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Abstract 

To harness even a fraction of the solar energy incident at Earth’s surface would meet 

global demands for clean, environmentally friendly electricity and fuel. Sunlight is an 

intermittent energy source and a mismatch exists between the peaks of supply and 

demand. A strategy to overcome this drawback is to convert the solar energy to chemical 

energy (stored in the bonds of chemical fuels), which allows for storage, transport, and 

reintroduction to the grid as and where required. Solar-to-fuel technologies will also 

reduce carbon emissions by providing alternatives to fossil fuels. One avenue for the 

storage of solar energy in fuel is water splitting, where solar energy is used to decompose 

water into gases of its constituent elements, O2 and H2 gases. Solar driven water splitting 

can proceed at the surface of a semiconductor photocatalyst. The most widely studied, 

and to date the benchmark, photocatalyst material is titanium dioxide (TiO2). TiO2 is 

abundant, cheap, non-toxic and stable under operating conditions. However, its large 

band gap means that TiO2 is only activated by UV light, which constitutes just 4% of the 

incident solar energy. Thus, the focus of this thesis is the modification of TiO2, through 

rational design, to enhance its photocatalytic properties. First principles density functional 

theory (DFT) simulations of modified TiO2 are performed to assess the performance of 

the novel materials as photocatalysts for the water splitting half reactions: the oxygen and 

hydrogen evolution reactions. We adopt a materials descriptor approach, wherein we 

compute key performance indicators that can be compared across materials to evaluate 

the impact of the modification on the photocatalytic properties. Our results inform and 

explain the experimental results from collaborators in Ireland, the Netherlands and Spain.  
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1 Introduction 

1.1  Solar Fuel Production 

Two major societal challenges are (1) climate change as a result of carbon emissions and 

(2) the increasing global demand for energy, which simply cannot be met by continuing 

to exploit the available reserves of fossil fuels. Combustion of fossil fuels releases carbon 

into the atmosphere as CO2, which is a major contributor to climate change, and reserves 

of oil and gas are diminishing, while the environmental impact of their increasingly 

difficult extraction becomes more and more severe.  

More energy from the sun hits the earth in two hours than is consumed in one year; yet, 

we harness only a tiny fraction of this energy source that could alleviate the two issues 

outlined above. The strategy to confront these challenges will be multi-faceted, as no 

single technology will provide a panacea. While huge progress continues to be made in 

the fields of wind energy and photovoltaics, in which sunlight is converted directly to 

electricity, these technologies do not fully address the mismatch between supply and 

demand inherent in the use of intermittent renewable sources. In addition, storage of 

excess electricity produced by wind and solar cells is required. To this end, the efficient 

conversion and storage of energy in chemicals, for reintroduction to the grid as required, 

will play a significant role in the transition from fossil fuels to renewable energy. 

Water splitting, to produce hydrogen gas (H2), is an attractive prospect for a variety of 

reasons. H2, produced from water using renewably produced electricity, via 

electrocatalysis, or by direct conversion of solar energy, via photocatalysis or 

photoelectrochemistry, offers a zero emissions fuel. H2 has a lower heating value (LHV) 

(120 MJ/kg) almost three times that of gasoline (44 MJ/kg)1 and the only by-product of 
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its combustion, or recombination with oxygen in a fuel cell, is water. While hydrogen is 

a gas, it can be stored in liquids such as methanol. 

The photocatalytic or photothermal conversion of radiant energy to chemical energy 

stored in a fuel are two game-changing strategies to make use of the sun’s energy to 

produce fuels in a sustainable fashion, thus addressing the supply side problem. 

Technology based on water splitting also tackles the emissions problem, since water is 

both the feedstock for the process and the only by-product of H2 combustion. 

 

Figure 1.1 Schematic representation of the processes involved in photocatalysis. A 

semiconductor catalyst (circle) is illuminated by a photon (red arrow). If the photon is of 

sufficient energy, it can be absorbed by an electron (e-), which is promoted from the 

valence band (VB) to the conduction band (CB). A hole (h+) is left in the VB. These 

charge carriers separate and migrate to the surface to drive reduction and oxidation 

reactions. 

Photocatalysts are semiconductor materials which absorb photons of energies in excess 

of the bandgap to produce electron-hole pairs, as shown in the schematic in Figure 1.1. 

These charge carriers separate and migrate to the surface of the catalyst where they drive 
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chemical reactions via reduction and oxidation of adsorbed species. Photocatalysis has a 

variety of applications, in addition to the solar production of hydrogen from water 

splitting; these include antimicrobial surfaces, self-cleaning surfaces and pollutant 

removal.2-5 In a photothermal process,6 a metal oxide catalyst is illuminated by 

concentrated sunlight to produce oxygen vacancies; these active oxygen vacancy sites are 

potential H2O activation sites, whereby oxygen fills this vacancy and electrons transfer 

from the defective catalyst to H2O.  

To make H2 fuel competitive, it must be produced at a cost of less than $4/kg of H2.7-8 If 

we consider using solar to produce hydrogen, the US Department of Energy reported that 

their solar to hydrogen (STH) efficiency target for realistic application of hydrogen 

production from photocatalytic water splitting is 5%, which would allow a cost of $4.6/kg 

for hydrogen generation and this is very close to the $4/kg target. Improvements in the 

efficiency of photo-driven water splitting will substantially drive down the cost. In 

addition, the European Strategic Energy Technologies (SET) Roadmap points out that 

new and enhanced catalysts are required in the renewable energy generation sector.9 

However, H2O is very stable, and significant energy is required to break H-O bonds, 

which is a pre-requisite for transforming H2O into a fuel. There is a complex series of 

reactions involved in splitting H2O to hydrogen (H2) and oxygen (O2) gas, which 

necessitates a fundamental understanding of the processes and energetics involved to 

design viable photocatalytic water splitting materials. First principles density functional 

theory (DFT) simulations are crucial for the development of new multifunctional 

architectures that incorporate light absorbers, to produce electrons and defects, and 

provide active sites where reactions can take place, along with control over the reaction 

pathway to the desired product. 
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There are currently no useful materials systems that can produce hydrogen from water 

either photocatalytically or photothermally with adequate efficiency or outside the 

laboratory. There is a significant effort underway to develop materials that can be 

deployed to use visible light to split water, and the concept of coupling photochemistry 

(electron generation) and thermal catalysis (oxygen vacancy formation) is one that is of  

interest in the community. 
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1.2 Water Splitting 

Water splitting, as the name suggests, is the decomposition of liquid water (H2O) into 

gases of its component elements: hydrogen (H2) and oxygen (O2) gas. The reaction may 

be expressed stoichiometrically as follows:10  

 2H2O → 2H2 + O2 1.2.1 

Water is a stable molecule and water splitting is an uphill (endothermic) reaction.  To 

compute the energy required to decompose H2O, consider the reverse reaction and the 

enthalpy (H) of formation of a mole of H2O from a mole of H2 and half a mole of O2. The 

enthalpy is the sum of the internal energy of the system (U) and the work exerted by the 

system on its surroundings at constant pressure, P, to occupy a volume, V: 

 𝐻 ≡ 𝑈 + 𝑃𝑉 1.2.2 

The enthalpy of formation of one mole of H2O, from its constituent elements in their 

standard form, is -285.83 kJ,11 at standard temperature and pressure (STP: T = 298.15 K; 

P = 1 atm). Thus, in order to form H2 and O2 gas from water, an energy of 285.83 kJ mol -

1 must be introduced into the system, some of which will be taken from the environment 

in the form of heat. The Gibbs free energy (G) accounts for this heat exchange; for a 

system in an environment with constant pressure and temperature, G is defined as: 

 𝐺 ≡ 𝐻 − 𝑇𝑆 1.2.3 

This quantity is the enthalpy minus the heat energy exchanged between the system and 

its environment, which is expressed as TS, where T is the temperature and S is the entropy. 

For water splitting, the difference in Gibbs free energy between the initial system (liquid 

H2O) and the final system (H2 and O2 gases) is: 
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 Δ𝐺 = Δ𝐻 − 𝑇Δ𝑆 = 285.83 kJ mol−1 − 𝑇Δ𝑆 1.2.4 

The standard entropies (J mol-1 K-1) for liquid water and hydrogen and oxygen gases are:12  

 𝑆H2O = 69.9; 𝑆H2 = 130.7; 𝑆O2 = 205.1 1.2.5 

so that in STP conditions, the entropic contribution (𝑇Δ𝑆) to the Gibbs free energy is: 

 𝑇Δ𝑆 = 298.15 K × (𝑆H2 +
1

2
𝑆O2 − 𝑆H2O) = 48.72 kJ mol

−1 1.2.6 

Thus, the free energy input required to achieve water splitting at STP is 237.11 kJ mol -1 

(2.46 eV per water molecule). 
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1.3 Electrolysis 

The free energy input required to split water can be supplied by an electrical current, in a 

process called water electrolysis. Overall water splitting, described above in equation 

1.2.1, can be divided into two half reactions: the oxygen evolution reaction (OER) and 

the hydrogen evolution reaction (HER), which are oxidation and reduction reactions, 

respectively. In water electrolysis, the redox reactions occur at the electrodes (anode and 

cathode) of an electrochemical cell. 

The expressions which describe the two half reactions, OER and HER, depend on the 

conditions under which the reaction takes place. In neutral or alkaline conditions, the half 

reactions are10, 13: 

OER, anode 4OH− → O2 + 2H2O+ 4e
− 1.3.1.a 

HER, cathode 4H2O+ 4e
− → 2H2 + 4OH

− 1.3.1.b 

While in acidic conditions, the oxidation and reduction reactions may be expressed as10, 

13: 

OER, anode 2H2O →  O2 + 4H
+ + 4e− 1.3.2.a 

HER, cathode 4H+ + 4e− → 2H2 1.3.2.b 

In this way, the impetus for the water splitting reaction is provided by the potential bias 

between the electrodes. The electrochemical cell potential (Ecell), is the difference 

between the anode and cathode potentials.  

 𝐸𝑐𝑒𝑙𝑙 = 𝐸𝑐𝑎𝑡ℎ𝑜𝑑𝑒 − 𝐸𝑎𝑛𝑜𝑑𝑒 1.3.3 

The electrode potentials are measured relative to the Standard Hydrogen Electrode (SHE) 

potential, which by convention is set to 0 V at all temperatures.14 The SHE is based on 
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the reduction reaction described in equation 1.3.2.b, so in this case, the cell potential is 

simply given by the oxidation potential: 𝐸𝑐𝑒𝑙𝑙 = −𝐸𝑎𝑛𝑜𝑑𝑒.  

From equation 1.3.2.a, two molecules of H2O are required to produce O2; hence, Δ𝐺 is 

474.22 kJ mol-1 for the production of O2. This quantity is related to the cell potential via 

the following equation14: 

 Δ𝐺 = −𝑛𝐹𝐸𝑐𝑒𝑙𝑙 = 𝑛𝐹𝐸𝑎𝑛𝑜𝑑𝑒  1.3.4 

where n is the molar ratio of electrons to product (e−: O2 = 4:1) and F is the Faraday 

constant (~96,485 C mol-1). This indicates that an anode potential of +1.23 V, vs. the 

SHE, is necessary for water oxidation to proceed.  

Thus, the ideal thermodynamic voltage required to drive water splitting is -1.23 V at STP. 

However, in practice, due to losses, kinetic barriers and non-idealities in the catalysts, 

larger voltages are required. The difference between the thermodynamic and the applied 

potential is known as the overpotential and it has contributions arising from activation 

barriers at the anode and cathode surfaces, among other considerations. This renders the 

HER and, particularly, the OER sluggish and necessitates catalysts to reduce the anodic 

and cathodic activation barriers and increase reaction rates. 
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1.4 Photocatalysis 

A photocatalyst is a semiconductor material that is activated upon illumination with light 

with energies (𝐸𝜆) in excess of its energy gap (𝐸𝑔). Photoexcitation promotes electrons 

from the valence band (VB) of the material to the conduction band (CB), leaving holes in 

the VB. Should the energy gap be in excess of 1.23 eV and the redox potentials of water 

splitting lie within the energy gap of the photocatalyst, then photogenerated electrons and 

holes, in principle, will have sufficient energy to drive the HER and OER, respectively.  

A successful photocatalytic reaction can be considered to consist of three steps. First, the 

photocatalyst absorbs a photon, with energy (𝐸𝜆 > 𝐸𝑔) to produce photoexcited electrons 

and holes. Second, the charge carriers must separate and migrate to the catalyst surface 

where, third, they take part in reduction and oxidation reactions involving adsorbed 

species. Each of these processes can be optimised to enhance the overall reaction.  

For a photocatalyst to achieve overall water splitting, the (ideal) lower bound for the 

energy gap, as mentioned, is 1.23 eV. Of the solar energy incident at earth’s surface, only 

ca. 4% is in the UV range, whereas ca. 43% is in the visible range (VIS). Thus, a practical 

photocatalyst must also utilise visible light and this sets an upper bound for the energy 

gap of ~3 eV.15-16 Strategies to enhance the photocatalytic activity will incorporate 

materials that maximise absorption of visible light while maintaining band positions 

which straddle the water splitting redox potentials. 

A practical photocatalyst must also exhibit efficient charge carrier separation. This 

process competes with charge carrier recombination, which is detrimental to the 

photocatalytic activity. Optimisation of photocatalyst materials will include strategies to 

promote the separation of photoexcited electrons and holes and their migration to active 
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surface sites. This can be achieved by establishing an internal electric field16 or by the 

introduction of charge trapping states at the catalyst surface.17 

Finally, an efficient photocatalyst will possess an abundance of active sites at its surface. 

The identification of what constitutes an active site must precede approaches to 

engineering photocatalysts with maximal exposure of such sites. As photocatalysis is a 

surface phenomenon, its optimisation will typically involve structures with high surface 

areas  

These avenues for the enhancement of the photocatalytic activity will be discussed in 

greater detail in subsequent chapters.  
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1.5 Titanium Dioxide 

Titanium dioxide (TiO2) based materials represent the most widely studied class of 

photocatalysts due to favourable properties such as abundance, low-cost, non-toxicity and 

stability under operating conditions. However, the wide band gap of TiO2 inhibits the use 

of these materials as visible light active photocatalysts and much scientific endeavour 

focuses on inducing a red-shift in the light absorption edge via doping, surface 

modification and nanostructuring strategies.  

While the thermodynamically stable rutile phase of TiO2 exhibits a smaller band gap (3.05 

eV) than the metastable anatase phase (3.20 eV), the latter polymorph has been shown to 

be more photocatalytically active. Thus, preserving the anatase phase under a variety of 

preparatory and applicatory conditions, including elevated temperatures, is of 

considerable interest and this is discussed in the following chapters. 

TiO2 was first demonstrated as a photoanode for water splitting by Fujishima and Honda 

in 197218 and has remained at the forefront of photocatalytic research. Indeed the 

benchmark material, P25, consists of interfaced rutile and anatase TiO2 interfaces. The 

main focus of this thesis is the enhancement of the photocatalytic activity of TiO2 by 

means of surface modification with dispersed nanoclusters of other materials. The goal is 

to extend the light absorption edge to longer wavelengths, suppress charge carrier 

recombination and increase the abundance of active surface sites. These concepts are 

described in more detail in Chapter 3. 
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1.6 This Thesis 

All computational work and the analysis and discussion thereof, described in this thesis, 

were performed by the author. Some of the studies described herein were undertaken in 

collaboration with experimental colleagues and all experimental results were obtained by 

our collaborators. This thesis is constructed as follows: 

In Chapter 2, the formalism of the Hartree and Hartree-Fock approaches to solutions of 

the many-body Schrodinger equation will be introduced as a prelude to a discussion of 

density functional theory (DFT), which is the computational method used for the work 

described in this thesis. Chapter 2 also contains more practical considerations for the 

application of DFT and describes the details of the computational set-ups implemented in 

this thesis. 

A literature review is provided in Chapter 3. This review is separated into three sections. 

The first section deals with computational approaches to the study of photocatalytic 

materials and introduces the concept of materials descriptors – key performance 

indicators, which can be computed to assess the viability of a candidate photocatalyst 

material. The following two sections provide an overview of the state-of-the-art as it 

pertains to catalysts for the OER and HER, respectively.  

Chapter 4 describes the results of three combined experimental and computational 

studies of doped TiO2. These studies were undertaken in collaboration with experimental 

colleagues and focus on the impact of copper (Cu), molybdenum (Mo), and Indium (In) 

doping on the anatase-to-rutile phase transition and the photocatalytic activity of the 

titania host. Each section of Chapter 4 will first describe selected experimental results, 

which were performed by our collaborators, before describing the complementary 
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computational work, which was performed by the author, and a comparison of the 

experimental and DFT results. 

Chapter 5 describes four studies regarding surface modified TiO2. Three of these studies 

involve metal oxide modifiers: SnO and MgO; CeO2; and MnOx.  The fourth study, which 

was performed in combination with experiment, involves hexagonal BN at the anatase 

TiO2 surface and selected experimental results are provided before an in-depth discussion 

of the computational work. In each study, the composite surfaces are characterised in 

terms of modifier adsorption energies, local atomic structure at the interface, cation and 

anion oxidation states, light absorption properties, and charge carrier separation and 

localisation. For the metal oxide modified surfaces, additional analysis includes 

calculations of oxygen vacancy formation energies, as the reducibility of the surfaces has 

consequences for the photocatalytic activity. 

Chapter 6 describes studies of water adsorption and the water oxidation process at titania 

surfaces modified with metal oxide nanoclusters. This chapter contains results for water 

adsorption at the CeOx- and MnOx-modified titania surfaces, which were characterised in 

detail in Chapter 5. Chapter 6 also contains the results of a combined experimental and 

computational study of rutile TiO2 modified with alkaline earth oxide (AEO) modifiers. 

In this description, the results of experimental characterisation, performed by our 

collaborators, are discussed together with the computational results to facilitate direct 

comparison between experiment and complementary computational models.  

In Chapter 7, the TiO2 rutile (110) surface is modified with nanoclusters of composition 

Sn4S4, Sn4Se4, Zn4S4 and Zn4Se4. The goal of modification with sulphide and selenide 

nanoclusters is to endow the titania surface with active sites for the hydrogen evolution 

reaction. These composite materials are assessed in terms of their light absorption 
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properties, charge carrier separation and localisation, and the free energies of H 

adsorption at various coverages. This latter quantity is a descriptor for the HER activity, 

as will be discussed in detail in Chapter 3. 

The study described in Chapter 8 was conducted in collaboration with colleagues in 

University of Barcelona. The goal of this work was to compare two different 

implementations of DFT+U in their description of the material properties of a titania 

nanoparticle. The codes used in this study were FHI-aims and VASP, which are based on 

atom-centred and plane wave potentials, respectively. Hence, they differ in their 

application of the +U correction. FHI-aims calculations were performed in Barcelona and 

VASP calculations were performed by the author. We choose a TiO2 nanoparticle as our 

model system as this presents with unique features not seen in bulk or surface 

calculations, such as under-coordinated ions and edge and corner sites. The results in 

Chapter 8 represent a systematic study of variations in the material properties, in 

particular, the geometry and energy gap, with changes in the value of the +U correction. 

These trends are compared between the FHI-aims and VASP solutions. 

Chapter 9 contains a perspective on the results of this thesis and provides an outlook for 

ongoing work and future directions. This chapter is concluded with considerations for the 

expansion and refinement of our computational models and other approaches to the 

modelling of photocatalyst materials.  
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2 Density Functional Theory and 

Computational Methodology 

2.1 Introduction – the many-body problem 

Density Functional Theory (DFT) is often dubbed “the workhorse of computational 

chemistry” and this is certainly true of the work described in this thesis. This chapter 

introduces the motivation and formalism of DFT, from the point of view of quantum 

chemistry and solutions of the time-independent many-body Schrodinger equation.  

Practical considerations for the implementation of DFT and the computational set up 

adopted in this thesis are also introduced and discussed. 

The motivation and grand challenge of computational quantum chemistry is the solution 

of the time-independent many-body Schrodinger equation. Consider a system of 𝑁 

electrons, with coordinates {𝒓1… 𝒓𝑁}, and 𝑀 nuclei, with coordinates {𝑹1…𝑹𝑀}. All 

information about this system is contained in the wave function, whose variables depend 

on the degrees of freedom of the system. For example, the variables corresponding to the 

ith electron consist of three spatial coordinates, encapsulated by 𝒓𝑖(∈ ℝ
𝟑), and its spin, 

𝜎𝑖. However, for simplicity, we can neglect spin considerations and denote the wave 

function as Ψ(𝒓1…𝒓𝑁;𝑹𝟏 …𝑹𝑴) = Ψ(𝒓; 𝑹). The time-independent Schrodinger 

equation has the form1: 

 ℋ Ψ(𝒓;𝑹) = 𝐸 Ψ(𝒓; 𝑹) 2.1 

where ℋ is the Hamiltonian operator and 𝐸 is the total energy of the system. In the 

absence of magnetic or electric fields, the Hamiltonian has the form1: 
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 ℋ = 𝒯𝑒 +  𝒯𝑛 +𝒱𝑒𝑛 +𝒱𝑒𝑒+ 𝒱𝑛𝑛 2.2 

The first two terms, 𝒯𝑒  and 𝒯𝑛 , relate to the kinetic energy of the electrons and nuclei, 

respectively. The terms 𝒱𝑒𝑛, 𝒱𝑒𝑒 and 𝒱𝑛𝑛 describe the potential energy and derive from 

the electron-nucleus, electron-electron and nucleus-nucleus Coulomb interactions. 

Adopting atomic units, where the reduced Planck’s constant, ℏ, the electron mass and 

charge, 𝑚𝑒 and 𝑒, and 4𝜋𝜖0 , where 𝜖0 is the vacuum permittivity, are all set to unity, the 

Hamiltonian in 2.2 can be expressed, more explicitly, as follows1:  

In the above, M𝑝 and 𝑍𝑝 are the mass and atomic number of the pth nucleus, respectively, 

and ∇2 is the Laplacian operator, which in Cartesian coordinates (𝒓 = (𝑥, 𝑦, 𝑧)) has the 

form1: 

 ∇2=
𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
+
𝜕2

𝜕𝑧2
 2.4 

The Hamiltonian may be simplified by introducing the Born-Oppenheimer 

approximation,2 which, in essence, fixes the nuclei in space. This approximation means 

that the kinetic energy term for the nuclei is zero and the nucleus-nucleus Coulomb term 

is a constant. Under the Born-Oppenheimer approximation the new Hamiltonian can be 

considered as an electronic Hamiltonian, ℋ𝑒𝑙𝑒𝑐, and takes the form: 

 

ℋ = −∑
1

2
𝑖

∇𝑖
2 −∑

1

2𝑀𝑃
∇𝑃
2

𝑃

−∑
𝑍𝑝

|𝒓𝑖 − 𝑹𝑃|
𝑖,𝑃

+
1

2
∑

1

|𝒓𝑖 − 𝒓𝑗 |𝑖,𝑗≠𝑖

+
1

2
∑

𝑍𝑝𝑍𝑞

|𝑹𝑃 − 𝑹𝑄|𝑃,𝑄≠𝑃

 

2.3 
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In equation 2.5 the nuclei represent an external potential with which the electrons interact. 

A further consequence of the Born-Oppenheimer approximation is that the wave function 

now depends only on the electronic degrees of freedom and is parameterised by the 

nuclear coordinates: Ψ(𝒓1… 𝒓𝑁;𝑹𝟏…𝑹𝑴) → Ψ𝑒𝑙𝑒𝑐(𝒓1… 𝒓𝑁). Even after the 

simplification of fixing the nuclear positions, the wave function still depends on 3𝑁 

variables. In computational terms, to represent the wave function at each point of a 10 ×

10 × 10 grid would require the storage of (103)𝑁 numbers – this is prohibitively large, 

even for moderately sized systems. 

