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Abstract

Systemic administration of the highly potent anticancer therapeutic, tumour necrosis factor

alpha (TNFα) induces high levels of toxicity and is responsible for serious side effects. Con-

sequently, tumour targeting is required in order to confine this toxicity within the locality of

the tumour. Bacteria have a natural capacity to grow within tumours and deliver therapeutic

molecules in a controlled fashion. The non-pathogenic E. coli strain MG1655 was investi-

gated as a tumour targeting system in order to produce TNFα specifically within murine

tumours. In vivo bioluminescence imaging studies and ex vivo immunofluorescence analy-

sis demonstrated rapid targeting dynamics and prolonged survival, replication and spread of

this bacterial platform within tumours. An engineered TNFα producing construct deployed in

mouse models via either intra-tumoural (i.t.) or intravenous (i.v.) administration facilitated

robust TNFα production, as evidenced by ELISA of tumour extracts. Tumour growth was

impeded in three subcutaneous murine tumour models (CT26 colon, RENCA renal, and

TRAMP prostate) as evidenced by tumour volume and survival analyses. A pattern of pro-

inflammatory cytokine induction was observed in tumours of treated mice vs. controls. Mice

remained healthy throughout experiments. This study indicates the therapeutic efficacy and

safety of TNFα expressing bacteria in vivo, highlighting the potential of non-pathogenic bac-

teria as a platform for restricting the activity of highly potent cancer agents to tumours.

Introduction

The efficacy of current anti-cancer small drug chemotherapeutics is limited because of the nar-

row therapeutic index inherent in most of the drugs employed to treat cancer which leads to

systemic damage of healthy tissue and side effects upon treatment. For this reason, alternative

therapies for the treatment of cancer that aim to localize the therapeutic agent to the site of the

tumour are been investigated. TNFα was identified in 1975 when it was discovered that a sub-

stance from the sera of animals that were challenged with BCG and endotoxin could kill

mouse cells in vitro and induce haemorrhagic necrosis of transplantable mouse tumours in
vivo [1]. Subsequently, TNFα was investigated as a therapeutic agent for cancer treatment.

However, due to severe systemic toxicity it was soon abandoned for systemic use, only to be
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revisited later in the settings of isolated limb perfusion to treat inoperable cancer [2]. The

inherent high level of toxicity of TNFα poses health risks, and therefore it is essential that if it

is to be used for treating cancer it must be confined to the tumour site in a highly controlled

manner. Biological vehicles have been examined for this purpose in the context of cancer gene

therapy, and TNFα delivery by viruses such as adeno-associated virus [3] or adenoviruses have

shown promise. TNFerade is a serotype 5 adenovirus that expresses TNFα under the control

of the early growth response gene (egr-1) promoter that responds to radiation, which has been

examined in Phase 3 clinical trials for advanced prostate cancer [4–7]. In this approach, while

the biological delivery vehicle is not confined to tumours, TNFα production is restricted via

physically targeted radiation induction of the egr-1 promoter to express the TNFα transgene.

Bacteria represent another class of cancer gene therapy vector that have an established

safety profile and track record of facilitating protein production within tumours [8, 9]. Unlike

viral vectors, which induce agent production via transduction of cells followed by host cell

expression of the delivered transgene, bacteria provide the option of host cell production

(through employment of an invasive strain–aka ‘bactofection’ [10, 11]) or the bacterium can

express the agent directly. For the latter, non-pathogenic strains of bacteria may be used (e.g.

probiotics), increasing the safety profile of the platform [12]. Bacteria came to be investigated

as cancer therapeutic agents due to their natural ability to grow within tumours [13]. The pri-

mary factors believed to be responsible for tumour-selective survival and replication involve

tissue traits unique to tumours; irregular leaky vasculature permits bacterial entry to tissue,

local immune suppression allows the bacteria to ‘hide’ from the immune system, tumour cell

necrosis provides a rich nutrient supply, and anaerobic/facultative-anaerobic bacteria grow

well in the hypoxic tissue (unique to tumours). Bacteria have a number of other advantages

over viral vectors as delivery vehicles: they have a large genome capable of carrying large thera-

peutic genes or plasmids; they can be engineered in a highly sophisticated fashion; many are

motile and can penetrate deep within the tumour; and, if needed, they can be eliminated with

antibiotics. Various cytokines have been delivered to tumours by bacteria in the past with vary-

ing degrees of success. For example, Salmonella strains have been used in conjunction with IL-

12 [14], IL-4 and IL-18 [15][16], TRAIL [17] and FAS ligand [18] and some Clostridium strains

with TNFα [19] and IL-2 [20].

