 1 

20060629 1164 939 198 81 17 

Comp. Mean 83 16 

20060928 6360 6164 195 97 3 

20060929 18523 15423 2853 83 15 

20060930 45 35 10 78 22 

20061001 9934 9311 566 94 6 

20061002 10736 9311 978 91 9 
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20061003 1287 1047 226 81 18 

20061004 9932 8971 949 90 10 

20061005 222 222 0 100 0 

20061006 1711 1507 204 88 12 

20061007 1541 1536 5 100 0 

Comp. Mean 90 9 

20061127 6039 1003 5023 17 83 

20061201 4225 2475 1731 59 41 

20061202 22064 2353 19518 11 88 

20061203 6 5 1 83 17 

20061204 183 178 5 97 3 

20061205 7193 2345 4785 33 67 

Comp. Mean 50 50 

 

Table 3.4: Continued 

In table 3.4, it can be seen that there was a considerable range in the number of daily 

valid values on each day within the composite. For example, there were five valid 

pixels on 21st April and over thirty thousand on 29th January. This resulted in high 

variability in the percentage results from each of the tests applied. For example, on 

23rd January all of the valid MGVI pixels were cloud-covered, according to the 

CLM, while on 27th January, there was only a small amount of misclassification 

(5%). Owing to the inconsistency in these results, there is no definitive conclusion as 

to whether cloud cover is routinely undetected in valid MGVI pixels, although it is 

suggested that most but not all cloud cover is detected in the MGVI product.   

3.4.4. The influence of cloud-flagged values on MGVI time series data 

In order to investigate whether the cloud-covered pixels produce anomalies in the 

MGVI time series, five MGVI values in the time series of ten randomly-selected 

MGVI pixels were inspected to investigate whether spiked values coincide with 

cloud-cover. Spikes in the time series were identified by comparing the mean of the 
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left and right neighbours of the inspected value to the value of interest. A positive 

(upward) spike was noted if the inspected value exceeded the mean by more than 

20% of its value, and a negative (downward) spike noted when it was less than the 

mean by more than 20 %. There was no spike when the inspected value was within 

the mean ±20 % range. The process of spike identification is illustrated graphically 

in figure 3.17  

 

 

 

 

 

 

 

The sample for the analysis consisted of fifty inspected MGVI values, i.e., ten pixels 

spread across the country within five composite periods. Their values were cross-

checked with the corresponding CLM flags in order to investigate any link between 

undetected cloud and time series spiked values. Six tests were used to include all the 

possible combinations of clear and cloud-flagged pixels and the presence of positive 

Figure 3.17: The composite value at period 156 is anomalous with respect to the left and right 

neighbour indicated by an upward spike. The mean line is calculated from the left and right 

neighbouring value and the +20% value is also shown. 
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and negative spikes as well as normal values. The criteria for each test are presented 

in table 3.5. 

 

Table 3.5: The criteria for the six tests used to cross-check spiked and non-spiked values with 

the corresponding cloud flags are shown.  

Test Criteria 
1 Cloud,+ spike 

2 Cloud,- spike 
3 Cloud, no spike 
4 No cloud, + spike 
5 No cloud, - spike 
6 No cloud, no spike 

Of the fifty MGVI time series values, inspected for the presence of spikes, two were 

data drop-outs. This meant that the valid sample for the spike analysis contained 48 

MGVI values of which 17 were cloud-covered and 31were cloud-free.  Of the 17 

cloud-contaminated values, 53% of them produced a spiked value while 47% did 

not. Of the 31 MGVI values that were validated as land by the CLM, 45% of them 

produced a spike while 55% produced no spike. The results are illustrated in the 

column chart in figure 3.18. 
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3.4.5 Summary of validation results 

Comparing the MERIS data with coincident METEOSAT cloud mask data showed 

that valid FAPAR pixels were frequently cloud-covered, e.g. twenty-seven of the 

thirty-eight MGVI grids (71% of the sample) had 50% or more cloud-covered valid 

MGVI pixels across the image (calculated from test 3 values in table 3.6). This 

shows that apparently cloud-free values obtained by MERIS are in fact cloud-

covered according to the METEOSAT CLM. The consequence of this is that there 

are fewer valid MGVI with land and cloud-free CLM than might be expected, i.e., 

only 39% of the sample had more than 50% of MGVI pixels per image that were 

cloud-free and valid. After inspecting the fifty time series values, anomalous spikes 

did not consistently occur where the values were cloud-covered as there were almost 

equal proportions of spikes present on occasions when the METEOSAT cloud 

Figure 3.18: A column chart showing the percentage of cloud-covered and cloud-
free MGVI values that produced spikes in the MGVI time series values 
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masks indicate clear and cloudy skies. This would suggest that anomalous variations 

in the MGVI time series could be potentially caused by cloud cover but it is not the 

sole cause of their occurrence.  

3.4.6 Other contributing factors to MGVI time series noise  

An examination of the literature suggested that factors other than cloud such as poor 

radiometric correction, uncorrected scattering by aerosols, or increased absorption 

by water vapour over Ireland resulting from its maritime climate might be likely 

causes in producing anomalous values in the MGVI time series. Others who have 

used the MGVI data have not reported such widespread noise when working at 

lower latitudes and in more continental climates (pers. comm.Gobron, 2010). 

Poor atmospheric corrections are a possible contributory factor to time series 

instability (Pinty et al., 2002). However, a rigorous analysis of the quality of 

atmospherically-corrected MERIS measurements was not within the scope of this 

study. The MGVI algorithm uses the 6S atmospheric model to simulate the 

absorption and scattering processes of the atmosphere and determine their effect on 

the MERIS reflectance data used in the construction of the index (Gobron et al., 

1999). An example of atmospheric correction by the 6S atmospheric model is 

presented in figure 3.19 (Vermote et al., 1997). This example illustrates how 

atmospheric correction limits, but does not remove, the absorption processes of the 

atmosphere. 
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In figure 3.19, the top of atmosphere reflectance, derived from the small bandwidth 

sensor, ASAS, was corrected for absorption by oxygen and water vapour (Vermote 

et al., 1997).  Although differing from the MERIS sensor in spectral range, the 

example serves to illustrate how the corrected vegetation profile is smoother than the 

input signal. For example, between 400 and 700 nm, the top of atmosphere 

reflectance is greater than the corrected version as the increased brightness from 

scattering of the signal in the atmosphere is removed by the model. However, while 

the absorption features at 760 nm (oxygen) and 865 nm (water vapour) are reduced, 

they are not totally removed from the corrected reflectance.   

 

Figure 3.19: An example of atmospheric correction by the 
6S model (Vermote et al., 1997). Note the absorption 

features at 760 nm and 865 nm in the top of atmosphere 

reflectance which are related to the presence of oxygen 

and water vapour. These are almost smoothed out in the 

corrected reflectance. 

 



 

 

106 

 

There is no evidence from the MGVI documentation that the 6S atmospheric model 

is geographically or temporally tuned for variability in atmosphere on a local scale. 

This is unlike the dynamic correction for Raleigh scattering using the MERIS blue 

band. In fact, only three possible parameter values for optical thickness are available 

in the 6S model for MGVI, accounting for only a limited set of atmospheric 

conditions (see Gobron et al., 2004). In contrast, the MERIS sensor would be 

expected to encounter a wide range of atmospheric conditions on a global scale. Like 

clouds, water vapour strongly absorbs radiation in the optical domain and is highly 

variable in vertical profiles of the atmosphere (Schroedter-Homscheidt et al., 2008). 

Over Ireland, water vapour levels tend to vary  on a daily and seasonal basis (Rohan, 

1986). Therefore, errors in the atmospheric correction of MERIS reflectance data 

would be expected without tuning the parameters of the atmospheric model for such 

variability.  

3.4.6.1 MERIS top of atmosphere radiance 

The intensity of reflected radiation is measured as brightness (watts) per wavelength 

interval (micrometre) per angular unit (steradian) and is known as radiance (W/m2 sr 

µm) (Campbell, 2002). As input radiance from three MERIS bands is used in the 

MGVI calculation, it was intended to examine temporal variability in their values. 

Theoretical studies have shown that the impact of the top of atmosphere radiance 

uncertainties on the expected MERIS FAPAR products accuracy is about 5% to 10% 

(Gobron et al., 2008). The inter comparison of FAPAR products from the MERIS 

and SeaWiFS sensors showed differences in the range 5–10% when the bands of 
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each sensor have been inter-calibrated to lower than 4% uncertainty (Gobron et al., 

2008). This accuracy estimate was within the stated accuracy of the MERIS FAPAR 

product. However, the average FAPAR uncertainty value can be larger than 10% if 

two bands have radiance uncertainty values of about 4–5%.Therefore, accurate 

radiometric calibration of the input MERIS radiance values is important so as to 

minimise uncertainty in the FAPAR product.  

 

The MERIS Top Of atmosphere (TOA) daily radiance in the 15 MERIS bands was 

obtained from the JRC for one year, 2008, in order to inspect the temporal pattern in 

radiance values. The MERIS radiance values were acquired over a 15×15 pixel 

window centred on 51.836983°N and 8.154828°W. The study area consists of 

agricultural fields in southern Ireland which are classified as pastures in the 

CORINE landcover 2006 dataset.  Four pixels were selected within the window to 

compare MGVI time series with their corresponding blue, red and near infrared 

radiance values. The coordinates of the MGVI and MERIS pixels are shown in 

Appendix C. There is a slight geometric offset between the grids which is 

approximately 0.5 pixels in the X and Y direction. As the compared pixels were 

composed of the same landcover class, the effect of any geometric offset would be 

expected to be minimal. Temporal consistency was ensured since the daily radiance 

values were averaged in 10-day periods coincident with the MGVI composite 

periods. The time series for the four pairs of pixels can be seen in figure 3.20 (a)-(h).  

The MGVI time series, on the left of figure 3.20, are plotted with error bars which 
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represent the temporal mean absolute deviation, calculated from the daily valid 

values, over the time compositing period.Therefore there are no error bars on 

composite values with only one valid day in the composite which are selected by the 

algorithm as they are the only available values, and may not necessarily be the most 

representative of the composite. Anomalous spikes occur on some of these values, 

particularly in the MGVI time series of figure 3.20 (e) and (g).  The larger error bars 

do not seem to be on the anomalous data points however.   
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(f) (e) 

(g) (h) 

(a) (b

(c (d) 

Figure 3.20: (a)-(h): The 2008 MGVI time series are displayed on the left (a,c,e,g), in black lines, 
with temporal deviation over the composite period represented as error bars. The 2008 MERIS 

radiance time series are located in their respective bands on the right (b,d,f,h), in multicoloured 

lines, with each pair corresponding to a single pixel and all four pixels identified as pastures 
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Data gaps in the MGVI time series occur where conditions prevent the acquisition of 

a daily value within the composite period. However, these conditions are not flagged 

in the MERIS radiance values but are detected using a spectral reflectance test at the 

next processing level. Therefore, the radiance time series is a continuum of values 

unperturbed by data gaps.  Generally, the MGVI time series follows the seasonal 

profile of a vegetated land surface in a mid-latitude temperate climate like Ireland 

with one growing season. However, the MERIS radiance measurements represent 

both the brightness of the land surface and the atmosphere above it. Therefore, short-

term variability in the radiance is probably due to the absorption and scattering 

processes of the atmosphere. As would be expected, the near infrared radiance is 

greater than that of the red and blue spectrum due to internal leaf properties. The red 

and blue band reflectance is known to be similar and the time series of red and blue 

radiance values demonstrate this (Govaerts et al., 1999).  However, the blue band 

signal is more severely attenuated by Rayleigh scattering in the atmosphere 

(Campbell, 2002). The short-term variability in the seasonal profiles is characterised 

by both upward and downward spikes in the radiance and MGVI values and there is 

no apparent temporal pattern in their occurrence. However, the MGVI time series 

profile should be solely influenced by the photosynthetic activity of the vegetation 

surface. Yet uncertainty in the MGVI arises from the presence of this same short-

term variation. Therefore, it is assumed that there is some variability in the MGVI 

profile which is not synchronised with the seasonal behaviour of the vegetation 

surface and the origin of this may be a combination of radiometric and atmospheric 

errors in the MERIS data.  
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3.5 Discussion  

This chapter described an approach to derive an appropriate time-composite period 

for a national-scale study of vegetation spring greening. Composite satellite products 

are usually provided by space agencies at fixed temporal resolutions, e.g. 8-day, 10-

day and 16-day. The advantage of the G-POD tool was the integration of the FAPAR 

time composite algorithm with grid computing resources which allowed the user to 

acquire daily MGVI data composited at any temporal resolution. Furthermore, the 

selection of the 10-day composite period was not arbitrary but based on carefully 

selected criteria which were guided by ground-based observations of temporal 

patterns in vegetation growth and cloud cover. However, even though a 10-day 

composite period was the optimal trade-off between data loss due to cloud cover and 

temporal resolution to track the SOS, MGVI data loss still occurred due to cloud. 

This demonstrates that due to the frequency of cloud cover over Ireland, even in a 

10-day period, at least one cloud-free day could not be obtained for every image 

pixel. Extending the period indefinitely would undoubtedly satisfy this criteria but at 

the expense of sufficient temporal resolution to track the SOS effectively.  The 

spatial patterns in data loss were seen over seasonal to annual time periods in the 

cloud composite images generated from the cloud flag data. This method is 

potentially useful for selecting local sites or regions of the country for monitoring 

local-scale vegetation phenology using higher spatial resolution products at the most 

appropriate temporal resolution. It was also observed that valid MGVI data were 

more frequently obtained over lowland than upland areas, suggesting that orographic 

cloud (generated by moist air rising and cooling over mountains) is routinely 

detected in MGVI pixels.  



 

 

112 

 

The study determined that a 10-day period is the minimum composite period length 

required, and implies that SOS monitoring cannot be done at finer temporal 

resolutions using the RR MGVI product at the national-scale in Ireland. Therefore, 

SOS dates will be estimated to a 10-day period or ‘decad’. To estimate the day of 

year would suggest a level of accuracy which was not present in the input composite 

data. Nevertheless, a recent NASA white paper on LSP quoted daily precision and 

sub-weekly accuracy of ± 3 days, where possible, as requirements for a land surface 

phenology earth system data record (ESDR) (Friedl et al., 2010). However, as clouds 

limit the consistent use of daily optical satellite data; especially in mid to high 

latitude maritime areas, like Ireland, daily precision in a satellite-derived phenology 

measure would be rarely attainable. Ultimately, the adoption of an N-day or daily 

precision in LSP measures depends on the study aims. For instance, while general 

spatio-temporal patterns in SOS can be clearly detected using periods of days rather 

than daily precision, phenology trend estimation and comparison to ground-based 

observations require daily precision (Studer et al., 2007). The ground-based 

observations of spring greening were used in this study in different ways. Although 

the fieldwork was originally intended as a guide to select an optimal period to track 

the temporal development of tree phenology in spring, it proved useful to understand 

vegetation phenology from a ground-based perspective. For instance, it was seen that 

the rate of leafout in the forest canopy differed with the tree species and for 

individual trees of the same species depending on location, presumably in response 

to local scale factors of aspect, light availability, age of the tree and soil 

condition.The greening of the understorey vegetation preceded the greening of the 

forest canopy, and in some case leaves emerged at the top of the tree crown before 
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those at the base and vice versa. Such understory vegetation dynamics are strategic 

in responding to the limited availability of light when the overlying leaf canopy fills 

in.   Although such subtle variations in spring phenology would not be detectable at 

the 1.2 km spatial resolution of a MERIS RR pixel, these observations have 

demonstrated that tree phenology can vary over very small areas (field site approx 

1km2), even for the same tree species. Furthermore, the earlier greening of the 

understorey could potentially bias estimates of SOS in forested areas towards earlier 

dates.  

 

The noise in MGVI time series was not restricted to pixels of particular landcover 

types, location or any particular year but was common to all pixels across the image. 

This raised concerns about the quality of the input MERIS data, which not only 

prompted an investigation of the MERIS radiance measurements used to construct 

the MGVI, but also a verification of cloud screening in the MGVI product. Results 

showed that over two-thirds of the sampled valid MGVI images had 50% of their 

pixels defined as METEOSAT cloud. Of those cloud-covered valid MGVI pixels, 

spikes occurred in the time series just as frequently as in cloud-free valid MGVI, 

suggesting that cloud-cover is not the sole cause of anomalous MGVI values. The 

use of a global MGVI atmospheric model with a limited number of parameter 

settings for atmospheric conditions is one potential cause of poor atmospheric 

corrections; hence noise in downstream MERIS products such as the MGVI. The 

time series noise was also present in the MERIS radiance time series, but these data 

represent radiance measurements uncorrected for atmospheric effects. Therefore, it is 

not possible to estimate the impact of atmosphere on MGVI using MERIS radiance 
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data. Over Ireland, where water vapour and cloud cover content are higher than those 

over continental areas, MERIS data quality issues require further attention, 

specifically more rigorous atmospheric corrections, tuning of the atmospheric model 

for a greater variety of atmospheric conditions, and more conservative cloud 

screening.    

3.6 Conclusions  

Cloud cover is largely an unknown quantity in global climate models, and remains 

notoriously difficult to predict in space and time (GCOS, 2010). Therefore, fixing a 

single composite period, selected on the basis of a test period in 2006, does not 

guarantee complete spatial-temporal coverage in the 10-day MGVI composites for 

the seven-year duration of the study. However, the 10-day period does represent an 

optimal trade-off between the two criteria established at the beginning of this 

chapter. The second criterion was for a composite period with at least one cloud-free 

day per pixel, which has been unachievable at certain times of the year. However, 

the first criterion was attainable as the 10-day interval was sufficient to track 

vegetation spring greening. The compromise between the criteria for composite 

period selection fulfilled the initial study objective of gathering sufficient cloud-free 

data for a national-scale study. Further research is required in deducing the cause of 

the anomalous spikes in the MGVI time series, but it would appear from this analysis 

to be a combination of undetected cloud cover, limited atmospheric corrections and, 

potentially, calibration issues with the radiance data used to construct the MGVI. 

Overall, this chapter has outlined an approach to composite period selection using 

information on cloud cover and vegetation phenology at point locations in the study 
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area. A validation of the quality of daily MGVI values, representative of a time-

composite period, has shown that cloud may not be as rigorously detected in MERIS 

data as it is by meteorological satellites such as METEOSAT which has possible 

implications for the subsequent use of those data. Further work on validating the 

MGVI cloud-screening steps separately with METEOSAT and other reliable cloud 

mask data could be useful to assess their rigour. 
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Chapter 4.  Optimising time series analysis software to 

estimate the Start of Season (SOS)  

Time series of optically remotely-sensed land surface parameters such as the MGVI 

are frequently punctuated by data gaps due to errors in data acquisition (Colditz et 

al., 2008), and as shown in chapter 3. Additionally, when the quality of the VI time 

series is compromised due to sensor disturbances, the seasonality signal is not easily 

detected and the extracted seasonality information is uncertain  (Jönsson and 

Eklundh, 2002). Therefore, time series data must be modelled if more robust 

seasonality information is to be determined from VI time series data (de Beurs and 

Henebry, 2008a). This chapter presents a methodological approach to the estimation 

of the vegetation Start of Season (SOS) from a seven year time series of the MGVI 

from 2003-2009. The spatio-temporal patterns in the extracted SOS metric across the 

island are discussed. Finally, the merits of the study methodology are evaluated in 

terms of reliability, accuracy and robustness, and recommendations on possible 

improvements to the method are made. Certain sections of this and chapter 5 have 

been written as a paper submitted to the International Society of Photogrammetry 

and Remote Sensing (ISPRS) Journal of Photogrammetry and Remote Sensing 

which is currently under review. 

4.1 Time series analysis methods for land surface phenology 

monitoring  

The MGVI time series was characterised by noise, manifested as locally high and 

low anomalous spikes (see section 3.4), which may be due to a combination of 
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factors as discussed in the previous chapter. In addition, data gaps were present in 

MGVI time series due to cloud, surface water, invalid Bidirectional Reflectance 

Function (BRF), missing reflectance data and the presence of  non-vegetated 

surfaces (Aussedat et al., 2006). To fill in the data gaps created by missing daily 

MGVI data, and smooth the time series noise, a method was required to produce a 

model MGVI time series from which the SOS estimates could be derived with less 

uncertainty. Compositing techniques, e.g. Maximum Value Composites, as have 

been applied to NDVI (e.g., Holben, 1986),  provide some certainty of obtaining 

valid values for continuous NDVI time series for the purpose of phenological 

monitoring. However, new composite methods have been developed to account for 

the temporal characteristics of more recently developed vegetation indices. Such 

techniques seek to reconstruct full time series without the data gaps, while allowing 

for methods of seasonality metric extraction. For example, a software tool for 

analysing MODIS time series data, TiSeG, interpolates between data gaps in MODIS 

land surface products based on gap length and the number of invalid pixels (Colditz 

et al., 2008). Similarly, the generic time series analysis software, TIMESAT, has 

incorporated two least-squares fitting methods based on asymmetric Gaussian and 

harmonic functions as well as a filtering method based on locally-fitted polynomials 

(Jönsson and Eklundh, 2004).   These methods parameterise curves of vegetation 

seasonality in multi annual VI time series within software packages such as TiSeG or 

TIMESAT. Seasonality parameters are identified by curve thresholds, curve 

derivatives including points of inflection and maximum curvature, or filtering 

techniques such as the delayed moving average (Reed and Brown, 2005). Absolute 

curve thresholds are based on VI values which correspond to fixed conditions of 
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image acquisition, soil background contribution and vegetation type, but these do not 

perform well in heterogeneous vegetation cover (Reed et al., 1994; de Beurs and 

Henebry, 2005).  However, they can at least be quantified given a sufficient density 

of ground-based measurements, e.g. a threshold set to 85% of the growing season 

mean MODIS 250m NDVI correlated best with ‘onset of leafing of birch’ in spring 

in Northern Fennoscandia (Karlsen et al., 2008). In contrast, the selection of relative 

thresholds is largely subjective relying on a fraction or percentage of the annual VI 

range in a pixel (Eklundh and Jönsson, 2010). A 10% curve threshold has been used 

in previous TIMESAT studies (Jönsson and Eklundh, 2002, 2004). This threshold 

has also been favoured by Hird and McDermid (2009), whilst a 20% threshold was 

selected after inspection of individual curve fits to pixels from various biomes in 

South Africa (Wessels et al., 2010).  The same threshold was used by Heumann et al. 

(2007) to avoid error due to noise in dry season VI values in a study of Sahelian 

Africa based on NDVI. The season midpoint (50%) threshold based on NDVI was 

proposed by White et al. (1997) to capture the most rapid increase in greenness. This 

seasonal midpoint method was also adopted by Brown et al. (2010) in studying 

phenological change in Africa based on NDVI. A 50% threshold was not considered 

in this study as the aim of this research is to mark the beginning of measurable 

photosynthesis and not the season’s midpoint. Most research on selecting thresholds 

to date has been conducted on the AVHRR NDVI. However, the relationships 

between thresholds in satellite-derived seasonality curves and specific phenological 

events are not universal, but depend on species specific traits. In deciduous 

vegetation and snow-free conditions, the NDVI is generally responsive to the 

development of leaf foliage, and the NDVI would start increasing after bud-burst 
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(L.Eklundh, pers comm., 2011). However, there is no indication of what constitutes 

start of growth when using MGVI as it has not been as widely used in vegetation 

phenology applications as NDVI. The variability in phenological metrics obtained 

from different vegetation indices complicates the task of relating interannual change 

in the metric to climatic and other factors which drive phenological change (Boyd et 

al., 2011). In a study of the length of the growing season in southern England, results 

varied depending on the VI dataset used: MODIS EVI, NDVI, MTCI or MGVI. The 

discrepancy in the length of the growing season between the different indices was 

between 38 days for 2006 and 18 days for 2007 (Boyd et al., 2011).  

 

An alternative method to the detection of phenological events by thresholds is the 

use of curve derivatives or inflection points which correspond to a shift in the 

sequence of VI values from one seasonal event to the next (Moulin et al., 1997), 

similar to locating the maximum and minimum values in the rate of change of 

curvature  (Zhang et al., 2003). Moving averages locate points of departure of the 

actual VI profile from an idealised curve (Reed et al., 1994). Fourier analysis relies 

on reconstructing the seasonal signal in VI time series into a series of sinusoidal 

waves of varying frequency (Dash et al., 2010). The seasonal component can then be 

separated from the long term phenological trend (Verbesselt et al., 2010). However, 

the technique cannot compensate for gaps created by clouds and the optimal number 

of Fourier components ultimately depends on data quality, the temporal resolution 

defined by the compositing interval, and the temporal variations of phenological 

features  (Geerken, 2009). Generally, local time series changes cannot be captured 

with low order Fourier transforms, a task better suited to local model fits, which 
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when merged accurately follow the behaviour of the complete time series (Jönsson 

and Eklundh, 2002). Therefore, the TIMESAT software, based on a method which 

implements least-squares local model fits, was chosen for the analysis of 

phenological cycles in the MGVI time series .  TIMESAT provides dual 

functionality: it can model the time series trend by curve fitting, and seasonality 

metric extraction is by relative or absolute VI thresholds. The advantage of using 

TIMESAT is that it is generic in its application to different satellite sensor products 

composited over different time intervals (Jönsson and Eklundh, 2002, 2004). In a 

model-based empirical study of six noise-reduction techniques, the TIMESAT 

double logistic and asymmetric Gaussian functions performed better than the 

alternative methods based on filters (Hird and McDermid, 2009). In comparing ten 

individual methods of SOS estimation from 1982-2006 across North America, the 

TIMESAT Savitzky-Golay filter  corresponded most closely to the 1982-2006 

ensemble of model SOS estimates (White et al., 2009). Although these authors did 

not suggest the TIMESAT method was superior, in their study it did produce the 

most consistent SOS estimates of all the compared methods. This consistency in the 

TIMESAT method is an important asset when comparing SOS between different 

sites and years (van Leeuwen, 2008).  Therefore, TIMESAT was chosen as a flexible 

and versatile tool to explore methods for MGVI noise reduction, with various 

options for filtering noise and fitting model curves, while being freely available 

online (Eklundh, 2010). 
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4.2 Overview of the time series analysis software- TIMESAT 

TIMESAT has been developed and modified over several years; the latest version of 

the program used in this study is TIMESAT 3.0 (Eklundh and Jönsson, 2010). The 

full range of the time-based and value-based seasonality metrics that can be 

estimated with TIMESAT is listed in table 4.1. 

Table 4.1: A summary of the extracted seasonality metrics in TIMESAT 3.0 

Category Seasonality 

Metric 

Abbreviation Description Units 

Time- 

based  

Metrics 

Time for the 
start of season 

SOS Time for which the left edge has 
increased to a user-defined level 
measured from the left minimum 
level 

N-day period 

Time for the 
end of season 

EOS Time for which the right edge has 
decreased to a user-defined level 
measured from the right minimum 
level 

Time for the 
mid-season 

MOS The mean value of the times for 
which the left edge has increased to 
the 80 % level and the right edge 
has decreased to the 80 % level 
respectively. 

Length of the 
season 

LOS Time from the start to the end of 
the season 

Value- 

based  

Metrics 

Base Level Base The average of the left and right 
minimum values 

Digital 
Number   
range 
 
 

Largest data 
value for the 
fitted function 
during the 
season 

Max Maximum value of the fitted 
function 

Seasonal 
amplitude 

Difference between the maximum value and the 
base level 

Rate of 
increase at the 
beginning of 
the season 

The ratio of the difference between the left 20 % and 
80 % levels and the corresponding time difference 

Rate of 
decrease at 
the end of the 
season 

The absolute value of the ratio of the difference 
between the right 20 % and 80 % levels and the 
corresponding time difference. The rate of decrease 
is thus given as a positive quantity 

Large 
seasonal 
integral 

Integral of the function describing the season from 
the season start to the season end 

Small 
seasonal 
integral 

Integral of the difference between the function 
describing the season and the base level from season 
start to season end. 
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In figure 4.1, the seasonality measures used to parameterise the growing season from 

a TIMESAT-fitted curve are illustrated. The use of the fitted function rather than the 

underlying noisy times series produces more stable seasonality measures (Eklundh 

and Jönsson, 2010). 

 

 

 

 

 

 

 

 

 
 
Figure 4.1: Key seasonality metrics extracted from TIMESAT: Points (a) and (b) correspond to 

the start and end of the season, (c) and (d) mark the mid-season levels , (e) is the season 

maximum, (f) is the seasonal amplitude, (g) is the season length, (h) is the small seasonal integral 

and (i), the large seasonal integral, both of which describe seasonal productivity (Eklundh and 

Jönsson, 2010).     

4.3 TIMESAT processing of VI time series 

TIMESAT firstly identifies the coarse number of seasons by approximating the 

seasonal component of the time series to a sine wave. The local model fits and 

moving filters then permit more accurate and realistic modelling of the individual 

seasons. Ancillary satellite data, such as quality flags can be used to weight the 

model and landcover data can be used to fine-tune the settings which parameterise 

the curve fits to pixels of known landcover type (Jönsson and Eklundh, 2002, 2004). 
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4.3.1 The Savitzky-Golay filter 

The Savitzky-Golay (SG) method, based on a filtering window, applies a least-

squares fit of the input data to a polynomial function. This ensures that the position, 

i.e. height and width, of seasonal peaks is maintained, which a simple moving 

average method does not preserve. The result is an upper-envelope adapted, 

smoothed curve fit. The width of the filter is specified by the user. Generally, a large 

window size results in greater suppression of noise and a smoother curve, however 

some natural variation in the time series can also be smoothed out. A narrow window 

often replicates time series noise. Therefore, the optimal window-length is a balance 

between the degree of smoothing and maintaining the original time series trend 

(Eklundh and Jönsson, 2010). As can be seen in figure 4.2 (a), the Savitzky-Golay 

method with a window size of 3 tends to follow the complexity of the raw data series 

very closely. The noise and drop outs (e.g. at time period 145) are not removed. In 

figure 4.2(b), however, the degree of smoothing has been increased by using a 

window size of 6. Therefore noisy data have been smoothed and drop outs removed.  
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Figure 4.2: (a) The Savitsky-Golay (SG) filtering with a window size of 3 and (b) with a window 

size of 6. 

 

4.3.2 Least-squares fit to a basis function  

While all three curve fitting methods are least-squares fits to the upper time series 

envelope of the VI data, the Savitzky-Golay filter is constructed from locally-fitted 

polynomial functions in a moving window.  The other two least-squares methods are 

based on local fits to logistic or asymmetric Gaussian basis functions in intervals 

around maxima and minima in the time series. The local model functions share the 

same general form shown in equation 4.1 (Jönsson and Eklundh, 2004).  

Equation 4.10: General form of the local model functions 

 

  ( ) ( ) ( )xtgccxctftf ;,; 21 +=≡       

The linear parameters  ( )21, ccc = define the base level and amplitude of the fitted 

model while non-linear parameters ( )pxxxx ,....,, 21= determine the shape of the basis 

(a) 

(b) 
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function ( )xtg ; . In the case of a double logistic basis function, there are parameters to 

define both points of inflection on the left and right hand side of the curve and the 

corresponding rates of change of slope at these points (figure 4.3).  In order to ensure 

a smooth curve, the range of possible parameter values is restricted. 

 

 

 

 

 

 

 

 

In the case of a Gaussian basis function (figure 4.4), one parameter defines the 

position of the maximum or minimum point in the curve. A series of other 

parameters define the shape of the left and right hand side of the curve in terms of 

width and flatness. These shape parameters are also restricted in range so that the left 

and right hand side of the curve from two seasons are joined smoothly.  

 

 

 

 

 

 

Figure 4.3: The double logistic basis function in which the parameters 1x   and 3x   

determine the position of the left and right inflection points respectively (Eklundh 

and Jönsson, 2010) 

Figure 4.4: Asymmetric Gaussian local functions. In (a) the local parameter function which determines 

the width of the right function half has been decreased (solid line) and increased (dashed line) compared 

to the right function half. In (b) the parameter which determines the flatness of the right function half has 

been decreased (solid line) and increased (dashed line) compared to the value of the left half (Eklundh 

and Jönsson, 2010). 
 



 

 

126 

 

In order to model small-scale variation in the time series, the asymmetric Gaussian 

and double logistic function fits are constructed from smaller local model functions 

in intervals around the left minimum, central maximum and right minimum of one 

year of data. Although the local functions produce fits which are well adapted to 

local minima and maxima, the fits must be merged where they intersect to form the 

global model function to the full time series. This is obtained by merging the three 

local fits, using cut-off functions that ensure a smooth transition between 

overlapping elements of the left, central and the right portions of the local fits. In 

order to fit local functions across the entire time series, the season of the central year 

is modelled first.  Fill years are inserted at the beginning and end of the time series to 

facilitate local model fitting to the first and last year of the valid time series. These 

are typically replicates of the first and last year of data.  

