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ABSTRACT 

 

This thesis focuses on the complete mathematical modelling and digital closed-loop 

control of two-phase interleaved coupled-inductor non-isolated dc-dc converters. 

Coupled-inductors have been shown to reduce the cost, size, and weight of high-power 

magnetic components while increasing efficiency. 

The complete large-signal model of the coupled-inductor boost converter is 

presented and compared to the traditional single-phase and two-phase discrete inductor 

dc-dc converters. The CCM-DCM mode maps are presented and discussed for the 

coupled-inductor boost converter. Sample analyses of several different CCM and DCM 

modes of operation are also presented. The different CCM and DCM waveforms are 

experimentally produced by a 1 kW laboratory prototype. 

Following on from the large-signal model, the complete small-signal model of the 

coupled-inductor boost converter is presented. The method of solving for the small-

signal models is discussed, and sample analyses of several different CCM and DCM 

modes of operation are presented. Calculated and experimental frequency sweeps for 

several of the CCM and DCM modes of operation are produced and compared to verify 

the accuracy of the small-signal models. 

Controllers for the 1 kW prototype are designed from the transfer functions derived 

from the small-signal models. The control strategy of average-current-mode control is 

digitally implemented, which uses an outer voltage loop and an inner current loop to 

eliminate any error between the output and the desired output. The FPGA used in 

testing is the Altera Cyclone III FPGA. Initially, PI controllers are developed and 

compared to simulated results. 

In order to improve the closed-loop performance of the converter, the inner current 

loop PI controllers are replaced with Type II compensators. Several compensators are 

designed as examples for a number of CCM and DCM modes of operation. Finally, to 

increase the stability of the converter, bumpless PI control and forced-output control 

utilizing the Type II compensators are introduced and implemented. 

Additional analyses and results are presented in the appendix. 
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1 INTRODUCTION 

This chapter presents an overview of the research topics discussed in this thesis. The 

body of work presented is focused on the implementation, mathematical modelling and 

control of non-isolated multi-phase dc-dc converters utilizing coupled inductors. The 

applications of dc-dc converters range from the high-power, high-current automotive 

and renewable sectors, to the low-power, low-current consumer electronics sector, such 

as laptop and mobile phone chargers. This chapter presents the current technology used 

in such applications, as well as the motivation for the development and implementation 

of high-efficiency, low-box-volume magnetic components. 
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1.1 Overview 
The year 2015 is on record for being, on average, the warmest year since official 

records began in 1880 [1.1]. Figure 1.1 presents the average global temperature 

difference per year for over the last 100 years [1.2]. 

 
Figure 1.1. Observed globally averaged combined land and ocean surface temperature anomaly 1850-

2012 [1.2]. 

As can be seen from Figure 1.1, the global temperature has risen by approximately 

1oC in the last 100 years. A growing worry among the scientific community is that this 

temperature rise may be man-made, due to the high levels of greenhouse gases such as 

carbon dioxide being produced every day. Another worrying trend in today’s economy 

is the volatility of oil prices, as well as the threat of oil and gas shortages. The current 

estimation of oil reserves left globally is approximated at 1,500 billion barrels, much of 

which are located in countries with volatile political and social environments [1.3]. 

Hence, in recent years there has been a growing push into the area of clean and 

renewable energy. In 2014, it was estimated that 19% of the world’s energy 

consumption was supplied via renewable energy sources, 9% of which is coming from 

traditional biomass, while the remaining 10% coming from modern renewable energy 

sources such as wind turbines, hydroelectric dams, and photovoltaic (PV) cells [1.4]. 

Global leaders such as the United States and China are beginning to invest heavily in 

the renewable energy sector while in Europe, Germany is spearheading a PV initiative 

in an attempt to completely phase out nuclear power from the country. Smaller 

countries are also beginning to take part in this energy revolution. For example, in 2015, 
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24% of both the Republic of Ireland’s and Northern Ireland’s energy demands were met 

with wind power, supplied by a total of 235 wind farms on the island [1.5]. 

Another global initiative which is gaining traction in recent years is the introduction 

of environmentally-friendly vehicles. A large portion of the greenhouse gases produced 

globally comes from the transportation sector, with an estimated 26% of emissions 

coming from transportation in 2014 [1.6]. In an effort to cut down on these emissions, 

Electric Vehicles (EV), Hybrid Electric Vehicles (HEV), and Fuel-Cell Electric 

Vehicles (FCEV) are quickly becoming more favourable than internal combustion 

engine vehicles. Companies such as Tesla, Nissan, GM, and Ford have realised the 

market potential for such technology, and are spearheading this transportation 

revolution. 

A key part of HEVs and FCEVs is the power converter. Various types of power 

converter topologies are found in many areas of this industry.  For example, a high-

power boost converter is essential in a fuel-cell vehicle to buffer the poorly-regulated 

output voltage of the PEM fuel-cell, and efficiently distribute this voltage to the 

traction-motor inverters [1.7]-[1.10]. Similarly, the THS II HEV power-train, developed 

by the Toyota Motor Company, features a high-power single-phase dc-dc converter to 

interface the battery pack to the high-voltage dc link [1.11]-[1.12]. In regards to 

renewable energies, dc-dc converters are essential in PV systems for stabilization of the 

dc-link voltage as well as for Maximum-Power-Point Tracking (MPPT) [1.13]-[1.16]. 

Power converters are also critical components of ac and dc microgrids [1.17]. The 

utilization of power converters in microgrids can contribute to grid stability, as well as 

improved efficiency when importing from the national grid to on-site microgrids. 

For renewable and automotive applications, the single-phase buck or boost converter 

is the most commonly used converter. With the ever growing demand for higher power, 

designers are now looking at multi-phase converters, so as to reduce size, cost, and 

power losses. The downside to this approach is the addition of more magnetic 

components into the system; more specifically inductors. In addition, the recent 

advancements in wide-band-gap materials such as the Silicon-Carbide (SiC) and 

Gallium-Nitride (GaN) greatly reduce switching losses in semiconductor devices. This 

allows power converters to operate at a much higher frequency and power-density 

[1.18]. 

For these reasons, developers are now looking into decreasing the size and weight of 

the magnetic components, while increasing the power density. A common solution to 

this is the use of coupled-inductors and integrated-magnetics. In interleaving 
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applications, coupled-inductors have been shown to reduce the size and weight of the 

magnetic components when compared to their discrete inductor counterparts, without 

forfeiting efficiency [1.19]. 

The objective of this chapter is to give a brief introduction to the layout, motivation 

and current technology used in today’s power converters. Section 1.1 gives a brief 

overview of the motivation for this body of work, while Section 1.2 presents the 

objectives of the thesis. Section 1.3 gives a brief summary of each chapter, while 

Section 1.4 discusses the applications and current technology of power converters. 

Finally, Section 1.5 gives a brief overview of the dc-dc converters analysed in this 

thesis, as well as the coupled-inductor used in experimental testing.  
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1.2 Thesis Objectives 
The objective of this thesis is the complete mathematical modelling and digital 

control of the two-phase interleaved coupled-inductor dc-dc converter.  

The first objective is to derive the large-signal characteristics of the converter. Due to 

the nature of a coupled-inductor converter, many of the current waveforms in both 

Continuous-Conduction Mode (CCM) and Discontinuous-Conduction Mode (DCM) are 

vastly different to a discrete-inductor converter. This, in turn, causes the converter 

characteristics to differ greatly, especially in DCM. These characteristics are fully 

derived for all CCM and DCM modes of the coupled-inductor boost and buck 

converters. 

The second objective is to derive the small-signal model of each CCM and DCM 

mode of operation. In dc-dc converters, controllers, either analogue or digital, decide the 

duty cycle so as to ensure that the output voltage on the dc link is at a suitable level. 

One of the most efficient ways to design such controllers is to first find the transfer 

functions of the system, and to begin controller design at this starting point. As with the 

large-signal model, the small-signal models of the coupled-inductor converter differ 

greatly from the discrete-inductor converter. These models are fully derived for the 

coupled-inductor boost and buck converters. 

The final objective is the complete closed-loop control of the coupled-inductor boost 

converter. There are several methods of control in power converters. Many ac-dc and 

dc-dc converters implement voltage-mode control, average-current-mode control, peak-

current-mode control and hysteretic control. Due to the number of modes available in a 

coupled-inductor converter, a control method is implemented for each mode, with the 

ability to determine which mode the converter is operating in, and determining which 

controller to use. 

Experimental results of each of these objectives are provided. 
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1.3 Thesis Structure 
This thesis is split into five chapters. Chapter 1 gives a brief overview of the 

motivation and objectives of the research undertaken. The various areas in which power 

converters are used are discussed. The current technology utilized in today’s power 

electronics industry is investigated, as well as the components. 

Chapter 2 presents an investigation of the various continuous-current (CCM) and 

discontinuous-current (DCM) modes of operation of the coupled-inductor interleaved 

two-phase boost converter. The various CCM and DCM modes of the converter are 

identified together with their sub-modes of operation. The standard discrete-inductor 

interleaved two-phase boost can be seen as a subset of the coupled-inductor converter 

family with zero mutual coupling between the phases. The steady-state operating 

characteristics, equations and waveforms for the many CCM and DCM modes will be 

presented for the converter family.  Mode maps will be developed to map the converter 

operation across the modes over the operating range. Experimental validation is 

presented from a 1 kW laboratory prototype. Design considerations and experimental 

results are presented for a 72 kW prototype. 

Chapter 3 presents the small-signal analysis of a coupled-inductor boost converter 

operating in both CCM and DCM. Due to the complexity of operation of a coupled-

inductor boost converter operating in DCM, several small-signal models must be 

derived. Experimental validation of the small-signal models are presented from the 1 

kW coupled-inductor boost converter laboratory prototype. 

Chapter 4 presents the development of PI controllers used in an Average-Current 

Mode control scheme, to stabilise the output voltage of the coupled-inductor boost 

converter. For highest efficiency and disturbance rejection, fast acting closed-loop 

control is necessary. Simulations are used to identify the best type of controller, which 

is then developed and implemented into the 1 kW prototype converter via FPGA. 

Experimental validation of these controllers is then presented. 

Chapter 5 presents the design and implementation of Type II compensators, which 

replace the inner current loop PI controllers. The advantages and disadvantages of Type 

II compensators are discussed. Finally, the concept of bumpless control with PI 

controllers and Forced-Output control for Type II compensators are introduced, so as to 

improve the performance of the converter. 

Chapter 6 presents the conclusions of the research and details possible future work in 

this area of research. 
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1.4 Power converters: A General Background 
Dc-dc converters are used in a wide range of applications, including gate drivers, 

consumer electronics, energy storage, and renewable energy and automotive systems. 

This section will discuss related applications. 

1.4.1 Semiconductor Gate Drivers 
Low power dc-dc converters are often needed to step up the supply rail of 

semiconductor gate drivers to reach a voltage which will effectively switch on the 

semiconductor, as shown in Figure 1.2. These converters are often open-loop controlled, 

and so need a regulated supply to ensure the correct output is given.  

 
Figure 1.2. IGBT gate driver circuit featuring a dc-dc converter [1.20]. 

1.4.2 Consumer Electronics 
Some higher power examples are laptop battery-charger power supplies, which use 

an ac-dc converter to rectify the ac input and provide a regulated dc output, usually at 

12V-15V. Likewise, boost converters are often used in Power-Factor Correction (PFC) 

to reduce the Total Harmonic Distortion (THD) that is inherent to systems which utilize 

rectifiers. A PFC boost rectifier, presented in Figure 1.3, changes the duty cycle in such 

a way that it forces the input current to be in phase with the input voltage, while still 

giving a regulated dc output. Such PFC circuits are essential in ac-dc systems where the 

quality of the supply must be maintained. 

 
Figure 1.3. Power-factor correction boost converter [1.54]. 

1.4.3 AC Source Renewable Energy Systems 
The most common renewable energy sources are wind, solar, hydroelectricity, and 

geothermal. Hydroelectricity alone is estimated to provide nearly 4% of the world’s 
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electrical energy consumption [1.4], while sources like wind, solar, and geothermal 

power add a further 1.4%.  

Wind and hydroelectric turbines extract the kinetic energy from their respective 

media for transformation into electrical energy via rotational generators. Geothermal 

sources extract heat from the earth’s core, which is used to create high-pressure steam to 

turn a steam generator. Due to the nature of these systems, i.e. differing wind speeds, 

the output power of the generator is often unusable if extracted directly. Hence, power 

converters are utilized to manipulate the output power into a more practical form. A 

review of power electronics in renewable energy systems is discussed in detail in 

[1.21]-[1.27]. 

When exporting power to the grid, wind and hydroelectric turbines must ensure that 

the quality of the exported power meets grid standards. For example, the Danish 

national grid authority ELTRA provides specifications on voltage, frequency and 

reactive power that grid-connected wind turbines must meet [1.28]. One method of 

ensuring good quality power is the use of a variable-speed wind energy supply system, 

presented in Figure 1.4. In a variable-speed system, the output of the wind turbine is 

rectified into dc, and a dc-dc converter is used to regulate the dc-link voltage. At this 

point, the power may be supplied to an energy-storage system, or inverted into either 

single-phase or three-phase ac, to power a three-phase load or to be exported to the grid. 

The method presented in Figure 1.4 is most often used at low power. At higher power, 

the components of the rectifier, converter and inverter become increasingly expensive, 

and the system becomes uneconomical. One solution to this is the use of Doubly-Fed-

Induction-Generators (DFIG), presented in Figure 1.5. 

 
Figure 1.4. Variable speed wind energy supply system [1.51]. 
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Figure 1.5. Wind turbine generator utilizing a DFIG setup [1.29]. 

In a DFIG configuration, the stator current of the generator is fed directly to the grid 

at the desired frequency. The rotor current is connected to a back-to-back converter via 

a low-pass filter. The frequency of the output of the inverter is variable, and 

compensates for any change in frequency in the generator due to changes in wind speed. 

1.4.4 DC Source Renewable Systems 
While sources such as wind are dependent on the kinetic energy of the source, solar 

power relies on the photoelectric effect, which is the ability of matter to emit electrons 

when hit with light. Photovoltaic (PV) cells take advantage of this property in 

semiconductor materials such as silicon to produce a dc current from light sources. A 

typical PV cell Current-Voltage (I-V) characteristic curve is presented in Figure 1.6. 

The level of current produced in solar cells is proportional to the amount of light that 

falls on the PV cell surface. Figure 1.6 shows that as the current decreases, the voltage 

across the PV cells will increase in a non-linear relationship. Along with this, the 

characteristics will vary depending on environmental factors such as temperature, 

irradiation and cleanliness of the panel [1.30]-[1.31]. 

 
Figure 1.6. The I-V characteristics of a PV cell [1.52]. 
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To remedy this, dc-dc converters are utilised to regulate the output to the dc-link for 

the ac-dc inverter. Dc-dc converters are also used as pre-regulators for Maximum-

Power-Point Tracking (MPPT). Similar to the layout of a battery system, PV cells can 

either be connected in series to increase voltage capabilities, or in parallel to increase 

current capabilities. There are four main types of PV installation systems, each of which 

can either export to the grid, a load or an energy storage unit, presented in Figure 1.7. 

 
Figure 1.7. The four main types of PV installations [1.32]. 

1.4.4.1 Micro-Inverter Systems 
For loads up to 500 W, PV cells often utilise a micro-inverter system which is 

presented in Figure 1.7 (a).  Micro-inverter systems allow for more flexibility in terms 

of MPPT tracking and monitoring by allocating a dedicated dc-ac inverter for one to 

two solar panels. This also increases the redundancy of the system.  

1.4.4.2 String Systems 
For higher power, up to 10 kW, the micro-inverter system becomes too expensive to 

become economical. Hence, string systems are more desirable at these power ratings. 

String systems, presented in Figure 1.7 (b), use a single inverter for a string of solar 

panels, hence the name. Due to the reduced number of components, the cost of the 

system decreases. This comes at the cost of decreased flexibility. Another disadvantage 
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is the reduction in redundancy. If a single solar panel or an inverter switches offline, the 

entire string becomes inactive. 

1.4.4.3 String Systems using Power Optimizers 
To increase flexibility and MPPT tracking in string systems, each string may be 

fitted with a dc-dc pre-regulator, known as a power optimizer. This allows for optimum 

control of each panel, while still feeding into a centralised dc-ac inverter. A string 

system with power optimizers is presented in Figure 1.7 (c). 

1.4.4.4 Central systems 
For applications greater than 30 kW, central systems are often the preferred choice. 

In a central system, a single ac-dc inverter is used for all PV cells in the system. While 

this cuts cost, it also drastically reduces flexibility. A central system is presented in 

Figure 1.7 (d).  

1.4.5 Automotive Applications 
The electric automotive sector can be broadly split into three categories. These are 

electric vehicles, hybrid electric vehicles and fuel-cell electric vehicles [1.33]-[1.34]. 

1.4.5.1 Electric Vehicles 
Electric Vehicles (EV) are vehicles which rely completely on power supplied from 

an on-board battery. A typical battery state of charge curve for several battery types is 

presented in Figure 1.8. Lithium-ion batteries, such as LiNiMnCoO2 and LiMn2O4, are 

the most common choice for electric vehicle batteries due to their light weight and 

relatively high energy density. A major disadvantage to Li-ion batteries is the volatility 

of Lithium. Hence, a protective housing is often needed to ensure the safety of the 

vehicle and the operator in the event of an accident. 

It is evident from the curves in Figure 1.8 that as the charge in the battery changes, 

the cell voltage can vary substantially, especially in Li-ion batteries. Therefore, a boost 

converter is often essential to increase the poorly regulated voltage and distribute it to 

the traction motor inverters. Figure 1.9 presents standard layout of an EV drive train, 

such as the Nissan Leaf [1.36]-[1.37]. 

In a typical EV drive train, an ac-dc rectifier is used to charge the battery from the 

main supply. A dc-ac inverter is then utilized to power a three-phase ac motor, which in 

turn powers the drive axle. It should be noted that, as more and more electric cars are 

employed, the effect of THD from the charger on the grid is significant. Hence, PFC 

converters are often employed as one stage of the ac-dc charger.  



Chapter 1: Introduction 

- 12 - 

 
Figure 1.8. Cell voltage vs. state of charge of typical batteries [1.35]. 

 
Figure 1.9. Block diagram of electric vehicles drive train [1.36]. 

One of the major drawbacks of a pure EV is the charge time of the battery and range. 

The Renault Zoe typically takes six to nine hours for a full battery charge on a 230 V 

supply [1.38]. The Nissan Leaf takes up to eight hours for a full charge off a 220/240 V 

supply, which more than doubles for a 110/120 V supply [1.39].  On full charge and 

under ideal conditions, the estimated range of the Leaf is 199 km, while the Zoe makes 

it further with 201 km [1.53]. These numbers do not factor in road conditions, traffic 

and air conditioning, and are tested under the New European Driving cycle (NEDC) 

[1.55]. 
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1.4.5.2 Hybrid Electric Vehicles 
 Hybrid Electric Vehicles (HEVs) are fast becoming the first choice in greener 

transport. By combining the battery storage system of an electric vehicle with a typical 

combustion engine, fuel costs and greenhouse gas emissions drop without a sacrifice in 

range. The best-selling HEV, the Toyota Prius, uses a Series-Parallel power train to 

supply power to the wheels, or charge the battery [1.56]. 

The early generations of the Toyota Prius, such as the THS I and II were solely 

powered by gasoline. Power was supplied by the internal combustion engine and used 

to power the vehicle. To save on fuel, regenerative braking was introduced. The energy 

recouped from the braking was turned into electrical power by an on-board generator 

which charged the battery. The main difference between the THS I and THS II was the 

introduction of a dc-dc converter in the drive train between the battery and the dc-ac 

inverter. This allowed the THS II to increase part-load efficiency [1.40]. 

More recent generations, such as the Prius Plug-in Hybrid Electric Vehicle (PHEV), 

the Chevy Volt, [1.57], and the Mitsubishi Outlander, [1.58], uses a plug-in battery 

charger to initially charge the battery. The vehicle is then run off the battery until 

empty, at which point the gas tank takes over as the source of fuel. A typical HEV 

power train is presented in Figure 1.10. 

 
Figure 1.10. Series/parallel plug-in HEV drive train. 

In a PHEV drive train, the battery is initially charged through an ac-dc inverter, 

similar to an EV. The energy in the battery is fed through a Power Control Unit (PCU), 

which consists of a dc-dc converter to regulate the output at partial loads, and a dc-ac 

inverter. The output of the inverter is a three-phase ac supply, which powers the motor, 

which in turn powers the drive train. 

For regenerative braking, the torque supplied from the axle causes the motor to turn 

into a generator, and supply the Power Control Unit (PCU) with current, which in turn, 

recharges the battery. Finally, as the charge in the battery runs out, the internal 
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combustion engine takes over. This simultaneously charges the battery, while supplying 

power to the vehicle. 

1.4.5.3 Fuel-Cell Electric Vehicles 
Fuel-Cell Electric Vehicles (FCEV) are similar to HEVs in that instead of an internal 

combustion engine, a fuel-cell is used in conjunction with the on-board battery. In a 

typical FCEV system, hydrogen and oxygen react to produce electricity, with the only 

emissions being heat and water. Any pollutants that can be connected to an FCEV 

system are produced during hydrogen production. A fuel-cell polarization curve is 

presented in Figure 1.11.  

 
Figure 1.11. A typical fuel-cell polarization curve [1.41]. 

It is evident from the polarization curve that as the current draw from the fuel-cell 

increases, the available voltage decreases. Hence, dc-dc converters are critical 

components in a FCEV system to regulate the output of the fuel-cell. 

As with a HEV system, the power produced by the fuel-cell can either be used to 

charge the on-board battery or super capacitors, or run the motor to drive the vehicle.  

The drive train of an FCEV system is presented in Figure 1.12. In an FCEV drive train, 

the fuel-cell typically supplies power for constant load portions, such as cruising, while 

the on-board storage is employed during transient phases, such as take-off. 

 
Figure 1.12. Fuel-cell electric vehicle using on-board battery and/or super capacitors [1.42]. 
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1.5 DC-DC Converter Topologies 
The area of dc-dc converters can be divided into two categories: isolated and non-

isolated. Both of these categories can also be divided into step-up converters, more 

commonly known as boost converters, and step-down converters, commonly known as 

buck converters. This thesis focuses on the implementation of coupled-inductors in two-

phase non-isolated dc-dc converters. 

1.5.1 Boost Converter 
The three different boost converter topologies discussed in this thesis are presented 

in Figure 1.13. These are the (a) single-phase (1L), (b), two-phase (2L), and (c) the two-

phase coupled-inductor (XL or CL). 

 
Figure 1.13. The (a) 1L, (b) 2L and (c) CL boost converter topologies. 

In a single-phase boost converter, the switch Q2 and diode D2 in Figure 1.13 do not 

exist. The remaining switch Q1 and diode D1 are used in conjunction with an inductor to 

increase the dc voltage from one level to another. When the switch closes, the total 

input voltage is dropped across the inductor, which causes an energy build-up in the 

inductor. Once the switch opens, the inductor is then connected through the diode to the 

output, and the energy is released. The output capacitor of the converter gives a path to 

ground for the ac ripple current, while the dc current flows into the load. The value of 

the output voltage is dependent on how long the switch is closed during one full 

switching cycle. 

In a two-phase boost converter, the current which flows through the converter is split 

in two, effectively halving the current in each phase. One of the major benefits of 

interleaving is the ability to decrease the input current ripple, allowing for smaller input 

capacitors, especially at duty cycles around 0.5. Interleaving also leads to a more 

complicated control structure, as current balancing in both phases must be ensured. 
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1.5.2 Buck converter 
As with the boost converter, the three different buck converter topologies discussed 

in this thesis are presented in Figure 1.14. These are the (a) single-phase (1L), (b), two-

phase (2L), and (c) the two-phase coupled-inductor (XL or CL). 

 
Figure 1.14. The (a) 1L, (b) 2L and (c) CL boost converter topologies. 

In a single-phase buck converter, when the switch closes, the input voltage is 

connected to the inductor and output load, causing a build-up of energy in the inductor. 

Once the switch opens, the energy in the inductor is released into the load. As with the 

boost converter, the output capacitor of the buck converter gives the ac current a path to 

ground, while the dc current flows into the load. 

1.5.3 Coupled-Inductor DC-DC Converters 
Inductor size, cost, efficiency, and manufacturability studies are an active area of 

research [1.43]-[1.45]. One solution to this problem is the utilization of coupled-

inductors. Coupled-inductors are inductors in which more than one phase winding is 

wrapped around a single core. A comparison of coupled inductors over traditional 

discrete inductors has shown significant reduction in the size of the magnetic 

components [1.46], [1.48]. This is of significant benefit in applications where the size 

and weight of the converter components are critical, such as EVs and HEVs [1.62]. On 

the other hand, increased power density in magnetic components comes at the cost of 

increased thermal density. Hence, if the losses in a coupled-inductor are high, a more 

efficient cooling system may be required. 

While the maximum allowable power loss and temperature rise in inductors are 

considered in the design phase, these calculations are often approximations. Hence, an 

inductor may go through several stages of design in order to get the smallest volume 

possible while keeping core and winding losses to a minimum. The complexity of 

design only increases when trying to implement coupled-inductors. 

Utilising coupled-inductors in dc-dc converters has also been shown to perform 

faster under load transient conditions when compared to their discrete inductor 
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counterpart [1.60]. However, if a coupled-inductor converter is designed to have a 

comparable peak-to-peak phase current ripple, and then the peak-to-peak input current 

ripple will be larger, leading to bigger filter capacitors. This can be justified by the fact 

that capacitors are cheaper to manufacture and implement. This larger amount of 

capacitance, especially the output capacitance, also increases the resonance of the 

converter, which somewhat limits the control design, since the controller must be 

designed to lie between the resonance of the converter and the switching frequency. 

Coupled-inductor converters have also been shown to reduce Common Mode (CM) 

noise when compared to their discrete inductor counterparts, with the amount of noise 

attenuation directly linked to the number of phases in the converter [1.61]. 

Coupled-inductors can be broadly separated into two categories; loosely-coupled, 

and close-coupled. Loosely-coupled inductors are where the coupling between the 

phases is relatively small, and the ratio of leakage inductance to magnetizing inductance 

is large enough that the leakage inductance has a sizeable effect on the circuit. This 

allows for only one magnetic component in the converter. Close-coupled inductors are 

where the coupling between the phases is relatively high, and the leakage inductance is 

small enough that it can be disregarded. Of course, since it is the leakage inductance 

that is the main contributor to the operation of a boost converter, an auxiliary inductance 

will have to be added to the phases in order for the converter to suitably operate. While 

this leads to an increase in the number of magnetic components, the main advantage to 

this is the fact that both magnetic components can be made from different materials, 

which is impossible in loosely-coupled inductors, as all inductance are on the one core 

[1.63]. 

The integrated-magnetics concept discussed in this paper has been demonstrated at 8 

kW for distributed generation in [1.49] and at 72 kW for fuel-cell applications in [1.50]. 

The coupled inductor used in the experimental testing of this thesis is the CCTT-shaped 

split-winding integrated magnetic (SWIM), as shown in Figure 1.15 [1.47]. This section 

presents a design example of a 72 kW CCTT IM, which is considered a loosely-coupled 

inductor. 

1.5.3.1 CCTT Coupled-Inductor Design Example 
Similar design issues must be considered when designing 2L or CL converters. 

