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Abstract  
Treating diseases of the central nervous system (CNS) is complicated by the presence of the blood-brain 

barrier (BBB), a semipermeable boundary layer protecting the CNS from toxins and homeostatic disruptions. 

However, this layer also excludes almost 100% of therapeutics, impeding the treatment of CNS diseases. The 

advent of nanoparticles, in particular metallic-based nanoparticles, presents the potential to overcome this 

barrier and transport drugs into the CNS. Recent interest in metallic-based nanoparticles has generated an 

immense array of information pertaining to nanoparticles of different materials, varying sizes, morphologies, 

and surface properties. Nanoparticles with different physico-chemical properties lead to distinct 

nanoparticle-host interactions; yet, comprehensive characterization is often not completed. Similarly, in vivo 

testing has involved a mixed evaluation of parameters, including: BBB permeability, integrity, 

biodistribution, and toxicity. The methods applied to assess these parameters are inconsistent; this 

complicates the comparison of different nanoparticle-host system responses. A systematic review was 

conducted to investigate the methods by which metallic-based nanoparticles are characterized and assessed 

in vivo. The introduction of a standardized approach to nanoparticle characterization and in vivo testing is 

crucial if research is to transition to a clinical setting. The approach suggested, herein, is based on equipment 

and techniques that are accessible and informative to facilitate the routine incorporation of this standardized, 

informative approach into different research settings. Thorough characterization could lead to improved 

interpretation of in vivo responses which could clarify nanoparticle properties that result in favorable in vivo 

outcomes whilst exposing nanoparticle-specific weaknesses. Only then will researchers successfully identify 

nanoparticles capable of delivering life-saving therapeutics across the blood-brain barrier. 

Keywords: Drug delivery, Central nervous system, Blood-brain barrier, 

Nanomedicine, Metallic-based nanoparticles, Standardization 
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1 Introduction 
As life expectancies continue to rise throughout the world, there is a steady increase in the number of 

diagnosed cases of brain disorders such as brain tumors, Alzheimer’s disease, Parkinson’s disease and 

Huntington’s disease [1-4]. While drugs exist that appear to show potential to treat these neurological 

disorders during experimental testing, few demonstrate clinical therapeutic success [1, 5, 6]. Only ~8.2% of 

self-originated drugs for the central nervous system (CNS) successfully transition from phase I clinical trials 

to clinical approval [7]. The vast majority of these drugs are unsuccessful in progressing through phase II 

and III clinical trials, where failure is usually the result of drug inefficacy [7]. The ability to deliver drugs to 

their site of action in the CNS, at clinically significant doses, remains the greatest barrier to effective 

treatment [1, 5, 6, 8]. 

The limited penetration of drugs into the CNS is primarily attributed to the highly impermeable nature of the 

brain’s microvascular system [5]. The vessel walls, known as the blood-brain barrier (BBB), consist of a 

layer of endothelial cells, connected by tight junctions [8, 9] which display increased restrictive properties 

compared to blood vessels throughout the rest of the body [10, 11]. The primary function of the BBB is to 

restrict paracellular transport into the CNS [11, 12] with diffusion limited to small, lipophilic molecules [8, 

13] and metabolite transport typically confined to transcellular movement through the endothelial cells [8]. 

In this way, the BBB prevents the passage of many harmful substances, such as toxins and pathogens, into 

the CNS [9, 14, 15]. We refer the reader to Cardoso et al. (2010) for further information regarding the 

composition and maintenance of the BBB [16]. However, this barrier poses a significant problem for the 

treatment of CNS diseases [17] as it also prevents the transport of therapeutics from the systemic circulation 

to the brain [8, 18]. Almost 100% of large molecule drugs and ~98% of small molecule drugs cannot reach 

therapeutic levels within the brain [1, 17, 19]. Additionally, endothelial cells possess transport proteins that 

actively remove many cytotoxic drugs and antibiotics from the brain [12], severely limiting treatment 

strategies. Again, we refer the reader to Patel et al. (2009) and Chen et al. (2012) for in-depth reviews of 

BBB transport routes and strategies that can be employed by new drug delivery technologies to enhance 

delivery across the BBB [20, 21]. 

Studies now primarily focus on approaches that can be employed to transport therapeutics into the brain. One 

method involves intentional, temporary breakdown of the BBB via ultrasound [14, 20, 22, 23], inflammatory 

mediators [11], vasoactive substances [20, 22], alkylglycerols [20], or osmotic disruption [11, 20, 23]. 

Unfortunately, these methods can lead to later complications [23] such as the penetration of toxins or 

pathogens into the CNS, edema formation, or disruption to homeostasis [11]. The natural loss of BBB 

integrity is also exploited in certain brain tumors, known as the “enhanced permeability and retention effect” 

[23-26]. Malignant astrocytic gliomas such as glioblastoma, the most common and deadly brain tumor [27], 

experience loss of BBB integrity at the tumor-BBB interfaces [28, 29] resulting in “leaky” vasculature. This 

increased permeability could be utilized in treatment strategies, where drugs normally excluded from the 

brain may now penetrate the compromised BBB [30]. However, this is not an ideal strategy; leaky 

vasculature is seen primarily in later stages of glioma development [23, 31] or at the tumor core [32] while 

the BBB remains largely intact at the tumor periphery or adjacent to invading cells [32, 33]. Recently, it has 

been shown that the use of nanoparticles (NPs) could provide an effective but less invasive approach [34, 

35]. Metallic-based NPs, in particular, show promise for drug delivery. Over the last decade there have been 

a great deal of papers detailing sophisticated shape and size controlled synthesis of metallic-based 

nanoparticles [36-39]. Inherent valancies enable loading with drugs to treat neurological disorders and 

functionalization with ligands to enhance delivery across the BBB [8, 14]. Although these nanocarriers 

appear promising, further work is still needed to improve drug delivery efficiency and to address the non-

degradative properties [40] which can lead to toxicity and subsequent failure in clinical trials. The future of 

nanocarrier-based therapy depends on our ability to quantitatively compare the interaction of these diverse 

and complex NPs with the BBB.  

Currently, NPs in use are frequently poorly or inconsistently characterized [41] and there are no universally 

accepted guidelines for the in vivo testing of NPs [42]. Thus, difficulties arise in comparing the performance 

of the vast array of synthesized NP and assessing the suitability for clinical applications in CNS drug 

delivery [43] due to the diverse range of approaches currently utilized to characterize NP properties and 

analyze in vivo effects. This results in the generation of apparently contrasting results from different research 

groups, that makes interpreting NP related data difficult [42]. This review attempts to compare and contrast 

the current techniques employed during NP characterization and in vivo testing. It aims to determine if there 
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is the potential to introduce a universal and standardized approach to test prospective NP for future clinical 

applications, using widely accessible instruments and techniques. The use of a standardized approach to 

characterize and test NPs in vivo will facilitate the creation of profiles for novel NPs. Such profiles could be 

accessed by researchers and the pharmaceutical industry to select NPs, of precise properties, that are best 

suited to specific CNS applications, based on the reported in vivo effects. Such standardization could lead to 

the discovery of NPs with the potential to carry live-saving therapeutics into the CNS.  

2 Review Methodology 
The papers reviewed herein were selected according to the PRISMA systematic review process [44]. Papers 

were found using three databases: Scopus, Academic Search Complete and Web of Science. The search was 

last conducted in July 2018 using the search strings detailed below. 

 Scopus search string:  

o (( TITLE-ABS-KEY ( "blood-brain barrier"  OR  "blood brain barrier"  OR  b-bb  OR  bbb )  

AND  TITLE-ABS-KEY ( permeability  OR  transmigration  OR  transcytosis   OR  "drug 

delivery"    )  AND  TITLE-ABS-KEY ( nano* ) )   AND  ( DOCTYPE ( ar ) )  AND  ( 

PUBYEAR  <  2018 ) AND  ( LIMIT-TO ( LANGUAGE ,  "English" ) ) 

 Academic Search Complete search string: 

o ( "blood brain barrier" OR "blood brain barrier" OR b-bb OR bbb ) AND ( permeability OR 

transmigration OR transcytosis OR "drug delivery" ) AND nano*  

o Search was completed using the default search fields which searched Article Title, the 

Abstract, the Subject Headings and Keywords. Search was limited to articles, in English, 

published before December 2017. 

 Web of Science search string: 

o TOPIC: ("blood-brain barrier" OR "blood brain barrier" OR bbb OR b-bb) AND TOPIC: 

(permeability OR transmigration OR transcytosis OR "drug delivery") AND TOPIC: 

(nano*) 

o Search was refined by DOCUMENT TYPES: ( ARTICLE ) AND LANGUAGES: ( 

ENGLISH ) TIMESPAN: 1945-2017. 

Studies were then screened and excluded if the inclusion criteria of the paper were not satisfied. Only 

original experimental research was included. Papers were excluded if the paper did not specifically 

investigate NPs that cross the BBB (e.g. papers concerned with intravascular delivery or intranasal delivery 

were excluded). Further, papers were excluded if the research did not concern metallic-based nanomaterials 

or if in vivo testing was not conducted. Finally, papers were not included if the method of delivery across the 

BBB involved intentional disruption to the BBB. Figure 1 contains a summary of the papers identified and 

excluded during the systematic review.  

3 Nanoparticles as carriers for drug delivery 
NPs are materials smaller than 100 nm in at least one dimension [45, 46]. At the macroscale most materials 

are inert, however when the same materials are assessed at the nanoscale there is an addition of extraordinary 

physico-chemical properties [46, 47]. NPs can be processed in a variety of element types [48], shapes, and 

sizes for application in a range of products and processes that benefit from the novel physical, thermal, 

optical, and biological properties [49]. Due to their potential for high stability, high drug loading capabilities, 

and controllable drug release rates many NPs are currently being considered in an effort to overcome the 

BBB and deliver drugs into the CNS through drug attachment or encapsulation [6, 17]. 

Despite the ability to cross the BBB, drug delivery facilitated by NPs can face additional challenges. 

Uncoated polymeric NPs are often identified and degraded by macrophages in circulation, leading to a 

reduced circulation time and, hence, decreased delivery to the brain [17, 45]. Similarly, lipophilic NPs 

display excellent biocompatibility and biodegradation but the hydrophobicity results in high clearance from 

the body by the reticuloendothelial system [50]. Traditionally, polymeric and liposomal NPs were 

investigated for drug delivery [51]. However, in the last 5 years, there has been a shift in interest towards 

different materials for drug delivery [51]. Amongst the materials being investigated are metallic-based NPs 

[51].  
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Metallic-based NPs, in contrast to polymeric and liposomal NPs, reportedly tend to be non-degradable and 

minimal clearance via the reticuloendothelial system is reported [40, 45]. This maximizes time in circulation, 

delaying blood elimination, and hence improving the chances of BBB penetration [52]. Additionally, a 

primary advantage of metallic-based nanoparticles is the highly sophisticated and controllable synthesis 

methods being developed [36-39]. These results in materials that can be synthesized to relatively small sizes 

(sub 10 nm) compared to polymeric NPs which reportedly tend to be in the >100 nm range [53, 54]. As it is 

well established that only very small molecules are capable of crossing the BBB, the ability to produce NPs 

in the size range of metallic-based NPs could enhance delivery across the BBB. Further, the multivalancies 

of metallic-based NPs allow functionalization with multiple ligands for specific tissue or cell targeting, 

facilitating transport across the BBB [8], in addition to loading with drugs [14]. Moreover, metallic-based 

materials, such as copper, iron and zinc, are considered to be ‘essential metals’, required for physiological 

biochemical processes and thus are typically considered non-toxic [55]. However, it is important to note that 

imbalances to homeostatic levels can lead to toxic effects [55] and so safety of ‘essential’ metals for 

application as NPs should not be assumed and must be carefully evaluated for specific clinical applications. 

As well as the potential to improve biocompatibility, NPs which have magnetic properties, such as iron 

based materials, can be used in diagnostics as contrast agents for magnetic resonance imaging (MRI) [52, 

56]. While, NPs made from high atomic number metals, such as gold, can be used in x-ray based 

radiotherapy and imaging techniques due to their tendency to absorb x-rays [57]. Such NPs are being 

investigated for ‘theranostic’ applications, whereby NPs can act as drug carriers and imaging contrast agents 

to diagnose and monitor disease progression [56, 58-60]. This takes advantage of the natural properties of the 

material, without the need for further functionalisation to achieve theranostic properties, as would be the case 

with other nanomaterials. Future efforts in NP design should aim to combine delivery and diagnostic 

properties. There have been attempts to combine a number of materials in a single NP delivery system [14, 

61-69] to harness the properties of both materials and improve NP efficacy. Work in mixed systems is likely 

to continue in coming years with the advancement of NP synthesis and improvement to CNS delivery.  