4.3.3 Curve-fitting per pixel using the TIMESAT GUI 

The TIMESAT package consists of numerical and graphical components coded in 

the Matlab and FORTRAN programming languages. The per pixel time-series 

analysis and curve-setting optimisation was done in the Matlab Graphical User 

Interface (GUI), (MATLAB licence 157192) as can be seen in figure 4.5, while an 

entire image was processed more efficiently in the FORTRAN-coded version.  
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The TIMESAT GUI allows the user to preview the changing of parameter settings 

and the resulting curve fits. The advantage of the GUI is that adjustments can be 

made to the settings on a per-pixel basis before processing entire images. The 

process of time series function-fitting for a single pixel in the TIMESAT GUI is 

illustrated in figure 4.6 a-d: (a) the per pixel time series is displayed in the GUI. The 

beginning and end of the time series was filled with a dummy year (Year X and Year 

Y) in order to facilitate the effective fitting of local model functions (as described in 

section 4.3.2). (b) A spike-removal setting is applied which removes outliers due to 

noise in the data: the severity of spike removal can be adjusted using this setting. (c) 

The approximate number of seasons is calculated based on the number of curve 

maxima and minima and their amplitude with respect to a baseline. (d) The local 

model fits, using either a double logistic or asymmetric Gaussian basis function, are 

merged into a global fit. 

 

Figure 4.5: The TIMESAT Graphical User Interface (GUI) showing 

a time series of MERIS FAPAR data, 2003-2009, the first and last 

years are replicate years inserted to fit local model functions before 

they are merged for the global fit 
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4.4 Justification of a fitting method  

The SG filter was not selected as a fitting method for this study given the variable 

extent of the noise in the MGVI time series and the difficulty in selecting an 

appropriate filter window size to process the entire dataset. It was found that no 

single optimum window size maintained the balance between the degree of 

smoothing and preserving the seasonal component of every SG-filtered time series at 

a national scale. However, as can be seen in a comparison of the SG-filtered time 

series with those fitted to asymmetric Gaussian (AG) functions in figure 4.7, using a 

wide filter size (14 values) produces model fits which closely resemble those 

produced from the Gaussian functions.  The SG-filtered time series are noisy in 

some cases where AG fits are not, and the AG fits follow local variation more 

closely than the SG-filtered data, e.g. in detecting secondary peaks in the last two 

seasons of pixel (h).   

 

B 

Figure 4.6: Four steps in applying TIMESAT curve fits to a pixel of mixed forest (51.810558N, 8.3172W). (A) Raw 

MGVI time series (B) Spike removal (C) Number of seasons calculated (D) Gaussian fit 
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In order to illustrate the differences in SOS estimated by the AG and SG (filter 

window size of 14) methods, the full SOS image produced by each method in  

2003 was compared. The minimum cut-off value, below which, values are forced to 

the specified minimum value, and explained in further detail in 4.5.5, was set at 50. 

The distribution of SOS estimates per image is shown by the accompanying 

histograms in figure 4.8. The spatial patterns in SOS estimates are consistent from 

both methods, although there is more spatial variation in the Gaussian estimates. 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

Figure 4.7: Inter-comparisons of four sample fits to pixels of pasture land with the Savitzky-Golay filter 

(a)-(d) and asymmetric Gaussian functions (e)-(h) 
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This is evident from the histograms, as the Gaussian-estimated dates have a much 

wider range of values and are less centralised than the SG- estimated dates which 

mostly occur between periods 4 and 8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

The double logistic and asymmetric Gaussian fits give very similar results as 

demonstrated by Hird and McDermid (2009). An example of the similarity in fits 

produced is shown for a single pixel in figure 4.9. The only obvious slight 

differences in local model fits appear in season two, from period 37 to 73, potentially 

due to the differences in parameters used to define the shape of the left and right 

hand sides of the DL and AG local model fits, as described in section 4.3.2. 

 

 

(a) 

(b) 

Figure 4.8: A comparison of the SOS image produced from the SG-filtered time series with a window size of 

14 with that produced from fits to asymmetric Gaussian functions. The difference in range of SOS estimates 

produced by both methods can be seen in the histograms  
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Due to the similarity exhibited by both of these fitting models, Root Mean Square 

Error (RMSE) analysis was used as an overall indicator of model performance since 

it summarises the mean difference between observed and predicted values (Willmott, 

1982). The objective of the RMSE analysis was to select the model which minimised 

the difference between the original time series and the modelled values. The 

observed values were the original MGVI time series values and the predicted values 

were generated from the fitting function, i.e. asymmetric Gaussian or double logistic. 

The model fits were applied to 288 data values across the time series within100 

randomly-selected pixels in the MGVI grid, using equally-weighted fits with no 

upper envelope bias. The overall RMSE per model fit was averaged for the 100 pixel 

results. An analysis of the distribution of differences was also conducted between the 

observed MGVI values and predicted values from both double logistic and 

asymmetric Gaussian fits. Not surprisingly, the two averaged RMSE values were 

similar, being 44 for the double logistic fit and 43 for the Gaussian fit (measures in 

MGVI byte units). In figure 4.10 (a)-(b), an example of a scaled relative frequency 

histogram is shown of the difference between model-estimated and MGVI values for 

10-day period  

M
G

V
I 

 

Figure 4.9: A single time series modelled with both asymmetric Gaussian and double 

logistic fits 
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100 pixels, fitted by each of the two model functions. The histogram is constructed 

in such a way that the summed area within the bars is 1, allowing the relative 

distribution of difference values from the two models to be compared. The frequency 

values have been divided by the sample size (n=288). 

 

 

 

 

 

 

 

 

 

 

 

 

 

The shapes of the relative frequency distributions are broadly similar. They are both 

negatively skewed (to the right) and asymmetric in shape, meaning that the bulk of 

differences are positive, i.e. the models over-estimate MGVI. The distributions 

appear to be bimodal with a smaller peak of negative differences. The RMSE 

analysis, applied to modelled values of the general form, showed that the Gaussian 

fit had slightly less error, being 44 for the double logistic fit and 43 for the Gaussian 

Figure 4.10: Scaled relative frequency histograms for comparing the 

distribution of differences from (a) Logistic and (b) Gaussian model fits 

averaged over 100 pixels  
 

(a)  

(b)  
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fit (measures in MGVI byte units). Therefore, the Gaussian fit was selected to model 

the entire dataset. A summary of the RSME analysis is presented in Figure 4.11. 

 

 

 

 

 

 

 

 

 

 

4.5 Setting sensitivity analysis  

Once a model fit had been chosen to process the MGVI dataset, a set of parameter 

settings which control the model behaviour was selected. Visual analysis of curve 

fits to sample pixels from different landcover types in the TIMESAT GUI showed 

that there was not enough landcover-specific variation in the time series to warrant 

class-specific parameter settings. Therefore, a set of common parameter settings was 

tested on fifty randomly selected pixels by exploring the change in curve parameter 

values when each setting was modified.  Some settings, e.g. data range, were already 

determined based on the characteristics of the dataset. The settings which were 

selected from the sensitivity analysis were used to process the entire dataset and are 

summarised in table 4.2, and subsequently explained in more detail. 

Figure 4.11: The approach to RMSE analysis from which the asymmetric Gaussian 

fitting function was selected 

 
100 randomly selected pixels selected across the image for RMSE analysis 

288 observed (MGVI) values per pixel (O) 

288 model-predicted (P) 
values per pixel  
(Gaussian model) 

288 model- predicted (P) 
values per pixel  
(Logistic model)  

 
RMSE 
formula  

Average RMSE  Individual difference values (P-O)  

Scaled relative frequency histograms of 
average difference Asymmetric Gaussian fit selected 
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4.5.1 Data Range 

The MGVI valid data range is 1 to 255 as they are stored in 8-bit unsigned integer 

format (Aussedat et al., 2006).Values of zero represent uncalculated MGVI values 

and were therefore excluded. The scaling factors used to convert MGVI to the 

FAPAR scale are described in Appendix D. 

4.5.2 Spike method 

There were two principal spike removal methods available in this version of 

TIMESAT 3.0; the running median method, best used with ancillary quality data, 

and a Seasonal-Trend decomposition procedure based on Loess3 (STL).  The STL 

method separates the seasonal from the overall time series trend and discards the 

remaining components, that do not fit either pattern, as noise (Cleveland et al., 

1990).  The running-median method identifies outliers based on their number of 

standard deviations difference from the running median value (Eklundh and Jönsson, 

2010). The number of data values removed from the time series was counted for both 

the STL method and the running median method with a standard deviation value of 1 

and 1.5. The number of removed spikes per pixel was averaged over fifty pixels. 

Common Settings Value 

Data Range 1-255 

Spike Method STL Replace 

Seasonal parameter 1 

No. of envelope iterations 2 

Adaptation Strength 5 

Force minimum 50 

Start of Season  0.2 

Table 4.2: Summary of the chosen TIMESAT settings 

for processing the entire MGVI dataset 
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There were 324 data points per pixel, as the remaining replicate year was added to 

the original 288 values, of which 45 points (13.8%) were removed using the STL 

method, 69 points (21.3%) using the running median with 1 standard deviation and 

48 points (14.8%) using a running median with 1.5 standard deviations. The running 

median, set to remove spikes within 1 standard deviation of the median, removed 

over one fifth of the time series, which was deemed too much data lost for a valid fit.  

There were fewer data points removed by including values within 1.5 standard 

deviations and slightly fewer again using the STL method. To preserve data integrity 

and minimise loss of valid data points, the STL method was selected.  Furthermore, 

STL proved to be more robust in that the number of spikes removed per pixel was 

similar in comparison to the high variability in spike removal per pixel with the 

running median method.  

4.5.3 Seasonality parameter 

The seasonality parameter is a ratio of the amplitudes of the first and second season 

detected within a year, ranging from 0 to 1. A value closer to one is suitable for 

single seasons, while a value closer to zero forces the curve fit to two seasons 

(Eklundh and Jönsson, 2010). The seasonality parameter was maintained at 1.0 to 

model a single season per year, as would be expected for the large majority of 

vegetation cover in Ireland, with the exception of some land use practices, e.g. silage 

cutting, which would induce a secondary growth season.  

4.5.4 Upper envelope iterations and adaptation strength  

Adaptation of the curve fit to the upper envelope is carried out because NDVI values 

tend to be negatively-biased due to atmospheric attenuation (Eklundh and Jönsson, 

                                                                                                                                     
3
 STL method is based on the sequential application of the loess smoother 
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2010). Even though such an assumption does not hold for MGVI, without any upper 

envelope iterations the MGVI curve fits tended to model the central values within 

the time series without capturing the seasonal peaks. Upper-envelope adaptation 

consists of forcing the curve fit to the upper envelope of the time series in a multi-

step procedure. The weights of low data values below the model function of the first 

fit are decreased, so that on the next fit the model adapts to the upper curve portion. 

This process of upper envelope adaptation is repeated twice, shown graphically in 

figure 4.12 (a)-(b). In figure 4.12 (a), no envelope adaptation is applied and the 

model fits to the central portion of the time series, while in Fig 4.12 (b), the 

adaptation is twice applied and the model adapts to the upper envelope. 
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The number of upper envelope iterations determines the extent of upper envelope 

weighting, i.e. the extent to which the curve fit is biased towards the time series 

maxima, or upper envelope. A value of 1 for the number of envelope fits instructs 

only one fit to data and no adaptation to the envelope. The values of 2 or 3 forces 

one or two additional fits (Eklundh and Jönsson, 2010). The strength of the envelope 

adaptation can be increased on a scale from 1 to 10 where 10 is the maximum fit 

strength. Strong adaptation, especially combined with 3 envelope iterations, was 

found to over-fit the data to single high peaks. However, no envelope adaptation, or 

weak adaptation strength, resulted in a model fit to the central portion of the time 

series only. Therefore, one additional fit (2 envelope iterations) combined with 

(a) 

(b) 

10-day period  

10-day period  
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Figure 4.12: (a): The thin blue line represents raw MGVI time series. 

The thick black line shows the fitted Gaussian function from the first 

step without upper envelope setting applied, (b): Same as (a) except that 

the fitted Gaussian functions have been twice fitted to the upper 

envelope of the MGVI time series  
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medium adaptation strength (5) stabilised the model fit and was chosen to process 

the entire dataset.  

4.5.5 Force to minimum value  

This setting forced MGVI values lower than a minimum value to take the stated 

minimum value. This is an important parameter setting for estimating SOS since the 

position of the threshold is altered by forcing very low MGVI values, e.g. those in 

winter, to a minimum base value. The position of the base of the MGVI curve fit is 

illustrated in figure 4.13, but the actual minimum MGVI values are much lower than 

the base of the curve fit.  No upper envelope iterations have been applied in this 

case. 

 

 

 

 

 

 

 

The effect of setting two minimum cut-off MGVI values of 50 and 100 was explored 

in the 2003 SOS image. These values are approximately 0.2 and 0.4 FAPAR which 

are the minimum and mid season values for deciduous and evergreen forest 

vegetation in Europe as described in chapter 2 (section 2.3.3.1). The 2003 image 

generated from a minimum cut-off value of 100 is shown in figure 4.14 while the 

2003 image generated from a minimum cut-off value of 50 was previously shown in 

figure 4.8 (b). In figure 4.14, there are missing pixels in certain areas of the image as 

Figure 4.13: The Gaussian model was fit to the valid MGVI range (1-255) with spikes removed 

and no upper envelope iteration applied. The base of the curve fit is shown by a red line.  
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no valid season could be calculated due to the number of MGVI values below the 

cut-off value; hence a missing data value is generated in the output. Interestingly, the 

0.4 FAPAR cut-off value excludes pixels with late SOS (> period15 or day 151-

160), which suggests that these areas have a small annual range of FAPAR and 

probably contain low productivity vegetation. In figure 4.8 (b), there were fewer data 

values below the cut-off value of 50, hence fewer missing SOS values in the image.  

As the aim of this study is national-scale covering all vegetation types, the lower 

minimum value of 50 was chosen to ensure as much SOS data could be generated as 

possible without compromising the accuracy of the SOS by the inclusion of 

anomalously low winter values.  

 

 

 

 

 

 

 

4.5.6 Threshold determination  

There were two options for SOS determination in TIMESAT, the absolute value 

threshold and the relative measure of fractional amplitude. In the absence of 

empirical evidence for an appropriate MGVI value to mark season onset, and given 

the range of vegetation types across the island, an absolute threshold was not 

considered for this study. Instead, a relative measure of SOS was used as it allowed 

consistent comparison of SOS across landcover types and on an interannual basis. In 

Figure 4.14: The 2003 SOS estimated from an asymmetric Gaussian fit with minimum values forced to 

100 with data gaps appearing in areas of vegetation below the FAPAR cut-off value for that season 
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order to select an appropriate relative threshold, the threshold setting was tested from 

a fraction of 0.1 of the MGVI amplitude to 0.5 MGVI amplitude in intervals of 0.1, 

and the corresponding SOS date noted for fifty pixels. The number of 10-day 

period’s difference in SOS dates using a threshold of 0.1 and 0.2 of the seasonal 

amplitude was considerably greater than any other 0.1 interval. This can be 

explained by the location of the 0.1 threshold at the base of the curve fit in the 

minimum winter period, when uncertainty due to cloud cover is highest in the time 

series.  Placing the threshold measure beyond the 0.2 value captures the mid-season, 

and not the beginning of measurable photosynthesis as SOS has been defined in 

chapter 2 (section 2.4.2).Therefore, the selection of the 0.2 (20%), threshold rather 

than 0.1 (10%) or greater than 0.2, is a compromise between avoiding uncertainty 

around the winter minimum values and capturing the earliest photosynthetic activity 

in the growing season.  

4.6 The SOS imagery estimated from the fitted functions  

Once the entire dataset was processed with the optimal settings, grids of the SOS 

estimates were generated from each year of the time series. The 2003 to 2009 SOS 

grids are shown in figure 4.15, with the 7-year mean SOS also shown. The spatio-

temporal pattern in the SOS is consistent on an annual basis, although there is local-

scale variation in each year. Generally, the SOS begins first in the midlands, in the 

interior of North Munster, in Ulster around Lough Neagh and along some parts of 

the east coast, and follows later along the west coast where there is mostly upland 

terrain. However, there is also interannual variability in the SOS across the country 
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as the relative timing of the spatial patterns is variable from year to year. These 

results will be discussed in more detail in chapter 5.  
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 Figure 4.15 (a)-(h): Start of Season estimated from the asymmetric Gaussian fitted functions; (a) 2003, (b) 2004, (c) 
2005, (d) 2006, (e) 2007, (f) 2008, (g) 2009, (h) 7-year mean. Time is in 10-day periods from 1 (Jan 1-10) to 20 (Jul 10-

19) where 0 is no data.  

 



 

 

143 

 

4.7 Discussion  

The benefits of the TIMESAT method include its versatility, flexibility and 

efficiency, with the only requirement being a consistent number of VI data points per 

year. The FORTRAN version of the programme processed the entire 7-year MGVI 

dataset over Ireland in approximately forty minutes and was not overly intensive on 

computer resources. The MATLAB GUI proved to be a useful tool to examine the 

effect of changing the parameter settings on the raw time series data before 

processing the full dataset. The FORTRAN and MATLAB executables of the 

TIMESAT programme were contained in the same software package, and it was 

therefore straightforward to run the programme from a Windows-based system. This 

interoperability of the GUI with the FORTRAN data processing capabilities allowed 

sensitivity analysis to be conducted on multiple pixels before deciding on the final 

parameter settings. Overall, the TIMESAT GUI permits the user to interact with the 

data, view the shape of the fitted curve, and allows the seasonality metrics computed 

per pixel to be seen on screen. In this way, the user retains control over the curve 

fitting process, unlike other methods, e.g. Fourier components, which are less 

transparent and more computationally intensive (Geerken, 2009). However, the full 

potential of the method was sometimes underutilised due to data constraints. For 

example, there was an option to enhance the curve fit by biasing the best quality 

pixel values using weights from ancillary cloud data. However, as the MGVI data 

are assumed to be cloud screened, and therefore all points of equal quality,  the curve 

fits were unbiased and equally weighted to all time series values. Furthermore, 

insufficient landcover-specific variability in the data, and the indiscriminate nature 

of noise meant that landcover-specific characteristics were not obvious when 
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visually examined in the GUI. Therefore, a landcover file was not integrated with the 

TIMESAT tool, and the potential to identify the landcover type of each pixel and 

tune the parameter settings for landcover-specific variation not utilised.  

Potential improvements in future versions of the programme should address the need 

for a statistical tool to quantify error in the fitted curves, a more quantifiable 

approach to estimating uncertainty in the parameter settings and the extracted 

seasonality metrics, as well as a method for detecting phenology trends from the 

time series. For example, the RMSE analysis necessitated exporting the fitted 

function values to other statistical software for analysis, while the original MGVI 

time series values were extracted independently of TIMESAT. A more efficient way 

for quantifying error, executable in TIMESAT, would permit the user to quickly 

select the best model fit for the dataset based on a representative sample of pixels. 

Although there was no in-built, systematic procedure for testing the sensitivity of the 

TIMESAT settings, an objective sensitivity analysis allowed the prime settings for 

the MGVI dataset to be chosen.   

 

The TIMESAT method was specifically refined for the purpose of SOS metric 

extraction, but a range of other time-based and value-based metrics can be calculated 

as mentioned in section 4.1. The setting of a relative, rather than an absolute, 

threshold VI value meant that the SOS was a consistent threshold measure sufficient 

for relative comparisons of SOS timing across the country. There were many 

potential causes of the interannual variability evident in the SOS imagery; however 

there is currently no method for separating these short-term variations from any long 

term phenological time series trend in TIMESAT. One such method already in use, 
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but not integrated in a time series analysis tool, is Breaks For Additive Seasonal and 

Trend (BFAST) which de-trends the time series data into trend, seasonal and 

remainder components (Verbesselt et al., 2010). Integrating such a component into 

the TIMESAT tool would enhance the ability of the user to detect phenological 

change in the VI time series, even in the presence of noise.  

 

A significant benefit of the TIMESAT technique is its versatility in processing 

different VI datasets acquired at varying temporal resolutions. In this study, 

TIMESAT has been used for the first time to analyse time series of MERIS FAPAR 

in 10-day periods. However, as the program was originally adapted for NDVI time 

series, the assumption of upper envelope adaptation for negatively-biased noise does 

not apply to other VI data which have been corrected for this effect, a point 

previously raised by Hird and McDermid (2009). Nevertheless, one upper-envelope 

iteration of the Gaussian model fit was found useful to adapt the curve fit to the 

seasonal MGVI peaks, and produce more realistic interpretation of the seasonality 

patterns.  Increasing the adaptation strength also had the positive effect of bringing 

the base of the curve fit away from the more unstable winter minimum values.  

Therefore, future TIMESAT-based phenology studies might still need to consider the 

necessity to apply an upper-envelope adaptation, even if not using NDVI. The aim of 

the TIMESAT function fitting is to decrease uncertainty due to removal of the noise, 

but in some cases, like with the presence of large data gaps, uncertainty can increase. 

It is not possible to quantify this uncertainty however, since the shape of the “true” 

trajectory is not known (L. Eklundh, pers. comm.). Generally, however, it can be 

shown that the overall signal quality is improved (Hird and McDermid, 2009), and 
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several studies of a correlative nature have demonstrated that smoothed, rather than 

raw, data improve the results. Despite the uncertainty in SOS dates introduced by the 

temporal smoothing and time-compositing, the spatiotemporal coverage afforded by 

these techniques allowed the national-scale scope of the study to be achieved.  The 

consistency in the spatial patterns, reproduced on an annual basis, was indicative of 

the robustness of the TIMESAT method. Furthermore, the method was sensitive 

enough to detect temporal variability in the patterns from one year to the next caused 

by variability in climate and land use. The most consistent feature of the spatial 

pattern was later SOS on higher ground and earlier SOS in lowlands, a trend 

particularly clear along the mountainous western peninsulas. These features of the 

SOS prove that processing the entire dataset with carefully selected common settings 

produces consistent results.   

4.8 Conclusion  

There are a variety of approaches to estimate land surface phenology events from 

time series of satellite data. However, at present there is no consensus regarding an 

optimal approach for producing a land surface phenology estimate (Friedl et al., 

2010). The TIMESAT tool is however a popular method based on the prescription of 

thresholds in vegetation indices, and it is straightforward in its application. However, 

as with seasonality metrics derived from any method, it is difficult to interpret their 

meaning in terms of what is measured on the ground (White et al., 2009).  In order to 

inter-compare SOS and equivalent ground-based measures of vegetation phenology, 

independent measures of vegetation seasonality are required whether from webcam 

observations (Richardson et al., 2011; PEN, 2011), in-situ monitoring of vegetation 
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parameters such as FAPAR (Jung et al., 2008) or from ground-based observations of 

tree species themselves (Studer et al., 2007, Soudani et al., 2008). Nevertheless, the 

requirement for a versatile and adaptable tool to derive an image-based SOS measure 

has been satisfied by the array of TIMESAT modelling options and parameter 

settings demonstrated in this chapter. Although the parameter settings were not 

optimised for  landcover, as has been done in continental-scale datasets such as in 

Africa with extreme variation in vegetation type (Jönsson and Eklundh, 2002), the 

chosen settings are optimal for an island like Ireland dominated by grasslands but 

with mixed landcover and temperate climate. The initial results presented in this 

chapter are promising and show for the first time the national-scale patterns in the 

SOS derived from a remotely-sensed measure of FAPAR. External factors such as 

landcover, and physical features of the landscape such as mountains, appear to be 

consistent features in the SOS spatial patterns. Therefore, these factors and their 

impact on the SOS will be explored in greater detail in the next chapter. Notably 

there was also temporal variability in the spatial patterns from year to year. It is 

known that climatic factors such as air temperature determine the BGS as measured 

at the IPG gardens. Therefore the role of air temperature in causing interannual 

variability in the SOS will also be examined in chapter 6. 
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Chapter 5. The spatio-temporal patterns in SOS across the 

island of Ireland based on time series analysis 

In this chapter, spatio-temporal patterns in the vegetation SOS have been described 

and the causes of these patterns explored at the national scale. The spatial patterns 

have first been explored using image analysis techniques to separate the spatial and 

temporal components of the SOS patterns per year. Additionally, SOS anomalies, 

presented as deviations from the 7-year mean SOS, were examined on a temporal 

and spatial basis to show the interannual variation in SOS over the 7-year period. 

Landcover and elevation have been used as explanatory factors to interpret the 

spatio-temporal patterns, while changes in regional air temperature have been used to 

examine the interannual variability in SOS.   

 

The relationship between landcover and land surface phenology is well established 

as vegetation greenup dates differ according to species composition of the landscape 

(Studer et al., 2007), and patterns of temporal differences in phenology can be used 

to characterise landcover change (Lupo et al., 2007). The vegetation SOS is also 

known to exhibit a strong relationship with elevation, especially in mountainous 

environments (Hudson Dunn and de Beurs, 2011).  Therefore landcover was used as 

a primary discriminator of inter-annual, as well as intra-annual; SOS variation, while 

elevation was examined as a secondary indicator of SOS since the topography of 

Ireland is not typically mountainous, being, for the most part, less than 1,000m in 

elevation.  In the analyses concerning SOS variability within one year, 2006 was 

chosen as it was coincident with the most recent landcover information for the ROI.  
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In contrast, for general analyses of SOS, with elevation for example, the 7-year mean 

SOS values were used.  A version of this chapter combined with sections of chapter 

4 have been written as a paper submitted to the International Society of 

Photogrammetry and Remote Sensing (ISPRS) Journal of Photogrammetry and 

Remote Sensing which is currently under review. 

5.1 Spatio-temporal variability in the SOS  

The 7-year mean SOS values were calculated per pixel as an arithmetic average of 

the seven annual SOS values from 2003 to 2009. The mean SOS image is shown in 

figure 5.1.  In order to examine the temporal pattern in mean SOS values, a 

histogram was constructed from this image. The histogram shows that 17% of the 

pixels in the mean SOS image had value of 7, which corresponds to a SOS from 

March 2nd-11th. In contrast, 15% of pixels had their SOS in period 6 (February 20th-

March1st) and 14% in period 8 (March 12th-21st). Overall, 46% of the pixels had their 

SOS between period 6 and 8 (February 20th to March 21st), while 66% of the pixels 

had their SOS between period 5 and 9 (February 10th-March 31st).  The full list of 

composite periods with the corresponding day of year and calendar dates is shown in 

Appendix E. The interpretation of spatial patterns in the SOS was aided by a line 

transect which was drawn across the mean image from west to east at approximately 

53.5°N latitude indicated by the line A-B in figure 5.1. 
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Figure 5. 1: The 2003-2009 mean SOS image calculated from an average of the annual input 
images from 2003 to 2009. A line transect has been drawn from West to East to show spatial 

variation in the SOS while the histogram, derived from the image, is indicative of the temporal 

trend in SOS.  

 

Spatially, the SOS occurs first in the southern lowlands, coincident with an area in 

the interior of Ulster.  The southern area includes the ‘Golden Vale’, covering parts 

of three counties: south Limerick, west Tipperary and north Cork. The SOS in the 

Midlands appears to be later than that further to the North and South. The timing of 

SOS is similar in parts of the Midlands and on the east coast of Ireland, while the 

SOS on the west coast is much later relative to the rest of the country. The location 

of these areas can be seen in the thematic map of Ireland presented in figure 5.2. 
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The mean SOS line transect by longitude for A-B, across the mean SOS image, is 

shown in figure 5.3, revealing a strong West to East gradient of earlier SOS as it 

occurs between period 10 and 15 on the west coast and between period 5 and 10 on 

the east coast.  

 

 

 

 

 

 

 

 

A consistent feature of the spatial patterns in the SOS imagery was the occurrence of 

later start dates at higher elevation, e.g. upland areas of the northwest, west, 

Figure 5.2: The location of place names 

referred to in the text, and meteorological 

stations in section 5.7 

 

Figure 5.3: The variations in SOS dates over the marked transect (A-B) in figure 5.1. 
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southwest, Wicklow Mountains and a number of other smaller ranges, e.g. the Galtee 

Mountains in the south. In the same way, low-lying flat areas such as the Golden 

Vale in North Munster and the interior of Ulster have earlier start dates relative to 

surrounding higher ground. The upland areas can be seen in the Digital Elevation 

Model (DEM) of Ireland (figure 5.4) which is a subset of the global GTOPO-30 

DEM. This DEM has a horizontal grid spacing of 30 arc seconds (approximately 1 

km spatial resolution) (Earth Resources Observation and Science (EROS) Centre, 

2009).  
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The elevation profile was extracted from a line transect across the GTOPO-30 DEM 

from the west to east coast at 53.5°N latitude and is shown in figure 5.4. The profile 

exhibits the spatial trend in elevation across the island at that latitude. Although there 

is more variability in the spatial profile of SOS extracted at the same latitude (figure 

5.3), there is a broad agreement between the SOS and elevation trend as the mean 

SOS is later at higher elevation and earlier at low elevation.   

A B 

Figure 5.4: The GTOPO 30 Digital Elevation Model (DEM) of Ireland 

with an elevation profile derived from the GTOP30 DEM at the same 

latitude as the SOS profile in figure 5.1. 
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5.2 Spatial analysis of SOS 

In order to explore the SOS variation with latitude and longitude, the SOS pixels 

were counted in intervals of 10-day periods along rows for the latitudinal trend and 

along columns for the longitudinal trend. These quantities were divided by the 

number of land pixels in the respective image dimension to normalise the frequency 

measure. The numerical range was scaled to a maximum value of 1 so that the 

frequency of pixels in each 10-day period could be compared between years.  

5.2.1 Latitudinal SOS analysis  

In figure 5.5, the number of SOS pixels per10-day period is displayed with latitude. 

The north coast of Ireland is located at about 55.5°N.  Between 55.5°N and 54.5°N, 

the 7-year mean SOS remains well distributed from period 5 (February 10th-19th) to 

15 (May 21st-30th). This is probably due to a mixture of SOS dates from an area of 

homogenous pasture land in the interior of Ulster (early) with upland peat bog and 

scrub vegetation (late) in the mountains of Donegal. 

 

 

 

 

 

 

 

 

 Figure 5.5: The 2003 to 2009 mean number of SOS pixels per row 

(latitude) counted per 10-day period and normalised by the number of 

land pixels per row.  
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At 53.5°N, SOS pixel density increases around period 7 where pastures, arable land 

and mixed agriculture is practiced.  There are some pixels between periods 10 to 15 

at this latitude due to the presence of Connemara highland vegetation. From 53 to 

52°N of latitude, the pixel distribution begins to spread again due to the presence of 

a mix of vegetation types in the lower Midlands, but there is a shift towards SOS 

earlier than period 5 as the Golden Vale pastures influence the spatial pattern.  From 

52 to 51.5 °N, upland vegetation again influences the pattern as the SOS dates 

become later, e.g., there is a cluster of SOS pixels around period 11-12 (April 11th-

30th) at the same latitude as Killarney National Park. In summary, variations in 

elevation, which creates differences in vegetation type, as well as land use practices, 

influence the spatial patterns in SOS when examined on a latitudinal gradient. In 

particular, extremes in the SOS dates feature strongly from the earliest SOS dates in 

pastures to the latest SOS dates in mountainous vegetation occurring along the same 

latitudinal range.  This was most obvious in particular in the northern and southern 

parts of the island where upland areas and lowland plains occur at the same latitude. 

There is as much as 120 days difference in SOS from the earliest SOS (period 3) to 

the latest SOS (period 15) at some latitudes. The latitudinal analysis was applied to 

each SOS image from 2003 to 2009, shown in figure 5.6 along with the CORINE 

landcover classes analysed with the same method (codes for these classes are given 

in table 5.1).  There is interannual variation in the latitudinal spatial pattern.  For 

example, in 2003, there appears to be a south to north trend of later SOS. However, 

this is less apparent in 2004 where there is little spatial variation across the country.  

The SOS in 2005 occurs later in the south than in the north. In 2006, the range of 

SOS dates is narrower and occurs later compared to the other years. In contrast, the 
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2007 and 2008 range of SOS dates is wider than any of the other years, and an 

earlier SOS in the south is evident in both these years. The 2009 SOS dates are 

similar across the country except for a wider range of SOS dates in the North. As for 

the spatial pattern in landcover, class 8 (pastures) is the most frequently occurring 

class at all latitudes, and there is a very high density of pasture pixels between 52º 

and 53º. The influence of pastures on the SOS spatial patterns is also evident 

between 52º and 53º as the SOS is consistently earlier relative to the rest of the 

country. Class 5 (peat bogs) is the next most frequent class, occurring mostly south 

of 52º and north of 53º.  