Equation 2.5 can be restated in terms of one- and two-electron contributions to the energy 

as follows1:  

Where 𝒓𝑖,𝑃 and 𝒓𝑖,𝑗 denote |𝒓𝑖 −𝑹𝑃| and |𝒓𝑖 − 𝒓𝑗 |, respectively. The terms 𝒽𝑖 are one-

electron operators and extract the kinetic energy of the electrons and their Coulomb 

potential energy due to interaction with the external potential of the nuclei. The terms 

𝒱𝑖,𝑗  are two-electron operators and account for the electron-electron interaction. 

 

ℋ𝑒𝑙𝑒𝑐 = −∑
1

2
𝑖

∇𝑖
2 −∑

𝑍𝑝
|𝒓𝑖 − 𝑹𝑃|

𝑖,𝑃

+
1

2
∑

1

|𝒓𝑖 − 𝒓𝑗 |𝑖,𝑗≠𝑖

= 𝒯𝑒 + 𝒱𝑒𝑛 + 𝒱𝑒𝑒   

2.5 

 

ℋ𝑒𝑙𝑒𝑐 =∑(−
1

2
∇𝑖
2 −∑

𝑍𝑝
𝒓𝑖,𝑃

𝑃

)
𝑖

+
1

2
∑ (

1

𝒓𝑖,𝑗
)

𝑖,𝑗≠𝑖

 

=∑𝒽𝑖
𝑖

+
1

2
∑ 𝒱𝑖,𝑗
𝑖,𝑗≠𝑖

 

2.6 
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In summary, the goal of computational quantum chemistry is the solution of the time -

independent Schrodinger equation, which, after application of the Born-Oppenheimer 

approximation, has the form1: 

Adopting bra-ket notation and dropping the “elec” subscript, equation 2.7 can also be 

expressed as: 

The total energy of the system, with normalised wave function |Ψ⟩ (i.e., ⟨Ψ|Ψ⟩ = 1) can 

be extracted from equation 2.8 as follows: 

Where ⟨Ψ|𝒪|Ψ⟩ represents the expectation value of the operator 𝒪. In particular, equation 

2.9 is minimised for the ground state wave function, yielding the ground state energy. 

 

 

 

 

 

 ℋ𝑒𝑙𝑒𝑐Ψelec(𝒓) = (∑𝒽𝑖
𝑖

+
1

2
∑ 𝒱𝑖,𝑗
𝑖,𝑗≠𝑖

)Ψ𝑒𝑙𝑒𝑐(𝒓) = 𝐸𝑒𝑙𝑒𝑐Ψ𝑒𝑙𝑒𝑐(𝒓) 2.7 

 ℋ|Ψ⟩ =  (∑𝒽𝑖
𝑖

+
1

2
∑ 𝒱𝑖,𝑗
𝑖,𝑗≠𝑖

)|Ψ⟩ = 𝐸|Ψ⟩ 2.8 

 𝐸 = ⟨Ψ|ℋ|Ψ⟩ = ⟨Ψ| (∑𝒽𝑖
𝑖

+
1

2
∑ 𝒱𝑖,𝑗
𝑖,𝑗≠𝑖

)|Ψ⟩ 2.9 
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2.2 Hartree and Hartree-Fock Approximations 

2.2.1 Hartree Approximation 

In the Hartree (H) approximation, the 𝑁-electron wave function is approximated by the 

product of N orthonormal single-particle wave functions3:  

This scheme treats the electrons as independent particles and incorporates the electron-

electron Coulomb potential energy via a mean-field approach. Inserting the wave function 

in 2.10 into equation 2.9 yields the Hartree approximation to the total energy: 

By applying the variational principle and implementing Lagrange multipliers, it is 

possible to derive the single-particle Hartree equations3: 

The single electron operator, 𝒽𝑖, extracts the kinetic energy of the electrons and the 

potential energy due to their Coulomb interaction with the nuclei. The operator 𝒱𝐻  is the 

Hartree or Coulomb term and accounts for the Coulomb interaction between the 𝑖𝑡ℎ 

electron and the charge density due to the remaining 𝑁− 1 electrons. 

 

 

 ΨH(𝒓1…𝒓𝑁) =∏𝜙𝑖(𝒓𝑖)

𝑁

𝑖

 2.10 

 𝐸𝐻 =∑⟨𝜙𝑖 |𝒽𝑖|𝜙𝑖⟩
𝑖

+
1

2
∑⟨𝜙𝑖𝜙𝑗|𝒱𝑖,𝑗|𝜙𝑖𝜙𝑗⟩
𝑖,𝑗≠𝑖

 2.11 

 (𝒽𝑖 +∑⟨𝜙𝑗|𝒱𝑖,𝑗 |𝜙𝑗⟩
𝑗≠𝑖

)|𝜙𝑖⟩ = (𝒽𝑖 + 𝒱𝐻)|𝜙𝑖⟩ = 𝜖𝑖 |𝜙𝑖⟩  2.12 
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2.2.2 Hartree-Fock Approximation 

The Hartree wave function does not satisfy the axiom of anti-symmetry of fermionic wave 

functions. The anti-symmetry requirement arises from the indistinguishability of 

electrons and the Pauli exclusion principle and states that the wave function must be anti -

symmetric under the exchange of particles: 

In the Hartree-Fock (HF) scheme, the wave function is approximated as belonging to a 

subset of anti-symmetric many-body wave functions known as Slater determinants. The 

Hartree-Fock wave function takes the form3: 

Using a wave function of this form in equation 2.14 gives the following expression for 

the energy of the system: 

The first two terms are equivalent to the Hartree approximation to the total energy; the 

last term is the so-called Fock exchange energy. By again applying the variational 

method, the single particle Hartree-Fock equations can be derived. An artefact of 

describing the wave function as a Slater determinant is the introduction of a term that 

exchanges the electron orbitals and so, in this instance, it is better to forego the use of 

bra-ket notation1, 3: 

 Ψ(…  𝒓𝑖 … 𝒓𝑗 …) = −Ψ(… 𝒓𝑗 … 𝒓𝑖…) 2.13 

 Ψ𝐻𝐹(𝒓1…𝒓𝑁) =
1

√𝑁!
|
𝜙1(𝒓1) … 𝜙1(𝒓𝑁)
⋮ ⋱ ⋮

𝜙𝑁(𝒓1) … 𝜙𝑁(𝒓𝑁)
| 2.14 

 

𝐸𝐻𝐹 =∑⟨𝜙𝑖 |𝒽𝑖|𝜙𝑖⟩
𝑖

+
1

2
∑⟨𝜙𝑖𝜙𝑗|𝒱𝑖,𝑗 |𝜙𝑖𝜙𝑗⟩
𝑖,𝑗≠𝑖

−
1

2
∑⟨𝜙𝑖𝜙𝑗|𝒱𝑖,𝑗 |𝜙𝑗𝜙𝑖⟩

𝑖,𝑗≠𝑖

 

2.15 
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Note that in equation 2.16, one can remove the (𝑗 ≠ 𝑖) condition in the summations as 

the instances of (𝑗 = 𝑖) cancel out in the Hartree and Fock terms; i.e. in the HF scheme 

there is no self-interaction. In the HF approximation, the electron energy has contributions 

due to its kinetics and its interaction with the external potential of the nuclei, which are 

represented by the single-electron operator, 𝒽𝑖. The Hartree term describes the Coulomb 

interaction of the electron with the mean field due to all other electrons. The Fock term 

has no intuitive physical meaning and is quantum mechanical in nature – with the 

inclusion of spin, the Fock term is only non-zero for orbitals with like spin and is the 

manifestation of the Pauli exclusion principle. In this scheme, electron correlation is only 

accounted for insofar as electrons of like spin avoid each other. 

 

 

 

 

 

 

 

 

( 𝒽𝑖 +∑∫𝑑𝒓𝒋
𝑗≠𝑖

𝜙𝑗
∗(𝒓𝑗)𝒱𝑖,𝑗𝜙𝑗(𝒓𝑗))𝜙𝑖(𝒓𝑖)

−∑∫𝑑𝒓𝒋
𝑗≠𝑖

𝜙𝑗
∗(𝒓𝑗)𝒱𝑖,𝑗𝜙𝑖(𝒓𝑗)𝜙𝑗(𝒓𝑖)

= (𝒽𝑖 +𝒱𝐻 + 𝒱𝐹)𝜙𝑖(𝒓𝒊) = 𝜖𝑖𝜙𝑖(𝒓𝑖) 

2.16 
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2.3 Density Functional Theory  

Rather than dealing with the mysterious and unobservable wave function, another 

approach to the many-body problem is to consider the electron density, which is 

observable and can be measured experimentally. The electron density is4: 

This quantity describes the probability of finding an electron in a volume element 𝑑𝒓 

given 𝑁 − 1 electrons at arbitrary positions defined by the wave function Ψ. However, 

such an approach must be justified; it must be shown that no information is lost and that 

all properties of the system are uniquely determined by the electron density. Such 

justification was provided Hohenberg and Kohn, whose theorems underpin Density 

Functional Theory (DFT). 

The functional in DFT is similar to a function, but rather than taking a number or set of 

numbers as its argument, a functional maps a function to a number. This is best expressed 

as follows for a function 𝑓(x) and a functional 𝐹[𝑓]: 

 

2.3.1 Hohenberg-Kohn Theorems 

The Hamiltonian in equation 2.5 can be restated such that the electron-nucleus interaction 

is relabelled as an external potential: 

 𝑛(𝒓) = 𝑁∫𝑑𝒓2… ∫ 𝑑𝒓𝑁Ψ
∗(𝒓,𝒓2… 𝒓𝑁)Ψ((𝒓, 𝒓2…𝒓𝑁)) 2.17 

 

𝑥
        𝑓(𝑥)       
→        𝑦 

𝑓(𝑥)
        𝐹[𝑓]       
→       𝑦 

2.18 
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The first Hohenberg-Kohn theorem4-6 states that the external potential, 𝒱𝑒𝑥𝑡, is uniquely 

determined, up to a constant, by the electron density; i.e. two external potentials, differing 

by more than a constant, cannot yield the same electron density. Stated in the language of 

Density Functional Theory (DFT): the external potential is a functional of the electron 

density. 

The first two terms of the Hamiltonian, 𝒯𝑒  and 𝒱𝑒𝑒, are universal operators and are not 

specific to any particular system or arrangement of the nuclei; i.e. their form does not 

depend on the system.4 Thus, one can deduce that the ground state properties of the system 

are determined by the external potential and therefore by the ground state electron density, 

𝑛0(𝒓). In the words of Hohenberg and Kohn5: “[The external potential] 𝓋𝑒𝑥𝑡(𝒓)  is (to 

within a constant) a unique functional of 𝑛0(𝒓); since, in turn, 𝓋𝑒𝑥𝑡(𝒓)  fixes ℋ we see 

that the full many-particle ground state is a unique functional of 𝑛0(𝒓)”.  

The second Hohenberg-Kohn theorem4-6 states that there exists a density functional, 

𝐸𝐻𝐾[𝑛], such that, for a given external potential, its minimum is the ground state energy 

and this is attained at the ground state electron density: 

Equation 2.9, which extracts the total energy of a system based on its wave function, can 

be restated in functional terms – the total energy is a functional of the wave function: 

 ℋ = 𝒯e + 𝒱𝑒𝑒 +𝒱𝑒𝑥𝑡  2.19 

 𝐸𝐺𝑆 = min (𝐸𝐻𝐾[n]) = 𝐸𝐻𝐾(𝑛0) 2.20 

 𝐸[Ψ] = ⟨Ψ|ℋ|Ψ⟩ = ⟨Ψ|𝒯e +𝒱𝑒𝑒|Ψ⟩+ ⟨Ψ|𝒱𝑒𝑥𝑡|Ψ⟩ 2.21 
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According to the first HK theorem, the Hamiltonian is uniquely determined as a 

functional of the electron density and so equation 2.21 can be equivalently framed in 

terms of density functionals: 

In the second line of equation 2.22, the energy functional is expressed as the sum of a 

universally valid functional, 𝐹𝐻𝐾[𝑛], which accounts for the kinetic energy (𝑇𝑒[𝑛]) and 

electron-electron interaction energy (𝑉𝑒𝑒[𝑛]), and a system-dependent term, which 

accounts for the electron-nucleus interaction energy, ∫𝓋𝑒𝑥𝑡(𝒓)𝑛(𝒓)𝑑𝒓. 

Should the form of the functional 𝐹𝐻𝐾[𝑛] be known, then it would be possible to minimise 

equation 2.22 to determine the exact ground state electron density and energy of any 

system, which would yield all properties of the system.6 Unfortunately, no expression for 

𝐹𝐻𝐾[𝑛] is known, but nevertheless knowledge of its existence has spawned the field of 

DFT-based computational chemistry. Recalling the Hartree term from the HF 

approximation, the functional 𝐹𝐻𝐾[𝑛] can be rewritten: 

The first two terms on the right hand side of equation 2.23 represent the kinetic (𝑇𝑒[𝑛]) 

and Coulomb (𝐸𝐻[𝑛]) energies. The final term is the exchange-correlation functional, 

𝐸𝑋𝐶[𝑛]. 

 

𝐸𝐻𝐾[𝑛(𝒓)] = 𝑇𝑒[𝑛(𝒓)] + 𝑉𝑒𝑒[𝑛(𝒓)] + 𝑉𝑒𝑥𝑡[𝑛(𝒓)] 

= 𝐹𝐻𝐾[𝑛(𝒓)] + ∫𝓋𝑒𝑥𝑡(𝒓)𝑛(𝒓)𝑑𝒓 

2.22 

 
𝐹𝐻𝐾[𝑛(𝒓)] = 𝑇𝑒 [𝑛(𝒓)] +

1

2
∬
𝑛(𝒓)𝑛(𝒓′)

|𝒓 − 𝒓′|
𝑑𝒓𝑑𝒓′ +𝐸𝑋𝐶[𝑛(𝒓)]

= 𝑇𝑒[𝑛(𝒓)] + 𝐸𝐻[𝑛(𝒓)] + 𝐸𝑋𝐶[𝑛(𝒓)] 

2.23 
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In summary, the Hohenberg-Kohn theorems state that for a system with a given external 

potential, its properties are determined by the ground state electron density. Moreover, 

the ground state density can be derived through the minimisation of the total energy 

functional, which takes the form of equation 2.22; the total energy functional attains its 

minimum at the ground state density. Thus, the many body problem can be approached 

in terms of the 3-dimensional electron density, rather than the 3N-dimensional wave 

function. Up to this point, there are no approximations in DFT; however, application of 

DFT requires an approximation of the functional, 𝐹𝐻𝐾[𝑛]. In this way, DFT differs from 

the HF approach: DFT searches for approximate solutions to an exact theory, whereas HF 

involves exact solutions to an approximate theory.  

 

2.3.2 Kohn-Sham Ansatz 

While the Hohenberg-Kohn theorems validate the electron density as the variable from 

which all system properties can be determined, the Kohn-Sham approach yields a 

practicable framework for the implementation of DFT.7-8 In the Kohn-Sham scheme, 

electrons are replaced with fictitious, non-interacting particles with the same density, 

𝑛(𝒓): 

In this scheme, the particles occupy the orthonormal Kohn-Sham (KS) orbitals, 𝜙𝑖; this 

facilitates computation of the kinetic energy, for which the density functional expression 

is not known. For this system of non-interacting particles, the energy functional in 

equation 2.22 can be rewritten as the Kohn-Sham functional: 

 𝑛(𝒓) =∑|𝜙𝑖(𝒓)|
2 

𝑖

  2.24 
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The first term on the right hand side returns the kinetic energy of the non-interacting 

system; the remainder of the kinetic energy contribution, arising from differences 

between the interacting and non-interacting systems, is incorporated into the exchange-

correlation functional, 𝐸𝑋𝐶[𝑛]. By applying the variational principle to equation 2.25, one 

can derive the Kohn-Sham equations7-8: 

In the Kohn-Sham approach, all unknowns are funnelled into the 𝐸𝑋𝐶  term and its 

functional derivative, 𝒱𝑋𝐶 = 𝛿𝐸𝑋𝐶/𝛿𝑛. If the exact forms of 𝐸𝑋𝐶 and 𝑉𝑋𝐶 were known, 

then the Kohn-Sham scheme would be exact; i.e. the ground state energy and density, for 

a given external potential, could be determined exactly via the Kohn-Sham equations. 

However, the form of these functionals is not known and so practical implementations of 

DFT involve approximations of these quantities. More practical considerations will be 

presented in the next section. 

 

 

 

 

 

 

𝐸𝐾𝑆 [𝑛(𝒓)] =∑⟨𝜙𝑖 |−
1

2
∇𝒓
2|𝜙𝑖⟩

𝑖

 +  
1

2
∬
𝑛(𝒓)𝑛(𝒓′)

|𝒓 − 𝒓′|
𝑑𝒓𝑑𝒓′

+ 𝐸𝑋𝐶[𝑛(𝒓)] + ∫𝓋𝑒𝑥𝑡(𝒓)𝑛(𝒓)𝑑𝒓 

2.25 

 (−
1

2
∇𝒓
2 +∫

𝑛(𝒓′)

|𝒓 − 𝒓′|
𝑑𝒓′ +

𝛿𝐸𝑋𝐶[𝑛(𝒓)]

𝛿𝑛(𝒓)
+ 𝓋𝑒𝑥𝑡(𝒓))𝜙𝑖(𝒓) = 𝜖𝑖𝜙𝑖(𝒓) 2.26 
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2.4 Implementation of DFT 

The previous section showed that the Kohn-Sham approach to DFT involves solutions to 

single particle Schrodinger-like equations of the form: 

Equation 2.27 is a restatement of the Kohn-Sham equations (2.26), where the effective 

potential term, 𝒱𝑒𝑓𝑓 , encapsulates the attractive and repulsive Coulomb potentials, due to 

the nuclei and electrons, respectively, and the exchange and correlation potential, 𝒱𝑋𝐶. 

The following sections describe practical approaches to solving the Kohn-Sham equations 

from a plane-wave perspective, as the work conducted in this thesis was performed with 

a plane-wave code. Moreover, the following discussion is limited to periodic crystals, but 

the arguments can be extended to include surfaces and isolated molecules. 

 

2.4.1 Basis Set 

The Kohn-Sham orbitals, {𝜙𝑛}, can be expressed as linear combinations of appropriately 

chosen basis set functions, 𝛼𝑗(𝒓)
9: 

In a periodic crystal, electrons move under the influence of a periodic potential; i.e ., 

𝑉(𝒓) = 𝑉(𝒓 + 𝑳), for some characteristic distance 𝑳 of the crystal lattice. The Bloch 

theorem10 states that the wave function for an electron in a periodic crystal can be 

expressed as the product of a plane wave and a function with the periodicity of the lattice. 

 (−
1

2
∇𝒓
2 +𝒱𝑒𝑓𝑓(𝒓))𝜙𝑖(𝒓) = 𝜖𝑖𝜙𝑖(𝒓) 2.27 

 𝜙𝑛(𝒓) =∑𝑐𝑗
𝑛

∞

𝑗

𝛼𝑗(𝒓) 2.28 



35 

 

This is also true for the Kohn-Sham quasi-particles and thus, the Kohn-Sham orbitals can 

be expressed as: 

Where 𝑢(𝒓) = 𝑢(𝒓 + 𝑳). Because the function 𝑢(𝒓) has the same periodicity as the 

lattice, it can be expressed as a linear combination of plane waves with wave vectors 

belonging to the reciprocal lattice (denoted 𝑲): 

Where {𝑐𝒌} is the set of expansion coefficients. Combining equations 2.29 and 2.30 

shows that the single particle wave function can be expressed in terms of a plane wave 

basis set: 

In equation 2.31, the wave vector 𝒒 belongs to the first Brillouin zone and the reciprocal 

lattice vectors, 𝒌 ∈ 𝑲, are an infinite set. However, in practice, the basis set of plane 

waves, indexed by their reciprocal lattice vectors, is truncated for 𝒌 > 𝒌𝒎𝒂𝒙, where the 

cut-off is chosen such that the wave function is described with adequate accuracy by the 

finite basis set.  

Equipped with a finite basis set, the solution of the Kohn-Sham equations reduces to a 

matrix equation of the form: 

 ϕ𝑛(𝒓) = e
i𝒒∙𝒓𝑢(𝒓) 2.29 

 𝑢(𝒓) =∑ 𝑐𝒌
𝒌∈𝑲

e𝐢𝒌∙𝒓 2.30 

 ϕ𝑛(𝒓) =∑ 𝑐𝒌
𝒏

𝒌∈𝑲

e𝐢(𝒒+𝒌)∙𝒓 2.31 

 HC = SCE 2.32 
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Where H is the Hamiltonian matrix, constructed from the single-particle Hamiltonian 

operators, C is a square matrix constructed from columns of the expansion coefficients, 

S is the overlap matrix of basis functions and E is a diagonal matrix with energy 

eigenvalues on the diagonal. 

 

2.4.2 Pseudopotentials  

 

Figure 2.1 Graphical depiction of the pseudo potential approach, where the real potential 

and wave function are replaced by smoothly varying functions for 𝒓 < 𝒓𝑐 to minimise the 

number of basis set functions required to describe the wave function.  

In plane-wave implementations, the nuclei are replaced with ions consisting of the nuclei 

and their core electrons. The core electrons are those that are strongly bound and localised 

at their parent nuclei; thus, they do not take part in bonding, nor contribute to the material 

properties, to the same extent as the valence electrons. This is known as the frozen core 

approximation and reduces the degrees of freedom considerably, so that only the valence 

electrons must be solved for. 
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The valence wave functions vary rapidly in the vicinity of the ions to maintain 

orthonormality with the core wave functions and to describe this behaviour a large 

number of basis set functions would be required. In practice, for distances shorter than 

some “core” radius, 𝒓𝑐, from the nucleus, the ion potential is replaced by a 

pseudopotential. In this scheme, the potential and wave function are described exactly for 

𝒓 > 𝒓𝑐, and replaced with pseudo-descriptions for 𝒓 < 𝒓𝑐, as shown in Figure 2.1. The 

smoother behaviour of the wave functions under the influence of the pseudopotential in 

the vicinity of the ions means that fewer basis functions are required.  

 

2.4.3 Projector Augmented Waves (PAW) 

In the projector augmented wave (PAW) approach,11 space is partitioned into regions 

close to (𝒓 < 𝒓𝑐) and far from the ions (𝒓 > 𝒓𝒄), which are denoted the core and 

interstitial regions, respectively. In the PAW method, the Kohn-Sham orbital is written 

as the sum of three contributions: 

In equation 2.33, �̃�𝑛(𝒓) denotes the pseudo-wave function, which is defined everywhere, 

is smooth and permits expression with a plane wave basis. Moreover, �̃�𝑛(𝒓) matches 

𝜙𝑛(𝒓) exactly in the interstitial region.  For the second two terms on the right hand side, 

the summations run over the ions in the system. Each of the functions in the summations 

are defined for the core regions; the terms 𝜙𝑛
𝑎(𝒓) and �̃�𝑛

𝑎(𝒓) represent all-electron and 

pseudo-one-centre wave functions, respectively. The all electron functions 𝜙𝑛
𝑎(𝒓) account 

for the rapid oscillations in the core region and the pseudo functions �̃�𝑛
𝑎(𝒓) are smooth in 

 ϕ𝑛(𝒓) = �̃�𝑛(𝒓) +∑𝜙𝑛
𝑎(𝒓)

𝑎

−∑�̃�𝑛
𝑎(𝒓)

𝑎

 2.33 
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this region. The quantities 𝜙𝑛
𝑎(𝒓) and �̃�𝑛

𝑎(𝒓) can be expressed in terms of partial and 

pseudo partial wave basis sets, {𝛼𝑖} and {�̃�𝑖}, so that equation 2.33 can be rewritten: 

Where the terms {𝑝𝑖
𝑎} are the species-specific projector functions. Thus, solving the 

modified Kohn-Sham equations for the pseudo wave functions �̃�𝑛(𝒓), and knowing the 

transformation described in equation 2.34, allows one to derive the wave functions 𝜙𝑛(𝒓). 