In this study, we demonstrate the utility of the naturally non-pathogenic E. coli MG1655 as

a platform for safe and effective in situ biomolecule production, and the capacity to improve

the safety profile of promising anticancer agents through employment of this platform.

Material and methods

Cell lines

RENCA (mouse renal carcinoma) and CT26 (mouse colorectal carcinoma) cells were pur-

chased from ATCC and were propagated according to the supplier’s instructions. The murine

recycled prostate cancer cell line TRAMPC1 was kindly provided by Dr. Richard Ciavarra of

Eastern Virginia Medical School, Norfolk USA, and propagated as described in [21].

In Vitro cytotoxicity assay

The 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay was opti-

mised for use as an end-point analysis for experiments involving the treatment of CT26,

RENCA and TRAMP cell lines with TNFα. Stocks of MTT were prepared by dissolving MTT

powder in phosphate buffered saline at a concentration of 5 mg/ml, and stored at -20 oC (pro-

tected from over-exposure to light). Cells were seeded in 500 μl of relevant growth medium at

4 x 104 cells per well in a 24 well flat bottomed plate (Sarstedt) and allowed to grow for 24 h.

TNFα-producing bacteria mediate cancer therapy
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Wells were treated with varying concentrations of murine TNFα (Sigma-Aldrich) or vehicle

(sterile water) in triplicate. Blank wells without cells were also included to account for any

background fluorescence. After 48 h, MTT was added to cells at a final concentration of 0.5

mg/ml and incubated for 90 min at 37 oC, 5% CO2. All medium was then aspirated carefully

and purple formazan crystals were dissolved upon addition of 150 μl DMSO per well. Each

well was mixed with 70 μl each sample and transferred to a 96-well microtest plate (Sarstedt)

and absorbance read at 570 nm on an Infinite 2000 spectrophotmetric plate reader (Tecan).

An Excel add-in ED50V10-2 was used for calculating half maximal effective concentration of

TNFα (ED50), calculated from absorbance readings.

Plasmid construction and transformation

The mRNA sequence for Mus musculus tumour necrosis factor alpha (GenBank: BC137720.1)

was retrieved from the NCBI database. The gene was then synthesized and ligated into a cus-

tom made version of plasmid pSF-OXB20-Br322 by Oxford Genetics Ltd, Oxford, UK, con-

taining a low copy origin of replication, strong promoter, and kanamycin resistance marker

(S1A Fig). An empty version of the plasmid was also supplied. The plasmids were then trans-

formed into E. coli MG1655-p16lux (herein referred to as MG) [22] and selected for and main-

tained on LB and Kan50 + Em300 and incubated at 37 ˚C.

In vitro cytokine expression

To confirm the expression of TNFα by the plasmid constructs in MG and the absence of

expression in the equivalent empty constructs, each isolate was grown in 10 mL LB for 18 h at

37 ˚C with appropriate antibiotics. A Mouse TNFα Single Analyte ELISA Kit (Qiagen) was

used to test for the presence of the cytokine in all transformed plasmid constructs in the total

bacterial lysate, as per manufacturer’s instructions.

Murine experiments

All animal procedures were performed according to the national ethical guidelines of the

Health Products Regulatory Authority (HPRA). Protocols were approved by the University

College Cork Animal Experimentation Ethics Committee (AERR #2010/003 and #2012/015).

Health status of all mice was monitored daily for the duration of experiments. There were no

deaths outside of humane euthanasia. Mice were humanely euthanized by cervical dislocation

upon tumours reaching a size of 1.5 x 1.5 cm in diameter. To minimize suffering or distress

during invasive procedures (imaging and bacterial injection), mice were anaesthetised with

isoflourane (2.5% mixture with oxygen).

Animals and tumour induction

Mice were kept at a constant room temperature (22 ˚C) with a natural day/night light cycle in

a conventional animal colony. Standard laboratory food and water were provided ad libitum.