Table 5.1: CORINE Landcover classes and their codes used in spatial analysis of the SOS 
Landcover class Code 

Broad Leaved forest 1 
Mixed forest 2 
Natural grassland 3 
Moors and heaths 4 
Peat bogs 5 
Land principally occupied by agriculture with significant areas of natural vegetation 6 
Green urban areas 7 
Pastures 8 
Complex cultivation patterns 9 
Coniferous forest 10 

Non-irrigated arable land 11 

Transitional woodland scrub 12 
Sparsely vegetated areas 13 
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Figure 5.6: A relative density measure of SOS pixels per row (latitude) per 10-day period from 2003 to 2009. The number of SOS pixels has 

been normalised by the number of land pixels in each row.  The scale shows the relative amount of SOS pixels per 10-day period. The same 

method was applied to CORINE landcover pixels to show the geographical distribution of landcover classes per degree latitude. 
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5.2.2 Longitudinal SOS analysis   

 

 

 

 

 

 

 

 

 

 

In figure 5.7, the mean number of SOS estimates per10-day period are presented 

with longitude, using the same method described in section 5.2.1. However, the y-

axis has been inverted to show the east coast of Ireland at the base (-5º) and the west 

coast at the top (-11 º). On the east coast of Ireland, located along 5.5ºW longitude,  

SOS estimates are well distributed between composite 3 (January 21st-30th) and 10 

(April 1st-10th),  although there is a higher count of SOS pixels around period 7 

(March 2nd -11th).  Between 6 and 9 ºW, the SOS is distributed between period 3 and 

10, with a small cluster of pixels at period 7 between 7 ºW and 8 º W.  This is 

possibly due to the practice of arable cropping in the east and southeast of the 

country. The presence of upland vegetation in the northwest, between 8 ºW and 9 

ºW, has increased the temporal range of SOS dates to between period 3 and 15.  At 9 

ºW, the SOS is earlier however, as the SOS dates are between period 3 and 5 here. 

This is due to the path of 9 ºW longitude which passes through the agricultural 

Figure 5.7: The 2003 to 2009 mean number of SOS pixels per column 

(longitude) counted per 10-day period and normalised by the number of land 

pixels per column. 
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region of North Munster known as the Golden Vale.  A distinctive feature of the 

longitudinal trend is a sudden shift in the SOS at 9.5 º W from period 5 to 10 to 

period 12 to 15. This abrupt change is due to the topographical change from central 

lowlands to upland mountainous areas along the western coastline and the 

subsequent change in vegetation type in which the SOS is delayed. Interestingly, the 

change in elevation on the east coast, due to the presence of the Wicklow Mountains, 

is not detected in the SOS trend. The presence of mostly arable cropping, at the same 

longitude, is a probable cause of this. The longitudinal analysis was also applied to 

each SOS image from 2003 to 2009 as well as landcover (figure 5.8). Much like the 

latitudinal pattern, the longitudinal spatial pattern in SOS dates is relatively stable 

from one year to the next, although the temporal pattern does vary on an interannual 

basis. This was evident especially in 2005, 2007 and 2008 when the SOS estimates 

varied considerably across the country.   The years 2004, 2006 and 2009 have a 

much narrower range of dates in comparison. Once again the spatial pattern in 

landcover is dominated by pastures, except between 9ºW and 10ºW, where peat bogs 

are the most dominant landcover.  The contrast in landcover between peat bogs and 

pastures is evident in the longitudinal pattern as there is an abrupt shift from earlier 

to later SOS dates at approximately 9.5 ºW.   
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Figure 5.8: The number of SOS pixels per column (longitude) per 10-day period from 2003 to 2009. The number of SOS pixels has been 

normalised by the number of land pixels in each column. The scale shows the relative amount of SOS pixels per 10-day period. The same 

method was applied to CORINE landcover pixels to show the geographical distribution of landcover classes per degree longitude. 
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5.3 The SOS anomalies from 2003 to 2009  

The annual SOS anomalies were calculated as 10-day deviations from the 7-year 

mean SOS. These images are shown in figure 5.9.  Negative (positive) anomalies 

correspond to areas of earlier (later) than average growing seasons, and are shown 

from light to dark blue (yellow to red) colours. 94% of the anomaly values were 

found to be within ± 4 anomalies of the 7-year mean SOS.  Therefore the image 

anomalies are scaled to this range, with any anomalies >+4 or <-4 put in the same 

bin. The adjoining histograms depict the full range of anomalies calculated in each 

year and are indicative of the temporal range in anomaly values within each year.   
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Figure 5.9: Annual SOS anomalies from the 7-year mean SOS in 10-day periods displayed as 

images (left) and histograms (right) showing the temporal patterns in anomaly values within 

each year 
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The anomalies in figure 5.9 demonstrate the extent of the spatio-temporal variability 

in SOS. For example, the 2003 SOS was earlier in the east, southeast, midlands and 

parts of the south coast as can be seen from the high number of negative anomalies 

in that area. In contrast, the anomalies were mostly positive in the rest of the country 

indicating later SOS. The 2004 SOS was later across most of the country, yet it was 

noticeably earlier in the south and southwest in the same year. Likewise, in 2009, 

there were a high number of positive anomalies, hence a later SOS, concentrated in 

Figure 5.9: Continued 
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the south of the country while there were negative anomalies in the north. The SOS 

anomalies in other years show less of a localised response. For example, in the 2006 

image the positive anomalies are well distributed across the country, while in 2007 

and 2008, negative anomalies are present across most of the country, except for 

some variation in the midlands.  A synthesis of the anomaly results is presented as a 

stacked column chart in figure 5.10. The number of pixels in each anomaly bin was 

calculated as a percentage of all the anomaly pixels in that year. The percentage 

anomaly values were stacked so that the interannual variation in the SOS could be 

compared across years. Both the magnitude and direction of temporal changes in 

SOS on a yearly basis can be viewed in this way without the spatial component. An 

anomaly of 0 indicates that the SOS was equal to the 7-year mean SOS and therefore 

showed no temporal variation.  

 

 

 

 

 

 

 

 

In 2006, the column is composed of more positive than negative anomalies as the 

bulk of the values are above zero, indicating the 2006 growing season was much 

later relative to the 7-year average. In contrast, the opposite effect was observed in 

2007, when most of the anomalies were negative and the country experienced an 

Figure 5.10: The annual percentage of pixels per anomaly bin. Changes in the magnitude 

and direction of the anomaly indicate shifts towards early or later SOS. 
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earlier than average SOS. The 2005 and 2008 SOS showed the least temporal 

deviation from the 7-year mean.  The advantage of exploring the temporal pattern in 

SOS in this way is evident from the 2009 anomaly. While in the 2009 image (figure 

5.9), there is a clear geographical gradient in the anomaly values, it is difficult to 

determine if the net SOS was later or earlier across the country. Yet in the 2009 

column (figure 5.10), it can be seen that there were more positive than negative 

anomalies indicating that SOS was generally later that year.  

5.4 The SOS and landcover  

The spatial and temporal patterns in SOS have been explored on both a national and 

local scale across the island of Ireland, and geographical gradients have been 

detected in these patterns owing to the variation in vegetation type, landcover, 

elevation and proximity to the coast. The role of landcover type as a determinant of 

SOS will now be explored in further detail.    

5.4.1 CORINE Land Cover (CLC) 

Currently, the only national-scale landcover database for Ireland is available from 

the CORINE programme (Co-ORdination of INformation on the Environment). The 

European-wide CORINE land cover (CLC) map was created to produce a satellite-

derived land cover database for EU member states with a minimum mapping unit of 

25 ha (approx. 500 m2) (ERA-Maptec Ltd., 2006). The CLC 2006 is the third, and 

most recent, dataset in a series, the previous datasets corresponding to base years of 

1990 and 2000. The Environmental Protection Agency (EPA), Ireland, has overseen 

the production and release of CLC 2006, while the Centre for Ecology and 

Hydrology (CEH) in the U.K. is currently processing CLC 2006 for Northern Ireland  
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(NI) (Centre for Ecology and Hydrology, 2010). The CLC data have been previously 

used for observing landcover-specific phenological characteristics by calculating the 

fractional amount of landcover per satellite pixel. For example, CLC 1990 was used 

in Spain for optimising NDVI time series for the detection of crop cycles (Genovese 

et al., 2001), CLC 2000 in  Germany for the detection of areas of broadleaf forest for 

phenology monitoring (Doktor et al., 2009), and CLC 2000 to select areas of 

deciduous broadleaf forest in southern France by only using pixels with 70% 

broadleaf forest content (Guyon et al., 2011).  The CLC 2000 was validated across 

Europe with the LUCAS (European Land Use/Cover Area frame Statistical survey) 

data. However, no validation studies were carried out at the national scale. The 

overall accuracy of the CLC2000 is 87.0 ± 0.8 %. The percentage of total agreement 

found between CLC2000 and LUCAS is 74.8 ± 0.6 %, meaning that CLC2000 

approximates LUCAS thematic data with a 74.8 % average accuracy (Büttner and 

Maucha, 2006). As the percentage of CLC changes between 2000 and 2006 was 

equivalent to only 1.25% of the surface of Europe, the overall accuracy of the CLC 

2006 database was not calculated (Büttner et al., 2011).  Instead, overall accuracy of 

the 2000-2006 change database was found to be 87.8%±3.3%. Some of the 

validation sites were located in the ROI and were found to be correct by the 

validation process (Büttner et al., 2011).   

To produce an island-wide landcover database, the ROI CLC 2006 and NI CLC 

2000 shapefiles were merged. The merged dataset was converted from vector to 

raster format, and resampled to 1.2 km using the maximum combined area algorithm 

in ArcMap. This was done so that the spatial resolution of the landcover and SOS 

data was equivalent while ensuring that their corner points and spatial extent were 
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aligned. The merged CORINE landcover dataset was then used to extract SOS 

statistics per landcover class. Landcover types which do not contain vegetation, and 

therefore do not exhibit seasonality, e.g. urban fabric, were excluded from this 

analysis. The remaining thirteen landcover classes represented both natural as well 

as managed vegetation cover types. The number of pixels in the merged CORINE 

image that were included and excluded, as well as their percentage coverage is 

shown in table 5.2. The spatial distribution of the thirteen CORINE vegetation 

classes can be seen in the merged CLC image in figure 5.11.  

 

 

 

 

 

 

 

Landcover type Percentage  Number of pixels 

Pastures 62.7 34685 
Peat bogs 15.1 8378 
Land principally occupied by agriculture with significant areas of 
natural vegetation 5.1 2834 
Non-irrigated arable land 4.9 2703 
Transitional woodland shrub 3.6 1997 
Coniferous forest 2.7 1490 
Natural grassland 2.3 1254 
Complex cultivation patterns 1.6 883 
Moors and heaths 1.4 777 
Mixed forest 0.2 137 

Sparsely vegetated areas 0.2 114 

Broad Leaved forest 0.2 84 
Green urban areas 0.0 14 
Total included  95.6 55350 
Total excluded (Water bodies, urban fabric)  4.4 2529 

Total land pixels   100 57879 

Table  5.2: The proportions of the CORINE dataset that were included and excluded for the 

analysis of SOS including the thirteen vegetation classes and their percentage coverage  
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The landcover pattern shown in figure 5.11 is characterised by a number of spatially 

scattered minor landcover classes occurring over small areas, while the two most 

dominant classes, pastures and peat bogs, exhibit the only homogenous more 

contiguous distributions. There is a variety of vegetation types within each landcover 

class which share common spectral characteristics in remotely–sensed imagery. For 

example, pastures are inclusive of all managed grasslands while natural grassland is 

low productivity unmanaged grassland and non-irrigated arable land consists of 

cereals, legumes, fodder crops, root crops and fallow land. Land principally occupied 

by agriculture with significant areas of natural vegetation and complex cultivation 

patterns generally define heterogeneous agricultural areas interspersed with natural 

vegetation (EIONET: European Topic Centre on Land Use and Spatial Information, 

2006). Of  these last two classes, the first class comprises agriculture with natural or 

Figure 5.11: The merged CORINE 2000 (NI) and 2006 (ROI) landcover map with 

vegetation classes used in the analysis of SOS estimates  
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semi-natural areas (including wetlands, water bodies and outcrops) while complex 

cultivation patterns represents a contrasting mix of small parcels of diverse annual 

crops, pasture and/or permanent crops. The transitional woodland shrub class is an 

intermediate class between forest and open ground consisting of newly planted 

forests (less than 5 years) as well as felled woodland and gorse vegetation (Green, 

2010). Peat bogs generally occur in lowland areas as raised bog or as upland plateau 

blanket bogs.  The spatial patterns in these landcover classes reflect the most 

favourable environmental conditions for optimal growth conditions. For example, 

the arable crops are confined to the south and southeast where there is little variation 

in topography, the soil is fertile and air temperatures generally warmer. In contrast, 

peat bog vegetation occurs where soils are wet and acidic and in upland areas where 

climatic conditions are more extreme.  

5.4.2 Seperability analysis of the landcover classes by SOS dates in 2006  

In order to define landcover groups to explore the temporal patterns in SOS, a 

statistical approach was adopted to group landcover types according to statistically 

significant differences in their SOS dates. The hypothesis that SOS was dependent 

on landcover type was examined using the Kruskal-Wallis (K-W) test (Ruxton and 

Beauchamp, 2008). The year 2006 was chosen for the statistical test as it was 

coincident with the CLC data. The non-parametric K-W test is well suited to 

ordinally scaled variables such as time-composited measures of SOS. Specifically, it 

was used to test for statistically significant differences in the distributions of SOS 

estimates between different landcover types in the same year. The null hypothesis 

tested was that there was no variance in the distributions of ranked SOS values 

between the different landcover classes. The alternative hypothesis was that there 
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were differences in the ranked SOS distributions per landcover type. 2006 was 

chosen as a reference year for the analysis since it was coincident with CLC 2006. A 

significance level of p<0.05 was used to determine whether there were significant 

differences in SOS between the entire set of thirteen landcover populations. As the 

SOS was treated as a non-parametric variable, the median SOS was calculated per 

landcover class and compared pair wise to examine if the median SOS values were 

significantly different (p< 0.05.) To account for the family-wise error rate, a 

Bonferroni adjustment was carried out to calculate a new significance level for the 

pair wise comparisons by dividing the p-value by the number of comparisons made 

(adjusted p-value = 0.0038).  Landcover classes which were not significantly 

different were grouped together, denoted by a common letter. Those which had 

significantly different median SOS (p<0.0038) were assigned to separate groups. 

These groups were then used to explore inter-annual and intra-annual variation in the 

SOS per landcover type. Significant differences in the SOS were observed among 

the 13 landcover classes  (Kruskal-Wallis test, H=14414.10, 12 df, P<0.05)4. The 

landcover types which had significantly different median SOS, i.e. below the 

adjusted threshold p-value, were grouped separately. The groups were denoted by 

letters a, b and c and are presented along with the median SOS per landcover type in 

table 5.3. For presentation purposes only, the A group was subdivided into two sub-

groups, A1 and A2, whereby A1 is composed of forested vegetation and A2 is 

composed of agricultural landcover types.  The landcover classes which share a 

common letter are not significantly different (p>0.0038). 

                                                
4 The K-W test statistic, H, is significant when greater than a critical value referenced from a look-up table determined by the 

number of degrees of freedom (df).  The significance level of the differences between the land cover classes is described by the 
p-value. 
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Table 5.3: The landcover groups selected for SOS analysis by landcover type 

 

5.4.3 The Cumulative Start of Season (SOS) in 2006 

For the purpose of showing inter-class variation in SOS within one year, cumulative 

growth curves were derived from an interpolation of the percentages of pixels 

attaining certain SOS dates in 2006. The slope of the interpolated line is determined 

by the percentage differences per 10-day interval, i.e. larger differences between 

each interval create steeper slopes. Therefore, the rate at which the different 

landcover types attain their SOS can be compared by examining the slope and 

curvature of the interpolated line.  The cumulative growth curves per landcover type 

are presented in figure 5.12 (a)-(d). 

 

 

 

 

 

 

Analysis  

Group 
Landcover class 

Median  

SOS 

K-W  

group 

Common  
letter(s) 

A 

A1 

Mixed forest  10 a 

a Broad-leaf forest 10 a 

Transitional shrub 11 a 

A2 

Pastures 8 a 

a 
Land principally occupied by agriculture 10 a 

Complex cultivation 9 a 

 Arable land 10 a 

B 

Natural grasslands 11 abc 

ab Coniferous forest 12 abc 

Green urban  9 ab 

C 
Peat bogs 12 c 

c Moors and heaths  12 bc 
Sparse vegetation  12 bc 
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Comparison of SOS the percentage of SOS pixels between pastures and peat bogs, 

which are the most contrasting vegetation assemblages in Ireland, not only in terms 

of species composition, but also management regime, is interesting. For example, at 

period 7 (March 2nd-11th), the SOS had occurred in 38% of the pasture pixels 

compared to only 6% of peat bog pixels. This differential occurrence of SOS became 

even more apparent later in the year. For example, by period 12 (April 21st-30th), 

cumulative SOS was 97% for pastures and only 50% in peat bogs.  The percentage 

difference in rate of accumulation of SOS over the fifty days, between period 7 and 

12, is 59% for pastures and 44% for peat bogs. This would suggest that in 2006 the 

Figure 5.12 (a)-(d): Cumulative SOS in 2006 for three groups of landcover classes whose 

membership was derived from the K-W test. (a)Group A1, (b) Group A2 (c) Group B and (d) 

Group C 
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SOS in peat bogs is slower to occur, and takes place over a longer time period, 

compared to pastures.   

5.4.4 Interannual (2003-2009) variation in median SOS  

The interannual variation in SOS was explored by calculating the median annual 

SOS from all the pixels within each landcover class from 2003 to 2009. The annual 

median SOS values are shown in 5.13-5.14 in the statistically different groups. The 

first and third quartiles of the SOS distribution have also been plotted as error bars. 

Within each group, the SOS varied by one 10-day period in most classes, although 

the median did vary by two 10-day periods between certain years, e.g. from 2005 to 

2006 in broad-leaf forest and green urban areas.  Temporal stability in the SOS is 

particularly evident in Group C in figure 5.14 (b) as the median SOS was 12 (April 

21st-30th) in all but two years, 2007 and 2009, which were earlier. The similarity in 

the SOS between classes in group C is evident from a general overlap in their 

temporal patterns.  No temporal trend emerged in the SOS in the short time series 

available. 
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Figure 5.13: (a)-(d): Interannual variability in the median SOS for four groups of landcover classes whose membership 

was derived from the K-W test. (a)Group A1 , (b) Group A2, (c) Group B and (d) Group C . The first and third quartile 

values have been plotted as error bars. 

(a) 

(b) 
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Figure 5.13: (c)-(d) 

 

5.5 The SOS and Elevation  

In mid-latitudes, the seasonal timing of spring events such as budding, leafing or 

flowering of plants is dependent on air temperature (Chmielewski and Rotzer, 2001). 

However, there is a known lapse rate in air temperature with altitude, i.e. there is a 

theoretical decrease in mean air temperature by 0.7ºC for every 100m rise in altitude 

(c) (d) 
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(Keane and Collins, 2004) which delays SOS at higher altitudes. Hopkins' 

bioclimatic law, which was originally developed for high altitude environments such 

as the North American Rockies, states that SOS is delayed 3.3 days for every 100 m 

increase in elevation (Hudson Dunn and de Beurs, 2011). Qualitative comparison of 

the 7-year mean SOS image and the GTOPO-30 DEM in section 5.1 showed that 

there were similarities in the spatial patterns in SOS and topography across the 

island. This was particularly evident where SOS occurred later in upland areas. To 

explore this further, a regression analysis was undertaken in order to determine a 

more quantifiable relationship between SOS and elevation.   

 

Firstly, the DEM was resampled to 1.2 km using nearest neighbour resampling, and 

the distribution of the elevation values per 50 m elevation interval in the resampled 

DEM is shown in figure 5.14.  

 

 

 

 

 

 

 

 

 

From figure 5.14, it is clear that the majority of the land area is between 50m and 

150m elevation. In order to test the hypothesis that the SOS varies with elevation, 
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Figure 5.14: The frequency distribution of elevation values in the resampled DEM 

grid and the cumulative percentage of the values per 50m interval. 
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the Pearson correlation coefficient between the 7-year mean SOS values and the 

resampled DEM grid values was calculated, as well as the slope and intercept of the 

regression line. These results are presented in table 5.4. 

Table 5.4: Coefficient of determination, slope and intercept of the linear regression of elevation 

and SOS 

r
2
 Slope  Intercept n 

0.11 9.50 32.27 97352 

The linear regression analysis showed that, across the island, elevation had a weak 

positive correlation with SOS (r2 = 0.11), i.e. 11% of variation in SOS is associated 

with elevation. The low level of correlation suggests that there are potentially 

multiple factors that determine the spatio-temporal pattern in the SOS values, of 

which elevation only plays a minor role.  

5.6 The SOS and grassland management 

Grass is Ireland’s primary crop, occupying approximately 6.35 million hectares 

including managed grassland and rough grazing (Keane and Collins, 2004), and 

forms a stable animal feed for foraging animals such as cattle (Sweeney et al., 2008). 

The carbon storage potential of pastures across the whole island has been estimated 

at 0.9 t C ha-1, which is comparatively low considering it is the majority Irish  

landcover (Cruickshank et al., 2000). Nevertheless, the start of the grass growing 

season is an important parameter for agricultural planning purposes. Here, the 

meteorologically-predicted start dates are compared to the 7-year mean SOS 

estimated for pastures.  An agro-meteorological map (Connaughton, 1973), showing 

the median dates of beginning of grass growth was overlaid on the mean 7-year SOS 

estimates for pasture (figure 5.15). The median date for grass growth shown was 

estimated from a soil temperature threshold of 6ºC (100 mm depth), however, the 



 

 

178 

 

grass growing lines are valid at sea level only, without consideration of local-scale 

changes due to shelter, slope and aspect (Keane and Collins, 2004).   The SOS 

values have been altered to fit the 8-week period of median start dates by fixing 

values greater  than period 8 (March 12th-21st) and less than period 4 (January 31st-

February 9th) to fit this range. The median grass dates show a southwest-northeast 

trend as grass growth occurs first in southwest Ireland due to the moderating 

influence of the sea on local temperatures. In contrast, grass growth is delayed until 

late March on the high ground of central Ulster (Collins and Cummins, 1996).  

 

 

 

 

 

 

 

 

 

 

 

 

 

By contrast, the SOS is earlier in the southwest than in the midlands, and the SOS in 

the northeast is similar to that in the interior of Munster.  For example, the predicted 

median start date for grass in the northeast of Ireland (March 20th) is considerably 

Figure 5.15: The median start dates for grass growth in Ireland derived 

from Connaughton (1973) are shown with the 7-year mean (2003-2009) 

SOS estimated for pastures  
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later than the estimated SOS which is approximately from January 31st to February 

9th. A possible explanation of the early start dates in northeast Ulster is the presence 

of Lough Neagh which has been known to moderate local temperature, and so bring 

about early grass growth (Collins and Cummins, 1996). Grass growth dates 

calculated using a 6ºC air temperature threshold from 1971 to 2000 appear to be a 

better estimate of SOS than the soil-derived dates. For example, air temperature-

derived growth was estimated to occur from the start of January at Cork, Dublin and 

Shannon in certain years, while it was delayed as late as 11th April (Shannon), 22nd 

April (Dublin) and 3rd May (Cork) in some years  

5.7 The SOS and air temperature 

Regional air temperature variability and its impact on the SOS anomalies over the 7-

year period was examined by calculating the monthly mean air temperature and the 

1961-1990 mean air temperature from three meteorological stations across the island 

(Met Éireann, 2011b). The locations of the three stations, shown in figure 5.2, at 

Dublin airport, Valentia Observatory and Mullingar were considered to be 

representative of the climate across the island, sited in both coastal and inland 

locations, and they all had a continuous time series of temperature observations over 

the 2003-2009 period. The annual winter (November to January) and spring 

(February to April) mean air temperatures were calculated at each station, and 

compared to the 1961-1990 average to assess the  variability in air temperature for 

each year.  The winter mean and spring mean air temperatures for the three stations 

are presented in figure 5.16 (a)-(b), with 1 standard deviation error bars. Over the 

2003 to 2009 period, the winter mean air temperature at Valentia Observatory was 
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higher than at Mullingar by 2.8°C, and Dublin airport by 2.3°C, similarly, in spring, 

the Valentia mean air temperature was higher by 1.9°C and 1.7°C respectively. The 

milder air temperatures at Valentia Observatory are due to the moderating effect of 

the North Atlantic drift along Ireland’s west coast (Rohan, 1986).  At all the stations, 

the 2003-2009 period had warmer winters and springs than the 1961-1990 average, 

except for the winter of 2005/2006 at Valentia Observatory which was cooler by 

0.2°C, and the winter of 2008/2009 at Mullingar and Dublin airport which was 

cooler by 0.1°C and 0.8°C respectively. The spring air temperature of 2006 at Dublin 

airport was also lower than the 1961-1990 average by 0.1°C.  
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Within the 2003 to 2009 period, the average of the mean winter and spring air 

temperatures was calculated for each meteorological station, as well as the annual 

deviations from the 7-year mean which are presented in table 5.5 (winter) and table 

5.6 (spring) for each station. 

 

Figure 5.16: Winter (a) and spring (b) mean air temperature at Valentia Observatory, Mullingar and Dublin airport 

with errors bars of 1 standard deviation   

 

(a) (b) 
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Table 5.5: Mean and deviation from the 7-year mean winter temperatures (2003-2009) at the 

three meteorological stations used in the analysis of the SOS anomalies 

Winter air temperature (°C) 7-year mean 

Deviations from mean 

‘02/’03 ‘03/’04 ‘04/’05 ‘05/’06 ‘06/’07 ‘07/’08 ‘08/’09 

Valentia 8.7 -0.3 -0.1 0.7 -1.2 0.4 1.1 -0.5 

Mullingar 6.0 0.1 -0.3 0.7 -0.4 0.3 0.8 -1.2 

Dublin airport 6.5 0.3 -0.1 0.5 -0.5 0.5 0.7 -1.3 
 

Table 5.6: Mean and deviation from the 7-year mean spring temperatures (2003-2009) at the 

three meteorological stations used in the analysis of the SOS anomalies 

Spring air temperature (°C) 7-year mean 

Deviations from mean 

2003 2004 2005 2006 2007 2008 2009 

Valentia 8.7 0.7 -0.2 -0.1 -0.7 0.5 -0.3 0.0 

Mullingar 6.8 0.5 -0.2 0.1 -0.7 0.5 -0.4 0.0 

Dublin airport 7.0 0.1 0.0 0.2 -0.7 0.8 -0.4 0.0 

The winter of 2005/2006 was colder than the 7-year average by 1.2°C at Valentia 

Observatory, by 0.4 °C at Mullingar and by 0.5 °C at Dublin airport (table 5.5). The 

winter of 2008/2009 was the coldest at Mullingar and Dublin airport by 1.2°C and 

1.3°C respectively, while it was 0.5°C below average at Valentia. Interestingly, the 

spring of 2006 was the coldest at all three stations by 0.7°C, while the 2009 spring 

temperature did not deviate from the 7-year average at any of the three sites (table 

5.6). The impact of the strongest winter and spring temperature anomalies in 

2005/2006 and 2008/2009 is evident in the 2006 and 2009 SOS anomaly images in 

figure 5.8.  For example, the combined effect of a colder than average winter and 

spring recorded at all three stations in 2006 appears to have delayed the SOS 

countrywide in 2006. However, there were differences in the interannual SOS per 

landcover type compared to the temperature anomalies, as can be seen in the 

temporal pattern in the 2006 median SOS values (figures 5.13-5.14). The 2006 SOS 

was delayed by at least one 10-day period relative to the previous years in groups A 

and B, but there was no change in the group C landcover types (peat bogs, moors 

and heaths and sparsely vegetated areas). However it is important to note that the 

Group C landcover types typically occur in areas away from the sites of the three 
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meteorological stations, so this may be an artefact of the data, and the temperature 

anomalies may not be indicative of air temperature in these landcover types. The 

combination of colder than average 2008/2009 winter temperatures with average 

2009 spring temperatures at all three sites produced contrasting SOS anomalies in 

2009.  For example, the SOS was late, particularly in the south, east and midlands, 

potentially due to the strong negative deviation in winter temperatures, noted at 

Mullingar and Dublin. However, the SOS anomalies in the southwest, where the 

Valentia Observatory is located, were negative; suggesting that cooler temperatures 

there did not delay the SOS in the region but that the maritime influence may have 

moderated the impact of an anomalously cold winter. These results would suggest 

that a combination of a colder winter preceding the event and a cooler spring during 

the event delay the SOS. However, the extremes of both winter and spring 

temperatures may not be felt equally throughout the country depending on local 

conditions. 

5.8 Discussion  

The main focus of this chapter was on the analysis of spatial and temporal patterns of 

SOS at the national scale. The SOS occurred across a range of time periods within 

the first 6 months of the year, depending primarily on vegetation type. However, the 

extensive coverage of pastures has considerable influence on the national-scale 

trends in SOS as grass growth tends to occur from January to March. The 10-day 

composite period was appropriate to describe spatio-temporal patterns in the SOS at 

the national scale within any one year, to illustrate the spatio-temporal variation in 

SOS across the country, and to show the temporal patterns in SOS over the seven–
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year period. This fulfilled the fourth study objective described in section 1.3 of 

chapter 1. Although the use of a composite period prevented daily estimates of SOS, 

the results are indicative of relative spatio-temporal variation in SOS across the 

country. Qualitatively, the spatial pattern in the SOS imagery appeared to be 

consistent with elevation. For example, a consistent feature of the SOS spatial 

pattern was the occurrence of later start dates at higher elevation, and the occurrence 

of earlier SOS in low-lying pastures. However, quantitative analysis showed only a 

weak relationship between the two parameters. A likely cause of this is that most of 

the Irish land area is below 150m, within which there is considerable variability in 

SOS due to the presence of pastures, arable agriculture as well as natural vegetation. 

Therefore, there would be considerable variability in SOS dates even at the same 

elevation weakening any potential elevation-SOS trend. In contrast, strong SOS-

elevation relationships have been detected in North American mountain 

environments, with well distributed vegetation biomes defined by altitudinal range 

(Hudson Dunn and de Beurs, 2011). In Ireland, where the maximum peak is 

approximately 1000m and most of the land area below 150m, it is unlikely that there 

will be a strongly quantifiable relationship between SOS and elevation due to the 

absence of such distinct vegetation zones.  

There was also a coherent spatial pattern between the 7-year mean SOS estimates 

and the distribution of the thirteen CLC classes across the country. However, these 

spatial patterns were dominated by the two most abundant landcover types, pastures 

and peat bogs, while the remaining classes tended to be spatially scattered. This 

potentially introduces a spatial dependency in the analysis of SOS by landcover type 

known as spatial autocorrelation. This effect was reflected in the group membership 
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as landcover types which were in close proximity to one another were sometimes 

grouped together. This spatial dependency appeared to be strongest in the Group C 

landcover types (peat bogs, moors and heaths and sparsely vegetated areas) which 

are generally upland, low-productivity vegetation assemblages.   Advanced methods 

such as Moran’s I index (de Beurs and Henebry, 2008b) could potentially be used to 

take such autocorrelation into account.   

 

The presence of an international border between NI and ROI required that a merged 

landcover database be derived from an amalgamation of the CLC datasets. The 

creation of an all-island landcover database has not been done before in this way, 

and it highlights the need for a joint approach to address national -scale landcover 

needs apart from the current CORINE programme. Consequently, the amalgamation 

of two CLC datasets acquired six years apart, and the aggregation of finer spatial 

resolution CLC landcover classes to the 1.2km SOS spatial resolution, introduced 

temporal and spatial uncertainty in the landcover data. In particular, the resampling 

of the CLC data may have detracted from the ability to extract SOS estimates of pure 

landcover type. However, the resampling was also necessary to compare SOS and 

landcover at an equivalent spatial resolution. An alternative approach to the hard 

classification of landcover types, imposed by the maximum combined area algorithm 

used in this study, would be the use of class membership of SOS pixels. For 

example, the fractional amount of each landcover type in a 1.2 km pixel could be 

used as criteria for the categorisation of SOS pixels. This could strengthen the 

analysis of SOS per landcover type by only selecting SOS pixels with particular 

landcover content over a certain threshold.  
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The problem of exploring SOS at a coarse spatial resolution is an inability to resolve 

the natural variability that occurs at finer spatial scales. For example, at the 1.2 km 

spatial resolution of the SOS imagery, there is considerable variability in landcover, 

land use, air and soil temperature, and topography. A previous study of Landsat data 

of  30m spatial resolution has shown significant spatial heterogeneity of up to two 

weeks of variability over less than 500 m, even in contiguous deciduous stands 

(Fisher et al., 2006). Therefore, the timing of spring phenological development is 

strongly influenced by conditions at the micro scale. Coincident aerial photography, 

higher spatial resolution satellite imagery or field work investigations used in 

conjunction with coarse-spatial resolution VI data could potentially lessen this 

uncertainty in future studies, but it would be difficult to incorporate such detail into a 

national-scale study.  