 

2.4.4 Approximations for the exchange-correlation functional  

2.4.4.1 Local Density Approximation (LDA) 

In the local density approximation (LDA) the exchange and correlation contributions to 

the energy are approximated to those arising from a homogeneous electron gas12: 

The quantity 𝜖𝑋𝐶(𝑛(𝒓)) is the exchange-correlation energy per particle of a uniform 

electron gas of density 𝑛(𝒓). This is weighted by 𝑛(𝒓) in the integral; i.e., the probability 

of finding an electron at position 𝒓. The 𝜖𝑋𝐶  term can be expressed as the sum of exchange 

and correlation contributions: 

The exchange term, 𝜖𝑋, is known analytically; the correlation term, 𝜖𝐶 , is known 

analytically in the limits of high and low density; and between these limits, numerical 

expressions have been determined through quantum Monte Carlo (QMC) simulations.  

 |ϕ𝑛⟩ = |�̃�𝑛⟩ +∑∑(|𝛼𝑖
𝑎⟩ − |�̃�𝑖

𝑎 ⟩)⟨𝑝𝑖
𝑎 |�̃�𝑛⟩ 

𝑖𝑎

 2.34 

 𝐸𝑋𝐶
𝐿𝐷𝐴[𝑛(𝒓)] = ∫𝑛(𝒓)𝜖𝑋𝐶(𝑛(𝒓)) 𝑑𝒓 2.35 

 𝜖𝑋𝐶 = 𝜖𝑋 + 𝜖𝐶  2.36 
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LDA functionals perform reasonably well in their description of extended systems, where 

there is moderate variation in the electron density, but yield poor descriptions of atoms 

and molecules, where a feature of the charge density is its inhomogeneity. Thus, while 

LDA was the de facto functional, the implementation of DFT was restricted to realm of 

solid-state physics. 

 

2.4.4.2 Generalised Gradient Approximation (GGA) 

The generalised gradient approximation (GGA) contains the local density approximation 

and extends upon it by including the density gradient to account for the non-homogeneity 

of the true electron density.12 The general form of the GGA approximation is given by: 

In the GGA class of approximations, the exchange-correlation energy is a functional of 

the density and its gradient, with constraints imposed on the exchange and correlation 

holes. 

There are a number of functionals that fall under the GGA banner, including PW91,13 

PBE14 and LYP,15 and these are the staples of what is termed standard DFT. However, 

GGA functionals also have their limitations. Of relevance to the work of this thesis, 

standard DFT underestimates semiconductor band gaps and favours delocalisation of 

charge, particularly for the d-orbitals of the transition metals and their oxides. These 

deficiencies arise due to the so-called self-interaction error and there exist a number of 

strategies for their circumvention, which will be described in the following sections.   

 

 𝐸𝑋𝐶
𝐺𝐺𝐴 = ∫𝑓(𝑛,∇𝑛)𝑑𝒓 2.37 
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2.5 Beyond DFT 

2.5.1  Hybrid DFT 

In Hybrid DFT, the XC functional is replaced by an admixture of weighted contributions 

from GGA, LDA and the exact Fock exchange term. One of the simpler expressions for 

a Hybrid functional is given in the PBE0 scheme12: 

Where the single parameter, 𝛼, can be tailored to the system under study.16 Typically, the 

default value for 𝛼 is 0.25. Hybrid functionals provide improved descriptions of structural 

properties and band gaps and yield solutions with a higher degree of spatial localisation, 

which addresses the shortcomings of standard-DFT with regard to transition metal oxide 

systems. However, inclusion of the Fock exchange makes Hybrid DFT computationa lly 

heavy, and until recent improvements in computing power, Hybrid calculations were not 

suitable for large systems. 

 

2.5.2 DFT+U 

Another approach to resolve the delocalisation issue is to incorporate on-site Coulomb 

interactions via the introduction of a Hubbard-like U parameter. This approach, known 

as DFT+U, is a combination of standard DFT and a Hubbard Hamiltonian for the 

Coulomb repulsion and exchange interaction. On-site Coulomb repulsion is particularly 

important for d- and f-electrons, owing to the narrow band-width, and the Hubbard 

correction is applied only to those orbitals that require it, with other electrons described 

by standard DFT. In the Dudarev method,17 the DFT+U energy functional has the form: 

 𝐸𝑋𝐶
𝐻𝑦𝑏

= 𝐸𝑋𝐶
𝐺𝐺𝐴 + 𝛼(𝐸𝑋

𝐻𝐹 −𝐸𝑋
𝐺𝐺𝐴) 2.38 
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Where 𝑈 and 𝐽 are the Coulomb and exchange parameters and 𝑛𝑚.𝜎 represents the orbital 

occupancy for magnetic quantum number 𝑚 and spin 𝜎. This functional penalises partial 

occupation of the localised orbitals and thereby promotes levels that are completely filled 

or completely empty. 

In the Dudarev model, the 𝑈 and 𝐽 parameters are combined into a single parameter, 

denoted 𝑈𝑒𝑓𝑓 = 𝑈− 𝐽. The value for 𝑈𝑒𝑓𝑓  is system and species dependent and can be 

determined from first principles, through linear response calculations, or semi-

empirically, through comparisons with experiment. 

 

 

 

 

 

 

 

 

 

 

 

 𝐸𝐷𝐹𝑇+𝑈 = 𝐸𝐷𝐹𝑇 +
(𝑈 − 𝐽)

2
∑[𝑛𝑚,𝜎 − 𝑛𝑚,𝜎

2 ]
𝑚,𝜎

 2.39 
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2.6 Computational Methodology 

The computational work described in this thesis was performed with the Vienna ab initio 

Simulation Package (VASP)18-19 using PAW potentials.11, 20 The PAW potentials separate 

the electrons into core and valence electrons, with the latter category described explicitly; 

Table 2.1 presents the number of valence electrons considered explicitly for each atomic 

species.  

Table 2.1 Data for the number of valence electrons (VE) treated explicitly in the PAW 
potentials for each species included in this thesis. The superscripts “a” and “b” refer to 

studies [21-23] (sections 5.2, 5.4, 5.5, 6.2 of this thesis) and [23] (section 5.2), respectively. 

Species #VE  Species #VE 

Ti 4a or 12  O 6 

Cu 11  S 6 

Mo 12  Se 6 

In 13  N 5 

Mg 2b or 8  H 1 

Ca 8    

Sn 4b or 14    

Zn 12    

B 3    

Mn 13    

Ce 12    

 

The exchange correlation functional was approximated by the Perdew-Wang (PW91) 

functional,13 which is consistent with previous work carried out in the group and thereby 

facilitates comparison. The DFT calculations include on-site Coulomb interactions 

(DFT+U) according to the Dudarev method.17 Consequently, aspherical gradient 

corrections were applied throughout. All calculations were spin-polarised and no 

symmetry constraints were imposed.  

The energy cut-off was set to ENCUT = max [ENMAXα], where ENMAX𝛼  is the cut-off 

energy recommended in the potential for atomic species 𝛼. Typically, the energy cut-off 
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was 396-400 eV. However, for structural optimisation calculations, a higher value (×1.3) 

was selected. Threshold values of 10-4 eV and 0.01/0.02 eV Å-2 determine convergence 

for the energy and forces respectively. Further, study-specific details are provided in the 

following sections. 

 

2.6.1 DFT+U 

Table 2.2 Details, including references, for the +U values applied to each species. 

Species Orbital +U (eV) REF. 

Ti 3d 4.5 24-27 

Cu 3d 7.0 28-29 

Mo 4d 4.0 30 

Ce 4f 5.0 31-32 

Mn 3d 4.0 33-34 

Zn 3d 7.8 35 

 

To consistently describe the partially filled d-states of the transition metals and the f-state 

of Ce, a Hubbard +U correction is applied. The value of the +U correction is informed by 

a multitude of previous work on metal oxide systems with the same VASP computational 

set-up. These studies are referenced throughout the thesis. While it is possible to tune the 

value of +U to reproduce the experimental band gap, this can have a detrimental impact 

on the accuracy of other material properties and is not advised. Moreover, as we shall see 

in Chapter 8, DFT+U is not a black box – the choice of +U is not transferable between 

codes as its impact varies depending on the basis set and the DFT+U implementation. 

Table 2.2 summarises the DFT+U set-ups employed in this thesis. 

An additional +U correction is applied to anion p-states in the photoexcitation model, as 

discussed in Section 2.6.6. Moreover, a +U correction, with U = 7 eV, is applied to O 2p 
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states in our study of Cu-doped TiO2; this set-up is implemented to account for hole 

localisation at O sites in the stoichiometric Cu-doped system. 

 

2.6.2 Model Constructions  

2.6.2.1 Doping 

For the doped-TiO2 studies, the models were constructed by first computing the bulk 

lattice parameters for the rutile and anatase phases, within the computational set-up. 

These calculations were performed with a Monkhorst-Pack k-point grid of (8 × 8 × 8) 

and the computed lattice parameters for rutile were: 𝑎 = 𝑏 = 4.613 Å and 𝑐 = 2.961 Å; 

for anatase the lattice parameters were: 𝑎 = 𝑏 = 3.791 Å and 𝑐 = 9.583 Å.  

From these bulk unit cells, supercells were constructed such that, upon substituting a Ti 

ion for the dopant, the modelled dopant concentration would fall within the range 

considered in the experiments. The data for each study is summarised in Table 2.3; note 

that for the indium-doped TiO2 study,36 the higher dopant concentration is due to the 

presence of 2 dopants in the supercell. 

Table 2.3 Details of the doped-TiO2 models, described in Chapter 4. A = anatase and R 

= rutile. 

Dopant Phase Supercell Dopant % K-points 

Cu37 A 2 × 2 × 2 3.1 4 × 4× 2 

 R 2 × 2 × 3 4.2 4 ×  4 × 2 

Mo38 A 3 × 3 × 1 2.8 3 × 3× 4 

In36 A 2 × 2 × 1 12.5 4 × 4× 4 
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2.6.2.2 Surface modification models 

In modelling surface modification of a titania surface, the first step is to construct the bare 

surface slab. This is achieved by cleaving the bulk TiO2 phase in the plane perpendicular 

to the Miller indices, (h k l), which specify the surface. For these slab models, the surface 

plane is perpendicular to the z-direction. The slab is then placed in a supercell with a 

vacuum gap along the z-direction, with this gap large enough so that the periodic images 

of the surfaces do not interact with each other. The vacuum gap and surface expansion 

must also be large enough such that the modifier does not interact with itself across the 

periodic boundaries. The energy of this bare surface model is then computed and denoted 

𝐸𝑠𝑢𝑟𝑓 . 

The next step in the construction is to fully relax the nanocluster modifier in the gas phase, 

which yields the gas-phase energy, 𝐸𝑁𝐶 . The nanocluster is then adsorbed in different 

configurations at the titania surface and allowed to relax. The energy of the most stable 

of the considered configurations is denoted 𝐸𝑁𝐶+𝑠𝑢𝑟𝑓 . The adsorption energy of the 

nanocluster at the surface is then calculated using: 

If the nanocluster-surface interaction is favourable, 𝐸𝑎𝑑𝑠 will be a negative number; large, 

negative values of 𝐸𝑎𝑑𝑠 indicate that the modifiers are strongly adsorbed at the surface 

and will be stable against desorption and migration at the surface to form aggregates. Our 

work on modified metal oxide surfaces shows that key material properties do not depend 

on the precise orientation of the modifiers at the surface, so long as the nanocluster 

modifier binds with the surface through new interfacial bonds.39  

 𝐸𝑎𝑑𝑠 = 𝐸𝑁𝐶+𝑠𝑢𝑟𝑓 − (𝐸𝑁𝐶 +𝐸𝑠𝑢𝑟𝑓 ) 2.40 
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Oxygen ions of the cluster and surface are denoted OC and OS, respectively, and OS ions 

are further distinguished according to their position in bridging (Obr) or in-plane (Oip) 

surface sites. Interfacial bonds are identified through a combination of VASP outputs and 

bond-lengths. For the large supercells in the studies of surface-modified titania, the k-

points are sampled at the Γ-point. For the study of metal chalcogenide nanoclusters 

modifying the rutile (110) surface, presented in Chapter 7, the k-points are sampled with 

a (4 × 4× 1) grid. Further details regarding the surface modification models are provided 

in Table 2.4. 

Table 2.4 Details of the surface models described in this thesis. The three surface 

expansions listed for the hBN modifier correspond to the three different models described 

in Chapter 5. The notation ML denotes the number of monolayers in the slab. A = 

anatase; R = rutile. 

Modifier Phase Surface Expansion ML Vacuum Gap (Å) 

MgO/SnO23 A (101) 2 × 4 12 20 

hBN39 A (101) 1 × 4 12 20 

 A (101) 1 × 6 12 20 

 A (101) 3 × 2 12 20 

CeO2
22 R (110) 2 × 4 18 20 

MnOx
21 A (101) 1 × 4 12 20 

 R (110) 2 × 4 18 20 

MgO/CaO40 R (110) 3 × 5 12 15 

SnS/ZnS/SnSe/ZnSe41 R (110) 2 × 4 12 10 

 

2.6.3 Oxygen vacancy formation 

To model oxygen vacancy (OV) formation in the doped TiO2 models, a single O ion is 

removed from the supercell and the formation energy is calculated using: 

where 𝐸(MxTi1−xO2−𝑦) is the total energy of M-doped TiO2 with a single oxygen 

vacancy and 𝐸(MxTi1−xO2) is the total energy of M-doped TiO2. The formation energy 

 𝐸𝑣𝑎𝑐 = 𝐸(MxTi1−xO2−𝑦) +
1

2
𝐸(O2) − 𝐸(MxTi1−xO2) 2.41 
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is referenced to half the total energy of O2 in the gas phase. This computation is performed 

for various O sites of the supercell, to identify the most stable site for vacancy formation. 

A similar process and formula are used to compute the formation energy of subsequent 

oxygen vacancies. 

To model oxygen vacancy formation in surface modified TiO2, a single O ion is removed 

from the metal oxide modifier and the formation energy is computed using: 

This is repeated for each cluster O site. Having identified the most stable structure with a 

single OV, the calculation is repeated for each of the remaining cluster O sites to determine 

the most stable structure with two OV, and so on. 

 

2.6.4 Oxidation States 

Oxidation states are assessed through Bader charge analysis42 and computed spin 

magnetisations. A Bader charge in the range 9.6-9.7 electrons for Ti ions is attributed to 

Ti4+. For the case where Ti is described with 4 valence electrons, a Bader charge of 1.2-

1.3 electrons corresponds to Ti4+. For O2- sites, the computed Bader charge is in the range 

7.1-7.2 electrons. For hydroxylated surfaces, Bader charges for those oxygen atoms of 

the surface to which H atoms are adsorbed increase to values in the range 7.6-7.7 

electrons. 

Further details about the computed Bader charges and their corresponding formal charge 

for each of the species studied in this thesis are provided in Table 2.5. These values are 

a guide only and the interpretation of Bader charges with regard to the formal charge of 

 𝐸𝑣𝑎𝑐 = 𝐸(MxOx−1TiO2) +
1

2
𝐸(O2) − 𝐸(MxOxTiO2) 2.42 
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a species depends on its environment, coordination and the nature of the bond formed to 

its neighbouring ions. Thus, when assigning an oxidation state to an ion based on its Bader 

charge, it is best to also conduct an assessment of the aforementioned considerations. In 

particular, for oxidation or reduction of species it is important to examine the computed 

Bader charges before and after the charge localisation. 

Table 2.5 Bader charges and the corresponding formal charges for the atomic species 

studied in this thesis. 

Species 

 

Formal 

Charge 

Bader  

charge 

Species 

 

Formal 

 Charge 

Bader 

charge 

Ti 4+ 9.6-9.7 (1.2-1.3) O 2- 7.1-8.0 

 3+ 9.8-10.0 (1.6-1.7)  1- 6.7-6.9 

Cu 2+ 9.6-9.8 N 3- 7.4-8.0 

 1+ 10.4-10.5  2- 6.8-7.1 

Mo 6+ 9.1 S 2- 6.8-7.0 

 5+ 9.9  1- 6.5-6.7 

In 3+ 11.0-11.4 Se 2- 6.6-6.9 

Mg 2+ 6.2-6.3 (0.0)  1- 6.4-6.5 

Ca 2+ 6.4    

Sn 2+ 12.6-13.2    

 3+ 12.3-12.4    

Zn 2+ 11.0-11.4    

B 3+ 0.0    

Mn 3+ 11.2-11.3    

 2+ 11.5-11.7    

Ce 4+ 9.6-9.8    

  3+ 9.9-10.0       

 

 

2.6.5 Projected Electronic Density of States 

To examine the impact of doping/modification on the electronic and light absorption 

properties of the titania host/support, it is insightful to compute the projected electronic 

density of states (PEDOS). A PEDOS plot allows one to identify which species and 

orbitals contribute to features of the total DOS. For example, the total DOS can be 

decomposed into contributions from the nanocluster modifier and the titania support to 
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see how the modification impacts the band gap. For calculations of the PEDOS, Gaussian 

smearing, with 𝜎 = 0.1 eV, is applied. In the PEDOS plots, the titania-derived valence 

band maximum (VBM) is set to 0 eV and the Fermi level is represented with a vertical 

dashed line. 

 

2.6.6 Photoexcitation Model 

Photoexcitation is modelled by imposing a triplet electronic state on the system. This 

promotes an electron to the CB with a corresponding hole in the VB and enables an 

evaluation of the energetics and charge localisation associated with photoexcitation. The 

following energies are computed: 

 The ground state energy of the system, yielding Esinglet. 

 A single point energy calculation at the ground state geometry with the triplet state 

imposed, yielding Eunrelaxed. 

 An ionic relaxation of the triplet electronic state, which gives Erelaxed. 

From the results of these calculations we compute: 

1. The singlet-triplet vertical excitation energy:  Evertical = Eunrelaxed – Esinglet.  

This is the difference in energy between the ground (singlet) state and the imposed triplet 

state at the singlet geometry and corresponds to the simple VB-CB energy gap from the 

computed density of states; i.e., the optical gap. 

2. The singlet-triplet excitation energy:   Eexcite = Erelaxed – Esinglet. 

This is the difference in energy between the relaxed triplet state and the relaxed singlet 

state and gives an approximation of the excitation energy. 
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3. The triplet relaxation (carrier trapping) energy: Erelax = Eunrelaxed – Erelaxed. 

This difference in energy between the unrelaxed and relaxed triplet states is the energy 

gained when the electron and hole are trapped at their metal and oxygen sites upon 

structural relaxation. This energy relates to the stability of the trapped electron and hole. 

These quantities are summarised schematically in Figure 2.2. 

 

Figure 2.2 Schematic diagram of the relationship between the energies computed in the 

photoexcited model. 

This simple model only captures transitions to a triplet excited state and excited states 

with a singlet configuration are not accounted for. As will be discussed further in Chapter 

3, descriptions of excited states within a ground state theory presents challenges and this 

model is pragmatic in its approach. For the case of TiO2: in the ground state, the TiO2 VB 

is full and occupied by electron pairs (one spin up and one spin down). This is the singlet 

ground state and in VASP terms, corresponds to NUPDOWN = 0. As the VB is full, if 
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we impose a triplet state condition, NUPDOWN = 2, an electron is forced to the CB. This 

is due to the Pauli exclusion principle; i.e. no orbital can be occupied by two electrons of 

like-spin. This leaves a hole in the valence band. Singlet excited states cannot be probed 

with this model as such configurations will relax to the singlet ground state.  

For calculations involving the model excited state and valence band hole formation, an 

additional +U correction is applied to the O 2p-states with U(O) = 5.5 eV. This 

computational set-up is used for calculations of the singlet ground state, triplet state at the 

ground state geometry and the fully relaxed triplet state to facilitate comparisons within 

the photoexcitation model. Previous work has highlighted the necessity for such a 

correction in obtaining a correctly localised oxygen hole state in metal oxides.24, 26, 43-45 

This is only required in the photoexcitation model; implementing +U on O 2p states for 

other calculations would make comparisons with computational studies in the literature 

difficult. The goal of this model is to obtain a qualitative description of the localisation 

and stability of photoexcited charges. In the studies of BN and metal chalcogenide 

modification (Chapters 5 and 7), +U corrections are applied to the p-states of N, S and 

Se in the photoexcitation models, with U = 5.5 eV. 

Typically, analysis of the photoexcitation model corroborates predictions made from the 

computed PEDOS. In general, electrons are excited from the highest lying VB states, 

which for modified TiO2 are derived from low-coordinated anion sites of the modifiers. 

The excited electrons localise in states at the bottom of the CB. The identity of these states 

depend on the material combination under study. For the case where the CBM is 

dominated by Ti 3d states, a Ti ion will be reduced to Ti3+ in the excited state. However, 

should the modifier contain a more reducible cation, as is the case for CeOx-modified 

TiO2 (see Chapter 5), then the photoexcited electron will localise at these ions in 

preference to Ti. 
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2.6.7 Water adsorption 

We investigate the adsorption and activation of H2O at various sites of the nanocluster-

modified titania surfaces, taking into particular account the presence of oxygen vacancies. 

Adsorption energies for molecules adsorbed at the nanocluster-modified surface are 

calculated as: 

 𝐸𝑎𝑑𝑠 = 𝐸𝑠𝑢𝑟𝑓+𝑚𝑜𝑙 −𝐸𝑠𝑢𝑟𝑓 − 𝐸𝑚𝑜𝑙  2.43 

where 𝐸𝑠𝑢𝑟𝑓+𝑚𝑜𝑙 , 𝐸𝑠𝑢𝑟𝑓  and 𝐸𝑚𝑜𝑙  refer to the energies of the molecule and modified 

surface in interaction, the modified surface, and the gas phase H2O molecule, 

respectively. 

 

2.6.8 Water oxidation steps 

After the initial water adsorption, we consider the proton-coupled electron transfer 

(PCET) steps proposed in a widely accepted46-49 water oxidation pathway: 

(A) H2O+ (∗) →  OH 
∗ + (H++ e−)  

(B)  OH 
∗ → O 

∗ + (H+ + e−)  

(C)  H2O + O 
∗ → OOH 

∗ + (H+ + e−)  

(D)  OOH 
∗ → O2 + (∗) + (H

+ + e−)  

In the above, (*) denotes the adsorption site and ( Z 
∗ ) denotes species Z adsorbed at a 

surface site. The Gibb’s free energy, (ΔG), of each reaction step is computed with the 

inclusion of zero-point energy and entropic corrections. In this way the free energy of 

reaction “X” is calculated as:  
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 ΔGX  = ΔEX + ΔZPE − TΔS 2.44 

In the above, ΔEX is the difference in total energy, computed via DFT, between the 

products and reactants. The difference in zero-point energies, ΔZPE, is derived from 

vibrational frequencies, computed with DFT, according to the method prescribed in the 

work of Liao et al.48 The entropic contribution, TΔS, is taken from tabulated values for 

the gas phase molecules and neglected for adsorbed species.  

See Table 2.6 for a comparison of values for ZPE and TS from the literature and 

computed in the current work. As a benchmark, we refer to the work of Valdés et al,47 in 

which the authors examined the energies involved in water oxidation at the rutile (110) 

surface. The highest free energy step in this study was 2.20 eV and we use this value to 

decide on the favourability of the water oxidation process at the different systems under 

study in the current work. 

Table 2.6 Entropic and zero-point energy contributions to free energies. Superscripts a, b 

and c refer to computations performed in references 47, 48 and the current work, 

respectively. 