However, to further advance this field and properly understand how NP design impacts CNS delivery and 

biocompatibility, it is important that NPs are fully and consistently characterized. Differences in the reported 

in vivo effects of apparently similar NPs can be found in literature. Different research groups characterize 

and report different NP properties and the methods applied for characterization also vary. This can lead to 

NPs, with seemingly similar properties, eliciting different in vivo responses including permeation across the 

BBB, toxicity and cell damage, or biodistribution. Without thorough and consistent characterization of NPs, 

elucidation of the relationship between NP characteristics and host-system responses is likely to continue to 

evade researchers.  

3.1 Dispersion medium 
Prior to beginning characterization, the NP dispersion medium should be considered. NP physico-chemical 

and morphological properties are dependent on the media in which they are dispersed [70, 71]. For example, 

the apparent dimensions of NPs change following administration in vivo [9]. Here, liquid properties differ 

from those of dispersion medium in which they were characterized [9]. After administration, plasma proteins 

may associate with the NPs, forming a new surface named the ‘protein corona’ [72, 73]. Both synthetic and 

acquired proteins/peptides on the surface of the NP effect the biodistribution, targeting efficacy, aggregation 

and toxicity of NPs. Analysis of NPs with regards to the proteins they associate with in vivo may be 

necessary for the prediction of NP-host system interactions [73]. Both protein/protein and 

protein/nanomaterial interactions will determine some of the behavior of NPs in vivo [73, 74]. To account for 

this complexity, characterization in physiologically relevant solutions [70] should be utilized to understand 

the surface composition of NPs ex vivo. In this way, anticipated in vivo NP characteristics can be linked to 

specific in vivo responses. NPs may then be designed, aiming to either suppress protein adsorption to reduce 

off-target cell uptake, or promote controlled interaction with specific proteins to increase targeting 

efficiency. 

However, some researchers report that dispersing NPs in solutions that mimic physiological salt 

concentrations and pH results in the formation of coarse agglomerates [70] and that the application of these 

agglomerated solutions for studies can lead to results that are not representative of physiological responses 

[70, 75]. Hence, some research advocates characterization in deionized or distilled water to ensure consistent 

measurements [76].  
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What is clear is that differences in medium used for dispersion during characterization can impact the 

properties quoted in the paper. For example, the zeta potential of hydrophilic, functionalized iron oxide NPs 

characterized between pH 3.0-10.0 showed a change in zeta potential from 40 mV to approximately -30 mV 

[77]. Of the literature reviewed herein, a diverse range of dispersion media have been used (outlined in Table 

S1 in the supplementary file). Additionally, 41.3% of papers reviewed did not specify the dispersion medium 

used, to the best of the authors’ knowledge. Thus, the potential for comparing different NP properties is 

limited. Hence, standardization of a universally applied dispersion medium could facilitate clarification of 

the similarities and/or differences in the characteristics of distinct NPs.  

3.2 Traditional methods of nanoparticle characterization 
NP properties are a determining factor for suitability as CNS drug delivery systems [4, 43]. Therefore, there 

are a number of NP properties that researchers should endeavor to routinely explore during characterization. 

For example, NP size can affect the absorption, distribution and excretion of NPs [75] and shape can effect 

distribution and cellular uptake [4]. While, surface charge can have a significant effect on degree of 

agglomeration, hydrodynamic size, cellular uptake and translocation [75].  

Transmission electron microscopy (TEM) is a commonly employed, high-resolution technique used in the 

characterization of all types of NPs, including metallic-based NPs. Samples for TEM are typically prepared 

by adding a drop of the dilute NP solution to a carbon-coated copper grid and allowing evaporation of the 

solvent. TEM generated image can be used to assess core size [1, 2, 8, 9, 12, 14, 23, 24, 32, 41, 42, 61, 62, 

64, 66, 68, 77-122], dispersal [1, 9, 14, 32, 42, 64, 66, 77-80, 82-84, 88, 89, 91-96, 98, 100, 104, 106, 107, 

115, 116, 119, 120, 122-124], morphology [9, 32, 41, 42, 61, 66, 68, 79-82, 84, 87, 88, 90, 95, 97-100, 102, 

104, 105, 108, 110-132], and agglomeration/aggregation [32, 80, 90, 94, 101, 107, 108, 113, 115, 125, 126, 

131-133].  

Similarly, DLS is another common NP characterization technique that can be applied to measure zeta 

potential. For nano-sized materials there is no direct method to analyze the surface charge. Instead, zeta 

potential is calculated [76, 134]. This is a measure of the electrical potential of the double layer formed at the 

surface of a NP based on its interaction with the solution in which it is dispersed [76]. It can be utilized as an 

indication of NP stability in solution [135]. It is most commonly measured by dynamic light scattering (DLS) 

using laser Doppler velocimetry [1, 18, 23, 26, 32, 41, 42, 64, 66, 77, 78, 80, 82-89, 91, 93-95, 97-99, 101, 

102, 104, 108-110, 114, 115, 117-119, 122, 126-129, 131, 133, 136-140]. DLS also has the capacity to assess 

the hydrodynamic size [1, 12, 14, 18, 24, 26, 32, 41, 42, 68, 71, 77, 78, 80, 82-84, 87-89, 91-93, 99, 101, 

102, 104, 107-110, 114, 115, 117-120, 122, 127, 129, 130, 133, 136-143], size distribution profile [1, 2, 92, 

99, 101, 102, 107, 108, 117, 118, 124, 126, 128, 129, 131, 132, 143], and polydispersity index [1, 24, 26, 71, 

77, 78, 87, 88, 92, 99, 101, 104, 107, 110, 115, 124, 129, 140, 142] of NPs.  

TEM and DLS are standard, well-established techniques used to analyze all types of NPs. Despite this, these 

techniques are not being thoroughly applied for the characterization of metallic-based NPs for CNS 

applications (see Table S2 in the supplementary file for a list of papers that characterized NPs using TEM 

and DLS and the properties that were examined). The properties analyzed by TEM and DLS are known to 

impact NP-host system interactions and, hence, the efficacy and biocompatibility of NPs. Although most 

papers reviewed conducted some form of characterization using these techniques, none of the papers 

reviewed analyzed all of the above parameter parameters, to the best of the author’s knowledge. A 

breakdown of the frequency with which the aforementioned properties were investigated can be seen in 

Figure 2.  

However, NP phase is particularly important in situations where more than one phase occurs, such as in the 

case of iron oxide NPs. X-ray diffraction (XRD) can be used to analyze NP crystal structure/phase [61, 62, 

66, 69, 80, 87-89, 94, 96, 98, 101, 113, 118, 120, 122, 125, 126, 144-146], as well as purity [61, 80, 96, 101, 

102, 113, 120], surface coating [81, 93], or size [94]. Selected-area electron diffraction (SAED) can also be 

used to investigate crystallinity [94]. Use of a surface area analyzer (SAA) to analyze the NP surface could 

also be considered. SAAs can obtain the N2 adsorption-desorption isotherms, providing information 

regarding the surface properties of the NPs [42, 78, 87, 98, 102, 118, 120, 126, 131, 144, 145]. 

In addition to these techniques, a number of other characterization methods can be employed to supplement 

the information gained from TEM and DLS. Methods such as ultraviolet-visible spectroscopy (UV-vis), 

fluorescent spectroscopy, x-ray fluorescence, inductively coupled plasma optical emission spectroscopy 
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(ICP-OES), inductively-coupled plasma mass spectrometry (ICP-MS), Infrared spectroscopy (IR), Fourier 

Transform Infrared spectroscopy (FTIR), x-ray photoelectron spectroscopy (XPS), electron diffraction (ED), 

energy dispersive x-ray spectroscopy (EDX), electron energy loss spectroscopy (EELS), Raman 

spectroscopy [88], and neutron activation analysis (NAA) can also be employed. These techniques are 

primarily concerned with analyzing parameters such as NP solution concentration [1, 8, 9, 26, 41, 68, 80, 85, 

103, 107, 124, 133, 137], agglomeration [9, 101, 106], stability [96], purity [94, 101, 110, 118, 120], phase 

ratio [101, 102], composition [61, 64, 87, 88, 94, 145], and/or structure [32, 62, 66, 89, 101, 122, 131]. 

While these techniques provide useful information regarding NP solutions, they do not usually provide direct 

information pertaining to the NP material properties. Therefore, it is less critical for these approaches to be 

streamlined in future research. Similarly, numerous techniques can be applied to assess ligand binding; 

however, this review focuses on characterization of the properties of the NP core, which can directly impact 

NP-host system interfaces and BBB interactions. The methods used to monitor and evaluate NP conjugation 

generally vary depending on the properties of the ligands or drugs themselves. [96] 

3.3 Alternative and additional approaches to nanoparticle characterization 
In addition to the commonly employed techniques, there are a number of alternative and novel 

characterization techniques that have not been utilized considerably. Scanning electron microscopy (SEM) 

[42, 62, 69, 98, 127, 131, 145], scanning transmission electron microscopy (STEM) [26], or STEM in 

conjunction with high angle annular darkfield detection [9] have also been applied to assess particle size 

distribution [9, 26, 98, 127, 131, 145], NP aspect ratio [26, 127], aggregation [125], and morphology [26, 42, 

62, 69, 98, 120] as an alternative to TEM. Atomic force microscopy (AFM) can also be used as an alternative 

to TEM to analyze NP size [83, 101, 145] and morphology [101], as well as phase differences [101].  

Nanoparticle tracking analysis (NTA) has been employed to determine NP size and dispersal [136] or the 

number of NPs in solution as a measure of NP concentration [41]. This concentration is then expressed as 

NP/mL rather than the traditional g/mL, whereby 1 g of NP could contain different numbers of NPs for NPs 

of different sizes [41]. However, this method is not suitable for very small NPs (e.g. 20 nm particles) [41, 

136]. 

Another alternative to TEM, for application in estimating agglomeration in vivo, is gel electrophoresis. 

Guerrero et al. (2010) estimated the physiological aggregation of NPs in blood by suspending them in 

plasma [115]. Gel electrophoresis was then applied to analyze the electrophoretic mobility of the NPs 

following interaction with the plasma proteins [115]. 

In the case of magnetic metallic-based NPs, magnetic characterization can be performed using a 

magnetometer [69, 77, 84, 85, 92, 100]. This can also be applied to examine the aggregation of magnetic 

NPs [85]. Further, the suitability of magnetic NPs for use as MRI contrast agents can be indicated by 

evaluating relaxation rates under a magnetic field using nuclear magnetic resonance (NMR) spectroscopy 

[77, 91] or an MRI [80]. Metallic-based NPs such as iron, iron oxide, cobalt, or nickel [147] are particularly 

suited for use as MRI contrast agents. However, other NPs can be doped with these metals for tailored NP 

applications [147]. Understanding the magnetic properties of these NPs will be critical in determining their 

suitability as contrast agents for CNS theranostic applications. 

Another technique that can be used to characterize the magnetic properties and dynamics of metallic-based 

NPs is electron magnetic resonance (EMS), also known as electron spin resonance (ESR) [46]. This 

technique can be used to examine the superparamagnetic properties of NP dispersions [46]. It has been found 

that the magnetic behavior of materials is closely related to size; as size increases EMR signals become less 

intense [148], further signifying the interesting physico-chemical properties associated with nano-scale 

materials.  

There are several advanced characterization techniques for nano-scale materials, which are not yet 

commonly used or widely available, but have the potential to strengthen the ability to tailor the physical 

dimensions of metallic-based NPs for use in drug delivery in future research. Standard TEM imaging enables 

the structural characterization of NPs post-synthesis, however liquid cell transmission electron microscopy 

(LCTEM) will allow for in situ imaging of NP formation during the synthesis procedure [149]. With 

nanofabricated liquid cells, it will be possible to image through liquids using TEM with sub-nanometer 

resolution [150]. Reports on topics investigated with LCTEM include in situ NP growth and assembly, 
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manipulation of NPs and in situ lithiation of electrode materials for lithium-ion batteries [151-153]. This 

technique enables researchers to monitor the NP crystallization process in real time [154]. Techniques such 

as this can have important implications for real-time feedback for the development of NP synthesis processes 

that produce NPs with characteristics suitable for CNS drug delivery. 

Further expansions of this technique include the development of liquid flow transmission electron 

microscopy, whereby the TEM has been coupled with a microfluidic cell that will allow the dynamic flow of 

NPs through a hydrated environment during imaging [155]. The use of this technique combined with 3D, 

microfluidic cell culture models of the BBB [156-159] could provide an opportunity to characterize the real 

time response of NPs to physiologically relevant environment in vitro. This could offer an alternative to the 

need to conduct TEM in physiologically relevant solutions (as discussed in section 3.1) with the further 

advantage of providing information relating to the interaction of NPs with cells, mechanisms of cellular 

uptake, and permeation. Researchers could then determine the feasibility of continuing further research to in 

vivo models for clinical use.  