 

The SOS anomalies and geographical gradients were analysed independently of 

landcover, and therefore they provided a more objective view of spatio-temporal 

SOS variation across the country. However, abrupt changes in the SOS dates 

occurred where the landcover and elevation pattern changed. This was particularly 

evident where the dominant landcover changed from pastures to peat bogs, which 

usually coincided with a change in elevation. The spatial anomalies showed that 

there were anomalously early seasons in 2003 in the south, and across large parts of 

the country in 2005, 2007 and 2008. There were late seasons country-wide in 2004 

and 2006, while in 2009 there was a strong geographical trend to the anomaly. The 

island-wide positive anomalies in 2006 appeared to be related to a colder than 

average preceding winter and spring which was recorded at the three meteorological 
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stations. Although temperature variations could explain most of the anomalous 

variation in SOS, some local variability could not be explained by air temperature 

alone. Other physical factors related to climate (soil temperature, precipitation, the 

number of frosty nights), topography (elevation, slope, aspect) and land use 

(management regime, cultivated or protected area) undoubtedly play a role in 

determining SOS on a local scale. Furthermore some areas, e.g. upland areas, were 

not represented by the synoptic station measurements, and therefore SOS anomalies 

in these areas could not be related to air temperature changes. The location of the 

three stations had advantages and disadvantages. They are representative of areas 

within a 100km radius of the station, and are sited in areas with minimal topographic 

variation (Keane and Collins, 2004). However, spatial heterogeneity at the meso to 

micro scale inevitably creates uncertainty in the interpretation of SOS anomalies by 

air temperature, e.g. cold air drainage and frost pockets may generate steep 

phenological gradients over very small scales (15 days over 500 m) . Such 

microclimates potentially bias the SOS dates at coarser spatial resolutions (Fisher et 

al., 2006).  

 

The pair-wise comparisons yielded significant SOS differences between certain 

landcover types in 2006. The groupings indicated the influence of land management 

on the SOS as managed and non-managed vegetation types were grouped separately. 

However, the grouping of coniferous forest and natural grasslands in a single group 

with green urban areas was surprising.  This may be due to the difficulty in 

monitoring coniferous forest as they have very little annual variability in 

photosynthetic activity and small annual changes in needle turnover (Jönsson et al., 
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2010). Nevertheless, the groupings provided a convenient method for analysis of 

SOS by landcover type. Inter-comparison of the shapes and slopes of the cumulative 

curves revealed that the SOS occurred at different times in different landcover types. 

Generally, within any one year, the SOS occurred in managed systems before natural 

vegetation. The main feature of the interannual trend was the stability of the SOS 

measure over the seven-year period although the median SOS varied more in groups 

A and B than in Group C. A possible explanation of this could be the absence of 

human influence in the group C landcover types. Generally, the interannual variation 

in SOS rarely exceeded one 10-day period within any landcover type, however, it 

varied by a maximum of two 10-day periods in the most variable landcover types. 

No temporal trend emerged in the 7-year time series, a challenging task to detect 

even in longer satellite time series of 25 years (White et al., 2009).  The very 

different temporal SOS patterns exhibited in the Group C landcover types 

highlighted the potential for non-climatic factors to influence the SOS trend.  For 

example, environments such as peat bogs are subject to very different hydrological 

regimes and soil types, and such physical differences would be expected to delay 

SOS compared to other landcover types across the island. Therefore, in the absence 

of management, natural vegetation would be expected to be a more sensitive 

indicator of climate variability.  

 

Two different meteorological measures of growing season start dates in grasslands 

were compared to the SOS for pastures, and showed quite different results. The first 

method based on median grass growing dates predicted from a soil temperature 

threshold of 6°C by Connaughton (1973) was quite different to the 7-year mean SOS 
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estimates. A time difference of approximately 30 years elapsed between the datasets 

during which time change in climate may have impacted grass growth dates. Aside 

from the time difference, inconsistencies between SOS and meteorologically-derived 

grass growth dates, could be due to other factors, e.g., the use of a soil temperature 

threshold calculated at mean sea level. Notably, the grass growth dates derived from 

the 6ºC air-temperature threshold proved more consistent with the interannual 

variability in SOS estimates for pastures at point locations. 

5.9 Conclusion 

The spatial patterns in the SOS metric varied with landcover and elevation as 

evidenced by abrupt change in SOS dates when the elevation and landcover pattern 

changed. Anomalies in the SOS were mainly due to air temperature differences but 

could potentially be influenced by other physical factors, especially as the regional 

air temperature measurements were based on three point locations in the ROI. On an 

interannual basis, the SOS metric rarely varied by more than one 10-day period, 

indicating that the TIMESAT method was robust, but there were statistically 

significant differences in SOS per landcover type. The relevance of this finding lies 

in the ability to arrange landcover types into statistically significant different groups 

to explore inter-annual and intra-annual variation in SOS. The first group consisted 

of agricultural land cover types, forests and a transitional woodland class, the second 

group consisted of peat bogs, moors and heaths and sparse vegetation while the third 

group consisted of a mix of both natural and semi-natural vegetation types. There 

was a strong geographical bias to the distribution of landcover classes as certain 

vegetation types, e.g. peat bogs, were mostly located in upland areas, while pastures 
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were generally found throughout the country. The consistently earlier SOS in 

managed landcover classes is probably due to a combination of intensive 

management and favourable climate conditions. Therefore, the SOS appears to be 

both an indicator of phenological change as well as land use practices. Although 

qualitatively, the SOS appeared to show a strong relationship with elevation, 

quantitative analysis proved that the relationship is quite weak due to landocver 

variability and a small elevation range across the island. However, the mostly upland 

Group C landcover types did show a later SOS relative to the other groups, which is 

most likely due to more limiting growth conditions at higher altitudes. The absence 

of any vegetation management only confounds the impact of these limiting growth 

conditions on upland vegetation, but does introduce temporal stability in the 

interannual pattern not seen in the other managed or semi-managed landcover types. 

Therefore, the different landcover groups could potentially be used to separate the 

climatic from the non-climatic influences on vegetation SOS in future studies. The 

SOS in some pastures is as early as January, suggesting that vegetation is actively 

photosynthesising all year round in such areas. This was confirmed by the median 

grass growing dates predicted from meteorological variables. Quantifiable methods 

of estimating uncertainty in the SOS dates are required in determining the accuracy 

of the metric. Factors such as landcover mixtures at the 1.2 km spatial resolution of 

the MGVI data, and the spatial autocorrelation in the analysis of SOS by landcover 

type should be accounted for, and their impact on SOS determination quantified in 

future studies. Due to the short time-series of MGVI data available no temporal 

trends emerged in the SOS dates. However, with the replacement of the MERIS 

sensor by the Sentinel mission in 2013, there is considerable potential for extension 
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of the MGVI time series from 2003, and therefore better determination of temporal 

trends. 
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Chapter 6. Air temperature as a determinant of SOS 

6.1 Background  

The Intergovernmental Panel on Climate Change (IPCC) has recognised with very 

high confidence that the earlier timing of spring events and the poleward and upward 

movement of the range of certain plant and animal species is due to recent climate 

warming (IPCC, 2007). Meanwhile, European annual mean air temperatures have 

increased by 0.3-0.6°C since 1900 (European Environment Agency, 2011). 

Predictions based on global climate models suggest a milder climate across Ireland if 

the warming trend persists, with temperature expected to rise by 2°C by 2100 (Met 

Éireann, 2010). The response of SOS to interannual variation in regional air 

temperature was demonstrated by the temperature and SOS anomalies in the 

previous chapter (sections 5.3 and 5.7).  In this chapter a correlation study using air 

temperature as a climate variable was carried out to quantify the association between 

such air temperature changes and variation in the SOS across the Republic of Ireland 

from 2003 to 2009. Air temperature was chosen as a suitable variable as there is a 

proven link between it and phenological events such as leaf unfolding and flowering 

(Estrella et al., 2007). Furthermore, daily temperature readings from Met Éireann 

synoptic stations were available for the seven year study period. A measure of 

accumulated thermal time, known as growing degree days (GDD), was also derived 

from the temperature data to determine whether there was an optimum degree day 

accumulation for SOS in each landcover type. In order to address this research task, 

five smaller sub-objectives have been outlined. These are followed by a brief review 

of previous seasonality-climate correlation studies using both ground-based and 
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satellite–derived measures of vegetation phenology. The air- temperature correlation 

and calculation of GDDs per landcover type form two separate chapter sections. An 

overall chapter conclusion will consider the merits of using the raw temperature data 

for seasonality-climate correlation studies, and whether the derived measures of 

GDDs is an appropriate indicator of SOS. The objectives of the temperature 

correlation and GDD analysis are outlined below. 

• To determine the most appropriate method of correlation to examine the 

strength of association between the SOS and air temperature  

• To verify whether winter or spring mean air temperature is a stronger 

correlate of the SOS  

• To describe the spatial patterns in the monthly maximum correlation 

values  

• To select an appropriate base temperature for the calculation of growing 

degree days from the daily air temperature data 

• To estimate the optimal number of degree days per landcover type for 

SOS to occur and examine the extent of interannual variation in the 

estimates 

6.2 The SOS and air temperature  

 Numerous studies have indicated that there are strong correlations between the start 

of the growing season and air temperature in Europe (Chmielewski and Rotzer, 

2001), the Northern Hemisphere (Schwartz et al., 2006) and Ireland (Sweeney et al., 

2008). In Irish phenological gardens, negative correlation between spring air 

temperatures (average monthly temperature from February to April) and the 



 

 

194 

 

beginning of the growing season was shown at all sites with the strongest correlation 

for Populus canescens at Valentia Island (r= -0.72, ρ< 0.05) (Sweeney et al., 2008). 

It has been estimated that with an increase of 1°C in the spring temperature, the 

beginning of the growing season (averaged across the four sites) for White/Downy 

birch (Betula pubescens), Common beech (Fagus sylvatica ‘Har’) and Small-leaved 

lime (Tilia cordata) is expected to be 5, 6 and 8 days earlier respectively (Sweeney 

et al., 2008). Furthermore, an increase in average annual air temperature has been 

responsible for a longer growing season at all sites except Johnstown Castle 

(strongest correlation of 0.51 for Fagus sylvatica ‘Tri’ at Valentia Island, ρ≤ 0.01). 

Donnelly et al. (2006) concluded that if spring temperatures increased on average by 

1ºC, the beginning of growing season would occur 6 days earlier in Ireland. 

However, while these correlation studies did not examine the direct impact of winter 

air temperatures on the beginning of growing season in Ireland, experimental studies 

show that the duration of the winter chilling period, which commences when winter 

temperatures fall below a threshold temperature and buds enter the dormant stage,  is 

an important determinant of the timing of budburst in spring (Sweeney et al., 2008). 

As the chilling requirements differ depending on the tree species, the rate of 

budburst after the spring temperature rise is highly species-specific (Sweeney et al., 

2008). Furthermore, models show that the onset of spring events will advance by up 

to six days per 1 °C increase in winter air temperature (Menzel and Fabian, 1999).  

Therefore, in theory, a +1 °C temperature rise in winter and spring could hasten 

spring onset by as much as 12 days. 

The temperatures of the 3 months leading up to the mean date of 78 agricultural and 

horticultural phenological events in Germany from 1951 to 2004 was found to be 
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particularly important evidenced by 72 % of the correlations being strongly negative 

(Estrella et al., 2007). The correlation between air temperatures and leaf colouring 

and leaf fall in autumn is generally weaker than in spring events (Chmielewski and 

Rotzer, 2001). Experimental studies suggest that factors other than temperature, such 

as photoperiod (day length in terms of sunshine hours), increasing atmospheric CO2 

concentration and other climatic factors such as wind (causing leaf fall), may have a 

stronger influence than temperature on the timing of events at the end of the growing 

season (Sweeney et al., 2008). From research to date (as discussed in section 1.1.3), 

it can be concluded that average spring temperatures and the beginning of growing 

season show the strongest correlations.  

 

Temperature change related to latitude and longitude is not the only factor in 

determining the SOS as altitude is also a major factor, as was discussed in section 

5.5. The lapse rate of air temperature with elevation has the effect of delaying the 

beginning of the growing season at higher altitudes.For example, average spring 

greening in Europe from 1961 to 1998 moved annually at a rate of 44 km/day from 

south to north, at 200 km/day from west to east and at 32 m/day with increasing 

altitude (Rotzer and Chmielewski, 2001). In elevated terrain and at high latitudes 

spring growth is temperature-limited, and because of the high soil moisture content, 

not reliant on precipitation (Stöckli and Vidale, 2004). However, air temperature at 

high altitude is also determined by slope aspect.  For example, exposure to the 

Mediterranean climate on southern and eastern facing Alpine slopes hastens spring 

onset compared to cooler northerly facing slopes (Stöckli and Vidale, 2004).  
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In addition to these findings from ground-based phenological observations, satellite-

derived phenological metrics, correlated with climatic variables such as air 

temperature and precipitation, have also shown climate-phenology trends.  Globally, 

large areas that exhibited greening trends based on 1982-1998 AVHRR NDVI did 

not correlate with either temperature or precipitation but, for northern high latitudes 

and western Europe, there was a statistically significant correlation between 

temperature and the greening trend (Xiao and Moody, 2005). Precipitation showed 

weak or no correlation in all but a few regions where greening had occurred. Stöckli 

and Vidale (2004) calculated and classified, according to their F-test confidence 

values, phenological metrics for the Ireland and U.K. from 1982 to 2001 using the 

AVHRR Pathfinder NDVI dataset. Spring growth was earlier by 1.88 days per year 

(p<0.10), autumn occurred later by 0.51 days per year (p<0.01) and length of season 

extended by 2.38 days per year (p<0.01). Almost all trends were negative for spring 

dates and positive for autumn dates meaning a lengthening of the growing season for 

most of continental Europe. In the same study, spring growth was negatively 

correlated with winter temperatures while there was no significant correlation with 

precipitation and only a slight correlation with the North Atlantic Oscillation (NAO) 

index. Early springs occurred in 1989 and 1990 as well as 1994, 1995 and 2000. A 

positive winter NAO index led to warmer spring temperatures in 1989/1990 and in 

1994/1995 across the continent and was a probable cause of earlier spring greening 

in those years.  The NAO index shifted to negative in the period 1982-1987 which 

coincided with cooler winter and spring temperatures in Europe and delayed spring 

greening. 
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In the Rocky mountains of North America, the onset of spring growth is delayed 

between 3.6 (±0.2) and 3.9 (±0.3) days for every 100 m increase in elevation, 

depending on whether the NDVI or an alternative VI corrected for snowmelt is used 

respectively (Hudson Dunn and de Beurs, 2011). This trend agreed with Hopkins' 

bioclimatic law of a 3.3 day delay in SOS for every 100 m increase in elevation 

(Hopkins, 1918 cited in Hudson Dunn and de Beurs, 2011).  In summary, ground-

based and satellite-derived phenological measures indicate that the timing of 

phenological events such as leaf unfolding and flowering is most responsive to air 

temperature. However, this spring greening trend is also complicated by the 

requirement for a winter chilling period below a threshold temperature which is a 

highly species-specific phenomenon. Other variables such as duration of photoperiod 

also influence budburst timing in spring. In contrast, autumnal events such as leaf 

colouring and leaf fall have shown no or only a weak association with changes in air 

temperature.  

6.3 Climate data  

Currently there are 108 climatological stations across the Republic of Ireland, 20 of 

which are also synoptic stations (pers comm., Delaney, 2011). Hourly temperature 

and precipitation readings are taken at the synoptic stations while they are recorded 

once-daily at the climatological stations (09:00 UTC). However, of the current 

station network, the highest station is 259m at the North Kerry Landfill, Tralee, Co. 

Kerry, while the lowest is 7m at Wexford Wildfowl reserve. However, only three of 

the stations (3% of the network) are above 200m. As the land area below 200m 

elevation is approximately 92% (GTOPO-30 DEM), the network is largely 
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representative of the elevational range of the country. Spatially the network is quite 

dispersed as the maximum distance between the stations is 411km from Falcarragh, 

Lough Altan, Co. Donegal to Sherkin Island, Co. Cork and the closest stations are 

approximately 0.5kms apart and both located at Roche’s Point in Co. Cork. The 

mean distance between stations is 155km. In light of this spatial distribution, it was 

decided to use a gridded climate product for the study as it would be more 

representative of climate across the island and in upland areas than point measures 

alone.   

 

Precipitation and temperature grids have been produced by Met Eireann for the 

Republic of Ireland during the period 1941-2009 for rainfall and 1961-2009 for 

maximum and minimum temperature. The method used to interpolate between 

station precipitation measurements and temperature measurements differs. The 

precipitation grid is based on residual kriging of normalised rainfall but is not 

suitable for temperature data due to extremes in their values. Therefore an Inverse 

Distance Weighting (IDW) method is used to interpolate daily temperature maxima 

and minima anomalies calculated from the station 1961-90 averages. The mean 

temperature is the average of the daily maxima and minima (S.Walsh, 2010,Pers. 

comm). A correction for altitude was applied to the gridded temperature values, 

using a lapse rate of air temperature with elevation of 6.5º C per km, as follows:  

1. The ’61-’90 temperatures were initially calculated at mean sea level while 

linear regression was applied against combinations of easting, northing, 

coastal exposure and distance from the sea 
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2. The residuals (differences between the actual station value and the estimated 

station value) were interpolated onto the grid and added back to the trend 

terms in the regression 

3. The grid points were adjusted by 0.65º C per km to give the final 61-90 grid 

4. For daily temperature values, anomalies were calculated from the station 61-

90 averages and, following regression, residuals of these anomalies were 

interpolated and then added to the 1961-1990 grids (already corrected for 

temperature variation with height).  

The method assumes a standard variation of temperature with height which is not 

always the case however. Although the interpolations for both climate measures 

extended into Northern Ireland, predicted values there were considered unreliable as 

there was no input data available. The UK Meteorological Office (UKMO) provides 

daily and monthly temperature grids at 5km spatial resolution (only the 30-year 

averages are at 1km) and use the British National Grid projection as opposed to the 

Irish National Grid for the Met Éireann datasets. Moreover, these data were only 

freely available up until 2006 and a handling fee is payable for the more recent years.  

Owing to these limitations of the UK datasets, Northern Ireland was omitted from 

the climate correlation study. Thus, although daily minimum, maximum and mean 

temperature grids covering the 2003-2009 periods were provided by Met Éireann at 

1 km spatial resolution for the whole island, only the ROI data were used. The daily 

data were aggregated into monthly files and provided by Met Éireann in text format 

(ASCII).   
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6.4 Statistical techniques   

The null hypothesis tested was that variability in the SOS is independent of air 

temperature. The alternative hypothesis was that variability in the SOS is associated 

with changes in air temperature. Correlation and regression are standard tests of the 

validity of the null hypothesis of which there are many variations depending on the 

type of data being examined. Correlation tests indicate the strength of the 

relationship between two variables with a single value but do not indicate the effect 

of changes in one variable on the response of the other. For this, regression is a more 

appropriate modelling tool to describe the direction and proportionality of a 

relationship between two variables. The relationship described by such a model can 

then be used to predict the response in one (dependent) variable from changes in 

another (independent) variable.  

6.4.1 Correlation methods  

The correlation technique is a test of the measure of association between two 

variables. The magnitude of the test statistic produced by a correlation test is 

indicative of the degree to which an independent variable determines variation in the 

response variable. However, it cannot be assumed to be a cause of the response 

variable, i.e. correlation is not a measure of causal relationships. Evidence of 

causation must be obtained independently of the statistical test (Helsel and Hirsch, 

2002).   

6.4.1.1 Pearson product-moment correlation  

The standard Pearson correlation r value can range from -1 (perfect negative 

correlation) to 0 (no correlation) to 1 (perfect positive correlation). However there 

are limitations to the use of this parametric coefficient since it assumes that both 
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variables are measured on a continuous scale and both are normally distributed 

(Dytham, 2003). Neither condition can be assumed in this study since the SOS is 

measured on an ordinal scale in 10-day intervals and the variables are not normally 

distributed.  

6.4.1.2 Spearman rank-order correlation  

This is the non-parametric equivalent to the Pearson coefficient. The test statistic, 

rho (ρ), is measured on the same scale as that of the Pearson test except that it is 

applied to ranked observations before calculating the test statistic. Ranking of the 

data automatically produces a normally distributed dataset. It can also be used with 

non-continuously distributed data. The Spearman method is also a more conservative 

measure of association than the Pearson coefficient (Dytham, 2003) and is less 

sensitive to outliers (Helsel and Hirsch, 2002). However, a weakness of the test lies 

in the lack of clear interpretation of Spearman’s rho (Dalgaard, 2008). 

6.4.1.3 Statistical significance of correlation 

The probability of the null hypothesis being true is measured by the significance 

level (p-value).  Low p-values allow the null hypothesis to be rejected and the 

alternative hypothesis to be accepted. In biology, a p-value of 0.05 is accepted as the 

critical level of rejection of the null hypothesis (Dytham, 2003). However, a critical 

p-value for the rejection of the null hypothesis has not been established for studies 

using remotely-sensed measures such as SOS. Generally, large sample sizes are used 

when working with remotely sensed imagery, e.g. n>30,000  which can lead to a 

large number of false positive findings (Brown et al., 2010). This can lead to error as 

the null hypothesis is falsely rejected, e.g. if the p-value is equal to 0.01, the null 

hypothesis will be true for every 1 in every 100 correlations. False positive errors 
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accumulate in large sample sizes and become known as the family-wise error rate. 

Although techniques such as the Bonferroni adjustment correct for the family-wise 

error rate in multiple tests, they are considered too stringent in very large sample 

sizes as the alternative hypothesis would only be accepted if the p-value < 0.05/n 

(Brown et al., 2010). For example, if n=10,000 or more as is commonly the case in 

remotely-sensed imagery, the null hypothesis could only be rejected for a pixel if 

p<.000005. As there is no consensus on an appropriate significance level or a 

method for controlling the family-wise error rate, no corrections have been applied 

in the multiple correlation tests carried out here. 

6.4.2 Regression models  

Regression is a test for the prediction of one variable from another. The output is a p-

value and r2 value that is very similar to that produced by the Pearson correlation 

test. The p-value from a standard linear regression indicates the probability that the 

best-fit slope of the relationship between the two variables is zero, i.e. that the null 

hypothesis is true and that there is no measurable relationship between them. 

However, there is another way to test the null hypothesis in regression analysis if the 

value of y is zero when x is zero which is measured by the intercept. The value of the 

intercept is where the best-fit line passes through the origin. Linear regression 

analysis has an advantage over the Pearson test in that both variables are not required 

to be normally distributed. However, the following assumptions need to be satisfied 

for a legitimate regression.  

Regression assumes that:  

• The ‘x’ (independent) variables are measured without error 

• The variation in ‘y’ (dependent) is the same for any values of ‘x’ 
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• ‘y’ values should be normally distributed at any value of ‘x’ 

• For linear regression, the relationship between x and y can be described by a 

straight line between all values 

• One strong significant relationship exists between ‘x’ and ‘y’ 

A preliminary review of the above conditions would suggest the SOS-air 

temperature relationship is unlikely to be described by a linear fit due to the 

complexity of soil- vegetation- atmosphere interactions (Stöckli and Vidale, 2004).  

Theoretical studies have also shown that the response of vegetation to changes in 

climate is non-linear (Bonan, 2002 cited in Brown et al., 2010). The first condition 

for regression cannot be satisfied since there is error produced by the interpolation of 

temperature measurements which is summarised across all stations for each year in 

table 6.1. The method used for estimating error across the interpolated temperature 

grids is known as leave one out cross validation (loocv) (pers comm, Walsh, 2011). 

The method consists of omitting each station one by one and calculating its value 

from the remaining stations, then comparing it to the actual station value and 

calculating the resulting error. The error statistics in table 6.1 were calculated on a 

daily basis for Tmax and Tmin and are averaged over the year. The IDW interpolation 

method used in the daily grids does not give any estimation of errors per grid cell.  

For the second and third conditions, the standard tests of normality would need to be 

applied to the temperature values to ensure that the distribution is constant with each 

10-day interval of SOS.  

 

 



 

 

204 

 

Table 6. 1: Error statistics for Tmax and Tmin, calculated on a daily basis and averaged over the 

year 

Year  Tmax RMSE (°C) Tmin RMSE (°C) 
2002  0.79  1.04 
2003  0.8  1.08 
2004  0.8  1.04 
2005  0.78  1 
2006  0.79  1.04 
2007  0.79  1.06 
2008  0.78  1.02 
2009  0.81  1.03 
Mean  0.79  1.04 

 

Although simple linear regression methods do not capture the SOS-air temperature 

relationship for the reasons described, a subset of Generalised Linear Models (GLM) 

known as ordinal regression models potentially offer a better approach for semi-

quantative data (Guisan and Harrell, 2000). An ordinal scale is considered to be an 

ordering of measurements, with only relative, instead of quantitative differences 

between values (Guisan and Harrell, 2000). Therefore, SOS can be defined by an 

ordinal scale from earliest to latest in 10-day intervals Ordinal regression permits 

orders of the dependent variable (SOS), to be predicted from values of the 

independent variable (temperature), once the ‘best-fit’ line has been created (Torra et 

al., 2006). It has been suggested that remotely-sensed measures, e.g. NDVI time 

series, are inappropriate for any regression analysis as they have been found to 

typically violate assumptions underpinning regression. Specifically, ordinate values, 

i.e. time composites of NDVI mapped on the y axis, are not mutually independent 

because there is usually high positive autocorrelation between consecutive 

observations (de Beurs and Henebry, 2005). Therefore, alternatives to trend analysis 

by regression, such as the seasonal Mann-Kendall trend test have been proposed (de 

Beurs and Henebry, 2010, 2005). The Mann-Kendall trend is a non-parametric test 

based on ranks- therefore, resistant to the most common problems affecting standard 
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trend tests such as non-normality, missing observations, seasonality and temporal 

autocorrelation (Hirsch and Slack, 1984 cited in de Beurs and Henebry, 2005). It was 

used to test for differences and trends between the average normalized difference 

vegetation index (NDVI) and average growing degree-days (GDD) of 1985–1988 

and 1995–1999 in high latitude ecoregions (de Beurs and Henebry, 2005) and in 

detecting greening trends in a 8-year NDVI time series of the northern polar regions 

(de Beurs and Henebry, 2010). Since trend analysis did not form part of the 

objectives of this preliminary climate study, neither the Mann-Kendall test nor a 

regression model were considered for further use.   

6.4.3 Preparation and use of the climate data  

The monthly temperature text files were imported to MATLAB and the daily 

temperature values extracted which were then gridded and resampled to the 1.2 km 

spatial resolution of the MGVI grid using nearest neighbour (NN) resampling since 

it does not change any of the values of the original grid cells but duplicates values 

from the nearest cells instead (Wade and Sommer, 2006). The daily mean 

temperature grids were stacked and the mean monthly and seasonal values calculated 

per grid cell. The spring mean temperature was derived from the average monthly 

temperature from February to April inclusive as has been done in previous ground-

based Irish studies (Donnelly et al., 2004). Therefore, the winter temperatures were 

taken as the average of the previous three months (November-January inclusive).  

The mean temperature and SOS grids were both masked with a land mask of NI 

provided by Met Éireann.  
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6.4.4 Initial correlation results 

The correlation study aimed to test the null hypothesis (H0) that there is no 

correlation between the SOS metric and mean air temperature and the alternative 

hypothesis (H1) that the SOS metric and air temperature are correlated. The 

correlation was initially done spatially, i.e. across the grid of valid values for any 

monthly or seasonal time period. In the case of SOS, the number of land pixels for 

which a valid season was calculated varied per year as seasons were not modelled 

where there were too many missing data points due to cloud cover. Therefore, the 

valid sample size (n) varied from 45089 to 47141grid cell values. The SOS and the 

associated monthly temperature grids were imported to IDL. The valid SOS values 

were extracted first, i.e. zero values removed. The corresponding grid cells in the 

temperature grids were then located and their values extracted to ensure that for 

every valid SOS value, there was a valid temperature value. Spearman’s rho (rank 

order correlation coefficient) and the p-value were then calculated treating 

temperature as X (the independent variable) and SOS as Y (the dependent variable). 

This process was repeated for each month (November-April) and season (winter and 

spring) within each year for the seven years. In table 6.2 the Spearman’s rho is 

presented for each of the SOS –temperature correlations.  
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Table 6.2: Spearman’s rho (ρ) for the SOS and monthly and seasonal mean air temperature 

correlations, all correlations in bold are significant (p<0.05)  

Year November December January Winter February March April Spring 

2002 0.019 -0.020       

2003 0.025 -0.005 0.016 0.05 -0.024 -0.039 0.029 -0.014 

2004 0.107 0.127 0.039 0.039 0.029 -0.011 -0.004 0.006 

2005 0.133 0.146 0.084 0.108 0.119 0.022 0.060 0.074 

2006 0.088 0.040 0.134 0.139 0.126 0.046 -0.012 0.063 

2007 0.131 0.048 0.051 0.061 0.037 0.058 -0.088 0.015 

2008 0.158 0.170 0.017 0.066 0.072 0.043 0.027 0.049 

2009   0.139 0.158 0.084 0.067 -0.008 0.053 

 

When there is no correlation between two variables, ρ = 0, when Y tends to increase 

when X increases, ρ > 0, but when Y tends to decrease when X increases, ρ < 0. 

Overall, the low rho values in table 6.1 show that when the values across the grid are 

taken together, the correlation between the mean air temperature in any given month 

or season and SOS is very weak. However, nearly all the correlations are significant 

(p<0.05) due to the very large sample size. Therefore, in addition to the very low 

amount of variance in the SOS explained by air temperature, the likelihood of false 

positive findings is high, i.e. the false rejection of the null hypothesis. This creates 

uncertainty in the interpretation of the correlation results. Nevertheless, the monthly 

maximum correlation value is 0.17 in December 2008, while the maximum seasonal 

correlation is 0.074 in spring 2005 and 0.158 in winter 2008/2009. In figure 6.1, the 

scatter plot of the December 2008 monthly mean temperature values with SOS 2009 

is shown since these values showed the strongest correlation. The plot demonstrates 

the scattered pattern produced from a mixture of ordinal (SOS) and continuous 

(temperature) data and also the distribution of their values with histograms. The 

temperature values do not appear to be normally distributed being heavily skewed 

however the SOS values are normally distributed.  
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The fact that the strongest SOS-temperature correlations are from the winter of 

2008/2009 is probably related to the strongly negative temperature anomalies in 

winter of that year, indicated by the temperature values at the three meteorological 

stations in chapter 5, section 5.7.  Generally, the correlation values tend to be slightly 

stronger for winter than spring and in the individual winter months than in the spring 

months (table 6.1).  Most of the correlations are positive. This shows that as air 

temperature increases, SOS occurs later. For winter months, this implies that warmer 

winter temperatures correspond to a delay in SOS, possibly due to a failure to satisfy 

the winter chilling requirements. For spring months, the interpretation of a positive 

relationship is less clear as warmer spring temperatures would be expected to hasten 

spring onset. The few negative correlations that exist are generally in the spring 

months, especially in April.  Overall these results suggest that the complexity of 

vegetation-atmosphere interaction cannot be explained by air temperature alone.  

Figure 6.1: The scatter plot of SOS in 2009 and mean December temperature (2008). The marginal 

histograms show the distribution of values in the sample. The mixture of ordinal and continuous data 

creates a striped pattern in the scatter plot. 
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Furthermore, it is likely that the combination of all landcover types and variation due 

to elevation in the gridded data compete to weaken the SOS-air temperature trend. 

There is also a certain degree of spatial dependency in the X and Y variables 

inherited from the treatment of the data, i.e. transformed from grids to single column 

variables and correlated against each other. As the SOS variable is a measure of time 

and the grid cells dependent on location, the correlation results may contain both a 

temporal and spatial component. 

6.4.5 Temporal trend correlation  

The main objective of this section of the correlation study was to separate the spatial 

from the temporal components of the SOS-air temperature relationship by 

correlating seven pairs of temperature and SOS values in each grid cell 

independently. Therefore, Spearman’s correlation was applied per grid cell over the 

seven year study period, i.e. n=7 compared to n≈45,000 in the previous analysis. As 

the SOS is a measure of time, this can be considered as a test for a temporal trend 

(Helsel and Hirsch, 2002),  in contrast to the previous analysis in which there was a 

spatial dependency. The analysis included November to April and seasonal mean 

temperature values over seven years. In order to reduce the possibility of missing 

value affecting the correlation results, only valid pairs of values, i.e. those without 

missing values, were used in the correlation. In order to summarise the correlation 

results, the maximum rank correlations between SOS and monthly air temperature 

were mapped per pixel across the ROI in figure 6.2. (a). The monthly  and seasonal 

timing and the significance level of the maximum correlations are shown in figure 

6.2 (b)-(d).   
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There are contrasting patterns in the maximum rank correlations in figure 6.2(a) as 

there are negative correlations in the south, southeast and parts of the west and 

northwest and positive correlations in the southwest, midlands and along the 

Northern Ireland border. The correlation timing per month (fig 6.2 (b)) shows that 

the November, December and January correlates are strongest in the south, east and 

southeast, while the February, March and April correlates are strongest in the 

northwest, west and southwest. The seasonal timing of these correlations (fig 6.2 (c)) 

was derived from an aggregation of the monthly correlates in figure 6.2 (b). 