Depending on the frequency of operation, the semiconductors available, the size of the 

converter, and other specifications, a major design consideration may be whether to 

operate in CCM or Boundary Conduction Mode  (BCM). 
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(a) 

 
(b) 

Figure 1.15. CCTT SWIM 72 kW prototype (a) assembled and (b) disassembled. 

For both the 2L and the CL converters, BCM mode and the various DCM modes 

have the advantage of a zero-current turn-off of the power diode and a zero-current turn-

on of the power switch. This soft-switched operation is often used in order to reduce 

switching losses in the semiconductor components. Of course, many boost converters 

are designed to operate in CCM mode with SiC or fast-recovery Si diodes, but BCM 

enables the use of lower-cost Si diodes. BCM converters often operate in a variable-

frequency mode in order to ensure soft switching over the load range. DCM operation is 

typically entered at part load for CCM and BCM converters, and the 2L and CL 

converters will maintain the zero-current turn-off of the diode, resulting in efficient 

operation. The first prototype in this body of work by the authors featured a 72 kW 

design for an automotive fuel-cell application [1.50] operating in both CCM and DCM.  

The 72 kW converter switches at 25 kHz and operates with an input voltage range 

from 155 V at full load to 260 V at no-load for a 420 V output. Figure 1.16 and Figure 

1.17 show the per-phase peak, RMS and peak-to-peak current for the 2L and CL 

converters, respectively, over the fuel-cell power range.  The advantage of the CCTT 

CL compared to the 2L can be seen more clearly in Figure 1.16 and Figure 1.17. There 

is little difference between the maximum peak, RMS and peak-to-peak per-phase 

currents at full power despite the fact that the coupled-inductor is designed for three 

times less per-phase inductance than the 2L for this particular design. 
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Figure 1.16. Peak, RMS and peak-peak per-phase currents for 2L converters. 

 
Figure 1.17. Peak, RMS and peak-peak per-phase currents for CCTT CL converters. 

The reduction in per-phase inductance is enabled by the mutual coupling. This 

reduction in required per-phase leakage inductance leads to a significant reduction in the 

size and weight of the magnetic component and facilitates the use of low-flux ferrite 

rather than high-flux materials. Additionally, it can be seen that the per-phase peak-to-

peak currents drop significantly for the low-to-medium power levels resulting in 

significantly reduced core and copper losses for the CCTT CL versus the 2L discrete, 

and improved part-load efficiency. 

Two Semikron SEMiX603GB066HDs IGBT modules, [1.59], are used for the power 

switches.  As documented in [1.48], the power loss of both the 2L and CL topologies is 

very similar.  Although the CCTT CL benefits from reduced phase-current ripple, 

especially at medium load, any reduction in turn-off current (for the IGBT) is offset by 

an increased turn-on current. Figure 1.18 presents the total predicted 2L and CCTT CL 

converter efficiencies.  The CCTT CL converter efficiency is greater than that of the 2L 

over the entire load range and it is significantly greater at part-load conditions. The 

reduced 2L efficiency at part-load is explained by its greater phase-current ripple which 
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contributes to increased ac winding and core loss. At part load, the 2L converter 

experiences maximum per-phase currents, as the duty cycle is close to 0.5, resulting in 

high peak-to-peak currents with resulting copper and core losses, as can be seen in 

Figure 1.16. The CCTT CL converter has minimum peak-to-peak currents for duty 

cycles close to 0.5, as can be seen in Figure 1.17, resulting in low phase currents and 

related copper and core losses. 

 
Figure 1.18. Predicted CCTT CL and 2L converter efficiency as fuel-cell power varies. 

A 72 kW converter was built and tested to validate the CCTT CL by the authors 

[1.50].  The total measured converter efficiency versus output power is shown in Figure 

1.19 for various boost conditions corresponding to Vin = 155 V and Vout = 310 V, 360 V 

and 420 V.  The converter power loss is largely due to the semiconductors. The 

experimental full-load efficiency is 95.5 % at Vout = 420 V and Pin = 72 kW, and 96.7 % 

at 310 V, 72 kW. 

This thesis is the next stage in the CCTT development and follows on from the work 

of the 72 kW converter, which largely focused on magnetics. 

 
Figure 1.19. CCTT CL converter experimental efficiencies at Vin = 155 V. 
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2 COUPLED-INDUCTOR 
INTERLEAVED CONVERTER 
LARGE SIGNAL MODEL 

The objective of this thesis is the complete mathematical modelling and control of 

two-phase interleaved dc-dc converters utilizing coupled-inductors. As such, the first 

step in this process is to find the large-signal model of the converter. This chapter 

focuses on the characterization of the continuous-conduction and discontinuous-

conduction modes of operation of a two-phase coupled-inductor interleaved boost 

converter. 
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2.1 Introduction 
The operation of conventional single-phase and two-phase dc-dc converters are well 

documented [2.1]-[2.2], [2.29]. With applications ranging from power-factor correction, 

presented in [2.3]-[2.5], to microgrid control, presented in [2.6], a full understanding of 

all possible modes of operation in dc-dc converters is critical. For example, the author 

of [2.2] presents solutions for the inductor current waveforms for the three most 

common types of dc-dc converter; the buck, boost, and buck-boost.  

There is a wide body of literature on the subjects of interleaving and coupled 

inductors. However, very little has been published on the dc-dc converter topology 

presented in this thesis. Several papers have documented the use of CL converters, such 

as the buck-boost [2.7], the bridgeless PFC boost [2.8], a PV module converter [2.9], a 

single-switch high-step-up boost [2.10], and basic interleaving of two-phase boost 

converters utilizing a CL [2.11]-[2.12]. The use of a single discrete inductor with inter-

phase transformer has been documented in [2.13]-[2.15]. A coupled-inductor boost is 

investigated in [2.16] where the winding arrangement of the terminals of the coupled 

inductor is direct, rather than the inverse connection implemented in this study. The 

inverse and direct connections are discussed in [2.17]-[2.18] where it is noted that the 

inverse coupling has advantages of reduced ripple and wider CCM operation. A 

coupled-inductor dc-dc buck converter is operated in DCM for efficient low-load 

operation in [2.19], highlighting the need to document and understand the various 

modes of operation.  

In [2.20] the XL converter is designed to operate in boundary-conduction mode 

(BCM) with zero-voltage-switching (ZVS). The use of a coupled inductor in a push-pull 

boost converter is presented in [2.21], and offers lower input ripple into the system. The 

author of [2.22] presents a process-flow diagram for the use of a CL in a boost 

converter, but only includes CCM operation. While [2.23] utilizes a coupled inductor in 

a buck-boost system, DCM operation is chosen to be eliminated due to its over-boost 

effect and instability. In [2.24] the use of coupled inductors for a fuel-cell has been 

analysed in CCM and DCM, but the study was only concerned with ensuring the input 

current operates in CCM, even if each phase current is operating in DCM.  

Operation in CCM is similar for the 2L and CL boost converters. However, the 

discontinuous-conduction modes (DCM) differ greatly due to the mutual coupling 

within the coupled inductor, resulting in numerous conduction modes and output 

voltage characteristics. 
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In order to fully understand the operation of a coupled-inductor two-phase boost 

converter, it is critical to fully understand the circuit operation of a single-phase boost 

(1L) and discrete-inductor two-phase boost (2L) converter. Section 2.2 presents the 

analysis of a single-phase boost converter, while Section 2.3 presents the analysis of a 

two-phase discrete-inductor boost converter. Section 2.4 presents the analysis of a two-

phase coupled-inductor (CL) boost converter which includes the two CCM modes and 

the ten different DCM modes that can occur together with their respective circuit sub-

modes. Section 2.5 presents a detailed analyses of the CL converter operating in CCM 

mode and the resulting boundary conditions. Section 2.6 presents an analysis of two 

different DCM modes of operation, which can be extended to find the characteristics of 

the various other modes. Section 2.7 presents what are called the CCM-DCM mode 

maps of the CL boost converter. In order to test the theories presented in this thesis, a 1 

kW CL boost converter prototype, the design of which is presented in Section 2.8. 

Section 2.9 presents the experimental results from the 1 kW prototype. Appendix A 

contains a similar analysis of a CL buck converter, while Appendix B contains the 

simultaneous equations required to solve the various modes of the CL boost converter, 

as well as the equations for the duty cycle D, and the off-time, Doff. This chapter is 

based on, and expands on, the work presented in [2.32]. 
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2.2 Single-Phase Boost Converter (1L) Modes of Operation 
A 1L boost converter, presented in Figure 2.1, is one of the most common dc-dc 

converters used in industry due to the relative simplicity of operation.  

 
Figure 2.1. The single-phase boost converter. 

There are four different modes of operation when utilising a single-phase boost 

converter; two for continuous-conduction mode (CCM) and two for discontinuous-

conduction mode (DCM). The current waveforms of each mode are presented in Figure 

2.2. 

 
 

Figure 2.2. Current and gate-drive waveforms of (a) 1L CCM 1, (b) 1L DCM 1, (c) 1L CCM 2 and (d) 1L 
DCM 2. 

In Figure 2.2, Doff is the part of the cycle where the diode conducts. The two CCM 

modes, 1L CCM 1 and 1L CCM 2 occur when the converter is in CCM and the duty 

cycle is less than, and greater than 0.5 respectively. The gain of the converter when 

operating in both these modes is 
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  (2.1) 

As can be seen from equation (2.1), the load current does not affect the gain of the 

system when operating in CCM. As the load current begins to drop, the inductor current 

will begin to reach zero at every cycle. This region of operation is termed Boundary 

Conduction Mode (BCM). The two remaining modes are when the converter is 

operating in DCM, and are named 1L DCM 1, where the converter has a duty cycle of 

less than 0.5, and 1L DCM 2, where the converter has a duty cycle greater than 0.5. 

This occurs when the current does not flow through the inductor for a finite length of 

time. The gain of the converter when operating in both these modes is 

 

2

2
81

out

in

out s

V
V L

R T D




  (2.2) 

where Rout is the output load resistance of the converter. Since the gain of the converter 

now relies on the output resistance, it is said to be load dependent. 

The characteristics of the 1L boost converter are plotted in Figure 2.3 to Figure 2.5 in 

what are termed the CCM-DCM mode maps by the author. These mode maps are based 

on the diagrams given in [2.26], and provide a more comprehensive overview of the 

different modes of operation in a dc-dc converter. 

The mode maps plot the duty cycle of the converter D, against the dc output current 

of the converter Io in Figure 2.3, the RMS phase current IL(RMS) in Figure 2.4, and the 

input dc current Iin(DC) in Figure 2.5 for three different voltage gain ratios. The x-axis, 

which represents the various currents, is normalised to the maximum output boundary 

current IoB,max, which occurs at a duty cycle of 0.33̇. The maximum output boundary 

current, derived in [2.26], is found to be 

 2
, (1 ) 0.074  for 0.33

2
out s out s

oB Max
V T V TI D D D

L L
      (2.3) 

where Vout is the converter output voltage, Ts is the switching cycle time, and L is the 

phase inductance. In all of the CCM-DCM mode maps presented, the solid lines 

represent the characteristic curves of the converter, i.e. a plot of the duty cycle at the 

specified current for a given voltage gain, while the dashed lines represent the 

boundaries between the various CCM and DCM modes of operation. This analysis has 

also been carried out using K factors [2.27], which are preferred by some authors to 

graphically represent the boundary between CCM and DCM, and are discussed in 

[2.27]. 



Chapter 2: Coupled-Inductor Interleaved Converter Large Signal Model 

- 32 - 

 
Figure 2.3. Output current CCM-DCM mode map for the 1L boost converter. 

 
Figure 2.4. RMS phase current CCM-DCM mode map for the 1L boost converter. 

 
Figure 2.5. Input current CCM-DCM mode map for 1L boost converter. 
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2.3 Discrete-Inductor Two-Phase Boost Converter (2L) 
Modes of Operation 

The discrete-inductor two-phase boost converter (2L) is presented in Figure 2.6, and 

differs from the 1L boost converter in that there are two paths for the current to flow. A 

properly designed 2L boost converter should ensure that both phases carry an equal 

amount of current. This allows for the inductors and semiconductor switches to be de-

rated to half the current compared to the 1L converter. 

 
Figure 2.6. Two-phase discrete-inductor boost converter. 

The implementation of a second phase into a boost converter increases the number of 

operation modes from four to five; two of which are in CCM operation, and the 

remaining three during DCM operation. The current waveforms of each mode of the 2L 

boost converter are presented in Figure 2.7. As with the single-phase converter, Doff 

represents the time in the cycle where the diode is conducting, while both D and Doff  are 

with respect to phase 1 of the converter. The current waveforms presented in Figure 2.7 

(a) and (b) occur when the converter is operating in CCM and are labelled 2L CCM 1 

and 2L CCM 2. These occur when the duty cycle is less than and greater than 0.5 

respectively. Like the 1L converter, the gain of the 2L converter in these modes is 

 1
1

out

in

V
V D




  (2.4) 

Once again, it is evident that the gain of the system does not depend on the current 

flowing through the system. As current begins to drop, the instantaneous inductor 

current will eventually reach zero, and enter DCM. The remaining three modes occur 

when the converter is operating in DCM and are labelled 2L DCM 1, 2L DCM 2 and 2L 

DCM 3. 2L DCM 3 occurs when the converter is operating at a duty cycle greater than 

0.5, while 2L DCM 1 and 2L DCM 2 occurs when the converter is operating at a duty 

cycle of less than 0.5. The difference between 2L DCM 1 and 2L DCM 2 depends on 

whether the input current is still operating continuously or discontinuously. When the 

converter is operating in 2L DCM 1, the input current, which is the sum of the two 

phase currents, do not reach zero. 
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Figure 2.7. Current and gate-drive waveforms of (a) 2L CCM 1, (b) 2L DCM 1, (c) 2L DCM 2, (d) 2L 
CCM 2 and (e) 2L DCM 3.  

Conversely, the input current does reach zero in 2L DCM 2. If the duty cycle is 

greater than 0.5, the input current of the converter does not go to zero. This is due to the 

fact that for duty cycles greater than 0.5, at least one switch will always be closed, 

leading to current rising in the inductor. The gain of the converter when operating in 

any of the three DCM modes is identical, and is given by 
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out
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out s
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  (2.5) 

As can be seen from equation (2.5), the converter is now load-dependent when in 

DCM. The equation for the gain of the 2L converter when operating in DCM is very 

similar to that of a 1L operating in DCM. The difference is a factor of two which 

appears inside the square root. This is due to the fact that in a 2L converter, each phase 

of the converter only sees half the load current. Like the 1L converter, the CCM-DCM 

mode maps of the 2L boost converter are presented in Figure 2.8, Figure 2.9 and Figure 

2.10 for the converter output current, RMS phase current and input current, 

respectively.  
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Figure 2.8. Output current CCM-DCM mode map for 2L boost converter. 

 
Figure 2.9. RMS phase current CCM-DCM mode map for 2L boost converter. 

 
Figure 2.10. Input current CCM-DCM mode map for 2L boost converter. 
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The maximum output boundary current of the 2L, which occurs at a duty cycle of 0.33, 

is half the value it would be if operating as a 1L converter, i.e. 

 2
, (1 ) 0.074  for 0.33

2 2
out s out s

oB Max
V T V TI D D D

L L
       (2.6) 
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2.4 Coupled-Inductor Two-Phase Boost Converter (CL) 
Modes of Operation 

The operation of multi-phase coupled-inductor dc-dc converters is more complex 

than their traditional discrete-inductor counter-parts, especially when operating in 

discontinuous-conduction mode. In a coupled-inductor converter, both the leakage 

inductance LLk and the magnetising inductance Lm must be taken into account. The 

coupled-inductor two-phase boost converter (CL) is presented in Figure 2.11, which 

shows the leakage and magnetising inductances. 

 
Figure 2.11. The two-phase coupled-inductor boost converter with MOSFETs. 

As with the single-phase and two-phase converters, there are two CCM modes of 

operation; CCM 1, and CCM 2. However, while the single-phase and two-phase boost 

converters had two and three DCM modes respectively, the CL boost converter contains 

ten DCM modes of operation. The current waveforms for each mode of operation of the 

CL boost converter are presented in Figure 2.12 to Figure 2.14.  
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Figure 2.12. Current and gate-drive waveforms of (a) CCM 1, (b) DCM 1, (c) DCM 2 and (d) DCM 3 of 
a CL boost converter.  

 
 

Figure 2.13. Current and gate-drive waveforms of (a) DCM 4, (b) DCM 5, (c) DCM 6 and (d) DCM 7 of 
a CL boost converter. 
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Figure 2.14. Current and gate-drive waveforms of (a) CCM 2, (b) DCM 8, (c) DCM 9 and (d) DCM 10 of 
a CL boost converter. 

A brief explanation of each mode is as follows 

CCM 1: Figure 2.12 (a) shows the current waveforms for CCM 1. In this mode of 

operation, the peak of the phase 1 inductor current occurs in the first half of the cycle 

time. The voltage gain for this mode is the same as for a single-phase and two-phase 

boost converter.   

DCM 1: Figure 2.12 (b) shows the current waveforms for DCM 1. In this mode, only 

one phase will cease to conduct at any one time. The input current will continue to 

operate in CCM. The voltage gain of the converter is now load-dependent. 

DCM 2: Figure 2.12 (c) shows the current waveforms for DCM 2. In this mode, both 

phases will cease to conduct during the same cycle time. This causes the input current to 

also enter DCM.  

DCM 3: Figure 2.12 (d) shows the current waveforms of DCM 3. In this mode, de-

coupling action begins to take effect i.e. a rise in current in one phase does not give a 

rise in current in the other, and a piece-wise-linear rise in current can be seen. 

DCM 4: Figure 2.13 (a) shows the current waveforms of DCM 4. In this mode, 

complete de-coupling of the phases can be seen, with the characteristics similar to that 

of a single-phase and two-phase boost converter. In this mode, the input current 
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operates in DCM. The size of the region of DCM 4 is also dependent on the type of 

switch used in the converter. When using a unidirectional switch, the region of DCM 4 

is much larger when compared to using a bidirectional switch. Section IV uses the 

solution of DCM 4 as an example of characterizing DCM modes of operation. 

DCM 5: Figure 2.13 (b) shows the current waveforms of DCM 5. Mode DCM 5 is 

unusual in that, in this mode, a change in duty cycle will not result in a change in 

current. This mode occurs when operating with a freewheeling diode. Due to the 

coupling of the phases, the current path created by the free-wheeling diode allows the 

reverse flow of current in one phase as soon as the opposite phase opens its switch. The 

input current will also begin to flow in the negative direction for a short period of time.  

DCM 6: Figure 2.13 (c) shows the current waveforms of DCM 6. This mode 

replaces DCM 5 when an inverse diode is not present. In this mode, the duty cycle is 

not dependent on the converter current. 

DCM 7: Figure 2.13 (d) shows the current waveforms of DCM 7. Again, this mode 

occurs when operating with an inverse diode. Due to the coupling of the phases, the 

current path created by the free-wheeling diode allows the reverse flow of current in one 

phase as soon as the opposite phase opens its switch. The input current will also flow in 

the negative direction for a short period of time, similar to DCM 5. When the converter 

is in this mode, the duty cycle is once again dependent on the converter current. 

CCM 2: Figure 2.14 (a) shows the current waveforms for CCM 2. In this mode of 

operation, the peak of the phase 1 inductor current occurs in the second half of the cycle 

time. The voltage gain for this mode is the same as for a single- and two-phase boost 

converter.  

DCM 8: Figure 2.14 (b) shows the current waveforms of DCM 8. In this mode, only 

one phase will cease to conduct at any one time. The input current will operate in CCM. 

The converter duty cycle is once again load-dependent.  

DCM 9: Figure 2.14 (c) shows the current waveforms of DCM 9. Again, coupling 

action forces a negative flow of current through the switch at some point during the 

cycle time. The input current will also flow in the negative direction for a short period 

of time, similar to DCM 5 and DCM 7.  

DCM 10: Figure 2.14 (d) shows the current waveforms of DCM 10. This mode 

replaces DCM 7 when the reverse flow of current is blocked in the switch. 
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2.4.1 Modal Analysis 
The determination of the operating modes for a single-phase and two-phase boost 

converter has been documented in [2.26], but limited research had been done for a CL 

boost. The 2L and CL circuits of Figure 2.6 and Figure 2.11 can be redrawn as shown in 

Figure 2.15, where vin is the input voltage, iin is the input current, iL1 and iL2 are the 

currents of phase 1 and phase 2, respectively, LLk and Lm are the leakage and 

magnetizing inductances, respectively, and Y1 and Y2 are the quad-state output variables. 

For the 2L circuit, the value of the magnetizing inductance is zero.  

 
Figure 2.15. Simplified coupled-inductor boost converter with quad-state outputs. 

The solutions to the quad-state variables in Figure 2.15 are shown in equation (2.7), 

where Vout represents the state when the diode is conducting, open circuit, (OC), 

represents the state when the phase current is zero, 0 represents the state when the 

switch switch Q is conducting, and DL represents the state when the freewheeling diode 

of the switch is conducting.  

 1 2, 
0

out

L

V
O

Y
C

Y

D



 



  (2.7) 

There are a resulting thirteen sub-modes of operation as shown in Figure 2.16. The 

modes of operation for the 2L and CL are presented in Table 2.1 and Table 2.2, along 

with their sub-modes (SM) and the Y1 and Y2 quad-state output variables. Each cycle 

can have several different sub-modes. 

As an example, mode 2L CCM 1 is the 2L continuous-conduction mode for D < 0.5 

and this has four sub-modes, shown in Table 2.1 as D1-D4. The current waveforms and 

gate voltages are shown in Figure 2.7 (a) for 2L CCM 1. As can be seen this mode has 

four sub-modes which are shown in Table 2.1 and Figure 2.7 (a) as D1-D4. Table 2.1 

shows the quad-state outputs for the various sub-modes.  Table 2.1 and Table 2.2 

contain all the information on the time intervals and sub-modes for all 4 CCM modes 

and 13 DCM modes in this boost converter family. 
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Figure 2.16. Sub-modes of operation for the 2L and CL boost converters. 
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Table 2.1. Sub-modes of operation and quad-state Y solutions for a two-phase (2L) interleaved boost converter. 
SM, Y1, Y2   D1 D2 D3 D4 D5 D6 
2L CCM 1 D < 0.5 1, 0, Vout 3, Vout, Vout 5,  Vout, 0 3, Vout, Vout     
2L DCM 1 D < 0.5 1, 0, Vout 2, 0, OC 8, Vout, OC 5, Vout, 0 4, OC, 0 6, OC, Vout 
2L DCM 2 D < 0.5 2, 0, OC 8, Vout, OC 9, OC, OC 4, OC, 0 6, OC, Vout 9, OC, OC 
2L CCM 2 D > 0.5 7, 0, 0 1, 0, Vout 7, 0, 0 5, Vout, 0     
2L DCM 3 D > 0.5 7, 0, 0 1, 0, Vout 2, 0, OC 7, 0, 0 5, Vout, 0 4, OC, 0 

 

Table 2.2. Sub-modes of operation and quad-state Y solutions for a CL interleaved boost converter. 
SM, Y1, Y2   D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 

CCM 1 D < 0.5 1, 0, Vout 3, Vout, Vout 5, Vout, 0 3, Vout, Vout             
DCM 1 D < 0.5 1, 0, Vout 3, Vout, Vout 8, Vout, OC 5, Vout, 0 3, Vout, Vout 6, OC, Vout         
DCM 2 D < 0.5 1,0, Vout 3, Vout, Vout 8, Vout, OC 9, OC, OC 5, Vout, 0 3, Vout, Vout 6, OC, Vout 9, OC, OC     
DCM 3 D < 0.5 1, 0, Vout 2, 0, OC 8, Vout, OC 5, Vout, 0 4, OC, 0 6, OC, Vout         
DCM 4 D < 0.5 2, 0, OC 8, Vout, OC 9, OC, OC 4, OC, 0 6, OC, Vout 9, OC, OC         
DCM 5 D < 0.5 12, DL, Vout 12, DL, Vout 13, DL, OC 2, 0, OC 10, Vout, DL 10, Vout, DL 11, OC, DL 4, OC, 0     
DCM 6 D < 0.5 6, OC, Vout 2, 0, OC 8, Vout, OC 8, Vout, OC 4, OC, 0 6, OC, Vout         
DCM 7 D < 0.5 2, 0, OC 10, Vout, DL 11, OC, DL 9, OC, OC 4, OC, 0 12, DL, Vout 13, DL, OC 9, OC, OC     
CCM 2 D > 0.5 7, 0, 0 1, 0, Vout 7, 0, 0 5, Vout, 0             
DCM 8 D > 0.5 7, 0, 0 1, 0, Vout 2, 0, OC 7, 0, 0 5, Vout, 0 4, OC, 0         
DCM 9 D > 0.5 7, 0, 0 1, 0, Vout 12, DL, Vout 13, DL, OC 5, 0, OC 7, 0, 0 5, Vout, 0 10, Vout, DL 11, OC, DL 4, OC, 0 

DCM 10 D > 0.5 7, 0, 0 1, 0, Vout 6, OC, Vout 2, 0, OC 7, 0, 0 5, Vout, 0 8, Vout, OC 4, OC, 0     
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2.5 CCM Operation & CCM-DCM Boundary Conditions 
As shown in Figure 2.12 to Figure 2.14, there are a total of twelve modes of 

operation; two in CCM and ten in DCM. The two CCM modes, CCM 1 and CCM 2, 

occur when the duty cycle is less than and greater than 0.5, respectively. The gain of the 

converter when operating in CCM is given by 

 1
1

out

in

V
V D




  (2.8) 

Once again, as with the 1L and 2L converters, the gain of system does not depend on 

the current flowing through the converter. One of the major differences between a 2L 

converter and a CL converter is the shape of the boundary between CCM and DCM. As 

the currents in the converter phases drops, the inductor current will eventually reach 

zero and enter BCM. The boost converter is said to be operating in CCM when the 

phase current is, at all times, greater than zero, i.e. 

    1 2and 0L Li t i t    (2.9) 

To ensure this condition, the converter must be designed so that the dc phase current, 

IL(DC), is always greater than half the value of the peak-to-peak phase ripple ΔIL(p-p):  

  
 

2
L

L DC
p pI

I 
   (2.10) 

The converter is said to be operating in DCM when the conditions of (2.9) and (2.10) 

are not met. In a coupled-inductor boost converter, the ripple currents in each phase are 

a combination of the input ripple current, which depends solely on the leakage 

inductance, and the magnetizing ripple-current component. To fully realize each phase 

current, the input and magnetizing ripple currents, as shown in Figure 2.7 (a) and Figure 

2.13 (a) must first be analysed for CCM 1 and CCM 2, respectively. To quantify each 

ripple current, the voltage drop over the leakage inductance is found for both phases 

over the period D1, where D1 is the on-time of the switch, as done as follows for CCM 

1: 

 1.1 1.1 0in Llk TV V V      (2.11) 

 2.1 2.1 0in Llk T outV V V V      (2.12) 

where VLlkx.y equates to the voltage across the leakage inductance in phase x during the 

cycle time Dy, and VTx.y equates to the voltage drop across the magnetizing inductance in 

phase x during the cycle time Dy. It is assumed that the current in phase 1 is the sum of 

the current in phase 2 and the magnetizing current, im. Hence, to find the magnetizing 
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ripple, (2.11) and (2.12) are subtracted from each other, and the following assumptions 

are applied: 

 

1 3

2 4

1.1 1.3 2.1 2.3

1.2 1.4 2.2 2.4 0

m
T T T T m

T T T T

D D
D D

diV V V V L
dt

V V V V





     

   

  (2.13) 

Thus, 

 1 2 0m mL L
Lk m out m Lk

di didi diL L V L L
dt dt dt dt

       (2.14) 

Since it is assumed that 

 1 2L L mi i i    (2.15) 

Then, simplifying (2.14) yields the peak-to-peak magnetizing current ripple ΔIm(p-p): 

  
1

2
out s

m p p
Lk m

V D TI
L L 


  (2.16) 

In multiphase boost converters, the input current is the sum of the phase currents. 