Species TS (eV) ZPE (eV)a ZPE (eV)b ZPE (eV)c 

H2O 0.67 0.56 0.57 0.59 

H2 0.41 0.27 0.27 0.27 

O2 0.63 0.10 0.10 0.10 

*OH 0.00 0.35 0.37 0.32 

*O 0.00 0.05 0.04 0.07 

*OOH 0.00 0.41 0.48 0.44 

*H 0.00 --- --- 0.28 

 

Steps A and C each describe water adsorption events; however, water dissociation upon 

adsorption and the first dehydrogenation are dealt with implicitly as a single step. For an 
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explicit description, we may consider these steps as consisting of sub-steps, which for 

water adsorption in dissociated form may be expressed as follows: 

(A1) H2O+ (∗) →  OH 
∗ + H 

∗  

(A2)  OH 
∗ + H 

∗ → OH 
∗ + (H+ + e−) 

And  

(C1) H2O + O 
∗ →  OOH 

∗ + H 
∗  

(C2)  OOH 
∗ + H 

∗ → OOH 
∗ + (H+ + e−) 

The overall free energy of a given step is then the sum of the free energies of the sub-

steps, so that: ΔGX = ΔGX1 + ΔGX2. Should a PCET step be thermodynamically 

unfavourable, this breakdown can prove insightful in identifying the underlying cause. 

The entropic and zero-point energy corrections to free energies of reaction steps A-D are 

included in Table 2.6 and compared with values from the literature. 

Table 2.6 Entropic and zero-point energy corrections to free energies of reaction steps A-

D. Superscripts a, b and c refer to computations performed in references 47, 48 and the 

current work, respectively. 

Reaction Step ΔZPE - TΔS (eV)a ΔZPE - TΔS (eV)b ΔZPE - TΔS (eV)c 

A1 --- 0.77 0.68 

A2 --- -0.37 -0.32 

A 0.40 0.40 0.36 

B -0.37 -0.39 -0.32 

C1 --- --- 0.73 

C2 --- --- -0.35 

C 0.39 0.47 0.38 

D -0.42 -1.08 -0.75 
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2.6.9 Hydrogen adsorption and Hydrogen Evolution Reaction 

To assess the hydrogen evolution reaction (HER) activity of a titania surface modified 

with an appropriate nanocluster (e.g. metal chalcogenide/metal phosphide), we examine 

H adsorption at sites of both the support and the modifier. For computational studies of 

the HER activity of a catalyst surface it is important to consider coverage effects, 

particularly for metal oxide surfaces, as H binds strongly to O sites to form hydroxyls. 

The adsorption energy of the 𝑛𝑡ℎ  H atom at the most stable surface with an existing 

coverage of (𝑛 − 1) H atoms is computed via: 

 ΔEH = E𝑛H@𝑠𝑢𝑟𝑓 − E(𝑛−1)H@𝑠𝑢𝑟𝑓 −
1

2
(EH2) 2.45 

Where E𝑛H@𝑠𝑢𝑟𝑓 , E(𝑛−1)𝑠𝑢𝑟𝑓 , and EH2 are the computed energies of the surface with 𝑛 H 

atoms adsorbed, the surface with (𝑛 − 1) H atoms, and an isolated, gas phase H2 

molecule. From the chemisorption energies (ΔEH), we compute the free energy of 

adsorption using: 

 ΔGH = ΔEH+ ΔEZPE − TΔSH 2.46 

Where ΔEZPE is the difference in zero point energy (ZPE) between the H atom adsorbed 

at the surface and in the gas phase; and TΔSH accounts for the difference in entropy 

between the final and initial state. The zero point energies, for the gas phase H2 molecule 

and for H adsorbed at a surface site, are derived from computations of the vibrational 

frequencies, according to the method prescribed in the work of Liao et al.48 For 

adsorption, only the vibrations of the H ion and the surface/cluster site to which it is 

adsorbed are considered; the ZPE for the adsorption site is then subtracted from this value. 

As is typical in such studies, the entropic contributions for H adsorbed at the surface are 
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omitted, and so the value for −TΔSH is taken as half the value for molecular H2. Thus, 

the ZPE and entropic contributions to the free energy are obtained from: 

 ΔEZPE − TΔSH = (ZPEH∗−
1

2
ZPEH2)− (0 −

1

2
TΔSH2) 2.47 

Chapter 7 provides further details of this model as it pertains to a specific surface. 

 

2.6.10 van der Waals 

A study of anatase TiO2 modified with hexagonal boron nitride (hBN) is presented in 

Section 5.3. hBN has a layered structure wherein layers interact via van der Waals forces. 

Thus, it is important to account for van der Waals forces in the computational description. 

Two approaches for modelling the van der Waals interaction are implemented and 

compared. The first is the DFT-D2 method developed by Grimme.50 This scheme 

involves computation of a dispersion energy correction, Edsip. The second scheme, vdW-

DF, was developed by Dion and colleagues51 and implements a non-local functional that 

accounts for dispersion interactions in an approximate way. 

Both approaches to accounting for the van der Waals interaction yield qualitatively 

similar results, as is discussed in more detail in Section 5.3. 
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3 Literature Review 

3.1 Insights into Photocatalysis from Computational 

Chemistry 

3.1.1 Introduction  

Computational quantum chemistry is a powerful tool in the development of new 

photocatalyst materials. Models of photocatalyst materials, and the insight they provide, 

can be used in the rational design and screening of candidate materials or to shed light on 

experimental observations. Key to the performance of computational models in predicting 

the viability of a material for the photocatalysis of a given reaction is the definition of 

appropriate descriptors. In adopting a descriptor approach, we consider three key 

processes in photocatalysis: 

(1) Light absorption to produce photoexcited electrons and holes. 

(2) Separation of photoexcited electrons and holes and their migration to active surface 

sites. 

(3) The interaction of feedstock species with active sites at the catalyst surface.  

To each of these steps we can ascribe a descriptor, or set of descriptors, which we may 

evaluate in a computationally efficient manner to assess the material performance. In 

describing a photocatalyst via computational methods, it is important to consider each of 

the aforementioned processes; high performance in one step, e.g. visible light absorption, 

does not guarantee high efficiency. For example, a material may have optimal light 
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absorption properties but suffer from fast charge carrier recombination, as is commonly 

seen with metal-doped TiO2.  

In this section, we discuss modelling of photocatalysis from these perspectives, first in 

terms of the computational descriptors and then with regard to approaches for their 

optimisation through rational design of new materials. Further consideration will be given 

to other important material properties, such as stability, cost, toxicity, abundance and 

synthesis. 

 

3.1.2 Computational descriptors 

3.1.2.1 Light Absorption 

For light absorption, the goal is to develop materials that absorb the maximum range of 

wavelengths of light, while maintaining appropriate valence and conduction band edge 

positions relative to the redox potentials of the reactants. As an example, we consider the 

case of hydrogen production from water splitting, which proceeds according to the two 

half reactions: 

  
H2O + 2h

+ → 2H+ +
1

2
O2 

 
3.1.1 

  2H+ + 2e− → H2  3.1.2 

For the overall reaction, the change in Gibb’s free energy, ΔG, is 1.23 eV per OH bond 

and, neglecting overpotentials, this specifies the minimum band gap for a water splitting 

photocatalyst. By convention, the redox potentials are measured relative to the Standard 

Hydrogen Electrode (SHE), for which the hydrogen evolution reaction (HER), described 
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by equation 3.1.2, has a reduction potential of 0 V. To catalyse the HER, the conduction 

band edge (CBE) of the material must be more negative than this potential.  

Similarly, for the water oxidation/oxygen evolution reaction (OER), described in equation 

3.1.1, to proceed, the valence band edge (VBE) of the photocatalyst must be more positive 

than the oxidation potential of 1.23 V (vs. SHE) for water. By convention, and for the 

remainder of this chapter, the band edges will be considered as ascending in energy from 

the valence band max (VBM), through the band gap, to the conduction band minimum 

(CBM). Thus, to satisfy the redox criteria, the VBM must be lower in energy than the 

oxidation potential and the CBM higher in energy than the reduction potential. 

An obvious measure in assessing the light absorption properties of a material is the band 

gap, which determines the spectral range of light absorption. However, an accurate, 

quantitative computation of band gaps presents challenges. First principles density 

functional theory (DFT) calculations,1-3 the workhorse of computational chemistry, 

inherently underestimate the band gap. This underestimation arises both from the 

approximations which are necessary to implement DFT1-3 and, more profoundly, from 

the Kohn-Sham formulation4 of the theory wherein non-interacting single-particle Kohn-

Sham orbitals substitute for the many-bodied wave function. Eigenvalues of the Kohn-

Sham equation are interpreted as single-particle excitation energies despite a fundamental 

lack of physical significance.5-6 

To circumvent what has become known as the band gap problem, various strategies are 

implemented. For molecules and finite systems the band gap can be calculated, with 

reasonable accuracy in the ΔSCF scheme, as the difference between ionisation potential 

and electron affinity.7 For a system of N electrons with ground state energy E(N) this 

entails calculations of energies E(N+1) and E(N-1), which is unfeasible for extended 
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systems with periodic boundary conditions (PBC). However, this approach can be 

extended to bulk systems through consideration of electron screening in the Δ-sol 

approach in which N is specified by material-specific screened volumes.8 

The local density approximation (LDA) and generalised gradient approximation (GGA) 

formulations of DFT can be improved to achieve better agreement between computed 

band gaps and those reported from experiment (see Figure 3.1.1). Incorporating on-site 

Coulomb interactions through the introduction of a Hubbard-like U parameter is a semi-

empirical approach that addresses the charge delocalisation (self-interaction) error.9 

Inclusion of the U term in the DFT+U scheme is necessary to describe localised electron 

and hole states and is particularly important for the partially filled d-states of the transition 

metals.10 The value of the U correction can be tuned to reproduce the experimental band 

gap, although one must accept that this is detrimental to the description of other important 

material parameters.11  

Another approach is to use hybrid density functionals, wherein the exchange-correlation 

term contains a portion of the exact Fock exchange from Hartree-Fock (HF) theory.12 

Screened hybrid schemes incorporate a screened Coulomb potential to truncate long-

range HF exchange.13 While these approaches yield better results for a variety of material 

properties, including the band gap, they are computationally more expensive than 

standard DFT and DFT+U approaches.14 Additionally, the percentage of Fock exchange 

and the screening length are tuneable parameters, which are material specific,15-17 and this 

complicates the application of hybrid DFT to heterostructures, which are of interest in the 

development of new photocatalyst materials. 

The final approach we mention derives from many-body perturbation theory 

implementing the GW approximation.18 In the GW approach, electrons and the Coulomb 
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hole that forms about them constitute quasiparticles, which interact via a screened 

interaction, W. The weak interaction between quasiparticles permits their approximation 

as independent particles whose propagation is described by Green functions. While the 

GW method provides a rigorously grounded description of accurate excitation energies it 

is immensely computationally expensive,14 (see Figure 3.1.1.b) which prohibits its use 

in high-throughput applications. 

 

Figure 3.1.1 Schematic diagrams illustrating (a) accuracy of standard DFT, DFT+U, 

Hybrid DFT and GW-based methods in describing band gaps5 and (b) the relative 

computational costs for standard DFT, Hybrid DFT and GW-methods weighed against 

their accuracy.14
 

In the context of photocatalysis, many studies take a pragmatic approach. Standard DFT 

and DFT+U, with appropriate choice of the U parameter, yield useful qualitative 

information about the atomic structure and nature of the band gap. Hybrid DFT can be 

run on top of the DFT+U geometry to obtain more accurate band gaps for moderately 

sized structures (ca. 100 atoms). The search for practical and efficient photocatalyst 

materials often builds on existing materials through a variety of modifications, 

nanostructuring and interfacing, which will be discussed in Section 3.1.3. In this way, 

computed density of states (DOS) plots, absorption spectra or other means of assessing 
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the band gap, can be compared within the computational set-up to provide information 

about the impact of the means of optimisation under study.  

 

3.1.2.2 Charge Carrier Separation 

The fate of photoexcited electrons and holes is of crucial importance in the performance 

of photocatalyst materials and their recombination must be suppressed. To assess the 

performance of a material in this respect computationally, it is necessary to develop 

models and descriptors that examine charge separation and localisation. Once again, an 

efficient and practical description of (photo)excited states in the confines of a ground state 

theory presents challenges.  

A simple yet powerful approach, applicable within the DFT+U level of the theory and 

beyond, is to impose a triplet electronic state on the system.19 This promotes an electron 

from the filled valence band to the previously empty conduction band, leaving a valence 

band hole. From this model, it is possible to examine the energies and charge 

separation/localisation relevant to photoexcitation. Three energies are computed, as 

described in Chapter 2: that of the singlet ground state, ES; the triplet state at the ground 

state geometry, ET-S; and the fully relaxed triplet state, ET. The value of ES − ET-S is 

analogous to the computed optical band gap, while ET – ET-S reflects the energy gained by 

the system after geometry relaxations in response to photoexcitation and relates to the 

stability of the trapped electron and hole. Analysis of computed Bader charges,20 spin 

magnetisations and spin density plots for the fully relaxed triplet state indicates the 

location of the photoexcited electron and hole and the degree of their spatial separation.  

In addition to the modelling of photoexcitation via imposition of a triplet state, as just 

described, there are other strategies for investigating charge localisation computationally. 



66 

 

In bulk materials, an electron can be introduced into the system, which populates a 

conduction band state; similarly, removing one electron creates a valence band hole. In a 

surface, this is not possible using periodic boundary conditions. To model addition of an 

electron, a H atom can be added, producing a surface –OH species, which then transfers 

its electron to the metal oxide. To model a hole, water is adsorbed and a neutral hydrogen 

atom (which is an electron and a proton) is removed to leave behind a hole.  

 

Figure 3.1.2 Computed spin density and electronic density of states for (a) excess 

electron (b) excess hole and (c) electron-hole pair in anatase (101); the yellow isosurfaces 

show the location of the spins.19  

Di Valentin and Selloni have used the triplet electronic state model for electron and hole 

localisation in anatase (101).19 Figure 3.1.2 shows the location of electrons and holes for 

the following situations: (a) adding an electron, (b) adding a hole and (c) an excited 

electron and hole. In all cases, using hybrid DFT, the electron and hole localise. The 

preference is for localisation on one Ti or O site, for electrons and holes, respectively. 

This gives Ti3+ and O- species in anatase. The electronic DOS shows localised states 

consistent with the formation of these species, which are key in photocatalysis. Later work 
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from Di Valentin showed that this model captures key aspects of the oxidation of 

molecules such as CH3OH on TiO2 surfaces.21 This simple model has also been used to 

characterise electron and hole localisation in more complex photocatalyst surfaces.22 

 

Figure 3.1.3 (a) Location of the hole state in rutile (110) immersed in water from ab initio 

molecular dynamics simulation at 330 K. The green isosurfaces show the location of the 

hole on oxygen. The graph shows the spin population on different oxygen atoms during 

the first 5 ps of the simulation.23 (b) Electron localisation on different Ti sites (blue spin 

isosurfaces) of a rutile (110) slab. The left image shows localisation in the centre of the 

slab while the right image shows localisation on a surface Ti atom (indicated as Ti 6). 

The inset shows the local geometry around the electron.24 
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Direct investigation of electrons or holes produced by excitation or defects can also be 

probed using Molecular Dynamics schemes, e.g. for the oxygen hole in a system modelled 

by a water layer on rutile TiO2
23 (Figure 3.1.3.a) or electron trapping on Ti sites in TiO2 

nanocrystals, Figure 3.1.3.b.24  

Figure 3.1.3.a shows results from an ab initio molecular dynamics (MD) (using hybrid 

DFT) simulation of a water layer on rutile (110). The hole is formed by removing a proton 

and an electron and the MD is at a temperature of 330 K.23 This shows the atomic structure 

of the water-TiO2 system (top left panel) and the spin on particular oxygen atoms (cyan, 

purple curves) as the simulation processed over a 5 ps timeframe. These results show that 

the hole localises on one of two oxygen atoms in the first 3 ps. These are the terminal 

hydroxyl (Oa) and a nearby surface oxygen atom (Ob). Hole localisation fluctuates over 

these oxygen atoms, which correlates with changes in geometry around the oxygen atoms 

involved. After 3 ps, there is a breaking of the OH bond and transfer of the proton to the 

surface. This leaves behind an O- species on the surface. These results suggest this process 

will be fast. 

To understand electron trapping in TiO2 nanocrystals, which have different TiO2 surfaces 

exposed, Wallace and McKenna24 studied electron trapping at low index rutile surfaces, 

namely (110), (100), (101), (001) and (111), with DFT+U calculations. Figure 3.1.3.b 

shows examples of electron trapping at rutile (100). The sites for Ti localisation are 

indicated by numbers 1-6, with site 1 in the centre of the slab and number 6 at the surface. 

The electron localisation induces structural distortions around the localisation site, which 

are characterised by elongated Ti-O distances around reduced Ti3+ cations. From the 

electron trapping energies, the most stable site in this surface is in the bulk (site 1 in 

Figure 3.1.3.b), with the surface site (site 6) the least stable. The authors found that the 

surfaces with the most favourable non-bulk trapping sites for electrons are (110) and 
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(001), in which (110) traps an electron in a subsurface site. Thus, crystal morphologies 

that expose predominantly (110) and (001) are proposed to enhance electron trapping at 

non-bulk sites. 

Another approach is to compute the electric dipole moment, which measures the 

separation of positive and negative electric charges.25 For finite systems, this is defined 

as 𝑑 = ∫ 𝑒 ∙ 𝑛(𝒓)𝒓𝑑𝒓, where 𝑒 is the electron charge and 𝑛(𝒓) is the number density at 

position 𝒓. For periodic systems, the dipole moment can be computed as  𝑑 = ∑ 𝑞𝑖𝒓𝑖 +

∑𝒅𝒊, where 𝒓𝑖 is the position of atom 𝑖 relative to the origin of the periodic cell, chosen 

for convenience as the centre of mass. The net atomic charge, 𝑞𝑖, and the atomic dipole, 

𝒅𝑖, of atom 𝑖 are computed with appropriate choice of charge partitioning scheme. Charge 

partitioning methods include the aforementioned Bader scheme and the Density Derived 

Electrostatic and Chemical (DDEC) scheme26 and its refinement, DDEC6,27-28 among 

others.25 

Semiconductor-metal and semiconductor-semiconductor interfaces are of considerable 

interest in the field of photocatalysis. The rational design of such heterostructures can 

extend light absorption to longer wavelengths and promote separation of photogenerated 

charge carriers. Understanding the direction of charge flow at the interface is necessary 

to predict the behaviour of these systems. The interface of a semiconductor and a metal 

in intimate contact is described by a Schottky junction.29 In order to achieve thermal 

equilibrium, in which the Fermi levels of the semiconductor and metal are aligned, charge 

must transfer across the interface. The direction of the charge flow is dictated by the 

relative work functions of the materials, with the work function defined as the difference 

in energy between the vacuum level and the Fermi level, 𝑊 = 𝐸𝑣𝑎𝑐 − 𝐸𝐹. In general, 

electrons flow from the material with the lower work function (higher 𝐸𝐹 ) to that with the 

higher work function (lower 𝐸𝐹 ). This results in the depletion of electrons or holes in a 
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region of the semiconductor near the interface, known as the space charge region, and 

establishes an electric field.  

 

Figure 3.1.4 (a) Band bending at the interface between an n-type (left) and p-type (right) 

semiconductor in contact with a metal.25 (b) Band bending and transfer of photoexcited 

charge at the interface of a Z-scheme heterostructure.25 (c) Local potential profiles along 

the direction perpendicular to the Cu2O (100) surface (left) and Cu2O (111) surface (right) 

showing the difference in work function between the two facets.30 

If the work function of the metal (𝑊𝑀) is greater than that of an n-type semiconductor 

(𝑊𝑆 ), the bands in this region bend upwards and a Schottky barrier is formed, which, if 

large enough, prevents backflow and promotes separation of charges (see Figure 3.1.4). 

If the barrier is low or in the case where 𝑊𝑀  <  𝑊𝑆  , this is an Ohmic contact. The 

opposite arguments apply to a metal in contact with a p-type semiconductor. To ascertain 

the nature of the Schottky contact it is therefore necessary to compute the work function 

of the materials. 

The work function is also a useful descriptor for semiconductor-semiconductor 

heterostructures, for example in the Z-scheme shown in Figure 3.1.4.b. New materials 
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based on such interfaces capitalise on the staggered band edges between semiconductors 

of different compositions. Once again, the relative work functions determine the direction 

of band bending and charge flow at the interface. One can conceive of favourable 

configurations in which photoexcitation of an electron from the valence band of one 

material to the conduction band of another is achievable at longer wavelengths than would 

be possible for the respective materials in isolation. 

 

Figure 3.1.5 Different types of heterojunction: (a) Type I, (b) Type II, (c) Schottky and 

(d) Z-scheme heterojunction. Notation: A, D and EF represent electron acceptor, electron 

donor and Fermi level respectively). Taken from ref. 32. 
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Additionally, heterostructuring can circumvent the necessity for the band edges of an 

individual phase to straddle the redox potentials of the overall reaction; the reduction and 

oxidation half reactions can be driven at the phases separately. In this way, interfacing 

two narrow-band gap semiconductors can drive the same reaction as a single wide-band 

gap material, while utilising a broader spectrum of light. The schematic in Figure 3.1.5 

shows the working principle of some commonly studied heterostructures in 

photocatalysis. 

To compute the work function of a given surface it is necessary to construct a symmetric 

periodic slab model and generate a local potential profile along the direction 

perpendicular to the surface as shown in Figure 3.1.4.c.30 For these calculations, the slab 

must be sufficiently thick such that at its centre it is bulk-like and the vacuum gap between 

periodic images must be sufficiently large such that the one-electron potential becomes 

constant in an interval at the mid-point.31 

 

3.1.2.3 Surface Reactivity  

Light absorption and efficient charge carrier separation count for very little if feedstock 

species do not interact with the surface of the catalyst, or interact too strongly. To probe 

the surface reactivity computationally there are a number of descriptors and their 

implementation and interpretation must take into account the context of the material and 

reaction under study. 

The adsorption energy can be calculated as follows: 

  ΔEads = Esurf+mol − (Esurf+ Emol) 
 3.1.3 
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where the first, second and third terms on the right hand side are the computed total energy 

of the surface-adsorbate system, the bare surface and the gas-phase molecule, 

respectively. Defined in this way, ΔEads corresponds to the change in enthalpy and 

negative values indicate an exothermic interaction. 

Adsorption energies can be compared across various adsorption sites to elucidate the most 

active sites at the surface of the catalyst. Activation of adsorbed species is determined by 

geometry distortions, dissociation and charge transfer. The adsorption energy can be 

extended to the Gibbs free energy of adsorption by including zero point energy (ZPE) and 

entropic contributions: 

  ΔGads = ΔEads+ (ΔZPE − TΔS)  3.1.4 

The ZPE of molecules in the gas phase and adsorbed at the surface can be computed using 

DFT calculations of vibrational frequencies and entropies of molecules are taken from 

standard tables for the gas phase and neglected for adsorbed species.33-34 Computing and 

comparing ΔG among likely intermediates of a given reaction can be used to generate an 

energy profile and identify the rate limiting step and hence the overpotential required to 

drive the reaction (see Figure 3.1.6).33-35 If this step is consistent across different catalyst 

surfaces, ΔG of this step can be used as a descriptor for the performance of the catalyst 

for the overall reaction.36-37 

Activation energies can be computed using nudged elastic band (NEB) methods, 38-39 

wherein the minimum energy pathway of a transition is computed via calculating the 

energy of a number of intermediate structures between fixed initial and final states. 
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Figure 3.1.6 (a) Gibb’s free energy profile computed for intermediates in the water 

oxidation reaction at rutile (110) with applied potentials of U = 0, 1.23, 2.20 and 3.25 V 

for pH = 0 (top) and U = 0, 0.40, 1.37 and 2.42 V for pH = 14 (bottom).33 (b) Gibb’s free 

energies of intermediates in the water oxidation reaction at hematite (0001) with 

overpotentials of U = 0 and 2.05 V for the pristine surface and U = 0 and 1.79 V for the 

oxygen deficient surface.35 

For transition metal surfaces, another descriptor of the surface reactivity is provided by 

the d-band centre model, developed by Nørskov and colleagues.40-41 In this model, insight 

into the strength of binding between an adsorbate and the transition metal surface is given 

by a single quantity, the d-band centre, which is defined as:25 

  
𝜖𝑑 =

∫𝐸 ∙ 𝐷(𝐸 − 𝐸𝐹)𝑑𝐸

∫𝐷(𝐸 − 𝐸𝐹)𝑑𝐸
 

 
3.1.5 

where 𝐷(𝐸) is the density of states projected on the d-orbitals and 𝐸𝐹  is the Fermi energy. 