Additionally, characterization techniques such as in situ XRD, when coupled with a heating stage, allow for 

real-time monitoring of the crystal structure of NPs during the synthesis process and can reveal the influence 

of heating temperature on the phase and size of the NPs being prepared [160]. The application of advanced 

structural characterization techniques, such as these, will be a crucial step in the realization of metallic-based 

NPs with dimensions and morphologies which are “made-to-order” for use in CNS drug delivery 

applications. 

Another in situ technique combines in situ X-ray absorption near edge structure (XANES) and small-angle 

X-ray scattering (SAXS). Alone, XANES is used to characterize the structure and electronic properties of 

NPs [161]. This can include oxidation state, structural symmetry, and relative atomic geometries [161]. 

Meanwhile, SAXS is a technique commonly employed for structural information of biomolecules and NPs in 

addition to monitoring dynamic conformational changes [162] and to analyze size distribution, shape and 

polydispersity index of nanomaterials [163]. It is advantageous in so far as it is capable of analyzing 

materials in physiological solutions, but it lacks high resolution [162]. However, when the individual 

techniques are combined, it is possible to generate time-resolved, in situ, data on the formation of metallic-

based NPs that was previously not accessible with conventional techniques for NP formation [164, 165]. 

Polte et al. (2010) give a fresh and in-depth insight on the mechanism of gold NP formation derived from 

coupled in situ XANES and SAXS evaluation [163].  

3.4 Recommendation 
TEM and DLS are widely used and standard instruments for the assessment of many different types of NPs, 

including, but not limited to, metallic-based NPs. Together these techniques provide critical information 

concerning NP characteristics including core size, hydrodynamic size, size distribution profile, dispersal, 

morphology, zeta potential, agglomeration and polydispersity index. Variations in any one of these 

properties could impact the interaction of the NPs with the host system and should be thoroughly 

investigated prior to in vivo experiments. NPs are not routinely fully characterized in a consistently manner 

[41]. Therefore, it is the recommendation of this review that both TEM and DLS should be applied to 

measure all of the aforementioned NP properties. It is not sufficient to analyze only a subset of these 

parameters as each parameter has a unique impact of the host system response and will vary between NPs. 

Techniques such as XRD should also be considered in situations where the NP may be synthesized in 

different phases, such as iron oxide.  

Additionally, researchers should endeavor to investigate TEM and DLS properties in both deionized water 

and a physiologically relevant solution such as serum, similar to the testing conducted by Zhang et al. (2012) 

[71]. This will allow researchers to anticipate NP properties that can be expected in vivo and enable them to 

better understand how NP properties change in a physiological environment, and hence, how these changes 

might impact the host system response. These techniques should be applied, at a minimum, to characterize 

all NPs prior to in vivo testing. Figure 3 contains a summary of the recommended, minimum NP 

characterization.  

For theranostic applications, an understanding of the magnetic properties of NPs should be considered. 

Techniques such as EMS or NMR can provide important information relating to magnetic properties to 

assess NP suitability as an MRI contrast agent for CNS disorders.  
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Supplementary to this, in the future researchers could begin to utilize novel techniques, such as LCTEM, for 

real-time in situ investigations of the NP synthesis process. Such in-line characterization steps can improve 

the synthesis of NPs of sophisticated sizes and shapes, tailored for CNS applications. The incorporation of 

this technique with microfluidic devices that model the BBB could also prove to be an interesting 

development in future NP characterization for CNS drug delivery.  

It is crucial that future investigations of nanocarrier-based drug delivery, apply a streamlined methodology 

for NP characterization. Standardization of a universal methodology, using assessable techniques, to conduct 

NP characterization could lead to more complete and comparable NP profiles. This can aid in understanding 

the impact different NP properties have on their suitability for applications in CNS drug delivery. 

4 In vivo Blood-Brain Barrier Interactions of Nanoparticles 
Once NPs have been characterized, in vivo testing can be employed to monitor the ability of NPs to cross the 

BBB, to observe NP distribution throughout CNS and the rest of the body, to assess disruption to BBB 

integrity, and to test the toxic effects of the NPs. An in vivo model is advantageous due to its replication of 

the physiological conditions that would be experienced in a clinical situation [166]. However, inconsistencies 

in the methods employed to assess these interactions presents complications when comparing results from 

different studies to evaluate the suitability of NPs for use in the treatment of CNS disease.  

4.1 In vivo System 
In vivo testing provides invaluable insight into the response of a host system to NPs administration [166]. 

However, different host systems result in distinct NP-host system interactions [167, 168]. Therefore, when 

attempting to compare the in vivo properties of NPs it is important to consider that different animal models 

may elicit distinct responses to the administered NPs and not all results will be clinically relevant. Higher 

primates are generally considered to display responses closer to those experienced in a human subject. 

However, few situations employ higher primates [169], and rodents, including Sprague−Dawley rats [1, 8, 

18, 26, 42, 84, 87, 89, 92, 93, 95, 96, 98, 100, 102, 110, 115, 116, 123, 137, 142, 146, 167, 170-174], Wistar 

rats [9, 12, 61, 62, 64, 65, 69, 77, 83, 91, 93, 105, 106, 133, 175, 176], or mice [14, 23, 24, 41, 63, 66-68, 71, 

77, 80-82, 85, 86, 88-90, 93, 94, 97, 101, 103, 104, 107-109, 111, 112, 114, 119, 124-132, 136, 138-144, 

167, 175, 177-181], remain the most commonly used animal models for in vivo testing. 

The use of the Drosophila melanogaster (fruit-fly) is emerging as a simple and potentially informative in vivo 

model of mammalian systems due to its potential for rapid results, the high conservation of genomic 

information, and the cellular and developmental mechanisms it shares with higher organisms [2, 118] 

including, specifically, similar neurophysiology [118]. Additionally, due to its rapid life cycle, the impact of 

NPs on development and aging can be assessed [2]. The use of this model is likely to increase in years to 

come due to its advantages over conventional models. 

4.2 Important parameters  
Animal models can be used to evaluate a number of parameters relating to the interaction of NPs with the 

BBB to estimate their effectiveness as CNS drug delivery vehicles. One of the most important considerations 

when assessing the suitability of NPs as drug carriers for the treatment of neurological disorders is the ability 

of the NP to penetrate the BBB and reach the CNS. Based on the literature reviewed, up to 4% of NPs 

administered (per gram of tissue) cross the BBB [1, 8, 9, 12, 18, 23, 26, 41, 42, 68, 81, 84, 87-90, 93-95, 

102-105, 111, 115, 116, 124, 136, 137, 182], or as high as 17.7% in tumor brains [68, 124, 125, 132, 142]. 

However, methods utilized to assess this are highly varied (summarized in Table 1), impacting the 

opportunity to confidently compare the results of different studies. If NPs are not capable of significant 

traversal of the BBB, the drug payload will not be delivered to the site of action at clinically relevant levels. 

Despite the importance of determining permeation, although it is examined to some extent in ~86% papers 

(Figure 4), many papers do not quantify the levels at which NPs cross the BBB.  

Once it is verified that NPs can permeate into the brain, it is important to examine the distribution of those 

NPs within the CNS. NPs within the CNS must be effectively targeted to diseased tissues or cells to be 

beneficial; incorrect targeting of drug-NP conjugates to the site of action in the CNS could reduce the 

therapeutic effect or lead to damage of healthy cortical cells. If the CNS distribution profiles of different NPs 

are identified, researchers could use these profiles to select the NP best suited to the drug delivery 

requirements of a specific application. 
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Further to CNS distribution, although functionalization of NPs with BBB or cell targeting ligands can 

improve the accumulation of NPs in the CNS, a significant portion of NPs remain in systemic circulation or 

are delivered to systemic organs. The targeting of NPs to systemic organs limits the NPs available for 

permeation into the CNS, reducing the prospect of the NPs reaching the site of action at therapeutically 

significant levels. Information regarding the extent to which different NPs are distributed to secondary 

organs could be leveraged to improve targeting of the NPs to the brain, and away from these organs. This can 

also minimize side effects that may result from mistargeting of drug-conjugated NPs intended to reach the 

CNS. 

As NPs permeate across the BBB, in some instances, this can result in breakdown of the BBB. In certain 

cases, the intention is to cause transient, reversible disruption of the BBB to enhance NP permeability [112]. 

Whether the breakdown is intentional or not, it is important to assess the integrity of the BBB following 

treatment with NPs. Disruption to BBB integrity during treatment of CNS disorders can allow toxins and 

pathogens, normally excluded, to enter the brain, lead to disruptions of brain homeostasis or result in 

secondary side-effects [11]. Disruption to the BBB should be avoided, where possible to prevent these 

complications as they can be detrimental to patient health. The brain exists in a tightly regulated and 

controlled environment where disruptions to homeostasis can cause alterations or damage to neurological 

cells and processes. Cellular or tissue damage, as a result of the presence or accumulation of NPs in the 

brain, needs to be carefully assessed before consideration for clinical applications.  

Finally, systemic toxicological studies are necessary to determine if other adverse effects occur as a result of 

NP treatment. These harmful effects can be exacerbated by accumulation of NPs in tissues not intended to 

receive treatment. An understanding of the systemic distribution of NPs, as mentioned above, can assist in 

evaluating toxicological effects.  

Despite significant importance, these parameters are not routinely examined during in vivo testing. Often, a 

paper emphasizes one aspect of NP testing and as such, complete testing is not conducted. In such a study, a 

thorough investigation into the parameter in question is conducted. However, to consider the NP a success 

for CNS delivery, favorable outcomes for all the aforementioned parameters are necessary. Figure 4 contains 

a summary of the number of papers reviewed that examined the parameters deemed to be critical for CNS 

delivery, to the best of the authors’ knowledge.  

Further, when these parameters are examined, a variety of techniques are utilized (summarized in Table 1). 

The variety of techniques used prevents researchers from directly comparing the results of different studies. 

Section 4.3 contains a discussion of techniques commonly used to assess metallic-based NPs for applications 

in CNS drug delivery. A number of techniques can be used to assess multiple parameters. As such, the 

following section has been organized according to technique. Each technique is reviewed in terms of 

parameters that can be assessed and usefulness for evaluation of NPs for CNS drug-delivery. Only 

techniques that were deemed to be commonly employed or offer unique insight were included. Other 

techniques used can be found in Table 1.  

4.3 Techniques used in vivo testing 

4.3.1 Observation  

Observation and pathology are primarily applied to evaluate toxicological effects of NPs. Prior to euthanasia, 

preliminary evaluation of the toxic effects of NPs can be achieved by assessing the subjects’ physiological 

state. This commonly includes monitoring weight [24, 66-68, 86, 93, 95, 98, 106, 114, 116, 124, 138, 142, 

175], behavior [66-69, 86, 91, 93, 96, 98, 102, 106, 108, 111, 116, 119, 133, 137, 138, 142, 146], appearance 

[86, 133], activity [93], respiration [102, 167, 183, 184], or mortality [24, 66, 102, 108, 111, 114, 116, 142]. 

Measurements can also include body temperature [146, 183], heart rate [167, 184], mean arterial blood 

pressure [146, 167, 183, 184], arterial pH [167, 183, 184], or blood gases levels [146, 183, 184]. A variety of 

cognitive tests [86, 93, 94, 119, 137, 146, 172, 181] and motor tests [88, 89, 94, 137, 146, 172] can also be 

conducted on live animals to assess possible neurological deficits resulting from NP administration. 

Researchers primarily use observation to monitor the health of the test subject and avoid unnecessary 

discomfort or pain resulting from administration of the NPs. However, this is an initial indication of toxicity 

or health and is not sufficient for full toxicological evaluations. More in-depth and quantitative assessments 

are required to determine if the NPs are safe for use in a clinical setting.  
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The fruit-fly is an interesting model that can be used to examine toxicity by monitoring the survival rates and 

behavior of treated Drosophila at different stages of development (larvae, pupae, and adults) [2]. 

Biocompatibility can be further assessed by dissecting larvae, which can survive for up to 180 minutes in 

dissection buffer [2]. Dissected larvae are then exposed to a NP solution and their survival rates are 

monitored [2]. The use of this animal model in future testing could prove to be an informative model for the 

study of NPs over the model’s lifetime, a prospect that is often not feasible with other animal models.   