Before experiments, the mice were afforded an adaptation period of at least 7 days. Male C57Bl

(TRAMPC1 model) and female Balb/C (RENCA and CT26 models) mice in good condition,

without fungal or other infections, weighing 16–22 g and of 6–8 weeks of age, were included in

experiments (Harlan, Oxfordshire, UK). At experiment end, animals were euthanized by cervi-

cal dislocation. For routine tumour induction, the minimum tumorigenic dose of cells (5 x 105

CT26, 1 x 105 RENCA, 5 x 105 TRAMPC1) suspended in 200 μl serum-free culture medium

was injected subcutaneously (s.c.) into the flank. The viability of cells used for inoculation was

greater than 95% as determined by the Nucleocounter system (ChemoMetec, Bioimages Ltd,

TNFα-producing bacteria mediate cancer therapy
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Cavan, Ireland). Following tumour establishment, tumours were allowed to grow and develop

and were monitored three times weekly. Tumour volume was calculated according to the for-

mula V = (ab2) P /6, where a is the longest diameter of the tumour and b is the longest diame-

ter perpendicular to diameter a. When tumours reached approximately 100 mm3 in volume,

mice were randomly divided into experimental groups.

In vivo bacterial administration

Inocula were prepared by growing MG-Empty and MG-TNFα with or without the integrated

p16Slux aerobically in 100 mL LB broth containing either 50 μg/mL Kan (MG1655) or 50 μg/

mL + 300 μg/mL Em (MG1655p16Slux). Overnight cultures were re-inoculated into fresh LB

(1/50 dilution) and incubated shaking at 37˚C until they reached an OD600 of 0.6–0.8. Cul-

tures were harvested by centrifugation (13,500 g for 1 min), washed three times with PBS and

resuspended in a one tenth volume of PBS. Tumours were administered 106 E. coli by either

intratumoural (i.t.) injection (RENCA and TRAMPC1 model) or intravenous (i.v.) injection

via the lateral tail vein (CT26 model). The viable count of each inoculum was determined by

retrospective plating on LB agar containing the appropriate selective antibiotic.

In vivo bioluminescence imaging (BLI)

At defined time-points after bacteria, animals were anesthetized by intraperitoneal administra-

tion of 200 mg xylazine and 2 mg ketamine and 2D in vivo Bioluminescence Imaging was per-

formed using the IVIS Lumina II (Perkin Elmer, Waltham, MA) with 2 min integration times

at high sensitivity. Following whole-body imaging, the mice were euthanized via cervical dislo-

cation and the subcutaneous tumours were aseptically removed and imaged. For each experi-

ment, images were captured under identical exposure, aperture and pixel binning settings, and

bioluminescence is plotted on identical colour scales. Bioluminescent signal was quantified by

creation of regions of interest (ROIs). To standardize the data, light emission was quantified

from the same surface area (ROI) for each tumour. Imaging data was analysed and quantified

with Living Image Software (Perkin Elmer) and expressed as photons/second/cm2.

Bacterial recovery from the tumour

Following imaging, each tumour was aseptically cut into three sections, one-third of which

was immediately homogenized by fine mincing using a scalpel and pushed through a 20 μm

pore nylon filter (Falcon, Becton Dickinson (BD), Oxford, England). The filter was then rinsed

with 2 mL of LB broth to create a cell suspension. Serial dilutions were plated in triplicate on

LB agar containing selective antibiotics, grown overnight at 37˚C and the resulting colonies

used to calculate the number of bacterial cells per tissue sample.

Immunofluorescence

One third of the tumour was snap frozen in optimal cutting temperature compound (Tissue-

Tek; Sakura Finetek) using liquid nitrogen and isopentane. Frozen tumour sections (5 μm)

were fixed in an ice-cold acetone-alcohol mixture (3:1 ratio), blocked with blocking serum for

45 min at RT in a humidified chamber, stained with purified rabbit polyclonal anti-E. coli anti-

body (Abcam, UK) and counterstained using donkey anti-rabbit Alexa Fluor 488-conjugated

anti-Ig antibody (Jackson Immunoresearch Laboratories Inc., USA). Stained sections were

mounted in ProLong Gold antifade reagent with DAPI (Invitrogen, UK) and visualized using

a fluorescence microscope (Olympus BX51).