However, from figure 6.2(d) less than half the correlations are significant (p<0.1). 

For example, only 4.1 % are extremely significant (p<0.01), 21.95% are highly 

significant (p<0.05), 41.34% are significant (p<0.1) and 58.66% are not significant 

Figure 6.2: (a) Maximum rank correlation between SOS and mean monthly air temperature. (b) Timing of 

the maximum rank correlation (month), (c) Timing of the maximum rank correlation (season), (d) p-value of 

the maximum rank correlation 

(a) (b) 

(c) (d) 
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(p≥0.1), i.e. the null hypothesis is true for over half the correlations. The spatial 

distribution of the significant and insignificant correlations is shown in figure 6.3 

(a)-(d). 

 

  

 

 

 

 

  

 

 

 

 

 

The spatial patterns illustrated in figure 6.3 (a)-(d) would suggest that there is no 

geographical trend in the significance of the maximum rank correlation values and 

no relation to landcover type. In order to exclude the non-significant correlations 

from further analysis, only the significant correlates (p<0.1) were used. Of the 

significant maximum rank correlations, 54.5% correlated best with spring 

temperature while 45.5% correlated with winter temperatures. The significant winter 

and spring correlates were extracted from the maximum correlation grid and are 

shown in figure 6.4 (a)-(b). Of the winter correlates in fig 6.4 (a), 27% of them are 

positive while 73% are negative. Similarly, of the spring correlates, 36.3% of them 

Figure 6.3 (a)-(d): The spatial distribution of the (a) extremely significant (b) highly significant (c) 

significant and (d) non-significant maximum rank correlations 

(a) (b) 

(c) (d) 
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are positive while 63.7% are negative.  These results suggest that for approximately 

two thirds of the pixels, as winter and spring mean air temperature increases, SOS 

becomes earlier. In the remaining one third, however, an increase in mean air 

temperature results in a delay in SOS. There is also a very clear geographical trend 

to the correlates as most of the negative winter correlates are in the southeast half of 

the country and the negative spring correlates in the northwest half including small 

areas of the southwest and south.  

 

 

 

 

 

 

 

 

 

The inverse is true for the positive correlates, i.e. while the SOS in south eastern 

areas correlate negatively with winter air temperature, it is positively correlated with 

spring temperature and vice versa for the Northwest. Therefore in the southeast, 

characterised by a more continental climate, ,  a rise in winter temperature was 

associated with an earlier SOS date while a rise in spring temperature will delay the 

SOS date. In contrast, in the Northwest and some parts of the south and southwest, 

where the climate is more maritime Atlantic, increasing winter temperature will 

delay the SOS while increasing spring temperature will advance the SOS. These 

Figure 6.4 (a) The significant winter maximum rank correlates (b) significant spring maximum 

rank correlates 

(a) (b) 
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tendencies would appear be a factor of general climate patterns in Ireland but also 

due to differences in land use between these regions.  For example, the eastern and 

south eastern areas are largely used for arable cropping while the = vegetation in the 

west and northwest is generally unmanaged peat bogs and sparsely vegetated areas 

with some mixed agriculture. 

6.5 The North Atlantic Oscillation (NAO) Index 

The NAO index measures the differences in atmospheric pressure between the North 

Atlantic regions under the influence of the sub-polar Greenland low pressure system 

and the sub-tropical Azores High. These pressure gradients determine the path of 

mid-latitude weather systems hence general weather patterns over Northern Europe 

(Julien and Sobrino, 2009). Strong positive phases of the NAO tend to be associated 

with above-normal temperatures across Northern Europe (Menzel, 2003) but also 

below-normal temperatures across Southern England (Stöckli and Vidale, 2004). 

Therefore a negative index indicates the opposite patterns of temperature anomalies. 

Spring phenology across Europe has been shown to correlate particularly well with 

anomalies in winter temperature and the winter North Atlantic Oscillation (NAO) 

index (December, January, February and March) from 1981 to 2001 (Stöckli and 

Vidale, 2004). 
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The monthly mean NAO index, from 2003 to 2011, obtained from the U.S. National 

Weather Service Climate Prediction Centre (Climate Prediction Center Internet 

Team, 2011), is shown in figure 6.5.  The NAO anomalies can be used to interpret 

the interannual variability in SOS as shown by the SOS anomalies in section 5.3. 

There were positive NAO anomalies in 2003, 2004, and 2007 while the 2008 and 

2009 anomalies are mostly negative. Since 2009, a persistent and strong negative 

NAO index has resulted in severely cold winters across Northern Europe and very 

wet winters in southern Europe (Andrade et al., 2011). In terms of SOS, the positive 

NAO anomalies in the winter of 2006/2007 appear to have caused an early SOS 

country wide in 2007. Conversely; a negative NAO in the winter of 2005/2006 

caused an island-wide delay of SOS in 2006. However, there was more local scale 

variability in the SOS anomalies in other years, which cannot be explained by the 

NAO anomalies alone. For example, in the winter of 2003/2004, the index switched 

from weakly negative to strongly positive but the SOS was later across most of the 

country except in the southwest where it was earlier. The competing effects of local 

Figure 6.5: Monthly mean NAO index from 2003 to 2011  
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scale variability due to landcover, elevation and weather patterns and large scale 

climate systems such as the NAO undoubtedly influence the SOS anomalies.  

6.6 The SOS and Accumulated Growing Degree Days (AGDD)  

Temperature control on vegetation growth is additive so that the rate of vegetation 

canopy development can be related to accumulated temperature (Keane and Collins, 

2004). Accumulated temperature is usually measured in degree days above a 

threshold temperature by calculating the number of Accumulated Growing Degree 

Days (AGDD), i.e. the number of degree days above a base temperature from a point 

in time.  The number of AGDDs normally exhibits a linear relationship between the 

number of emerged leaves and accumulated air temperature, e.g. between winter 

wheat and AGDD over 0 ºC (Keane and Collins, 2004).  A critical number of 

AGDDs can also be used as a meteorological measure of vegetation SOS. For 

example, in temperature-limited polar phenoregions, 100 ºC AGDD appears to be a 

consistent indicator for the onset of the growing season (de Beurs and Henebry, 

2010). These authors used a base temperature of 0°C as it is an accepted threshold 

for high latitude crop growth.  

 

Growing degree days are used to measure the amount of heat units accumulated by 

plants in a given season and have been used as a predictor of phenological stages 

(Masin et al., 2005). The heating requirements for the initiation of vegetative 

development in spring are species-specific therefore different base temperatures 

must be used when working with multiple vegetation types. However, base 

temperatures of 5 ºC or 6 ºC are frequently used for agro-meteorological purposes in 
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Ireland (Keane and Collins, 2004) , e.g. 6 ºC was used as a base temperature to 

determine the feasibility of growing tillage crops in Co. Westmeath (Finch, 1977). 

Further afield, the potential of different grass species as fodder plants in Pakistan 

was examined by calculating their growth development using a base temperature of 

6 ºC (Akmal et al., 2011). Base temperature is also an important consideration for 

phenology modelling studies. In simulating budburst in several tree species in 

southern Germany, base temperatures of  0ºC  and 5 ºC were used (Rotzer et al., 

2004) but these base temperatures may not be appropriate for other regions or other 

tree species.   

 

For meteorological purposes, base temperatures of 15.0, 15.5, 17.0, 18.0 and 18.5 ° 

C are used (Met Éireann, 2011a) which is related to the calculation of heating degree 

days for home heating purposes, typically a base temperature of 15.5° C is used 

(Day, 2006). The geographical variation for degree-day thresholds of 0 ºC, 5 ºC and 

6 ºC has been mapped across Ireland for a time period from 1961 to 1990 in order to 

understand the likely impact of climate change on the distribution of arable cropping 

areas. The methodology allowed degree days to be accurately predicted for 

unmeasured locations using location parameters to account for distance from the 

nearest meteorological station (Fealy and Fealy, 2008). While the thresholds used 

were not specific to any plant species they were indicative of the likely spatial 

variation in degree days due to location and elevation (Keane and Collins, 2004).  

 

In Ireland, a soil temperature threshold of 6 ºC has been established for grass growth 

which is equivalent to an air temperature threshold of 5.6 ºC because of a tendency 
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for soil temperature to be slightly higher than air temperature at the beginning of the 

growing season (Keane and Collins, 2004). However, grass growth models do not 

use the degree day concept but rather a threshold (5 continuous days over 5 ºC) to 

determine the start of the growing season (pers comm, Green, 2011).  

6.6.1 Calculating growing degree days  

 For this study, a base air temperature of 6 ºC was used as it is appropriate for grass 

growth which is the predominant landcover type in Ireland. The method for 

calculating Degree Days has been taken from the Meteorological Office standard 

also known  as the ‘McVicker’ or the ‘British Gas’ formulae as they have been used 

to calculate home heating requirements as well as heat units for crop growth (Day, 

2006). There are four scenarios considered to calculate daily degree days (DD) 

which require daily minimum and maximum air temperatures (Met Éireann, 2011a): 

Case 1 

If the minimum air temperature (Tmin) is above the base temperature (Tbase). 

baseTmTDD −= where 
2

)( minmax TT
mT

+
=  

Case 2 

If the maximum air temperature (Tmax) is below the base temperature. 

4

)(

2

)( minmax TTTT
DD basebase −

−
−

=  

Case 3  

If the maximum air temperature is above and the daily minimum air temperature is 

below the base temperature but the mean temperature ( mT ) is greater than the base 

temperature. 
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4

)( max baseTT
DD

−
=  

Case 4 

If the maximum air temperature is above and the minimum air temperature is below 

the base temperature but the mean temperature ( mT ) is less than the base 

temperature.  

=DD 0 

The accumulated Growing Degree Days were calculated by simple summation of the 

daily DDs above 6°C commencing each 1 January until the estimated SOS date had 

occurred for each of the seven years. Negative GDDs, i.e. case 4, were treated as if 

there were zero daily degree days.  Once the AGDDs were calculated across the ROI 

grid for each year of the time series, the CORINE landcover mask was used to 

extract summary AGDD statistics on the five landcover classes with the highest area 

coverage, i.e. pastures, peat bogs, arable land, agriculture with significant areas of 

natural vegetation and transitional woodland shrub.  The AGDD grids from 2003 to 

2009 are shown in figure 6.6 where the spatial patterns in GDDs are repeated in each 

year of the seven year period. The highest number of AGDDs is in the West and 

Southwest and Midlands with fewer degree days accumulated in the Midlands and 

East. The number of accumulated degree days is the lowest over mountainous areas 

regardless of location. These are also generally areas of peat bogs and sparse 

vegetation.  

 

 

 



 

 

219 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

°C 

Figure 6.6: The 2003-2009 annual grids of accumulated degree days from January 1
st
 until day of year prior to SOS, 

calculated from daily minimum and maximum temperature data 
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6.6.2 Statistical treatment of growing degree days per landcover type  

In order to determine the appropriate statistical treatment of the data, i.e. parametric 

or non-parametric methods, the frequency distributions of AGDDs per landcover 

class were examined. The frequency distributions and summary statistics; median, 

skewness and kurtosis, for the five most abundant landcover classes are shown for 

2009 in figure 6.7. Skewness is a measure of the distribution symmetry while 

kurtosis is measure of whether the data are peaked or flat relative to a normal 

distribution (NIST/SEMATECH, 2011). For example, the kurtosis for a standard 

normal distribution is three but  distributions that are more outlier-prone than the 

normal distribution have kurtosis greater than 3 while distributions that are less 

outlier-prone have kurtosis less than 3 (Mathworks, 2009). Similarly, the skewness 

for a normal distribution is zero. Negative values for the skewness show that data are 

skewed left and positive values indicate that data are skewed right 

(NIST/SEMATECH, 2011). The median has been used as a measure of centrality 

since the GDD distributions cannot be assumed to be normal. In figure 6.7, the 

kurtosis is greater than 3 indicating outlier-prone distributions with distinct peaks.  

They are all negatively skewed. Therefore, they do not exhibit the characteristics of 

normally distributed data and will be treated with non-parametric statistics.   
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6.6.3 Variation in growing degree days per landcover type  

The median number of AGDDs for all seven years per landcover type is shown in 

table 6.3. The 7 year median AGDD values are also shown as well as the inter 

quartile range (IQR) per landcover class as an indicator of the spread of the annual 

values around the 7-year median. 

 

 

 

 Kurtosis Skewness Median 
Pastures 8.5 -1.5 638.7 
Peat bogs 5.9 -1.3 645.1 
Arable 9.9 -2.1 640.4 
Agricultural  6.9 -1.5 644.5 
Transitional 7.1 -1.6 636.6 

Figure 6.7: Frequency distributions and summary statistics for AGGDs in 2009 for the five most abundant 

landcover classes 
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Table 6.3: The median AGDD per landcover type from 2003 to 2009, the 7-year median is 

included as a summary measure and the inter quartile range (IQR) is included to indicate the 

extent of variance within the seven year record 

AGDD (°C) Pastures Peat Bogs Arable Ag Land5 Trans6 

2003 662.55 662.45 668.45 660.08 656.60 

2004 633.40 635.18 643.05 633.33 627.83 

2005 672.70 670.13 679.03 670.95 666.20 

2006 631.05 624.28 640.45 624.83 622.93 

2007 719.73 723.03 725.90 720.75 717.45 

2008 648.93 655.88 653.00 652.45 646.38 

2009 638.68 645.13 640.43 644.45 636.60 

7 yr median 648.93 655.88 653.00 652.45 646.38 

IQR 35.44 30.54 35.28 32.13 33.78 

 

The 7 year median AGDD values show that peat bogs have the highest GDD 

requirement of all the landcover types and that transitional woodland shrub has the 

lowest. The IQR is the lowest in peat bogs (30.54°C) and highest in pastures 

(35.44°C) but these values are greater than the difference between the median values 

per landcover class.  This indicates that it is difficult to distinguish the landcover 

types based on annual AGDD values. The size of the IQR per landcover class would 

also indicate that there is considerable variability in the number of AGDDs from 

year to year. Therefore an exact estimate of GDDs for SOS per landcover type is not 

possible without some uncertainty. In order to explore the interannual variation in 

these rankings, the landcover classes have been ranked in terms of the number of 

AGDDs from highest (1) to lowest (5) in table 6.4. 

 

 

                                                
5 Land principally occupied by agriculture with significant areas of natural vegetation 

6 Transitional Woodland Shrub 
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 Table 6.4: The ranked landcover classes in terms of the number of AGDDs per year 

 

Rank 2003 2004 2005 2006 2007 2008 2009 

1 Arable Arable Arable Arable Arable Peat 
Bogs 

Peat 
Bogs 

2 Pastures Peat 
Bogs 

Pastures Pastures Peat 
Bogs 

Arable Ag 
Land 

3 Peat 
Bogs 

Pastures Ag 
Land 

Ag 
Land 

Ag 
Land 

Ag 
Land 

Arable 

4 Ag Land  Ag 
Land  

Peat 
Bogs 

Peat 
Bogs 

Pastures Pastures Pastures 

5 Trans  Trans  Trans Trans Trans Trans Trans 

 

Certain landcover types are more consistent than others in terms of the relative 

ranking of AGDDs per year. For example, the transitional woodland shrub class 

accumulates the least number of degree days before SOS for all seven years while 

arable land accumulated the highest number from 2003 to 2007 while in 2008 and 

2009 it was peat bogs. These results demonstrate that of the five landcover types 

examined, arable land had the highest GDD requirements in five of the seven years 

studied while transitional woodland shrub had the least in all seven years. This is a 

slightly different result to that shown by the ranking of the 7-yr median values (table 

6.3). This is to be expected, however, since the difference between the median values 

is far smaller than the inter quartile range over the seven year period and therefore 

the interannual variation likely to be high. In order to graphically illustrate the 

interannual variation in AGDDs per landcover type, box plots were constructed 

which can be seen in figure 6.8.  Box plots provide an indication of the location and 

dispersion of the data and are useful to identify outliers (Dytham, 2003). 

Furthermore, by compiling the annual box plots on the same axes in each figure, the 

following measures can be compared between years: locations of the distribution, 

minimum and maximum values, dispersions and shapes of the distributions 
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(O'Sullivan, 2009). These plots are useful to graphically illustrate variability in the 

number of AGGDs from year to year within each landcover type. The box plot is 

characterised by a central line where the median of the distribution lies, while the 

upper and lower bounds of the box are defined by the first and third quartile of the 

data. The length of the box is determined by the spread of the data. Lines extend 

from the box to the values within 1.5 times the inter quartile range. The lower 

adjacent value is less than the first quartile-1.5IQR while the upper adjacent value is 

greater than the third quartile+1.5IQR. Outliers are classed as values beyond the 

upper and lower adjacent values and are indicated by a cross symbol.  

  



 

 

225 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In figure 6.8, the position of the median line does vary from year to year indicating a 

certain amount of interannual variation in the AGDD values. However, the pattern of 

interannual variation appears to be consistent in each landcover type with fewer  

GDDs accumulated in 2006, 2008 and 2009 and the most accumulated in 2007.  This 

temporal pattern is related to the interannual SOS patterns shown in figure 5.13 -5.14 

in chapter 5 since the degree days were accumulated until the time when SOS had 

Figure 6.8: Box plots for the five landcover types illustrating the dispersion of the AGDDs on an interannual 

basis and the extent of outliers 
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occurred.  However, the exact relationship between these two variables has not been 

determined. As the number of AGDDs for SOS varies from year to year it must be 

assumed that other factors could determine the SOS date, e.g. soil temperature or the 

occurrence of weather extremes such as frost.  There are a considerable number of 

outliers per year in all the landcover classes typically lower in value than the lower 

adjacent value.  The outliers are very rarely higher than the upper adjacent value 

especially in peat bogs where there are no outliers greater than this value in some 

years. These outliers are responsible for the negative skew observed in the landcover 

class distributions in figure 6.7. The bias towards low AGDD values is possibly due 

to the presence of areas at higher elevation in each landcover class.  There appears to 

be a consistent elevation bias in each landcover type and within each year. The 

interannual variation in AGDDs is replicated in all the landcover classes which 

suggest some island-wide climate influence in degree day accumulations. However, 

this finding does not support the idea of a fixed number of degree days for spring 

growth in different vegetation species. Nevertheless, it can be concluded from the 7-

year median values of the five landcover types examined that SOS occurs between 

646.4±33.78°C and 655.9 ±30.54°C over a base temperature of 6ºC.  

6.6.4 Varying the base temperature for pastures  

In order to test the sensitivity of the accumulated degree day’s values to base 

temperature, the base temperature was lowered to 0°C for the same five landcover 

types in 2006. The resulting box plots per landcover class are shown in figure 6.9. 

Despite changing the threshold temperature, the same systematic bias of outliers 

below the lower adjacent value can be seen. This shows that changing the base 
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temperature does not change the distribution of the AGDD values although more 

degree days are accumulated as would be expected with a lower base temperature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9: AGDDs for the five landcover types using a base temperature of 0°C 
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6.7 Discussion 

The statistical techniques used to explore the air temperature-SOS relationship have 

been selected to account for the use of continuous temperature and ordinal SOS data 

which required particular statistical treatment. In addition the spatial component in 

gridded datasets added further complexity to the correlation studies. Large sample 

sizes resulted from analysing data at the national scale which introduces the 

possibility of false positive findings, i.e. rejecting the null hypothesis when it is in 

fact true. Although the Bonferroni correction is the most commonly used method, 

less stringent corrections have been proposed in the remote sensing literature. For 

example, the false discovery rate is an alternative method to controlling the family-

wise error rate by indicating the expected minimum number of false positive 

findings before a feature is considered significant.  The q-value gives this minimum 

false discovery rate when calling a specific feature significant (Benjamini and 

Hochberg, 1995, cited in Brown et al.,2010). However, there is no consensus on the 

best statistical approach to correlating remotely-sensed variables with other gridded 

measurements while controlling the family-wise error rate.  

 

The correlation method used non-spatial statistics to describe a spatial trend, i.e. 

when examining SOS-temp correlations across the grid for one time period. 

However, non-spatial statistics, i.e. straightforward correlations, cannot take account 

of spatial configuration and do not have the tools to adequately describe or 

summarise spatial distributions (Cook, 2009). This was evident from the weak 

correlation coefficients which did not adequately represent a very complex spatio-

temporal relationship. Undoubtedly other environmental variables such as soil 
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temperature, the number of frosty nights, precipitation, elevation and landcover type 

influence the timing of the SOS (White et al., 2009, White et al., 2005, Hudson Dunn 

and de Beurs, 2011). Elevation in particular is an important determinant of air 

temperature differences hence SOS variation. In contrast to more mountainous 

environments, Ireland’s elevational range is quite small with the highest peak at 

approximately 1000m and 92% of the land surface below 200m (according to the 

GTOPO-30 DEM). In such minor elevation variation, temperature remains relatively 

constant, resulting in negligible impact on SOS (Hudson Dunn and de Beurs, 2011). 

The influence of these multiple factors on SOS would be more suitable modelled 

using multiple regression analysis in future studies. Nevertheless a positive aspect of 

the Spearman rank correlation measure is that it does not assume the frequency 

distribution of the variables to be normal, an important consideration for this study 

(de Beurs and Henebry, 2010). Future studies should consider spatial configuration 

as an important part of statistical exploration of these datasets e.g. by the use of 

geostatistics. 

 

The Met Éireann gridded temperature products were valuable in estimating 

temperature parameters across the country at an equivalent spatial scale to the SOS 

data.  However, the weakness of the gridded temperature product is that it is 

generated by interpolation, i.e. from samples of points which are spatially unevenly 

distributed and therefore may be more accurate in some areas than others. However, 

this uncertainty could not be estimated at any single grid point but overall error 

estimates given per year instead. Correlation at the pixel level yielded more 

promising results as a temporal trend was measured over coincident areas rather than 
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across the entire grid for one time period. When the maximum rank correlates were 

gridded, spatial patterns emerged in the timing of the correlations.  There was not a 

characteristic landcover pattern to the correlations as was seen in the SOS data for 

example but a general geographical trend which was probably related to general 

climate across the country and to a certain extent vegetation management.  For 

example, there was a west/east divide in the timing of the significant correlations 

(p<0.1) with the southeast correlating negatively with winter temperatures and the 

northwest correlating negatively with spring temperatures. This implies that as 

winter temperature rises, SOS in the southeast will become earlier while if spring 

temperature rises, SOS in the northwest will be earlier. The contrasting patterns in 

maximum correlation timing illustrates the complexity of SOS-climate interactions 

at the national scale in comparison to the straightforward spring greening trend 

observed at the IPG sites.  Indeed the results suggest that SOS in certain parts of the 

country correlates with temperature as early as November and as late as April. This 

would suggest that SOS responds to temperature changes over a time period of 6 

months. This important finding was also shown by Estrella et al. (2007) who found 

strong negative correlations between phenological events and air temperature of the 

three months prior to the event. One potential contributory factor to the observed 

complexity in the SOS-air temperature relationship is the dependency of certain 

vegetation types on soil temperatures for leaf canopy development while others rely 

on air temperature and this may vary depending on the growth stage of the plant 

species. For example, in grass species at the beginning of the growing season when 

the growing leaf is close to the ground, soil temperature is a determinant of growth 

timing while in crops and larger plants air temperature is a more important 
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determinant of vegetative development while these relationships vary depending on 

growth stage of the plant (Keane and Collins, 2004).  

 

A carefully-selected regression model would be required for a modelling study of air 

temperature as a determinant of SOS. Ordinal regression is a potential method as the 

SOS data are ordinal. However, linear methods would not adequately capture the 

multiple factors involved in SOS determination. Future studies must clarify these 

uncertainties if the impact of predicted air temperature changes in Ireland on the 

observed spatio-temporal patterns in SOS is to be accurately predicted. This is 

particularly important given that the mean ensemble of downscaled global climate 

model predictions for Ireland, suggest that by the 2020s, average seasonal 

temperatures will increase by between 0.75 and 1.0°C (Fealy and Sweeney, 2008). 

By the 2050s, it is expected that Irish temperatures will increase by 1.4–1.8°C, with 

the greatest warming occurring during the autumn. The frequency of climate 

extremes, such as the prolonged summer heat of 2006 which resulted in soil moisture 

deficits across Ireland, is also expected to increase.  This will mean fewer frost 

nights per decade and an increase in heat wave durations, according to modelling 

studies (Fealy and Sweeney, 2008).  While such a changing climate will undoubtedly 

offers benefits such as the growth of new crop types, an enhanced ‘continental’ 

effect will be become more pronounced during all seasons and, according to the 

mean ensemble estimate, the mean temperature in all seasons is projected to increase 

by 2°C or more (Fealy and Sweeney, 2008). Such climate change will potentially 

alter the temporal dynamics of land surface phenology and the spatial distribution of 

landcover types.  
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The growing degree day analyses have yielded useful insights into the different 

heating requirements for vegetation SOS between the landcover classes examined 

although there was insufficient landcover-specific variation in the GDD values to 

detect a landcover trend. Furthermore, altering the base temperature did not change 

the distribution of values nor did readily identifiable differences between the 

landcover types emerge.  Although soil temperature has been used in modelling of 

grass growth (Keane and Collins, 2004, Connaughton, 1973), Met Éireann do not 

produce gridded soil temperature products. Therefore, gridded air temperature data 

were used given the proven relationship between air temperature and vegetation 

development. Although the estimated SOS provided the closing date for GDD 

calculation, the GDDs were accumulated from a fixed start date, i. e. January 1st.  

Other studies however, have used a start date that correlates best with the SOS.  For 

example, accumulated degree days of individual plant species from a date which 

correlated with the daily mean air temperature to the beginning of flowering 

(Wielgolaski, 1999). Estimates of AGDDs have been reported for specific plant 

species at specific locations, e.g. 566±23.8°C for the beginning of flowering in 

hawthorn in north-eastern Italy (Masin et al., 2005). However, the mix of vegetation 

species in each of the CORINE landcover classes and the geographical distribution 

in their coverage introduces some uncertainty to the interpretation of the AGDD 

estimates per landcover type in this study.  Nevertheless the differences in the 7-year 

median values per landcover type and the variation in the annual rankings within 

each year suggest that there is some link between landcover, AGDDs and SOS. For 

example, when ranked in order of magnitude within each year, there appears to be a 

hierarchy in the five landcover types. Arable land had the highest requirements in 
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terms of AGDDs while transitional woodland shrub had the least. This is somewhat 

intuitive since arable crops would be expected to have high thermal requirements for 

leaf development and storage in fruits and tubers for subsequent growing seasons 

(Keane and Collins, 2004). In contrast the GDD requirement of the transitional 

woodland class, which largely consists of newly-forested plantations as well as 

felled woodland and gorse vegetation, is less easily defined. It is likely that such 

vegetation types are in the early stages of development and perhaps demand lower 

air temperatures for SOS. Another notable feature of the AGDD trend is the 

similarity in median values between arable and land principally occupied by 

agriculture with natural vegetation. The latter class is a mixed agricultural class and 

is likely to include vegetable crops (EIONET: European Topic Centre on Land Use 

and Spatial Information, 2006). The ranking of peat bogs and pastures shows the 

most variation in rank from year to year although it would appear from the 7-year 

median values that peat bogs have slightly higher heating GDD requirements than 

pastures overall. It is likely that peat bog vegetation species are subject to more 

climate extremes and therefore require more heat accumulation than grazed 

grasslands.  This is the first time in Ireland that GDDs have been accumulated from a 

fixed date until an estimated SOS date rather than annual totals and on the basis of 

landcover type rather than species level. However, the variability from year to year 

in the number of degree days per land cover type and the lack of difference between 

landcover types within any one year  indicates that landcover may be too spatially-

coarse as a unit to explore to AGDD across the country.  Habitat maps at the species 

level may provide the species-specific information required to accurately determine a 

growth start data from the temperature data. However, higher spatial resolution 
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satellite data may be preferable for analysis at this scale. From this analysis, using a 

6ºC base temperature, an approximate range of AGDDs for SOS to occur has been 

shown for the most common vegetation types, which is indicative of temperature 

requirements for land surface vegetation at the national scale. 

6.8 Conclusions  

Information extracted from gridded air temperature data has offered considerable 

insight into the spatial and temporal variability of the SOS with air temperature over 

the seven year study period. Non-parametric statistics have been used to account for 

the non-normally distributed temperature data and as a more conservative measure of 

association between the variables.   

 

Initially, the spatial variability of SOS with mean monthly air temperature was 

examined by correlation at the grid level. Although the correlation coefficients were 

weak, suggesting very little association of SOS with air temperature across the 

country within any one month, the weakness of non-spatial statistics to address 

explicitly spatial issues was shown. Issues such as spatial autocorrelation and 

controlling the family-wise error rate in large sample sizes emerged as challenging 

topics which were not expected when the study was undertaken. Furthermore, the 

weakness of the relationship suggested that the presence of other factors such as 

landcover, elevation, soil temperature and agricultural practice also determine the 

SOS spatial variability.  Consequently, future studies should consider a multivariate 

approach with the use of geostatistics. 
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The exploration of the temporal variability of SOS with air temperature over the 7-

year period showed more promising results however. The spatial patterns in the 

timing, strength and significance of the maximum monthly correlations indicated 

that agricultural practice is an important determinant of the SOS-air temperature 

relationship.  For example, the sowing of winter cereals in the south, southeast and 

east are most likely the cause of a negative correlation with winter temperatures and 

a positive correlation with spring temperatures. In contrast, the mixture of 

agricultural practices in the west, combined with the predominant landcover made up 

of areas of pastures and natural vegetation are associated with a negative correlation 

with spring temperature and positive correlation with winter temperature.  The 

underlying causes of these temporal patterns require further examination but their 

clear spatial pattern indicate that agricultural practices have a significant influence 

on the air temperature-SOS correlates.    

 

As well as the analysis of raw air temperature data, a derived agro-meteorological 

measure, the growing degree day, was calculated and used to explore any landcover-

specific growth differences.  A base temperature of 6°C was first selected based on 

an examination of the literature. However, the similarities in growing degree days 

accumulated per landcover type indicated that to discern any landcover-specific 

differences in heating requirements, based on the SOS, would be difficult. 

Nevertheless, for the first time, this study has accumulated degree days to estimate 

growth per landcover type until the SOS had occurred rather than annual 

accumulations. Although the differences between landcover types were marginal, an 

approximate range of AGDDs has been estimated for SOS to occur in the vegetation 
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types with highest percentage coverage. An area requiring further investigation is the 

appropriate date from which to accumulate degree days as the use of a fixed start 

date may not adequately represent the temporal development of vegetation in 

response to air temperature variation.  

 

Given the predicted air temperature changes in Ireland in the coming decades, there 

may be changes in Irish landcover and land use, with adaptation to new agricultural 

practices, and changes to the state of natural systems. This initial climate study has 

highlighted some of the methodological issues associated with exploring statistical 

relationships between gridded datasets. Furthermore, some interesting air 

temperature-SOS trends have been shown which require more in depth analysis in 

future studies.  However, such studies need to refine the methodology used for a 

more comprehensive statistical analysis.   

 

 

 

 

 

 

 

 

 



 

 

237 

 

Chapter 7. Conclusions and Perspectives  

7.1 Conclusions  

The overall objective of this study was to determine whether vegetation seasonality 

metrics such as the Start of Season (SOS) could be reliably estimated from a 

multiannual time series of medium to low spatial resolution satellite data, from 2003 

to 2009 across the island of Ireland. In order to achieve this objective, more specific 

aims were identified: namely, to select an appropriate time-composite period for the 

daily MGVI data; to explore time series analysis as a tool to extract the SOS metric; 

to characterise the spatio-temporal patterns in SOS across the island using 

explanatory variables such as landcover, and finally, to assess the relationship of 

certain climate parameters with the SOS over the seven year period.  

Visual analysis suggested that the patterns in the SOS grids were aligned with the 

spatial distribution of different landcover types. At the same time, the metric was 

sufficiently sensitive to demonstrate the temporal variability in these spatial patterns 

from year to year.  Further quantative spatial analysis confirmed the role of 

landcover as a determinant of SOS, while also suggesting that factors of location, 

proximity to the sea and elevation compete to determine when SOS occurs. Climate 

variability over the seven year period, as revealed in the air temperature record, was 

shown to drive interannual variability in the SOS. Anomalous temperature variation, 

from the seven year mean, also caused anomalies in the SOS, as was demonstrated 

by the delayed SOS countrywide in 2006 as a result of the cooler than average winter 

of 2005/2006 and spring of 2006.  