Hence, to find the input current ripple, (2.11) and (2.12) are added together, and again 

(2.13) is applied yielding 

 1.1 1.1 2.1 2.1 0in Llk T in Llk T outV V V V V V V         (2.17) 

Thus, 

 1 22 L L
in out Lk lk

di diV V L L
dt dt

     (2.18) 

The input current is the sum of the two phase-currents 

 1 2L L ini i i    (2.19) 

Hence, the peak-to-peak input ripple current ΔIin(p-p) is 

  
 
 

1 1

1

1 2
1

out
sin p p

Lk

V D D
I T

L D


 


  (2.20) 

The phase current ripple is then found as 

  
   

2 2
in p p m p p

L p p

I I
I  



 
     (2.21) 

As can be seen for CCM 1, the input current ripple is dependent only on the leakage 

inductance, and increasing the leakage inductance will decrease the input-current ripple. 

The phase-current ripple and magnetizing-current ripple are dependent on the leakage 

and magnetizing inductances. By following the same method for a duty cycle greater 
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than 0.5, the ripple currents for D > 0.5 can be found. To find the boundary between 

CCM and DCM, half the peak-to-peak phase current ripple is equated to the dc phase 

current, i.e. 

  
( )2

L p p
L DC

I
I

   (2.22) 

Hence, the following boundary conditions are obtained. 
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  (2.23) 

Table 2.3 provides the solutions to the peak-to-peak input current ripple, magnetizing 

current ripple and phase current ripple for the CL boost converter operating in CCM. 

Table 2.3. Peak-to-peak ripple currents for the input, magnetizing and phase currents of a CL boost 
converter when operating in CCM. 

CCM Mode ΔIin(p-p) ΔIm(p-p) ΔIL(p-p) 

CCM 1 (D < 0.5) 
(1 2 )out s

lk

V D D T
L


 
2

out s

Lk m

V DT
L L

 ( ) m( )

2 2
in p p p pI I  

  

CCM 2 (D > 0.5) 
(2 1)in s

Lk

V D T
L


 
2

in s

Lk m

V T
L L

 ( ) m( )

2 2
in p p p pI I  
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2.6 DCM Characteristics 
The following section provides a sample analysis of two CL boost converter DCM 

modes; DCM 4 and DCM 9. The characteristics of both modes are developed, as well as 

boundary conditions between the modes and another mode of operation. 

2.6.1 DCM 4 
Due to its simplicity and its similarities to a two-phase boost converter, DCM 4 will 

be analysed first. 

2.6.1.1 DCM 4 Characteristics 
To find the duty cycle of the converter in DCM 4, the voltage drop across the leakage 

inductance of one phase is taken over the whole cycle period. 

 1.1 1.1Llk in TV V V    (2.24) 

 1.2 1.2Llk in T outV V V V     (2.25) 

 1.3 0LlkV    (2.26) 

 1.4 0LlkV    (2.27) 

By applying the volt-second balance to the leakage inductance, the following equation 

is found 

 1 0in off in off outD V D V D V     (2.28) 

Next, the peak of the phase current is found as 

  
oin s

L p p
Lk m

ffV D T
I

L L 


  (2.29) 

By averaging the peak over the full cycle time, the dc phase current is found, i.e. 

  
1

(

2

)L p p o
L

ffI D
I

D 
   (2.30) 

Finding Equation (2.30) in terms of Doff gives 

 
2

12 ( )L Lk m in s
off

in s

I L L V D T
V DT

D 
 

  (2.31) 

Inserting equation (2.31) into (2.28) and isolating for D gives 

 1
1

2 ( )( )L out in Lk m

out in s

I V V L LD
V V T
 

   (2.32) 

Knowing D1, the other circuit parameters can be determined. This allows for the 

complete characterisation of DCM 4.  
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2.6.1.2 DCM 3/DCM 4 Boundary 
One of the modes that DCM 4 shares a boundary with is DCM 3. In order to find the 

boundary conditions of these modes, the inductor current waveforms of both modes 

must be compared. These waveforms are presented in Figure 2.17. 

   
(a)                     (b) 

Figure 2.17. Phase current waveforms of (a) DCM 4 and (b) DCM 3. 

As can be seen from the DCM 4 waveforms in Figure 2.17 (a), the current in phase 1 

stops flowing before the current in phase 2 begins. However, as the duty cycle 

increases, so does the amount of time that current flows in phase 1. At a certain point, 

the current in phase 2 will begin to rise before the current in phase 1 ceases to flow. It is 

at this point that the converter enters DCM 3, as shown in Figure 2.17 (b). Hence, the 

boundary between DCM 3 and DCM 4 depends on the values of D and Doff of DCM 4 

i.e. 

 ( 4) ( 4)

( 4) ( 4)

0.5 DCM 4

0.5 DCM 3
DCM off DCM

DCM off DCM

D D
D D

  

  
  (2.33) 

2.6.2 DCM 9 
Due to its complicated phase current waveform, DCM 9, shown in Figure 2.18, is 

one the more difficult modes of operation to characterise. Hence, by covering this mode 

of operation along with the earlier analysis of DCM 4, the all analytical tools needed to 

solve DCM operation are presented and can easily be applied to all other modes of 

operation. 
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Figure 2.18. Phase current of DCM 9. 

2.6.2.1 DCM 9 Characteristics 
To correctly analyse DCM 9, the negative portion of the phase current must be taken 

into consideration. Hence, the cycle times D2 and D3 must be dismantled into parts. The 

values of I1, I2, I3 and I4 in Figure 2.18 must also be found. By analysing the phase, 

input and magnetising currents using the method presented in Section 2.2, it is found 

that 
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and using basic trigonometry, D2 and D3 are dismantled into D2a and D3a as shown in 

Figure 2.18 and found to be 
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By using Equations (2.34) to (2.39), the dc phase current of DCM 9 is found to be 
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where 

 2T Lk mL L L    (2.41) 

and 

 S Lk mL L L    (2.42) 

The voltage drop across the leakage inductance during DCM 9 is 

 1( ) 0Llk in off out off TV V D D V D V       (2.43) 

By analysing the magnetizing current of DCM 9 in Figure 2.18, VT1 is found as 
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Equations (2.40) and (2.45) are considered to be a set of simultaneous equations used 

to find the two unknowns D and Doff. This concludes the large-signal modeling of DCM 

9. The simultaneous equations for each DCM mode of operation are presented in the 

appendix, as well as the solutions to D and Doff. 

2.6.2.2 DCM8/DCM9 Boundary 
As with the boundary between DCM 3 and DCM 4, the phase currents of DCM 8 and 

DCM 9 need to be analysed in order to find the boundary between the two. The 

waveforms of these modes are presented in Figure 2.19.  

  
(a)                     (b) 

Figure 2.19. Phase current waveforms of (a) DCM 9 and (b) DCM 8. 

One of the main differences between DCM 8 and DCM 9 is the fact that, for a small 

portion of the cycle time, the current begins to flow negatively in DCM 9. This is due to 

the fact that the fall in current during the cycle time D2 of DCM 9 is greater than the rise 

in current during the cycle time D1 of DCM 9, as seen in Figure 2.19 (a). When 
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operating in DCM 8, the opposite is true, as shown in Figure 2.19 (b). Hence, the 

boundary between DCM 8 and DCM 9 is decided via the following condition. 

 ( 2) 8 ( 1) 8

( 2) 8 ( 1) 8

DCM 8

DCM 9
L D DCM L D DCM

L D DCM L D DCM

I I
I I

   

   
  (2.46) 

2.6.3 Modal Boundary Flowchart 
Due to the many modes of operation in DCM, a boundary condition for each border 

must be developed. The flow chart presented in Figure 2.20 has been developed to 

document each of these boundary conditions. When applying the flow chart, the 

direction of the arrow indicates the inequality symbol of the boundary condition to be 

used. An explanation for each condition is also presented. To find the boundary between 

DCM 2 and DCM 4, the waveform of DCM 2 must be analysed. The key difference 

between both waveforms is the presence of the coupling of the waveforms in DCM 2 

compared to the lack of coupling in DCM 4. This coupling causes a rise in current 

during the cycle time D5 which is not observed in DCM 4. Hence, by letting the formula 

for this rise in current equate to zero and simplifying, the boundary between both modes 

is found. Applying this method also yields the boundary between DCM 3 and DCM 5/6. 

In DCM 3, the initial change in current is to flow in the positive direction, whereas in 

DCM 5, it flows in the negative direction. In the case of DCM 6, it does not flow at all. 

Hence, by letting the formula for this initial rise in current in DCM 3 equate to zero and 

simplifying, the boundary between these two regions is obtained. 
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Figure 2.20. CCM-DCM mode map boundary conditions for the CL boost converter. 
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2.7 CL Boost Converter CCM-DCM Mode Maps 
With the solution of the characteristics and boundaries of each mode of operation of 

the CL converter, the CCM-DCM mode maps can now be developed. The mode maps 

of the CL converter with are plotted in Figure 2.21, Figure 2.22 and Figure 2.23 for the 

output current, RMS phase current and input dc current, respectively. As with the 1L 

and 2L, the currents on the x-axis are normalised to the maximum output boundary 

current, which is derived as follows. 

The boundary between CCM and DCM occurs when the peak-to-peak ripple of the 

phase current reaches zero for an instant. At this point, the dc phase current is equal to 

half the peak-to-peak phase ripple i.e. 

  
1 2

L p p
L B

I
I 

   (2.47) 

where IL1B is the phase current when the converter is in BCM. The dc phase current is 

related to the dc output current by the relationship 
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where IoB is the output current when the converter is in BCM. Hence, by inserting 

equation (2.47) into (2.48), it is found that 

   (1 )oB L p pI DI     (2.49) 

The expression for the peak-to-peak phase current ripple in a CL boost converter, 

which is derived in Section 2.5, is dependent on whether the duty cycle is less than or 

greater than 0.5. From Figure 2.21, it is evident that the maximum output boundary 

current occurs at a duty cycle of 0.23̇, which is less than 0.5. Section 2.5 derives the 

expression for the peak-to-peak phase current ripple, which is found as 
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By inserting 0.23 in for the duty cycle and simplifying, the maximum output boundary 

current is found as 
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Figure 2.21. Output current CCM-DCM mode map for CL boost converter. 

 
Figure 2.22. RMS phase current CCM-DCM mode map for CL boost converter. 

 
Figure 2.23. Input current CCM-DCM mode maps for CL boost converter. 
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There are a number of key points to note on these figures. Firstly, the circuit stresses 

are highest for the 2L at a duty cycle of 0.5, for example, switch turn-off and diode turn-

on occur at the highest possible currents. On the other hand, this 0.5 duty cycle is very 

low stress for the CL boost, while the CL boost can have relatively high phase currents 

at lower and higher duty cycles. Another key point is that, while the three DCM modes 

in the 2L converter all have the same gain, the same cannot be said for the CL 

converter. A converter gain for each DCM mode must be derived. Hence, the gain of 

one DCM mode will not give the correct value when used in another DCM mode.  

As can be seen from Figure 2.13 and Figure 2.14, current briefly flows in the 

negative direction in three of the DCM modes, DCM 5, DCM 7, and DCM 9. This is 

achieved by the current flowing backwards through the switch via the freewheeling 

diode. If the reverse flow of current in the lower switch is blocked, e.g. by a series-

blocking diode or the use of a unidirectional switch as shown in Figure 2.24, two new 

modes, DCM 6 and DCM 10, replace DCM 5 and DCM 7. Therefore, a new mode map 

with new boundaries must be developed. This mode map is presented in Figure 2.25. 

 
Figure 2.24. The two-phase coupled-inductor boost converter with unidirectional switch. 

 
Figure 2.25. Output current CCM-DCM mode maps for CL boost converter with unidirectional lower 

switch e.g. IGBT. 
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2.7.1 Effect of Inductance Coupling Factor 
When designing a coupled-inductor for a dc-dc converter, one of the major 

considerations is the coupling factor between the leakage and magnetising inductance. 

To demonstrate the effect of the coupling factor, the output current mode map of a CL 

boost converter for different coupling factors are presented in Figure 2.26.  It should be 

noted that the mode maps presented in Figure 2.26 are normalised to the same 

maximum output boundary current. This is to allow a like-for-like comparison. 

   
 

   
 

Figure 2.26. CCM-DCM mode maps of a CL boost converter where (a) LLk = 3Lm, (b), Lm = 2 LLk, (c) Lm 
= LLk and (d), Lm = 0. 

As can be seen from Figure 2.26, as the magnetising inductance of the converter 

decreases, the mode map transforms more and more into the mode map of a 2L 

converter. However, the boundary currents between CCM and DCM, and between each 

DCM mode increase dramatically. 

2.7.2 72 kW Design Example 
In chapter 1, a design example of a 72 kW coupled-inductor for use in a boost 

converter was presented. By creating a CCM-DCM mode map for the 72 kW converter, 

designers can now easily anticipate the modes of operation the converter will enter over 

the full load range. As can be seen from the converters mode map, presented in Figure 

2.27, the converter operates in CCM 2 up to approximately 30 kW. At this point, the 

converter enters CCM 1. As power continues to drop to approximately 25 kW, the 

Lm = 3LLK Lm = 2LLK 

Lm = LLK Lm = 0 

(a) (b) 

(c) (d) 
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converter enters DCM 1, the first DCM mode to be encountered. Finally, at 10 kW and 

below, the converter enters DCM 2. 

 
Figure 2.27. CCM-DCM operating mode map for 72 kW CL boost converter. 
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2.8 Design of 1 kW Two-Phase Interleaved Coupled-
Inductor Boost Converter 

In order to test the validity of the large signal model, a 1 kW CL boost converter 

prototype was developed. Due to laboratory constraints, the maximum power available 

for testing is 1.2 kW. The maximum voltage and current ratings available are 500 V and 

25 A respectively. Hence, the rated voltage of the converter was designed to be 450 V, 

with a full-load current of 2.5 A.  

Several assumptions were made during the design of the converter. The first 

assumption is that the converter will operate at a fixed PWM switching frequency 

throughout all testing. The advantages of fixed-frequency include a simpler controller 

design and implementation. When operating in DCM, a converter often utilises 

variable-frequency control, in order to increase the on time of the switch, and in turn, 

reduce harmonics. Due to the fact that the purpose of the 1 kW prototype is to 

investigate the large-signal and small-signal model of each CCM and DCM mode, the 

implementation of variable-frequency control is not considered. 

The next assumption is that the converter be able to operate bi-directionally i.e. step-

up the voltage in one direction, and step-down the voltage in the opposite direction. 

Hence, all components are rated at 500 V minimum. This is to ensure that, whether the 

converter is in buck mode or boost mode, failure in any one component would not cause 

damage to others. However, the buck function was not utilised. Hence, only two 

MOSFETs and two diodes were implemented. 

The final assumption made during the design of the converter was the different input 

voltage levels. Three different input voltage values were chosen in order to ensure that 

all DCM modes were encountered with as little variation as possible. Hence, the three 

different input voltage levels were set as 150 V, 225 V, and 300 V. 

In order to fully test all modes of operation of a CL boost converter, the area of each 

mode was maximised by selecting appropriate values of leakage inductance, 

magnetising inductance, and switching frequency.  For example, if the switching 

frequency and inductances of the system were too low, the peak-to-peak inductor 

current ripple would be too high for the converter to operate in CCM at a power below 

the rated power level. However, if the values of frequency and inductances were too 

high, then there would be very little room to operate in many of the DCM modes, 

especially the modes that occur at low power. Hence, a leakage inductance of 335 μH, a 

magnetising inductance of 1 mH, and a switching frequency of 16 kHz were chosen. 
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The mode map of the 1 kW prototype CL boost converter is presented in Figure 2.28. 

As can be seen from the mode map, the area of each CCM and DCM mode is now large 

enough to accommodate experimental testing using a large range of parameters. 

 
Figure 2.28. 1 kW CL boost converter CCM-DCM mode map. 

The semiconductors chosen for the prototype are the Infineon CoolMOS MOSFET 

(IPW60R075CPA [2.33]) and the Cree Silicon Carbide (Sic) Schottky diode 

(CVFD20065A [2.34]). The high current ratings of both components are desired due to 

the fact that this prototype is for testing circuit operation theories, and as such, must be 

capable of handling high current levels, should anything unexpected occur. With the 

components designed, the 1 kW converter was developed, and is presented in Figure 

2.29. The coupled-inductor utilised in this design is the CCTT integrated magnetic, 

presented in Figure 2.30. A set of eight 440 μF electrolytic capacitor are connected in 

series and parallel to give approximately 900 μF of capacitance for the output filter, 

presented in Figure 2.31. This is to ensure that the output power of the converter is 

clean, and does not damage the dc electronic load. 

The phase currents of the converter are measured by the ABB EL 25 P Hall Effect 

sensor [2.35], while the input and output voltages are measured by the LEM LV25-p 

[2.36]. Both are presented in Figure 2.32. Finally, the converter is controlled by the 

Altera Cyclone III FPGA [2.37], presented in Figure 2.33. The small sampling time of 

the FPGA allows controllers to be designed in the analogue domain, and accurately 

emulated into the digital domain for digital implementation. Once developed, the 

converter efficiency was tested at an input voltage of 150 V at full load, and found to be 

97.5%. 

Vin = 150 V 

Vin = 300 V 

Vin =225 V 
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Figure 2.29. The two-phase interleaved coupled-inductor boost converter. 

 
Figure 2.30. The CCTT integrated magnetic. 

 
Figure 2.31. The converter output capacitor 
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Figure 2.32. The current and voltage sensors utilised in the 1 kW prototype. 

 
Figure 2.33. The Altera cyclone III FPGA. 
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2.9 Experimental Results 
Initial experimental results from the 1 kW CL boost converter prototype are 

presented below. The following parameters are used to test the different modes of the 

circuit: Vin = 50-275 V, Vout = 300 V, Pout = 40 W – 750 W, LLk = 335 μH, Lm = 1 mH, 

Ts = 62.5 μs. Figure 2.34 to Figure 2.45 show the experimental waveforms obtained 

during testing. The green waveform is the pole output voltage of phase 1, i.e. the 

voltage across the switch Q1, VQ1, and the blue and purple waveforms are the current 

waveforms of phase 1 and phase 2, respectively. Realization of unidirectional DCM 6 

and DCM 10 was initially attempted with an IGBT with no inverse diode. However, per 

the device specification (IRG4PC40K) [2.28], the IGBT experienced reverse breakdown 

as shown in Figure 2.46 and Figure 2.47. A series-blocking diode was subsequently 

required to realize DCM 6 and DCM 10. This issue can be more cleanly resolved by 

using the reverse-biased IGBT technology used in matrix converters from suppliers 

such as Fuji or IXYS. As can be seen from Figure 2.34 to Figure 2.45, all CCM and 

DCM modes of the CL converter are verified to exist. 

 
Figure 2.34. Experimental waveforms of CCM 2. The Q1 voltage (green) is 100V/div, while the phase 1 

current (blue) and phase 2 current (purple) are 1A/div each. 

 
Figure 2.35. Experimental waveforms of D = 0.5 in CCM. The Q1 voltage (green) is 100 V/div, while the 

phase 1 current (blue) and phase 2 current (purple) are 600 mA/div each. 
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Figure 2.36. Experimental waveforms of DCM 1. The Q1 voltage (green) is 100 V/div, while the phase 1 

current (blue) and phase 2 current (purple) are 1 A/div each. 

 
Figure 2.37. Experimental waveforms of DCM 2. The Q1 voltage (green) is 100 V/div, while the phase 1 

current (blue) and phase 2 current (purple) are 1 A/div each. 

 
Figure 2.38. Experimental waveforms of DCM 3. The Q1 voltage (green) is 100 V/div, while the phase 1 

current (blue) and phase 2 current (purple) are 600 mA/div each. 

 
Figure 2.39. Experimental waveforms of DCM 4. Q1 voltage (green) is 100V/div, while the phase 1 

current (blue) and phase 2 current (purple) are 500 mA/div each. 
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Figure 2.40. Experimental waveforms of DCM 5. The Q1 voltage (green) is 100 V/div, while the phase 1 

current (blue) and phase 2 current (purple) are 1 A/div each. 

 
Figure 2.41. Experimental waveforms of DCM 6. The Q1 voltage (green) is 100 V/div, while the phase 1 

current (blue) and phase 2 current (purple) are 1 A/div each. 

 
Figure 2.42. Experimental waveforms of DCM 7. The Q1 voltage (green) is 50 V/div, while the phase 1 

current (blue) and phase 2 current (purple) are 500 mA/div each. 

 
Figure 2.43. Experimental waveforms of DCM 8. The Q1 voltage (green) is 100 V/div, while the phase 1 

current (purple) and phase 2 current (blue) are 1 A/div each. 
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Figure 2.44. Experimental waveform of DCM 9. The Q1 voltage (green) is 200 V/div, while the phase 1 

current (blue) and phase 2 current (purple) are 500 mA/div and 1 A/div respectively. 

 
Figure 2.45. Experimental waveform of DCM 10. The Q1 voltage (green) is 100 V/div, while the phase 1 

current (purple) and phase 2 current (blue) are 1 A/div and 900 mA/div respectively. 

 
Figure 2.46. IGBT breakdown during DCM 6. The Q1 voltage (green) is 100V/div, while the phase 1 

current (purple) and phase 2 current (blue) are 1A/div each. 

 
Figure 2.47. IGBT breakdown during DCM 10. The Q1 voltage (green) is 100V/div, while the phase 1 

current (blue) and phase 2 current (purple) are 1A/div each. 
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The ringing which is evident in the pole voltage occurs in all dc-dc converters when 

operating in DCM, be it a discrete-inductor, or coupled-inductor converter. This ringing 

is due to the parasitic capacitances and inductances which are inherent in semiconductor 

switches such as MOSFETs [2.38]. In industrial applications, this ringing may be 

undesirable, and steps may have to be taken to reduce the effects of this ringing, such as 

accidental turn-on of the switch. Also evident in a number of the waveforms is an 

imbalance of current. This is mainly due to the fact that the tests were run in open loop, 

and while theoretically, the converter is completely symmetrical i.e. both phases are 

identical, in reality, slight differences in phase inductances and semiconductor 

characteristics will contribute to imbalances in the phases. Hence, while both phases are 

given identical duty cycles, differences in the current waveforms are expected. 

During testing, the converter input voltage is set to a constant value ranging from 50 

V to 275 V, and the load current is varied for that constant voltage. The closed-loop 

controller then settles on the duty cycle value needed to keep the output at 300V. The 

duty cycle and dc output current are then recorded. A plot of duty cycle versus dc output 

current for various voltage gains is shown in Figure 2.48. An excellent correlation is 

demonstrated between the analytical and experimental results. 

 
Figure 2.48. Experimental and calculated values of converter characteristics. 

As can be seen from Figure 2.48 it is now possible to predict the large signal 

behaviour of the CL boost converter. Though slight differences can be seen between the 

predicted and measured values, these can be explained via circuit parasitic, such as the 

inductor and capacitor ESRs, semiconductor losses, and core losses in the inductor.  
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2.10 Conclusions 
This chapter has presented an investigation of the various continuous-current (CCM) 

and discontinuous-current (DCM) modes of operation of the coupled-inductor 

interleaved two-phase boost converter. A comprehensive investigation of the DCM 

modes is required in order to optimize the converter for full-load and part-load 

operation, especially when considering such factors as control, efficiency, 

Electromagnetic Interference (EMI), and failure modes. The various CCM and DCM 

modes of the converter were identified together with their sub-modes of operation. The 

steady-state operating characteristics, equations and waveforms for the many CCM and 

DCM modes were presented for the converter family.  Brief solutions were presented 

for the CCM modes and two of the DCM modes. A set of simultaneous equations was 

presented for full set of DCM modes. Mode maps were developed to characterize the 

converter operation across the various modes over the operating range. An excellent 

correlation was demonstrated between the analytical predictions and the experimental 

results from a 1 kW boost laboratory prototype. A similar analysis of a CL buck 

converter is presented in Appendix A. 
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3 COUPLED-INDUCTOR 
INTERLEAVED CONVERTER 
SMALL-SIGNAL AND TRANSFER 
FUNCTION MODELS 

Small-signal models of dc-dc converters are essential in designing suitable 

controllers to ensure a regulated and stable output. Hence, this chapter focuses on the 

small-signal models and transfer functions of the continuous-conduction and 

discontinuous-conduction modes of operation of the two-phase CL interleaved 

converter. 
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3.1 Introduction 
Small-signal models are frequency-dependent mathematical models which 

characterise the non-linear dynamics of a system as a set of linear equations. These 

models can be utilised to characterise all levels of a multi-level system. For example, 

switch-mode power supplies have their own dynamics, and hence, have their own 

small-signal models [3.1]-[3.3]. Along with this, device components in these switch-

mode power supplies, such as diodes and semiconductor switches, will themselves have 

their own dynamics, which are independent of the converter. Hence, these devices will 

also have their own small-signal models [3.4]-[3.5].  

A wide body of literature is available on the methods of derivation of small-signal 

models for switch-mode power supplies. A comparison of the different methods of 

obtaining small-signal models of converters is presented in [3.7], which compares an 

experimental frequency sweep of a bidirectional dc-dc converter to the derivation of a 

small-signal equivalent circuit model. It is found that, while running an experimental 

frequency sweep yields more accurate results, it is harder to determine the factors that 

affect the small-signal models of converters, without running a multitude of sweeps and 

changing a single circuit parameter in each sweep.  The authors of [3.1] apply a state-

space approach to a buck and boost converter, which can then be extended to other 

converter topologies. A similar approach is taken in [3.6], where a state-space model of 

a generic converter is first derived, and discretized to give an accurate state-space model 

in the discrete domain. 

Along with the different methods, each switch-mode power supply topology also has 

a unique small-signal model. For example, while both are considered a second-order 

system, the small-signal models of a buck converter and a boost converter differ due to 

the different gains, as well as the fact that a boost converter operating in CCM contains 

a right-half plane zero in its transfer function. This right-half plane zero is due to the 

fact that, in order to increase the output voltage in a boost converter, the output must be 

disconnected from the input for a longer period of time. Initially, as this happens, the 

output capacitor does not have sufficient charge to supply the output. This causes the 

output of the system to drop before it rises, which is represented by the right-half plane 

zero [3.16]. 

There are various examples of small-signal modelling of different converters 

available. For example, the authors of [3.8]-[3.9] provide the derivation of the small-

signal model of a zero-voltage-switching phase-shifted PWM full-bridge power 
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converter, while the small-signal model for the quadratic buck converter is presented in 

[3.10]. 

In the area of coupled-inductors, a zero-voltage switched Single-Ended Primary 

Inductor Converter (SEPIC) dual converter utilising coupled-inductors is analysed via 

the small-signal equivalent circuit model in [3.11], while in [3.12] the small-signal 

model of a two-phase buck converter utilising centre-tapped coupled-inductors is 

discussed. Once again, the method of deriving the small-signal model in [3.12] involves 

replacing the circuit elements with their small-signal equivalent components. However, 

the converter is always assumed to be operating in CCM, and is not analysed for DCM 

operation. In [3.14] the authors present a generalised small-signal model derivation for 

several high-gain dc-dc converters utilizing coupled-inductors. As before, the initial step 

is to convert the system into its state-space model, and also replace the circuit 

components with their small-signal equivalent components. However, once again, each 

converter is assumed to be operating in CCM, and DCM operation is not included. 