TNFα-producing bacteria mediate cancer therapy
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Cytokine profiling

Snap frozen tumour sections were thawed, weighed and placed into Lysing Matrix A tubes (Mp

Biomedicals, Medical Supply Company, Dublin, Ireland) containing 1 mL of homogenization

buffer (50 mL PBS + 1 protease inhibitor cocktail tablets (Roche) + 10% FCS and homogenized

using a FastPrep FP120 Cell disrupter (Qbiogene, Cedex, France). Homogenized samples were

centrifuged for 12 min at 14,000 RPM at 4˚C and the supernatants collected and stored at

-80˚C. Cytokine concentrations in the supernatants were measured by a Meso Scale Discovery

7-plex pro-inflammatory cytokine plate (MSD, Gaithersburg, MD, USA) according to the man-

ufacturer’s instructions. The plates were analysed on the MSD Sector 2400 Imager (MSD).

Statistical analysis

Statistical significance was determined with unpaired Student’s T test or Gehan-Breslow-Wil-

coxon test for survival curves. All statistical tests were performed using commercially available

statistic software (GraphPad Software, CA, USA). Data are represented by Mean ± (Standard

Error of the Mean) SEM, unless otherwise stated. P values of< 0.05 were considered signifi-

cant (�P< 0.05, ��P < 0.01).

Results

E. coli growth in tumours

To validate the utility of this platform, a bioluminescent form of MG1655 carrying the lux cas-

sette in its genome (herein referred to as MG) was employed, which has previously been vali-

dated in this setting in our laboratory [22]. MG was administered to Balb/C mice bearing

RENCA tumours i.t or CT26 tumours i.v. and monitored by whole-body bioluminescence

imaging (BLI) over time. Persistent bioluminescence signal was observed for >9 days indicat-

ing bacterial survival and growth in tumours (Fig 1).

Engineered E. coli facilitates TNFα production within tumours

A TNFα -expressing MG was designed and generated as described in Materials & Methods

and S1 Fig. TNFα production from the construct was validated in vitro by ELISA (S1B Fig). In
vitro cytotoxicity assays with the various cell lines in the presence of TNFα indicated signifi-

cant sensitivity to TNFα with all cell lines examined; ED50 CT26–37 ng/ml, RENCA 50 ng/ml,

TRAMP 64 ng/ml; (Fig 2).

In order to qualitatively assess tumour targeting and proliferation of MG-TNFα, bacteria

were administered to Balb/C mice bearing CT26 tumours (i.v.) and monitored by BLI and

immunofluorescence (IF) over time. BLI demonstrated increasing numbers of this strain

within tumours for two weeks (Fig 3). IF specific for E. coli confirmed bacterial presence

within tumour tissue, and viable bacteria were recovered at all-time points examined. ELISA

analysis of tumour homogenates demonstrated significantly higher TNFα levels within

tumours of MG-TNFα treated mice compared with controls (mice i.v. administered engi-

neered MG1655 lacking the TNFα gene or PBS) (Fig 4A).

Induction of inflammatory cytokines within CT26 tumours was examined by MSD multi-

plex cytokine analysis of tumour homogenate. A pattern of pro-inflammatory cytokine induc-

tion was observed in tumours of MG-TNFα treated mice vs. controls (Fig 4B).

In vivo therapy of prostate, colon and renal carcinoma

Mice bearing subcutaneous flank tumours (TRAMPC1, CT26 and RENCA) were administered

PBS, MG-Empty or MG-TNFα i.t (TRAMP, RENCA) or i.v. (CT26) and tumour volume and

TNFα-producing bacteria mediate cancer therapy
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survival monitored over time (Fig 5). Therapeutic effects were observed in all studies, albeit at

varying levels (Table 1). In the TRAMP prostatic tumour model, tumour growth was signifi-

cantly reduced in MG-TNFα treated mice versus controls (p< 0.05, p< 0.01), but apparent

increase in median survival was not significant compared with MG-Empty (p> 0.05). Median

survival of mice bearing CT26 tumours treated with MG- TNFα was significantly increased vs.

MG-Empty (p = 0.049), although the apparent reduction in tumour volume was not significant

vs. controls (p>0.05). Significant reduction in tumour volume was observed at certain time-

points in the RENCA renal tumour model (p< 0.01), with no significant increase in survival

(p> 0.05) in this rapid growing model. Mice remained healthy throughout experiments as evi-

denced by a disease activity index (S1 Table) [23] which was constructed by frequent monitor-

ing of behaviour and appearance.

