| Title | Toward simplified oral lipid-based drug delivery using mono-/di-glycerides as single component excipients | | | |-----------------------------|--|--|--| | Authors | Ilie, Alexandra-Roxana; Griffin, Brendan T.; Vertzoni, Maria; Kuentz, Martin; Cuyckens, Filip; Wuyts, Koen; Kolakovic, Ruzica; Holm, René | | | | Publication date | 2020-11-09 | | | | Original Citation | Ilie, AR., Griffin, B. T., Vertzoni, M., Kuentz, M., Cuyckens, F., Wuyts, K., Kolakovic, R. and Holm, R. (2020) 'Toward simplified oral lipid-based drug delivery using mono-/di-glycerides as single component excipients', Drug Development and Industrial Pharmacy, (10 pp). doi: 10.1080/03639045.2020.1843475 | | | | Type of publication | Article (peer-reviewed) | | | | Link to publisher's version | https://www.tandfonline.com/doi/
full/10.1080/03639045.2020.1843475 -
10.1080/03639045.2020.1843475 | | | | Rights | © 2020 Informa UK Limited, trading as Taylor & Francis
Group. This is an Accepted Manuscript of an article
published by Taylor & Francis in Drug Development and
Industrial Pharmacy on 09 Nov 2020, available online: http://
www.tandfonline.com/10.1080/03639045.2020.1843475 | | | | Download date | 2024-04-19 21:48:47 | | | | Item downloaded from | https://hdl.handle.net/10468/10811 | | | | 1 | Towards simplified oral lipid-based drug delivery using mono-/di- | |----|--| | 2 | glycerides as single component excipients | | 3 | | | 4 | Alexandra-Roxana Ilie ^{1,2} , Brendan T. Griffin ² , Maria Vertzoni ³ , Martin Kuentz | | 5 | Filip Cuyckens ⁵ , Koen Wuyts ⁵ , Ruzica Kolakovic ¹ , René Holm ^{1,6} | | 6 | Thip Cayekens, Room Wayts, Razica Rolakovie, Rene Honn | | 7 | | | 8 | | | | | | 9 | Supporting information | | 10 | | | 11 | | | 12 | | | 13 | | | 14 | | | 15 | | | 16 | | | 17 | | | 18 | | | 19 | | | 20 | | | 21 | | | 22 | | | 23 | | | 24 | | | 25 | | The excipients used for the eight lipid-based drug delivery systems used in this study are listed in Table S 1. ## Table S 1 Name and composition of lipid excipients used for lipid-based drug delivery systems. | Excipient type | Excipient name | Composition | | | |---|----------------|--|--|--| | Long chain triglycerides (LCT) | Sesame oil | Triglycerides of fatty acids: C20 (0.8%); C18:2 (40.4%); C18:1 (45.4%); C18 (4.3%) and C16 (9.1%) [35](Rowe et al., n.d.) | | | | Medium chain mono-, di-glycerides (MCM) Capmul MCM C8 EP/NF Surfactort (S) Labrasel | | Monoglycerides (MG): 32-52%, Diglycerides (DG): 40-55%, Triglycerides (TG) 5-20% of fatty acids: C18:2 (>50%); C18:1 (10-35%); C18:0 (<6%); C16 (4-20%)* | | | | | | Triglycerides of fatty acids: C6 (2%), C8 (50-80%); C10 (20-50%); C12 (<3%), C14 (1%)* | | | | | | Monoglycerides (MG): 45-75%, Diglycerides (DG) 20-50%, Triglycerides (TG): <10% of fatty acids: C6 (<1%) C8 (>90%), C10 (<10%), C12 (<1%)* | | | | | | Mixed polyoxyglycerides of fatty acids C6 (<2%); C8 (50-80%); C10 (20-50%); C12 (< 3%); C14 (<1%)* | | | | *according to manufacturer certificate of analysis/technical data sheet | | | | | Precipitation times and XRD patterns of precipitate observed after dilution and dispersion testing of LBDDS containing celecoxib and cinnarizine are shown in Table S 2, Figure S 1 and Figure S 2, respectively. Table S 2 Time point when precipitation was observed for lipid-based drug delivery systems after dilution and dispersion in FaSSIF at 37 °C. | 37 | | |----|--| | 38 | | | 39 | | | 40 | | | 41 | | | Time (h) | Celecoxib LBDDS | Cinnarizine LBDDS | | |---------------------------------|--|---------------------------------|--| | 0.25 | LCM+MCT+S
MCM+S
MCM+LCT+S
MCM+MCT+S | MCM+S
MCM+LCT+S
MCM+MCT+S | | | 1 - 2 LCM+S
LCM+LCT+S
MCM | | MCM | | | 4 - 24 | LCM (pp at 4H) | | | Precipitate formed after dilution and dispersion of 85% saturated LBDDS was analysed with XRPD and diffractograms for celecoxib and cinnarizine are shown in Figure S 1 and Figure S 2 respectively. Presence of low intensity peaks are a result of limited available solid material. Absence of enough precipitate material after dispersion of celecoxib LCM system is a consequence of lack of diffractogram in Figure S 1. Figure S 1 Overlay of XRD diffractograms for precipitate observed after dilution and dispersion of celecoxib-loaded LBDDS in FaSSIF and crystalline celecoxib. Figure S 2 Overlay of XRD diffractograms for precipitate observed after dilution and dispersion of cinnarizine-loaded LBDDS in FaSSIF and crystalline cinnarizine. - The area under the concentration-time curve of drug concentration in the aqueous phase - of the dispersion medium after dispersion of LBDDS in FaSSIF is presented in Table S 3. - Table S 3 Area under the concentration-time curve after in vitro testing of LBDDS dispersion - 60 in FaSSIF and drug quantification in aqueous environment. | - | 1 | |-----|---| | h | | | () | | | | | 59 | | Celecoxib | Cinnarizine | JNJ-2A | |-----------|-------------------|------------------|-------------------| | LCM | 366.4 ± 20.1 | 882 ± 129 | 1203.3 ± 37.6 | | MCM | 609 ± 331 | 83.8 ± 18.6 | 252.4 ± 38.9 | | LCM+S | 943 ± 227 | 855 ± 111 | 3400 ± 379 | | MCM+S | 101.0 ± 20.0 | 198.2 ± 33.0 | 1480 ± 134 | | LCM+LCT+S | 1144.7 ± 60.4 | 947.2 ± 64.4 | n.a. | | MCM+MCT+S | 1164 ± 209 | 1645 ± 230 | 1965 ± 292 | | LCM+MCT+S | 1328.8 ± 32.3 | 1627 ± 103 | n.a. | | MCM+LCT+S | 958.4 ± 94.7 | 745.1 ± 32.9 | n.a. |