As can be seen, very little research has been done on the area of dc-dc coupled-

inductor converters operating in DCM. The objective of this chapter is to give an 

extensive overview of the small-signal modelling and transfer function derivation of the 

single-phase (1L), two-phase (2L), and two-phase coupled-inductor (CL) dc-dc 

converters operating in both CCM and DCM.  

 Section 3.2 presents the method of linearisation used in this thesis, as well as the 

derivation of the transfer functions of the dc-dc converter family from the small-signal 

models. Section 3.3 focuses on the small-signal model of the 1L boost converter 

operating in both continuous-conduction mode and discontinuous-conduction mode. 

Section 3.4 extends this analysis into a 2L boost converter. Section 3.5 focuses on the 

small-signal model of a CL boost converter. Section 3.6 verifies the small-signal model 

of the CL converter with Matlab®/Simulink simulations and experimental frequency 

sweeps from the 1 kW laboratory prototype. Section 3.7 compares the small-signal 

models of the 2L and CL converters operating in CCM, while Section 3.8 compares the 

frequency responses of all CL converter DCM modes to their 2L counterparts. 
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3.2 Linearisation and Transfer Function Models of the DC-
DC Converter Family 

For each mode of operation in either the buck or boost converter, there are four 

transfer function models of interest; Gvv(s), the input voltage-to-output voltage model, 

Gvd(s), the duty cycle-to-output-voltage model, Gid(s), the duty cycle-to-inductor-current 

model and Gvi(s), the inductor current-to-output voltage model [3.13].  Hence, there are 

four states of interest when analysing the converter; the input voltage Vin, the output 

voltage Vout, the inductor currents IL1 and IL2, and the duty cycle D. 

3.2.1 Converter Linearisation 
 One of the major difficulties in deriving the small-signal models of power converters 

is the inherent non-linearity present in the converter large-signal models. Since small-

signal models are only accurate for linear models, the states of the converter are 

typically linearised around its operating points [3.15]. In order to linearise the states of 

the converter, the following linearisation method is applied. 

If 

( , )dX f X Y
dt

  

then 
  ( , ) ( , )d x f X Y f X Yx y

dt X Y
 

 
   

where  is the small perturbation of  and  is the small perturbation of . The 

operating points are defined as  and . Hence, the states of the converter, once 

linearised, transform into 

 


1 11

in inin

out outout

L LL

V V v

V V v

I I i

D D d

 

 

 

 






  (3.1) 

where inV is the input voltage at the operating point, and inv  is its perturbation, outV is 

the output voltage at the operating point, and outv  is its perturbation, 1LI is the phase 1 

inductor current at the operating point, and 1Li  is its perturbation, D is the duty cycle at 

the operating point, and d  is its perturbation. This method of linearisation is easily 

implemented in software such as Matlab®, and as such is the method of choice. 

Throughout this chapter, the derivation of the small-signal models of the dc-dc 
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converter will be presented. For each converter, the resulting dynamic models will take 

the form of 

 1
11 1 1 1

( ) ( ) ( ) ( ) ( )L
in out L

di tL v t v t d t i t
dt

      
      (3.2) 

  12 2 2 2
( ) ( ) ( ) ( ) ( )out

in out Lout
d v tC v t v t d t i t

dt
      

      (3.3) 

3.2.2 Converter Transfer Function Models 
The two most common forms of representing small-signal models for control design 

are state-space models [3.16] and transfer functions. This section focuses on the 

derivation of the transfer function models from the small-signal models presented in 

equations (3.2) and (3.3). Transfer functions are representations of the gain and phase of 

the linearised system in the frequency domain. Hence, equations (3.2) and (3.3) must be 

converted into the frequency domain using the Laplace transform, which results in 

 1 11 1 1 1( ) ( ) ( ) ( ) ( )L in out LsLi s v s v s d s i s            (3.4) 

  12 2 2 2( ) ( ) ( ) ( ) ( )out in out LoutsC v s v s v s d s i s            (3.5) 

3.2.2.1 Input Voltage-to-Output Voltage Small-Signal Model 
In order to find the input voltage-to-output voltage transfer function Gvv(s), the 

inductor current in equation (3.4) is isolated. 

 


1 1 1
1

1
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    (3.6) 

This expression is then substituted into equation (3.5). 
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      (3.7) 

By gathering all the terms of the dynamic coefficients together, it is found that 
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   (3.8) 

By letting ( ) = 0, the input voltage-to-output voltage transfer function is found as 

 2 1 2 2 1
2

2 1 1 2 2 1

( )( )( )
( ( ) ( ))( )

out
vv

in out out

sLv sG s
s LC s L Cv s

    
     

 
 

   


   (3.9) 

3.2.2.2 Duty Cycle-to-Output Voltage Small-Signal Model 

In order to find the duty cycle-to-output voltage transfer function Gvd(s), ( ) is set 

to zero in equation (3.8). Hence 
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2 1 2 2 1
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  (3.10) 

3.2.2.3 Duty Cycle-to-Inductor Current Small-Signal Model 
In order to find the duty cycle-to-inductor current transfer function Gid(s), the output 

voltage in equation (3.5) is isolated. 

 
 12 2 2
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    (3.11) 

This expression for the output voltage is then inserted into equation (3.4). 
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By gathering all the terms of the dynamic coefficients together, it is found that 
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   (3.13) 

In order to find the duty cycle-to-inductor current transfer function Gid(s), ( ) is set 

to zero in equation (3.13). Hence 
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  (3.14) 

3.2.2.4 Inductor Current-to-Output Voltage Small-Signal Model 
In order to find the inductor current-to-output voltage transfer function Gvi(s), the 

duty cycle in equation (3.5) is isolated. 

  12 2 2

2

( ) ( ) ( ) ( )( ) out in out LoutsC v s v s v s i sd s   


  


   
  (3.15) 

This expression for the duty cycle is then inserted into equation (3.4) and the dynamic 

coefficients gathered. 

 12 2 1 1 2 2 1 1 2

1 1 2 2 1

( ) ( ) ( ) ( )( )
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L in
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    (3.16) 

In order to find the inductor current-to-output voltage transfer function Gvi(s), ( ) is 

set to zero in equation (3.16). Hence 

 2 2 1 1 2

1 1 1 2 2 1

( )( )( )
( )( )

out
vi

L out

s Lv sG s
s Ci s
    
    

 
 

 


   (3.17) 

The transfer functions represented in equations (3.9), (3.10), (3.14), and (3.17) can be 

applied to the 1L, 2L or CL boost converter. The remainder of the chapter will focus on 

the derivation of the small-signal models of equations (3.2) and (3.3) for each converter. 
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3.3 Single-Phase Boost Converter (1L) Small-Signal Model 
The following section presents the derivation of each CCM and DCM dynamic 

model for the 1L boost converter. 

3.3.1 Small-Signal Models of 1L Boost Converter in CCM 
In order to derive the small-signal model of a 1L boost converter, expressions for the 

inductor voltage and output capacitor current must first be developed over one full 

switching cycle. When operating in CCM, there are two distinct sub-modes of 

operation: (i) when the switch in closed during cycle time DTs and current builds in the 

inductor, and (ii) when the switch is open during cycle time (1-D)Ts and current drops in 

the inductor, as shown in Figure 3.1. 

 
Figure 3.1. Inductor current waveform of a 1L boost converter operating in CCM. 

In order to analyse the converter over one full cycle, the converter average model 

will be found [3.16]. 

When the switch is closed, the input and output of the converter are isolated, as 

shown in Figure 3.2. 

 
Figure 3.2. 1L boost converter during cycle time DTs. 

The inductor voltage VL(D) and output capacitor current ICo(D) in this state are expressed 

as 

 1( )
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L D
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 ( ) ( )
( )

out D out D
Co D out

out

dV V
I C

dt R
     (3.19) 

where IL1(D) is the dc inductor current during switch on-time, Vin(D) is the converter input 

voltage during switch on-time, Vout is the converter output voltage during switch on 

time, Rout is the converter load resistance, L is the value of inductance and Cout is the 

output capacitance. When the switch is open, the input and output are directly connected 

to each other, as shown in Figure 3.3. 

Vin

L

Cout Rout
+

-

Vout

IL1

VL -+

ICo
ID1

 
Figure 3.3. 1L boost converter during cycle time (1-D)Ts. 

The inductor voltage VL(1-D) and output capacitor current ICo(1-D) in this state are 

expressed as 

 1(1 )
(1 ) (1 ) (1 )

L D
L D in D out D

dI
V L V V

dt


       (3.20) 

 (1 ) (1 )
(1 ) 1(1 )

out D out D
Co D out L D

out

dV V
I C I

dt R
 

      (3.21) 

By averaging equations (3.18) with (3.20) and (3.19) with (3.21), equations (3.22) and 

(3.23), the weighted average dynamic equations of the 1L boost converter are derived. 

 1
( ) (1 D) (1 )L

L D L in out
dIV V L V D V
dt       (3.22) 

 ( ) (1 ) 1(1 )out out
Co D Co D out L

out

dV VI I C D I
dt R       (3.23) 

As stated in Section 3.2.1, equations (3.22) and (3.23) are non-linear, and must be 

linearised around the operating points of the inductor current, input voltage, output 

voltage and duty cycle. In order to simplify the linearisation process, equation (3.22) is 

first expanded, removing the brackets i.e. 

 1
1( , , )L

in out out in out
dIL V V DV f V V D
dt

      (3.24) 

Each state equation will be linearised independently, and added, to find the full small-

signal model of equation (3.24). 

 1 1
in

f
V



   (3.25) 
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Hence, the small-signal model of the inductor voltage is found to be 

 1( ) ( ) (1 ) ( ) ( )L
in out out

di tL v t D v t V d t
dt

   
     (3.29) 

Linearising equation (3.23) in precisely the same manner, the small-signal model of the 

output capacitor current is found. 

 11
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LLout
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dv t v tC D i t I d t
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    (3.30) 

In order to simplify the small-signal models, the following substitutions are made for 

the coefficients of the perturbations. 
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Hence, the dynamic equations (3.29) and (3.30) become 

 1
11 1 1 1

( ) ( ) ( ) ( ) ( )L
in out L

di tL v t v t d t i t
dt

      
      (3.33) 

  12 2 2 2
( ) ( ) ( ) ( ) ( )out

in out Lout
d v tC v t v t d t i t

dt
      

      (3.34) 

which are identical to equations (3.2) and (3.3). By substituting (3.31) and (3.32) into 

the transfer functions presented in equations (3.9), (3.10), (3.14), and (3.17), Gvv(s), 

Gvd(s), Gid(s), and Gvi(s) are found for the 1L boost converter as 
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2 2

( ) 1( )
( ) (1 )

out
vv

in
out

out

v s DG s Lv s C Ls s D
R


 

  


   (3.35) 

 
1

2 2

( ) (1 )( )
( ) (1 )

Lout out
vd

out
out

v s V D sLIG s Ld s C Ls s D
R

 
 

  


  (3.36) 

 

1
1

2 2

(1 )
( )( )
( ) (1 )

out
Loutout

L out
id

out
out

VsC V I D
Ri sG s Ld s C Ls s D
R

  
 

  


  (3.37) 

 
1

1
1

( ) (1 )( )
( ) (1 )

Lout out
vi

L out
Loutout

out

v s sLI D VG s
i s VsC V I D

R

  
 

  


   (3.38)  

3.3.2 Small-Signal Models of 1L Boost Converter in DCM 
The inductor current waveform of a 1L boost converter operating in DCM is 

presented in Figure 3.4. 

 
Figure 3.4. Inductor current waveform of a 1L boost operating in DCM. 

From Figure 3.4, it can be seen that a third segment now exists in the waveform during 

the cycle time D3Ts. This part of the cycle is shown in Figure 3.5. 

 
Figure 3.5. 1L boost converter during cycle time D3Ts. 
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By applying Figure 3.4 to Figure 3.2, Figure 3.3 and Figure 3.5, the dynamic equations 

of the 1L boost converter operating in DCM are found. 

 1 ( )L
in off off out

dIL V D D D V
dt

     (3.39) 

 1 1
out out

out L S
out

dV VC I I
dt R

     (3.40) 

where IS1 is the dc current flowing through the switch, which, when subtracted from the 

inductor current, gives the converter diode current. Both the equations above contain 

unknown variables which must first be solved before linearisation. The peak-to-peak 

inductor current ripple of the converter is expressed as 

 1
in s

L p p
V DTI

L    (3.41) 

By using the formula for the area of a triangle, the dc phase current is found as 

 1
1

( )
( )

2 2
L p p off in s

L off

I D D V DTI D D
L

 
     (3.42) 

Solving equation (3.42) for Doff yields 

 12 L
off

in s

I LD D
V DT

    (3.43) 

Similarly, the dc switch current is found to be 

 
2

1
1 2 2

L p p in s
S

I D V D TI
L


    (3.44) 

Inserting equation (3.43) into equation (3.39), and equation (3.44) into equation (3.40), 

the full dynamic models of the 1L converter operating in DCM are found. 

 1 1 12 2L L L
out

s in s

dI I L I LL D V
dt DT V DT

 
   

 
  (3.45) 

 
2

1 2
out in s out

out L
out

dV V D T VC I
dt L R

     (3.46) 

Linearising equations (3.45) and (3.46), the small-signal models of the 1L boost 

converter operating in DCM are found as 

 1
11 1 1 1

( ) ( ) ( ) ( ) ( )L
in out L

di tL v t v t d t i t
dt

      
      (3.47) 

  12 2 2 2
( ) ( ) ( ) ( ) ( )out

in out Lout
d v tC v t v t d t i t

dt
      

      (3.48) 

where  
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1
1 2

1
1

1 1
1 2 2

1

2

2

2 21

2 ( )

L out

ins

L

ins

L L
out

ins s

out in

ins

I LV
DT V

I LD
DT V

I L I LV
D T V D T

L V V
DT V











 

 
   
 
 


 

  (3.49) 

and 

 

2

2

2

2

2

2
1

1

s

out

ins

D T
L

R

DT V
L









 

 

 



  (3.50) 

The transfer functions of the converter are found by substituting (3.49) and (3.50) into 

the transfer functions presented in equations (3.9), (3.10), (3.14), and (3.17). 
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3.4 Two-Phase Boost Converter (2L) Small-Signal Model 
The following section presents the derivation of each of the four transfer functions 

found in a 2L boost converter operating in CCM and DCM. For the analysis, it is 

assumed that the two phases of the converter are balanced i.e. the phase 1 dc current IL1 

equals the phase 2 dc current IL2, the phase 1 inductance L1 = L equals the phase 2 

inductance L2 = L, and the phase 1 duty cycle D1 = D is equal to the phase 2 duty cycle 

D2 = D. 

3.4.1 Small-Signal Models of 2L Boost Converter in CCM 
When assuming balanced phases in a multi-phase converter, the solution of one 

phase can be directly applied to all other phases. Hence, only phase 1 of the 2L 

converter needs be analysed.  In the 2L converter, the current waveform in phase 1 is 

identical to the waveform from a single phase converter, shown in Figure 3.1. Hence, 

the inductor voltage dynamic equation is also identical. 

 1 (1 )L
in out

dIL V D V
dt

     (3.51) 

The output capacitor current can also be derived in a similar manner. In the 1L 

converter, the output capacitor current was the sum of the diode current and the output 

load current. In a 2L converter, the current from the second phase must be added. Since 

IL1 = IL2, the output capacitor current dynamic equation is derived as 

 12(1 )out out
out L

out

dV VC D I
dt R

     (3.52) 

Equations (3.51) and (3.52) are linearised, and the small-signal models of the 2L 

boost converter operating in CCM are found as 

 1
11 1 1 1

( ) ( ) ( ) ( ) ( )L
in out L

di tL v t v t d t i t
dt

      
      (3.53) 

  12 2 2 2
( ) ( ) ( ) ( ) ( )out

in out Lout
d v tC v t v t d t i t

dt
      

      (3.54) 

where  

 

1

1

1

1

1

(1 )

0
out

D

V










  




  (3.55) 

and 
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2

2

12

2

0
1

2

2(1 )

out

L

R

I

D











 

 

 

  (3.56) 

3.4.2 Small-Signal Models of 2L Boost Converter in DCM 
As with CCM operation, DCM operation in a 2L converter is very similar to a 1L 

converter. The dynamic equation of the inductor voltage is 

 1 ( )L
in off off out

dIL V D D D V
dt

     (3.57) 

While the equation of the output capacitor current, which must take into account the 

second phase, is 

 1 12 2out out
out L S

out

dV VC I I
dt R

     (3.58) 

Equations (3.43) and (3.44) are inserted into the dynamic equations above to yield 

 1 1 12 2L L L
out

s in s

dI I L I LL D V
dt DT V DT

 
   

 
  (3.59) 

 
2

12out in s out
out L

out

dV V D T VC I
dt L R

     (3.60) 

Equations (3.59) and (3.60) are linearised, and the small-signal models of the 2L boost 

converter operating in DCM are found as 

 1
11 1 1 1

( ) ( ) ( ) ( ) ( )L
in out L

di tL v t v t d t i t
dt

      
      (3.61) 

  12 2 2 2
( ) ( ) ( ) ( ) ( )out

in out Lout
dv tC v t v t d t i t

dt
      

      (3.62) 

where  

 

1
1 2

1
1

1 1
1 2 2

1

2

2

2 21

2 ( )

L out

ins

L

ins

L L
out

ins s

out in

ins

I LV
DT V

I LD
DT V

I L I LV
D T V D T

L V V
DT V











 

 
   
 
 


 

  (3.63) 
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and 

 

2

2

2

2

2

1

2

2

s

out

ins

D T
L

R

DT V
L









 

 

 



  (3.64) 
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3.5 Coupled-Inductor Boost Converter (CL) Small-Signal 
Model 

The following section presents the derivation of each of the four transfer functions 

found in a CL boost converter operating in CCM and three of the eight modes of DCM; 

DCM 4, DCM 1 and DCM 8. 

For the analysis, it is assumed that the two phases of the converter are balanced i.e. 

the phase 1 dc current IL1 equals the phase 2 dc current IL2, the phase 1 leakage 

inductance LLk1 = LLk equals the phase 2 inductance LLk2 = LLk, and the phase 1 duty 

cycle D1 = D is equal to the phase 2 duty cycle D2 = D. 

3.5.1 Small-Signal Models of the CL Boost Converter in CCM 
As with the 1L and 2L converters, to develop the small-signal model of a CL boost 

converter, expressions for the inductor voltage and output capacitor current must first be 

developed over one full switching cycle. For this analysis, it is assumed the duty cycle 

is at a value less than 0.5. The phase 1, phase 2, and magnetising current waveforms of 

the CL converter operating in CCM for a duty cycle less than 0.5 are presented in 

Figure 3.6. 

 
Figure 3.6. Current waveforms of phase 1, phase 2, and magnetising currents. 

As stated in chapter 2, in the CL boost converter, there are four sub-modes of 

operation when the converter is in CCM. These are presented in Figure 3.7 and Figure 

3.8, and correspond with the segments D1, D2, D3 and D4 of Figure 3.6.  
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Vin

LLk

LLk

Cout Rout
Iin

IL1

IL2

Lm

Vin

LLk

LLk

Cout Rout
Iin

IL1

IL2

Lm

(a) (b)  
Figure 3.7. CL boost converter operating in region (a) D1 and (b) D3. 

 
Figure 3.8. CL boost converter operating in regions D2 and D4. 

As with the 2L converter, since it is assumed that the operation of both phases is 

balanced; only one phase needs to be solved. The solution of this phase can then be 

directly applied to the second phase. Hence, using Figure 3.6, Figure 3.7 and Figure 3.8, 

the CL boost dynamic equations are 

 1
1

I (1 )L
Lk Lk in out T

dV L V D V V
dt

       (3.65) 

 12 (1 )out out
Co out L

out

dV VI C I D
dt R

      (3.66) 

where  

 m 1 2
1

I L L
M m m m

d dI dIV L L L
dt dt dt

     (3.67) 

where Im is the magnetizing current, which is the difference in current between IL1 and 

IL2, and Lm is the magnetizing inductance. From Figure 3.6, it is evident that the total 

change in the magnetising current over one full cycle is zero. Hence  

 1 0MV    (3.68) 

By applying Equation (3.68) to equation (3.65), the dynamic equation for the 

inductor voltage simplifies down to that of a 2L converter. Therefore, the solutions of 

the 2L boost converter given in equations (3.35) to (3.38) also hold true for the CL 

boost converter if the leakage inductance of the CL converter is equal to the phase 

inductance of the 2L converter. 
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3.5.2  Small-Signal Models of the CL Boost Converter in DCM 4 
Due to the similarities of DCM 4 with DCM operation in a 2L converter, it will be 

the first DCM mode to be analysed. The phase current and magnetising current 

waveforms of DCM 4 are presented in Figure 3.9. 

 
Figure 3.9. Phase and magnetising currents of CL boost converter operating in DCM 4. 

As stated in Chapter 2, there are six sub-modes of operation in DCM 4. Since 

balanced operation is assumed, only one phase of the converter needs to be analysed. 

This reduces the number of modes to be analysed from six to three, as shown in Figure 

3.9. These sub-modes are presented in Figure 3.10 and Figure 3.11. 

 
Figure 3.10. The sub-modes of operation (a) D1 and (b) D2 of DCM 4. 

 
Figure 3.11. The sub-mode of operation D3 of DCM 4. 
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Using Figure 3.9, Figure 3.10, and Figure 3.11, the dynamic equations of DCM 4 are 

found to be 

 1
1( )L

Lk in off off out T
dIL V D D D V V
dt

      (3.69) 

 1 12 2out out
out L S

out

dV VC I I
dt R

     (3.70) 

As with CCM operation, the total change in magnetising current in the regions of D1 

and D3 equals 0, hence 

 1 0TV    (3.71) 

Equation (2.31) for Doff of DCM 4, which was derived in Chapter 2, is entered into 

equation (3.83), to complete the inductor voltage equation. In order to find an 

expression for IS1, the peak-to-peak inductor current ripple is applied as follows 

 
2

1
1 2 2( )

L p p in s
S

Lk m

I D V D TI
L L


 


  (3.72) 

Hence, the full dynamic equations of the DCM 4 CL boost converter are 

 1 11 2 ( ) 2 ( )L Lk m L Lk mL
Lk out

s in s

I L L I L LdIL D V
dt DT V DT

  
   

 
  (3.73) 

 
2

12
( )

out in s out
out L

Lk m out

dV V D T VC I
dt L L R

  


  (3.74) 

Equations (3.73) and (3.74) are linearised, and the small-signal models of the CL boost 

converter operating in DCM 4 are found as 

 1
11 1 1 1

( ) ( ) ( ) ( ) ( )L
in out LLk

di tL v t v t d t i t
dt

      
      (3.75) 

  12 2 2 2
( ) ( ) ( ) ( ) ( )out

in out Lout
dv tC v t v t d t i t

dt
      

      (3.76) 

where  

 

1
1 2

1
1

1 1
1 2 2

1

2 ( )

2 ( )

2 ( ) 2 ( )1

2( )( )

L outLk m

ins

L Lk m

ins

L LLk m Lk m
out

ins s

out inLk m

ins

I L L V

DT V

I L LD
DT V

I L L I L LV
D T V D T

L L V V
DT V













 

  
   
 
 

 
 

  (3.77) 
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and 

 

2

2

2

2

2

( )
1

2
( )

2

s

Lk m

out

ins

Lk m

D T
L L

R

DT V
L L









 


 

 




  (3.78) 

From the coefficients of given in (3.77) and (3.78), the small-signal equations of 

DCM 4 are nearly identical to those of a 2L boost operating in DCM. The main 

difference is that the magnetising inductance must now be taken into account. 

3.5.3  Small-Signal Models of the CL Boost Converter in DCM 1 
When the converter enters DCM with a duty cycle less than 0.5, the first mode it 

enters is DCM 1, the waveforms of which are shown in Figure 3.12. As previously 

stated in Chapter 2, there are six sub-modes of operation of the converter when 

operating in DCM 1. These are labelled D1 to D6 in Figure 3.12. Once again, if balanced 

operation is assumed, only one phase needs to be analysed, and D6 can be eliminated 

from the analysis. The remaining sub-modes are presented in Figure 3.13 and Figure 

3.14. 

 
Figure 3.12. Phase and magnetising currents of CL boost converter operating in DCM 1. 
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Figure 3.13. The sub-modes of operation (a) D1 and (b) D2 and D5 of DCM 1. 

 
Figure 3.14. The sub-modes of operation (a) D3 and (b) D4 of DCM 1. 

Using Figure 3.12, Figure 3.13,and Figure 3.14, the dynamic equations of DCM 1 are 

found to be 

 1
1( )L

Lk in off off out T
dIL V D D D V V
dt

      (3.79) 

 1 12 2out out
out L S

out

dV VC I I
dt R

     (3.80) 

The switch current of DCM 1 occurs during the sub-mode D1, which is also the cycle 

time of the peak-to-peak ripple current. Hence 

 1 2
Lp p

S

I D
I 

   (3.81) 

By following the method given in section 2.5, the peak-to-peak inductor current ripple 

is given by 

 1 1(2 )
2 2( 2 )

in out s out s
Lp p

Lk Lk m

V V D T V D TI
L L L


  


  (3.82) 

Hence, the switch current of DCM 1 is given by 

 
2

1
1

(2 )
( 2 ) 2

in out out s
S

Lk Lk m

V V V D TI
L L L

 
   

  (3.83) 

In order to complete the inductor voltage equation, the magnetizing term VT1 must be 

found. VT1 is the voltage drop across the magnetizing inductance due to the change in 

magnetizing current. Hence, to simplify the expression for VT1, it is broken down into its 

component parts i.e. 

 
5

1
1

mx
T x m

x

dIV D L
dt

   (3.84) 
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where x denotes the sub-mode of operation. By analysing the magnetizing waveform 

given in Figure 3.12, it is evident that 

 1 4

2 5 0
m m

m m

I I
I I
  
   

  (3.85) 

Hence 

 3
1

m
T m

s

IV L
T


   (3.86) 

The change in magnetizing current during the cycle time D3 is given by the expression 

 3
3

( )in out s
m

Lk m

V V D TI
L L


 


  (3.87) 

From Figure 3.12, the cycle time D3 can be expressed as 

 3 1 offD D D     (3.88) 

Therefore, the magnetizing element of the inductor voltage equation is expressed as 

 1

( )(1 )in out off
T m

Lk m

V V D D
V L

L L
  




  (3.89) 

Equations (3.83) and (3.89) are substituted into equations (3.79) and (3.80), 

respectively, to give 

 1 ( )(1 )
( ) in out offL

Lk in off off out m
Lk m

V V D DdIL V D D D V L
dt L L

  
   


  (3.90) 

 2
1 1

(2 )2
( 2 )

out in out out out
out L s

Lk Lk m out

dV V V V VC I D T
dt L L L R

 
     

  (3.91) 

Finally, the solution for Doff during DCM 1, which is given in the appendix, is 

entered into equation (3.90) and solved. Due to the length of the solution, it is not 

presented here. Equations (3.90) and (3.91) are linearised, and the small-signal models 

of the CL boost converter operating in DCM 1 are found as 

 1
11 1 1 1

( ) ( ) ( ) ( ) ( )L
in out LLk

di tL v t v t d t i t
dt

      
      (3.92) 

  12 2 2 2
( ) ( ) ( ) ( ) ( )out

in out Lout
dv tC v t v t d t i t

dt
      

      (3.93) 

As with Doff, the expressions for the α, β, γ, and δ coefficients are too large to present 

here. However, with the expressions for Doff, IS1, VT1, and the non-linearised equations 

(3.90) and (3.91) given in the appendix for all DCM modes, as well as the Matlab® 

code used to generate the α, β, γ, and δ coefficients, all information needed to solve for 

the small-signal models is given. From the solutions presented in the appendix, it is 
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clear to see that the magnetising inductance now plays quite a large role in the small-

signal model. 