The adsorption energy is correlated with the shift of 𝜖𝑑  relative to 𝐸𝐹 . The d-band centre 

is a measure of the degree of filling of anti-bonding states. Upward shifts in the d-band 

centre result in more empty anti-bonding states above the Fermi level, hence indicating 

increased binding strength.42-43 Conversely, lower values of 𝜖𝑑  correspond to increased 

filling of anti-bonding states and weaker binding. 
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Besides its applicability being restricted to transition metal surfaces, another drawback of 

the d-band centre descriptor is that it yields no information about the spatial distribution 

of active sites. A descriptor which addresses both of these issues is the Fermi softness 44 

of a solid catalyst surface; this measure is analogous to frontier molecular orbital (FMO) 

theory,45 which describes the spatial distribution of active sites of a molecule. The local 

Fermi softness at position 𝑟 is defined as:  

  
𝑆𝐹(𝑟) = −∫𝑔(𝐸, 𝑟)𝑓𝑇

′(𝐸 − 𝐸𝐹)𝑑𝐸 
 

3.1.6 

where 𝑔(𝐸, 𝑟) is the DOS projected at position 𝑟 and 𝑓𝑇
′(𝐸 − 𝐸𝐹) is the derivative of the 

Fermi-Dirac distribution function at finite temperature. The negative of the latter provides 

a weighting factor, which reaches a maximum at 𝐸𝐹 , and its inclusion is necessary to 

reflect the greater degree to which states near the Fermi level contribute to bonding. 

Huang and colleagues first applied this descriptor to transition metal surfaces to ascertain 

its reliability (see Figure 3.1.7).44 

 

Figure 3.1.7 Local Fermi softness (𝑺𝑭(𝒓)) computed for close-packed surfaces of 

transition metals. Taken from ref. 44. 

Another consideration when approaching the topic of surface reactivity is the presence of 

defects. For example, oxygen vacancies have been demonstrated as active sites for water 
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dissociation at the rutile (110) surface46-47 and ceria surfaces48 and reduced Ti3+ ions have 

been shown to be active in the chemistry at titania surfaces.49-50 Results such as these 

highlight the importance of engineering photocatalytic surfaces for which defects can be 

produced with moderate energy costs. The energy required to reduce a surface via oxygen 

vacancy (OV) formation can be computed using: 

  
Evac = Esurf+OV +

1

2
EO2 − Esurf 

 
3.1.7 

where the first and third terms on the right hand side refer to the total energy of the surface 

with an OV and the stoichiometric surface, respectively. The energy is referenced to half 

the total energy for molecular O2. In this way, the OV formation energy can be compared 

among systems and different vacancy sites to investigate which structures are more  

reducible and which configurations of OV are most favourable. In addition, adsorption 

modes and interaction strengths of species at the catalyst surface can be compared across 

structures with and without the presence of OV. 

While knowledge of the interaction strength between adsorbates and the catalyst surface 

is useful, it is not sufficient in predicting the activity of the catalyst towards the desired 

reaction. For a given reaction involving an adsorbed species there is usually an optimal 

binding strength for which weaker binding indicates no reaction takes place and stronger 

binding indicates the adsorbate is too strongly bound for the reaction to proceed. This is 

further discussed in Section 3.3 for the example of hydrogen evolution from water, where 

a descriptor of efficiency is a computed Gibbs free energy of H adsorption close to 0 

eV.51-53 
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3.1.3 Conclusions 

In this section, we have given an overview of the power of computational quantum 

chemistry for the understanding and development of photocatalysts. This work should 

proceed together with experiment, but modelling can give insights that are otherwise not 

easily obtained from experiment. This facilitates the rational design and screening of 

candidate materials and sheds light on experimental observations.  

To model photocatalysts using DFT, a key aspect is to define a set of descriptors that 

relate directly to the performance of the candidate catalyst. Commonly, descriptors for 

the following three key processes in photocatalysis are used: 

(1) Aiming to induce light absorption in the visible region of the solar spectrum, then the 

energy gap of the candidate material is important and is a widely used descriptor in 

modelling. Light absorption produces photoexcited electrons and holes. 

(2) The separation of photoexcited electrons and holes and their migration to active 

surface sites. This prevents recombination of electrons and holes, which reduces the 

activity of the photocatalyst and a simple DFT model can be used to predict electron/hole 

localisation and stability, while first principles molecular dynamics can directly probe the 

migration of electrons and holes. 

(3) The adsorption and interaction of feedstock species, such as water or CO2, at active 

sites at the catalyst surface. The nature of the active sites, e.g. coordination, electronic 

structure, charges etc. can be used to predict feedstock adsorption. 

Efficient computation of the descriptors for each step can help in assessing the material 

performance and screening for suitable candidate catalysts. In describing a photocatalyst 

via computational methods, we emphasise that it is vital to consider all key processes in 

photocatalysis. For example, we may predict a catalyst material to have optimal light 
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absorption properties, but the nature of the electronic structure means that it will likely 

suffer from fast charge carrier recombination. This is commonly seen with metal doped 

TiO2, where many DFT studies of bulk doping simply predict enhanced visible light 

absorption but neglect the possibility of charge recombination and do not account for 

adsorption of feedstock molecules.  

In the following sections we consider approaches for the optimisation of OER and HER 

catalysts through rational design of new materials. With the results from DFT modelling, 

further consideration must then be given to other important material properties, such as 

stability, cost, toxicity, abundance and synthesis. However, DFT methods are a powerful 

tool to screen for candidate photocatalysts. 
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3.2 Metal Oxides for OER  

3.2.1  Introduction 

The OER, or water oxidation reaction, proceeds at the anode and the reaction pathway 

depends on the pH conditions, as mentioned in Section 1.3. In alkaline media, the reaction 

is54: 

 4OH− → O2 + 2H2O + 4e
− 3.2.1 

In acidic media the reaction takes the form54: 

 2H2O → O2 + 4H
+ + 4e− 3.2.2 

In both media, this oxidation reaction involves the transfer of four electrons and can be 

considered as consisting of four single-electron transfer steps. In alkaline media, a 

proposed pathway for these steps is as follows55: 

(A) OH− + (∗) →  OH 
∗ + e− 

(B)  OH 
∗ + OH− → O 

∗ + H2O+ e
− 

(C)  O + OH− 
∗ → OOH 

∗ + e− 

(D)  OOH + OH− 
∗ → O2 + (∗) + H2O+ e

−  

In acidic medium, a widely accepted model for water oxidation describes the steps as 

follows33-34, 56-57: 

(A) H2O + (∗) → OH 
∗ + (H+ + e−) 

(B)  OH 
∗ → O 

∗ + (H++ e−) 

(C)  H2O+ O 
∗ → OOH 

∗ + (H+ + e−) 
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(D)  OOH 
∗ → O2 + (∗) + (H

+ + e−) 

Each step of these pathways has its associated free energy, ΔGX, (X = A, B, C,D), the 

largest of which represents the rate-determining step, GOER : 

 GOER = max [ΔGA ,ΔGB , ΔGC , ΔGD] 3.2.3 

Based on the free energy of the rate-determining step, one can compute the overpotential 

required to drive the OER58: 

 𝜂 →
GOER

q
− 1.23 V 3.2.4 

where q is the electron charge. Thus, at an ideal electrode material for the OER, the free 

energy of each step would be ΔGX = 1.23 eV, a condition which is never satisfied in 

reality. The relative stabilities of the reaction intermediates, determined by their binding 

energies at the surface, governs the rate-limiting step. For example, for surfaces which 

bind oxygen too strongly or too weakly, the reaction is limited by formation of *OOH 

(step C) or oxidation of *OH (step B), respectively.58 

Such observations led to the development of a universal descriptor for the potential of a 

material to catalyse the OER. The relative binding energies of *OH and *OOH, at both 

metal and metal oxide surfaces, were found to be related by a constant of ~3.2 eV, (see 

Figure 3.2.1).58 Thus, the sum of the free energies of steps B and C is 3.2 eV, rather than 

the ideal 2.46 eV. In practical terms, this defines a lower bound for the overpotential: 

(𝜂 > (3.2 − 2.46)/2  V), and narrows the scope for defining the rate-limiting step: 

 GOER = max[ΔGB , ΔGC] = max [ΔGB, 3.2 eV − ΔGB] 3.2.5 
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This descriptor allows for the screening of materials for OER catalysis based on 

computations of the free energy of step B, which, in alkaline or acidic media, is the 

deprotonation of a surface bound hydroxyl.  

 

Figure 3.2.1 Linear correlation of binding energies for *OH and *OOH at a wide range 

of oxide surfaces. The binding energies are computed from DFT and do not account for 

zero-point energy corrections or entropic contributions. The slope of the linear fit is 

approximately 1 and the intercept is 3.2 eV (ΔEOOH = ΔEOH + 3.2 eV). The red star 

represents the relation between binding energies for the perfect catalyst: ΔEOOH =

ΔEOH + 2.46 eV. Taken from ref. 58 

 

3.2.2 Metal Oxides 

Metal oxides represent a widely studied class of materials for photocatalysis; these are 

attractive materials due to their earth abundance and low cost. Transition metal oxides 



82 

 

form stable compounds due to the high electronegativity of oxygen, which makes them 

resistant to photocorrosion.59-60 Early transition metals, with empty d-orbitals (d0) form 

oxides with low, O 2p-derived valence band (VB) energies so that they are often 

considered as catalysts for oxidation half reactions. However, their high ionic character 

results in wide band gaps, limiting their light harvesting capabilities to the UV range. As 

opposed to the early transition metals, oxides of late transition metals such as Fe and Mn 

can exhibit smaller band gaps, with d-d transitions playing a significant role.59-60 A 

disadvantage is that low polaron conductivity inhibits the performance of late transition 

metal oxides in carrier transport and charge separation.59-60 

 

Figure 3.2.2 Illustration of the band gaps and band edges of various semiconductors 

relative to the reduction and oxidation potentials of some common redox reactions.61 

 

3.2.2.1 TiO2 

The most studied of the early transition metal oxides is titanium dioxide (TiO2),62-68 which 

was first reported as a photoanode for water oxidation by Fujishima and Honda in 1972.69 

Titanium dioxide (TiO2) is present in nature in three main phases: anatase, brookite and 
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rutile.70-74 Anatase and brookite are metastable phases and transform irrevocably to the 

thermodynamically stable rutile phase at high temperatures.75 Of the three TiO2 

polymorphs, anatase is the most photocatalytically active phase76 and thus preferred by 

the ceramics industry for fabrication of light active antimicrobial indoor building 

materials such as ceramics, glass, tiles and sanitary surfaces.75, 77  

The photo-activity of anatase arises from its appropriate band edge positions, electron 

affinity, ionisation potential, and the long lifetime of charge carriers.78-80 Moreover, 

transient photo-conductance analysis has revealed that the electron-hole recombination 

phenomenon in the anatase (101) phase is much slower compared to rutile (110), which 

is credited, in part, to the indirect band gap of anatase.81-82 

 

Figure 3.2.3 Unit cells of rutile and anatase TiO2. Both cells are tetragonal and, as shown, 

the c axis is along the vertical direction. 

The anatase to rutile phase transition (ART) generally occurs for temperatures between 

600-700 °C and kinetic studies have revealed that the complete ART occurs in the 
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temperature range of 673-728 °C.83 The ART temperature depends on various factors, 

such as the synthesis method, existence of impurities/dopants, and atmosphere.84 As a 

consequence, anatase TiO2 is mainly fabricated at low calcination temperatures (~500 °C) 

to prevent the ART.85-87 Anatase TiO2 is easily prepared at a calcination temperature of 

~500 °C, owing to its lower surface free energy, compared to that of rutile.75, 88 However, 

typical ceramic processing and manufacturing conditions can involve high temperatures 

in the range of 600-1000 °C. This necessitates enhancing the thermal stability of the 

anatase phase and suppressing the ART. 

The unit cells of the anatase and rutile phases are composed of TiO6 octahedra with 

titanium atoms at the centre and oxygen atoms at the vertices.88 Both anatase and rutile 

have tetragonal primitive cells, shown in Figure 3.2.3 with space groups I41/amd for 

anatase and P42/mnm for rutile.88 The lattice parameters of anatase are 𝑎 =  𝑏 =  3.785 Å 

and 𝑐 =  9.514 Å, while for rutile they are 𝑎 = 𝑏 = 4.594 Å and 𝑐 = 2.959 Å. The 

octahedral structure of the anatase crystal has a distorted, four edge sharing centre (4 

corners and 4 edges), whereas rutile has a non-distorted, two edge sharing centre (2 

corners and 6 edges).89 The ART is believed to occur via contraction of the anatase c-axis 

and is characterised by changes in lattice parameters and structural reformation (breaking 

and making of bonds).75, 89 The ART is mediated by defects (oxygen vacancies, Ti 

interstitials), crystal strain, particle size, existence of additives or dopants, and calcination 

conditions.88-90 

Despite the difference in activity between anatase and rutile, both polymorphs are widely 

studied for photocatalytic applications. However, their large band gaps (anatase: 3.2 eV; 

rutile: 3.05 eV91) limit the photoactivity to the UV range. There is considerable scientific 

literature devoted to enhancing the photocatalytic efficiency of TiO2 and other metal 

oxides. Some of these approaches are discussed in the following sections. 
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3.2.3 Doping Strategies 

Strategies to extend the light absorption edge of binary oxides based on early transition 

metals, such as TiO2 and WO3, to longer wavelengths include doping with cations and/or 

anions.92-95 Such approaches aim to introduce impurity-derived energy levels in the band 

gap of the parent oxide, thereby producing a red-shift in light absorption. In addition, 

doping can result in the formation of oxygen vacancies and reduced cation sites, which 

play an important role in the catalytic properties of metal oxides.  

Cu-doped TiO2 has garnered attention due to potentially interesting photocatalytic 

properties.96-100
  Colón et al identified oxygen vacancies among the potential causes of an 

improved photocatalytic activity in Cu-doped anatase TiO2.96 Karunakaran et al reported 

an improved efficiency of bacterial disinfection under visible light for Cu-doped mixed 

phase titania nanoparticles, while photocatalytic activity was diminished by comparison 

with the un-doped system, under UV irradiation.97 A number of authors have reported a 

reduction in the band gap for Cu-doped anatase,98-99 with a value as low as 2.2 eV 

obtained in one instance.100 

Typically, computational studies of doping-schemes emphasise band gap reduction101-108  

and overlook questions of charge localisation and surface reactivity. These are important 

considerations as the spatial separation of dopants, even at maximum solubility, means 

that charge transfer to the surface of the catalyst will be slow;60 moreover, dopant-derived 

defect states have been shown to act as recombination centres.67, 109-110 Nevertheless, 

valuable insight may be gained from such studies, which can inform future directions for 

optimisation. 

There have been some theoretical papers on the topic of Cu-doped titania, and, in a 

reflection of experimental focus, most of these have dealt with doped anatase.99, 103, 108, 111 
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Zhang and colleagues used DFT+U with a +U correction on Ti 3d states of 8 eV,108 which 

recovers the bulk TiO2 energy gap but is not to be recommended for other properties. No 

+U correction is applied to the O 2p or Cu 3d states, despite issues with describing these 

electronic states. Guo et al applied no +U correction to Ti, O or Cu.103 A reduction in the 

band gap was reported in all studies and this is attributed to a combination of Cu 3d and 

O 2p states above the valence band maximum.  

Navas et al provided a particularly comprehensive study99 of Cu-doping in anatase, which 

combined both experiment and theory, including DFT+U calculations, with the +U 

correction on Ti 3d orbitals only. However, a +U correction is necessary for the O 2p and 

Cu 3d states, in particular to obtain a localised polaron description112-114 and correctly 

describe the Cu2+ oxidation state.115-117 The authors reported a greater band gap reduction 

with increases in dopant concentration, due to the covalent character of the Cu-O 

interaction leading to new states at the VBM. Duhalde and colleagues gave a brief 

theoretical account of Cu-doping in rutile, in the context of the effect of oxygen vacancies 

on the magnetic moment of Cu-doped TiO2
118 and the authors reported that vacancies near 

the Cu impurity are most stable. 

Khan and Berk studied Mo-doped TiO2 and suggested that an impurity level of 

Mo6+/Mo5+ (Mo6+ 4d0 → Mo5+ 4d1) could be generated below the conduction band of 

TiO2.119 During photoexcitation, electron transition could occur from the O 2p valence 

band of TiO2 into the Mo6+/Mo5+ impurity level and then to the CB of TiO2, through 

d(Mo5+)-d(Ti) transition. The photo-induced electrons could reduce Ti4+ ions to Ti3+ at 

the surface. 

Kemp and McIntyre investigated the photocatalytic activity of Mo-TiO2 and found that 

34% of TiO2 anatase content was retained by 1% Mo doping after calcination to 600 
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°C.120 Fisher et al. studied the antimicrobial activity of Mo-TiO2 coated films on soiled 

surfaces in the beer industry under visible light irradiation.121 Mo-TiO2 coated films 

showed 5-log reduction in Escherichia coli under dark and light conditions. Recently, 

Miljević et al. examined the photocatalytic and self-cleaning efficiencies of Mo-TiO2-

layer double hydroxide (LDH) nanocomposite coatings under visible light irradiation.122 

The results showed that the photocatalytic and self-cleaning properties of Mo-TiO2-LDH 

(Mo/Ti = 0.03 mass ratio) were higher than that of TiO2-LDH. In another study, Yoon et 

al. reported the photocatalytic activity of transparent Mo-TiO2 (Mo = 3 at.%) films and 

showed that the visible light absorption capability of Mo-TiO2-CNCs was significantly 

higher than that of bare TiO2.123 

A number of theoretical studies have been conducted on N-doped TiO2 systems.124-129 

Calculations performed by Yang and colleagues indicate that substitutional doping of N 

at O sites is favoured over interstitial configurations at high dopant concentrations, while 

the formation energies were comparable at lower concentrations in rutile nanocrystals. 128 

Di Valentin et al found that N-derived states above the anatase TiO2 VB result in a red-

shift in light absorption, while for rutile TiO2 an N-induced contraction in the VB 

produced the opposite effect.126 

In-doped TiO2 was studied for the photocatalytic reduction of carbon dioxide (CO2) under 

UV light irradiation.130-131 Dopant concentrations were examined in the range of 0 – 20 

wt. % and the calcination temperature was fixed at 500 °C for 5 h. The CO2 reduction 

efficiency was increased significantly for the In-doped samples, compared to pure TiO2. 

The efficiency of 10 wt. % In-TiO2 was 7.9 times higher than that of un-doped TiO2. 

Wang et al. reported on the visible light assisted photocatalytic efficiency of In-TiO2 for 

the degradation of 4-chlorophenol.132 The results suggested that electron-hole 

recombination was minimised and the photocatalytic activity was enhanced by In doping. 
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The visible light assisted photocatalytic activity for In-TiO2 anatase was attributed to the 

presence of a surface species, O-In-Clx (x = 1 or 2).132 This species introduced a surface 

state energy level at 0.3 eV below the TiO2 conduction band (CB).  

This work was followed with a study of TiO2 co-modified with N and In, which included 

DFT calculations of the electronic band structure and density of states (DOS) for In-

TiO2.133 While details of the exact computational set-up are lacking, the authors reported 

that In-derived states emerge at 0.5 eV below the TiO2 CB, in their generalised gradient 

approximation (GGA) calculations. Charge compensation via oxygen vacancy formation 

in In-TiO2 rutile was previously studied using standard DFT, DFT+U and hybrid DFT.134 

A recent GGA study presented an analysis of the band structure and DOS for 

stoichiometric and charge compensated In-TiO2 anatase.135 The details regarding the 

oxidation states, oxygen vacancy formation, reduction and charge localisation were not 

provided.  

A study of C-cation and C-anion doped TiO2 reported optical band gap reductions of 0.18 

eV and 0.30 eV for C doped at Ti sites in anatase and rutile, respectively.107 For C doped 

at O sites, spin-polarised states emerge in the computed band gaps of both polymorphs. 

An observed red-shift in light absorption for Fe-doped TiO2 nanorods was attributed to 

Fe-derived states lowering the CBM, as revealed by DFT calculations of the DOS.136 Ce-

doping of anatase TiO2 was found to facilitate the formation of oxygen vacancies, leading 

to the emergence of reduced Ti3+- and Ce3+-derived midgap states.137 Fe-doping of WO3 

was investigated in a combined experimental and theoretical study.138 DFT calculations 

provided deeper insight into experimental observations and attributed the upshift in the 

VBM and downshift in the CBM to hybridisation among Fe 3d, W 5d and O 2p orbitals. 

Furthermore, Fe-doping was found to facilitate the formation of oxygen vacancies, 

thereby increasing the charge carrier density. 
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Figure 3.2.4 (a) Schematic representation of the impact of oxygen vacancies and Hf-

doping on the band edges of WO3; dashed horizontal lines indicate the VBM and CBM 

of pure WO3.139 (b) Computed DOS plot for (V + N)-doped TiO2 showing the impact of 

dopant-derived states on the TiO2 band edge potentials relative to major species OH and 

O2
−.106 (c) Schematic illustrating the concept of band gap reduction for ternary metal 

oxides.140   

Passivated anionic and cationic co-doping is proposed as a strategy for inducing red-shifts 

in light absorption without the creation of recombination centres.106, 141 Gai et al 

investigated various co-doping pairs computationally, and reported that (Mo + C)-doped 

TiO2 yielded the most promising results, producing a significant upward shift in the 

VBM.141 Wang and co-workers considered various cation-, anion- and co-doping 

strategies to shift the band edges of WO3 to favourable positions relative to the redox 

potentials of the water splitting reaction.139 The authors reported that substitution of W 

with lower-valent Hf lead to the spontaneous formation of oxygen vacancies, with the 

combined effect of shifting both the VBM and CBM upward while reducing the band 

gap, as shown in Figure 3.2.4.a. Phattalung and colleagues reported a reduced band gap 
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for (V + N)-doped TiO2, with computed band edges straddling the redox potentials of OH 

and O2
−, as shown in Figure 3.2.4.b.106 A recent study of (Cr + C)-doped rutile TiO2 

indicated that co-doping yielded a reduced band gap and, using computed electron 

densities, postulated reduced recombination rates due to internal electric fields arising 

from the stronger Cr-C ionic bonding.142 

In addition to binary metal oxides, ternary and quaternary metal oxides have been 

investigated. The vast multitude of such potential systems necessitates efficient and 

practical screening and in this endeavour, computational studies, equipped with suitable 

material descriptors, are essential. Ternary oxides, which incorporate metals with s2d10 

electron configurations in combination with transition metals, have garnered much 

attention.140 The rationale is that the occupied s orbitals of the s2d10 metals will extend the 

VBM to higher energies as shown in Figure 3.2.4.c. This effect has been confirmed in 

computational studies of BiVO4
143 and Sn2+-based ternary oxides, among others.140  

Doping has also been considered as an approach to modulate the ART at high 

temperatures.75 To stabilise the anatase phase at elevated temperatures and to utilise UV 

and visible light for photocatalysis, chemical modifiers and dopants can be used. These 

include anion dopants, e.g. carbon,144-148 nitrogen,149-152 sulphur73, 153 and fluorine,154-155 

or metal dopants, e.g. iron,153, 156silver,157-158 chromium159 and manganese.160-161 Doping 

with metal ions has the potential to retard the ART.77, 89, 162-170 Metal ions could improve 

the thermal stability of TiO2 through the reduction of contact points and nucleation 

sites.171 However, doping strategies can also have the opposite effect. 