 

 

238 

 

Evidence has shown that climate variability influences the timing of phenophases 

over time at point locations. However, this study concluded that landcover and land 

use has more influence on the SOS when examined at a synoptic scale over large 

spatial extents at low spatial resolution. In fact, landcover has proven to be a major 

determinant of the SOS spatial variability. The grouping of landcover types based on 

significant differences in the SOS showed that SOS in managed vegetation types can 

be from two to four 10-day periods earlier than in similar but unmanaged vegetation, 

e.g. between improved pastures and natural grassland. It can be concluded from this 

result that the land surface phenology of managed vegetation is a combination of 

land use practices and climatic factors, resulting in maximum growth efficiency. In 

the absence of soil treatment, artificial fertilisation, grazing and other land 

management activities, non-managed vegetation SOS is more finely-tuned to 

ecosystem drivers, i.e. the biosphere, lithosphere and atmosphere. However, a multi -

decadal rather than a multi- annual time series would be required to separate the 

climatic from the human impact on land surface phenology, and to discern which 

factors are the most influential on each landcover type.   

The initial exploration of air temperature as a correlate of the SOS, across the whole 

island, suggested a very weak relationship with mean monthly and seasonal air 

temperature. However, the timing, strength and direction of the maximum 

correlations, when calculated on a per pixel basis over the seven year period, 

demonstrated a much stronger association between the two variables.  Nevertheless, 

the strength and timing of correlation was highly dependent on location. Overall, two 

thirds of the significant seasonal correlates were negative, i.e. as winter and spring 

temperature increases, the SOS advances, consistent with the spring greening trend 
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observed at the IPG gardens. However, the remaining one third of correlates shows 

the opposite trend and the cause of this requires further investigation, e.g. into other 

driving factors by the use of a multivariate correlation.  

The interaction of landcover, elevation and climate at the national scale presented a 

more complex picture of land surface phenology than the linear air temperature/BGS 

trend, observed at the IPG sites. Although the SOS had occurred across most of the 

country (66%) by March 12th-21st according to the seven year average, the estimated 

SOS spanned a considerable period of time from January in the lowest lying pastures 

to July in the most upland peat bogs. Ireland’s temperate climate is characterised by 

a moderate range in annual air temperature, yet there is enough variability in weather 

patterns and other non-climatic factors to produce a mosaic of SOS dates, occurring, 

for the most part, within the first 6 months of the year. This finding contrasts with 

vegetation phenology in less temperate climates, e.g. in arid biomes, where the SOS 

is more constrained by climatic factors, such as precipitation, and therefore occurs 

within a much narrower time range. While the semi-quantative analysis of landcover, 

contrasted with the quantative analysis of air temperature, justified their treatment as 

separate variables in the analysis of SOS, they could be modelled together using 

advanced spatial statistics and multiple regression models. Indeed, the statistical 

treatment of large gridded datasets, as was used in this study, proved particularly 

challenging due to issues such as spatial autocorrelation and controlling the family-

wise error rate. Furthermore, the approaches to managing these issues in the 

literature vary and are often adapted from other disciplines which may not 

necessarily be appropriate for geographical studies with thousands of data points, 
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e.g. the stringency of the Bonferroni adjustment for multiple pair wise comparisons. 

It has become clear from this study that the SOS is an integrated indicator of land 

surface phenology and represents an ensemble of different variables and not just 

climate alone. Therefore, there is an urgent requirement to refine the statistical and 

quantitative approaches used in correlating remotely-sensed data with several other 

spatially-dependent datasets. For example, this might involve the use of non-linear 

correlation methods such as Gradient Pattern Analysis (GPA), to parameterise the 

satellite and climate or other explanatory datasets in terms of their gradient moments 

(Gradient Asymmetry, Gradient Diversity and Gradient Entropy) (Ramos et al., 

2000). A multivariate rather than a univariate approach should be considered in 

future studies but only if appropriate statistical tests and correlation methods are 

used.  

The limitations of using a global vegetation index for local to regional scale 

applications have also been highlighted in this study. For example, the MGVI time 

series was characterised by noise and data drop outs which appeared to be a factor of 

Ireland’s frequent cloud cover and high atmospheric water vapour content which are 

not adequately parameterised in global atmospheric models. Therefore, atmospheric 

correction methods in global datasets need to be refined for local scale variability in 

atmospheric conditions for a more robust dataset.     

7.2 Perspectives  

A major outcome of this work is the ability to discriminate landcover differences 

based on their characteristic seasonality signal. This information can be used to 

enhance current methods of characterising landcover and land use across the country 
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and, when applied to mapping agricultural land uses, can potentially be used for 

carbon accounting.  Indeed, as a result of this work, a call for projects using this 

approach to land use mapping in Ireland, has been issued by the EPA in 2011.  Land 

surface characterisation using seasonality characteristics of vegetation, is only one of 

the potential future applications of LSP monitoring in Ireland. The ESA is 

developing five new missions called Sentinels, exclusively for the operational 

demands of the Global Monitoring for Environment and Security (GMES) 

programme. A key requirement of the United Nations Framework Convention on 

Climate Change (UNFCCC), established in 1992, was a commitment to the 

systematic observation of, and archiving of data on, the Earth’s climate system 

(Plummer, 2009). The Global Climate Observing System (GCOS), set up under the 

UNFCCC, provides the framework to achieve this aim, by the systematic 

observation of Essential Climate Variables (ECV). The FAPAR, for example, is a 

terrestrial ECV and ESA is monitoring it as part of the GCOS initiative. Within the 

framework of the ESA Climate Change Initiative (CCI), there are eight individual 

sensors dedicated to monitoring FAPAR including MERIS, MODIS, SeaWiFS and 

the AVHRR (Doherty, 2010). Sentinel 3 is seen as a replacement for the MERIS 

mission, with 21 spectral bands, acquiring data at 300m spatial resolution, while 

Sentinel 2 is a Landsat-like high spatial resolution, land monitoring sensor. There is 

considerable potential in the application of the data from these upcoming sensors, 

not only to enhance the continuity of SOS and FAPAR monitoring, but to 

experiment with alternative metrics and biogeophysical products at such high spatial 

resolutions.  



 

 

242 

 

There was a remarkable consistency in the interannual SOS pattern observed in peat 

bog vegetation in this study, in comparison to the interannual variability exhibited by 

most other landcover types.  This could be due to the fragile equilibrium between 

peat bog vegetation, hydrological regime, climate and soil type which results in a 

very narrow time window in which SOS can occur. However, the presence of rocky 

ground, surface water and other non-vegetated surfaces within peat bog vegetation 

might also cause this steady temporal pattern.    The health and status of certain peat 

bog vegetation species is recognised as an important indicator of climate change 

while the rich organic soil stores significant amounts of carbon. Therefore, peat bog 

habitats are an appropriate starting point to assess the feasibility of ESA Sentinel 2/3 

satellite data to track phenological variability, at medium to high spatial resolution. 

Considering the vulnerability of these ecosystems to climate change and their 

relative abundance in Ireland, this presents an interesting and worthwhile avenue for 

further research. Nevertheless, it appears that the MERIS sensor will continue to 

yield data until 2013 when it will be replaced with Sentinel-3.The time series can 

also be extended further back in time by the use of other sensor FAPAR products.  

The potential of higher spatial resolution data, to track phenological variability at 

finer spatial scales, is worthy of further attention, especially with the availability of 

300m MERIS FAPAR products from the GEOLAND 2 7initiative and 1km MODIS 

FAPAR/LAI from the Boston University Climate Change and Vegetation Group8. 

The GEOLAND 2 project, established under the GMES programme, seeks to 

                                                
7 http://www.gmes-geoland.info/ 

8 http://cliveg.bu.edu/ 
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establish a long-term sustainable service for satellite-derived products of the land 

surface, at regional, European and global scales, which are provided to end users 

freely and online (geoland2, 2011). The validation of the GEOLAND 2 products is 

guided by the standards of the CEOS LPV subgroup, demonstrating the increased 

cooperation among international organisations in providing accurate and consistent 

satellite data products. As part of its global land monitoring programme, GEOLAND 

2 provides biophysical parameters such as the fraction of vegetation cover, FAPAR, 

and derived phenology parameters in near real time. The FAPAR data are derived 

from the MERIS and SPOT VGT sensors, and are provided in 10-day composites, at 

300m and 1 km spatial resolution, and are fully documented with metadata. 

However, as GEOLAND 2 runs from 2008-2012, the full resolution MERIS data 

products became available too late for use in this study.  Nevertheless, there is the 

possibility of a comparative study between the full and reduced spatial resolution 

MERIS FAPAR in the future.   

There is an increased need to achieve coherency between the various algorithms used 

to derive seasonality metrics such as the SOS so that they represent the same 

phenomena in terms of physical plant development. The scarcity of ground-based 

observations and the subjective nature of human observer measurements is a 

challenge to this task however.  Alternative methods of in-situ monitoring, e.g. 

digital cameras or in-situ PAR sensors, mounted on towers, might enhance efforts to 

validate seasonality metrics. Indeed, automated observations of vegetation canopy 

reflectance by fixed position digital cameras, is potentially more suited to validating 

satellite-derived measures, than human-observed phenophases as there are 

limitations to the comparison of subjective observations to satellite-based trends due 
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to the nature of the measurement. While a satellite measures a radiometric signal, 

human observations are visually-based stages in plant development. Other factors 

which make them different include the temporal precision (daily vs. 10-day) and the 

spatial resolution (individual plant vs. area). While ground-based observations are 

point finite measures, satellites are synoptic sensors whose measures are generalised 

over large areas and incorporate a multitude of factors including artefacts of the 

satellite sensor itself. These factors combined constitute an Earth System Data 

Record (ESDR) of land surface phenology, as described by Friedl et al. (2010), in 

contrast to a database of species-specific phenological stages collated by phenology 

garden and citizen observer networks.  The challenge posed to studying climate 

change from an ESDR is the difficulty in separating the influence of climate from 

other factors.  From discussions within the CEOS LPV subgroup, there are a variety 

of opinions on what constitutes a satellite-derived phenology product, but, as yet, no 

consensus has been achieved between remote sensing and plant scientists. The two 

distinct interpretations of phenology, as that of variation in phenology across the 

land surface, or an observed stage in the life cycle of a plant or tree, highlights the 

need to find common ground between the two disciplines and further 

interdisciplinary dialogue.  

The spatial and temporal resolutions of the MGVI were key determinants of the 

sensitivity of the SOS to phenological variability across the island. For this study, 

relative spatio-temporal variation in the SOS was observed, however no absolute 

estimates (day of year) of SOS were made, given the use of composite data. Daily 

precision with ideal accuracy of ± 3 days has been proposed as a key scientific 

requirement for a land surface phenology ESDR(Friedl et al., 2010). However, there 
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is still no consensus on whether this precision is achievable or not, while the 

temporal precision of LSP metrics in published studies continues to vary. Although 

the use of composite data is a necessity for remote sensing in the optical domain 

when carrying out national and regional studies, it is impossible to observe changes 

of a fraction of a day per year with a time resolution of 10 days, especially in cloudy 

climates which do not guarantee regular daily measurements. As a result, satellite –

derived trends in phenology generally differ from trends in ground-based 

observations. For example, when translating the SOS anomalies into days change per 

year, the numbers exceed the ground-based observed changes over Europe of 2.5 

days per decade (Menzel et al., 2006). To address this, the temporal resolution of the 

input data could be refined, e.g. by the use of daily, instead of composite data. 

Although this would enhance the ability to detect phenological variability in time 

series data, the intermittency of valid, cloud-free data could be an issue for 

generating realistic curve fits. 

7.3 The future of land surface phenology studies  

It is clear that with an ever increasing number of satellite sensors, free access to a 

range of biogeophysical parameters through initiatives such as GEOLAND 2, 

experimentation with microwave remote sensing for retrieving phenological 

parameters and a commitment to establish ground validation sites worldwide that the 

study of land surface phenology is set to evolve. A large number of earth observation 

satellites already provide a global LSP monitoring network which is gradually being 

enhanced by emerging technologies. For example, in-situ sensors, mounted on 

towers above the vegetation canopy, can measure FAPAR and LAI as well as 

reflectance in the same spectral range as satellite sensors. As mentioned, digital 



 

 

246 

 

cameras, mounted in fixed positions, can acquire daily imagery of vegetation 

canopies and monitor the progression of the seasons in the visible to near infrared 

wavelengths. Vegetation indices can also be derived from digital camera reflectance 

data, and the imagery can be disseminated via websites. Such webcam technology 

has the power to bring the science of phenological observation into the school, home 

and everyday life. Furthermore, in-situ sensors and digital cameras do not suffer the 

atmospheric interference inherent in satellite-measured reflectance data, although 

their location is fixed and spatial range limited to the level of the vegetation canopy 

of mostly homogenous vegetation cover. Unmanned airborne vehicles (UAVs) are 

also emerging technologies which provide the capacity for mobile, local-scale 

monitoring with more user interaction and sensor experimentation. Such a nested 

approach to phenological monitoring, at different spatial scales, from satellite and 

airborne sensors to UAVs, digital cameras and in-situ sensors, complemented by 

ground-based observers of phenophases, undoubtedly represents the future of 

phenological monitoring.  

Ireland has a role to play in these emerging methods. The network of phenological 

gardens has already expanded, during the course of this study, from the original four 

IPG gardens to an additional 12 IPG gardens and 11 native gardens.  This work has 

been led by the EPA-funded CCIP project at Trinity College, Dublin, established in 

2007, to oversee the development of a sustainable phenology network in Ireland. The 

expanded network now comprises 27 locations, across the island. The launch of 

Nature Watch on the National Biodiversity Data Centre website, as a focal point for 

citizen observers to record their observations, presents an additional source of data 

and, given time, has the potential to complement the historical record provided by 
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trained observers. However, it is now timely to consider the use of in-situ sensors, or 

digital cameras, in Ireland, to enhance this human observer network.  

The status of phenology as a research discipline in Ireland has been strengthened by 

the media attention, and outreach work, of the CCIP project. Furthermore, the 

international and interdisciplinary Phenology 2010 conference organised by the 

project attracted researchers from the discipline worldwide. The momentum gathered 

after the Phenology 2010 conference will now be carried forward to the Phenology 

2012 conference at Milwaukee, Wisconsin, U.S.A.  The Phenology 2010 conference 

also provided the location for the first meeting of the CEOS LPV subgroup, at which 

international researchers across a variety of disciplines, agreed to collaborate and 

combine efforts for a global protocol to validate LSP products. A consensus was 

achieved on a synthesis of methods, from flux towers to digital cameras, to validate 

satellite-derived products at 10-20 carefully selected validation sites. The current 

activities of the subgroup are now focused on gathering 100km by 100km satellite 

phenology product subsets for the validation sites as well as comparable in-situ 

observations within 100km of the site centre.  

Despite the considerable progress that has been made, LSP is still maturing as a 

science, as are the algorithms and techniques used to derive LSP products. Some 

areas of the discipline are still in need of precise definition, for example, in what 

constitutes an LSP metric in terms of physical plant development. There is more 

consensus-building required among its practitioners on the goals to be achieved and 

the appropriate strategy to achieve these goals in the coming decades. However, 

continued effort on behalf of the members, combined with the ongoing renaissance 
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in the science of phenology, is ensuring a bright future for the field as a topic of 

major scientific importance. This research has contributed to the discipline by 

adapting existing time series analysis methods to an optimised VI index at a new 

location, previously unstudied in terms of its land surface phenology characteristics.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

249 

 

References 

ACKERMAN, S. & WHITTAKER, T. 2011. Incoming and Outgoing Radiation 
[Online]. Tools of the Atmospheric Scientist. Available: 
http://www.ux1.eiu.edu/~cxtdm/met/sirs.html [Accessed 8th August,, 2008]. 

AKMAL, M., FARID, U., ASIM, M. & FARHATULLAH, M. 2011. Growth 
Comparison of Exotic Species for Green Forage. Pakistan Journal of Botany. 
43 (3) 1557-1561. 

AMANO, T., SMITHERS, R. J., SPARKS, T. H. & SUTHERLAND, W. J. 2010. A 
250-year index of first flowering dates and its response to temperature 
changes. Proceedings of the Royal Society B-Biological Sciences. 277 (1693) 
2451-2457. 

ANDRADE, C., SANTOS, J. A., PINTO, J. G. & CORTE-REAL, J. 2011. Large-
scale atmospheric dynamics of the wet winter 2009-2010 and its impact on 
hydrology in Portugal. Climate Research. 46 (1) 29-41. 

ARNDT, D. S., BARINGER, M. O. & JOHNSON, M. R. 2010. State of the Climate 
in 2009. Bulletin of the American Meteorological Society. 91 (7) s1-s222. 

AUSSEDAT, O., GOBRON, N., PINTY, B. & TABERNER, M. 2006. MERIS 
Level 3 Land Surface Time Composite, Product File Description. Global 
Environment Monitoring Unit, European Commission Joint Research Center. 

BEAUBIEN, E. G. & FREELAND, H. J. 2000. Spring phenology trends in Alberta, 
Canada: links to ocean temperature. International Journal of 
Biometeorology. 44 (2) 53-59. 

BELOTELOV, N. V., BOGATYREV, B. G., KIRILENKO, A. P. & VENEVSKY, 
S. V. 1996. Modelling of time-dependent biome shifts under global climate 
changes. Ecological Modelling. 87 (1-3) 29-40. 

BENJAMINI, Y. & HOCHBERG, Y. 1995. CONTROLLING THE FALSE 
DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH 
TO MULTIPLE TESTING. Journal of the Royal Statistical Society Series B-
Methodological. 57 (1) 289-300. 

BONAN, G. 2002. Ecological climatology, London, Cambridge University Press 
BOYD, D., ALMOND, S., DASH, J. & CURRAN, P. J. 2011. Phenology of 

Vegetation in Southern England from Envisat MERIS Terrestrial Chlorophyll 
Index (MTCI) data. International Journal of Remote Sensing.32 (23) 8421-
8447. 

BROWN, M. E., DE BEURS, K. & VRIELING, A. 2010. The response of African 
land surface phenology to large scale climate oscillations. Remote Sensing of 
Environment. 114 (10) 2286-2296. 

BUTTERFIELD, H. S. & MALMSTROM, C. M. 2009. The effects of phenology on 
indirect measures of aboveground biomass in annual grasses. International 
Journal of Remote Sensing. 30 (12) 3133-3146. 

BÜTTNER, G. & MAUCHA, G. 2006. The thematic accuracy of Corine land cover 
2000: Assessment using LUCAS (land use/cover area frame statistical 
survey). In: EUROPEAN ENVIRONMENT AGENCY (ed.). Copenhagen. 



 

 

250 

 

BÜTTNER, G., MAUCHA, G. & KOSZTRA, B. 2011. European Validation of 
Land Cover Changes in CLC2006 Project. In: 
EARSeL.Prague.HALOUNOVA, L., ed.  2011. 

CAMPBELL, J. B. 2002. Introduction to Remote Sensing, London & New York, 
Taylor & Francis 

CENTRE FOR ECOLOGY AND HYDROLOGY. 2010. CEH data holdings 
[Online]. Available: http://www.ceh.ac.uk/data/index.html [Accessed 28th 
July, 2010]. 

CHAMBERS, L. H., COSTULIS, P. K., YOUNG, D. F. & ROGERSON, T. M. 
2004. Students as Ground Observers for Satellite Cloud Retrieval Validation. 
In: 13th Conference on Satellite Meteorology and Oceanography Norfolk, 
VA  20th-23rd September, 2004. American Meteorological Society. 

CHEN, X., HU, B. & YU, R. 2005. Spatial and temporal variation of phenological 
growing season and climate change impacts in temperate eastern China 
Global Change Biology. 11 (7) 1118-1130. 

CHMIELEWSKI, F.-M., MÜLLER, A. & BRUNS, E. 2004. Climate changes and 
trends in phenology of fruit trees and field crops in Germany, 1961–2000. 
Agricultural and Forest Meteorology. 121 69–78. 

CHMIELEWSKI, F.-M. & ROTZER, T. 2001. Response of tree phenology to 
climate change across Europe. Agricultural and Forest Meteorology. 108 
101–112. 

CIHLAR, J., MANAK, D. & D'IORIO, M. 1994. Evaluation of compositing 
algorithms for AVHRR data over land. Geoscience and Remote Sensing, 
IEEE Transactions on. 32 (2) 427-437. 

CLELAND, E. E., CHUINE, I., MENZEL, A., MOONEY, H. A. & SCHWARTZ, 
M. D. 2007. Shifting plant phenology in response to global change. Trends in 
Ecology & Evolution. 22 (7) 357-365. 

CLEVELAND, R. B., CLEVELAND, W. S., MCRAE, J. E. & TERPENNING, I. 
1990. STL: A Seasonal-Trend Decomposition Procedure Based on Loess. 
Journal of Official Statistics. 6 (1) 3-73. 

CLIMATE PREDICTION CENTER INTERNET TEAM. 2011. North Atlantic 
Oscillation [Online]. NOAA/  National Weather Service. Available: 
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml 
[Accessed August 4th, 2011]. 

COILLTE 2003. Curraghbinny Wood Inventory Listing Report. Coillte Southern 
Region. 

COLDITZ, R. R., CONRAD, C., WEHRMANN, T., SCHMIDT, M. & DECH, S. 
2008. TiSeG: A Flexible Software Tool for Time-Series Generation of 
MODIS Data Utilizing the Quality Assessment Science Data Set. Geoscience 
and Remote Sensing, IEEE Transactions on. 46 (10) 3296-3308. 

COLLINS, J. F. & CUMMINS, T. (eds.) 1996. Agroclimatic Atlas of Ireland, 
Dublin: Joint Working Group on Applied Agricultural Meteorology. 

CONNAUGHTON, M. J. 1973. The Grass Growing Season in Ireland. Dublin: 
Agroclimatic Atlas of Ireland. 

COOK, S. 2009. Exploratory Spatial Data Analysis (ESDA) and Spatial 
Statistics.Lecture (21st May). University of Ulster. 



 

 

251 

 

CORNWALL, C., HORIUCHI, A. & LEHMAN, C. 2010. NOAA ESRL Solar 
Position Calculator [Online]. Available: 
http://www.srrb.noaa.gov/highlights/sunrise/azel.html [Accessed 18th March, 
2010]. 

CRISP. 2001. Principles of Remote Sensing [Online]. Available: 
http://www.crisp.nus.edu.sg/~research/tutorial/intro.htm [Accessed 12th 
May, 2011]. 

CRUICKSHANK, M. M., TOMLINSON, R. W. & TREW, S. 2000. Application of 
CORINE land-cover mapping to estimate carbon stored in the vegetation of 
Ireland. Journal of Environmental Management. 58 (4) 269-287. 

DALGAARD, P. 2008. Introductory Statistics with R, Springer.Statistics and 
Computing, 

DANSON, F. M. & CURRAN, P. J. 1993. Factors Affecting the Remotely Sensed 
Response of Coniferous Forest Plantations. Remote Sensing of Environment. 
43 (1) 55-65. 

DANSON, F. M. & PLUMMER, S. E. 1995. Red-Edge Response to Forest Leaf-
Area Iindex. International Journal of Remote Sensing. 16 (1) 183-188. 

DASH, J., JEGANATHAN, C. & ATKINSON, P. M. 2010. The use of MERIS 
Terrestrial Chlorophyll Index to study spatio-temporal variation in vegetation 
phenology over India. Remote Sensing of Environment. 114 (7) 1388-1402. 

DAY, T. 2006. Degree-days:theory and application. The Chartered Institution of 
Building Services Engineers,. 

DE BEURS, K. M. & HENEBRY, G. M. 2004. Land surface phenology, climatic 
variation, and institutional change: Analyzing agricultural land cover change 
in Kazakhstan. Remote Sensing of Environment. 89 (4) 497–509. 

DE BEURS, K. M. & HENEBRY, G. M. 2005. Land surface phenology and 
temperature variation in the International Geosphere-Biosphere Program 
high-latitude transects. Global Change Biology. 11 (5) 779-790. 

DE BEURS, K. M. & HENEBRY, G. M. 2008a. Introduction to Land Surface 
Phenology. In: A Workshop on Land Surface Phenology Madison, U.S.A.,  
8th April. USA National Phenology Network  

DE BEURS, K. M. & HENEBRY, G. M. 2008b. Northern annular mode effects on 
the land surface phenologies of northern Eurasia. Journal of Climate. 21 (17) 
4257-4279. 

DE BEURS, K. M. & HENEBRY, G. M. 2010. A land surface phenology 
assessment of the northern polar regions using MODIS reflectance time 
series. Canadian Journal of Remote Sensing. 36 S87-S110. 

DELANEY, B. 4th August 2011. RE: Met Eireann climate and synoptic 
stationsType to O' CONNOR, B. 

DIGITALGLOBE. 2011. DigitalGlobe [Online]. Available: 
http://www.digitalglobe.com/ [Accessed May 8th, 2011]. 

DOHERTY, M. 2010. ESA Climate Change Initiative overview. In: ESA Living 
Planet Symposium.Bergen, Norway  2010. 

DOKTOR, D., BONDEAU, A., KOSLOWSKI, D. & BADECK, F.-W. 2009. 
Influence of heterogeneous landscapes on computed green-up dates based on 
daily AVHRR NDVI observations. Remote Sensing of Environment. 113 (12) 
2618-2632. 



 

 

252 

 

DONNELLY, A., JONES, M. B. & SWEENEY, J. 2004. A review of indicators of 
climate change for use in Ireland. International Journal of Biometeorology. 
49 (1) 1-12. 

DONNELLY, A., SALAMIN, N. & JONES, M. B. 2006. Changes in tree 
phenology: An Indicator of spring warming in Ireland? Biology and 
Environment: Proceedings of the Royal Irish Academy. 106B (1) 49-56. 

DYTHAM, C. 2003. Choosing and Using Statistics, A Biologist's Guide, Blackwell 
Publishing 

EARTH RESOURCES OBSERVATION AND SCIENCE (EROS) CENTRE. 2009. 
GTOPO30 [Online]. U.S. Geological Survey  Available: 
http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/gtopo30_inf
o [Accessed 8th September, 2010]. 

EIONET: EUROPEAN TOPIC CENTRE ON LAND USE AND SPATIAL 
INFORMATION. 2006. CORINE Land Cover (CLC) classes [Online]. 
European Environment Agency. Available: http://etc-
lusi.eionet.europa.eu/CLC2000/classes/Pictures?CLCcategory=2/2.1/2.1.1&
CLCtitle=Non-irrigated%20arable%20land [Accessed 16th November, 
2010]. 

EKLUNDH, L. 2010. TIMESAT,  a software package for analysing time-series of 
satellite sensor data [Online]. Lund and Malmo Universities 

Available: http://www.nateko.lu.se/TIMESAT/timesat.asp [Accessed 1st October, 
2010]. 

EKLUNDH, L. & JÖNSSON, P. 2010. TIMESAT 3.0 Software Manual. Department 
of Earth and Ecosystem Sciences, Lund University, S-223 62 Lund,Sweden 
and Center for Technology Studies, Malmö University, S-205 06 Malmö, 
Sweden. 

ERA-MAPTEC LTD. 2006. CORINE Land Cover – IRELAND: Land Cover Update 
for 2006 Final Report. CLC 2006/GMES FTSP land monitoring final report-
Ireland. Environmental Protection Agency, Ireland. 

EROS. 2011. Glossary [Online]. United States Geological Survey (USGS). 
Available: http://eros.usgs.gov/#/Guides/glossary/e_g [Accessed 13th May, 
2011]. 

ESA. 2005. MERIS, Frequently Asked Questions [Online]. Available: 
http://earth.esa.int/pub/ESA_DOC/ENVISAT/MERIS/VT-P017-DOC-005-
E-01-00_meris.faq.1_0.pdf [Accessed 12th May, 2011]. 

ESA. 2006a. Envisat Home Page [Online]. Available: 
http://envisat.esa.int/category/index.cfm?fcategoryid=61 [Accessed May12th, 
2011]. 

ESA 2006b. MERIS Product Handbook. European Space Agency. 
ESA G-POD TEAM 2008. Earth Observation Grid Processing-On-Demand Portal 

User Manual. 3 ed. 
ESTRELLA, N., SPARKS, T. H. & MENZEL, A. 2007. Trends and temperature 

response in the phenology of crops in Germany. Global Change Biology. 13 
(8) 1737-1747. 

EUMETSAT 2001. The Meteosat Archive User Handbook. EUM TD 06 ed.: 
EUMETSAT, Am Kavalleriesand 31, D-64295 Darmstadt, Germany. 



 

 

253 

 

EUMETSAT 2007. Cloud Detection for MSG - Algorithm Theoretical Basis 
Document. EUM/MET/REP/07/0132 ed.: EUMETSAT, Am Kavalleriesand 
31, D-64295 Darmstadt, Germany. 

EUROPEAN ENVIRONMENT AGENCY. 2011. Europe's Environment: The 
second assessment [Online]. Copenhagen. Available: 
http://www.eea.europa.eu/publications/92-9167-087-1/page014.html 
[Accessed January 31st, 2011]. 

FEALY, R. & FEALY, R. M. 2008. The spatial variation in degree days derived 
from locational attributes for the 1961 to 1990 period. Irish Journal of 
Agricultural and Food Research. 47 (1) 1-11. 

FEALY, R. & SWEENEY, J. 2008. Climate Scenarios for Ireland. CLIMATE 
CHANGE –Refining the Impacts for Ireland. Environmental Protection 
Agency, Ireland. 

FELDMAN, G. C. 2011. SeaWiFS Project Information [Online]. Available: 
http://oceancolor.gsfc.nasa.gov/SeaWiFS/BACKGROUND/ [Accessed 12th 
May, 2011]. 

FENSHOLT, R., RASMUSSEN, K., NIELSEN, T. T. & MBOW, C. 2009. 
Evaluation of earth observation based long term vegetation trends - 
Intercomparing NDVI time series trend analysis consistency of Sahel from 
AVHRR GIMMS, Terra MODIS and SPOT VGT data. Remote Sensing of 
Environment. 113 (9) 1886-1898. 

FINCH, T. F. 1977. Soils of Co. Westmeath, Teagasc.National Soil Survey of 
Ireland,Soil Survey Bulletin No. 33. 

FISHER, J. I., MUSTARD, J. F. & VADEBONCOEUR, M. A. 2006. Green leaf 
phenology at Landsat resolution: Scaling from the field to the satellite. 
Remote Sensing of Environment. 100 (2) 265-279. 

FITTER, A. H. & FITTER, R. S. R. 2002. Rapid Changes in Flowering Time in 
British Plants. Science. 296 (5573) 1689-1691. 

FRIEDL, M. A., HENEBRY, G. M., REED, B., HUETE, A., WHITE, M., 
MORISETTE, J., NEMANI, R., ZHANG, X. & MYNENI, R. 2010. NASA 
White Paper on Land Surface Phenology. NASA  

GCOS 2010. Implementation Plan for the Global Observing System for Climate in 
Support of the UNFCCC (2010 Update). DRAFT v1.0 ed.: World 
Meteorological Organisation, Intergovernmental Oceanographic 
Commmission, United Nations Environment Programme,International 
Council for Science. 

GEERKEN, R. A. 2009. An algorithm to classify and monitor seasonal variations in 
vegetation phenologies and their inter-annual change. Isprs Journal of 
Photogrammetry and Remote Sensing. 64 (4) 422-431. 

GENOVESE, G., VIGNOLLES, C., NEGRE, T. & PASSERA, G. 2001. A 
methodology for a combined use of normalised difference vegetation index 
and CORINE land cover data for crop yield monitoring and forecasting. A 
case study on Spain. Agronomie. 21 (1) 91-111. 

GEOEYE. 2011. GeoEye [Online]. Available: http:www.geoeye.com [Accessed 8th 
May 2011]. 



 

 

254 

 

GEOLAND2. 2011. geoland2 - Supporting the Monitoring, Protection and 
Sustainable Management of our Environment [Online]. European Union. 
Available: http://www.gmes-geoland.info/ [Accessed 22nd August, 2011]. 

GOBRON, N. 12th February 2009. RE: Query on FAPAR time series for 
Ireland.pers. comm. Type to CONNOR, B. O.Institute for Environment and 
Sustainability, Joint Research Centre 

GOBRON, N. 18th June 2010. RE: Noise in MGVI time series over Ireland.Personal 
communication Type to O' CONNOR, B. 

GOBRON, N. 25th May 2011. RE: FAPAR time series for IrelandType to O' 
CONNOR, B. 