3.5.4  Small-Signal Models of the CL Boost Converter in DCM 8 
When the converter enters DCM with a duty cycle greater than 0.5, the first mode it 

enters is DCM 8, the waveforms of which are shown in Figure 3.15. Similar to DCM 1, 

there are six sub-modes of operation of the converter when operating in DCM 8. These 

are labelled D1 to D6 in Figure 3.15. Once again, if balanced operation is assumed, only 

one phase needs to be analysed, and D6 can be eliminated from the analysis. The 

remaining sub-modes are presented in Figure 3.16 and Figure 3.17.  

 
Figure 3.15. Phase and magnetising currents of CL boost converter operating in DCM 8. 

 
Figure 3.16. The sub-modes of operation of (a) D1 and D4 and (b) D2 of DCM 1. 
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Figure 3.17. The sub-modes of operation of (a) D3 and (b) D5 of DCM 1. 

 
Using Figure 3.15, Figure 3.16 and Figure 3.17, the dynamic equations of DCM 8 are 

found to be 

 1
1( )L

Lk in off off out T
dIL V D D D V V
dt

      (3.94) 

 1 12 2out out
out L S

out

dV VC I I
dt R

     (3.95) 

The switch current of DCM 8 occurs during the sub-modes D1 to D4, as shown in Figure 

3.18. 

 
Figure 3.18. Phase 1 inductor current waveform of DCM 8. 

By analysing the values of I1, to I4 of Figure 3.18 in a similar manner to Section 2.6.2, 

the switch current of DCM 8 is found to be 
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  (3.96) 

Once again, to complete the inductor voltage equation, the magnetizing term VT1 must 

be found where  

 
5

1
1

mx
T x m

x

dIV D L
dt

   (3.97) 

where x denotes the sub-mode of operation. By analysing the magnetizing waveform 

given in Figure 3.18, it is evident that 

 1 4

2 5

0m m

m m

I I
I I

   
  

  (3.98) 

Hence 

 3
1

m
T m

s

IV L
T


   (3.99) 

The change in magnetizing current during the cycle time D3 is given by the expression 

 3
3

in s
m

Lk m

V D TI
L L

 


  (3.100) 

From Figure 3.18, the cycle time D3 can be expressed as 

 3 1 offD D D     (3.101) 

Therefore, the magnetizing element of the inductor voltage equation is expressed as 

 1

(1 )in off
T m

Lk m

V D D
V L

L L
 




  (3.102) 

Finally, the equation for Doff for DCM 8, given in the appendix, is entered into 

equation (3.94) and (3.100), and solved. Due to the length of the solution, it will not be 

presented here. The expressions for VT1, Doff and IS1 are inserted into equations (3.94) 

and (3.95), and are linearised to find the small-signal models of the CL boost converter 

operating in DCM 8.  

 1
11 1 1 1

( ) ( ) ( ) ( ) ( )L
in out L

di tL v t v t d t i t
dt

      
      (3.103) 
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  12 2 2 2
( ) ( ) ( ) ( ) ( )out

in out Lout
dv tC v t v t d t i t

dt
      

      (3.104) 

As with DCM 1, the expressions for the α, β, γ, and δ coefficients are too large to 

present here. However, as discussed in Section 3.5.3, with the expressions for Doff, IS1, 

VT1, and the non-linearised expressions given in the appendix for all DCM modes, as 

well as the Matlab® code used to generate the α, β, γ, and δ coefficients, all information 

needed to solve for the small-signal models is given.  Once again, it is evident that the 

magnetising inductance plays a large role in the small-signal models.  
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3.6 Verification of Small-Signal Models 
The power electronics package SimPowerSystems in Matlab®/Simulink [3.17] was 

used to build and simulate an accurate circuit model of 1 kW CL boost converter 

prototype, presented in Figure 3.19. 

 
Figure 3.19. Matlab®/Simulink block Diagram of the 1 kW CL boost converter prototype. 

An algorithm was developed to generate a sine wave duty cycle with a dc bias and 

sweeping frequency. For example, when the converter is operating in CCM 1, the 

operating point of the duty cycle is given as 0.5, with a perturbation of ±0.03, with the 

frequency sweep beginning at 10 Hz, and ending at 10 kHz. The output voltage is then 

measured, and its amplitude and phase compared to the amplitude and phase of the 

input duty cycle. The magnitude and phase difference is then calculated from these 

measurements, and a transfer function and Bode plot are estimated from the results. 

3.6.1 Coupled-Inductor CCM Small-Signal Model Verification 
The input voltage, output voltage, duty cycle and phase current are set to ensure the 

converter operates in CCM. The open-loop duty cycle-to-output voltage transfer 

function is then estimated, and compared with the duty cycle-to-output voltage transfer 

function obtained in Section 3.4.1. The results are resented in Figure 3.20. 
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Figure 3.20. Frequency response of simulated (*) and calculated (-) Gvd(s), the duty cycle –to-output 

voltage transfer function of the coupled-inductor boost converter operating in CCM. 

As can be seen in Figure 3.20, there is an excellent match between the estimated and 

calculated transfer functions for the CL converter operating in CCM. 

An experimental frequency sweep was performed on the 1 kW laboratory prototype 

and compared to a calculated frequency response. The results are presented in Figure 

3.21. It should be noted that, due to resolution issues, and the large attenuation at higher 

frequencies, only results up to 1 kHz are considered accurate.  

 
Figure 3.21. Experimental Frequency sweep vs. theoretical frequency sweep of the CL boost converter 

operating in CCM for Gvd(s), the duty cycle-to-output voltage transfer function. 

As can be seen from Figure 3.20, the dc gain and gain at high frequencies are similar. 

A major difference is seen between 100 Hz and 1 kHz. This is due to the fact that the 
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resonance of the converter, making the magnitude and phase change much more gradual 

than what is calculated. This is verified by inserting the capacitance ESR into the 

Simulink simulation and repeating the frequency sweep, the results of which are 

presented in Figure 3.22. As can be seen, the resonance has now completely 

disappeared. 

 
Figure 3.22. Experimental Frequency sweep vs. simulated frequency sweep of the CL boost converter 

operating in CCM for Gvd(s), the duty cycle-to-output voltage transfer function. 

3.6.2 Coupled-Inductor DCM 4 Small-Signal Model Verification  
The input voltage, output voltage, duty cycle and phase current are set to ensure the 

converter operates in DCM 4. The open loop duty cycle-to-output voltage transfer 

function is then estimated, and compared with the duty cycle-to-output voltage transfer 

function obtained in Section 3.4.2. The results are presented in Figure 3.23. 

 
Figure 3.23. Frequency Response of simulated (*) and calculated (-) Gvd(s), the duty cycle –to-output 

voltage transfer function of the coupled-inductor boost converter operating in DCM 4. 
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As can be seen from Figure 3.23, the estimated frequency response of DCM 4 

follows the frequency response of the calculated transfer function closely. The results 

begin to diverge at 10 kHz.  

3.6.3 Coupled-Inductor DCM 8 Small-Signal Model Verification  
The input voltage, output voltage, duty cycle and phase current are set to ensure the 

converter operates in DCM 8. The open loop duty cycle-to-output voltage transfer 

function is then estimated, and compared with the duty cycle-to-output voltage transfer 

function obtained in Section 3.4.4. The results are resented in Figure 3.24. 

  

 
Figure 3.24. Frequency Response of simulated (*) and calculated (-)  Gvd(s), the duty cycle –to-output 

voltage transfer function of the coupled-inductor boost converter operating in DCM 8. 

Once again, the estimated frequency response of DCM 8 follows the frequency 

response of the calculated transfer function closely. The results do begin to diverge at 

10 kHz. 
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Figure 3.25. Experimental Frequency sweep vs. theoretical frequency sweep of the CL boost converter 

operating in DCM 2 for Gvd(s), the duty cycle-to-output voltage transfer function. 

3.6.5 Coupled-Inductor DCM 9 Small-Signal Model Verification  
As with DCM 2, an experimental frequency sweep was performed on the 1 kW 

laboratory prototype and compared to a calculated frequency response for verification 

of DCM 9. The results are presented in Figure 3.26. 

 
Figure 3.26. Experimental Frequency sweep vs. theoretical frequency sweep of the CL boost converter 

operating in DCM 9 for Gvd(s), the duty cycle-to-output voltage transfer function. 
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Figure 3.27. Current Waveforms of DCM with showing resonance due to the equivalent output 

capacitance of MOSFETs. 

 However, this capacitance is not included in the derivation of the small-signal 

model, hence giving rise to the difference in the gain. What is also evident at higher 

frequencies is the effect of the output capacitor equivalent series resistance (ESR), 

which causes the slight increase in phase of the experimental results. Again, this ESR is 

not included in the derivation. 
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3.7 Comparison of 2L and CL CCM Small-Signal Models 
For appropriate comparison between CCM operation of the 2L and CL converters, 

suitable phase, leakage and magnetizing inductances must be chosen. When designing a 

dc-dc converter, one of the chief design considerations is the maximum allowed peak-

to-peak phase current, which can dictate the maximum rating of the semi-conductor 

devices. Hence, to compare the 2L converter to a CL converter, both converter designs 

assume identical phase current ripples at a given CCM operating point. For the purpose 

of this analysis, the magnetizing inductance of the CL boost converter is set to be N 

times the leakage inductance, where N is the ratio of magnetizing inductance to Leakage 

inductance i.e.  

 m LkL L N   (3.105) 

Table 3.1 provides the calculations for the leakage inductance of a CL boost 

converter operating with the same CCM worst-case peak-to-peak phase current ripple as 

an equivalent 2L converter. 

Table 3.1. Leakage inductance values of the boost CL converters for the same peak-to-peak conditions as 
a 2L converter. 

 D < 0.5 D > 0.5 

LLk 1
1 1 2 1
2 1 (2 1)(1 )

DL
D N D

 
    

 1 1
(2 1)

NL
D N

 
  

 

 

From Table 3.1, it is evident that when N is greater than zero, the leakage inductance 

will always be less than the phase inductance. In order to see the effect this has on the 

system dynamics, the Bode plots of the 2L and CL boost converter transfer functions 

are compared in Figure 3.28 to Figure 3.30. 

3.7.1 Duty Cycle-to-Output voltage Frequency Response 
Figure 3.28 compares the duty cycle-to-output voltage frequency responses of the 2L 

and CL converters operating in CCM. As can be seen, the lower value of leakage 

inductance in the CL converters causes resonance to occur at a slightly higher 

frequency. It also causes the phase shift from 0o to -180o to occur at a higher frequency.  
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Figure 3.28. Bode plots of the transfer function Gvd(s) for the 2L (blue) and CL (green) boost converters. 

3.7.2 Duty Cycle-to-Inductor Current Frequency Response 
Figure 3.29 compares the duty cycle-to-inductor current frequency responses of the 

2L and CL converter operating in CCM. Once again, resonance occurs at a slightly 

higher frequency in the CL converter than in the 2L converter, as does the phase shift. 

The gain of the CL converter is also higher at higher frequencies. 

 
Figure 3.29. Bode plots of the transfer function Gid(s) for the 2L (green) and CL (blue) boost converters. 

3.7.3 Inductor Current-to-Output Voltage Frequency Response 
Figure 3.30 compares the inductor current-to-output voltage frequency responses of 
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phase current and the output voltage is a simple RC network, in which the phase 

inductance does not play a part. 

 
Figure 3.30. Bode plots of the transfer function Gid(s) for the 2L (green) and CL (blue) boost converters. 
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3.8 Comparison of 2L and CL DCM Small-Signal Models 
In order to continue a like-for-like comparison of the 2L and CL converters, the same 

leakage and phase inductance inductances used in the previous section for CCM will be 

used in this section for DCM. Due to the fact that the gain of a 2L DCM converter is 

different to that of a CL DCM converter, it should be noted that, as well as different 

inductance values, the duty cycle will also be different. 

3.8.1 Duty Cycle-to-Output Voltage Frequency Response of DCM 1 
Figure 3.31 compares the duty cycle-to-output voltage frequency responses of the 2L 

converter operating in DCM and the CL converter operating in DCM 1.  

 
Figure 3.31. Bode plots of the transfer function Gvd(s) for the 2L (blue) and CL (green) boost converters 

in DCM and DCM 1. 

3.8.2 Duty Cycle-to-Output Voltage Frequency Response of DCM 2 
Figure 3.32 compares the duty cycle-to-output voltage frequency responses of the 2L 

converter operating in DCM and the CL converter operating in DCM 2.  

 
Figure 3.32. Bode plots of the transfer function Gvd(s) for the 2L (blue) and CL (green) boost converters 

in DCM and DCM 2. 
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3.8.3 Duty Cycle-to-Output Voltage Frequency Response of DCM 3 
Figure 3.33 compares the duty cycle-to-output voltage frequency responses of the 2L 

converter operating in DCM and the CL converter operating in DCM 3.  

 
Figure 3.33. Bode plots of the transfer function Gvd(s) for the 2L (blue) and CL (green) boost converters 

in DCM and DCM 3. 

3.8.4 Duty Cycle-to-Output Voltage Frequency Response of DCM 4 
Figure 3.34 compares the duty cycle-to-output voltage frequency responses of the 2L 

converter operating in DCM and the CL converter operating in DCM 4.  

 
Figure 3.34. Bode plots of the transfer function Gvd(s) for the 2L (blue) and CL (green) boost converters 

in DCM and DCM 4. 

3.8.5 Duty Cycle-to-Output Voltage Frequency Response of DCM 7 
Figure 3.35 compares the duty cycle-to-output voltage frequency responses of the 2L 

converter operating in DCM and the CL converter operating in DCM 7.  
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Figure 3.35. Bode plots of the transfer function Gvd(s) for the 2L (blue) and CL (green) boost converters 

in DCM and DCM 7. 

3.8.6 Duty Cycle-to-Output Voltage Frequency Response of DCM 8 
Figure 3.36 compares the duty cycle-to-output voltage frequency responses of the 2L 

converter operating in DCM and the CL converter operating in DCM 8.  

 
Figure 3.36. Bode plots of the transfer function Gvd(s) for the 2L (blue) and CL (green) boost converters 

in DCM and DCM 8. 

3.8.7 Duty Cycle-to-Output Voltage Frequency Response of DCM 9 
Figure 3.37 compares the duty cycle-to-output voltage frequency responses of the 2L 

converter operating in DCM and the CL converter operating in DCM 9.  
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Figure 3.37. Bode plots of the transfer function Gvd(s) for the 2L (blue) and CL (green) boost converters 

in DCM and DCM 9. 

As can be seen from the comparisons, at lower frequencies, the frequency responses 

of both the 2L and CL converters are quite similar, except for a slight difference in the 

magnitudes. However, large deviations in the phase responses are evident at higher 

frequencies. 

3.8.8 Discussion on Comparisons 
As can be seen from Figure 3.28 to Figure 3.37, there is often very little difference 

between the frequency response s of the 2L and CL converters. Most differences are the 

slightly different gain, such as in Figure 3.33, Figure 3.34, and Figure 3.35. Other 

differences are the converters poles and zeros occurring at slightly higher frequencies, 

such as in Figure 3.34. However, the Bode plots of DCM 7, DCM 8, and DCM 9, differ 

quite a bit from their discrete inductor counterparts at higher frequencies. However, 

these high frequencies are often disregarded due to the fact that the control loops will 

rarely, if ever, operate at such frequencies. 

An argument can be made as to whether it is better to use the relatively complex 

coupled-inductor small-signal models, or the simpler 2L models. It should be noted 

though, that these comparisons are for converters with similar operating characteristics 

i.e. the inductance values of the 2L and CL converter were designed to give the same 

worst-case peak-to-peak current ripple. If the design criteria is different, such as 

comparable boxed-volume, or cost of manufacture, it may not be viable to use the 2L 

models, as the equivalent inductance values may not suitably represent the CL 

converter. 

Another advantage of using the models from the CL converter over the 2L converter 

is the coupling factor. Since coupled-inductor can have varying levels of magnetic 
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coupling, it would be impossible to see the effect of differing the coupling factor when 

utilising the “l small-signal models. However, since the models of the CL converter take 

into account both the leakage and magnetising inductances, either one can be varied, 

and the effects on the frequency responses easily found. 
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3.9 Conclusions 
This chapter focused on the small-signal models of the 1L, 2L and CL converters. 

The duty cycle-to-output voltage, duty cycle-to-inductor current and inductor current-to-

output voltage transfer functions were derived for all three converters, both in CCM and 

DCM. The small-signal models of the CL boost converter were verified via simulation 

using Matlab®/Simulink, and experimentally using the 1 kW laboratory prototype. The 

experimental results also present the effect of the MOSFET output capacitance as well 

as the ESR of the output capacitor. Finally, all CCM and DCM small-signal models of 

the CL converter were compared against their 2L counterparts. 
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4 COUPLED-INDUCTOR 
INTERLEAVED CONVERTER 
CLOSED-LOOP PI DIGITAL 
CONTROL 

One of the most common applications of power converters is voltage regulation. It is 

critical for a dc-dc converter, whether it functions as a step-up or step-down converter, 

to produce a well-regulated and stable output voltage and current. As discussed in 

Chapter 1, the load profile of a typical Lithium-ion battery, as well as the current-

voltage curve of PV cells signify that power converters must be able to give a regulated 

and stable output voltage at a varying load. The power converter is expected to operate 

at the highest efficiency, while still being able to quickly and effectively reject any 

disturbances in the system. This chapter focuses on the implementation of a closed-loop 

digital PI controller for a coupled-inductor dc-dc converter.   
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4.1 Introduction 
 The control of dc-dc converters is a well-established area of research in the power 

electronics community with many power electronics books dedicating entire chapters to 

controller design and implementation [4.1]-[4.3]. A traditional controller scheme is 

presented in Figure 4.1. The controller compares the output of a system, G(s), to a 

desired output, X*. The error from this comparison is then manipulated internally by the 

controller, C(s), to give an input into the system which corrects the output X. This 

output is measured by the sensor, H(s), and once again compared to the set-point. 

 
Figure 4.1. Typical closed-loop control block diagram. 

By analysing the block diagram, the closed-loop system gain is derived as 

 
( ) ( )( )

1 ( ) ( ) ( )
C s G sB s

C s G s H s



  (4.1) 

It should be noted, however, that the set-point must take into account the gain of the 

sensor H(s). In most closed-loop systems, the steady-state gain of the system is designed 

to ensure that the output equals the input i.e. 

 ( ) 1B s    (4.2) 

Since the G(s) and H(s) are fixed, the controller gain C(s) is selected to ensure equation 

(4.2) is met.  

The objective of this chapter is to design the controller for the coupled-inductor two-

phase interleaved (CL) dc-dc converter using the small-signal models derived in 

Chapter 3. Section 4.2 discusses and compares the various types of control utilised in 

dc-dc converters. Section 4.3 presents the design of a controller for a single-phase (1L) 

and discrete-inductor two-phase (2L) boost converter, while Section 4.4 presents the 

design of a controller for a CL dc-dc converter operating in CCM and DCM 4. Section 

4.5 improves on the design of the CL converter controllers and implements the new 

controllers in CCM, DCM 1 and DCM 8. Section 4.6 implements “Anti-Bump” control 

for the CL converter in CCM and DCM 8. 
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4.2 DC-DC Converter Control 
In the area of dc-dc converters, there are four main types of control schemes that are 

most often implemented in industry. These are voltage-mode control, hysteretic control, 

peak-current-mode control, and average-current-mode control. 

4.2.1 Voltage Mode Control 
Voltage-Mode Control (VMC) of a dc-dc converter utilises a single control loop to 

force the output voltage of the converter to follow a set-point specified by the user. The 

control scheme of VMC, presented in Figure 4.2, measures the output voltage and 

compares this value to the desired output voltage. A single controller then takes the 

error from this comparison and calculates the duty cycle needed to eliminate the error.  

 
Figure 4.2. Voltage-mode control scheme for a dc-dc converter. 

Much research has been done on the utilisation of VMC due to its relatively simple 

implementation and low cost [4.4]-[4.7]. Not only does VMC show good noise 

immunity, since the only measured state is the output voltage, current sensors are 

unnecessary, which reduces system cost. The need to design only one controller also 

reduces the complexity of the system. However, there are disadvantages to using VMC. 

For one, it is much harder to balance current in multi-phase systems without an 

additional control scheme. Another drawback is the relative difficulty in designing the 

controller itself for certain converter topologies. For example, while the design of VMC 

for a buck converter is straightforward, the right-half-plane (RHP) zero that appears in a 

boost converter complicates the design. 

 This RHP zero occurs due to the fact that, during the on-time of the switch, the load 

is disconnected from the input, and supplied by the capacitor. To increase the output 

voltage in a boost converter, the duty cycle increases, and the load is disconnected from 

the source for a longer period of time, meaning the capacitor must supply more charge 

than it had previously stored. The controller must be designed in such a way that the 

open-loop crossover frequency is high enough to reject any disturbances and track the 

set-point quickly, but at a low enough frequency so as to not be affected by the RHP 

zero. The transfer functions derived in Chapter 3 show that the RHP zero of the 2L 

boost converter occurs at the frequency 
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22 (1 )

2
outR Df

L


   (4.3) 

where Rout is the output load of the converter, D is the duty cycle, and L is the phase 

inductance. 

4.2.2 Hysteretic Control 
Hysteretic control, as presented in Figure 4.3, is one of the simplest control methods 

for dc-dc converters. Hysteretic control allows stable closed-loop operation of a dc-dc 

converter with only a single comparator with a small amount of hysteresis, and hence, 

does not need the additional cost of operational amplifiers or microcontrollers. It is also 

one of the fastest topologies, as the reaction time of the loop is determined only by the 

propagation delay of the comparator and the gate driver. 

 
Figure 4.3. Block diagram of hysteretic control. 

The major disadvantage of hysteretic control is the inherent switching frequency 

variation. Since there is no clock signal in the control scheme, the frequency is 

dependent on the size of the hysteresis. This is unsuitable for multi-phase dc-dc 

converters where synchronization of the phases is essential. Other disadvantages include 

steady-state error in high gain converters, as well as the requirement for a high output 

capacitor equivalent series resistance (ESR) [4.18].  Hence, hysteretic control is usually 

only considered for low-power, low cost applications, such as children’s toys or other 

small battery-operated goods. Several papers look to improve hysteretic control by 

introducing an additional current loop, as well as fixed-frequency applications [4.8]-

[4.10]. 

4.2.3 Peak-Current Mode Control 
Peak-Current-Mode Control (PCMC), presented in Figure 4.4, is one of the most 

popular control structures for dc-dc converters. Some of the advantages of PCMC 

include good stability and performance characteristics, the option to implement current 

balancing techniques in multi-phase converters and inherent short circuit protection. It 
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is also easier to implement in the analogue domain. The major advantage of using 

PCMC, especially for boost converters, is the ability to have a fast inner loop, which 

helps with rejecting disturbances quickly. Since the RHP zero of a boost converter 

appears in the filter stage of the converter, it can be ignored when designing the inner 

control loop. Due to the fact that the crossover frequency of the outer loop is often 

designed to be an order of magnitude less than the inner loop, the RHP zero should also 

not affect the design of the outer loop controller. 

 
Figure 4.4. Block diagram of peak-current-mode control. 

Two control loops are utilised in PCMC. The outer loop is typically called the 

voltage loop. This loop measures the output voltage and compares it to a reference 

voltage set by the user. The error from this comparison is entered into the designed 

controller, which outputs a reference peak value of phase current. This reference value 

is then compared to the measured inductor current, as shown in Figure 4.5. If the 

inductor current is less than the reference value, the output of the comparator is high, 

and the switch is closed, allowing current to build in the inductor. One the inductor 

current reaches the reference current, the output of the comparator switches to low, and 

the switch opens. An internal clock and flip-flop are used to ensure the switch does not 

turn on again until the beginning of the next cycle, as shown in Figure 4.6. 

 
Figure 4.5. Comparator diagram of peak-current mode control 

One of the main disadvantages to PCMC is the need for slope compensation when 

operating at duty cycles greater than 0.5 [4.11], [4.12]. Other disadvantages include low 

noise immunity, and the difficult of digital implementation due to the need for an 

external comparator. Finally, an outer control loop needs to be designed in order to 

calculate the reference current level, which is an approximation of the peak inductor 

current. [4.13].  
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Figure 4.6. PWM signal generator for peak-current mode control. 

4.2.4 Average-Current Mode Control 
Average-Current-Mode Control (ACMC) is similar to PCMC in that it utilises a 

cascade control structure i.e. an inner current loop and an outer voltage loop. As with 

PCMC, the output voltage is measured and compared to a user-defined voltage 

reference. The error from this comparison is entered into the controller which outputs a 

reference value for the dc inductor current instead of a reference peak value. This dc 

current is then compared to the actual dc inductor current, with the error entered into a 

second controller. The output of this controller is the duty cycle of the converter, which 

drives a PWM generator [4.13]. The block diagram of ACMC is presented in Figure 

4.7. 

ACMC combines the advantages of VMC, which include good noise immunity and 

efficiency, with the advantages of PCMC, which are good stability and performance 

characteristics [4.14]. It is also much easier to implement digitally than PCMC, and the 

frequency of the system can be varied more easily. As with PCMC, the RHP zero of the 

boost converter can be usually be disregarded. The disadvantages of ACMC include a 

more complex inner loop design, and no inherent short-circuit protection.  

 



Chapter 4: Coupled-Inductor Interleaved Converter Closed-Loop PI Digital Control 

- 121 - 

 
Figure 4.7. Block diagram of average-current mode control. 

For converters with high ripple currents, it may also be necessary to filter the 

measured inductor current. 

4.2.5 Coupled-Inductor Converter Controller 
The objective of this chapter is to develop a digital-control structure for the CL dc-dc 

converter which keeps a stable and regulated output voltage over a wide load range. To 

ensure that current is balanced evenly in both phases of the converter, VMC and 

hysteretic control are disregarded as choices for possible control structures. This leaves 

PCMC and ACMC. 

 One of the key differences between a typical 1L and 2L converter, and a CL 

converter is operation in the discontinuous-conduction mode (DCM). Not only are the 

characteristics different, but when in DCM, the average inductor current is no longer 

half the peak-to-peak current. Another issue when operating in DCM is the inherent 

resonance due to the effective output capacitance of the MOSFET, which will be 

coupled between both phases along with the phase current. Since PCMC relies on an 

accurate estimation of the peak inductor current, and ACMC has better noise immunity 

when compared to PCMC [4.22], ACMC is the preferred control structure for the 

converter, and will be the main focus for the rest of the thesis. 