Recently, the ART of cobalt-doped TiO2 (Co-TiO2) was studied at a single calcination 

temperature of 600 °C for dopant (Co) concentrations in the range of 0 to 4 mol. %.172 

The results revealed that ART of TiO2 was promoted by Co doping. Co doping (4%) of 
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anatase produced a mixture of 78% rutile and 22% anatase at 600 °C.  In another study, 

the impact of silicon (Si) doping on the ART was investigated.173 The anatase phase of 

TiO2 was well maintained up to 800 °C by 0.25% Si doping, with 90% anatase and 10% 

rutile. Promotion of the ART has been shown for tungsten (W)174 and vanadium (V)175 

doping. The phase transformation was promoted up to 50 ppm of W6+ and was inhibited 

thereafter (>50 ppm W6+; calcination 500 °C).174 A calcination temperature of 550 °C 

yielded 100% rutile after the addition of 6 at. % of V.175 In a recent study, it was observed 

that the anatase phase of TiO2 nanowires was well retained with Ti3+ self-doping up to a 

calcination temperature of 800 °C.176 

 

3.2.4 Noble metal loading 

Depositing nanoparticles of noble metals at the surface of a catalyst can achieve a number 

of desirable effects. As mentioned in Section 3.1.2.2, the semiconductor-metal interface 

can promote the separation of photogenerated charge carriers. The Fermi levels of the 

noble metals are lower than that of TiO2 and this establishes a Schottky barrier at the 

interface, which traps electrons in the metal.67 In this case, the metal modifier acts as a 

co-catalyst, with reduction proceeding at the metal nanoparticle and oxidation at the oxide 

support. 

Moreover, plasmon resonance in the metal can sensitise the composite structure to 

wavelengths of light in the visible range.177 Conduction electrons in the metal 

nanoparticles oscillate in response to irradiation with light, which is an oscillating 

electromagnetic field, as shown in Figure 3.2.5.178 These oscillations are greatest at the 

resonant frequency, which for the noble metals is in the visible range, and produce so-

called hot carriers.179 Excitation in this way enhances the electromagnetic field in the 
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vicinity of the metal nanoparticle and can result in transfer of hot electrons from the metal 

to the CB of the oxide support.180 In this situation, hot electrons in the oxide CB will 

mediate reduction and, provided they are of sufficient energy, hot holes in the metal will 

drive oxidation.181 Further insights into the impact of noble metal loading may be gained 

from computational studies.178 

 

Figure 3.2.5 Schematic showing the collective and cohesive oscillations of electrons in a 

metal nanoparticle in response to a light-derived electromagnetic wave. Taken from ref. 

178. 

Hybrid DFT calculations predict decreases in OV formation energies in the presence of 

Au and Pt nanoparticles at the TiO2 rutile (110) surface.182 Values of 3.62 eV and 2.10 

eV were computed for 𝐸𝑣𝑎𝑐 in the presence of Au2 and Pt2 nanoparticles, which compare 

with 4.37 eV for the bare surface. A study of TiO2 rutile films grown on an Ag (100) 

substrate predicted an increase of the work function from 4.23 eV for bare Ag to 5 eV for 

the metal/oxide system, which was attributed to charge transfer from the metal to the 

empty TiO2 CB.183 Wang et al used DFT models to study size effects of Pt-nanoparticles 

at the TiO2 anatase (101) surface and their results indicate that favourable alignment of Pt 

states with the CBM of the TiO2 support promoted photoelectron trapping in the metal, 

with the effect greater for smaller Pt clusters as shown in Figure 3.2.6.184  
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Figure 3.2.6 Computed DOS for Pt nanoparticles of various sizes at the TiO2 anatase 

(101) surface; Pt-derived states are shown in blue and anatase states are yellow-green.184 

Dotted vertical lines indicate the VBM and CBM of the anatase surface. 

 

3.2.5 Hetero- and nano-structuring 

3.2.5.1 Heterojunctions 

As mentioned in Section 3.1.2.2 semiconductor-semiconductor interfaces can be 

exploited for photocatalysis. The benchmark material, P25, consists of chemically 
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interfaced rutile and anatase phases. The enhanced photocatalytic activity of P25 has been 

attributed to a favourable alignment of the conduction and valence bands at the interface, 

which facilitates charge transfer between phases and suppresses charge carrier 

recombination.185 Recent papers on DFT modelling of explicit models of rutile-anatase 

interfaces have yielded further insights into the nature of the conduction and valence band 

edges186-187 and the role of low-coordinated Ti sites in driving charge localisation.188 

In addition, the interface can promote the formation of active catalytic sites. This effect 

can be tuned by considering heterostructures with semiconductors of different 

compositions. Such composites have been realised experimentally and shown to exhibit 

enhanced photocatalytic activity.189-193 A hybrid-DFT study of a monolayer g-C3N4/CdS 

heterostructure found that a van der Waals heterojunction formed at the interface.194 From 

calculations of the relative band positions, the authors identified a type II heterostructure 

with an internal electric field facilitating charge separation at the interface. Similar results 

were reported for g-C3N4/Bi2MoO6 (010) and g-C3N4/Bi2WO6 (010)195 and g-

C3N4/TiO2,196 which were found to be Z-scheme heterostructures.  

Chae et al. studied the impact of WO3 morphology on light absorption and charge carrier 

separation in heterostructured BiVO4/WO3.189 The authors reported higher charge 

separation efficiency for the heterostructures, relative to bare WO3, but found that 

increasing the photocurrent by varying the WO3 layer thickness was hindered by slow 

charge transfer across the interface. First principles calculations performed on BiVO 4 

/WO3 showed that strong hybridisation of W and V d-orbitals with Bi p-orbitals results 

in no staggering of valence bands at the interface, whereas the conduction bands were 

staggered.197 This result shed light on experimental observations that electron transfer 

was more efficient than hole transfer across the interface. Baek and co-workers 

engineered a triple-layer planar heterojunction (TPH) photoanode of composition 
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BiVO4/WO3/SnO2.198 The authors reported that the bottom WO3/SnO2 interface formed 

a disordered heterojunction, which lowered interfacial resistance for efficient charge 

transport and transfer. This combined with enhanced light absorption and charge 

separation, due to the top BiVO4/WO3 interface, to increase the water oxidation 

performance for the BiVO4/WO3/SnO2 TPH, with respect to BiVO4/WO3. 

In a study of WO3/TiO2 heterostructures, researchers irradiated the titania side of the 

composite material and reported a colour change on the WO3 surface.199 This colour 

change was attributed to the reduction of W6+ to W5+ upon electron transfer from TiO2 to 

WO3. The authors reported enhanced photocatalytic performance in the degradation of an 

organic pollutant, compared to the individual oxides. Sotelo-Vasquez and colleagues 

combined computation and experiment to study WO3/TiO2 heterojunctions.190 Contrary 

to previous studies of WO3/TiO2 heterostructures, the authors reported electron transfer 

from WO3 to TiO2. Hybrid DFT calculations indicated that the interfacial band alignment 

would support this direction of charge transfer, as shown in Figure 3.2.7. It was 

postulated by the authors that the inverted charge transfer was due to formation of a WO 3 

monoclinic structure, as opposed to the triclinic structure that commonly results from the 

synthesis methods reported in the literature. 

 

Figure 3.2.7 HSE06 calculated band alignment between monoclinic WO3 and anatase 

TiO2. Taken from ref. 190. 
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In their work on Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2, Bessekhouad and co-

workers achieved the heterojunctions by direct mixture of the two semiconductors and 

assumed that Brownian motion would suffice to permit charge transfer between the two 

phases.200 Heterojunctions based on Cu2O, Bi2O3 and ZnMn2O4 extended the light 

absorption edge to 650, 460 and 1000 nm, respectively, according to UV-vis 

spectroscopy. The band alignment of ZnMn2O4 with TiO2, shown in Figure 3.2.8, did not 

facilitate transfer of excited charges generated in ZnMn2O4 under visible (VIS) light 

irradiation; under UV-vis irradiation, photogenerated charges in TiO2 transferred to 

ZnMn2O4, which effectively deactivated TiO2. Conversely, Cu2O/Ti2O did exhibit VIS-

light activity, but the performance was diminished, with respect to pure TiO2, under UV-

vis irradiation. Finally, Bi2O3/TiO2 showed VIS-light activity and an improved 

performance under UV-vis conditions. 

 

Figure 3.2.8 Band alignments at the Cu2O/TiO2 and ZnMn2O4/TiO2 heterojunctions. . 

Electrons and holes generated in ZnMn2O4 under VIS light irradiation cannot transfer to 

TiO2; however, both photogenerated electrons and holes in TiO2 under UV conditions 

can transfer to ZnMn2O4. Taken from ref. 200. 

Xie et al. studied BiVO4/TiO2 and found that VIS-light excited electrons in BiVO4 

transferred to the TiO2 CB, prolonging the carrier lifetimes on the scale of milliseconds.201 

The authors also reported excellent performance in photocatalytic water splitting and 

pollutant degradation. Ho-Kimura and colleagues also studied BiVO4/TiO2, prepared by 
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a modified metal-organic decomposition (MOD) method.202 The authors added the 

titanium source to the bismuth-vanadium precursor solutions and spin-coated the result 

onto a substrate to obtain BiVO4/TiO2 thin films. The resulting catalyst exhibited a four -

fold increase in photocurrent, with respect to bare BiVO4. 

Niu and colleagues studied anatase TiO2 interfaced with silicane (SiH) and germanane 

(GeH), using Hybrid DFT.203 Silicane and germanane are monolayer materials with a 

graphene-like hexagonal structure and alternating H atoms on either side of the Si and Ge 

planes. SiH and GeH have smaller band gaps than the titania support (values of 2.08 and 

1.15 eV were computed, respectively, after formation of the heterostructure) and sensitise 

the composite photocatalyst to longer wavelengths of light. Band structure calculations 

revealed a type-II heterojunction, such that photogenerated electrons in the SiH and GeH 

phases will transfer to the titania CB. Wang et al interfaced SnOx (SnO2 with trace 

amounts of Sn2O3) with Zn2SnO4 (ZTO) by a one-pot hydrothermal method.193 The 

resulting heterojunction was of type-II and the authors reported photocatalytic 

performance exceeding that of P25. Moreover, the efficient separation of charge carriers 

inhibited photocorrosion of the ZTO component, which led to robust and stable activity. 

 

3.2.5.2 Nanostructures 

Nanostructuring of metal oxides is another approach to enhance the photocatalytic 

activity. Nanostructuring can enhance charge transfer kinetics and increase surface area 

while also providing low-coordinated metal and oxygen sites with which feedstock 

species can interact.204-208 Synthesis of nanostructured materials is a developed field and 

considerable control can be exerted over the morphology and size of metal oxide 
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structures.209 Novel materials can be fabricated as nanoparticles, nanowires, nanorods, 

nanotubes, nanosheets and nanoflakes, as shown in Figure 3.2.9.  

Garg and colleagues prepared nanostructured NiCo2O4
210 and Mg2MnO4

211 and examined 

their performance as anodic electrocatalysts for the OER. The resulting materials 

consisted of nanorods with high surface area and current densities of 140 and 14 mA/cm2 

were recorded for NiCo2O4 and Mg2MnO4, respectively, during electrocatalytic OER. 

Moreover, the performance of both materials remained stable under alkaline operating 

conditions. 

 

Figure 3.2.9 Schematic representation of some commonly obtained geometries for 

nanostructured metal oxides. The building blocks, which range from 0D-2D, can be 

assembled into 3D hierarchical structures. Some of the properties endowed by 

nanostructuring, and relevant to electrochemical and photoelectrochemical water 

splitting, are included in the table. Adapted from ref. 209. 

Kang et al. fabricated TiO2 nanotube arrays and introduced oxygen vacancies on the 

surface and interior via NaBH4 treatment.212 The authors found that oxygen vacancies at 

the surface and in the bulk had beneficial and detrimental impacts, respectively, on the 

photocatalytic activity. Surface oxygen vacancies acted both as charge carrier traps and 
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active adsorption sites, where fast transfer of charge to adsorbed species prevented carrier 

recombination. Conversely, oxygen vacancies in the interior acted as recombination 

centres. After formation of oxygen vacancies due to NaBH4 treatment, the photocatalyst 

exhibited a narrowed band gap of 2.46 eV and the photocatalytic activity was extended 

from the UV range to make use of visible light. 

Wang and co-workers reported on the water splitting capabilities of hydrogen-treated 

TiO2 (H:TiO2) nanowire arrays.213 Hydrogen treatment introduced oxygen vacancies and 

thereby increased the donor density of TiO2 by three orders of magnitude. The defect-rich 

H:TiO2 nanowires exhibited enhanced photocatalytic performance under simulated solar 

light, which was mainly attributed to increased activity in the UV range.  

 

Figure 3.2.10 Atomic structure of a (TiO2)35 nanoparticle, with representative oxygen 

vacancy structures. Blue and red spheres denote Ti and O, respectively and yellow 

isosurfaces indicate localisation of excess electrons. Taken from ref. 214. 
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From a computational perspective, periodic boundary conditions impose constraints on 

the size of nanoparticles which can be studied using plane-wave based computational 

methods.215-216 DFT codes such as FHI-aims,217 which implement atom centred 

potentials, and hence remove the necessity for PBCs and large vacuum gaps, are better 

suited for such studies.214, 218 Lamiel-Garcia and colleagues presented results which 

suggested that anatase nanoparticles become bulk-like for sizes of ~20 nm in diameter.218 

A study of anatase nanoparticles of size ~2 nm (see Figure 3.2.9) found that oxygen 

vacancies had low formation energies and that the resulting defect states potentially 

enhance the photocatalytic efficiency.214 

 

3.2.5.3 Surface modification 

Modification of catalyst surfaces with dispersed nanoclusters of other materials can 

combine the favourable properties of hetero- and nano-structuring. Deposition of sub-nm 

nanoclusters of iron oxide on TiO2 surfaces was demonstrated experimentally using 

chemisorption-calcination cycle (CCC)219 and atomic layer deposition (ALD)220 and 

subsequently investigated computationally.68, 221-222 FeOx-modified TiO2 exhibited band 

gap reduction and enhanced visible light photocatalytic activity and suppressed carrier 

recombination.219 DFT simulations attributed the red-shift in light absorption to cluster-

derived states above the VBM and identified interfacial surface-to-bulk electron 

transfer.68, 219, 221  

Boppana and Lobo modified the surface of zinc gallate (ZnGa2O4) with SnOx.191 This was 

achieved by adding a suspension of ZnGa2O4 to a solution of tin chloride precursor and 

stirring for 2 h at 353 K. The resulting material was tested for its photocatalytic 

performance in the degradation of cresol, an oxidation reaction. The visible light activity 
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of the SnOx/ZnGa2O4 composite alone was higher than that of unmodified zinc gallate 

under UV light and the UV activity was also enhanced by modification. The visible light 

activity was attributed to the presence of Sn2+, which was confirmed by Mössbauer 

spectroscopy. 

Maeda and colleagues investigated rutile TiO2 thin-films, modified with CoOx 

nanoclusters.223 The modified titania catalyst exhibited visible light absorption, which 

was attributed to excitation of electrons from the CoOx modifier to the titania CB, as 

shown in Figure 3.2.11.a. The photocatalytic activity of the composite catalyst for water 

oxidation depended on the nature of the modifiers at the surface; small, highly dispersed 

nanoclusters, of composition Co3O4, resulted in the highest activity. Heating the 

composite catalyst to elevated temperatures led to aggregation of the modifiers to form 

larger clusters, which diminished the activity (see Figure 3.2.11.b).  

 

Figure 3.2.11 (a) Representation of visible light induced excitation of electrons from the 

CoOx modifier to the titania CB, followed by oxidation at a site of the modifier. (b) 

Schematic showing structural changes of the CoOx-modifiers at the TiO2 surface upon 

heating at different temperatures. 
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Méndez-Medrano and colleagues studied TiO2 P25 modified with nanoclusters of CuO 

for photo-oxidation of organic compounds.224 Modification with CuO induced visible-

light driven photocatalytic activity, owing to the CuO band gap of 1.7 eV. Moreover, 

time-resolved microwave conductivity (TMRC) analysis indicated that excited electrons 

transferred from the CB of CuO to that of the P25 component, thereby suppressing charge 

carrier recombination. However, the authors reported that the holes remaining in CuO 

would have almost no oxidation power, owing to the high lying VB of CuO. 

Jia et al. investigated TiO2 nanowire arrays modified with CuS nanoclusters for 

photoelectrochemical (PEC) water splitting.225 The fabrication method for deposition of 

the clusters on the titania support was successive ionic layer adsorption reaction (SILAR). 

The resulting photoanode consisted of an array of TiO2 nanowires, of diameters from 20-

150 nm, with dispersed spherical nanoclusters of CuS of size ~5 nm. The modified 

photoanodes exhibited enhanced PEC activity. The authors reported that the performance 

depended on the CuS loading, which could be tuned by the number of SILAR cycles; the 

optimal performance was obtained after five SILAR cycles, and decreased for higher 

loadings. The proposed mechanism for the enhanced PEC activity involved the transfer 

of excited electrons from TiO2 to CuS, which led to partial reduction to Cu2S, as 

confirmed experimentally. This increased the lifetime of holes in the titania VB, which 

mediated the OER. 

DFT+U studies show that surface modification of TiO2 with metal oxide nanoclusters can 

enhance the reducibility, with moderate energy costs to produce reducing oxygen 

vacancies.226-227 This is particularly important for anatase (101), for which vacancies, 

which are active sites in photocatalysis, form preferentially at subsurface sites rather than 

at the surface.228-229 Surface modification can also enhance the interaction of adsorbed 

species, through provision of low coordinated active sites.  
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These studies, and the development of similar systems,192, 230-233 mean that a multitude of 

nanocluster-surface composites can be investigated for favourable photocatalytic 

properties. Tuning these systems for optimal performance encompasses composition, 

surface termination, nanocluster size, and stoichiometry. These considerations govern the 

light absorption properties, charge carrier mobility and surface reactivity. Computational 

methods provide insight into experimental observations221-222, 231-232 and are useful in 

screening candidate composite materials.22, 227, 234-242  

  



104 

 

3.3 Metal Chalcogenides for HER  

3.3.1  Introduction 

In this section, we focus on the HER, and for the most part, in acidic conditions as this 

enhances the HER activity;243-244 the reverse is true for OER.245 Moreover, the mechanism 

for HER in alkaline media is not as well understood.246 However, progress in the 

development of HER catalysts that operate in alkaline media has been the subject of a 

number of recent reviews.247-248 

The HER proceeds at the cathode in a two-step process and there are two possible 

pathways: the Volmer-Tafel reaction and the Volmer-Heyrovsky reaction.249 The Volmer 

step is common to both pathways and may be described as: 

Volmer: H+ + e− → Hads 3.3.1 

This is called the “discharge step” as an electron is transferred to a proton at the cathode 

surface, resulting in a surface bound H species, i.e. Hads. The second step involves 

desorption, and is described by the Tafel or Heyrovsky reactions: 

Tafel: Hads+ Hads → H2 3.3.2 

Heyrovsky: Hads+ H
+ + e− → H2 3.3.3 

The adsorption (discharge) step competes with the desorption steps and the optimal 

catalyst will strike a balance between these processes. This balance may be characterised 

by the Gibbs free energy of adsorption of a H atom (ΔGH) at the catalyst surface.250 This 

quantity is widely accepted as a descriptor for the HER activity of a catalyst and may be 

computed from first principles via DFT using: 
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 ΔGH = ΔEDFT + ΔZPE − TΔS 3.3.4 

where ΔEDFT, is the thermodynamic energy difference between the initial and final (Hads) 

state, computed with DFT; ΔZPE accounts for zero-point energy corrections; and the TΔS 

term contains entropic contributions. Large, positive ΔGH implies that adsorption is the 

difficult step whereas large, negative values of ΔGH indicate strong adsorption of 

hydrogen and therefore render the desorption step difficult. Thus, consistent with the 

Sabatier principle, the optimal value for ΔGH is close to 0 eV, and indeed, this is the case 

for the benchmark catalyst, Pt, as shown in Figure 3.3.1 and compared to other metals. 

 

Figure 3.3.1 Free energy diagram for hydrogen evolution at various metal surfaces, with 

no applied potential, (U=0 V). The modelled conditions correspond to standard 

temperature and pressure (STP: 300 K, 1 bar) and pH=0. By definition, the free energy 

of H+ + e- is the same as that of 1/2 H2 at standard conditions. The free energies of 

adsorption are computed with DFT and corrected for entropy and zero point energies. 

Coverages of 1/4 are used. From ref. 51. 

There are measured quantities that can quantify the intrinsic HER activity of a material. 

One such parameter is the turnover frequency (TOF) of an active site, which, as the name 
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suggests, is the number of reactions per unit time. The surface of a given catalyst material 

will present sites of different types, with variations that depend on factors including ion 

species, coordination, edge sites and defects. In principle, each site will have an intrinsic 

activity or TOF, but this is not measurable by experimental means. Instead, practical 

approaches estimate the average per site TOF, based on measurements of total electrode 

activity and the number of active sites, or site density, SD.251-252 Thus, the challenge in 

evaluating and comparing the intrinsic activities of materials for HER depends on reliable, 

standardised measurements of the SD.  

Strategies for determining the number of catalytic sites include measurements of the 

specific catalyst surface area via electrochemical techniques, such as capacitance 

measurements, or gaseous adsorption methods, such as BET, among others.253 These 

approaches are based on the reasonable assumption that the number of active sites will 

scale with the surface area. However, they are not applicable to all materials and their 

accuracy can be hindered by differences in the availability and accessibility of active sites 

between measurement and HER conditions. This, in turn, makes TOF a challenging 

parameter to evaluate conclusively, in a way that admits comparison between materials.  

Thus, many researchers omit intrinsic activity measurements and opt instead for total 

electrode activities as the metric to assess the catalyst performance. The quantities used 

for the measurement of total electrode activity, described below, depend on multiple 

factors including intrinsic activity, specific surface area, catalyst loading, substrate, and 

other effects.251 This means that, for a given material, they can be optimised through 

electrode preparation and design. Hence, a material with high intrinsic activity may not 

perform as well as an intrinsically less active material when using total electrode metrics, 

due to sub-optimal electrode design. 
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Two quantities commonly used when comparing the total electrode activity of HER 

catalysts are the Tafel slope and the overpotential.244, 246 A Tafel plot relates the 

overpotential (𝜂) to log10 of the measured current density (𝑗), via:  

 𝜂 = 𝑚 log10 𝑗 + 𝑐 3.3.5 

The rate-limiting step of the HER is elucidated from the slope of the Tafel plot, 

represented by 𝑚 in the above formula. Typically, values for the Tafel slope of 120, 30 

and 40 mV/dec indicate that the Volmer, Tafel and Heyrovsky steps, respectively, 

determine the rate of reaction.254 A small Tafel slope is a desirable quality in a catalyst 

because this indicates a large change in the current density, in response to smal l 

increments in the overpotential.  

Another important quantity which emerges from the Tafel plot is the exchange current 

density, 𝑗0, which is the current density at equilibrium conditions (𝜂 → 0). This quantifies 

the ability of a material to catalyze the HER and the best catalysts will exhibit high 𝑗0. 