GOBRON, N., AUSSEDAT, O., PINTY, B., TABERNER, M. & VERSTRAETE, 
M. 2004. An optimized FAPAR algorithm, Theoretical Basis Document. 3 
ed.: Institute for Environment and Sustainability, European Commission 
Joint Research Centre  

GOBRON, N., BELWARD, A., PINTY, B. & KNORR, W. 2010. Monitoring 
biosphere vegetation,2009. Geophys. Res. Lett. 37 (15) L15402. 

GOBRON, N., MÉLIN, F., PINTY, B., TABERNER, M. & VERSTRAETE, M. M. 
2003. MERIS Global Vegetation Index: Evaluation and Performance. In: 
MERIS User Workshop.Frascati, Italy  10 – 13 November  2003. ESA. 

GOBRON, N., PINTY, B., AUSSEDAT, O., CHEN, J. M., COHEN, W. B., 
FENSHOLT, R., GOND, V., HUEMMRICH, K. F., LAVERGNE, T., 
MELIN, F., PRIVETTE, J. L., SANDHOLT, I., TABERNER, M., TURNER, 
D. P., VERSTRAETE, M. M. & WIDLOWSKI, J. L. 2006a. Evaluation of 
fraction of absorbed photosynthetically active radiation products for different 
canopy radiation transfer regimes: Methodology and results using Joint 
Research Center products derived from SeaWiFS against ground-based 
estimations. Journal of Geophysical Research-Atmospheres. 111 (D13) -. 

GOBRON, N., PINTY, B., AUSSEDAT, O., TABERNER, M., FABER, O., 
MELIN, F., LAVERGNE, T., ROBUSTELLI, M. & SNOEIJ, P. 2008. 
Uncertainty estimates for the FAPAR operational products derived from 
MERIS - Impact of top-of-atmosphere radiance uncertainties and validation 
with field data. Remote Sensing of Environment. 112 (4) 1871-1883. 

GOBRON, N., PINTY, B., MELIN, F., TABERNER, M., VERSTRAETE, M. M., 
BELWARD, A., LAVERGNE, T. & WIDLOWSKI, J. L. 2005. The state of 
vegetation in Europe following the 2003 drought. International Journal of 
Remote Sensing. 26 (9) 2013-2020. 

GOBRON, N., PINTY, B., MÉLIN, F., TABERNER, M., VERSTRAETE, M. M., 
ROBUSTELLI, M. & WIDLOWSKI, J.-L. 2007. Evaluation of the 
MERIS/ENVISAT FAPAR product. Advances in Space Research. 39 (1) 
105-115. 

GOBRON, N., PINTY, B., TABERNER, M., MÉLIN, F., VERSTRAETE, M. M. & 
WIDLOWSKI, J. L. 2006b. Monitoring the photosynthetic activity of 
vegetation from remote sensing data. Advances in Space Research. 38 (10) 
2196-2202. 

GOBRON, N., PINTY, B., VERSTRAETE, M. & GOVAERTS, Y. 1999. The 
MERIS Global Vegetation Index (MGVI): description and preliminary 
application. International Journal of Remote Sensing. 20 (9) 1917-1927. 



 

 

255 

 

GOBRON, N. & VERSTRAETE, M. 2008 ECV T10: Fraction of Absorbed 
Photosynthetically Active Radiation (FAPAR). Essential Climate Variables. . 
Rome: Global Terrestrial Observing System  

GOMEZ-CHOVA, L., CAMPS-VALLS, G., CALPE-MARAVILLA, J., 
GUANTER, L. & MORENO, J. 2007. Cloud-Screening Algorithm for 
ENVISAT/MERIS Multispectral Images. Geoscience and Remote Sensing, 
IEEE Transactions on. 45 (12) 4105-4118. 

GOVAERTS, Y. M., VERSTRAETE, M. M., PINTY, B. & GOBRON, N. 1999. 
Designing optimal spectral indices: a feasibility and proof of concept study. 
International Journal of Remote Sensing. 20 (9) 1853-1873. 

GREEN, S. 27th May 2010. RE: CORINE classes Type to O' CONNOR, 
B.Teagasc,Kinsealy, Co. Dublin 

GREEN, S. 25th July 2011. RE: Growing degree daysType to O' CONNOR, B. 
GUISAN, A. & HARRELL, F. E. 2000. Ordinal Response Regression Models in 

Ecology. Journal of Vegetation Science. 11 (5) 617-626. 
GUYON, D., GUILLOT, M., VITASSE, Y., CARDOT, H., HAGOLLE, O., 

DELZON, S. & WIGNERON, J.-P. 2011. Monitoring elevation variations in 
leaf phenology of deciduous broadleaf forests from SPOT/VEGETATION 
time-series. Remote Sensing of Environment. 115 (2) 615-627. 

HELSEL, D. R. & HIRSCH, R. M. 2002. Correlation. Statistical Methods in Water 
Resources Techniques of Water Resources Investigations. U.S. Geological 
Survey  

HEUMANN, B. W., SEAQUIST, J. W., EKLUNDH, L. & JONSSON, P. 2007. 
AVHRR derived phenological change in the Sahel and Soudan, Africa, 1982-
2005. Remote Sensing of Environment. 108 (4) 385-392. 

HIRD, J. N. & MCDERMID, G. J. 2009. Noise reduction of NDVI time series: An 
empirical comparison of selected techniques. Remote Sensing of 
Environment. 113 (1) 248-258. 

HIRSCH, R. M. & SLACK, J. R. 1984. A Nonparametric Trend Test for Seasonal 
Data with Serial Dependence. Water Resources Research. 20 (6) 727-732. 

HOLBEN, B. N. 1986. Characteristics of maximum-value composite images from 
temporal AVHRR data. Int. J. Remote Sensing. 7 (11) 1417-1434. 

HOOKER, S. B., ESAIS, W., FELDMAN, G., GREGG, W. & MCCLAIN, C. 1992. 
An overview of SeaWiFS and ocean colour. NASA Technical Memo. 104566 

HOPKINS, A. D. 1918. The bioclimatic law. Monthly Weather Review. 
HUDSON DUNN, A. & DE BEURS, K. M. 2011. Land surface phenology of North 

American mountain environments using moderate resolution imaging 
spectroradiometer data. Remote Sensing of Environment. 115 (5) 1220-1233. 

HUETE, A., DIDAN, K., MIURA, T., RODRIGUEZ, E. P., GAO, X. & 
FERREIRA, L. G. 2002. Overview of the radiometric and biophysical 
performance of the MODIS vegetation indices. Remote Sensing of 
Environment. 83 (1-2) 195-213. 

HUETE, A. R. 1988. A Soil-Adjusted Vegetation Index (Savi). Remote Sensing of 
Environment. 25 (3) 295-309. 

IPCC 2007. Climate Change 2007:Synthesis Report Summary for Policymakers. 
IPG 2005. Phenological Observation Guide of the International Phenological 

Gardens. Revised version of the observation guide of 1960 ed. 



 

 

256 

 

JACKSON, J., KENT, C. & BORG, A. 2011. MERIS 99th Cyclic Report. 1st Edition 
ed. 

JOHN HOPKINS UNIVERSITY 2011. Spectrum. In: SPECTRUM.GIF (ed.). 
Baltimore, Maryland. 

JOINT RESEARCH CENTRE (JRC). 2011. FAPAR Website [Online]. Available: 
http://fapar.jrc.ec.europa.eu/WWW/Data/Pages/FAPAR_Algorithms/FAPAR
_Algorithms_Fapar.php [Accessed 23rd June, 2011]. 

JÖNSSON, A. M., EKLUNDH, L., HELLSTRÖM, M., BÄRRING, L. & 
JÖNSSON, P. 2010. Annual changes in MODIS vegetation indices of 
Swedish coniferous forests in relation to snow dynamics and tree phenology. 
Remote Sensing of Environment. 114 (11) 2719-2730. 

JÖNSSON, P. & EKLUNDH, L. 2002. Seasonality Extraction by Function Fitting to 
Time-Series of Satellite Sensor Data. IEEE Transactions on Geoscience and 
Remote Sensing. 40 (8) 1824-1832. 

JÖNSSON, P. & EKLUNDH, L. 2004. TIMESAT—a program for analyzing time-
series of satellite sensor data. Computers & Geosciences. 30 833–845. 

JULIEN, Y. & SOBRINO, J. A. 2009. Global land surface phenology trends from 
GIMMS database. International Journal of Remote Sensing. 30 (13) 3495–
3513. 

JUNG, M., VERSTRAETE, M., GOBRON, N., REICHSTEIN, M., PAPALE, D., 
BONDEAU, A., ROBUSTELLI, M. & PINTY, B. 2008. Diagnostic 
assessment of European gross primary production. Global Change Biology. 
14 (10) 2349-2364. 

JUSTICE, C. O., TOWNSHEND, J. R. G., HOLBEN, B. N. & TUCKER, C. J. 
1985. Analysis of the phenology of global vegetation using meteorological 
satellite data. International Journal of Remote Sensing. 6 (8) 1271-1318. 

KARLSEN, S. R., TOLVANEN, A., KUBIN, E., POIKOLAINEN, J., HØGDA, K. 
A., JOHANSEN, B., DANKS, F. S., ASPHOLM, P., WIELGOLASKI, F. E. 
& MAKAROVA, O. 2008. MODIS-NDVI-based mapping of the length of 
the growing season in northern Fennoscandia. International Journal of 
Applied Earth Observation and Geoinformation. 10 (3) 253-266. 

KAUTH, R.J. & THOMAS, G.S. 1976. The tasseled Cap -- A Graphic Description  
of the Spectral-Temporal Development of Agricultural Crops as Seen by 
LANDSAT. Proceedings of the Symposium on Machine Processing of Remotely 
Sensed Data, Purdue University of West Lafayette, Indiana, pp. 4B-41 to 4B-51 
KAWAMURA, K., AKIYAMA, T., YOKOTA, H.-O., TSUTSUMI, M.      
WATANABE, O. & WANG, S. 2004. Estimation model for NOAA/NDVI changes 
of meadow steppe in Inner Mongolia using meteorological data. Grassland Science. 
49 (6) 547-554. 
KAWAMURA, K., AKIYAMA, T., YOKOTA, H., TSUTSUMI, M., YASUDA, T., 

WATANABE, O. & WANG, S. 2005. Comparing MODIS vegetation indices 
with AVHRR NDVI for monitoring the forage quantity and quality in Inner 
Mongolia grassland, China. Japanese Society of Grassland Science. 51 33–
40  

KEANE, T. & COLLINS, J. F. 2004. Climate, Weather and Irish Agriculture, 
Dublin, AGMET 



 

 

257 

 

KEELING, C. D., CHIN, J. F. S. & WHORF, T. P. 1996. Increased activity of 
northern vegetation inferred from atmospheric CO2 measurements. Nature. 
382 (6587) 146-149. 

LEITH, H. 1974. Phenology and Seasonality Modeling, Chapman and Hall, London, 
and Springer-Verlag, Berlin, Heidelberg, New York 

LUPO, F., LINDERMAN, M., VANACKER, V., BARTHOLOMÉ, E. & LAMBIN, 
E. F. 2007. Categorization of land-cover change processes based on 
phenological indicators extracted from time series of vegetation index data. 
International Journal of Remote Sensing. 28 (11) 2469-2483. 

MACCHERONE, B. 2011. MODIS Home Page [Online]. NASA. Available: 
http://modis.gsfc.nasa.gov/about/ [Accessed August 2nd, 2011]. 

MAIGNAN, F., BREON, F. M., BACOUR, C., DEMARTY, J. & POIRSON, A. 
2008. Interannual vegetation phenology estimates from global AVHRR 
measurements: Comparison with in situ data and applications. Remote 
Sensing of Environment. 112 (2) 496-505. 

MASIN, R., ZUIN, M. C. & ZANIN, G. 2005. Phenological observations on shrubs 
to predict weed emergence in turf. International Journal of Biometeorology. 
50 (1) 23-32. 

MATHER, P. M. 1999. Computer processing of remotely-sensed images, an 
introduction, John Wiley & Sons. 

MATHWORKS 2009. MATLAB Help Manual. R2009a ed. Licence Number 
161051. 

MCCALLUM, I., WAGNER, W., SCHMULLIUS, C., SHVIDENKO, A., 
OBERSTEINER, M., FRITZ, S. & NILSSON, S. 2010. Comparison of four 
global FAPAR datasets over Northern Eurasia for the year 2000. Remote 
Sensing of Environment. 114 (5) 941-949. 

MENGHUA, W. & WEI, S. 2006. Cloud Masking for Ocean Color Data Processing 
in the Coastal Regions. Geoscience and Remote Sensing, IEEE Transactions 
on. 44 (11) 3196-3105. 

MENZEL, A. 2003. Plant phenological anomalies in Germany and their relation to 
air temperature and NAO. Climatic Change. 57 (3) 243-263. 

MENZEL, A. & FABIAN, P. 1999. Growing season extended in Europe. Nature. 
397 (6721) 659-659. 

MENZEL, A., SPARKS, T. H., ESTRELLA, N., KOCH, E., AASA, A., AHAS, R., 
ALM-KUBLER, K., BISSOLLI, P., BRASLAVSKA, O., BRIEDE, A., 
CHMIELEWSKI, F. M., CREPINSEK, Z., CURNEL, Y., DAHL, A., 
DEFILA, C., DONNELLY, A., FILELLA, Y., JATCZA, K., MAGE, F., 
MESTRE, A., NORDLI, O., PENUELAS, J., PIRINEN, P., REMISOVA, V., 
SCHEIFINGER, H., STRIZ, M., SUSNIK, A., VAN VLIET, A. J. H., 
WIELGOLASKI, F. E., ZACH, S. & ZUST, A. 2006. European phenological 
response to climate change matches the warming pattern. Global Change 
Biology. 12 (10) 1969-1976. 

MERIS 2006. MERIS Products Quality Status Report (MEGS7.4 and IPF 5). Paris, 
France: The MERIS Quality Working Group. 

MET ÉIREANN. 2011a. Degree Days [Online]. Glasnevin Hill, Dublin 9, Ireland 
Available: http://www.met.ie/climate/degree-day.asp [Accessed 8th July 
2011]. 



 

 

258 

 

MET ÉIREANN. 2011b. Met Éireann Monthly Weather Bulletin [Online]. Met 
Éireann,Glasnevin Hill, Dublin 9, Ireland. Available: 
http://www.met.ie/climate/monthly-weather-bulletin.asp [Accessed 9th 
March, 2011]. 

MET ÉIREANN. 2010 AAgricultural Meteorology Unit, UNITClimate Change in 
Ireland. How do we predict the future climate? [Online]. Met Éireann,. 
Available: www.met.ie [Accessed 28th January, 2011]. 

MONITORING AGRICULTURE WITH REMOTE SENSING (MARS). 2011. 
MARS Bulletins for Europe [Online]. Available: 
http://mars.jrc.ec.europa.eu/mars/About-us/AGRI4CAST/MARS-Bulletins-
for-Europe [Accessed 24th June 2011]. 

MOULIN, S., KERGOAT, L., VIOVY, N. & DEDIEU, G. 1997. Global-Scale 
Assessment of Vegetation Phenology Using NOAA/AVHRR Satellite 
Measurements. Journal of Climate. 10 (6) 1154-1170. 

NATIONAL BIODIVERSITY DATA CENTRE. 2009. Irish Phenology Network 
[Online]. National Biodiversity Data Centre. Available: 
http://phenology.biodiversityireland.ie/introduction/why-monitor-phenology/ 
[Accessed 2nd August 2011]. 

NICKESON, J. 2011. Land Product Validation Subgroup [Online]. NASA. 
Available: http://lpvs.gsfc.nasa.gov/ [Accessed 24th June 2011]. 

NIST/SEMATECH. 2011. e-Handbook of Statistical Methods:Measures of Skewness 
and Kurtosis [Online]. Available: http://www.itl.nist.gov/div898/handbook/ 
[Accessed 13th July, 2011]. 

O'CONNOR, B., DWYER, N. & CAWKWELL, F. 2008. Satellite remote sensing as 
a tool for monitoring vegetation seasonality. In: SPIE Europe Remote 
Sensing.Cardiff, Wales, United Kingdom.NEALE, C. M. U., OWE, M. & 
D'URSO, G., eds.  16th September, 2008. 

O'SULLIVAN, K. 2009. RE: Statistics and data analysis for postgraduate research 
students.Course notes.Statistical Consultancy Unit, Dept. of 
Statistics,University College Cork 

PALLÉ, E. & BUTLER, C. J. 2001. Sunshine records from Ireland: cloud factors 
and possible links to solar activity and cosmic rays. International Journal of 
Climatology. 21 (6) 709-729. 

PARMESAN, C. 2007. Influences of species, latitudes and methodologies on 
estimates of phenological response to global warming. Global Change 
Biology. 13 (9) 1860-1872. 

PEN. 2011. Phenological Eyes Network (PEN) [Online]. Available: 
http://pen.agbi.tsukuba.ac.jp/index_e.html [Accessed 14th February 2011]. 

PINTY, B., GOBRON, N., MÉLIN, F. & VERSTRAETE, M. 2002. A Time 
Composite Algorithm for FAPAR products, Theoretical Basis Document. 
EUR Report No. 20150 EN ed.: Institute for Environment and Sustainability, 
Joint Research Centre, Ispra, Italy. 

PINTY, B. & VERSTRAETE, M. M. 1992. GEMI: a non-linear index to monitor 
global vegetation from satellites Journal of Plant Ecology. 101 (1). 

PINTY, B. & VERSTRAETE, M. M. 1998. Modeling the scattering of light by 
homogeneous vegetation in optical remote sensing. Journal of the 
Atmospheric Sciences. 55 (2) 137-150. 



 

 

259 

 

PLUMMER, S. 2009. The ESA Climate Change Initiative: Description. 1st ed.: 
ESA/ESRIN. 

PROCTOR, H. & DONNELLY, A. 2009. EPA report - Phenological Gardens in 
Ireland 2009 a review of the national network. Environmental Protection 
Agency (EPA) Ireland. 

RAMOS, F. M., ROSA, R. R., NETO, C. R. & ZANANDREA, A. 2000. 
Generalized complex entropic form for gradient pattern analysis of spatio-
temporal dynamics. Physica A: Statistical Mechanics and its Applications. 
283 (1-2) 171-174. 

RAST, M. & BEZY, J. L. 1999. The ESA Medium Resolution Imaging 
Spectrometer MERIS a review of the instrument and its mission. 
International Journal of Remote Sensing. 20 (9) 1681-1702. 

REED, B. & BROWN, J. F. 2005. Trend Analysis of Time-series Phenology 
Derived from Satellite Data. Ieee Transactions on Geoscience and Remote 
Sensing. 166-168. 

REED, B., BROWN, J. F., VANDERZEE, D., T.R., L., MERCHANT, J. W. & 
OHLEN, D. O. 1994. Measuring Phenological Variability from Satellite 
Imagery. Journal of Vegetation Science. 5 (5) 703-714. 

RICHARDS, D. 3/11/2009. RE: Cloud Mask Product QueryType to O' CONNOR, 
B.User Service Helpdesk, EUMETSAT User Service, 

RICHARDSON, A. D., BRASWELL, B. H., FRIEDL, M. A., HOLLINGER, D. Y., 
OLLINGER, S. V. & JENKINS, J. P. 2011. Phenocam: Improving our 
understanding of vegetation phenology with a canopy camera network 
[Online]. Available: http://klima.sr.unh.edu/ [Accessed 14th  February, 
2011]. 

ROHAN, P. K. 1986. The Climate of Ireland, Meteorological Service, Dublin 
ROTZER, T. & CHMIELEWSKI, F. M. 2001. Phenological maps of Europe. 

Climate Research. 18 (3) 249-257. 
ROTZER, T., GROTE, R. & PRETZSCH, H. 2004. The timing of bud burst and its 

effect on tree growth. International Journal of Biometeorology. 48 (3) 109-
118. 

RUXTON, G. D. & BEAUCHAMP, G. 2008. Some suggestions about appropriate 
use of the Kruskal-Wallis test. Animal Behaviour. 76 (3) 1083-1087. 

SAKAMOTO, T., YOKOZAWA, M., TORITANI, H., SHIBAYAMA, M., 
ISHITSUKA, N. & OHNO, H. 2005. A crop phenology detection method 
using time-series MODIS data. Remote Sensing of Environment. 96 (3-4) 
366-374. 

SANTER, R., CARRÈRE, V., DESSAILLY, D., DUBUISSON, P. & ROGER, J. C. 
1997. Pixel Identification, Algorithm Theoretical Basis Document: . 
Laboratoire de Physique Appliquée aux Milieux Océaniques et Côtiers 

(PAMOC), Université du Littoral-Côte d'Opale, Wimereux, France. 
SCHROEDTER-HOMSCHEIDT, M., DREWS, A. & HEISE, S. 2008. Total water 

vapor column retrieval from MSG-SEVIRI split window measurements 
exploiting the daily cycle of land surface temperatures. Remote Sensing of 
Environment. 112 (1) 249-258. 

SCHWARTZ, M. D., AHAS, R. & AASA, A. 2006. Onset of spring starting earlier 
across the Northern Hemisphere. Global Change Biology. 12 (2) 343-351. 



 

 

260 

 

SCHWARTZ, M. D. & REITER, B. E. 2000. Changes in North American spring. 
International Journal of Climatology. 20 (8) 929-932. 

SEDAC. 2011. Remote Sensing tutorial [Online]. U.S. National Aeronautics and 
Space Administration. Available: 
http://sedac.ciesin.org/tg/guide_glue.jsp?rd=rs&ds=3 [Accessed 12th May 
2011]. 

SEIXAS, J., CARVALHAIS, N., NUNES, C. & BENALI, A. 2009. Comparative 
analysis of MODIS-FAPAR and MERIS-MGVI datasets: Potential impacts 
on ecosystem modeling. Remote Sensing of Environment. 113 (12) 2547-
2559. 

SOUDANI, K., LE MAIRE, G., DUFRENE, E., FRANCOIS, C., DELPIERRE, N., 
ULRICH, E. & CECCHINI, S. 2008. Evaluation of the onset of green-up in 
temperate deciduous broadleaf forests derived from Moderate Resolution 
Imaging Spectroradiometer (MODIS) data. Remote Sensing of Environment. 
112 (5) 2643-2655. 

SPARKS, T. H., JEFFREE, E. P. & JEFFREE, C. E. 2000. An examination of the 
relationship between flowering times and temperature at the national scale 
using long-term phenological records from the UK. International Journal of 
Biometeorology. 44 (2) 82-87. 

STÖCKLI, R. & VIDALE, P. L. 2004. European plant phenology and climate as 
seen in a 20-year AVHRR land-surface parameter dataset. International 
Journal of Remote Sensing. 25 (17) 3303 - 3330. 

STUDER, S., STÖCKLI, R., APPENZELLER, C. & VIDALE, P. 2007. A 
comparative study of satellite and ground-based phenology. International 
Journal of Biometeorology. 51 (5) 405-414. 

SWEENEY, J., ALBANITO, F., BRERETON, A., CAFFARRA, A., CHARLTON, 
R., DONNELLY, A., FEALY, R., FITZGERALD, J., HOLDEN, N., JONES, 
M. & MURPHY, C. 2008. Climate Change –Refining the Impacts for 
Ireland. STRIVE Report. Environmental Protection Agency, Ireland. 

SWEENEY, J., DONNELLY, A., MCELWAIN, A. & JONES, M. 2002. Climate 
Change: Indicators for Ireland (Final Report). In: ENVIRONMENTAL 
PROTECTION AGENCY (ed.) Environmental RTDI Programme 2000–
2006. 

THACKERAY, S. J., SPARKS, T. H., FREDERIKSEN, M., BURTHE, S., 
BACON, P. J., BELL, J. R., BOTHAM, M. S., BRERETON, T. M., 
BRIGHT, P. W., CARVALHO, L., CLUTTON-BROCK, T., DAWSON, A., 
EDWARDS, M., ELLIOTT, J. M., HARRINGTON, R., JOHNS, D., JONES, 
I. D., JONES, J. T., LEECH, D. I., ROY, D. B., SCOTT, W. A., SMITH, M., 
SMITHERS, R. J., WINFIELD, I. J. & WANLESS, S. 2010. Trophic level 
asynchrony in rates of phenological change for marine, freshwater and 
terrestrial environments. Global Change Biology. 16   (12) 3304-3313   

THAYN, J. B. & PRICE, K. P. 2008. Julian dates and introduced temporal error in 
remote sensing vegetation phenology studies. International Journal of 
Remote Sensing. 29 (20) 6045-6049. 

TORRA, V., DOMINGO-FERRER, J., MATEO-SANZ, J. M. & NG, M. 2006. 
Regression for ordinal variables without underlying continuous variables. 
Information Sciences. 176 (4) 465-474. 



 

 

261 

 

TOWNSHEND, J. R. G., GOFF, T. E. & TUCKER, C. J. 1985. Multitemporal 
Dimensionality of Images of Normalized Difference Vegetation Index at 
Continental Scales. Ieee Transactions on Geoscience and Remote Sensing. 23 
(6) 888-895. 

USA NPN. 2011. Development of the USA National Phenology Network [Online]. 
USA National Phenology Network, National Coordinating Office,1955 E. 
Sixth St., Tucson, AZ 85721. Available: 
http://www.usanpn.org/archive/history [Accessed 26th May, 2011]. 

VAN LEEUWEN, W. 2008. Monitoring the Effects of Forest Restoration 
Treatments on Post-Fire Vegetation Recovery with MODIS Multitemporal 
Data. Sensors. 8 (3) 2017-2042. 

VAN LEEUWEN, W. J. D., HUETE, A. R. & LAING, T. W. 1999. MODIS 
Vegetation Index Compositing Approach: A Prototype with AVHRR Data. 
Remote Sensing of Environment. 69 (3) 264-280.  

VAN VLIET, A. J. H., OVEREEM, A., et al. 2002. The influence of temperature 
and climate change on the timing of pollen release in the Netherlands. International 
Journal of Climatology 22 (14) 1757-1767. 
  
VEGETATION INDEX AND PHENOLOGY (VIP) RESEARCH GROUP. 2011.        

 Remote sensing based phenology and nuances [Online]. Tucson, Arizona: 
University of Arizona. Available: 
http://vip.arizona.edu/VIP_LSP_Semantics.php [Accessed 24th January ]. 

VERBESSELT, J., HYNDMAN, R., ZEILEIS, A. & CULVENOR, D. 2010. 
Phenological change detection while accounting for abrupt and gradual 
trends in satellite image time series. Remote Sensing of Environment. 114 
(12) 2970-2980. 

VERMOTE, E. F., TANRE, D., DEUZE, J. L., HERMAN, M. & MORCRETTE, J. 
J. 1997. Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: 
An overview. Ieee Transactions on Geoscience and Remote Sensing. 35 (3) 
675-686. 

VERSTRAETE, M. M., GOBRON, N., AUSSEDAT, O., ROBUSTELLI, M., 
PINTY, B., WIDLOWSKI, J.-L. & TABERNER, M. 2008. An automatic 
procedure to identify key vegetation phenology events using the JRC-
FAPAR products. Advances in Space Research. 41 (11) 1773-1783. 

VERSTRAETE, M. M. & PINTY, B. 1996. Designing optimal spectral indexes for 
remote sensing applications. Ieee Transactions on Geoscience and Remote 
Sensing. 34 (5) 1254-1265. 

WADE, T. & SOMMER, S. (eds.) 2006. A to Z GIS, Redlands, California: ESRI 
Press. 

WALSH, S. 22nd June 2010. RE: UCC/Met Éireann seasonality-climate correlation 
studyType to O' CONNOR, B. 

WALSH, S. 2nd August 2011. RE: Error in interpolated temperature gridsType to 
O' CONNOR, B. 

WARDLOW, B. D., EGBERT, S. L. & KASTENS, J. H. 2007. Analysis of time-
series MODIS 250 m vegetation index data for crop classification in the US 
Central Great Plains. Remote Sensing of Environment. 108 (3) 290-310. 



 

 

262 

 

WESSELS, K., STEENKAMP, K., VON MALTITZ, G. & ARCHIBALD, S. 2010. 
Remotely sensed vegetation phenology for describing and predicting the 
biomes of South Africa. Applied Vegetation Science. 1-19. 

WHITE, M. A., DE BEURS, K. M., DIDAN, K., INOUYE, D. W., RICHARDSON, 
A. D., JENSEN, O. P., O'KEEFE, J., ZHANG, G., NEMANI, R. R., VAN 
LEEUWEN, W. J. D., BROWN, J. F., DE WIT, A., SCHAEPMAN, M., 
LIN, X. M., DETTINGER, M., BAILEY, A. S., KIMBALL, J., 
SCHWARTZ, M. D., BALDOCCHI, D. D., LEE, J. T. & LAUENROTH, W. 
K. 2009. Intercomparison, interpretation, and assessment of spring phenology 
in North America estimated from remote sensing for 1982-2006. Global 
Change Biology. 15 (10) 2335-2359. 

WHITE, M. A., HOFFMAN, F., HARGROVE, W. W. & NEMANI, R. R. 2005. A 
global framework for monitoring phenological responses to climate change. 
Geophysical Research Letters. 32 (4) -. 

WHITE, M. A., THORNTON, P. E. & RUNNING, S. W. 1997. A continental 
phenology model for monitoring vegetation responses to interannual climatic 
variability. Global Biogeochemical Cycles. 11 (2) 217-234. 

WIELGOLASKI, F. E. 1999. Starting dates and basic temperatures in phenological 
observations of plants. International Journal of Biometeorology. 42 (3) 158-
168. 

WILLMOTT, C. 1982. Some Comments on the Evaluation of Model Performance. 
Bulletin American Meteorological Society. 63 (11). 

XIAO, J. & MOODY, A. 2005. Geographical distribution of global greening trends 
and their climatic correlates: 1982-1998. International Journal of Remote 
Sensing. 26 (11) 2371-2390. 

YANG, W., SHABANOV, N. V., HUANG, D., WANG, W., DICKINSON, R. E., 
NEMANI, R. R., KNYAZIKHIN, Y. & MYNENI, R. B. 2006. Analysis of 
leaf area index products from combination of MODIS Terra and Aqua data. 
Remote Sensing of Environment. 104 (3) 297-312. 

ZHANG, X., FRIEDL, M. A., SCHAAF, C. B., STRAHLER, A. H., HODGES, J. C. 
F., GAO, F., REED, B. C. & HUETE, A. 2003. Monitoring vegetation 
phenology using MODIS. Remote Sensing of Environment. 84 (3) 471-475. 

ZHANG, X. Y., FRIEDL, M. A., SCHAAF, C. B. & STRAHLER, A. H. 2004a. 
Climate controls on vegetation phenological patterns in northern mid- and 
high latitudes inferred from MODIS data. Global Change Biology. 10 (7) 
1133-1145. 

ZHANG, X. Y., FRIEDL, M. A., SCHAAF, C. B., STRAHLER, A. H. & 
SCHNEIDER, A. 2004b. The footprint of urban climates on vegetation 
phenology. Geophysical Research Letters. 31 (12) -. 

ZURITA-MILLA, R., CLEVERS, J. G. P. W., SCHAEPMAN, M. E. & 
KNEUBUEHLER, M. 2007. Effects of MERIS L1b radiometric calibration 
on regional land cover mapping and land products. International Journal of 
Remote Sensing. 28 (3) 653-673. 

ZURITA-MILLA, R., KAISER, G., CLEVERS, J. G. P. W., SCHNEIDER, W. & 
SCHAEPMAN, M. E. 2009. Downscaling time series of MERIS full 
resolution data to monitor vegetation seasonal dynamics. Remote Sensing of 
Environment. 113 (9) 1874-1885. 