Finally, the FPGA used in this body of work is the Altera Cyclone III development 

kit [4.19]. The FPGA has a 50 MHz clock signal during calculations, while the ADCs 

used in the system sample at a frequency of 1 MHz. Hence, the controller is designed in 

the continuous-time domain, and transformed into the digital domain for 

implementation. 
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4.3 Digital Controller Design Parameters 
The main benefit of using digital control is the ability to quickly change loop 

parameters in code, without the need of physically changing any hardware in the 

system. This section will introduce several parameters that need to be considered when 

designing and implementing a digital controller for a switch-mode power supply. 

4.3.1 Design Parameters 
While it is the eventual closed-loop characteristics that will determine the response 

of the system, these characteristics can be predicted by the open-loop system. The most 

important characteristics are the crossover frequency, the phase margin and the gain 

margin.  

 Crossover Frequency 

The crossover frequency is defined as the frequency of the system when the 

magnitude crosses the 0 dB axis. Hence, the gain of the controller and plant must equal 

1 at the crossover frequency, i.e. 

 ( ) ( ) ( ) 1
cf fC s G s H s


   (4.4) 

where C(s) is the controller, G(s) is the plant, and fc is the crossover frequency of the 

open-loop system. In switch-mode power supplies, the crossover frequency of the open-

loop system should be five to ten times lower than the switching frequency [4.16]. In a 

cascade controller, such as the one implemented here, there are two crossover 

frequencies to be determined; the inner current loop and outer voltage loop. The 

crossover frequency of the inner loop must be high enough so that the outer loop is not 

affected by it. Hence, the following rule of thumb is critical to designing average-

current-mode control for dc-dc converters 

 v i sf f f    (4.5) 

where fs is the switching frequency, fi is the crossover frequency of the inner current 

loop, and fv is the crossover frequency of the outer voltage loop. 

 Phase Margin 

The phase margin, φm, of the system is defined as the difference between the phase of 

the response and -180o when the gain of the system is one i.e. at the crossover 

frequency. 

  180
cm f f

 


    (4.6) 
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where φi is the phase of the open-loop system. To ensure sufficient conditions of 

relative stability [4.17], the phase margin of the open-loop system is often chosen to be 

60o, but cannot be any lower than 45o. 

 Gain Margin 

The gain margin of the system is the difference between the gain of the system and 

the 0 dB axis when the phase of the system crosses the -180o value. A general rule of 

thumb when designing closed-loop systems for power converters is to ensure that the 

gain margin of the open-loop system is chosen to be at least -10 to -20 dB [4.17]. 

4.3.2 Implementation Parameters 
 Analogue-to-Digital Converter, Current and Voltage Sensors 

The analogue-to-digital converters used are 12-bit ADCs with a sampling rate of 1 

μs. There are four ADCs implemented, which are used in measuring the input and 

output voltages, as well as the two phase currents. The current sensors used are the 

EL25 P1 from ABB [4.20] while the voltage sensor used is the LV25-P voltage 

transducer from LEM [4.21]. Coupled with the ADC, the gain of the current sense 

system as seen by the FPGA is calculated at Hc = 161, while the gain of the voltage 

sensor is Hv = 7. 

 PWM Generator 

The PWM generator used is a falling-edge triangular carrier wave. This wave is 

compared to the output of the inner current-loop controller, i.e. the duty cycle, as shown 

in Figure 4.8. When the carrier wave is less than the duty cycle, the PWM generator 

outputs a high value. When the carrier wave is greater than the duty cycle, the PWM 

output is low. The peak of the carrier wave and the duty cycle must be scaled by a factor 

of 2n-1 to allow it to be implemented digitally. The PWM generator for this body of 

work is capable of 11-bit operation, allowing for 11-bit accuracy. Hence, the carrier 

wave and duty cycle will be scaled by 211-1. 

 Soft Start 

A common problem in dc-dc converters, especially boost converters, is the sudden in 

rush of current when the converter is switched on. This is due to the output capacitor 

quickly drawing current from the source, so as to charge enough to supply the load. To 

circumvent the inrush current, the initial output voltage set-point is set to the value of 

the input voltage, and increased to the desired output voltage value using the function 

 10* ( )(1 )t
out in out inV V V V e      (4.7) 
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Figure 4.8. Falling edge PWM wave generator. 
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4.4 CL Converter PI Controller Design and Implementation 
Proportional-Integral-Derivative, or PID, controllers are one of the most common 

controller forms. A PID controller typically takes the form of 

 ( )( )
( )

o i
p d

Error

C s KC s K K s
S s s

      (4.8) 

This is presented in block diagram form in Figure 4.9. 

 
Figure 4.9. Block diagram of PID controller. 

In many real-world applications, the derivative action of a PID controller is not 

included due to the fact that it is difficult to design with, and may even lead to system 

instability [4.15]. Hence, for the design of the CL converter controllers, the derivative 

term will be omitted, and the controller will become PI controllers. To control the inner 

current loop, the PI controller will take the form 

 
( )( )

( )
Error pi iiii

i pi

sK KKI sC s K
s sd s


   


  (4.9) 

where Ci(s) is the current controller, IError(s) is the error from the comparator comparing 

the inductor current to the reference inductor current, d(s) is the duty cycle of the 

converter, Kpi is the proportional gain and Kii is the integral gain. With the desired phase 

margin and crossover frequency determined, the conditions for designing the PI 

controller are 

 1 2 1 1 2
2

2 1 1 2 2 1 2

( ) 1
( ( ) ( ))

i

pi ii out

out out s f

sK K sC
s s LC s L C



    
     



  


   
  (4.10) 

and 

 o1 2 1 1 2
2

2 1 1 2 2 1 2

( ) 180
( ( ) ( ))

i

pi ii out
m

out out s f

sK K sC
s s LC s L C



    


     


  
       

  (4.11) 

To control the outer voltage loop, the PI controller will take the form 

 
 ( )( )

( )
Error pv iviv

v pv
Ref

sK KKV sC s K
s sI s


      (4.12) 

where Cv(s) is the voltage controller, VError(s) is the error from the comparator 

comparing the output voltage to the reference output voltage, IRef(s) is the reference 
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inductor current, Kpv is the proportional gain and Kiv is the integral gain. With the 

desired phase margin and crossover frequency determined, the conditions for designing 

the PI controller are 

 2 2 1 1 2

1 1 2 2 1 2

( ) 1
( )

v

pv iv Lk

out s f

sK K s L
s s C
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and 

 o2 2 1 1 2

1 1 2 2 1 2

( ) 180
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  (4.14) 

4.4.1 Design of Inner Current Loop PI Controller for CCM Operation 
The controllers designed in the following section are to digitally control the 1 kW CL 

boost converter prototype introduced in Chapter 1. The converter parameters are as 

follows for CCM operation: input voltage Vin = 225 V, output voltage Vout = 450 V, 

converter power Pout = 1.35 kW, output current Iout = 3 A, output load resistance Rout = 

150 Ω, leakage inductance LLk = 350 μH, magnetising inductance Lm = 1050 μH, output 

capacitance Cout = 900 μF, and duty cycle D = 0.5. The switching frequency fs of the 

converter is 16 kHz. 

The Bode plot of the duty cycle-to-inductor current transfer function Gid(s) of the CL 

boost converter operating in CCM is presented in Figure 4.10.  

 
Figure 4.10. Theoretical Bode plot of Gid(s), the duty cycle-to-inductor current transfer function. 

The crossover frequency of the open-loop current loop is designed to be twenty times 

less than the switching frequency of the converter in order to attenuate the inductor 

current ripple as much as possible. Hence 
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The desired phase margin of the system at this frequency is designed to be 60o. The 

current phase at this frequency is 90o. Hence, a phase lag of 30o needs to be introduced 

by the PI controller. Since the phase of the system will never reach the -180o axis, the 

gain margin will be infinite, and so does not need to be considered. By inputting the 

desired crossover frequency and phase margin into equations (4.10) and (4.11), the two 

equations are solved simultaneously to find that 

 0.0032piK    (4.16) 

and 

 9.18iiK    (4.17) 

With the current controller designed, the frequency response of the open-loop system is 

presented in Figure 4.11. 

 
Figure 4.11. Theoretical Bode plot of the open-loop current loop of the CL boost converter in CCM. 

As can be seen from the frequency response, the open-loop phase margin is now 60o, 

at a crossover frequency of 800 Hz, and an infinite gain margin. This satisfies the 

criteria for the current controller. The closed-loop frequency response of the inner loop 

is presented in Figure 4.12. 
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Figure 4.12. Theoretical Bode plot of the closed-loop current loop of the CL boost converter in CCM. 

4.4.2 Design of Outer Voltage Loop PI Controller for CCM Operation 
The Bode plot of the inductor current-to-output voltage transfer function Gvi(s) of the 

CL boost converter operating in CCM is presented in Figure 4.13.  

 
Figure 4.13. Theoretical Bode plot of Gvi(s), the inductor current-to-output voltage transfer function. 

The crossover frequency of the open-loop voltage loop is often designed to be ten to 

twenty times less than the crossover frequency of the open-loop current loop converter. 

Due to the soft start the controller implements, the outer voltage loop needs to be slow 

enough so as to take into account the soft start action. Hence the open-loop crossover 

frequency is designed to be twenty times less than the crossover frequency of the 

current loop in order to ensure the inner loop is fast enough to leave the outer loop 

unaffected. Therefore 
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The desired phase margin of the system at this frequency is also be designed to be 

60o. The current phase at this frequency is -80o. Hence, a phase lag of 40o needs to be 

introduced by the PI controller. By inputting the desired crossover frequency and phase 

margin into equations (4.13) and (4.14), the two equations are solved simultaneously to 

find that 

 0.1894pvK    (4.19) 

and 

 31.27ivK    (4.20) 

The frequency response of the open-loop system is presented in Figure 4.14. As can 

be seen from the frequency response, the open-loop phase margin is now 60o, at a 

crossover frequency of 40 Hz, and a gain margin of 61.2 dB. This satisfies the criteria 

for the voltage controller. The closed-loop frequency response of the outer loop is 

presented in Figure 4.15. 

 
Figure 4.14. Theoretical Bode plot of the open-loop current loop of the CL boost converter in CCM. 

 
Figure 4.15. Theoretical Bode plot of the closed-loop current loop of the CL boost converter in CCM. 
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4.4.3 Simulation and Experimental Results of PI Controllers in 
ACMC of the CL Boost Converter operating in CCM 

The SimPowerSystems package in the Matlab®/Simulink software is utilized to first 

test the designed controllers before implementation. A two-phase interleaved coupled-

inductor boost converter is developed in Simulink, and controlled via ACMC utilising 

PI controllers developed in Section 4.4.2. The circuit elements are presumed ideal, as 

are the semiconductor switch and diode.  

For the practical experiments, the control scheme designed is digitised using the 

bilinear transform, and implemented into the 1 kW prototype converter. To compare to 

the results, three tests of the converter are performed; start-up, steady-state and load step 

response. Differing values of load-drops are utilised in each load step response, and 

depend on the mode of operation. This is to ensure the converter sees a large enough 

disturbance, while staying in the desired mode. 

In order to do the comparison, the x-axis and y-axis scaling of the experimental 

results are identical to those of the simulated results. For all experimental results 

presented in this chapter, the scaling of the oscilloscope for all experimental waveforms 

are specified with the results. 

4.4.3.1 Converter Start-Up in CCM Utilising PI Controllers 
Before the converter begins switching, the output is directly connected to the input, 

and the output capacitor voltage equals the input voltage. The converter is then switched 

on, and the output voltage and one phase current are recorded. Figure 4.16 presents the 

output voltage and the phase 1 inductor current responses over the full start-up time of 

the converter.  

  
(a)              (b) 

Figure 4.16. Simulated (a) and experimental (b) response of the closed-loop CL boost converter operating 
in CCM during start-up. 
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4.4.3.2 Steady-State in CCM Utilising PI Controllers 
Once start-up is complete, the converter is allowed to run for approximately 5 

minutes to ensure stable operation. Figure 4.17 presents the output voltage and both 

inductor current responses over the 500 μs.  

  
(a)              (b) 

Figure 4.17. Simulated (a) and experimental (b) response of the closed-loop CL boost converter operating 
in CCM during steady-state operation. 

4.4.3.3 Load Step Test in CCM Utilising PI Controllers 
During operation, the value of the output current of the converter is determined by a 

dc electronic load. During the load-step test, a command is sent to the load to drop the 

value of current to 70 % of its initial current value at a rate of 90 A/s. The transients of 

the output voltage and one of the phase currents are recorded, and presented in Figure 

4.18. 

  
(a)              (b) 

Figure 4.18. Simulated (a) and experimental (b) response of the closed-loop CL boost converter operating 
in CCM during load step test. 
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(a)              (b) 

Figure 4.19. Simulated (a) and experimental (b) response of the closed-loop CL boost converter utilizing 
CCM controllers operating in DCM 1 during start-up. 

  
(a)              (b) 

Figure 4.20. Simulated (a) and experimental (b) response of the closed-loop CL boost converter utilizing 
CCM controllers operating in DCM 1 during steady-state. 

  
(a)              (b) 

Figure 4.21. Simulated (a) and experimental (b) response of the closed-loop CL boost converter utilizing 
CCM controllers operating in DCM 1 during a load step response. 
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For testing of the controllers designed for DCM 1, the input voltage is Vin = 300 V, the 

converter power is Pout = 1.35 kW, the output current is Iout = 3 A and the output load 

resistance is Rout = 150 Ω, while for the DCM 9 controllers, the input voltage is Vin = 

150 V, the output current is Iout = 0.5 A, the converter power is Pout = 225 W, and the 

output load resistance is Rout = 900 Ω. Initially, a test was performed to examine the 

effects of using the designed CCM controller on DCM 1. Both the simulated and 

experimental tests were performed. The Bode plots of the duty cycle-to-inductor current 

transfer function Gid(s) of the CL boost converter operating in DCM 1 and DCM 9 are 

presented in Figure 4.22.  

  
(a)               (b) 

Figure 4.22. Bode plot of Gid(s), the duty cycle-to-inductor current transfer function of (a) DCM 1 and (b) 
DCM 9. 

The crossover frequency of the open-loop current loop is once again designed to be 

twenty times less than the switching frequency of the converter i.e. 

 800 Hz
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As with CCM operation, the phase margin is typically designed to be 60o. By 
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while for DCM 9 

 0.0147piK    (4.24) 

and 

 384iiK    (4.25) 

With the current controllers designed, the frequency responses of the open-loop systems 

are presented in Figure 4. 

   
(a)               (b) 

Figure 4.23. Bode plot of the open-loop current loop of the CL boost converter in (a) DCM1 and (b) 
DCM 9. 

As can be seen from the frequency responses, the open-loop phase margins are now 

100o, at a crossover frequency of 800 Hz, and there is an infinite gain margin. This 

satisfies the criteria for the current controller. The closed-loop frequency responses of 

the inner loops are presented in Figure 4.24. 

  
(a)               (b) 

Figure 4.24. Bode plot of the closed-loop current loop of the CL boost converter in (a) DCM 1 and (b) 
DCM 9. 
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4.4.6 Simulation and Experimental Results of PI Controllers in 
ACMC of the CL Boost Converter operating in DCM 1/DCM 9 

As with the CCM tests, a Simulink model of the closed-loop CL converter operating 

in DCM 1 and DCM 9 is compared to experimental tests run on the 1 kW prototype 

during start-up, steady-state and load step response. Once again, the scaling of the 

experimental results is identical to the simulated results. Results from all other DCM 

modes of operation are presented in the appendix. 

4.4.6.1 Converter Start-Up in DCM 1 Utilising PI Controllers 
As with earlier tests, the output capacitor is initially charged to the value of the input 

voltage. The converter is then switched on, and the output voltage and phase currents 

are recorded. Figure 4.25 presents the output voltage and one of the inductor current 

responses over the full start-up time of the converter.  

   
(a)              (b) 

Figure 4.25. Simulated (a) and experimental (b) response of the closed-loop CL boost converter operating 
in DCM 1 during start-up. 

4.4.6.2 Steady-State in DCM 1 Utilising PI Controllers 
Once start-up is complete, the converter is again allowed to run for approximately 5 

minutes to ensure stable operation. Figure 4.26 presents the output voltage and inductor 

current responses over the 500 μs.  

   
(a)              (b) 

Figure 4.26. Simulated (a) and experimental (b) response of the closed-loop CL boost converter operating 
in DCM 1 during steady-state operation. 
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4.4.6.3 Load Step Test in DCM 1 Utilising PI Controllers 
During the load-step test, a command is sent to the load to drop the value of current 

to 60 % of its initial current value at a rate of 78 A/s. The transients of the output 

voltage and one of the phase currents are recorded, and presented in Figure 4.27 below.  

  
(a)              (b) 

Figure 4.27. Simulated (a) and experimental (b) response of the closed-loop CL boost converter operating 
in DCM 1 during load step test. 

4.4.6.4 Converter Start-Up in DCM 9 Utilising PI Controllers 
Figure 4.28 presents the output voltage and inductor current responses over the full 

start-up time of the converter.  

  
(a)              (b) 

Figure 4.28. Simulated (a) and experimental (b) response of the closed-loop CL boost converter operating 
in DCM 9 during start-up. 
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Figure 4.29 presents the output voltage and inductor current responses over the 500 
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(a)              (b) 

Figure 4.29. Simulated (a) and experimental (b) response of the closed-loop CL boost converter operating 
in DCM 9 during steady-state operation. 

4.4.6.6 Load Step Test in DCM 9 Utilising PI Controllers 
During the load-step test, a command is sent to the load to drop the value of current 

to 70 % of its current value at a rate of 15 A/s. The transients of the output voltage and 

one of the phase currents are recorded, and presented in Figure 4.30 below. 

  
(a)              (b) 

Figure 4.30. Simulated (a) and experimental (b) response of the closed-loop CL boost converter operating 
in DCM 9 during load step test. 
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phases are no longer identical. To circumvent any imbalances in the system, a current-

balancing scheme may be introduced. 
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4.5 Conclusions 
This chapter presented the design and implementation of digital average-current-

mode control utilizing PI controllers. The various control structures most often used in 

dc-dc converters were briefly discussed and compared. The design parameters of the CL 

boost converter were developed, and a brief discussion on PI controllers was presented. 

With the circuit and design parameters, suitable PI controllers for the inner current loop 

and outer voltage loop were designed. These controllers were first implemented into 

Matlab®/Simulink to simulate the responses. These responses were compared to actual 

experimental results taken from the closed-loop control of the 1 kW prototype CL 

converter for CCM, DCM 1 and DCM 9 operation. An excellent correlation is found to 

exist between the simulated results and the experimental results. Finally, the closed-loop 

responses of the three converter tests; start-up, steady-state and load step response show 

excellent stability, transient response and load-disturbance rejection. Results from all 

other DCM modes of operation are presented in the appendix. 
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5 COUPLED-INDUCTOR 
INTERLEAVED CONVERTER 
CLOSED-LOOP TYPE II DIGITAL 
CONTROL 

Phase Lead/Lag Compensators give control designers much more freedom when 

implementing closed-loop control. Along with this, the addition of a pole at 0 Hz of the 

controller allows for the elimination of steady-state error. As such, phase compensators 

with a pole at the origin, also known as Type II compensators, are often the controller of 

choice when closing the loop of a dc-dc converter. This chapter presents the design and 

implementation of such controllers for the continuous-conduction, and discontinuous-

conduction modes of the two-phase interleaved coupled-inductor boost converter. 
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5.1 Introduction 
 The maximum amount of phase which can be injected into a system by a 

Proportional-Integral (PI) controller is 90o. As seen in Chapter 4, most DCM modes of 

operation have a low phase at the desired crossover frequencies, making it difficult to 

design for an open-loop phase margin of anything under 100o. By implementing a Phase 

Lead/Lag Compensator (PLC) with a pole at 0 Hz, often termed in power electronics as 

a Type II controller [5.1], a phase margin of 60o is much more easily attained. 

The objective of this chapter is to replace the PI controllers designed for the inner 

current loop in Chapter 4 with Type II controllers. Section 5.2 discusses the structure of 

a Type II compensator, and its digital implementation. Section 5.3 presents the design 

and implementation of Type II compensators for CCM operation in the CL boost 

converter. Section 5.4 presents the design of the Type II controllers for DCM operation, 

and the problems encountered during implementation. Finally, Section 5.5 introduces 

the idea of bumpless control, the ability to seamlessly transition from one controller to 

another, allowing for the implementation of the DCM designed Type II compensator. 
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5.2 Type II Compensator Structure and Implementation 
The structure of a Type II compensator is presented in equation (5.1). 

 
1

( )
1

c z

p

s
KC s ss









  (5.1) 

where C(s) is the controller, Kc is the gain of the controller, ωz is the frequency of the 

controller zero, and ωp is the frequency of the second controller pole, the first being at 0 

Hz. By choosing the frequencies of the pole and the zero, the controller either adds, or 

subtracts the amount of phase needed to attain the desired phase margin. The gain is 

calculated to give the desired crossover frequency. The Bode plots of a typical Type II 

compensator are presented in Figure 5.1 (a), for when ωz < ωp, and (b) for when ωz > 

ωp. 

  
(a)                 (b) 

Figure 5.1. Bode plots of Type II compensator when (a) ωz < ωp, and (b) ωz > ωp. 

A Type II compensator is often designed in the continuous domain, and can then be 

implemented in an analogue controller by utilising operational-amplifiers (op-amps), or 

digitally with the use of microcontrollers or FPGAs. 

5.2.1 Analogue Implementation of the Type II Compensator 
The schematic of a Type II op-amp compensator [5.2], [5.3] is presented in Figure 

5.2. 
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Figure 5.2. Op-amp design of Type II compensator. 

In the circuit diagram given in Figure 5.2, Vfb is the measured output of the system 

being controlled, which is compared to Vref, the desired set point. The resistors R1 and 

R2, and capacitors C1 and C2 are calculated to give the desired Type II response. The 

output of the op-amp, Vc, is the controlled input into the system. The resistor R1 is 

typically chosen to limit the current of the circuit, while the following equations 

determine the values of the capacitors and the remaining resistor. 

 

2
1

1 2

2
1

1

1

z

p c

p

z

z

C
R K

C C

R
C











 
  

 



  (5.2) 

The resistor Rx is chosen to ensure common-mode balance so that any voltage drop 

across R1 due to current leakage is offset by dropping a similar voltage across Rx. 

5.2.2 Digital Implementation of the Type II Compensator 
To implement the Type II compensator digitally, the Backwards Rectangular 

transform [5.6] is used to convert equation 5.1 into the digital domain i.e. 

 1
1 Ds

z T
s z



  (5.3) 

where TDs is the discrete sampling time of the system. Hence, the difference equation 

form of a Type II compensator is 

 2 4 1 3( ) ( ) ( 1) ( 1) ( 2)out n G in n G in n G out n G out n         (5.4) 

where out is the output of the controller, in is the input of the controller, n is the nth 

sample, and the gains G1, G2, G3, and G4 are given by 
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The block diagram of the difference equation represented in equation (5.4) is presented 

in Figure 5.3. 

 
Figure 5.3. Block diagram of the difference equation for a Type II compensator. 
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5.3 CL Converter Type II Compensator Design and 
Implementation for CCM Operation 

This section presents the design and implementation of a Type II compensator for the 

inner current loop of the CL boost converter operating in CCM. Due to the fact that the 

outer-voltage loop PI controller can easily obtain the desired phase margin and 

crossover, a Type II compensator for the outer loop is unnecessary. The circuit 

parameters used for the design of the controller are identical to those presented in 

Section 4.4.1. However, in order to present operation over the full range of the 

converter, the input voltage is decreased to 150 V, which causes the converter to operate 

in CCM 2. 

5.3.1 Design of Inner Current Loop Type II Compensator 
The Bode plots of the duty cycle-to-inductor current transfer function Gid(s) of the 

CL boost converter operating in CCM is presented in Figure 5.4. 

 
Figure 5.4. Bode plot of Gid(s), the duty cycle-to-inductor current transfer function. 

Once again, the open-loop phase margin, φpm, and crossover frequency, fi, of the 

system are designed to be 60o and 800 Hz respectively. The current phase at the chosen 

crossover frequency is -90o. To calculate the position of the pole and zero of the 

compensator, the phase shift due to the pole at 0 Hz is first added, making the phase at 

800 Hz decrease to -180o, as shown in Figure 5.5. Therefore, the current phase margin is 

0o. 

Since a phase margin of 60o is required, the controller needs to decrease the amount 

of phase in the system at 1.6 kHz. Hence, the compensator used will be a phase lead  

0

50

100

150

M
ag

ni
tu

de
 (d

B
)

10
0

10
1

10
2

10
3

10
4

10
5

-135

-90

-45

0

45

90

P
ha

se
 (d

eg
)

Bode Diagram
Gm = Inf ,  Pm = 90 deg (at 2.05e+05 Hz)

Frequency  (Hz)



Chapter 5: Coupled-Inductor Interleaved Converter Closed-Loop Type II Digital Control 

- 149 - 

 
Figure 5.5. The effect of the addition of the integrator in the Gid(s) during CCM operation. 

compensator, i.e. ωz < ωp. The amount of phase boost needed to be injected, φboost, is 

found as 

 boost pm cpm      (5.9) 

where φpm is the desired phase margin, and φcpm is the current phase margin. From 

Figure 5.5, it is clearly seen that the current phase margin is 0o. Hence 

 60 0 60boost      (5.10) 

With the phase boost and crossover frequency now known, the controller zero is 

calculated as 

 2

tan 45
2

i
z

boost

f



  
 

  (5.11) 

and the controller pole is calculated as 

 2 tan 45
2

boost
p if

     
 

  (5.12) 

Hence, the controller pole and zero are at the frequencies 

 1343 Hzz    (5.13) 

 18811 Hzp    (5.14) 

To calculate the gain required to bring the crossover frequency to 800 Hz, the pole 

and zero are inserted into the Type II compensator, the gain, Kc, is set to one, and the 

open-loop controller and system Bode plot is developed, presented in Figure 5.6. 

From Figure 5.6, it is evident that a gain of 14.2 dB is required to increase the 

magnitude of the open-loop system to 0 dB at 800 Hz. Hence, 
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 4.92cK    (5.15) 

The Type II compensator is now completed, and is in the form 

 
Figure 5.6. Open-loop Bode plot of the Type II compensator and system with controller gain set to 1. 

 
14.92 1343( )
1 18811

s
C s ss





  (5.16) 

With the compensator designed, the completed open-loop frequency response is 

presented in Figure 5.7. 

 
Figure 5.7. Open-loop frequency response of the inner current loop utilising a Type II compensator. 

As can be seen from Figure 5.7, the phase margin is now 60o at an open-loop 

crossover frequency of 800 Hz, and the gain margin is infinite. The closed-loop 

frequency response is presented in Figure 5.8. 
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Type II compensator, and the inner current loop PI controller designed in Section 4.4.1 

are presented in Figure 5.9. 

 
Figure 5.8. Closed-loop frequency response of inner current loop utilising a Type II compensator. 

 
Figure 5.9. Frequency response of C(s) as a PI controller (green) and a Type II compensator (blue). 

As can be seen from Figure 5.9, the use of the Type II compensator adds an extra 

13.5 dB of attenuation at the switching frequency of the converter. Since the current 

measurement and feedback into the controller is not filtered, any extra filtering due to 

the controllers is an added benefit. 