The overpotential, denoted 𝜂𝑗, and measured relative to the standard/reversible/normal 

hydrogen electrode (SHE/RHE/NHE), is that potential required to produce a current 

density, 𝑗.251 This value for the current density corresponds to the current per unit area of 

the electrode and is typically chosen as 10 mA/cm2, by convention. This convention is 

used because this current density in a PEC cell corresponds to an STH efficiency of 

approximately 10%.244, 255 To avoid the complications of sign, only the magnitudes of 𝜂𝑗 

will be quoted in this review.  The area is simply the geometric area of the electrode and 

neglects intricacies of the electrode surface. Consequently, considerations such as surface 

nanostructuring and catalyst loadings are not taken into account. 
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For comparison purposes, the Tafel slope, the overpotential, 𝜂𝑗, and the exchange current 

density, 𝑗0, are among the most cited measurements in the literature. A detailed account 

of these quantities can be found in a review by Anantharaj and colleagues.256  

 

Figure 3.3.2 The top panel shows experimentally measured exchange current, log(i0),  for 

HER at metal surfaces plotted against the DFT calculated hydrogen chemisorption energy 

per atom, ΔEH (top axis). The bottom panel shows a volcano plot which arises from a 

simple kinetic model of the exchange current plotted against the free energy for hydrogen 

adsorption, ΔGH∗=ΔEH+0.24 eV. From ref. 51. 

For stability tests, some common approaches are to compare the performance of the 

catalyst after ~1,000-20,000 voltammetry (CV) cycles or to measure variations in the 

overpotential (current density) required to maintain continuous performance at a fixed 

current density (overpotential) for N hours.257 Measurements are referred to as 

potentiostatic/galvanostatic where the overpotential/current density are maintained 

constant. Details of these tests are also important performance indicators. 
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The quantities ΔGH and 𝑗0 establish a crucial link between computational and 

experimental results, which can be illustrated using a “volcano plot”.51 The volcano plot 

in Figure 3.3.2 shows experimentally measured 𝑗0 for a variety of metals plotted against 

their computed values for ΔGH . The Pt-group metals are clustered at the top of the 

volcano, exhibiting high values for 𝑗0 and computed ΔGH close to 0 eV. Reactive metals, 

at which H adsorbs too strongly, appear on the left of the volcano, while the unreactive 

metals appear on the right hand side. 

Equipped with these descriptors, we have criteria against which we can assess the 

candidacy of a material to catalyse the HER. In particular, computational methods allow 

for high throughput screening of HER catalysts. However, while ΔGH is a useful 

yardstick, other details of the HER should not be neglected. Such details include the 

catalyst surface area, availability of active sites, coverage effects and the nature of the 

real catalyst surface. For instance, H coverage can have a strong impact on the computed 

ΔGH and must be accounted for when performing simulations of potential HER catalysts. 

258-259 As an example of the latter consideration, computing ΔGH for a pristine metal 

surface loses relevance should that surface form an oxide layer under operating 

conditions. 

Indeed, the issue of aligning computational models of catalyst surfaces with the physical 

systems as they present under operating conditions is profound. One consideration is the 

impact of the solvent, and computational approaches to describing the catalyst-electrolyte 

interface will be discussed in Chapter 9.  

While metal oxides are perhaps the most widely studied class of materials for 

photocatalytic applications, e.g. TiO2 or Fe2O3, they are unsuitable as HER catalysts as 

hydrogen binds too strongly to oxygen sites in the surface, thereby forming an unreactive 
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hydroxyl layer. These catalysts therefore need a co-catalyst, such as Pt, or a sacrificial 

agent to consume electrons. Thus, the focus for HER is on non-noble transition metals 

and their compounds with elements from groups 13-16 of the periodic table. In this 

regard, we pay particular attention to the chalcogenides (S, Se and Te), which have 

recently emerged as interesting candidates for HER catalysts. Metal chalcogenide 

catalysts show significant promise in the search for cheap, abundant and efficient 

alternatives to noble metals for the HER. In this section, we focus on a selection of key 

catalyst materials and results that best highlight advances in this field, particularly from 

the perspective of how composition and structure can be used to promote the HER.  

 

3.3.2 Identification of Active Sites  

Metal chalcogenides, particularly layered transition metal dichalcogenides (TMDs) 

containing sulphur or selenium, have generated great interest for their catalytic activity 

towards HER. As they are useful for hydrodesulphurisation (HDS) chemistry,260-261 they 

are also of great interest for HER, given that the key reaction steps are similar between 

both chemistries.  

Perhaps the most widely studied of these materials is MoS2. While bulk MoS2
246, 262 and 

the basal planes263 were found to be inactive, other studies have examined the catalytic 

performance of MoS2 supported on substrates.264-265 MoS2 dispersed at an NiSx surface 

promoted HER and inhibited degradation of the catalyst; the MoS2 pigmented catalysts 

operated with overpotentials 50-100 mV below that recorded for bare NiSx.264 MoS2 

supported on silica also exhibited good hydrogen evolution properties.265 Drawing 

inspiration from these studies and noting similarities with the active site of nitrogenase, 

an enzyme which efficiently catalyzes the HER, Hinnemann and colleagues presented a 
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now widely cited computational investigation of MoS2 as a HER catalyst.53 This paper 

can be considered as the beginning of the high level of activity in discovering sulphides 

for the HER. The authors identified low-coordinated S-sites of the MoS2 edge as active 

sites, with ΔGH comparable to that computed for Pt, as shown in Figure 3.3.3.  

 

Figure 3.3.3 Computed free energy for HER at STP and a potential of U = 0 vs. SHE, 

with pH = 0. The result for MoS2 is the free energy required to increase the hydrogen 

coverage from 25 to 50%. From ref. 53.  

WS2 has the same layered structure as MoS2, and has also been studied for its hydrogen 

evolution properties and corrosion resistance.266 Silica-supported WS2 was shown to be 

an active and stable catalyst for HER; 0.2 mg of the WS2/SiO2 catalyst yielded in excess 

of 0.2 mL/h, with a small drop in performance after 2 h.266 Conversely, the Pt/SiO2 

catalyst produced 0.1 mL in the first hour, but only 0.04 mL in the second hour. A 

combined experimental and computational study of MoS2 and WS2 nanoparticles found 

WS2 to be almost as active as MoS2.267 Tafel slopes of 120 mV/dec and 135 mV/dec were 

recorded for MoS2 and WS2 catalysts, respectively. The authors also reported promotion 

of HER after incorporation of Co into the S-edges of both materials. The Tafel slope 
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decreased to 101 mV/dec and 132 mV/dec for Co-promoted MoS2 and WS2. The 

computational results of this paper are summarised in Table 3.3.1. 

Table 3.3.1 Selected data taken from refs  267 and 52. For details of the precise surfaces 

and H coverage, the reader should consult the original papers. 

Ref. Material Site 𝚫𝐆𝐇 (eV) 

267 MoS2 Mo-edge 0.08 

  S-edge 0.18 

 Co-Mo-S S-edge 0.10 

 WS2 W-edge 0.22 

  S-edge 0.22 

 Co-W-S S-edge 0.07 

52 MoS2 Mo-edge 0.06 

  S-edge -0.45 

 WS2 W-edge -0.04 

  S-edge -0.06 

 MoSe2 Mo-edge -0.04 

  Se-edge -0.05 

 WSe2 W-edge 0.17 

  Se-edge -0.05 

 

A subsequent study of MoS2 and WS2 by the same group adopted a more thorough 

approach and examined the effects of S- and H-coverage.52 Consequently, the 

computational results for ΔGH were revised and these results are also presented in Table  

3.3.1. The authors found that H binding was too strong at the S-edge of MoS2, even at the 

highest possible coverage. They concluded that active sites for HER were present at the 

Mo-terminated edge. Conversely, H adsorption at both W- and S-terminated edges of 

WS2 was close to thermoneutral. 
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Selenium is one period below sulphur in the chalcogenides, and consequently has similar 

chemical properties. A combination of these similarities and some important distinctions 

have generated significant interest in selenium containing materials for the HER. These 

distinctions include: (1) more pronounced metallic character with respect to sulphur, 

suggesting enhanced conductivity; (2) a larger ionic radius for Se  and (3) lower ionisation 

energy relative to S.246 The high lying p state of the anion in these non-oxide materials, 

where the energy of the np states is in the order O 2p < S 3p < Se 4p, means that materials 

with S and Se show a more metallic character compared to oxides and this is important 

for promoting the optimum adsorption free energy of hydrogen. 

A DFT study of the active sites of MoSe2 and WSe2 showed that, similar to their sulphide 

analogues, the basal planes of these materials are inert, with the active sites being present 

along the edges.52  Some results from this work are included in Table 3.3.1. A systematic 

computational study of layered TMDs of the form MX2 (M = Ti, V, Nb, Ta, Mo, W, Pd, 

Pt; X = S, Se) identified some key trends with implications for practical implementation 

of such materials as HER catalysts.268 The authors assessed the HER activity and stability 

of these materials based on computed values of ΔGH and ΔGHX, respectively. The latter 

quantity is the free energy of HX adsorption and an inverse relationship exists between H 

and HX binding. This implies that optimizing the HER activity can have detrimental 

effects on the stability of the catalyst. The authors considered ranges of chalcogen and 

hydrogen coverages, which can vary in a real system depending on the operating 

conditions. In general, hydrogen binding weakened with increasing hydrogen coverage. 

Moreover, through NEB calculations, the authors concluded that the Volmer-Heyrovsky 

pathway is most likely for these materials as prohibitively high activation barriers impede 

the Tafel step. 
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A study comparing the catalytic performance of electrodes consisting of porous arrays of 

MX2 nanosheets (M = Mo, W; X = S, Se, Te), found a clear hierarchy in activity 

following: selenides > sulphides > tellurides. MoSe2 out-performed all other materials, 

which was attributed, in part, to a low Tafel slope of 77 mV/dec. The authors also 

postulated that diselenide sites have a higher intrinsic activity relative to equivalent 

disulphide and ditelluride sites.  

Common among these studies that aim to use computational methods and experiment, to 

determine the origin of the activity of TMDs, is the identification of edges as active 

sites.269-271 Computationally, this conclusion is drawn from the comparison of ΔGH for 

edge and basal sites. In one experiment, samples of MoS2 nanoparticles of different sizes 

on Au(111) were prepared and the electrocatalytic activity correlated linearly with the 

number of MoS2 edge sites.271  

Bentley and colleagues implemented scanning electrochemical cell microscopy 

(SECCM) to create spatially-resolved measurements of the HER activity at basal and 

edge sites of bulk MoS2.272 Combining SECCM data with topographical information from 

scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed 

enhanced activity at defects, steps and crevices. The authors followed up this study with 

additional measurements of HER at MoS2, with improved temporal and spatial 

resolution.273 The results indicated a uniform activity in the basal plane and that the 

enhanced activity at the edges scaled with the step height. 

These results indicate the necessity to engineer TMD based catalysts that maximise the 

exposure of edge sites. However, strategies also exist for activating the basal plane. These 

and other considerations will be discussed in what follows. 
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3.3.2.1 Engineering Edge Sites 

Nanoparticles are characterised by a high specific surface area and an abundance of low-

coordinated surface sites and therefore nanostructuring of TMDs is an approach to 

enhance the HER activity. TMDs consist of 2D layers that interact via van der Waals 

forces and various methods exist for exfoliating these layers to produce nanosheets or 

nanoflakes.274-276  

One such method involves applying adhesive tape to bulk TMD to peel off layers before 

transfer to a substrate material. This mechanical exfoliation technique was first employed 

by Novoselov and colleagues to isolate 2D single layers of graphene.277 This method has 

since been used to deposit single- and few-layer nanosheets of TMDs onto SiO2 coated 

Si substrates.278 Another technique, described as similar to “drawing chalk on a 

blackboard”, was employed by Novoselov et al to transfer single layers of BN, graphite, 

and TMDs to an oxidised silicon wafer.279 While this approach is low-cost, it does not 

afford precise control or uniformity of the exfoliated layers and is further hindered by a 

low yield.  

Exfoliation of layers from bulk materials can also be achieved by various methods applied 

to suspensions of bulk powders in solvents.274-275, 280 These techniques include sonication, 

whereby the crystals are suspended in an appropriate solvent and broken apart by 

exposure to ultrasonic waves. This approach has been used successfully to isolate flakes 

of layered materials such as TMDs and BN.281 Sonication can be combined with 

intercalation, wherein molecules or ionic species are incorporated into the space between 

layers, weakening interlayer interaction and increasing layer spacing.  
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The preceding methods are examples of top-down techniques, beginning from bulk 

materials and deconstructing them by one means or another to obtain nanostructures. 

Bottom-up strategies involve building layers of materials on a substrate from their 

constituent parts. Chemical vapour deposition (CVD) is an example of a bottom-up 

technique. In CVD, a heated substrate is exposed to volatile chemical precursors that react 

to deposit a layer of desired material. Tuning of operational parameters, such as 

temperature, the composition of the substrate and precursors, allows for control  of the 

topography of the deposited material.282 Nanotubes and fullerene-like nanoparticles of 

MoS2 were obtained via reacting MoO3 and S in an argon atmosphere.283  

Dendritic monolayers of MoS2 were deposited on SrTiO3 and subsequently transferred 

intact to Au foil.284 The fractal-like geometry of these samples expose a wealth of active 

sites for HER and Tafel slopes of 73-85 mV/dec were reported. This compares favourably 

with values of 140-145 mV/dec, measured for multi-layer MoS2 grown on glassy carbon 

electrodes. The authors reported exchange current densities of 5-25 𝜇A/cm2, depending 

on preparation temperature, and durability tests showed a reproducible polarisation plot 

after 1000 voltammetry cycles. Shi and coworkers deposited hexagonal TaS2 flakes on 

Au foil via CVD.285 The authors measured Tafel slopes in the range 33-42 mV/dec for 

2H-TaS2/Au samples, which compare with 31 mV/dec for Pt. The overpotentials, 𝜂10, of 

the 2H-TaS2 samples were between 65-150 mV and the exchange current densities were 

100-179 𝜇A/cm2. 

Hydrothermal and solvothermal synthesis are other bottom-up techniques, which for 

TMDs, typically involve the reaction of transition metal salts in aqueous/organic solutions 

at moderate to high temperatures (80-240 °C).274, 286-287 These methods allow for 

considerable control over the product by tuning preparation parameters, and 

morphologies such as nanorods, nanosheets, and nanoflowers of MoS2 have been 
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achieved in this way.286 Such techniques have been used to grow MoS2 on TiO2
288-289 and 

carbon290 nanotubes and reduced graphene oxide (rGO).291  

 

Figure 3.3.4 Top-left: Illustration of electrons hopping across layers of a TMD and the 

potential barriers in the interlayer gap that must be overcome. Top-right: The exchange 

current density of the MoS2 film as a function of the layer number. From ref. 292. Bottom: 

Schematic illustration of two methods of preparation of MoS2/TiO2 composites. The first 

is a hydrothermal method where the basal planes of the MoS2 nanoplates lie flat on the 

TiO2 surface. The second method involves CVD followed by sulphurisation to achieve a 

configuration in which the MoS2 nanoplates contact with the TiO2 surface along 

conductive edge planes. Taken from ref. 293.  

These are but a few of the techniques that have been implemented to deposit 

nanostructured TMDs on substrates and a comprehensive overview of other methods is 

provided in ref. 274. A common feature of these techniques is that the nanostructured TMD 

lies flat on the substrate surface246, 292-293 which minimises the surface energy.294 One 

consequence is that this orientation exposes the inactive basal plane. Secondly, electrons 
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must transfer from the substrate to the active sites of the outermost layer, and in doing so 

overcome the interlayer potential barrier (see Figure 3.3.4).  

He and co-workers addressed this issue by constructing edge-on MoS2/TiO2 

heterostructures.293 This was achieved in a two-step process wherein a hydrothermal 

preparation of MoO2 on TiO2 was followed by sulphurisation by CVD. The core idea of 

this approach is that sulphurisation is faster parallel to the basal plane, owing to the weak 

inter-layer interaction. A similar effect was achieved for MoS2 on a carbon fibre paper 

(CFP) substrate by Hu et al using a microwave hydrothermal method.295 By altering the 

reaction time, the researchers could control whether the exposed edges of MoS2 were 

stepped or flat with respect to each other. The authors measured Tafel slopes of 121, 69, 

and 59 mV/dec for samples with randomly oriented, flat edged and stepped edge MoS2, 

indicating that stepped edges promote HER activity.  

CoS2 was the subject of a combined theoretical and experimental study.296 CoS2 

microspheres were terminated by vertical arrays of CoS2 sheets with an abundance of 

exposed sulphur sites. The authors reported a Tafel slope of 67 mV/dec and a low 

overpotential of 90 mV at 10 mA/cm2. DFT analysis of free energies of hydrogen 

adsorption at different CoS2 facets, at a coverage of 1/8 ML showed computed values for 

ΔGH in the range 0.04-0.06 eV. Wang et al reported Tafel slopes of 60 and 77 mV/dec 

for MoSe2 and WSe2 films grown vertically on a CFP substrate.294 The authors concluded 

that the curvature and roughness of the substrate enhanced the exposure of active sites.  

 

3.3.2.2 Activating the basal plane 

Before describing approaches to increasing the activity of basal plane of TMDs we first 

note that these materials exist predominantly in two polymorphs, denoted 2H and 1T. The 
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2H phase exhibits tetrahedral coordination while the 1T phase is characterised by 

octahedral coordination, as shown in Figure 3.3.5.  

 

Figure 3.3.5 Unit cells for the basal plane of 2H and 1T TMD structures, showing the top 

and side views. Three types of edges, the 1T edge, the 2H M-edge, and the 2H X-edge 

are indicated by the arrows. Image taken from ref. 268. 

For bulk group 6 TMDs, such as MoS2 and WS2, the 2H phase is thermodynamically 

favoured over the metastable 1T phase, although this is not true for all TMDs.268 The 

electronic properties of these materials depend on the structural geometry. For example, 

the basal plane of MoS2 is semiconducting in the 2H phase and becomes metallic in the 

1T phase. In addition to enhanced conductivity, the 1T phase has active sites for HER in 

the basal plane.246, 268, 297-298 This was deduced from measurements of the activities of 2H- 

and 1T-MoS2 samples after oxidation; the activity of 2H-MoS2 decreased after oxidation 

of edge sites whereas the activity of 1T-MoS2 was undiminished, implying the presence 

of active sites in the basal plane. 



120 

 

This suggests a strategy for promoting the activity of TMDs might be to promote their 

metallic phase. The 2H-1T phase transition has been shown to occur in samples of MoS 2 

upon exfoliation via Li intercalation.251, 297-298 Tafel slopes of 40297 and 43298 mV/dec 

were measured for 1T-MoS2 samples prepared in this manner. As mentioned above 

metallic 2H-TaS2 deposited on Au foil (Tafel slopes: 33-42 mV/dec) showed HER 

activity comparable to that of Pt (31 mV/dec) 285, and similar results were found for 1T-

MoS2 decorating TiO2 nanotubes (38-42 mV/dec).288 Voiry and colleagues measured a 

Tafel slope of 60 mV/dec for metallic 1T-WS2, with 110 mV/dec for 2H-WS2.299  

Yin and coworkers isolated 1T-MoSe2 nanosheets for which they measured a Tafel slope 

of 52 mV/dec and 𝜂10 of 152 mV.300 The catalyst stability was assessed by cycling the 

electrodes 1,000 times, which showed negligible losses in current density. Kong and co-

workers produced a nanoparticulate CoSe2 film on CFP and the resulting electrode 

consisted of CoSe2 nanoparticles with dimensions of tens of nanometers.301 X-ray 

diffraction (XRD) analysis revealed the presence of predominantly cubic pyrite phase, 

with some evidence of marcasite and amorphous phases. The metallic property of CoSe2 

contributed to the high HER activity, as shown by a Tafel slope of 40 mV/dec and 𝜂10 of 

137 mV.  

It is also possible to activate the basal plane of semiconducting 2H-MoS2. This was first 

achieved by Li and colleagues through combinations of S-vacancies and strain.302 The 

combination of S-vacancies and strain could be tuned such that the optimal condition of 

ΔGH = 0eV was satisfied. The authors identified S-vacancies as active sites and DFT 

calculations revealed defect gap states that could be shifted towards the Fermi level by 

application of strain, which would promote the adsorption of hydrogen. Experimentally, 

this manifested as measured Tafel slopes of 60 mV/dec for the strained sample with S-

vacancies; a value of 98 mV/dec was measured for the sample without strain or vacancies. 
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Figure 3.3.6 (a) Free energies of HER at the MoS2 basal plane, computed for the S-

vacancy range of 0–25%. (b) ΔGH vs. %x-strain for the S-vacancy range of 0-18.75%. 

The black line indicates combinations of S-vacancy and strain that yield the optimal 

ΔGH = 0 eV. (c) Linear sweep curves for the Au substrate; Pt electrode; unstrained and 

vacancy-free MoS2, (MoS2); strained [~1.35%] MoS2 without S-vacancies, (S-MoS2); 

unstrained MoS2 with S-vacancies [~12.5%] (V-MoS2); and strained [~1.35%] MoS2 with 

S-vacancies [~12.5%] (SV-MoS2). (d) Tafel plots corresponding to the linear sweep 

curves in (c). From ref. 302. 

The role of gap states in the HER activity was also investigated by Li and coworkers in 

their study of MoS2 films grown on a Mo substrate303. A combination of S-vacancies and 

Pt-doping introduced gap states which promote the HER activity. The authors reported a 

Tafel slope of 38 mV/dec for the Pt/MoS2/Mo heterostructure, which compared with 68 

mV/dec for MoS2/Mo. Values for 𝜂10 of 58 and 198 mV were recorded for Pt/MoS2/Mo 

and MoS2/Mo, respectively, further highlighting a crucial role for Pt in the catalytic 

activity.  

A comprehensive study of active sites of MoS2 reported a maximum in catalytic activity 

for S-vacancy concentrations in the range of 7-10%.304 The crystalline quality near the 
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vacancy also strongly affected the activity of the vacancy. Dong and colleagues described 

morphological control of MoS2 flakes prepared via CVD, and as a consequence of this 

method, control of the abundance of S-vacancies.305 S-vacancies have also been 

introduced to the basal plane of MoS2 by electrochemical desulphurisation as a viable 

alternative to Ar plasma exposure.306  

Gao et al reported a method for heterostructuring defect-rich MoS2 nanoflakes on 

exfoliated MoS2/WS2 scaffolds, via a hydrothermal approach307 and measured Tafel 

slopes of 81 and 73 mV/dec for the flakes on MoS2 and WS2, respectively. Geng and 

colleagues approached activating the basal plane by fabricating porous MoS2,308 which 

yielded a Tafel slope of 62 mV/dec. The measured 𝜂10 was 201 mV and no differences 

were observed in polarisation curves before and after 3,000 CV cycles. A systematic study 

of the impact of phase, edge sites and S-vacancies on the HER activity concluded that 

phase is the major determining factor.309 The 1T-MoS2 samples consistently 

outperformed the 2H phase.  

 

3.3.2.3 Amorphous TMDs 

Amorphous MoSx has also been investigated as a HER catalyst with reports of activities 

rivalling those of 1T-MoS2.310-311 One advantage of amorphous MoSx is the ease and 

economy with which it can be synthesised; simple, wet chemical techniques, requiring no 

high-temperature processing have been reported in the literature.312-313  Merki et al 

prepared amorphous MoS2 films using electro-polymerisation procedures and reported 

high current densities at low overpotentials with a Tafel slope of 40 mV/dec and 𝜂15 of 

200 mV.310 
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A study by Wu and colleagues attributed the high activity of amorphous MoS2 to 

similarities with 1T-MoS2 in terms of bonding character and electronic structure.311 The 

authors identified a short Mo-Mo bond, common to 1T-phase and amorphous samples, as 

a crucial feature for the HER activity. Tafel slopes of 65, 58 and 42 mV/dec were 

measured for 2H-, 1T- and amorphous MoS2, respectively. Wang et al fabricated 

copolymer hybrid films consisting of polypyrrole and amorphous MoSx (x~5).314 The 

result exhibited a HER activity comparable to that of commercial Pt/C catalysts with a 

Tafel slope of 29 mV/dec; however, a clear decrease in current was observed after 5,000 

s at a potential of -0.05 V (vs. RHE).  