4.3.2 Imaging 

In addition to observation, imaging is another technique that can be applied to live animals. In the case of 

this in situ imaging, fluorescent NP can be visualized in the brain or systemic organs by methods including 

non-invasive fluorescent imaging [23, 97, 98, 107, 114, 124-126, 128, 130, 132, 138, 142, 175] or invasive 

fluorescent imaging through a cranial window [109, 127]. Often for fluorescent imaging, NPs are tagged 

with a fluorescent label including, but not limited to, fluorescein isothiocyanate (FITC), carboxyfluoresceine, 

cy5.5, rhodamine, or N-[2-(dimethylamino)ethyl]-2-[4-[2-(pyridin-4-yl)-1,3-oxazol-5-yl]phenoxy]acetamide 

(PDMO). Fluorescent probes, such as fluorescein [18, 71, 102, 143], fluorescently tagged Dextran [127], and 

horseradish peroxidase [102], can also be used for live assessment of BBB integrity in live microscopy 

through a cranial window [127]. However, when using in situ imaging techniques, it must be noted that it is 

not possible to remove the circulating blood prior to imaging. Therefore, NPs in circulation may contribute 

to apparent NP levels in organs, and as such these techniques are not useful to accurately quantify NPs levels 

in different organs. 

For magnetic or gadolinium labelled NPs, live imaging can make use of a gamma camera [113], computed 

tomography (CT) [68, 79, 82], positron emission tomography combined with CT (PET/CT) [8], MRI [14, 24, 

32, 68, 69, 77, 80, 83, 85, 91, 92, 101, 110, 125, 141, 142, 171, 174, 175, 177, 179, 180, 186], or magnetic 

resonance spectroscopy (MRS) [110]. As well as observing NPs in the brain or different organs, MRS can be 

utilized to observe metabolic changes in the neurological environment following magnetic NP administration 

by measuring the relative concentrations of metabolites [110]. Alterations in metabolite levels in the brain 

can indicate neurotoxicity. Such nanoparticles will be well suited for use in experimental stages, allowing 

both in situ and ex vivo imaging, and for clinical use as theranostic vehicles for diagnostics and disease 

management. 

Table 1: In vivo tests conducted to assess parameters pertaining to the use of NPs in the treatment of brain disorders. (FM = 

Fluorescent Microscopy, CM = Confocal Microscopy, LM = Light Microscopy, GC = gas chromatography, B = brain, L=liver, S = 

spleen, K= kidneys, H = Heart, Lu = Lungs, Bl = Blood) 
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Huang et al. 

[118] 

Alumina Drosophila 

melanogaste

r 

     CM 

Electro-

physiologi

cal 

recordings 

 

Chen et al. 

[143] 

Alumina C57BL/6 

Mice 

CM CM   Fluoresc

ein 

CM 

PCR 

ATP assay 

 

Sharma et al. 

[167] 

Aluminu

m 

Copper 

Silver 

Sprague-

Dawley rats 

C57 BALB 

mice 

    Evan’s 

blue 

Radioio

dine 

IHC 

TEM 

Water 

content 

Electrol

yte 

levels 

Cerebral 

blood 

flow 

Histopatho

logy TEM 

IHC 

 

Observatio

n 

Sharma et al. 

[173] 

Aluminu

m 

Copper 

Sprague-

Dawley rats 

    Evan’s 

blue 

Radioio

Histopatho

logy 

TEM 
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Silver dine 

Water 

Content 

IHC 

Kaushik et 

al. [88] 

Barium 

Titanate 

C57BL\6 

mice 

TEM 

STEM 

CBED 

ICP-MS 

TEM    Histopatho

logy  

Observatio

n  

Histopatho

logy  

Hematolog

y 

Hardas et al. 

[102] 

Ceria Sprague-

Dawley rats 

TEM 

ICP-MS 

TEM TEM 

ICP-MS 

B, L 

B, L, S, 

Bl 

Fluoresc

ein 

Horsera

dish 

peroxida

se  

TEM 

Histopatho

logy 

ROS 

Assay 

Observatio

n 

Histopatho

logy 

Portioli et al. 

[90] 

Ceria C57BL\6 

mice 

CM 

TEM 

ICP-MS 

CM 

TEM 

LM 

CM 

TEM 

SEM-

EDX 

ICP-MS 

L, S, K, 

Lu 

B, L, S, 

K, Lu 

B, L, S 

L 

B, L, S 

 IHC Histopatho

logy 

Heckman et 

al. [89] 

Ceria Sprague-

Dawley rats 

C57BL\6 

mice 

SJl/J mice 

 

 

TEM 

ICP-MS 

 

 

TEM 

ICP-MS 

 

 

ICP-MS 

Bl 

 

 

B, L, S, 

K 

   

 

Observatio

n 

Kim et al. 

[67] 

Cobalt-

Iron 

Oxide-

Silica 

ICR mice CM CM CM B, L, S, 

K, H, 

Lu, 

Testis, 

Uterus 

Evan’s 

blue 

Histopatho

logy 

Observatio

n 

Histopatho

logy 

Hematolog

y 

Sharma et al. 

[146] 

Copper 

Silver 

Titanium 

Dioxide 

Sprague 

Dawley rats 

    Evan’s 

blue 

Radioio

dine 

Water 

content 

Observatio

n 

Histopatho

logy 

IHC 

Observatio

n 

Histopatho

logy 

Sharma et al. 

[183] 

Copper 

Silver 

Silica 

Sprague 

Dawley rats 

    Evans’ 

blue 

Radioio

dine 

Water 

content 

Histopatho

logy 

IHC 

Observatio

n 

Sharma et al. 

[184] 

Copper 

Silver 

Foster rats     Evan’s 

blue 

Radioio

dine 

Water 

content 

Electrol

yte 

levels 

Cerebral 

blood 

flow 

Histopatho

logy TEM 

Observatio

n 

Sharma et al. 

[172] 

Copper 

Silver 

Sprague-

Dawley rats 

    Evan’s 

blue 

Radioio

dine 

Observatio

n 

Histopatho

logy 

Fluorescen

t 

spectromet
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Prades et al. 

[1] 

Gold Sprague−Da

wley rats 

NAA  FM 

TEM 

NAA B, L, S    

Frigell et al. 

[8] 

Gold Sprague−Da

wley rats 

Gamma 

counter 

ICP-MS 

 PET/CT 

Gamma 

counter 

Whole 

Body 

B, L, S, 

K, H, 

Bl, 

Intestin

e, 

Urine 

   

Gromnicova 

et al. [12] 

 

Gold Wistar rats LM 

TEM 

ICP-MS 

LM 

TEM 

ICP-MS 

ICP-MS 

 

B, L, 

K, Lu 

 

Anti-

IgG 

  

Garrido et al. 

[103] 

Gold BALB mice ICP-MS  ICP-MS B, L, S, 

K, H, 

Lu, Bl, 

Muscle, 

Tail 

   

Hari and 

Kumpati 

[104] 

Gold Swiss 

Albino 

mice 

ICP-OES  ICP-OES B, L, L, 

K, Bl, 

Urine 

  Histopatho

logy 

Hematolog

y 

Urine 

Analysis 

Organ 

Indexing 

Bone 

Marrow 

Micronucl

eus Test 

Dixit et al. 

[107] 

Gold Mice 

(unspecified 

breed) 

Live 

imaging 

FM 

 FM  B, L, S, 

K, H, 

Lu, 

Skin 

   

Li et al. 

[108] 

Gold ICR mice     Evan’s 

blue 

 Observatio

n 

Peng et al. 

[109] 

Gold Nude mice 

BALB/C 

mice 

Live 

imaging 

FM 

FM  ICP-MS L, K, S, 

H, Lu, 

Bl, 

Skin, 

Muscle, 

Urine 

   

Yin et al. 

[128] 

Gold Nude mice Live 

imaging 

   Live 

imaging 

  

Ruan et al. 

[129] 

Gold Kunming 

mice 

CM 

TEM 

CM 

TEM 

CM  L, S, K, 

H, Lu 

 Histopatho

logy 

Histopatho

logy 

Guerrero et 

al. [115] 

Gold Sprague-

Dawley rats 

FM 

NAA 

FM FM 

NAA 

B, L, S, 

K  

B, L, S, 

K, Bl 

Evan’s 

blue  

  

Cabezón et 

al. [140] 

Gold ICR-CD1 

mice 

TEM TEM      

Feng et al. 

[124] 

Gold Nude mice Live 

imaging 

FM 

LM 

ICP-MS 

FM 

LM  

Live 

imaging 

FM 

LM  

ICP-MS 

Whole 

Body 

B, L, S, 

K, H, 

Lu  

B, L, S, 

K, H, 

Lu,  

B, Bl, 

Tumor, 

Urine 

  Observatio

n 

Jensen et al. Gold CB17 SCID Live Live ICP-MS B, L, S, Evan’s Histopatho Hematolog
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[142] mice 

 

 

 

 

 

 

Sprague−Da

wley rats 

imaging 

CM 

LM 

MRI 

ICP-MS 

imaging 

CM 

LM 

MRI 

ICP-MS 

 

K, H, 

Lu, Bl, 

Tumor, 

Stomac

h, 

Intestin

e, 

Pancrea

s, Eyes, 

Olfacto

ry 

Bulb, 

Pituitar

y 

Gland, 

Adrena

l 

Gland, 

Fat, 

Ovary, 

Skin & 

Hair, 

Tail 

 

 

blue logy 

IHC   

TUNEL 

staining 

y  

 

 

 

 

 

 

Observatio

n  

Histopatho

logy 

Hematolog

y  

Ruan et al. 

[132] 

Gold Kunming 

mice 

Live 

imaging 

FM 

PA 

imaging 

ICP-OES 

FM 

PA 

imaging 

Live 

imaging 

FM 

Whole 

Body 

B, L, S, 

K, H, 

Lu 

 Histopatho

logy 

 

Histopatho

logy 

 

Ali et al. 

[119] 

Gold C57BL/6N 

mice 

     Observatio

n 

Histopatho

logy 

Observatio

n 

Nair et al. 

[23] 

Gold Swiss 

Albino mice 

Live 

imaging 

FM 

ICP-OES 

      

Schäffler et 

al. [78] 

Gold C57BL/6 

mice 

CM 

Gamma 

counter 

CM CM 

Gamma 

counter 

B, S, K, 

Lu,  

B, L, S, 

K, H, 

Lu, Bl, 

Stomac

h, 

Large 

Intestin

e, 

Small 

Intestin

e, 

Pancrea

s, 

Uterus, 

Thymu

s, 

Aorta, 

Fat, 

Muscle, 

Tail, 

Bone, 

Skin, 

Carcass 

(tissue 

after 
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remova

l), 
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Cheng et al. 

[24] 

Gold Athymic 

Nude mice 

C57BL/6 

mice 

LM 

CM  

ICP-MS 

MRI 

 

LM 

CM 

MRI 

ICP-MS B, L, S, 

K, H, 

Lu, Bl, 

Bladder

, Urine 

 Histopatho

logy 

Observatio

n 

Histopatho

logy 

Lai et al. [25] Gold BALB/CAn

NCg-

Foxn1nu/Cr

lNarl mice 

FM 

X-ray 

FM 

X-ray 

     

Gao et al. 

[32] 

Gold Athymic 

Nude mice 

LM 

MRI 

SERRS 

LM 

MRI 

SERRS 

     

Velasco-

Aguirre et al. 

[26] 

Gold Sprague-

Dawley rats 

NAA TEM NAA B, L    

Clark and 

Davis [139] 

Gold BALB/C 

mice 

LM LM      

Talamini et 

al. [41] 

Gold CD-1 mice 

 

ICP-MS 

 

 

 

ICP-MS 

 

LM 

Darkfield 

microscop

y 

B, L, S, 

K, Lu, 

Bl, 

Urine, 

Feces 

L, S 

Lu 

   

Yang et al. 

[185]  

Gold Sprague-

Dawley rats 

TEM TEM      

Kouri et al. 

[138] 

Gold CD1 mice 

CD17 SCID 

mice 

 

Sprague-

Dawley rats 

ICP-MS 

Live 

imaging 

ICP-MS 

FM 

 

Live 

imaging 

FM 

ICP-MS B, L, S, 

K, H, 

Lu 

  

 

 

 

Histopatho

logy 

 

Hematolog

y 

 

 

Observatio

n 

Histopatho

logy 

Hematolog

y 

Cabezón et 

al. [178] 

Gold ICR-CD1 

mice 

SBF-

SEM  

SBF-

SEM 

     

Chen et al. 

[86] 

Gold BALB/C 

mice 

TEM 

ICP-MS 

CARS 

TEM 

ICP-MS 

CARS 

   Observatio

n 

HPLC 

Observatio

n 

Sela et al. 

[137] 

Gold Sprague-

Dawley rats 

ICP-MS ICP-MS ICP-MS B, L, S, 

K, Bl, 

Urine, 

CSF 

 Observatio

n 

Observatio

n 

Betzer et al. 