With the compensator gain, pole, zero, and a sampling time of 1 μs, the values of G1, 

G2, G3, and G4 in the difference equation (5.4) are calculated as 
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 4
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 4
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5.3.2 Simulation and Experimental Results for Type II Compensator  
The SimPowerSystems package in the Matlab®/Simulink software is once again 

utilized to first test the designed controllers before implementation. For the practical 

experiments, the difference equation is programmed into the FPGA for testing on the 1 

kW prototype. To compare to the results, the three tests, start-up, steady-state and load-

step response are performed.  

5.3.2.1 Converter Start-Up in CCM Utilising Type II Compensators 
As with the previous testing, the output capacitor is first allowed to charge to the 

level of the input voltage. Once the capacitor is fully charged, the converter is switched 

on, and the output voltage and phase currents are recorded. Figure 5.10 presents the 

output voltage and inductor current responses over the full start-up time of the 

converter. For all experimental results presented in this chapter, the scaling of the scope 

for all experimental waveforms are specified with the results. 

 
(a)              (b) 

Figure 5.10. Simulated (a) and experimental (b) response of the closed-loop CL boost converter operating 
in CCM during start-up. 

5.3.2.2 Steady-State in CCM Utilising Type II Compensators 
As with the PI controller tests, the converter is allowed to run for approximately 5 

minutes to ensure stable operation. Figure 5.11 presents the output voltage and inductor 

current responses over 500 μs. 
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(a)              (b) 

Figure 5.11. Simulated (a) and experimental (b) response of the closed-loop CL boost converter operating 
in CCM during steady-state operation. 

5.3.2.3 Load-step Test in CCM Utilising Type II Compensators 
During the load-step test, a command is sent to the load to drop the value of current 

to 75 % of its current value at a rate of 66 A/s. The transients of the output voltage and 

phase currents are recorded, and presented in Figure 5.12 below. 

 
(a)              (b) 

Figure 5.12. Simulated (a) and experimental (b) response of the closed-loop CL boost converter operating 
in CCM during load-step test. 

5.3.3 CCM Designed Type II Compensators for DCM 8 Operation 
In order to test the stability of the CCM controllers for DCM operation, the output 

current is dropped to 1.2 A, causing the converter to enter DCM 3. The two tests of 

start-up (Figure 5.13), and steady-state (Figure 5.14 (a)), are undertaken. As can be seen 

from the simulated results, the converter begins to oscillate before settling into steady-

state. Due to this, a simulated load-step test was not performed. However, during the 

experimental tests, the converter does settle to a steady-state value, as seen in Figure 

5.14. This enabled a load-step to 0.7 A over 10 ms to be introduced into the system, 

presented in Figure 5.15 (b). As can be seen, the load-step causes the converter to begin 

oscillating, similar to the oscillations seen in the simulated results.  
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(a)              (b) 

Figure 5.13. Simulated (a) and experimental (b) response of the closed-loop CL boost converter utilizing 
CCM controllers operating in DCM 3 during start-up. 

 
(a)              (b) 

Figure 5.14. Experimental response of the closed-loop CL boost converter utilizing CCM controllers 
operating in DCM 8 during steady-state (a), and load-step test (b). 

Figure 5.15 (a) presents the converter in steady-state after the load drops. As can be 

seen, the converter does not settle after the oscillations begin. Finally, the current was 

increased to the original value of 1.2 A to check whether the oscillations disappear, as 

shown in Figure 5.15 (b). As can be seen, the oscillations to not settle, and the converter 

continues to operate in marginal stability. 

 
(a)              (b) 

Figure 5.15. Experimental response of the closed-loop CL boost converter operating in CCM during 
steady-state operation at 0.7 A (a), and 1.2 A (b). 
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5.3.4 Design of Inner Current Loop Type II Compensators for DCM 
Operation 

Two DCM modes are chosen to test the DCM controllers on the CL boost converter, 

DCM 3 and DCM 8. Due to the noise that is inherent to operation in DCM 3, it is one of 

the most difficult modes to control. 

The converter parameters are as follows; output voltage is Vout = 450 V, leakage 

inductance is LLk = 350 μH, magnetising inductance is Lm = 1000 μH, output 

capacitance is Cout = 900 μF, duty cycle is D = 0.5, frequency is fs = 16 kHz, output load 

resistance is Rout = 450 Ω, and the converter power is Pout = 450 W. In order to test 

DCM 3 operation, the input voltage is set to Vin = 225 V, while for DCM 8, it is set to 

Vin = 150 V. 

The Bode plots of the duty cycle-to-inductor current transfer function Gid(s) of the 

CL boost converter operating in DCM 3 and DCM 8 are presented in Figure 5.16. 

Through experimental testing, it is found that DCM 3 is one of the noisiest DCM modes 

of operation. Hence, to help with the attenuation of the noise, the crossover frequency of 

the inner current loop will be set to thirty times less than the switching frequency i.e. for 

DCM 3, fi = 530 Hz. For DCM 8, the crossover frequency will remain at 800 Hz. To 

design such a controller, the Bode plots of Gid(s), with the inclusion of the pole at 0 Hz 

are once again presented in Figure 5.16 and Figure 5.17 respectively. 

 
(a)                                       (b) 

Figure 5.16. Bode plot of Gid(s), the duty cycle-to-inductor current transfer function of (a) DCM 3 and (b) 
DCM 8. 
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(a)                                       (b) 

Figure 5.17. The effect of the addition of the integrator in the Gid(s) during (a) DCM 3 and (b) DCM 8. 

As can be seen from the frequency responses, the phase margin of both systems are 

above 60o at the desired crossover frequencies. Hence, the compensator used in both 

systems will be a phase lag compensator i.e. ωz > ωp. The amount of phase boost that 

needs to be injected, φboost, is found as 

 ( )boost pm cpm       (5.21) 

where φpm is the desired phase margin, and φcpm is the current phase margin. From 

Figure 5.17, it is clearly seen that the current phase margins are 85o for DCM 3 and 90o 

for DCM 8. Hence 

 (60 85) 25boost       (5.22) 

for DCM 3, and 

 (60 90) 30boost       (5.23) 

for DCM 8. With the phase boost and crossover frequency now known, the controller 

zero is calculated as 

 2 tan 45
2

boost
z if

     
 

  (5.24) 

and the controller pole is calculated as 

 2

tan 45
2

i
p

boost

f



  
 

  (5.25) 

Hence, for DCM 3, the controller pole and zero are at the frequencies 

 5330 Hzz    (5.26) 

 2107 Hzp    (5.27) 

while for DCM 8, 
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 8668 Hzz    (5.28) 

 2915 Hzp    (5.29) 

To calculate the gain required to bring the crossover frequency to 530 Hz for DCM 3 

and 800 Hz for DCM 8, the pole and zero are inserted into the Type II compensator, the 

gain, Kc, is set to one, and the open-loop controller and system Bode plot is developed, 

presented in Figure 5.18. 

 
(a)                                       (b) 

Figure 5.18. Open-loop Bode plot of the Type II compensator and system with controller gain set to 1 
during (a) DCM 3, and (b) DCM 8. 

From Figure 5.18, it is evident that, for DCM 3 a gain of 62.7 dB is required to 

increase the magnitude of the open-loop system to 0 dB at 800 Hz, while for DCM 8, 

50.8 dB is required. Hence, for DCM 3 

 1373cK    (5.30) 

and 

 
11373 5330( )
1 2107

s
C s ss





  (5.31) 

 

while for DCM 8 

 474cK    (5.32) 

and 

 
1474 8668( )
1 2915

s
C s ss





  (5.33) 

With the compensator designed, the completed open-loop frequency response is 

presented in Figure 5.19. 
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(a)                                       (b) 

Figure 5.19. Open-loop frequency response of the inner current loop utilising a Type II compensator 
during (a) DCM 3 and (b) DCM 8. 

As can be seen from Figure 5.19, the phase margins are now 60o at an open-loop 

crossover frequency of 800 Hz for DCM 3 and 1.6 kHz for DCM 8. The gain margin is 

infinite. The closed-loop frequency responses are presented in Figure 5.20. 

 
(a)                                       (b) 

Figure 5.20. Bode plot of the closed-loop current loop of the CL boost converter in (a) DCM 3 and (b) 
DCM 8 utilizing a Type II compensator. 

5.3.5 Simulation and Experimental Results of Type II Controllers in 
ACMC of the CL Boost Converter operating in DCM 

As with the CCM tests, a Simulink model of the closed-loop CL converter operating 

in DCM 8 and DCM 3 is compared to experimental tests run on the 1 kW prototype 

during start-up.  

5.3.5.1 Converter Start-Up in DCM 3 Utilising Type II Compensators 
Figure 5.21 presents the output voltage and inductor current responses over the full 

start-up time of the converter.  
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(a)              (b) 

Figure 5.21. Simulated (a) and experimental (b) response of the closed-loop CL boost converter operating 
in DCM 3 during start-up. 

It is clear from the simulated results that the converter is highly unstable during start-

up, but stabilises after 80 ms.  However, during experimental testing, the converter 

appears to enter current limit, and switches off completely. 

5.3.5.2 Converter Start-Up in DCM 8 Utilising Type II Compensators 
Figure 5.22 presents the output voltage and inductor current responses over the full 

start-up time of the converter.  

 
(a)              (b) 

Figure 5.22. Simulated (a) and experimental (b) response of the closed-loop CL boost converter operating 
in DCM 8 during start-up over 500 ms. 

As with DCM 3, the initial start-up of the converter is highly unstable. A closer look 

is presented in Figure 5.23. Conversely to DCM 3 operation, the converter is able to 

stabilise before switch off in DCM 8. 
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(a)              (b) 
Figure 5.23. Simulated (a) and experimental (b) response of the closed-loop CL boost converter operating 

in DCM 8 during start-up over 100 ms. 
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5.4 Forced-Output Control of CL Converter 
The Type II compensators developed in Section 5.3 are designed specifically for 

each CCM and DCM mode of operation. A compensator designed for CCM, while 

stable, will not be optimal for DCM operation. A more strenuous problem is the fact 

that a controller designed for DCM operation, will most likely be unstable for CCM 

operation. This is due to the fact that, to obtain a phase margin of 60o during DCM 

operation, the current loop controllers need to inject over 90o of phase into the system. 

If this controller is utilised when operating in CCM, the open-loop phase margin will 

cross the -180o axis, causing loop instability. This is evident during converter start-up, 

presented in Figure 5.21 to Figure 5.23. As the converter begins to power up, it initially 

operates in CCM. As can be seen from the experimental results, the oscillations in the 

waveforms may cause the converter to go unstable unless it enters DCM quickly. While 

a solution to this problem is to increase the converter start-up time, ensuring the 

converter never enters CCM, it is not an ideal solution. Another problem with this is the 

inability of the converter to operate over the entire range of its load. 

One of the major benefits of digital control is the ability to introduce several different 

controllers, with no added hardware. Hence, in order to control the CL converter over 

several modes of operation, a Type II compensator for each mode is designed and 

programmed into the FPGA. During operation, each compensator calculates the 

required duty cycle needed to decrease the converter output voltage error to zero. 

However, the output of only one compensator is used at any one time. This is labelled 

as the active controller. All remaining controllers are labelled as inactive. The active 

controller is determined by the mode of operation the converter is in. 

A disadvantage of using this type of control is the inherent “bump” which will occur 

when changing controllers. Even though all controllers are Type II compensators, they 

will be designed with different coefficients. Hence, the output of the inactive controllers 

will not equal the output of the active controller. When the system determines it must 

change from the output of the active controller to the output of the inactive controller, 

the difference in the output between the previously active controller and the now active 

controller will cause a large transient, which may be sufficient to cause the system to go 

unstable. 

5.4.1 Bumpless Control 
In order to counteract this transient, a “bumpless” control strategy, presented in 

Figure 5.24, is introduced [5.4]. The control strategy presented in [5.4] utilises an 
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additional controller, Gbx(s), to try to force the output of the inactive controller, Ci2(s), to 

equal the output of the active controller, Ci1(s). Hence, when a controller changes from 

the output of the active controller to the inactive controller, there is little to no transient. 

The output of the now inactive controller, Ci1(s), is forced to try to equal the output of 

the now active controller, Ci2(s), which takes full control of the converter. 

 
Figure 5.24. Bumpless control strategy. 

5.4.2 Mode Determination 
In order to determine the mode of operation of the converter, the output of the 

voltage-loop PI controller, i.e. the reference current, is measured. This measured value 

is then compared to a given value of dc current, chosen by the operator, called the mode 

limit. If the reference current is greater than the mode limit, the controller will assume 

the converter is operating in mode A, and the mode A controller is active. If the 

reference current is less than the mode limit, the controller for mode B is activated. For 

example, the CCM-DCM mode map of a CL boost converter is presented in Figure 

5.25. For the purpose of this analysis, it is assumed that the voltage gain of the converter 
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is constant, and set at three. As can be seen, once the dc current in the converter drops to 

a certain value, the converter will enter DCM. With the mode map, it is easy to calculate 

the condition. Since it is the reference current that is measured, the mode limit will be 

determined by the dc phase currents. 

 
Figure 5.25. CCM-DCM mode map of the CL converter, showing the input current at which the converter 

leaves CCM 2 and enters DCM 8. 

By comparing this phase current with the mode limit, it is easy to ascertain which 

mode the converter is operating in. This method can also be applied to all other modes 

of operation, assuming the voltage gain of the converter remains constant. 

5.4.3 Bumpless PI Control 
This section focuses on implementing bumpless control for the inner current loop 

when utilising PI controllers. Due to the simplicity of programming PI controllers, these 

control types will be the first to be implemented with bumpless control. A single PI 

voltage controller will be implemented, which will produce the reference phase current 

for all PI current controllers which follow. The converter will operate with an input 

voltage of 150 V, and an output voltage of 450 V. The initial output current will be set 

at 400 mA. This will cause the converter to operate in DCM 9. A PI current controller is 

developed for an open-loop phase margin of 100o and a crossover frequency of 800 Hz. 

The PI controller gains are 

 ( 9)

( 9)

0.0169

400
pi D

ii D

K
K




  (5.34) 

A load-step drop of 280 mA over 10 ms will then cause the converter to leave DCM 

9 and enter DCM 7. Hence, a second PI controller is developed for DCM 7, in which 
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the open-loop phase margin and crossover over frequency are once again 100o and 800 

Hz, respectively. The PI controller gains are 

 ( 7)

( 7)

0.1

2941
pi D

ii D

K
K




  (5.35) 

With the PI controllers designed, the bumpless controllers must next be designed. To 

ensure stability, a proportional controller is implemented. Both open-loop PI controllers 

are designed for a crossover frequency of 100 Hz. Hence, the gain for the DCM 9 PI 

controller is 

 9 1.9BDK    (5.36) 

While the gain for the DCM7 PI controller is 

 7 0.39BDK    (5.37) 

Using the mode map, it is found that the converter will leave DCM 9 and enter DCM 

7 at 300 mA dc phase current. Hence, the mode limit is set to 0.5. Figure 5.26 presents 

the steady-state waveforms of DCM 9 and DCM 7, while Figure 5.27 presents the 

experimental results of the load-step drop.  

 
(a)              (b) 

Figure 5.26. Experimental steady-state waveforms of DCM 9 (a) and DCM 7 (b) under PI control. 

 
Figure 5.27. Experimental results of the load-step drop, causing the converter to leave DCM 9 and enter 

DCM 7 utilising PI controllers with bumpless control. 
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The Quartus FPGA programming software allows the user to view signals which are 

running in the FPGA via the SignalTap II Logic analyser tool. With this tool, the user is 

able to view the moment the controllers switch, the output of both controllers, and the 

final chosen output. These plots are presented in Figure 5.28 to Figure 5.30.  

 
Figure 5.28. SignalTap tool showing operation during DCM 9 utilising PI controller with bumpless 

control. 

 
Figure 5.29. SignalTap tool showing operation during DCM 7 utilising PI controller with bumpless 

control. 

 
Figure 5.30. SignalTap tool showing the moment of switching between DCM 9 and DCM 7 utilising PI 

controller with bumpless control. 
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In Figure 5.28 to Figure 5.30, the reference inductor current, I_REF, the converter 

duty cycle Duty, and the output of both PI controllers Duty_A and Duty_B are 

presented in the form of unsigned line charts. Also shown is MODE_LIMIT, which 

determines which mode the converter is in. When the value of TST is 1, the converter is 

in DCM 9, and the output of the controller comes from Duty_A. When TST is 0, the 

converter is in DCM 7, and the output of the controller comes from Duty_B. It should 

be noted that the duty cycle of the converter, as well as active and inactive PI controllers 

are in the form of 2Q notation. The duty cycle is scaled by 211, while the output of the PI 

controllers are scaled by 217. The reference current is scaled by 161. 

As can be seen, a slight transient is seen during the load drop. By analysing the 

SignalTap screenshot, it can be seen that while in DCM 9, the output of the controller is 

identical to the output of the active PI controller, but not the inactive controller i.e. 

 11 17 17

1111 71140 723480.543 0.552
2 2 2

      (5.38) 

Since the outputs of the active and inactive controllers are not equal, a small steady-

state error is present in the bumpless control scheme. 

5.4.4 Forced-Output Control 
This section focuses on the implementation of what the author termed Forced-Output 

Control (FOC). The FOC strategy is similar to the bumpless control strategy in that the 

objective is to force the output of the inactive controller to equal the output of the active 

controller up until the mode limit is encountered. The advantages of FOC over 

bumpless control are the ability to essentially eliminate steady-state errors between both 

controller outputs, as well as the fact that no feedback control needs to be designed. 

Another benefit of forced-output control is the relative ease of implementation 

compared to bumpless control. The main drawback of FOC is the inability to implement 

it in an analogue controller. 

To design an FOC strategy, the difference equation of the Type II compensator 

presented in (5.4) is given for the active controller 

 2 4 1 3( ) ( ) ( 1) ( 1) ( 2)ac ac ac ac ac ac ac ac acout n G in n G in n G out n G out n         (5.39) 

and the inactive controller 

 2 4 1 3( ) ( ) ( 1) ( 1) ( 2)nc nc nc nc nc nc nc nc ncout n G in n G in n G out n G out n         (5.40) 

The objective of the controller is to ensure the output of the inactive controller equals 

the output of the active controller i.e. 

 ( ) ( )nc acout n out n   (5.41) 
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In reality, this is impossible due to the fact that the coefficients of the difference 

equations are not equal i.e.  

 

1 1

2 2

3 3

4 4

ac nc

ac nc

ac nc

ac nc

G G
G G
G G
G G







  (5.42) 

Due to the fact that, in a digital controller, the previous samples of a system are 

accessible, what is possible is the ability to force the output of the inactive controller to 

equal the previously sampled output of the active controller i.e. 

 ( ) ( 1)nc acout n out n    (5.43) 

To implement equation (5.43), the following assumption is made 

 ( 1) ( 2)nc ncout n out n     (5.44) 

Hence 

      2 4 1 3( ) ( 1) ( ) ( 1) ( ) ( 1)nc ac nc nc nc nc nc nc ncout n out n G in n G in n G G out n          (5.45) 

By rearranging equation (5.45), it is found that 

 2 4

1 3

( 1) ( ) ( 1)( 1)
( )

ac nc nc nc nc
nc

nc nc

out n G in n G in nout n
G G

   
 


  (5.46) 

Since 

 1 3 1G G    (5.47) 

then 

 2 4( 1) ( 1) ( ) ( 1)nc ac nc nc nc ncout n out n G in n G in n        (5.48) 

Inserting equation (5.48) into the (5.40) and simplifying, it is found that 

 ( ) ( 1)nc acout n out n    (5.49) 

By implementing equations (5.44) and (5.48) into the inactive controller, the output 

of the inactive controller is forced to equal the output of the active controller, delayed 

by one sample. Hence, the steady-state error between the active controller and the 

inactive controller is minimized, and, for a fast enough sampling time, can be 

considered to be zero. Once the inactive controller is activated, and the active controller 

is deactivated, the now active controller reverts to the difference equation of (5.4), and 

the now inactive controller reverts into the difference equations of (5.44) and (5.48). A 

block diagram of the system is presented in Figure 5.31. 
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Figure 5.31. Block Diagram of Forced-Output Control for two Type II compensators. 

A simplified version of Figure 5.31 is presented in Figure 5.32, in which a FOC 

control scheme is implemented into Controller A, but not on Controller B, which is set 

as the active controller. The signal E(z), is the result of the input sample, innc(n), times 

X1(z). This signal is subtracted from the output of the active controller, but delayed by 

one sample. This “inherent delay” is due to the fact that the program must wait one 

sample to determine which controller output is active. Finally, the result from the 

subtraction is added to E(z), which cancels with the negative E(z) i.e. 

 ( 1) ( ) ( ) ( 1) ( )ac ac ncout n E z E z out n out n        (5.50) 

Therefore, the output if the inactive controller is forced to equal the output of the active 

controller, delayed by one sample. 
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Figure 5.32. Simplified block diagram of FOC. 

With the ability to seamlessly switch between converter modes of operation, 

experimental testing of the DCM Type II compensators can now be performed. 

5.4.5 Simulation and Experimental Results of Type II Controllers in 
ACMC of the CL Boost Converter operating in DCM using 
Forced-Output Control 

As shown in Section 5.3.5, it was impossible to fully test the Type II compensators 

for DCM operation without stability issues due to the converter entering CCM during 

start up. The use of FOC control solves these issues by ensuring the converter is initially 

controlled by the CCM Type II compensator. Once the reference current of the 

controller passes the mode limit, the output of the controller will be switched from the 

CCM compensator to the DCM compensator. To avoid ringing around the mode limit, a 

hysteresis band of 10% is applied to the value of the mode limit. In addition, a dead 

time is introduced into the mode limit to ensure the converter will always use the CCM 

Type II compensator until a certain output voltage is reached. This is due to the fact 

that, during the first few milliseconds of start-up, the converter current will be less than 

the mode limit, even though it is still operating in CCM. Through experimentation, it is 

found that at approximately 200 V on the output, the converter current will enter DCM 

3, while it will enter DCM 8 at approximately 400 V. It is possible to calculate the exact 

voltage the converter will enter DCM by plotting the inductor current peak-to-peak 

ripple and the inductor dc current over the range of input voltages, while keeping the 

output voltage constant. However, experimental results were utilised due to their 

availability at the time. 
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5.4.5.1 Converter Start-Up in DCM 3 Utilising Type II Compensators with FOC 
Figure 5.33 presents the output voltage and inductor current responses over the full 

start-up time of the converter. The output current of the converter is set to 0.9 A.  

 
(a)              (b) 

Figure 5.33. Simulated (a) and experimental (b) response of the closed-loop CL boost converter operating 
in CCM during start-up. 

The notches which are evident from Figure 5.34 are when the controller switches. As 

can be seen, the FOC scheme switches controllers several times during start-up, which 

is undesirable. More stringent parameters for when the controller switches may be 

introduced to reduce this ringing. 

5.4.5.2 Steady-State in DCM 3 Utilising Type II Compensators with FOC 
Figure 5.34 presents the output voltage and inductor current responses over the 

following 500 μs. 

 
(a)              (b) 

Figure 5.34. Simulated (a) and experimental (b) response of the closed-loop CL boost converter operating 
in CCM during steady-state operation. 

5.4.5.3 Load- Step Test in DCM 3 Utilising Type II Compensators with FOC 
During the load-step test, a command is sent to the load to drop the value of current 

to 65 % of its current value at a rate of 30 A/s. The transients of the output voltage and 

phase currents are recorded, and presented in Figure 5.35 below. 
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(a)              (b) 
Figure 5.35. Simulated (a) and experimental (b) response of the closed-loop CL boost converter operating 

in CCM during load-step test. 

5.4.5.4 Converter Start-Up in DCM 8 Utilising Type II Compensators with FOC 
Figure 5.36 presents the output voltage and inductor current responses over the full 

start-up time of the converter. 

 
(a)              (b) 

Figure 5.36. Simulated (a) and experimental (b) response of the closed-loop CL boost converter operating 
in CCM during start-up. 

5.4.5.5 Steady-State in DCM 8 Utilising Type II Compensators with FOC 
Figure 5.37 presents the output voltage and inductor current responses over the 

following 500 μs. The output current is set at 1.5 A. 

 
(a)              (b) 

Figure 5.37. Simulated (a) and experimental (b) response of the closed-loop CL boost converter operating 
in CCM during steady-state operation. 
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5.4.5.6 Load-Step Test in DCM 8 Utilising Type II Compensators with FOC 
During the load-step test, a command is sent to the load to drop the value of current 

to 54 % of its current value at a rate of 70 A/s. The transients of the output voltage and 

phase currents are recorded, and presented in Figure 5.38 below. 

 
(a)              (b) 

Figure 5.38. Simulated (a) and experimental (b) response of the closed-loop CL boost converter operating 
in CCM during load-step test. 

One of the more evident benefits of utilising type-II compensators is the apparent 

balance between the phases when operation in DCM. As can be seen from Figure 5.34 

and Figure 5.37, the steady-state waveforms of both phases are nearly identical, 

indicating both the dc currents and duty cycles of the two phases are similar in value. 

5.4.5.7 Load-Step Test from DCM 9 to DCM 7 Utilising Type II Compensators 
with FOC 

To compare the bumpless control strategy with the FOC control strategy, an identical 

load-step from DCM 9 to DCM 7 was performed. The results are presented in Figure 

5.39 and Figure 5.40 and compared to the bumpless controller in Figure 5.41.  

 
(a)              (b) 

Figure 5.39. Experimental steady-state waveforms of DCM 9 (a) and DCM 7 (b) under Type II 
compensator control. 
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Figure 5.40. Experimental results of the load-step drop, causing the converter to leave DCM 9 and enter 

DCM 7 utilising Type II compensators with FOC. 

 
(a)              (b) 

Figure 5.41. A comparison of controller and mode change from DCM 9 to DCM 7 utilising FOC (a) and 
bumpless control (b). 

As can be seen from Figure 5.39 to Figure 5.41, the utilisation of Type II 

compensators for control yields a much better steady-state operation. Not only is steady-

state operation improved, but the implementation of the FOC strategy yields a faster 

transient response. The diagrams of the SignalTap tool are presented in Figure 5.42 and 

Figure 5.43.  

 
Figure 5.42. SignalTap tool showing the switching between DCM 9 and DCM 7 utilising Forced-Output 

control controller with bumpless control (Duty cycles before switch). 
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Figure 5.43. SignalTap tool showing the switching between DCM 9 and DCM 7 utilising Forced-Output 

control controller with bumpless control (Duty cycles after switch). 

As with the previous SignalTap diagrams, in Figure 5.42 and Figure 5.43, the 

reference inductor current, I_REF, the converter duty cycle Duty, and the output of both 

PI controllers, Duty_A and Duty_B, are presented in the form of unsigned line charts. 

Also shown is MODE_LIMIT, which determines the converter mode. For this test, 

when the value of TST is 0, the converter is in DCM 9, and the output of the controller 

comes from Duty_B. When TST is 1, the converter is in DCM 7, and the output of the 

controller comes from Duty_A. All controller outputs are scaled by 211, while the 

reference inductor current is once again scaled by 161. 

As can be seen, a slight transient is seen during the load drop. By analysing the 

SignalTap screenshot, it can be seen that while in DCM 9, the output of the controller is 

identical to the both Type II compensator outputs i.e. 