Discussion

To our knowledge, this is the first in vivo study that demonstrates TNFα delivery by bacteria

to experimental murine tumours. E. coli MG1655 was employed to deliver and produce the

therapeutic biomolecule TNFα inside murine tumours. Initially, both i.t. and i.v. routes of

Fig 1. Administration of luminescent E. coli MG1655 to tumour bearing mice. Subcutaneous RENCA tumours were injected i.t. with 106 cfu and

monitored by BLI over the shown time points (left). Mice (n = 6) bearing CT26 tumours were injected with 106 bacteria to the lateral tail vein and all mice

monitored at each time point over the course of time (right). The change in bacterial luminescence (relative to day 0) is shown. A representative image at

each time point is shown. Luminescence remained stable across the range of time-points indicating that robust numbers of viable bacteria persisted within

the tumour throughout the experiment.

https://doi.org/10.1371/journal.pone.0180034.g001
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administration were tested to compare tumour targeting, and MG1655 performed well in

both. For more clinical potential (for inaccessible and metastatic cancers), the i.v. route was

chosen and MG-TNFα was administered to mice bearing CT26 tumours for further qualitative

and quantitative analysis. MG-TNFα was capable of targeting tumours and proliferating as evi-

denced by BLI, IF and cfu counts. TNFα production within CT26 tumours was confirmed by

ELISA and therapeutic studies indicated that MG-TNFα can impede tumour growth without

inducing significant systemic toxicity.

TNFα is a cytokine that is highly toxic to cells and therefore has been selected as a therapeu-

tic biomolecule for this study. In the past, genetic constructs for in vitro production of TNFα
by Clostridium were described [19, 24] but therapeutic analyses have not been reported to our

knowledge. MG1655 was chosen because it is a strain that has been very well characterized by

the scientific community, is relatively safe compared with other vectors employed and is easy

to engineer. MG1655 handles overexpression of proteins and engineered transcriptional regu-

lation well (e.g. [25]) making it overall a suitable platform for in situ production of therapeutic

biomolecules. Bacteria were tolerated well by mice in all experiments without any observable

toxicity. The lux imaging system employed provided a robust method to track bacterial viabil-

ity (Figs 1 and 3). We have reported the employment of this method for E. coli MG1655 for

colonising murine tumours several times [22, 26–29], including studies directly correlating

culture enumeration with lux imaging as a quantitative and spatial readout for bacterial growth

over time. For example, we have previously reported an R2 value of 0.97 in relationship

between subcutaneous tumour MG1655 numbers and lux bioluminescence [22].

MG-TNFα administered i.v. was able to reach its maximum level within a few days and per-

sisted in tumours for approximately two weeks. Similar tumour targeting dynamics have previ-

ously been reported with various bacteria [22, 26, 30]. IF studies revealed E. coli within tumour

tissue of treated mice only. TNFα production was achieved using MG-TNFα as evidenced by

analysis of tumour extracts. Immune competent syngeneic mice were utilised for all studies, and

downstream local pro-inflammatory effects were apparent following treatment as evidenced by

Fig 2. Tumour cell sensitivity to TNFα in vitro. MTT-based in vitro cytotoxicity assays following incubation

of CT26, RENCA or TRAMP cells with varying concentrations of TNFα indicate significant sensitivity to TNFα
with all cell lines examined (*p < 0.05, **p < 0.01).

https://doi.org/10.1371/journal.pone.0180034.g002
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cytokine analysis, suggesting local secretion by immune cells following treatment. In terms of

immune responses to the bacterial vehicle, Fig 4B indicates that the bacterial backbone (MG–

Empty) induced a degree of immune response as evidenced by an increase in a number of cyto-

kines (IL-12, IL-6 and IL-10), although the increases over PBS are not statistically significant

Fig 3. Intravenous administration of MG-Tnfα to tumour bearing mice. Balb/C mice bearing s.c. CT26 flank tumours (n = 6) received 106 cfu of

MG-TNFα i.v.. Growth of bacteria in tumours was analysed by (a) BLI and (b) immunofluorescence (IF), while (c) plating of tumour extracts on agar plates

quantified viable bacteria. A representative image for each BLI group is shown. For IF, tissue sections from 2 individual mice per time point were analysed by

fluorescence microscopy. (Original magnification, 400x), Scale bars, 50 μm.