[82] 

Gold BALB/C 

rice 

AAS 

CT 

CT AAS 

ICP-OES 

B, L, S, 

K, Bl, 

Pancrea

s 

Bl 

   

Li et al. [81] Gold S4880202 

rice 

ICP-MS       

Wiley et al. 

[136] 

Gold BALB/C 

rice 

LM 

TEM 

ICP-MS 

LM 

TEM 

   TEM  

Shilo et 

al.[79] 
Gold BALB/C 

rice 

CT  

AAS 

CT AAS B, L, S, 

K, Bl, 

Pancrea

s 
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Sun et al. 

[68] 

Gold-Iron 

Oxide 

Nude rice ICP-MS 

MRI  

MRI 

ICP-MS 

ICP-MS 

 

CT 

B, 

Brain 

Tumor, 

Muscle, 

Flank 

Tumor 

Bl 

  Observatio

n 

Wang et al. 
[125] 

Lanthanid

e-based 

(NaYF4:Y

b,Er core) 

BALB/C 

mice 

Live 

imaging 

FM 

MRI 

ICP-MS 

 Live 

imaging  

MRI 

ICP-MS 

Whole 

Body 

Whole 

Body 

L, S, K, 

H, Lu, 

Bl, 

Tumor 

 Histopatho

logy 

Histopatho

logy 

Dan et al. 

[18] 

Iron 

Oxide 

Sprague−Da

wley rats 

Gamma 

counter 

 Gamma 

counter  

B, L, S, 

Lu, Bl 

Fluoresc

ein 

  

Mejías et al. 

[77] 

Iron 

Oxide 

Wistar rats 

C57BL/6 

mice 

MRI  MRI 

Magneto

meter 

B, L 

L, S, K 

   

Peiris et al. 

[130] 

Iron 

Oxide 

NIH 

Athymic 

Nude mice 

Live 

imaging 

FM 

Live 

imaging 

FM 

     

Imam et al. 

[110] 

Iron 

Oxide 

Sprague−Da

wley rats 

MRI  MRI     MRS 

IHC 

 

Wang et al. 

[111] 

Iron 

Oxide 

ICR mice AAS  AAS B, L, S, 

K, H, 

Lu, Bl, 

Stomac

h, 

Small 

Intestin

e, Bone 

Marro

w,  

  Observatio

n 

Mao et al. 

[112] 

Iron 

Oxide 

ACI mice LM    LM   

Nadeem et 

al. [113] 

Iron 

Oxide 

Rabbits Live 

imaging 

 Live 

imaging  

Whole 

Body 

   

Mekawy et 

al. [123] 

Iron 

Oxide 

Sprague−Da

wley rats 

TEM FM   TEM   

Yang et al. 

[174] 

Iron 

Oxide 

Sprague 

Dawley rats 

CM 

MRI 

LM  

CM 

MRI 

     

Cheng et al. 

[101] 

Iron 

Oxide 

Tg2576 

transgenic 

mice 

Mice 

(unspecified 

breed) 

FM 

MRI 

FM  

MRI 

     

Wadghiri et 

al. [180] 

Iron 

Oxide 

APP/PS1 

transgenic 

mice 

C57BL/6J 

mice 

LM 

MRI 

LM 

MRI 

     

Zhao et al. 

[100] 

Iron 

Oxide 

Sprague-

Dawley rats 

LM 

HPLC 

LM LM B, L, S, 

Lu 

 Histopatho

logy 

 

Mu et al. 

[99] 

Iron 

Oxide 

Mice 

(unspecified 

breed) 

FM  FM 

Fluoresce

nt 

spectrome

try 

B, L, S, 

K, H 

Blood 

   

Ansciaux et 

al. [186] 

Iron 

Oxide 

NMRI mice 

 

 

LM 

Magnetic 

NMR 

LM 

 

 

Magnetic 

NMR 

B, L, S, 

K, Lu, 

Bl, 

 Histopatho

logy 

Histopatho

logy 

Hematolog
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APP/PS1 

DE9 

transgenic 

mice 

MRI MRI Urine y 

Vinzant et al. 

[96] 

Iron 

Oxide 

Sprague-

Dawley rats 

CM CM     Observatio

n 

Maritim et al. 

[187] 

Iron 

Oxide 

Fischer 344 

rats 

LM 

MRI 

Magnetic 

NMR 

LM 

MRI 

     

Marinescu et 

al. [179] 

Iron 

Oxide 

Swiss mice  LM 

MRI 

LM 

MRI 

     

Fiandra et al. 

[188] 

Iron 

Oxide 

BALD/C 

mice 

FM 

CM 

FM 

CM 

Fluoresce

nt 

spectrome

try 

Blood   Histopatho

logy 

Kumar et al. 

[141] 

Iron 

Oxide 

Nude mice FM 

LM 

MRI 

FM 

LM 

MRI 

     

Dhakshinam

oorthy et al. 

[94] 

Iron 

Oxide 

Swiss 

Albino mice 

AAS    Evan’s 

blue 

Observatio

n 

ROS 

Assay 

FTIR 

Western 

blot 

Observatio

n 

Hematolog

y 

Qiao et al. 

[92] 
Iron 

Oxide 

Sprague-

Dawley rats 

MRI MRI      

Shevtsov et 

al. [91] 

Iron 

Oxide 

Wistar rats CM 

MRI 

CM 

MRI 

    Observatio

n 

Sillerud et al. 

[85] 

Iron 

Oxide 

APP/PS1 

DE9 

transgenic 

mice 

MRI MRI      

Huang et al. 

[84] 

Iron 

Oxide 

Sprague-

Dawley rats 

TEM-

EDX 

ICP-OES 

TEM-

EDX 

ICP-OES 

     

Dilnawaz et 

al. [83] 

Iron 

Oxide 

Wistar rats CM 

LM 

TEM 

MRI 

HPLC 

CM 

LM 

TEM 

MRI 

MRI 

HPLC 

B, L, 

Bl 

B, L, S, 

K, H, 

Lu, Bl 

   

Le Duc et al. 

[171] 

Iron 

Oxide 

Sprague-

Dawley rats 

MRI MRI      

André et al. 

[177] 

Iron 

Oxide 

TG2576 

transgenic 

mice & 

APP/PS1 

DE9 

transgenic 

mice 

APP/PS1/Ta

u transgenic 

mice 

LM 

CM 

MRI 

 

LM 

MRI 

LM 

CM 

MRI 

 

LM 

MRI 

     

Fu et al. 

[170] 

Iron 

Oxide 

Sprague-

Dawley rats 

LM 

MRI 

LM 

MRI 

     

Rosillo-de la 

Torre et al. 

[62] 

Iron 

Oxide-

Silica 

Wistar rats TEM TEM      

Yan et al. 

[61] 

Iron 

Oxide-

Silica 

Wistar rats CM 

TEM 

CM 

TEM 

CM B, L, S, 

K, H, 

Lu 

   

Yim et al. 

[14] 

Iron 

Oxide-

Manganes

BALB/c 

mice 

MRI  

CM 

CM Gamma 

counter  

B, L, 

H, Lu, 

Bl 

Evan’s 

blue 
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Hu et al. [80] Manganes

e Oxide 

Kunming 

mice 

MRI MRI MRI Whole 

Body, 

B, L, K 

   

Barandeh et 

al. [2] 

Silica Drosophila 

melanogaste

r 

FM 

CM 

CM  FM Whole 

Body 

 IHC 

TUNEL 

staining 

Observatio

n 

Dissection 

Jampilek et 

al. [105] 

Silica Wistar rats FM 

UHPLC-

HRMS 

FM      

You et al. 

[131] 

Silica Sprague-

Dawley rats 

  LM  L, K, S, 

H, Lu 

  Histopatho

logy 

Hematolog

y 

Hu et al. 

[114] 

Silica Nude mice 

Sprague 

Dawley rats 

Live 

imaging 

FM 

HPLC 

Live 

imaging 

FM  

Live 

imaging  

FM 

HPLC 

Whole 

Body 

B, L, S, 

K, H, 

Lu  

B, L 

 Histopatho

logy 

TUNEL 

staining 

Observatio

n 

Histopatho

logy 

Zhou et al. 

[126] 

Silica Nude mice Live 

Imaging 

FM  

 Live 

imaging 

Whole 

Body 

 Histopatho

logy 

 

Baghirov et 

al. [127] 

Silica Mouse 

(unspecified 

breed) 

Live 

imaging  

   Live 

imaging 

  

Zhang et al. 

[71] 

Silica C57BL/6 

Mice 

  GC Adipos

e 

Tissue 

Fluoresc

ein 

IHC 

RNA 

profile 

 

Shi et al. 

[175] 

Silica Wistar rats 

Nude mice 

Live 

imaging 

FM 

MRI 

TEM 

Fluoresce

nt 

spectrom

etry 

 Live 

imaging 

FM 

TEM 

Fluoresce

nt 

spectrome

try 

Whole 

body 

B, L, S, 

K, H, 

Lu  

B, K 

B, L, S, 

K, H, 

Lu 

  Observatio

n 

Bouchoucha 

et al. [144] 

Silica BALB/C 

mice 

CM       

Liu et al. 

[42] 

Silica Sprague-

Dawley rats 

ICP-OES    Evan’s 

blue 

Water 

content 

Histopatho

logy 

IHC 

ROS 

Assay 

Hematolog

y 

You et al. 

[98] 

Silica Sprague-

Dawley rats 

Live 

imaging 

FM 

Fluoresce

nt 

spectrom

etry 

FM 

Fluoresce

nt 

spectrom

etry 

Live 

imaging 

FM 

Fluoresce

nt 

spectrome

try 

Whole 

Body 

B, L, S, 

K, H, 

Lu, 

Tumor 

B, L, S, 

K, H, 

Lu, Bl, 

Tumor 

 Histopatho

logy 

Observatio

n 

Histopatho

logy 

Hematolog

y 

 

Liu et al.[97] Silica Athymic 

BALB/C 

mice 

Live 

imaging 

FM 

 Live 

imaging 

Whole 

Body 

   

Yang et al. 

[93] 

Silica Kunming 

mice 

 

Sprague 

Dawley rats 

 

 

TEM 

ICP-MS 

 

 

 

 

CM 

TEM    Histopatho

logy 

Observatio

n 

 

Observatio

n 

Histopatho

logy 
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Zebrafish Hematolog

y 

Organ 

Indexing 

Yang et al. 

[66] 

Silica 

Silica-

Gold 

ICR mice       Observatio

n 

Histopatho

logy 

Shevtsov et 

al. [69] 

Silica-Iron Wistar rats CM 

MRI 

Magnetic 

hysteresis 

CM 

MRI 

 

Magnetic 

hysteresis 

L, S, K, 

H, Lu, 

Skin, 

Muscle 

  Observatio

n 

Zhao et al. 

[65] 

Silica-Iron 

Oxide 

Wistar rats CM CM      

Ku et al. [64] Silica-Iron 

Oxide 

Wistar rats CM 

TEM 

CM 

TEM 

  TEM   

Shim et al. 

[15] 

Silica 

Zinc 

Oxide 

Rats 

(unspecified 

breed) 

TEM-

(EDX) 

TEM-

(EDX) 

  Evan’s 

blue 

Histopatho

logy 

 

Garza-

Ocañas et al. 

[9] 

Silver Wistar rats CM 

TEM/ST

EM 

ICP-MS 

TEM/ST

EM-

(EDX) 

CM 

ICP-MS 

TEM/STE

M-(EDX) 

B, L, S, 

K, H, 

Lu 

B, L, 

K, H 

 STEM-

EDX 

TEM 

Kiruba 

Daniel et al. 

[106] 

Silver Wistar rats FM 

UV-vis 

 FM 

UV-vis 

B, L, S, 

K, Lu 

B, L, S, 

K, Lu, 

Bl 

  Observatio

n 

Hematolog

y 

Urine 

Analysis 

Aliev et al. 

[176] 

Silver Wistar rats TEM TEM   TEM Histopatho

logy 

 

Xu et al. [95] Silver Sprague-

Dawley rats 

ICP-MS  ICP-MS B, Bl RNA 

profile 

Histopatho

logy 

RNA 

profile 

Observatio

n 

Hematolog

y 

 

Hadrup et al. 

[133] 
Silver Wistar rats      HPLC Observatio

n 

Disdier et al. 

[182] 

Titanium 

Dioxide 

Fischer 

F344 rats 

ICP-MS  ICP-MS B, L, S, 

Lu 

Atenolol 

IHC 

IHC 

RNA 

profile 

IHC 

Liu et al. 

[87] 

Titanium 

Dioxide 

Sprague-

Dawley rats 

ICP-MS ICP-MS   Evan’s 

blue 

Water 

content 

Histopatho

logy 

IHC 

 

Li et al. 