 

 

263 

 

 



 

 

264 

 

Appendix A: Fieldwork observations and field journal 
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U
n3 

%leafout 1
0
0 

1
0
0 

1
0
0 

1
0
0 

1
0
0 

10
0 

1
0
0 

1
0
0 

1
0
0 

1
0
0 

1
0
0 

1
0
0 

1
0
0 

1
0
0 

1
0
0 

1
0
0 

10
0 

1
0
0 

1
0
0 

10
0 

10
0 

1
0
0 

10
0 

 10
0 

     10
0 

10
0 

    10
0 

10
0 

10
0 

%budburst 1
0
0 

1
0
0 

1
0
0 

1
0
0 

1
0
0 

10
0 

1
0
0 

1
0
0 

1
0
0 

1
0
0 

1
0
0 

1
0
0 

1
0
0 

1
0
0 

1
0
0 

1
0
0 

10
0 

1
0
0 

1
0
0 

10
0 

10
0 

1
0
0 

10
0 

 10
0 

     10
0 

10
0 

    10
0 

10
0 

10
0 

Be7=bi6 

 

2009 

18/2/09 Be1 Be2 Be3 Be4 Be5 Bi1 Bi2 Bi3 Bi4 Bi5 oak
1 

oak
2 

oak
3 

oak
4 

oak
5 

Syc
1 

Syc
2 

Syc
3 

Syc
4 

Syc
5 

Ash
1 

Ash
2 

Ash
3 

Ash
4 

Ash
5 

Hc
1 

Hc
2 

%Budburst d d d d d d d d d d d d d d d 50 50 d 50 d d d d d d 30 30 

d: dormant 

 

3/3/09 Be1 Be2 Be3 Be4 Be5 Bi1 Bi2 Bi3 Bi4 Bi5 oak
1 

oak
2 

oak
3 

oak
4 

oak
5 

Syc
1 

Syc
2 

Syc
3 

Syc
4 

Syc
5 

Ash
1 

Ash
2 

Ash
3 

Ash
4 

Ash
5 

Hc
1 

Hc
2 

%Budburst d d d d d d d d d d d d d d d 100 100 100 100 100 d d d d d 100 100 

% Leafout                20    20        

d: dormant 

 

 

 

 

18/3/09 Be1 Be2 Be3 Be4 Be5 Bi1 Bi2 Bi3 Bi4 Bi5 oak
1 

oak
2 

oak
3 

Syc
1 

Syc
2 

Syc
3 

Syc
4 

Syc
5 

Ash
1 

Ash
2 

Ash
3 

Ash
4 

Ash
5 

Hc
1 

Hc
2 

%Budburst d d d d d d d d d d d 50 d 100 100 100 100 100 d d d d d 100 100 

% Leafout            0  40 20 0 0 20      30 20 
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d: dormant, European Larch: 30% leaflets emerged 

24/3/09 Be1 Be2 Be3 Be4 Be5 Bi1 Bi2 Bi3 Bi4 Bi5 oak
1 

oak
2 

oak
3 

Syc
1 

Syc
2 

Syc
3 

Syc
4 

Syc
5 

Ash
1 

Ash
2 

Ash
3 

Ash
4 

Ash
5 

Hc
1 

Hc
2 

%Budburst d d d d d 50 50 70 90 100 50 100 100 100 100 100 100 100 d d d d d 100 100 

% Leafout 0 0 0 0 0 0 0 0 0 10 0 10 10 50 30 0 10 30 0 0 0 0 0 50 30 

d: dormant 

European Larch: 50% leaflets emerged 

30/3/09 Be1 Be2 Be3 Be4 Be5 Bi1 Bi2 Bi3 Bi4 Bi5 oak
1 

oak
2 

oak
3 

Syc
1 

Syc
2 

Syc
3 

Syc
4 

Syc
5 

Ash
1 

Ash
2 

Ash
3 

Ash
4 

Ash
5 

Hc
1 

Hc
2 

%Budburst 10 10 10 10 n/a 70 70 100 100 100 100 100 100 100 100 100 100 100 d d d d d 100 100 

% Leafout 0 0 0 0 0 0 0 0 0 20 0 30 20 60 40 00 20 40 0 0 0 0 0 60 40 

d: dormant 

06/4/09 Be1 Be2 Be3 Be4 Be5 Bi1 Bi2 Bi3 Bi4 Bi5 oak
1 

oak
2 

oak
3 

Syc
1 

Syc
2 

Syc
3 

Syc
4 

Syc
5 

Ash
1 

Ash
2 

Ash
3 

Ash
4 

Ash
5 

Hc
1 

Hc
2 

%Budburst 20 20 20 20 n/a 100 90 100 100 100 100 100 100 100 100 100 100 100 d d d d d 100 100 

% Leafout 0 0 0 0 0 20 10 10 10 60 20 50 60 80 40 10 50 60 0 0 0 0 0 80 60 

d: dormant 

 

 

 

 

 

14/4/09 Be1 Be2 Be3 Be4 
south 

Be5 Bi1 Bi2 Bi3 Bi4 Bi5 oak
1 

oak
2 

oak
3 

Syc
1 

Syc
2 

Syc
3 

Syc
4 

Syc
5 

Ash
1 

Ash
2 

Ash
3 

Ash
4 

Ash
5 

Hc
1 

Hc
2 

%Budburst 50 30 20 40 n/a 100 100 100 n/a 100 100 100 100 100 100 n/a 100 100 30 
* 

30 30 n/a n/a 100 100 

% Leafout 10 0 0 0 0 40 30 10  80 40 60 80 90 60  60 70 0 0 0 0 0 90 70 
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d: dormant * Ash flowering 

 

• 1st swallow 
• Ash flowering, HC flowering 
• d: dormant 

 

5/5/09 Be1 Be2 Be3 Be4 
(original) 

Be5 Bi1 Bi2 Bi3 Bi4 Bi5 oak
1 

oak
2 

oak
3 

Syc
1 

Syc
2 

Syc
3 

Syc
4 

Syc
5 

Ash
1 

Ash
2 

Ash
3 

Ash
4 

Ash
5 

Hc1 Hc2 

%Budburst 100 90 100 100 n/a 100 100 100 n/a 100 100 100 100 100 100 100 100 100 60* 100 100 n/a n/a 100* 100 

% Leafout 100 50 80 100 0 90 100 100  100 90 100 100 100 100 80 100 100 20 30 30 0 0 100 100 

 

11/5/09 Be1 Be2 Be3 Be4 
(original) 

Be5 Bi1 Bi2 Bi3 Bi4 Bi5 oak
1 

oak
2 

oak
3 

Syc
1 

Syc
2 

Syc
3 

Syc
4 

Syc
5 

Ash
1 

Ash
2 

Ash
3 

Ash
4 

Ash
5 

Hc
1 

Hc2 

%Budburst 100 100 100 100 n/a 100 100 100 n/a 100 100 100 100 100 100 100 100 100 100 
* 

100 100 n/a n/a 100 
* 

100 

% Leafout 100 100 100 100 0 100 100 100  100 100 100 100 100 100 90 100 100 30 50 50 0 0 100 10 
0 

 

 

20/4/09 Be1 Be2 Be3 Be4 
south 

Be5 Bi1 Bi2 Bi3 Bi4 Bi5 oak
1 

oak
2 

oak
3 

Syc
1 

Syc
2 

Syc
3 

Syc
4 

Syc
5 

Ash
1 

Ash
2 

Ash
3 

Ash
4 

Ash
5 

Hc
1 

Hc
2 

%Budburst 60 30 20 40(not found) n/a 100 100 100 n/a 100 100 100 100 100 100 100 100 100 30 
* 

30 30 n/a n/a 100 100 

% Leafout 20 0 0 0 0 50 40 30  90 60 80 90 90 80 30 80 90 0 0 0 0 0 100 90 

27/4/09 Be1 Be2 Be3 Be4 
(original) 

Be5 Bi1 Bi2 Bi3 Bi4 Bi5 oak1 oak2 oak3 Syc1 Syc2 Syc3 Syc4 Syc5 Ash1 Ash2 Ash3 Ash4 Ash5 Hc1 Hc2 

%Budburst 100 50 50 100 n/a 100 100 100 n/a 100 100 100 100 100 100 100 100 100 50* 50 50 n/a n/a 100* 100 

% Leafout 50 10 30 50 0 70 60 50  100 80 90 100 100 90 50 90 100 20 20 0 0 0 100 100 
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*Facing Crosshaven 

• Bb=budburst (Ash buds surrounded by feather-like flowers) 
•  n/=not checked 

2010 

4/3/10 Be1 Be2 Be3 Be4 Be5 Bi1 Bi2 Bi3 Bi4 Bi5 oak
1 

oak
2 

oak
3 

oak
4 

oak
5 

Syc
1 

Syc
2 

Syc
3 

Syc
4 

Syc
5 

Ash
1 

Ash
2 

Ash
3 

Ash
4 

Ash
5 

Hc
1 

Hc
2 

%Budburst d d d d d d d d d d d d d d d 100 100 100 100 100 d d d d d d d 

% Leafout                            

d: dormant 

• Bi beginning to show some elongation of buds but no greening 
• Be showing same effect but only at top of canopy 
• Syc has green tips on all the buds 
• HC shows thick buds but no greening 
• Ash and Oak are dormant 

25/3/10 Be1 Be2 Be3 Be4 Be5 Bi1 Bi2 Bi3 Bi4 Bi5 oak
1 

oak
2 

oak
3 

oak
4 

oak
5 

Syc
1 

Syc
2 

Syc
3 

Syc
4 

Syc
5 

Ash
1 

Ash
2 

Ash
3 

Ash
4 

Ash
5 

Hc
1 

Hc
2 

%Budburst d d d d d d d 100 100 100 d d d d d 100 100 100 100 100 d d d d d d d 

% Leafout                20    10      30 10 

d: dormant 

• Honeysuckle leafing since last week 
• Cherry blossom emerged in last few days 
• These are part of understorey greening 
• Syc is all green buds with a few inches of bud extended but only a few have leaves unfolded 
• Bi buds have green tips but no elongation or signs of leaf unfolding 
• Be tips are getting thicker 

26/5/09 

 

Be1 Be2 Be3 Be4 
 

Bi1 Bi2 Bi3 Bi4 Bi5 oak1 oak2 oak3 Syc1 Syc2 Syc3 Syc4 Syc5 Ash1 Ash2 Ash3 Hc1 Hc2 

%Budburst 100 100 100 100 100 100 100 n/a 100 100 100 100 100 100 100 100 100 100* 100 100 100* 100 

% Leafout 100 100 100 100 100 100 100  100 100 100 100 100 100 100 100 100 70 90 90 100 100 
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• Oak buds thickening 
• HC buds very thick and leaves unfolded in several buds 

8/4/10 Be1 Be2 Be3 Be4 Be5 Bi1 Bi2 Bi3 Bi4 Bi5 oak
1 

oak
2 

oak
3 

oak
4 

oak
5 

Syc
1 

Syc
2 

Syc
3 

Syc
4 

Syc
5 

Ash
1 

Ash
2 

Ash
3 

Ash
4 

Ash
5 

Hc
1 

Hc
2 

%Budburst d d d d d d 50 100 100 100 d d d d d 100 100 100 100 100 d d d d d d d 

% Leafout         10       30 40  10 20      40 20 

d: dormant 

• Cherry blossom in full bloom 
• Syc is all green buds with a few inches of bud extended and many leaves unfolded 
• Bi buds have green tips on smaller trees 
• Signs of leaf unfolding on mature trees and some still dormant 
• HC buds burst and leaves unfolded  

22/4/10 Be1 Be2 Be3 Be4 Be5 Bi1 Bi2 Bi3 Bi4 Bi5 oak
1 

oak
2 

oak
3 

oak
4 

oak
5 

Syc
1 

Syc
2 

Syc
3 

Syc
4 

Syc
5 

Ash
1 

Ash
2 

Ash
3 

Ash
4 

Ash
5 

Hc
1 

Hc2 

%Budburst   
 

 d d   100 100 100 100    d d 100 100 100 100 100 bb bb bb n/ n/ d d 

% Leafout 10 10   50* 20 30 50 20  20 30 20 n/ n/ 50 50 30 20 60      60 50 

d: dormant 

 

29/4/10 Be1 Be2 Be3 Be4 Be5 Bi1 Bi2 Bi3 Bi4 Bi5 oak
1 

oak
2 

oak
3 

oak
4 

oak
5 

Syc
1 

Syc
2 

Syc
3 

Syc
4 

Syc
5 

Ash
1 

Ash
2 

Ash
3 

Ash4 Ash5 Hc1 Hc2 

%Budburst   d d   100 100 100 100    d d 100 100 100 100 100 bb bb bb n n/ d d 

% Leafout 40 20 20 20 70* 30 50 70 50 n/a 40 40 50 n/ n/ 70 70 50 n/a 80  10 10   80 70 

d: dormant 

7/5/10 Be1 Be2 Be3 Be4 Be5 Bi1 Bi2 Bi3 Bi4 Bi5 oak
1 

oak
2 

oak
3 

oak
4 

oak
5 

Syc
1 

Syc
2 

Syc
3 

Syc
4 

Syc
5 

Ash
1 

Ash
2 

Ash
3 

Ash
4 

Ash
5 

Hc
1 

Hc
2 

%Budburst   d d   100 100 100 100    d d 100 100 100 100 100 bb bb bb n/ n/ d d 

% Leafout 60 50 50 50 80* 50 60 80 70 n/a 50 60 70 n/ n/ 90 90 70 n/a 100 10 20 30   90 80 

d: dormant 
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14/5/10 Be1 Be2 Be3 Be4 Be5 Bi1 Bi2 Bi3 Bi4 Bi5 oak
1 

oak
2 

oak
3 

oak
4 

oak
5 

Syc
1 

Syc
2 

Syc
3 

Syc
4 

Syc
5 

Ash
1 

Ash
2 

Ash
3 

Ash
4 

Ash
5 

Hc
1 

Hc
2 

%Budburst       100 100 100 100      100 100 100 100 100    n/ n/   

% Leafout 80 100 100 100 100
* 

70 80 90 90 n/a 80 70 90 n/ n/ 100 100 90 n/a 100 20 30 40   100 90 

*Facing Crosshaven 

• n/=not checked 

3/6/10 Be1 Be2 Be3 Be4 Be5 Bi1 Bi2 Bi3 Bi4 Bi5 oak
1 

oak
2 

oak
3 

oak
4 

oak
5 

Syc
1 

Syc
2 

Syc
3 

Syc
4 

Syc
5 

Ash
1 

Ash
2 

Ash
3 

Ash
4 

Ash
5 

Hc
1 

Hc
2 

%Budburst       100 100 100 100      100 100 100 100 100    n/ n/   

% Leafout 80 100 100 100 100
* 

70 80 90 90 n/a 80 70 90 n/ n/ 100 100 90 n/a 100 20 30 40   100 90 
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Field Work Journal: 

13/3/08 

Oak, no budburst. Beech and birch, no budburst observed. Ash no budburst. 

European larch identified as first deciduous conifer. 

20/3/08:(accompanied by ND) 

Undergrowth has grown along path margins. Coniferous high forest is 

continually green. Birch is budding and leafing out, the level of development 

varies according to the part of the forest and the age of the tree, it can be difficult 

to identify when catkins are absent. Beech showing no sign of budburst yet. 

Horse Chestnut has leafed out to full extent in some trees and budburst has 

occurred in all trees. Oak is budding/leafing. Sycamore is budding; leaves are 

beginning to emerge. European Larch always green. No Ash specimens taken. 

The forest in overall state of transition. A few unidentified twigs remain from 

those collected.  

27/3/08:(accompanied by ND, PW) 

Sunny, blue sky. Cold. 

Wood has undergone more greening since last week, birch has undergone 

budburst in all observed trees and some have undergone leafout. Oak, horse 

chestnut, thorny shrubs (black/white thorn) have leafed out. Beech is still 

dormant. Sycamore buds are bursting and would expect to see leaves emerging in 

coming days. Rowan has been observed this week and last week but it has yet to 

undergo budburst. Conifers remain unidentifiable except for European larch 

which is fully green except for some unhealthy trees, Scots Pine observed for the 

first time. The undergrowth (scrub) has begun to green up significantly in the 
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continuing absence of a canopy cover and would expect to see this mature in 

coming weeks. Ivy, Holly and other unidentified creepers (e.g. Scotsman’s 

Beard) are abundant. For some species, Sycamore, Birch etc., juvenile trees 

appear to bud before mature trees. Budburst and leafout occur according to the 

forcing of both water and light, both factors affect the rate of bud development. 

For example, buds nearer the ground respond to the availability of water in close 

proximity and emerge first, whereas buds higher up are more responsive to light. 

This, as well as the tree's orientation, creates a differential response in buds on 

the same tree to the competing effects of water and light, buds of the same tree 

emerge at different times.  

To Do: 

• Tag representative trees from each species (½ dozen or so) 

Birch, Beech, Oak, Sycamore, Horse Chestnut, Ash, Rowan, Thorny 

shrub, European Larch. 

• Tag individual branches on tree and count number of buds 

emerged and leaves out. 

Observations to note: 

• Orientation of tree (north facing etc.) 

• Age of tree 

• Health of tree 

• % of buds emerged 

• % of leaves fully out 

• Canopy appearance on approach to Woods (% greening) 
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Calculations: 

% of conifers/deciduous in land cover of Wood. 

2/4/08 

Sunny, intermittent clouds, mild, slight breeze. 

Progressively greener, birch has shown the most greening as has some of the 

thornier shrubs and unidentified scrub. Horse Chestnut almost 100% green. Oak 

has also greened up significantly, between 30% and 50 % for most trees. Ash 

showing no signs of budburst. Beech trees showing differential development, 

where the lower branches contain dormant buds but the upper branches are 

greening and thicker in size. Sycamore trees also display an uneven 

development, the lower branches generally are leafing out and in some places 

leaves have fully extended, before the upper branches where buds are green and 

thick. Proximity to the ground and other trees seems to be encouraging leaves to 

emerge earlier in the lower storey. Could there be a potential link with the 

emergence of leaves in nearby trees, encouraging leaves on other trees to 

emerge?  

Evergreen trees remain largely unknown and have not attempted to identify 

them. 

Activities: 

Successfully marked 30 trees with white paint. 

Birch (4) 

Unknown (3) 

Beech (6) 

Oak (6) 
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Ash (3) 

Sycamore (6) 

Horse Chestnut (2) 

Trees vary in age and position in the forest (all are either on path, road or in the 

car park area) but they were chosen for easy access and trees overgrown by 

Ivy/holly or looked anyway unhealthy were not chosen. Though individual trees 

were marked, marking branches proved more challenging as some remained 

above head height and out of access, therefore a qualitative estimate of greening 

will have to be made rather than counting individual buds and/or leaves on the 

tree. It is intended to observe these trees for the remainder of the growing season, 

once weekly;  

Take photo 

Observe qualitative estimate of leaves and/or buds emerged 

Note the scrub, undergrowth around the tree that might be greening 

Comparing observations between trees of the same species type could reveal 

variation in the timing of phenological events within one species. Contrasting the 

phenology of different species types will reveal the overall greenup pattern of the 

forest.  

9/4/08 

Cool morning, slight breeze, clear with some cloudy spells. 

Intended to note the % budburst and % leaf emergence of trees tagged last week 

and tag more trees if necessary. The forest did not show large scale change since 

last week as there was a cold spell over the weekend. Leaflets beginning to 

emerge on the oak and sycamore trees with Horse Chestnut already well leafed 
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out. Ash buds are still dormant but on some Ash trees, growth of a frond or some 

structure was evident adjacent to the buds. The birch tree is beginning to green 

up with definite budburst and some leaf emergence on certain trees. Those birch 

trees in open light (car park) are greening up quicker than those in the forest 

canopy. The beech tree has largely dormant buds in the lower canopy but the 

upper buds are greening now. There is more evidence of other life in the forest 

such as bird activity and butterflies.    

Activities: 

More photographic evidence of phenology 

Three more trees tagged 

Noted qualitative estimate of phenology  

17/4/08 

Blustery easterly winds. Dull with some sunny spells. 

Generally observed forest to be greening up significantly, approximately 60% 

green at this stage. Ash trees are largely dormant although the buds appear 

thicker and ready to emerge. The Beech tree is also dormant but some leaves 

have emerged by chance on the upper branches. The birch tree is in varying 

stages of leaf emergence with almost all trees exhibiting budburst (some 

unknown species though to be birch are still dormant).The oak tree is becoming 

steadily greener although individual trees are showing differing stages of 

development throughout the forest. This is also true for the Sycamore tree which 

is at varying stages of development depending on the location of the tree in the 

forest and the height of the branches on the tree. The Horse Chestnut trees have 

become almost completely green; the leaves are fully emerged at this stage. The 
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under storey of grass and other shrubs is very green. Lower trees and shrubs 

(hedgerows too) are greening up. Note: Poplar trees aligning the road between 

Carrigaline and roundabout and on the way to Shanbally are greening 

significantly, approx. 80% green, non-native species but very distinct colour. 

24/4/08 

Showery morning, fresh breeze, some sunshine 

Continuing on from last week, wood appears greener, especially grasses and 

shrubs along path edge and some of the canopy. Beech tree buds have finally 

come out of dormancy; they appear green and have emerged from bud. The buds 

on the upper canopy appear to be budding first before those closer to the ground. 

Some beech trees have leaves showing. The birch trees are greener in general, 

their leaves are small and resemble those of beech but birch is smaller and is 

more pointed at the end than those of the beech tree. The Oak and Sycamore 

trees are greening up at a steady rate. Although the leaves on the oak tree seem to 

emerge all at the same time, those on the sycamore are staggered, with the leaves 

closest to the ground emerging first and upper canopy leaves emerging last. The 

Horse Chestnut tree would appear fully leafed-out, however maybe the leaves 

have more leaf area yet to extend. The Ash tree is the slowest to show signs of 

greening; however some buds on the upper canopy appeared to be greening, 

other buds still dormant. The agricultural site in Crosshaven appears greener, it 

could be grass, would need to verify this. First appearance of snowdrop recorded. 

26/4/08 

First swallow sighting-Baltimore 

1/5/08 
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Warm day, southerly breeze, some clouds. 

The Wood canopy is starting to fill in and undergrowth appears to be at its 

maximum stage. The Wood is moving towards maximum greenup with most of 

the trees in leaf. Bluebells and snowdrops are abundant on path and in the 

undergrowth. The Beech tree has shown the most change since last week with 

leaf emergence on most trees. The Birch trees are steadily greening up. The 

Horse Chestnut seems to be at maximum leaf area. The Oak and Sycamore trees 

are nearing maximum leaf emergence, the oak trees is leafing out evenly while 

the Sycamore shows more of a differential development depending on the height 

of the branches. The Ash tree is largely dormant except for a few saplings which 

are green. The agricultural site is green as are hedgerows.  

7/5/08 

Warm day, mild breeze, hazy sunshine 

Temperatures have risen considerably during the week which has caused a 

marked increase in the appearance of vegetation, the difference since the last 

field outing has been the most significant yet. Both the Wood canopy and the 

undergrowth are becoming dense. The canopy may need more time to fill in 

before it is at its maximum growth. Some saplings such as Beech and Ash 

showed no leafout yet, these may be exceptions. Snowdrops/bluebells/ other 

grasses are starting to appear in abundance. All the trees have shown 

considerable growth since last week, especially the Beech tree. The Ash tree has 

finally come out of dormancy and buds are greening with leaf emergence evident 

in some trees. The agricultural site is green, probably grass. The hedgerows 

appear to be bushy. 
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14/5/08 

Very warm, cloudless, slight easterly breeze 

Temperatures consistently warm since last week which has corresponded to an 

overall greening of vegetation over all land cover types. The Wood seems to be 

in transition again from the greenup phase to the mature phase. I would estimate 

the Wood to be mature in 2-3 weeks. This week Ash is showing abundant 

leafout, in most cases tree leaves look to be about 50% emergent. Horse Chestnut 

and Sycamore would appear to be at maximum leafout. Beech is approaching its 

maximum and birch is still midway between greenup and maximum. Oak is also 

approaching the maximum. The forest under storey is thick and dense with 

shrubs (rhododendron evident and in flower). There are bluebells, snowdrops and 

other flowers and tall grasses on the path edges and forest floor. 

Note: Problem with monitoring method. The tagging of trees has not worked for 

two reasons; one is the filling in of leaves and moss over the paint which 

obscures them and the removal of these tags by people. This has created 

confusion in recording the phenology of the same tree each week. In the data 

tables, the same tree is not always recorded on a weekly basis. There is also 

human error in remembering the site of each tagged tree and consistently 

recording the same tree on a weekly basis. Either taking a GPS point at each tree 

or labelling the tree in some other way would be potential solutions. 

22/5/08 

Warm, humid, cloudy with showers 
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Initial observations would show the Wood to be in summer. The paths are filled 

in by a dense canopy and grasses along the edge are very green and bushy. The 

hedgerows are equally green. 

Snowdrops, buttercups, bluebells, rhododendron, flowers and ferns comprise the 

growth on the canopy floor. Horse chestnut trees have become heavy with leaves 

and are in flower. Sycamore trees, oak and beech trees appear to be fully green. 

The birch trees have a less dense covering of leaves but seem to be fully green. 

The ash trees are green; the younger saplings most noticeably while the older 

trees are slower to green up. 28 trees recorded. 

30/5/08 

Overcast, mist/drizzle with a light easterly breeze 

Forest canopy has thickened and parts of Wood are dark where leaves have 

blocked out incoming light. There has been little change since last week in leaf 

cover except for Ash trees whose leaves are fully extended now and some 

younger sycamore trees which were slow to leaf out. Some Horse chestnut and 

Sycamore trees appear laden with a full leaf canopy. The undergrowth is dense, 

includes daisies and dandelions. Hedgerows have shown a lateral growth, 

encroaching on the road in places.29 trees recorded, missing some Ash trees and 

Sycamore in places. 

16/10/08 

BOC, D de V, KK (school student) 

The opposite end of the growing cycle to spring greenup in autumn is known as 

brown-down where vegetation experiences decolouration and leaf fall. This 

phase begins in early autumn (e.g. September) and the effects were noticeable 
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across most tree species at the time of this visit. While all tree species exhibited 

signs of leaf decolouration, not all trees experienced leaf fall and some continued 

to maintain a green canopy with less than 5% of leaves decoloured. For example, 

the Beech trees were largely green and there were few signs of any leaves being 

shed. Birch trees exhibited a similar trend. In contrast, the Oak tree appeared to 

maintain a full canopy; however the leaves appeared dead and were largely 

yellow or brown in colour. The Ash tree had black/brown and yellow leaves and 

the percent cover was reduced. The Sycamore tree exhibited the largest decrease 

in leaf cover, many were brown, and the cover had decreased to 10 or 20%. The 

evergreen tree species such as Scots Pine, Noble Fir, European Larch and shrubs 

such as Laurel, Rhododendron, Ivy and Holly dominate the undergrowth. They 

will continue to maintain a base- level green reflectance throughout the autumn 

and winter months. 

18/2/09 

BOC and work experience student 

• Sycamore buds had emerged on approx. 50% of tree canopy  

• Horse Chestnut buds were large but not all appeared green, approx. 30% 

of canopy 

• Identified Elm tree 

• Identified Rowan tree 

• European Larch shed needles (deciduous coniferous tree) 

• Blossoming tree with white flowers noticed 
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Appendix B: METEOSAT/MERIS overpass times  

Date of comparison  

(YYYYMMDD) 

MERIS overpass 

time (UTC) 

METEOSAT CLM  

time (UTC) 

Difference  

(mm:ss) 

20060121 10:53:50 11:00 06:10 

20060122 n/a 

20060123 11:30:34 11:30 00:34 

20060124 10:58:35 11:00 01:25 

20060125 n/a 

20060126 11:36:10 11:30 06:10 

20060127 10:56:46 11:00 03:14 

20060128 n/a 

20060129 11:41:55 11:45 03:05 

20060130 n/a 

20060421 12:04:07 12:00 04:07 

20060422 n/a 

20060423 11:02:02 11:00 02:02 

20060424 n/a 

20060425 11:39:13 11:45 05:47 

20060426 11:07:58 11:15 07:02 

20060427 10:37:06 10:30 07:06 

20060428 11:44:55 11:45 00:05 

20060429 11:13:55 11:15 01:05 

20060430 n/a 

20060620 n/a 

20060621 11:47:00 11:45 02:00 

20060622 11:16 11:15 01:00 

20060623 10:43 10:45 02:00 

20060624 11:52 11:45 07:00 

20060625 11:14 11:15 01:00 

20060626 10:51 10:45 06:00 

20060627 11:59 12:00 01:00 

20060628 11:28 11:30 02:00 

20060629 11:00 11:00 00:00 

20060928 11:36 11:30 06:00 

20060929 11:05 11:00 05:00 

20060930 10:33 10:30 03:00 

20061001 11:41 11:45 04:00 

20061002 11:10 11:15 05:00 

20061003 10:38 10:45 07:00 

20061004 11:48 11:45 03:00 

20061005 11:14 11:15 01:00 
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20061006 10:45 10:45 00:00 

20061007 11:52 11:45 07:00 

20061127 11:50 11:45 05:00 

20061128 n/a 

20061129 n/a 

20061130 n/a 

20061201 11:47 11:45 02:00 

20061202 10:53 11:00 07:00 

20061203 12:02 12:00 02:00 

20061204 11:30 11:30 00:00 

20061205 11:00 11:00 00:00 

20061206 n/a 
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Appendix C: The coordinates and offset of the MERIS Level 1 (L1) radiance and MGVI pixels  

Pixel  
 

Row Column lat lon Y-diff X-diff Y sampling X  sampling Y offset X offset 

1 

L1 8 8 51.836983 -8.154828 0.005397 0.00878 0.010802 0.017484 0.49963 0.502173 

MGVI 387 157 51.831586 -8.163608 
  

0.010799 0.018182 0.499768 0.482895 

2 

L1 7 7 51.847786 -8.172311 -0.0054 -0.008703 
  

-0.49972 -0.49777 

MGVI 385 157 51.853184 -8.163608 
    

-0.49986 -0.47866 

3 

L1 6 6 51.858589 -8.189797 -0.00539 -0.008007 
  

-0.49935 -0.45796 

MGVI 384 156 51.863983 -8.18179 
    

-0.49949 -0.44038 

4 

L1 5 5 51.869389 -8.207281 -0.00539 -0.007309 
  

-0.49926 -0.41804 

MGVI 383 155 51.874782 -8.199972 
    

-0.4994 -0.40199 

5 

L1 4 4 51.880192 -8.224764 -0.00539 -0.00661 
  

-0.49889 -0.37806 

MGVI 382 154 51.885581 -8.218154 
    

-0.49889 -0.37806 

6 

L1 12 12 51.793775 -8.084889 0.005385 0.005991 
  

0.498519 0.342656 

MGVI 391 161 51.78839 -8.09088 
    

0.498657 0.329502 

7 

L1 9 9 51.826183 -8.137344 0.005396 0.008082 
  

0.499537 0.462251 

MGVI 388 158 51.820787 -8.145426 
    

0.499676 0.444506 

         
AVERAGE error -0.16652 -0.14947 
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Appendix D: MERIS Level 3 data format (hdf 4.2) 

Applying the scaling factor 

The MERIS Global Vegetation Index (MGVI) is in 8-bit integer format, the valid 

MGVI range is from 1 to 255 with 0 representing invalid values. A scaling 

factor, using a simple linear transformation, provided in the hdf metadata, 

converts the MGVI (byte) data to the FAPAR scale (float) from 0 to 1. The 

scaling factor follows the linear equation:  

cmXY +=  

Table 1: A description of the quantities used in MGVI/FAPAR conversion 

Symbol Term Value 

Y Numerical values of FAPAR Between zero and one, double floating point  

m Slope 0.003937008 

X 8-bit MGVI Range from 1 to 255 

C Intercept -0.00393701 
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Appendix E: Composite period, day of year and calendar 

dates 

Composite  Interval (days) Calendar date (non-leap year) Calendar date (leap year) 

1 1-10 Jan 1-10 January 1-10 
2 11-20 Jan11-21 January 11-21 
3 21-30 Jan 21-30 January 21-30 
4 31-40 Jan 31- Feb 9 January 31- February 9 
5 41-50 Feb10-19 February 10-19 
6 51-60 Feb 20-Mar 01 February 20-29 
7 61-70 Mar 2-11 March 1-10 
8 71-80 Mar 12-21 March 11-20 
9 81-90 Mar 22-31 March 21-30 
10 91-100 April 1-10 March 31-April 9 
11 101-110 April 11-20 April 10-19 
12 111-120 April 21-30 April 20-29 
13 121-130 May 1-10 April 30-May 9 
14 131-140 May 11-20 May 10-19 
15 141-150 May 21-30 May 20-29 
16 151-160 May 31-June 9 May 30-June 8 
17 161-170 June 10-19 June 9-18 
18 171-180 June 20-29 June 19-28 
19 181-190 June 30-July 9 June 29-July 8 
20 191-200 July 10-19 July 9-18 
21 201-210 July 20-29 July 19-28 
22 211-220 July 30-Aug 8 July 29-Aug 7 
23 221-230 Aug 9-18 Aug 8-17 
24 231-240 Aug 19-28 Aug 18-27 
25 241-250 Aug 29-Sep 7 Aug 28-Sep 6 
26 251-260 Sep 8-17 Sep 7-16 
27 261-270 Sep 18-27 Sep 17-26 
28 271-280 Sep 28-Oct 7 Sep 27-Oct 6 
29 281-290 Oct 8-17 Oct 7-16 
30 291-300 Oct 18-27 Oct 17-26 
31 301-310 Oct 28-Nov 6 Oct 27-Nov 5 
32 311-320 Nov 7-16 Nov 6-15 
33 321-330 Nov 17-26 Nov 16-25 
34 331-340 Nov 27-Dec 6 Nov 26-Dec 5 
35 341-350 Dec 7-16 Dec 6-15 
36 351-360 Dec 17-26 Dec 16-25 
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