 11 11 11

1051 1051 1050 0.51
2 2 2

     (5.51) 

Therefore, there is no steady-state error between the outputs of the two Type II 

compensators, minimising any transient that occurs during the load-step. 
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5.5 Conclusions 
This chapter has presented the design and implementation of digital average-current-

mode control utilizing Type II compensators. The Type II compensators are designed 

for CCM operation, and were tested in both simulation and experimentation. The CCM 

designed compensator was tested for use with DCM. These results are not optimal due 

to the oscillations which occur during the load-step test. Hence, additional Type II 

compensators were designed for several DCM modes. Due to the fact that, during start-

up, the converter operates in CCM, these DCM designed controllers may lead to 

instability during start-up. Hence, bumpless control and Forced-Output control (FOC) 

were developed. A bumpless control scheme was applied to the PI controllers designed 

in Chapter 4 for a load-step test between DCM 9 and DCM 7. These results were 

compared to a FOC strategy designed with Type II compensators. The results show 

much better operation when utilising Type II compensators with FOC control. With the 

ability to implement FOC control, the start-up, steady-state and load-step tests of DCM 

3 and DCM 8 were performed with Type II compensators. 
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6 CONCLUSIONS 

This chapter presents a summary and discussion of the findings presented in this 

thesis. With the complete mathematical solutions of the large-signal and small-signal 

models now available, the ability to digitally control a two-phase interleaved coupled-

inductor boost converter is made much easier. Along with this, the introduction of 

bumpless control utilising PI type controllers, and Forced-Output Control utilising Type 

II compensators, allow for optimal performance of the converter over the full load range 

of the converter. 
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6.1 Chapter Summaries 
This section briefly summarises the content and results of each chapter of this thesis. 

6.1.1 Chapter 1 
Chapter 1 presents an introduction, and the motivation for the work presented in this 

thesis. The objectives and structure of the thesis are presented, as well as a thorough 

literature review of the current technologies which utilise switch-mode power supplies. 

Renewable systems utilising dc and ac sources are discussed, as are the applications of 

dc-dc converters in automotive applications. A discussion of several dc-dc converter 

topologies is presented, as well as the utilisation of coupled-inductors in multi-phase 

converters. A design example of a 72 kW CCTT IM is presented. Finally, a 1 kW 

laboratory prototype two-phase interleaved coupled-inductor boost converter is 

presented. This is the converter on which all experimental testing in the thesis is 

performed. 

6.1.2 Chapter 2 
The complete large-signal model of the CL boost converter is presented in Chapter 2. 

To fully understand the large-signal model, the solutions to the single-phase and two-

phase discrete-inductor boost converters are first presented. The phase current 

waveforms, CCM-DCM mode maps, and sub-modes of operation of all three types of 

the converter are presented and compared. Each CCM and DCM mode of operation of 

the CL boost converter is briefly discussed. The boundary conditions between CCM and 

DCM of the CL boost converter are presented, and a sample analysis of DCM 4 and 

DCM 9 are also given. These examples can then be extended to all other DCM modes 

of operation. The modal boundary flowchart presents a flowchart of each CCM and 

DCM mode of operation, as well as the boundary conditions between each mode. 

Results from the 1 kW laboratory prototype are presented. These results show the 

experimental waveforms of all CCM and DCM modes of operation. 

6.1.3 Chapter 3 
Chapter 3 presented the complete small-signal model of the CL boost converter 

operating in all CCM and DCM modes of operation. Initially, the method of 

linearisation is presented, which is then extended to the solutions presented in Chapter 

3. The final solution of the small-signal models of the single-phase, two-phase discrete-

inductor, and two-phase coupled-inductor boost converter are presented in a unified 

form which can be applied to all modes of operation. The unified transfer function 
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models are then derived from these small-signal models for each of the four desired 

transfer functions; the input voltage-to-output voltage transfer function, the duty cycle-

to-output voltage transfer function, the duty cycle-to-inductor current transfer function, 

and finally, the inductor current-to-output voltage transfer function. The derivation of 

the small-signal models of the single-phase and two-phase discrete inductor boost 

converter are derived for both CCM and DCM operation. The small-signal models of 

the CL boost converter operating in CCM, DCM 4, DCM 1, and DCM 8 are derived. 

These derivations can then be extended for all other modes of operation. The 

verification of these small-signal models are presented by comparing the mathematical 

models to a frequency sweep of a simulated CL boost converter using 

Matlab®/Simulink. The small-signal models of the 2L and CL converter are then 

compared to each other.  

6.1.4 Chapter 4 
In Chapter 4, the transfer functions derived in Chapter 3 are used to design PI 

controllers for the CL boost converter. Initially, a comparison of the different switch-

mode power supply control schemes, such as voltage-mode control and current-mode 

control, is presented. Through this comparison, Average-Current-Mode Control is 

chosen as the control scheme to be implemented. The digital design and implementation 

parameters are presented. The design of PI type controllers for the outer voltage loop 

and inner current loop of the CL converter operating in CCM is presented. These PI 

controllers are then implemented into the Altera cyclone III FPGA for experimental 

testing. Several tests are performed on the converter, such as start-up, steady-state and a 

load step change. The CCM designed PI controllers are then utilised for DCM 

operation, the results of which showing a less than optimal performance. PI controllers 

are then designed for operation in DCM 1 and DCM 9, and the experimental testing is 

repeated, with the results showing an improvement over the CCM designed controllers 

operating in DCM. 

6.1.5 Chapter 5 
Chapter 5 presents the design of Type II compensators for use in the average-current-

mode control scheme, replacing PI controllers in the inner current loop. The analogue 

and digital implementations of Type II compensators are briefly discussed. The design 

of the Type II compensator for CCM operation is presented, and the controller verified 

via simulation and experimentation on the 1 kW prototype. As with the PI controllers, 

the CCM designed controllers are tested during DCM operation, and show instability in 
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both simulations and experimental testing. Hence, the design of Type II compensators 

for DCM 3 and DCM 9 operation are presented. These designs can then be extended for 

all other modes of operation. In order to ensure stability across the full load range of the 

converter, as well as optimal performance, bumpless control is introduced in an effort to 

switch controllers, depending on the mode of operation. The bumpless control scheme 

is initially designed for the PI controllers designed in Chapter 4. After testing, it is 

evident that a slight bump between the controllers is evident due to the steady-state 

error present between both controllers. Hence, the implementation of Forced-Output 

Control is presented. Forced-Output control is utilised for switching between the 

outputs of the Type II compensators, allowing a bumpless transition between the two, 

depending on the current mode of operation. Comparisons between the bumpless 

control scheme and the forced-output control scheme show a much better transient 

response for the latter. 
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6.2 Contributions 
This thesis presents the complete mathematical model and digital control of a two-

phase interleaved coupled-inductor boost converter. Due to the magnetizing effects of 

the coupled-inductor, operation of the boost converter can vary greatly from that of a 

single-phase and two-phase discrete inductor boost converter, especially in during 

DCM. The relationship between the input voltage and output voltage of a CL converter 

operating in DCM was previously unknown, and the solution difficult to attain. This 

may deter developers from implementing coupled-inductors into dc-dc converters. Since 

the benefits of utilizing coupled-inductors have been well documented, the ability to 

completely predict the large-signal operation of a CL converter is essential if the use of 

coupled-inductors is to become viable. Hence, chapter 2 presents the complete large-

signal solution to the CL boost converter operating in both CCM and DCM. This allows 

designers and operators to completely predict the large-signal behaviour of a coupled-

inductor boost converter, furthering the area of coupled-magnetics in switch mode 

power supplies. The accuracy of the large-signal model is verified with experimental 

results from a 1 kW CL boost converter prototype. 

In order to fully capitalize on the benefits of a CL converter, optimal closed-loop 

control is required to ensure the desired voltages and currents are attained, while 

rejecting any disturbances. While there are several methods of closing the loop of a 

power converter, one of the more popular methods is the direct design of controllers 

from a systems small-signal model. Hence, chapter 3 presents the complete small-signal 

model of the CL boost converter. These models are verified experimentally via a 

frequency sweep of the 1 kW CL boost converter prototype. The small-signal models 

presented in chapter 3 will help developers design suitable controllers for CL 

converters, for a wide range of applications. 

With the large-signal and small-signal models derived, the design of closed-loop 

controllers in the form of PI controllers and type-II compensators are developed. The 

controllers are developed for two reasons. The first is further verification of the large- 

and small-signal models. By developing optimal closed-loop controllers designed solely 

on the models presented in chapter 2 and chapter 3, designers can be comfortable in 

knowing that the mathematical models presented are not only accurate, but also 

beneficial. 

Finally, due to the varying dynamics between the different modes of operation of a 

CL boost converter, especially between CCM and DCM, Forced-Output Control is 
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developed to allow the converter to switch between controllers mid-operation. This 

method of control is extremely beneficial, due to the fact that it is now possible to 

implement optimal control for all operating points of a dc-dc converter, allowing the 

full-load range of a converter to be utilised to the best of its abilities. 
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6.3 Future Work 
Switch-mode power supplies and more specifically, dc-dc converters are used in a 

large range of applications. The incorporation of a coupled-inductor into a dc-dc 

converter has been shown to improve the performance of the converter, in terms of both 

efficiency and size. The body of work presented in this thesis now gives designers and 

operators the ability to predict the large-signal, and small-signal characteristics of a CL 

converter. However, due to the complexity of design and implementation, the 

technology is still in its infancy in terms of applications in industry, and much more 

work may need to be done to fully utilise coupled-inductors into power converters. For 

example, the efficiency of each mode of operation should be calculated and verified 

with experimental results. A comparison of the efficiencies of each mode should also be 

undertaken. While the coupled-inductor has been shown to have greater efficiency at 

lighter loads, it has yet to be determined whether a specific DCM mode operates at 

consistently higher efficiencies, and if so, what are the more efficient modes. 

While the main focus of this thesis was the analysis of a coupled-inductor boost 

converter, a similar analysis of a CL buck converter is presented in the Appendix. 

However, there is currently no experimental validation of the theory presented. It is the 

aim of the author to modify the 1 kW boost converter prototype in order to implement 

bidirectional operation, in which a CL buck converter is a part of. With this 

modification, experimental validation of the theory presented for the CL boost converter 

can be presented. 

One of the main shortcomings of this body of work is the fact that the solutions 

presented only apply to two-phase interleaved converters, when dc-dc converters can 

have any number of phases. Another restriction to the work presented is the fact that the 

coupled-inductors are inversely coupled. Possible future work may include general 

large-signal, and small-signal models which can easily characterise dc-dc converters 

with any number of phases, and for any winding arrangement.  

Finally, with the ability to predict the operation of coupled-inductor boost converters 

comes the opportunity to implement such a scheme into PFC applications. PFC boost 

converters are one of the most common converter schemes in the area of power 

electronics. Implementing a coupled-inductor into a PFC boost can give many possible 

advantages, such as reduced size and weight of the converter, and reduced THD, due to 

the added ability of the coupled-inductor to reduce common mode noise. Presented with 

the mathematical modelling of the CL converter is the introduction of the FOC scheme. 
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PFC boost converters operating in CCM must inherently enter DCM operation at some 

point, due to the input current being ac. Most CCM PFC boost converters use a single 

controller, which is designed for CCM operation. With the ability to quickly and 

smoothly switch controllers via FOC, a controller for DCM can also be incorporated 

into the PFC boost converter, giving optimal performance at any point of the input sine 

wave.
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7 APPENDIX 

Appendix A presents the large-signal, and small-signal analysis of a two-phase 

interleaved coupled-inductor buck converter. 

Appendix B presents the various expressions needed to solve all CCM and DCM 

modes of operation of the two-phase interleaved coupled-inductor boost converter. Also 

presented in Appendix B is the Matlab® code used to solve for the α, β, γ, and δ 

coefficients of the small-signal models. 

Appendix C presents the results of the implementation of the closed-loop PI 

controller for all CCM and DCM modes of operation. 
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Appendix A. 
Buck Converter Analysis 

Boost converters are often implemented into bidirectional converters to step-up the 

voltage one direction, while a buck converter steps the voltage back down when the 

flow of power is reversed [2.31]. For example, the regenerative braking system in 

modern electric and hybrid cars use a bidirectional converter to supply power to the 

wheels when driving via boosting, and reverse the flow of power back into the battery 

when braking via bucking [2.30]. This system is presented in Figure 7.1. In Figure 2.40, 

VLV and CLV are the low voltage side voltage and capacitance, while VHV and CHV are 

the high voltage side voltage and capacitance. To use a coupled-inductor in a 

bidirectional converter, the effects of the coupling must also be examined in a buck 

converter. 

L

CHV

Qlower

+

-

VHV

Qupper

+

-

VLV
CLV

 
Figure 7.1. Bidirectional dc-dc converter with dc motor and battery. 

7.1.1 A.1 1L Buck Converter Large-Signal Model 
To properly analyse a CL buck converter, the 1L and 2L buck converters must first 

be understood. The 1L buck converter CCM-DCM mode map is presented in Figure 

7.2. The x-axis details the output current of the buck converter, normalised to the 

maximum output boundary current of the converter. This occurs at a duty cycle of 1, 

and is found as 

 , 2
in s

oB Max
V TI

L
   (7.1) 

Similar to the 1L boost converter, the 1L buck converter has two CCM modes, 1L CCM 

1 and 1L CCM 2. The gain of the converter when operating in these modes is 
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Figure 7.2. Output current CCM-DCM mode map for 1L buck converter. 
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V

   (7.2) 

As the current in the converter drops, the system begins to enter one of two DCM 

modes, 1L DCM 1, which occurs at a duty cycle less than 0.5, and 1L DCM 2, which 

occurs at a duty cycle greater than 0.5. The gain of the converter when operating in 

these modes is 
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V D
LV D

R T




  (7.3) 

7.1.2 A.2 2L Buck Converter Large-Signal Model 
The 2L CCM-DCM mode map is presented in Figure 7.3. The x-axis represents the 

converter output current normalised to the maximum output boundary current, which is 

found as 

 , 4
in s

oB Max
V TI

L
   (7.4) 

Similar to the 2L boost converter, there are two CCM modes of operation, 2L CCM 1, 

which occurs at a duty cycle less than 0.5, and 2L CCM 2 which occurs at a duty cycle 

greater than 0.5. The gain of the converter in these modes is 
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Figure 7.3. Output current CCM-DCM mode map for 2L buck converter. 
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As the current drops, the system will enter DCM. There are three DCM modes present 

in a 2L buck converter. 2L DCM 1 and 2L DCM 3 occur when the duty cycle is less 

than and greater than 0.5 respectively. In both these modes, the input current does not 

reach zero. The final DCM mode, 2L DCM 3 occurs when the input current reaches 

zero in every cycle. The converter cannot enter 2L DCM 3 if the duty cycle ii 0.5 or 

greater. The gain of the system when operating in all three DCM modes is 

 
2

2

4

out

in

out s

V D
LV D

R T




  (7.6) 

Once again, the difference between the DCM gain of the 1L and 2L buck is a factor of 

two represented by the fact that the inductor current is now half the value. 

7.1.3 A.3 CL Buck Converter Large-Signal Model 
The CCM-DCM mode map of the CL buck converter is presented in Figure 7.4. 

Similar to the CL boost converter, there are a total of ten modes of operation; two in 

CCM and eight in DCM. The waveforms of each CCM and DCM mode of the CL buck 

converter are identical to the CL boost converter waveforms presented in Figure 2.12 to 

Figure 2.14. Hence, for simplicity, each mode has been given the same name as their 

boost converter counterpart. 
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Figure 7.4. Output current CCM-DCM mode map for CL buck converter. 

Once again, the x-axis represents the converter output current normalised to the 

maximum output boundary current. The formula for the maximum output boundary 

current for the CL buck converter is 

 ,
( )

( 2 )
out s Lk m

oB Max
Lk Lk m

V T L LI
L L L





  (7.7) 

which occurs at a duty cycle of D = 0, as can be seen in Figure 7.4. The gain of the 

converter when operating in both CCM modes of operation is 

 out

in

V D
V

   (7.8) 

As with the CL boost converter, the gain of each DCM mode is unique. The ripple 

currents of the CL buck converter when operating in DCM are given in Table 7.1. 

Table 7.1. Peak-to-peak ripple currents for the input, magnetizing and phase currents of a CL buck 
converter when operating in CCM. 

CCM Mode ΔIout(p-p) ΔIm(p-p) ΔIL(p-p) 

CCM 1 (D < 0.5) 
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V V DT
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2
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2 2
out p p m p pI I  

  

CCM 2 (D > 0.5) 
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V V D T
L
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V D T
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2 2
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7.1.4 A.4 CL Buck Converter Small-Signal Model 
The analysis presented in section 3.4 can easily be applied to a CL buck converter to 

find its small-signal models for all CCM and DCM modes also. The characteristic 

equations for the CL buck converter operating in CCM are 

 1
1

L
Lk in out T

dIL V D V V
dt

     (7.9) 

 1
out out

out L
out

dV VC I
dt R

    (7.10) 

while the characteristic equations for all DCM modes are 

 1
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Lk in out off T
dIL V D V D D V
dt

      (7.11) 

 1
out out

out L
out

dV VC I
dt R

    (7.12) 

The expressions for VT1 for the CL Buck converter in CCM, DCM 1, DCM 4 and DCM 

8, respectively, are 

 1 0TV    (7.13) 
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 1 0TV    (7.15) 
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  (7.16) 

As with the boost converter, the expression for Doff is derived. It is then inserted into 

the characteristics equation, along with VT1. The results are linearised, and the small-

signal models of the CL buck converter are found as 

 1
11 1 1 1

( ) ( ) ( ) ( ) ( )L
in out L

d i tL v t v t d t i t
dt

      
      (7.17) 

  12 2 2 2
( ) ( ) ( ) ( ) ( )out

in out Lout
d v tC v t v t d t i t

dt
      

      (7.18) 

As with the CL boost converter, the expressions for the α, β, γ, and δ coefficients are 

too large to present here. However, the Matlab® code used to solve for the coefficients 

is supplied in the appendix. Once again, it is evident that the magnetising inductance 

plays a large role in the small-signal models. 
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A. 5 CL Buck Converter Small-Signal Model 
The analysis presented in Section 3.5 can easily be applied to a CL buck converter to 

find its small-signal models for all CCM and DCM modes also. The characteristic 

equations for the CL buck converter operating in CCM are 

 1
1

L
Lk in out T

dIL V D V V
dt

     (7.19) 

 1
out out

out L
out

dV VC I
dt R

    (7.20) 

while the characteristic equations for all DCM modes are 

 1
1( )L

Lk in out off T
dIL V D V D D V
dt

      (7.21) 

 1
out out

out L
out

dV VC I
dt R

    (7.22) 

The expressions for VT1 for the CL Buck converter in CCM, DCM 1, DCM 4 and DCM 

8, respectively, are 

 1 0TV    (7.23) 
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As with the boost converter, the expression for Doff is derived. It is then inserted into 

the characteristics equation, along with VT1. The results are linearised, and the small-

signal models of the CL buck converter are found as 

 1
11 1 1 1

( ) ( ) ( ) ( ) ( )L
in out L

di tL v t v t d t i t
dt

      
      (7.27) 

 
12 2 2 2

( ) ( ) ( ) ( ) ( )out
in out Lout

dv tC v t v t d t i t
dt

      
      (7.28) 

As with the CL boost converter, the expressions for the α, β, γ, and δ coefficients are 

too large to present here. However, the Matlab® code used to solve for the coefficients 

is supplied in the appendix. Once again, it is evident that the magnetising inductance 

plays a large role in the small-signal models.  



Appendix 

- 192 - 

Appendix B 
7.1.5 CCM Equations 

Simultaneous Equation 1 needed to solve for D and Doff 

 (1 ) 0in outV D V     (A.1) 

Simultaneous Equation 2 needed to solve for D and Doff 

N/A 

Duty Cycle 

  1 in

out

VD
V

    (A.2) 

Off-Time  

 1offD D    (A.3) 

Non-linearised Equations 

 1
1( )L

Lk i o o o T
dIL V D D V D V
dt

      (A.4) 

 1 12 2out out
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dV VC I I
dt R

     (A.5) 

Switch current 

 1 1S LI DI   (A.6) 

Voltage drop across the magnetising inductance 
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 1 0TV    (A.7) 



Appendix 

- 194 - 

7.1.6 DCM 1 Equations 
Simultaneous Equation 1 needed to solve for D and Doff 
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Simultaneous Equation 2 needed to solve for D and Doff 
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Non-linearised Equations 
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Switch current 
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Voltage drop across the magnetising inductance 
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7.1.7 DCM 2 Equations 
Simultaneous Equation 1 needed to solve for D and Doff 
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Simultaneous Equation 2 needed to solve for D and Doff 
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Duty Cycle 
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Non-linearised Equations 
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Switch current 
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Voltage drop across the magnetising inductance 
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7.1.8 DCM 3 Equations 
Simultaneous Equation 1 needed to solve for D and Doff 
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Simultaneous Equation 2 needed to solve for D and Doff 
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Duty Cycle 
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Non-linearised Equations 
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Switch current 
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Voltage drop across the magnetising inductance 
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7.1.9 DCM 4 Equations 
Simultaneous Equation 1 needed to solve for D and Doff 

 ( ) 0i o o oV D D V D     (A.32) 

Simultaneous Equation 2 needed to solve for D and Doff 
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Duty Cycle 

 12 ( )( )o i L o i Lk m

o i

V V I T V V L L
V

D
VT
 

   (A.34) 
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Non-linearised Equations 
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Switch current 
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Voltage drop across the magnetising inductance 
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7.1.10 DCM 7 Equations 
Simultaneous Equation 1 needed to solve for D and Doff 
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Simultaneous Equation 2 needed to solve for D and Doff 
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Off-Time  

Equation for Doff is too long. Solve Simultaneous Equations above to find Doff.  
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Non-linearised Equations 
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Switch current 
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Voltage drop across the magnetising inductance 
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7.1.11 DCM 8 Equations 
Simultaneous Equation 1 needed to solve for D and Doff 
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Simultaneous Equation 2 needed to solve for D and Doff 
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Duty Cycle 

 
3

1
2

2 ( 2 ) ( 2 )
2 ( 2 )

Lk o i L Lk m Lk o m o Lk i m im

Lk m o i Lk m

L V V I T
D

L L L V L V L V L VL
L L V VT L L

   


 
   (A.50) 

Off-Time  

 
2

2 2 2 2

2 ( 2 ) ( )
2 (( 3 2 ) ( 4 4 ) )

x m o i Lk m o i

Lk Lk m m o Lk Lk
ff

m m
o

i

D L T V V L L T V V
T L L L L V L L L

D
L V

   


    
  (A.51) 

3 2 2 3 2

2 2 3 3 2 3 2 4 3 2 2 3
1

(( ) ( 2 ) )(( 4 24 48 32 ) ...

...(4 16 16 ) ( ) 2 ) (8 40 64 32 )
4

Lk m o Lk m i Lk Lk m Lk m m i

Lk m Lk m m i m Lk m o i m Lk i m Lk Lk m Lk m Lk m L
x

T L L V L L V L L L L L L V D

L L L L L V D L L L V V L L V L T L L L L L L L ID

       

         
   (A.52) 

 

Non-linearised Equations 
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Switch current 
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Voltage drop across the magnetising inductance 
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7.1.12 DCM 9 Equations 
Simultaneous Equation 1 needed to solve for D and Doff 
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Simultaneous Equation 2 needed to solve for D and Doff 
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Duty Cycle 
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Non-linearised Equations 
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Switch current 
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Voltage drop across the magnetising inductance 

 1
(1 )i m o

T
Lk m

V L D DV
L L
 




  (A.65) 

   

 



Appendix 

 

- 208 - 
 

7.1.13 Matlab® code for small-signal model coefficients α, β, γ, and δ 
The expressions for Doff, IS1 and VT1 are first declared in Matlab®. For example, 

when solving DCM 1, equations (A.11), (A.14), and (A.15) are expressed as 

 

Doff = - LLk/(2*(LLk + 2*Lm)) - ((Vi - Vo + 2*Vo*D^2 - 4*Vi*D^2)*ts + 

4*LLk*IL1)/(2*ts*(Vo-... Vi + Vo*D - 2*Vi*D)) - (LLk*(4*LLk*IL1 - 

Vo*D*ts)*(2*D + 1)*(Vo - Vi))/(2*ts*(LLk*Vo-… LLk*Vi + Lm*(2*Vo - 2*Vi + 

2*Vo*D - 4*Vi*D) - 2*LLk*Vi*D)*(Vo - Vi + Vo*D - 2*Vi*D)); 

Is1 = (Vo*D^2*ts)/(4*(LLk + 2*Lm)) - (D^2*ts*(Vo - 2*Vi))/(4*LLk); 

Dil1 = (Vi*(D+Doff) - Vo*(Doff) - VT1; 

 

The Non-linearised equations given in (A.12) and (A.13) are expressed in Matlab® 

as 

 

Dil = (Vi*(D+Doff) - Vo*(Doff) – VT1; 

 

Dvo = 2*IL1 - 2*Is1 - Vo/Ro; 

 

Finally, the α, β, γ, and δ coefficients are solved via the differentiation command, 

“diff”, in Matlab®, and simplified using the simplify command, “simplify”, i.e. 

 

al1 = simplify(diff(Dil7,Vi)); = α1 

be1 = simplify(diff(Dil7,Vo)); = β1 

ga1 = simplify(diff(Dil7,D)); = γ1 

de1 = simplify(diff(Dil7,IL1)); = δ1 

al2 = simplify(diff(Dvo7,Vi)); = α2 

be2 = simplify(diff(Dvo7,Vo)); = β2 

ga2 = simplify(diff(Dvo7,D)); = γ2 

de2 = simplify(diff(Dvo7,IL1)); = δ2 
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Appendix C 
7.1.14 CCM Closed-Loop Responses with PI Controllers at Duty Cycle 

of 0.5 
7.1.14.1 Converter Start-Up 

 

7.1.14.2 Converter Steady-State 

 

7.1.14.3 Converter Load Drop 
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7.1.15 CCM Closed-Loop Responses with PI Controllers at Duty Cycle 
of 0.67 

7.1.15.1 Converter Start-Up 

 

7.1.15.2 Converter Steady-State 

 

7.1.15.3 Converter Load Drop 
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7.1.16 DCM 1 Closed-Loop Responses with PI Controllers  
7.1.16.1 Converter Start-Up 

 

7.1.16.2 Converter Steady-State 

 

7.1.16.3 Converter Load Drop 
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7.1.17 DCM 2 Closed-Loop Responses with PI Controller 
7.1.17.1 Converter Start-Up 

 

7.1.17.2 Converter Steady-State 

 

7.1.17.3 Converter Load Drop 
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7.1.18 DCM 3 Closed-Loop Responses with PI Controllers  
7.1.18.1 Converter Start-Up 

 

7.1.18.2 Converter Steady-State 

 

7.1.18.3 Converter Load Drop 

 



Appendix 

 

- 214 - 
 

7.1.19 DCM 4 Closed-Loop Responses with PI Controllers  
7.1.19.1 Converter Start-Up 

 

7.1.19.2 Converter Steady-State 

 

7.1.19.3 Converter Load Drop 
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7.1.20 DCM 7 Closed-Loop Responses with PI Controllers  
7.1.20.1 Converter Start-Up 

 

7.1.20.2 Converter Steady-State 

 

7.1.20.3 Converter Load Drop 
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7.1.21 DCM 8 Closed-Loop Responses with PI Controllers  
7.1.21.1 Converter Start-Up 

 

7.1.21.2 Converter Steady-State 

 

7.1.21.3 Converter Load Drop 

 
 



Appendix 

 

- 217 - 
 

7.1.22 DCM 9 Closed-Loop Responses with PI Controllers  
7.1.22.1 Converter Start-Up 

 

7.1.22.2 Converter Steady-State 

 

7.1.22.3 Converter Load Drop 

 