[189] 

Titanium 

Dioxide 

Kunming 

mice 

ICP-MS  ICP-MS B, Bl  Histopatho

logy 

ROS 

Assay 

Observatio

n 

Histopatho

logy 

BALF 

Assay 

Lipiński et 

al. [63] 

Yttrium 

Oxide-

Terbium 

BLAB/C 

mice 

CM 

Scanning 

cytometr

y 

CM 

Scanning 

cytometr

y 

CM 

Scanning 

cytometry 

B, L, S, 

K, 

Duoden

um 

B, L, S, 

K, 

Duoden

um 

   

Xie et al. 

[181] 

Zinc 

Oxide 

Swiss mice      Observatio

n 

Electro-

physiologi

cal 

Observatio

n 
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Kura et al. 

[116] 

Zinc-

Aluminu

m 

Sprague-

Dawley rats 

AAS  AAS B, L, S, 

K, Bl 

  Observatio

n 

Histopatho

logy 

Hematolog

y 

Organ 

indexing 

 

 

Alternatively, following euthanasia, ex vivo histopathological examination of major organs can be applied. 

Mounted organs can be imaged directly or sectioned and imaged at a higher resolution, ex vivo. This can 

generate information about the interaction of the NPs with the brain capillaries, transport mechanisms, post-

penetration fate, distribution to systemic organs or CNS/systemic tissue damage, including loss of BBB 

integrity. Ex vivo imaging commonly includes light microscopy [12, 24, 32, 41, 66, 67, 83, 87, 90, 93-95, 

102, 104, 112, 114, 124-126, 129, 131, 132, 136, 138, 139, 141, 142, 146, 170, 172, 173, 177, 179, 180, 183, 

184, 186-189], TEM [9, 12, 15, 26, 61, 62, 64, 83, 84, 86, 88-90, 93, 95, 102, 123, 129, 136, 140, 167, 170, 

173, 175, 176, 184, 185, 190], or STEM [9, 88, 90, 102].  

These techniques do not require fluorescent tagging to detect the NP in the tissue. However, iron oxide and 

gold NPs can be stained ex vivo with Prussian blue [83, 100, 101, 123, 130, 141, 170, 174, 177, 179, 180, 

186, 187] or silver [12, 24, 41, 124, 136, 138, 139, 142], respectively, to enhance visualization by light 

microscopy. Light microscopy can be further enhanced through with staining with Mayer’s hematoxylin [15, 

138, 139, 177] or hematoxylin and eosin staining [24, 25, 41, 42, 66, 67, 87, 88, 90, 93, 95, 112, 114, 116, 

125, 126, 129, 132, 136, 141, 142, 146, 167, 172-174, 183, 188, 189], which can indicate structural and 

morphological changes to the tissue, NP induced disruption to the BBB, or localization of NPs to damaged 

tissue for treatment. 

Meanwhile, fluorescent microscopy [1, 2, 12, 15, 23, 25, 26, 97-99, 101, 105-107, 109, 114, 115, 123-125, 

130, 132, 138, 141, 175, 188] or confocal microscopy [2, 9, 14, 24, 61, 63-65, 67, 69, 78, 90, 91, 93, 119, 

129, 142-144, 173, 174, 177, 182, 188] [63] can be applied for visualization of fluorescent or fluorescently-

labelled NPs in the brain or systemic organs. The presence of fluorescent probes in the brain can also be 

determined post-sacrifice. The tissues themselves can also be stained using a variety of dyes (Table 2). High 

resolution images can be analyzed to examine co-localization of fluorescent NPs within counter-stained cells 

or subcellular locations. This can provide information relating to the uptake and inter- or intracellular fate of 

the NPs as well as cell or tissue damage.  

Table 2: Stains employed to label tissue sections for light, fluorescent or confocal microscopy.  

Stain Labelling Reference 

4',6-diamidino-2-phenylindole (DAPI) Cell nucleus [14, 42, 61, 64, 65, 69, 90, 91, 

99, 114, 129-132, 141, 175, 

188] 

Anti-4G8 Amyloid-beta plaque [101, 177, 180] 

Anti-6E10 Amyloid-beta plaque [101, 177, 180] 

Anti-Aquaporin4 Astrocytes [42] 

Anti-brunchpilot (nc82) Neural Synapses (Drosophila) [118] 

Anti-factor VIII Endothelial cells [143] 

Anti-glial fibrillary acid protein (GFAP) Astrocytes [42, 143, 146, 183] 

Anti-lipoprotein receptor-related protein 

(LRP1) 

Glioma cells [129] 

Anti-legumain Glioma cells [132] 

Anti-low density lipoprotein receptor 

related Protein 1 (anti-LRP1) 

Endosomes [129] 
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Anti-lysosomal-associated membrane 

protein 1 (anti-LAMP1) 

Cell vesicles [140] 

Anti-neuronal specific nuclear protein 

(anti-NeuN) 

Neuronal cells [14, 61, 64, 65, 67, 96] 

Anti-platelet endothelial cell adhesion 

molecule (also referred to as anti-cluster 

of differentiation 31) (anti-CD31) 

Endothelial cells [99, 130, 142, 188]  

Anti-synaptophysin Neuronal Synapses [182] 

Fluoro-Jade B  Neuronal Degeneration [119, 170] 

GP120 Golgi apparatus [2] 

Hematoxylin & Eosin  Cell cytoplasm & cell nucleus [24, 25, 32, 41, 42, 67, 87, 88, 

90, 93, 95, 98, 116, 124, 125, 

131, 136, 141, 142, 146, 172-

174, 183, 188, 189] 

Hoechst 33258 Cell nucleus [63, 105, 109] 

Lectin Endothelial cells [109, 144] 

Lyxol Fast  Axon myelination [94, 146, 167, 177, 186] 

Masson’s Trichrome Cell nucleus & collagen [186] 

Nissl Stain Neuronal cells [1, 90, 115, 119, 167, 170, 

172, 173, 183, 184, 188] 

Nuclear Fast Red Cell nucleus [179, 187] 

Streptavidin-CY3 Biocytin-loaded neurons  [118] 

Toluylene Red Neural Cells [100] 

Terminal Deoxynucleotidyl Transferase 

dUTP Nick End Labelling (TUNEL)  

Apoptotic cells [114, 123, 142] 

Although imaging techniques provide useful information regarding mechanisms involved in NP permeation 

and distribution throughout the CNS, as well as offering indications of tissue toxicity, they are less valuable 

for analyzing degree of permeation. Imaging methods are primarily qualitative or semi-quantitative. As such 

alternative techniques should be applied when quantitatively assessing the permeation of NPs into the CNS 

and NP levels in systemic organs.  

4.3.3 Spectroscopy and Chromatography 

Spectroscopic methods can have useful applications in NP quantification. They can be used to quantify NP 

levels in the CNS, in different regions of the CNS (distribution), or in systemic organs. The most commonly 

employed spectroscopic method to quantify BBB permeability in the literature reviewed was ICP-MS [8, 9, 

12, 24, 41, 68, 81, 86-90, 93, 95, 102, 124, 125, 136-138, 142, 182]. It was also applied to quantify the 

distribution of NPs within different regions of the CNS [12, 68, 86, 87, 124, 137, 142], and in systemic 

organs [9, 12, 24, 41, 68, 89, 90, 102, 103, 109, 125, 137, 138, 142, 182]. The quantification of NPs in 

different regions of the CNS could indicate the NPs are able to reach the site of action in quantities capable 

of achieving a therapeutic effect. Meanwhile, NP levels in urine and blood can also be quantified. Urine or 

feces levels indicate renal clearance of the NPs [24, 41, 109, 124, 137] while blood samples can provide 

information on NP blood retention and pharmacokinetics [24, 41, 89, 95, 102, 103, 109, 124, 142, 189]. ICP-

OES [23, 42, 82, 84, 103, 104, 132] or atomic absorption spectroscopy (AAS) [79, 82, 94, 111, 116] have 

been similarly applied to measure the permeation of NPs into the brain [23, 42, 79, 82, 84, 94, 104, 111, 116, 

132], distribution to systemic organs [79, 82, 84, 103, 104, 111, 116] or blood and urine levels [79, 82, 104, 

111, 116].  

Alternatively, the quantity of NPs in brain tissue or systemic organs can be deduced using NAA which 

creates a radioactive NP [1, 26, 115]. The brain is first removed and lyophilized, before sealing by friction 

welding. It is then exposed overnight to a neutron flux to generate a radioactive sample [1]. The γ-rays 

emitted by the samples can be counted using a germanium detector coupled to a γ -ray spectrometer to 

quantify NP concentration [1, 115]. NAA and ICP-MS are considered to be the current gold standards for the 

quantification of gold in tissue samples [1, 26]. NAA is considered more sensitive than ICP-MS, which in 

turn is more sensitive than AAS [1]. Thus, methods such as NAA or ICP-MS may be preferable for 

determining NP concentrations in the brain where the NP content is typically relatively low [1, 26]. 
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For fluorescent or fluorescently tagged NPs, UV-vis [106, 131] or fluorescent spectroscopy [98, 99, 175, 

179] have been applied to determine relative brain [106, 175], systemic organ [98, 106, 175] or blood [98, 

99, 131, 188] concentration of homogenized tissue samples. Fluorescent spectroscopy [42, 94, 172, 189], as 

well as HPLC [86, 133], are further used in in a number of biochemical assays to determine neurotoxicity 

Changes in the levels of these neurotransmitters in brain homogenate or blood can indicate deregulation in 

the brain, which can affect cognition [86, 172] or BBB dysfunction [172].  

4.3.4 Albumin Penetration 

Fluorescent dyes have significant use in analyzing BBB integrity. Extravasation of Evan’s Blue dye is the 

most commonly applied method to analyze BBB disruption [14, 15, 42, 67, 87, 94, 108, 115, 142, 146, 167, 

172, 183, 184]. The principle of Evan’s blue penetration is based on binding of the dye to serum albumin 

[42, 115, 167]. Serum albumin is typically excluded from the brain as it is not capable of crossing the intact 

BBB. Breakdown of the BBB results in increased permeability of the dye-albumin conjugate into the brain 

[115, 167]. Although visual confirmation of dye permeation into the brain is most commonly employed, 

calorimetry can be utilized for quantitative estimation of permeation of the dye-albumin conjugate [172, 183, 

184, 191]. Alternatively, brain sections can be incubated with formamide overnight and the supernatant, 

containing the dye-albumin conjugate, can be analyzed spectrophotometrically to quantify dye concentration 

[15, 67, 87, 108].  

Gamma counters can also be used to analyze BBB integrity following administration of NPs. Radioiodine 

(
131

I), a gamma reporter, will bind to albumin and the subsequent radioactivity of brain sections is monitored 

using a gamma counter [146, 167, 172, 183, 184, 191]. These methods provide a rapid and useful means of 

qualitatively assessing BBB disruption. The potential for semi-quantitative assessment further highlights the 

practicality of this technique. 

4.3.5 Fluid Homeostasis 

To monitor BBB integrity, researchers have also monitored increased water content and edema formation, or 

disruption to electrolyte levels [167]. Water content, and hence, brain edema formation, are determined by 

comparing the wet weight of the brain to the dry weight [42, 87, 146, 167, 183]. Sharma et al. considered a 

1% increase in water content indicative of edema formation [167, 183].  Similarly, electrolyte content in the 

brain can also be disrupted as BBB permeability increases and during brain edema formation [167]. Sharma 

et al. (2009) found that brain edema formation correlated well with permeation of Evan’s blue dye [167] and 

that in situations with increased BBB permeability and edema formation, potassium content decreased and 

sodium content increased [167, 168].  

4.3.6 Hematology 

Further to BBB damage, hematological studies can be employed to analyze blood serum chemistry as an 

indication of toxicological reactions [104]. Blood analysis typically includes quantifying complete blood cell 

and serum biochemical levels [42, 67, 93, 104, 138, 142] to indicate general animal health. Changes in the 

levels of inflammatory cytokines, such as chemokines, interleukins, interferons, and tumor necrosis factor, 

can also be investigated to reveal an immune response resulting from the administration of the NPs [95, 138, 

142, 182]. Levels of these inflammatory markers in the brain directly can also be measured as an indication 

of neurotoxicity [182].  

Further biochemical analysis of blood can also specifically detect hepatic marker enzymes and 

nephrotoxicity markers, which indicate liver injury and necrosis or kidney damage, respectively [104]. These 

markers can include aspartate aminotransferase [67, 88, 93, 98, 104, 116, 131, 138, 142], alanine transferase 

[67, 88, 93, 104, 116, 138, 142, 186], alkaline phosphatase [88, 93, 104, 106, 116, 138, 142], gamma-

glutamyltransferase [116], urea or blood urea nitrogen [67, 88, 93, 104, 106, 116, 131, 138, 142], uric acid 

[98, 104, 131], or creatinine [67, 88, 93, 104, 106, 116, 138, 142, 186]. Other biochemical markers include 

Na
+
/K

+ 
ATPase activity which is an indicator of cell membrane depolarization and interference with cellular 

activities [106]; or lactate dehydrogenase (LDH) levels which are associated with a wide variety of organ 

pathologies [67, 94, 98, 131].  