https://doi.org/10.1371/journal.pone.0180034.g003
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(p = 0.108, p = 0.199, p = 0.242 respectively). Furthermore, in this study, lux (=> live E. coli) was

observed for the duration of the experiment (Fig 1), although i.t. administration provided stable

luminescence for 10 days, while i.v. luminescence reduced slightly over time, indicating a reduc-

tion in bacterial numbers, possibly related to an immune response against systemically adminis-

tered bacteria, more so than locally administered bacteria. These findings (in immune-competent

syngeneic Balb/C mice) contrast with our previous observations in immune-reduced athymic

mice (MF1nu/nu), where we observed no increase in pro-inflammatory cytokines following IV

administration of MG1655 [26]. The delicate balance of inflammatory and suppressive cytokines

with different tumour models may be affected by the empty vector, and may also vary between

tumour models and stages of tumour growth. There is also potential that some therapeutic effects

of the TNFα produced may be masked due to opposing responses to the bacterial vehicle–e.g.

IFNγwas reduced in MG-Empty treated mice compared with PBS.

The field of engineered bacterial cancer therapy is advancing at a fast pace. Since its infancy

20 years ago, many systems have been tested providing feedback for better strategic decisions

regarding payload choice and vector design [31]. We chose to employ a highly toxic payload

with documented clinical use that can be locally produced in situ by a non-toxic cancer target-

ing vehicle. Further modifications are possible; for example, sophisticated synthetic biology

has allowed for state of the art regulation of protein production and delivery to tumours maxi-

mizing therapeutic efficacy [32]. The ability to control expression of highly toxic TNFα via

exogenous induction [33] or a self-regulating circuit [32] in an improved iteration would

make such a strategy more attractive for clinical development from a safety perspective.

Overall, MG1655 is a strain that responds well to artificial transcriptional regulation and

tolerates protein over-production. Future work may involve advanced synthetic biology

Fig 4. Intratumoural TNFα production and cytokine profiles. (a) Cytokine analysis of CT26 tumour extracts following treatment with bacteria. (b)

Multiplex cytokine analysis of treated CT26 tumour extracts. * p� 0.05.

https://doi.org/10.1371/journal.pone.0180034.g004
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techniques to further improve our vehicle and payloads on many levels; from the bacterial

‘chassis’ to ‘device’-mediated in situ production. Bacterial production of therapeutic biomole-

cules for cancer therapy is now looking more promising than ever.

Supporting information

S1 Fig. Engineered strain construction and validation. (a) Plasmid Construct (b) ELISA

data for TNFα production from MG extracts in vitro. (c) In vitro growth rates of TNFα

Fig 5. Tumour therapy via in vivo production of Tnfα. BALB/c or C57 mice bearing s.c. flank tumours were administered MG-Empty, MG-TNFα or

vehicle (PBS). Tumours were monitored for changes in volume every other day. Tumour volume (%) relative to the first day of bacterial administration (day

0) is shown for (i) TRAMPC1 (ii) CT26 and (iii) RENCA (a-c). Statistical analysis at each time point is based on number of subjects alive. (d-e) Kaplan-Meier

survival plots of each group starting from the first day of bacterial administration. *p < 0.05, **p < 0.01.

https://doi.org/10.1371/journal.pone.0180034.g005

Table 1. Tumour growth responses to therapy.

Tumour Growth (Volume) Survival

TRAMP (i.t.) Reduction significant Increase not significant

CT26 (i.v.) Reduction not significant Increase significant

RENCA (i.t.) Reduction significant No increase

https://doi.org/10.1371/journal.pone.0180034.t001
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-producing bacteria, indicating no significant toxic effects on the host bacterium.

(EPS)

S1 Table. Toxicity/ dose response study. 6–8 week old tumour-free BALB/c mice (n = 3 per

group) were administered a high (107cfu) or low (106 cfu) dose of MG-TNFα via i.v. injection

to the tail vein. Mice were monitored at regular intervals post bacteria for the following macro-

scopic health indicators; Fur texture (0 smooth coat; 1 mildly scruffy; 2 very hunched); Posture

(0 not hunched; 1 mildly hunched; 2 very hunched); and Activity (0 active; 1 less active than

normal, 2 inactive) to create a disease activity index.
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