Finally, biochemical assays for antioxidants are used to detect oxidative stress by monitoring levels 

superoxide dismutase [104], catalase [104, 106], nitric oxide [94, 104], glutathione (GTH) [106], or 

thiobarbituric acid [104]. Lipid peroxidation activity assays [106] or nitrotetrazolium blue reduction assays 
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[94, 104] can also be used to monitor reactive oxygen species (ROS) generation. Reactive oxygen species 

can be generated as a result of oxidative stress and result in cellular damage [104].  

4.3.7 Immunohistochemistry 

IHC is another technique used to monitor toxicological response. To assess loss of BBB integrity, antibody 

based staining for immunoglobulin G (IgG) [12, 174], albumin [167], claudin-5 [71, 143, 182], occludin [71, 

143], vonWillibrand Factor [182], or actin [71] have been applied. IgG, similar to albumin, is normally 

excluded from the brain [12]. Testing of brain tissue with anti-IgG can reveal the permeation of IgG into the 

brain due to disruption of the BBB [12]. The application of anti-claudin-5, anti-occludin and anti-actin will 

stain the endothelial cells of the BBB. Changes in the expression patterns of these proteins can indicate 

damage to brain microvessels and tight junctions caused by NP administration [71].  

Neuronal damage is a critical concern when using NPs as CNS drug delivery vehicles. Cysteine string 

protein (CSP) is a marker of synaptic vesicles and can indicate changes to the axonal transport pathway 

which can lead to disruptions in the transport of essential nutrients from neuronal cell bodies to the synapses, 

a crucial process for neuronal survival and growth [2]. Meanwhile, a reduction in axon myelination can be 

monitored using antibodies against myelin basic protein (MBP) [167, 173]. A reduction in MBP signifies a 

loss in axon myelination, indicative of neuronal cell damage [167].  

Neurodegeneration can also be measured by assessing glial fibrillary acid protein (GFAP) level. GFAP is 

upregulated in astrocytes, an important cell in neuroprotection [27, 42, 90, 143, 146, 173, 183], when they 

are activated by damage or stress, a process known as reactive astrogliosis [167]. This is a protective 

mechanism in the brain; in response to insult or injury, astrocytes will become reactive and form scar tissue 

to protect the rest of the brain from the identified threat [27]. Aquaporin4 (AQP4) is another astrocytic 

marker for cell stress that can be analyzed via IHC. AQP4 is a water channel protein believed to be a marker 

of BBB permeability and edema formation [42]. 

A number of proteins can also be labeled to evaluate cell stress in the CNS. Cleaved caspase-3 [94] or ADP 

ribose polymerase [94] can also be used to stain any cells for cell death or damage. Caspase-3 is involved 

apoptosis [94], while ADP ribose polymerase is overexpressed in response to cell stress, regulating processes 

such as DNA repair or cell death [94]. The over expression of these proteins in response to NP 

administration indicates DNA damage caused by ROS [94]. Liu et al. (2017a) and Liu et al. (2017b) 

examined oxidative stress and vascular damage using antibodies against phosphylated myosin light chain 

(MLC) [42, 87]. Phosphorylation of MLC caused by oxidative stress can lead to endothelial cell contraction 

and opening of the BBB [42].  

Increased cell stress can also be monitored by assessing levels of heat shock protein (HSP) [167]. Sharma et 

al. [167] investigated levels of HSP 72 kDa, a HSP implicated in neurodegenerative stress [192]. Its 

upregulation has been correlated with cell stress pathways resulting from neuropathology [167]. They found 

there was a correlation between increased HSP expression and BBB breakdown [167]. However, it is unclear 

whether it is the increased presence of NPs, occurring due to BBB leakage, which leads to increased cell 

stress or whether it is the breakdown of the BBB itself that causes cell stress. It is also possible that oxidative 

stress caused by the NPs could lead to free radical release to induce BBB breakdown via endothelial cell 

damage and, hence, a further increase in NP permeability [167, 168]. IHC techniques, when applied 

thoroughly, provide a beneficial means of assessing the toxicological effects of NPs on different cell types in 

the CNS.  

The list of markers discussed herein is nonexhaustive. Cell toxicity markers should be selected for in-depth 

analysis, as appropriate, following preliminary assessments. 

4.3.8 Future Perspectives 

The ability to directly visualize a large number of discrete molecular species inside living cells 

simultaneously would represent a significant leap forward for the understanding of complex systems and 

processes such as drug delivery through the BBB. To optimize the application of NPs for drug delivery, it is 

crucial to understand the nature of the internal barriers of target cells, as well as the spatial and temporal 

interactions of the drug-coated NPs within the cells. Recently, reported methods have made significant 

advancements in this regard and are leading the way for a better appreciation of multifarious biological 

processes. ATP assays can indicate nanoparticle induced damage to metabolic processes [143]. Meanwhile, 

Chen et al. (2016) recently detailed spatially resolved, highly multiplexed RNA profiling in single cells 
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[193]. The spatial localizations of thousands of RNA species can be determined in single cells through the 

application of multiplexed error-robust fluorescence in situ hybridization (MERFISH).  

Nucleic acid assays are also likely to become more popular as a means of analyzing genetic damage. 

Chromosomal damage can be assessed using the bone marrow micronucleus test [103]. This is used to assess 

micronucleation of polychromatic erythrocytes (PCEs) resulting from fragmentation of chromosomes during 

division of erythropoeitic blast cells [103] which is indicative on genetic damage resulting from the 

interaction of cells with the NPs. Additionally, real-time polymerase chain reaction (PCR) can be used to 

quantify the messenger-RNA (mRNA) levels to detect alterations in normal cell expression profiles [71, 95, 

143, 182]. For example, inflammation can be detected by monitoring levels of pro-inflammatory cytokines 

such as tumor necrosis factor-α and interleukin-1β, or cell adhesion molecules such as intercellular adhesion 

molecule-1 and vascular cell adhesion molecule-1 [71], to examine proteins related to cell activity (e.g. 

synaptophysin for neuronal activity) [182], or to detect the expression of autophagy related genes such as 

autophagy/beclin 1 regulator 1 or autophagy related protein 3 [143]. Xu et al. (2015) used RNA profiling to 

monitor the expression of tight junction proteins, (occludin, claudin-1, tight junction protein 1, cadherin 1) 

[95]. Changes in the mRNA levels of these genes could indicate disruptions to normal BBB structure. 

Even with recent advancements, it remains challenging to image cellular processes with high sensitivity and 

selectivity under biological conditions. Fluorescence microscopy remains to be one of the most commonly 

used methods of imaging biological molecules. However, the depth of information attainable with this 

method is restricted by a “color barrier” which limits the number of resolvable colors from 2 to 5 (or 7 to 9 if 

using advanced instrumentation and analysis) [194-197]. This limitation was recently addressed by Wei et al. 

(2016) who reported on super-multiplex vibrational imaging [193]. Stimulated Raman scattering under 

electronic pre-resonance conditions was used to image target molecules inside living cells with 

unprecedented levels of vibrational selectivity and sensitivity (down to 250 nanomolar with a time constant 

of 1 millisecond). Additionally Wei et al. (2016) created a palette of triplebond-conjugated near-infrared 

dyes, each of which displays a single peak in Raman spectral range [193]. The pairing of these dyes with the 

advanced Raman spectroscopy techniques described, allows for the simultaneous labelling and imaging of up 

to 24 specific biomolecules. This expansion in the number of resolvable colors for fluorescent imaging from 

5 to 24 represents a significant increase in the number of biomolecules that can be imaged at the same time 

and represents a paradigm shift in the understanding of biological processes which can be achieved through 

fluorescence microscopy. This advancement holds great potential to increase future understanding of the 

function and stability of drug-coated NPs during complex biological processes such as cell/tissue penetration 

and drug-target interactions. 

Furthermore, in recent years there has been a great deal of research on the utilization of AFM for the 

characterization of nanoscale drug delivery systems. Intermittent contact mode AFM has facilitated the 

investigation of drug delivery systems by recording the elastic or adhesion behavior of particles [198]. 

Biosensing AFM enables the observation of structural details of molecular assemblies and cell surfaces and 

can be used to monitor cellular responses to drug-coated NPs [199]. Li et al. (2014) recently reported on 

monitoring of drug actions on cell membrane on the nanoscale using AFM [200]. They demonstrated that the 

actions of drug-coated NPs on cell membranes, such as topographic changes, elasticity variations and 

molecular interaction quantification, can be characterized via AFM analysis [200]. 

4.4 Recommendation 
Based on the techniques contained in Section 4.3, the authors recommend that, where possible, the following 

techniques be utilized the measure and assess the aforementioned parameters to empower full in vivo 

characterization.  

4.4.1 BBB Permeability 

A review of literature that examines NPs for CNS application, 86.2% of research conducted some form of 

BBB permeation study. The techniques used for permeability assessment were varied with some groups 

providing only qualitative information while others attempted to quantify NP permeation. In many situations, 

research groups did not explicitly study the permeation of NPs into the brain. Instead, they observed 

parameters such as CNS distribution or CNS toxicity. Although, these parameters do indicate that the NPs 

did traverse the BBB, the quantity at which this was achieved is not examined.  
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In situ imaging techniques provide useful information pertaining to NP penetration times, without the need to 

sacrifice multiple animals across various time points. This approach can inform researchers of the kinetics of 

BBB permeation and its use should be more widely considered in future studies. Typically, during BBB 

permeation analysis, the animal is sacrificed at a specific time-point. However, it is not always known if this 

time point will reveal maximum NP levels in the brain and a wide range of permeation times, from ~1 

minute to 24 hours have been reported [14, 77, 107, 110, 113, 114, 126, 128, 132, 142].  

Although imaging can be semi-quantitative, through the use of image processing software, methods such as 

ICP-MS or NAA could be more informative. These techniques are highly sensitive, ICP-MS is routinely 

capable of detecting NPs at concentrations as low as parts per trillion [201]. Hence, they are capable of 

detecting even minimal penetration of NPs across the BBB.  

The standardization of a combination of techniques, such as in situ imagining and ICP-MS or NAA, to 

analyze NP penetration is important in determining the suitability of NPs for CNS applications. However, in 

addition to the standardization of techniques, the method of sample preparation should also be unified. In 

many situations, the capillaries and systemic blood are not removed. Capillary-associated NPs as well as 

blood-borne NPs can be detected during quantification which may not give an accurate reflection of the 

permeation of NPs into the brain. This will impact the direct comparison of different research. Sela et al. 

reported that the levels of NPs in the brain appeared to be 10 times higher when perfusion was not conducted 

[137]. Attempts to remove capillaries, by capillary depletion, and systemic blood, through perfusion, should 

be widely applied. 

4.4.2 CNS Distribution 

It is important to show, that a NP not only has the potential to cross the BBB into the brain, but also exhibits 

subsequent, effective distribution within the CNS. Qualitative imaging techniques could provide a valuable 

insight into the NP distribution and interactions with cells in the CNS. Meanwhile co-localization imaging 

facilitates visualization of NPs within diseased cells.  

The use of NP imagining labels to monitor CNS distribution is useful for both in vivo and ex vivo imaging. 

However, the use of such labels could provide false positive results should the labels become detached from 

the NP surface. As such, researchers should examine the potential in vivo detachment of the labels from the 

surface of the NPs. Observing the leaching of labels from NPs in physiological solutions could indicate the 

loss of labels from the NP surface [107, 128, 143]. Ex vivo labelling of NPs could also be used to observe the 

presence of NPs in tissue. Co-localization of the signal from the conjugated label and ex vivo stain would 

indicate retention of the label on the NP surface. Once retention is confirmed, these NPs provide a useful 

avenue to monitor distribution and penetration mechanisms. 

The design of theranostic NPs, possessing imaging capabilities in addition to drug delivery capabilities, will 

be beneficial for qualitative imaging assessments of CNS distribution further to the potential uses in clinical 

diagnostics and disease progression. As such, standard light or fluorescent imaging strategies can be most 

useful for qualitative assessment of NP distribution in the CNS. However, dissection of the brain into regions 

of interested, followed by quantitative assessment, can also be conducted.  

4.4.3 Systemic Distribution 

Evaluating NP content in secondary organs can further inform researchers of how NPs are taken up by other 

organs or cleared from the body. The uptake of NPs by secondary organs will reduce NPs available for 

permeation into the CNS. By reducing secondary organ uptake and increasing circulation time, the ability of 

the NPs to permeate through the BBB and reach their site of action at therapeutically significant levels could 

be improved. Techniques such as ICP-MS or NAA can provide quantitative data relating to NP distribution. 

Quantification of organ levels, relative to the administered dose, can then be compared to brain levels. This 

can then be leveraged to inform researchers on how different NP properties or ligands and modifications can 

improve blood half-life and increase BBB permeation.  

4.4.4 Blood-Brain Barrier Integrity 

Once distribution has been determined, damage induced by the NPs must be considered. This review found 

that just 25.7% of literature examined the integrity of the BBB following NP administration (Figure 4). Of 

these studies, BBB integrity is most commonly analyzed using Evan’s Blue dye. This method provides 

simple, visual confirmation of the breakdown of the BBB through the permeation of dye into the brain tissue. 

For a more in-depth assessment, the tissue can be sectioned and subjected to spectrophotometric fluorescence 
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intensity testing to obtain a semi-quantitative assessment of disruption to the BBB in different regions of the 

brain. This semi-quantitative method could be universally applied in future testing to provide a simple but 

informative measure of the integrity of the BBB following NP administration. Similar to BBB permeation, 

perfusion should be conducted prior to attempting to quantify Evan’s blue permeation.  

Although damage to the BBB is not desirable due to the potential for secondary complications, it is worth 

noting that this might offer a potential opportunity for the delivery of a greater quantity of therapeutics to the 

brain. As is the case with brain tumors, increased permeation of NPs into the brain is noted compared to 

healthy brains [68, 124, 132], potentially due to loss of BBB integrity associated with this disease. Thus, 

following repeated administration, NP levels in the brain could increase with each dose. Notwithstanding, the 

effect of repeated NP administration warrants further investigation. 

4.4.5 CNS Toxicity 

To further assess NP-induced damage, microscopic analysis of brain sections can reveal morphological or 

structural changes to the tissue. Different applications and diseases will target different cells or processes. 

Thus, the cells and regions examined will vary with each specific application. However, it is also important 

to note that NPs may result in toxic effects to cells or regions other than the intended target. For this reason, a 

preliminary microscopic assessment could be important to indicate the regions or cells that require further 

toxicity examination. 

Based on the results of the initial assessment, more cell specific tests can be conducted using techniques such 

as IHC. IHC analysis of cell specific proteins or process can provide further information on cell toxicity or 

damage. The list of proteins mentioned in this review is non-exhaustive and research groups should make an 

informed decision, based on a preliminary assessment, as to the most appropriate proteins or processes to test 

in each specific situation. 

4.4.6 Systemic Toxicity 

Finally, systemic toxicity as a result of NP administration must not be ignored. Observation offers a simple 

indication of systemic toxicity but to obtain informative results, a more in-depth analysis of the toxicological 

affects can be gleaned through thorough hematology and histopathology. Hematological assessment provides 

information of systemic response through the analysis of proteins and metabolites in the blood. Alterations to 

these levels can indicate damage to specific tissues such as the kidneys and liver or the initiation of an 

immune response. Histopathological assessment can indicate changes to tissue structure and morphology, in 

particular. These assessments can in turn guide further toxicity studies to explore specific toxicological 

responses in these tissues.  

A summary of the recommended approach for in vivo testing of metallic-based NPs for CNS applications is 

given in Figure 5. The comprehensive inclusion of these tests could help improve the outcomes of clinical 

trials through the use of a thorough inspection process for NP suitability. 

5 Conclusion 
NPs show significant promise for the treatment of CNS diseases. The controllable properties of metallic-

based NPs offer the potential to traverse the BBB, moving from circulation into the brain. Additionally, the 

multivalancies and high surface to volume ratio are ideal for functionalization with ligands to enhance CNS 

targeting or for conjugation with therapeutics. Once these nanocarriers have permeated into the brain, they 

may deliver lifesaving drugs to the CNS which would otherwise have been excluded. 

The wide range of metallic-based NPs available presents challenges in selecting suitable platforms for 

therapeutic delivery to the CNS. Characteristics such as size, morphology, surface charge and agglomeration 

play a crucial part in the NP-host system interaction and, particularly, the ability of NPs to cross the BBB. 

Changes in any one of these NP properties can result in a different host system response. Before attempting 

to evaluate the NP-host system responses, comprehensive profiling should be conducted. NPs in use are 

frequently poorly or inconsistently characterized [41]. Techniques such as TEM and DLS are valuable tools 

in NP characterization, not unique to metallic-based NPs, that provide information pertaining to core size, 

hydrodynamic size, size distribution profile, dispersal, morphology, zeta potential (as an estimation of 

surface charge), agglomeration and polydispersity index. Although these techniques are considered 

‘common-place’ in nanoparticle testing, they are not being routinely applied to generate complete NP 

profiles. An effort by all research groups to utilize these techniques, as a standard, could be a valuable step 
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towards the unification of NP characterization. Additionally, the dispersal medium used during NP testing 

can result in differences in the values obtained for NP properties. Characterization in deionized water 

presents an evaluation of NP properties, independent of exogenous factors, which can be leverage during the 

synthesis process. However, characterization in a physiologically relevant solution, such as serum, offers the 

opportunity to assess the potential properties of NPs following in vivo administration. It is our 

recommendation that NP properties be evaluated in both deionized water and in serum using TEM and DLS, 

at a minimum, as outlined in Figure 6. This will provide critical information pertaining to the properties of 

various NPs. A thorough understanding of these properties will benefit elucidation of how different 

properties impact the NP-host system response. This information can be leveraged by future researchers to 

inform the NP synthesis for the production of NPs with properties capable of overcoming the BBB. 

Following this, similar difficulties arise during in vivo assessments. In vivo models provide vital information 

in the move towards clinical applications; offering an opportunity to monitor the effects of NPs in a living 

system. Rodents are the most commonly used animal model due to ease of use and availability although the 

use of the Drosophila melanogaster may prove to be an interesting and informative model in future studies 

for evaluation of NP effects on development and lifecycle. The various host systems that can be selected for 

NP assessment can potentially lead to different in vivo responses following NP administration. Thus, it is 

important to be aware that direct comparisons of NPs, tested in different animal models may not be possible. 

Further, the testing carried out by different groups to assess the suitability of NPs for use in CNS treatment 

applications is varied. Few research groups conduct studies to experimentally investigate and compare the in 

vivo responses of different NPs. Additionally, comparisons of NPs from literature are hindered by the diverse 

range of parameters evaluated and test methods used. Parameters such as permeability of NPs across the 

BBB, NP distribution within the CNS and throughout the body, BBB integrity following administration, and 

toxicological response are all vital in determining NP suitability. A summary of the recommended 

parameters that should be considered and suggested methods of evaluation are given in Figure 6. Briefly:  

 Prior to conducting any in vivo analysis, through characterization of the NPs in use should be 

conducted. This should include characterization in deionized water to facilitate an understanding of 

the properties of the synthesized NPs. Next the NPs should be characterized in a physiological 

solution, such as serum, to understand how the properties of the NPs will change once administered. 

This characterization should include, at a minimum, the use of TEM and DLS to investigate core 

size, dispersal, morphology, agglomeration/aggregation, zeta potential, hydrodynamic size, size 

distribution and polydispersity index. 

 For in vivo analysis, in the case of BBB permeability, initial qualitative assessment using live 

imaging can be used to select a time point for quantification of NP permeation across the BBB using 

ICP-MS or NAA. 

 A comparison of NP levels, determined using ICP-MS or NAA, in different organs can leveraged for 

future work to enhance the targeting of NPs to the brain and away from other organs.  

 Qualitative assessment of CNS distribution using microscopy and co-localization techniques 

provides information regarding accumulation of NPs in different regions in the brain and routes by 

which various cells take up different NPs.  

 For measurement of BBB integrity following NP administration, a simple test using Evan’s Blue dye 

can be conducted. Historically, this has been a qualitative assessment, observing permeation of the 

dye into the brain. However, the brain can further be sectioned and the permeation of the dye can be 

quantified spectrophotometrically.  

 In the case of toxicity testing, systemic and CNS toxicity can be initially assessed qualitatively using 

histopathology and microscopy, respectively. Hematology can also be employed in systemic toxicity 

evaluations. These preliminary examinations can provide information to inform more specific 

testing, such as organ specific toxicity evaluations or cell specific IHC. 

 

Together, these tests offer an indication of the safety and efficacy of different NPs as potential drug delivery 

vehicles for CNS disease treatment. The recommended NP characterization and testing should be considered 

a minimum level of testing for all metallic-based NPs. However, the design of novel NPs results in the 

materials with unique properties that cannot be fully captured by the highlighted test methods. Instead, NP 

specific testing can be conducted to promote the unique characteristics of the novel nanomaterials and 

supplement the standardized approach. Together, this will provide information that allows the new NPs to be 
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compared to existing NPs while still emphasizing the novel material properties. Similarly, in vivo testing can 

be supplemented with application and NP specific testing. 

The use of in vivo models, however, can be arduous and costly to conduct. Strict ethical guidelines leave 

little scope for comparative models and novel NP assessments. Therefore, there is the need to develop an in 

vitro platform which closely mimics in vivo BBB properties. Such a model can be used to make valid 

predictions about BBB crossing and interactions of different NPs. Reproducible models can be used to 

complete comparative studies of different of NPs to better understand NP-BBB interactions. Microfluidic 

devices or ‘blood-brain barrier-on-a-chip’ devices are an interesting future avenue for research in the area of 

in vitro mimetics [158, 159]. As research strives to minimize the requirement for animal studies, these 

models become increasingly pivotal. Promising results at an in vitro stage will identify NPs that should be 

selected for more in-depth in vivo assessments. 

In the future, the concerted characterization and in vivo testing of NPs may feed into a public database of NP 

parameters and behaviors. This reference data library would detail NP properties and the resulting in vivo 

responses. Data on NPs will be made accessible to the different users which will boost data sharing and ease 

comparisons between laboratories, nanocarriers, or applications. Such a database may be accessed during 

future research to compare the properties and host system responses of novel NPs to existing datasets. This 

will improve the reproducibility of experimentation and advance the understanding of how different 

properties impact host system responses. This, in turn, will facilitate the selection of delivery systems best 

suited to specific clinical applications. As the database expands, for each new therapeutic application, 

suitable NP carriers may be selected for testing. This will minimize duplication of work, saving time and 

resources. It could also be leveraged by pharmaceutical companies to advance drug development, decrease 

the requirement for large scale screening and reduce time-to-market. However, such a database will be most 

useful when all researchers characterize and test their NPs in a comprehensive and consistent manner. This is 

crucial to enable comparisons to be made, which is critical to the advancement of this research area.  

It is the recommendation of this review that it is necessary to move towards standardized, universally 

available, and accepted methods for characterizing NPs and assessing their in vivo responses. Similar 

standardization should also be adopted for NPs of other materials, such as polymers and lipids, using 

techniques suitable for assessing these materials. Without such standardized approaches, comparisons of NPs 

for use in CNS drug delivery are not possible. This will inhibit progression towards the development of 

vehicles suitable for the delivery of lifesaving drugs to the CNS. 
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Figure Captions 
Figure 1: Workflow diagram summarizing the sourcing of papers to review and the exclusion criteria used. 

Based on the PRISMA flow diagram [44]. 

Figure 2: The percentage of papers reviewed that analyzed different nanoparticle properties using 

transmission electron microscopy (TEM) and dynamic light scattering (DLS), to the best of the authors’ 

knowledge.  

Figure 3: Flow diagram of the suggested minimum NP characterization to be carried out, including medium 

for NP dispersion, method or instrument to be used, and the parameters to be reported.  

Figure 4: The percentage of papers reviewed that analyzed different in vivo parameters during nanoparticle 

testing, to the best of the authors’ knowledge (BBB = blood-brain barrier; CNS = Central Nervous System).  

Figure 5: Flow diagram of the suggested minimum parameters to be evaluated during in vivo NP testing and 

the recommended techniques for evaluating these parameters (NP= nanoparticle; ICP-MS = inductively 

coupled plasma mass spectroscopy; NAA = neutron activation analysis; IHC = immunohistochemistry). 

Figure 6: Summary of the recommended approach to NPs characterization and in vivo testing of metallic-

based NPs for applications in central nervous system drug delivery (NP = nanoparticle, TEM = transmission 

electron microscopy, DLS = dynamic light scattering, NAA = neutron activation analysis, ICP-MS = 

inductively coupled plasma mass spectroscopy). 
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Highlights 
 Metallic-based nanoparticle characterization and in vivo testing is highly varied 

 Incomplete characterization complicates understanding in vivo responses 

 Widely available techniques for testing should be used to examine nanoparticles 

 Standardization could improve nanomedicine comparability, advancing drug delivery 
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