A strategy to further enhance the HER activity of amorphous MoSx via doping with first 

row transition metals was investigated by Merki et al.315 The Tafel slopes for all samples 

of M-MoS3 (M = Mn, Fe, Co, Ni, Cu, Zn) were in the range 39-43 mV/dec. The authors 

found that Fe-, Co- and Ni-doping promoted growth of the MoS3 film, resulting in higher 

surface area and catalyst loading, and consequently, enhanced HER activity. However, 

the authors also concluded that the improved activity was not attributable solely to 

morphological effects and that the dopants increased the intrinsic catalytic activity. The 

impact on activity was pH-dependent, with Fe- and Co-doping performing best under 

acidic and neutral conditions, respectively. 

The use of MoSx-coated carbon electrodes in microbial electrolysis cells (MECs) under 

operating conditions was investigated by Kokko and colleagues.316 MECs can renewably 

produce H2 while simultaneously treating wastewater. The best performing MoS x 

electrodes exhibited onset potentials only slightly higher than that of a platinum electrode 

and Tafel slopes were in the range of 40-100 mV/dec. The values for 𝜂10 were in the 

range 130-250 mV. Importantly, the catalytic efficiency improved over time whereas the 
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Pt electrode was slowly deactivated. This latter result is common for amorphous MoS x 

electrodes and is attributed to structural changes induced under HER conditions. 

Amorphous MoSex has also been reported as an efficient catalyst for the HER.317 While 

the as-prepared amorphous MoSe3 nanopowder was inactive, exposure to HER conditions 

rendered the catalyst active. This was attributed to the development of structures with 

composition close to that of MoSe2. The active catalytic material was more robust than 

its MoSx analogue and operated in a wider range of pH solutions. In a pH 0 electrolyte, 

MoSex displayed a Tafel slope of 60 mV/dec and 𝜂10 of 270 mV. 

 

3.3.2.4 Heterostructuring  

Heterostructuring consists of interfacing two or more materials of different composition 

or phase. In this way it is possible to combine the qualities of each phase and moreover, 

capitalise on novel properties which emerge at the interface. 

Wang and coworkers grew MoS2 on CoS2 decorated carbon cloth (MoS2/CoS2/CC) and 

investigated the activity of this sandwich-structured electrode for HER.318 The interplay 

between the MoS2 and CoS2 phases was shown to play a crucial role in both the HER 

activity and stability of the electrode. This was established by comparing the performance 

of MoS2/CoS2/CC, MoS2/CC and CoS2/CC, for which Tafel slopes of 37, 50 and 60 

mV/dec were measured, respectively. MoS2/CoS2/CC exhibited 𝜂10 of 118 mV and 

showed no decay in performance after 4,000 CV cycles. The enhanced activity was 

attributed to optimal adsorption of hydrogen at interfacial S-sites; strong bonding 

interactions between MoS2 and CoS2 were the origin of the superior stability, compared 

to the individual materials. 
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Figure 3.3.7 Top: Overpotentials required for 5 mA/cm2 current densities, 𝜂5 , in pH 1 

and pH 13, for both crystalline and amorphous TMSx. Crystalline CoS2 is always more 

active than MoS2, and both materials are more active in acidic than alkaline solutions. For 

amorphous samples CoSx is always more active, particularly in alkaline solution. The 

activity of CoMoSx is almost independent of pH. Bottom: Overpotentials, 𝜂5 , in pH 1 

and pH 13, before and after 500 CV cycles. CoSx is the most active and least stable 

material. The CoMoSx chalcogel catalyst is stable and active, and shown as a pH-

universal catalyst for the HER. From ref. 319.  

In their 2016 paper,319 Staszak-Jirkovský and colleagues established that while 

amorphous CoSx is more active than amorphous MoSx, as measured by HER activity in 

acidic and alkaline media, the latter is more stable, and this observation informed the 

rational design of a low-cost CoMoSx chalcogel catalyst. The resulting catalyst was 

highly active and stable, irrespective of pH. In alkaline media there was a large difference 

in activity, following: MoSx ≪ CoMoSx ≪ CoSx; whereas, in acid solutions the 

differences were less significant, with MoSx < CoSx ≤ CoMoSx, as shown in Figure  

3.3.7. Moreover, the authors noted that less active crystalline MoS2 and CoS2 were more 

stable than their amorphous analogues by a factor of 10, which implies an important role 

for the density of defects in the relationship between activity and stability. 
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Zhang and coworkers prepared polymorphic CoSe2  with mixed orthorhombic and cubic 

phases.320 The authors described polymorphic CoSe2 (p-CoSe2) as a highly active HER 

catalyst with activities exceeding those of amorphous CoSx, cubic CoSe2 and CoSe. The 

phase and morphology of the samples were tuned via the calcination temperature. The 

measured Tafel slopes were 38, 31, 39 and 55 mV/dec for CoSex, p-CoSe2, c-CoSe2 and 

CoSe, respectively. The corresponding values for 𝜂10 were 180, 150, 200, and 270 mV, 

indicating that the polymorphic sample had the best activity. The value of 𝜂10 was found 

to increase by 8 mV for p-CoSe2 after 40 h of galvanostatic measurement. 

 

3.3.2.5 Ternary TMDs 

Ternary TMDs (TTMDs) have also been considered in the pursuit for active and stable 

HER catalysts.321 TTMDs have the general formula Mz
1M1−z

2 X2 or MX2z
1 X2(1−z)

2 , where 

M1, M2 and M are transition metals (M1 ≠ M2) and X1, X2 = S, Se or Te (X1 ≠ X2). The 

properties of TTMDs can be tuned by altering the composition and the molar ratio, z. 

Kiran and co-workers found that MoS2zSe2(1-z) alloys possessed higher HER activity 

compared to MoS2 and MoSe2.322 The authors systematically studied the structure-

activity relationship by varying the composition and found that MoS1Se1 presented the 

highest HER activity among the catalysts under study, which they attributed to improved 

electronic conductivity. Konkena et al studied MoSSe interfaced with rGO.323 The 

authors reported that the nanocomposite heterostructures were active and stable 

electrocatalysts for HER. They measured a Tafel slope of 51 mV/dec and 𝜂10 of 155 mV. 

Stability tests showed no decrease in performance after 5,000 cycles. 
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Figure 3.3.8 (a) and (b) Schematics of the experimental setup for fabrication of WS2, 

WSe2, and WS2(1–x)Se2x nanotubes. SEM images of (c) WO3 nanowires and (d) WS2, (e) 

WSe2, and (f) WS2(1–x)Se2x nanotubes. X-ray energy dispersive spectroscopy (EDS) 

pattern of (g) WO3 NWs and (h) WS2, (i) WSe2, and (j) WS2(1–x)Se2x NTs.  From ref. 324.  

Liu et al reported a Tafel slope of 44 mV/dec for CoS2zSe2(1-z) (z = 0.67) nanowires on 

flexible carbon fiber.325 This compared with values of 69 and 46 mV/dec for CoS2 and 

CoSe2 nanowires, respectively. The authors measured 𝜂10 of 130 mV, with no decrease 

in activity after 1,000 cycles. Xu et al used CVD to synthesise high-quality WS2, WSe2 

and WS2zSe2(1-z) nanotubes on carbon fibers (see Figure 3.3.8).324 The WS2, WSe2 and 

WS2zSe2(1-z) (z = 0.48) nanotubes exhibited Tafel slopes of 113, 99, and 105 mV/dec and 

values for 𝑗0 of 12, 3, and 29 𝜇A/cm2 . The enhanced activity of these TTMD catalysts is 

due to improved conductivity, which results from incorporation of Se into the WS2 lattice, 

as evidenced by analyses of the electronic structure. 

Zhang and colleagues implemented CVD techniques to grow dendritic WS2zSe2(1-z) flakes 

on a SrTiO3 substrate.326 The flakes, with a morphology that produces an abundance of 

active edge sites, were transferred to Au foil to measure their HER capability. The 

WS2zSe2(1-z) on Au electrode, with an S to Se ratio of 19 to1, presented a Tafel slope and 
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𝜂10 of 67 mV/dec and 156 mV, which were lower than those measured for dendritic WS 2 

(87 mV/dec and 310 mV). Other studies of WS2zSe2(1-z) inferred that active sites are 

present on the basal plane of the TTMD due to lattice strain arising from the different 

atomic radii of S and Se atoms.327-328 

Xia et al prepared NizCo(1-z)Se2 (z = 0.33) solid solutions by selenisation of a nickel cobalt 

precursor.329 The resulting NizCo(1-z)Se2 catalyst consisted of mixed cubic and 

orthorhombic phases. Through temperature dependent measurements of the conductivity, 

the authors described the metallic-like electrical conductivity of the TTMD solid solution. 

The room-temperature conductivity of NizCo(1-z)Se2 was three times that of CoSe2. DFT 

calculations indicated that incorporation of Ni into the CoSe2 lattice lowered the free 

energy of hydrogen adsorption at edge sites. NizCo(1-z)Se2 operated under both acidic and 

alkaline conditions and measurements in an acidic electrolyte yielded a Tafel slope of 35 

mV/dec and 𝜂10 of 65 mV, with no loss of performance after 24h of electrolysis. 

 

Figure 3.3.9 Schematic showing the process for fabrication of mesoporous Ni (1-z)CozSe2 

nanosheets. Taken from ref. 330. 

Lie et al prepared 3D Ni(1-z)CozSe2 mesoporous nanosheet networks with tunable 

stoichiometry (z = 0-0.35), which operated as HER catalysts with excellent stability over 

a wide pH range.330 The authors identified Ni(1-z)CozSe2 (z = 0.11) as the optimal 

configuration. DFT calculations revealed that Ni0.89Co0.11Se2 was metallic with high 
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electrical conductivity. The electronic structure that resulted from substitutional doping 

of Co into the NiSe2 lattice led to favourable adsorption free energies of H and H2O at the 

surface. Tafel slopes of 0.39, 0.78 and 0.52 mV/dec were measured for Ni0.89Co0.11Se2 

operating in acidic, neutral and alkaline conditions, respectively.  
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4 Doped TiO2 

4.1 Introduction 

This chapter presents the results of three combined experimental and computational 

studies examining the impact of substitutional doping of TiO2 on the anatase-to-rutile 

transition (ART) temperature and photocatalytic activity. The dopants are copper (Cu); 1 

molybdenum (Mo);2 and indium (In).3 Each study description begins with the 

presentation of selected experimental results before an in-depth discussion of the 

computational results. 

The computational analysis includes an assessment of the local atomic structure in the 

vicinity of the dopant and the formation energies of charge compensating and reducing 

oxygen vacancies, which are implicated in the ART. It is hypothesised that making this 

process more difficult may be achieved by doping, which will impede the transition. Thus, 

should the presence of the dopant increase the energy required to produce oxygen 

vacancies then this might correspond to a suppression of the ART. We analyse the impact 

of the dopant on the light absorption properties of the titania host through projected 

electronic density of states (PEDOS) plots. We examine charge localisation and oxidation 

states by analysing Bader charges and excess spin density plots. For In-doped anatase 

TiO2 we also examine the formation of In2O3 at the anatase surface and the reduction of 

this composite surface via oxygen vacancy formation. 

A description of the computational set-up for these studies is provided in Chapter 2 and 

a complete Materials and Methods are provided in Appendix A.  
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4.2 Cu-doped TiO2 

What follows is adapted from an article entitled: “Effect of Cu Doping on the Anatase-

to-Rutile Phase Transition in TiO2 Photocatalysts: Theory and Experiments”, 

published in Applied Catalysis B: Environmental.1 

 

DOI:  https://doi.org/10.1016/j.apcatb.2019.01.058 

 https://cora.ucc.ie/handle/10468/7354 

 

4.2.1 Introduction 

Copper has previously been investigated as a dopant in TiO2, but to date a detailed 

systematic analysis of the effect of Cu doping on the phase stability of TiO2 is lacking.4 

In an important contribution, Yoong et al. examined Cu-doped Degussa P25 TiO2 for 

different weight % of Cu (0, 2, 5, 10, 15 %) at three temperatures (300, 400, 500 °C).4 

However, the highest temperature in this work is below the anatase-rutile phase transition. 

Hence, there is no comprehensive understanding of the effect of copper doping on the 

anatase-rutile phase transition in TiO2. Unravelling the role of Cu-doping in this phase 

https://doi.org/10.1016/j.apcatb.2019.01.058
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transition will inform endeavours to stabilise the more photoactive anatase phase of TiO2 

at higher temperatures.  

Therefore, the aim of this investigation was to carry out a systematic and detailed study 

of the impact of copper doping of titanium dioxide on the anatase content, having calcined 

the samples to temperatures in the range 400-700 °C. Having determined the crystalline 

composition of the samples, we examined the resulting photocatalytic activity. Cu-doped 

titania was prepared with four different Cu concentrations, namely 0, 2, 4 and 8 mol. % 

Cu. Density functional theory (DFT) studies of Cu doping of bulk rutile and anatase were 

carried out to explore the effect of doping on the cation oxidation states, oxygen vacancy 

formation and any changes to the electronic structure of rutile and anatase after doping. 

X-ray diffraction (XRD) analysis and Raman spectroscopy were used for determining the 

phase composition of each sample. X-ray photoelectron spectroscopy (XPS) was used for 

identifying the bonding that was present in samples. 

The photocatalytic performance of Cu-doped TiO2 is assessed through measurements of 

1, 4 dioxane removal. As 1, 4 dioxane is removed via an oxidation process, improvement 

of a modified catalyst in this regards may also have implications for the water oxidation 

activity, which is one of the main focuses of this thesis. 

 

4.2.2 Results 

4.2.2.1 Selected Experimental Results 

X-ray Diffraction (XRD) Characterisation 

X-ray Diffraction (XRD) was used to determine the effect of copper on the anatase to 

rutile transition temperature in TiO2. The intensities of the main anatase and rutile peaks 

((101) and (110), respectively) were used to determine the ratios of anatase and rutile 
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present in each sample. There were no peaks present relating to copper metal (which 

would appear at approx. 2θ = 43, 50 and 74°).5 The only peaks that were present were 

those for titanium dioxide. All samples were 100% anatase phase at 400 °C and 500 °C. 

At 600 °C, the control (0% Cu) was 34.3% anatase and 65.7% rutile, while the Cu-doped 

samples remained 100% anatase. After calcination to 650 °C, the 0% and 2% Cu-TiO2 

samples contained 100% rutile. However, at the same temperature, the 4% and 8% Cu-

TiO2 samples had 27.3% and 74.3% of anatase respectively (Figure 4.2.1.a). All samples 

were 100% rutile phase after calcination to 700 °C. Figure 4.2.1.b shows the temperature-

dependent anatase-rutile composition profile of the Cu-doped samples. 

 

Figure 4.2.1 (a) XRD of (black) 0% Cu-TiO2, (red) 2% Cu-TiO2, (blue) 4% Cu-TiO2 and 

(green) 8% Cu-TiO2 after calcination to 650°C. A = anatase and R = Rutile. (b) 

Percentage of the anatase phase in Cu-doped TiO2 samples.  

 

X-ray Photoelectron Spectroscopy (XPS) 

The X-ray Photoelectron spectroscopy (XPS) measurements were performed to analyse 

the elemental composition and metal oxidation states of each sample. Figure 4.2.2 

displays the survey spectrum for the 8% Cu-doped samples, which were calcined at 600, 

650 and 700 °C. The survey spectrum indicates the presence of Ti, O, Cu and S. Carbon 

(C) 1s peaks (at binding energies (BE) of 284.9-285.0 eV) are present in all samples and 
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are attributed to adventitious carbon (C-C, C=C and/or C-H bonds), which arise due to 

contamination during synthesis and calcination.6-8 Sulphur is present at ca. 4 at. % in the 

8% Cu-doped material calcined at 600 °C. The presence of sulphur in Cu-doped TiO2 at 

this concentration is mostly likely due to the release of sulphur dioxide from the Cu 

precursor (CuSO4) during the calcination process.9  However, the sulphur content reduces 

to below 1 at. % in the composites calcined at 700°C, which is also evident from the S 2p 

spectrum in Figure 4.2.2.e.  

 

Figure 4.2.2 XPS spectra for the example of 8% Cu-TiO2 that was calcined at 600 °C, 

650 °C and 700 °C. Panel (a) shows the survey spectrum and the BE regions are shown 

for (b) Ti 2p, (c) O 1s, (d) Cu 2p3/2 and (e) S 2p. 
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The peaks for the Ti 2p3/2 spectrum show the presence of Ti-O binding. The slight 

decrease in the binding energy (464.6-464.4 eV) as the temperature increases indicates 

that samples are becoming oxygen deficient, see Figure 4.2.2.b.7, 10-11 This also indicates 

reduction of Ti4+ to Ti3+ at higher temperatures.7, 10-11 There is a similar decrease in the 

binding energy of the O 1s peak (BE = 530.4-530.1 eV), shown in Figure 4.2.2.c, which 

further indicates the formation of oxygen vacancies.7, 10-11 Oxygen vacancy formation 

signifies that the anatase phase is beginning the transformation to the rutile phase.7, 10-13  

The second dominant peak in the O 1s spectra is at 532.6 eV in Cu-TiO2 calcined at 600 

°C and shifts to 531.7 eV, when calcined at 700 °C. These peaks are assigned to oxygen 

in the sulphate and oxygen bound to Cu (as Cu2+), respectively.14 

XPS is significantly more sensitive than XRD and Raman to minute compositional 

changes. Such changes can be detected from XPS analysis, i.e. any copper oxides that 

may form can be detected in XPS but not in XRD and Raman spectra.15-16 Figure 4.2.2.d 

shows the Cu 2p3/2 spectra. The sample calcined at 600 °C exhibits a broad asymmetric 

curve from 930 to 937 eV. The deconvolution of this curve gave two prominent peaks at 

933.1 eV and 936 eV, corresponding to Cu2+ in CuO and CuSO4, respectively. Calcining 

at higher temperatures of 650 °C and 700 °C resulted in a slight shift in these peaks. At 

700 °C, the peaks were observed at 932.6 eV and 934.1 eV, corresponding to Cu1+ and 

Cu2+ oxidation states, respectively. Hence, XPS results reveal the presence of copper in 

two oxidation states. Moreover, two satellite peaks of Cu 2p3/2, which correspond to Cu2+, 

are observed at 941 eV and 944 eV; the peak intensities gradually decrease as the 

calcination temperature increases.17-20 The S 2p (Figure 4.2.2.e) XPS spectrum shows 

two sub-component peaks at 170.1 eV and 168.8 eV; these are attributed to S 2p1/2 and S 

2p3/2, respectively and these binding energies suggest the presence of sulphur in the S6+ 

state.21 
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Photocatalytic Analysis 

The degradation of 1, 4-dioxane was used to assess the photocatalytic performance of the 

Cu-doped TiO2 catalysts. All Cu concentrations were considered and measurements were 

performed after calcination to 600 and 650 °C, and the results are presented in Figure  

4.2.3. The highest degradation of 1, 4-dioxane was achieved for un-doped TiO2 prepared 

at 500 °C. With this sample, the majority of the 1, 4-dioxane was degraded within 240 

minutes. Increasing the temperature to 600 or 650 °C limited the extent of 1, 4-dioxane 

degradation.  

 

Figure 4.2.3 Degradation of 1, 4-dioxane by Cu-doped TiO2 photocatalysis at (a) 600 °C 

and (b) 650 °C compared with TiO2 prepared at 500 °C and irradiation without catalyst. 

The inclusion of Cu does not result in any improvement in the photocatalytic activity of 

TiO2. This is also irrespective of the polymorph of TiO2 present as a result of Cu-doping 

and calcination temperature. Thus, while Cu doping can be used to enhance the stability 

of anatase TiO2 to higher temperatures, and give a higher anatase content, the 

incorporation of Cu has the effect of reducing photocatalytic activity towards dioxane 

removal. 



158 

 

This behaviour agrees with previous studies, in which Cu-doping did not always yield an 

improvement of the photocatalytic efficiency of Cu-TiO2 even in the anatase phase.22-24 

This is usually attributed to the recombination of electron-hole pairs at defect centres, as 

well as to the prevention of photon absorption by TiO2 due to the presence of Cu.23   

 

4.2.2.2 Computational Results 

Atomic and Electronic Structure of Cu-Doped TiO2 

 

Figure 4.2.4 Local atomic structure in the vicinity of the Cu-dopant for (a) rutile and (b) 

anatase. Cu is represented by a blue sphere, Ti is grey and O is red. The yellow sphere 

marks the location of the oxygen hole polaron. 

The local atomic structure that results from substituting Cu on a Ti site in Cu-doped bulk 

rutile and anatase TiO2 (see Figure 4.2.4), is distorted about the dopant site. Replacing a 

Ti4+ cation with a Cu2+ cation results in a deficiency of two electrons and formation of 

two oxygen holes (TiTi
X + 2OO

X → CuTi
′′ + 2OO

 ). Two computational set-ups were 

implemented: standard DFT and DFT+U. For standard DFT, the local atomic structure is 

distorted symmetrically about the dopant, with the distortion arising from differences in 
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ionic radii between copper and titanium. For the DFT+U calculations, two energy minima 

are found. In the first, the geometry is distorted symmetrically, similar to the standard 

DFT solution. The second solution is an asymmetric distortion to the geometry.  

 

Figure 4.2.5 Spin density and PEDOS plots for (a) Cu-doped rutile TiO2 and (b) Cu-

doped anatase TiO2, computed with standard DFT. The Cu dopant is represented in blue 

and the spin isosurfaces are set to 0.02 electrons Å-3.  

In the first solution, the four-equatorial dopant-O distances are equal (1.96 Å (1.91 Å) for 

rutile (anatase)), as are the two apical dopant-O distances (1.97 Å (1.97 Å) for rutile 

(anatase)). In un-doped rutile (anatase), the equatorial/apical Ti-O distances are 1.96/1.98 

Å (1.93/2.01 Å). Upon doping, the equatorial and apical Cu-O distances are shorter than 

the equivalent Ti-O distances in un-doped TiO2. The symmetric structure is consistent 

with delocalisation of the oxygen holes and the results for rutile are similar to those 

previously reported.25 Figures 4.2.5.a and 4.2.5.b show that with standard DFT, the 
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oxygen holes that form upon Cu doping are delocalised over all oxygen ions in rutile and 

more localised in anatase, but still notably delocalised.  

 

Figure 4.2.6 Spin density and PEDOS plots for (a) Cu-doped rutile TiO2 and (b) Cu-

doped anatase TiO2, computed with DFT+U. Cu is represented in blue with yellow 

marking the position of the oxygen polarons. The spin isosurfaces are set to 0.02 electrons 

Å-3. 

The asymmetric solution, with a geometry distortion about the dopant, shows non-

uniform dopant-O distances. For rutile, there is one elongated Cu-O distance, consistent 

with a longer bond between Cu and an oxygen hole polaron. This has also been observed 

in In-doped rutile TiO2
26 and Li-doped MgO27 and ZnO,28 among other materials.29-32  

That the effect is less strong in Cu-doped TiO2 can be attributed to the presence of a 

second hole which is less localised, being distributed over oxygen ions neighbouring the 

dopant, as shown by the spin density plot in Figure 4.2.6.a. This diminishes the 
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Coulombic attraction and lengthens the cation-O bonds.28 We find that a solution starting 

with two fully localised holes relaxes to this partially localised hole distribution. 

In the case of anatase, the polaron is not bound directly to the dopant and sits at an 

equatorial site of a neighbouring Ti (yellow sphere in Figure 4.2.6.b). The polaron 

induces a significant extension of the Ti-O distances of 0.07-0.1 Å, when compared to 

un-doped TiO2. The second polaron is also partially localised over oxygen ions near the 

dopant.  

The asymmetric polaronic solution is more stable by 0.2 eV in rutile and anatase, within 

the present DFT+U computational set-up. The asymmetric solution is not stable with 

standard DFT, consistent with previous work showing that only symmetric solutions are 

stable with standard DFT.26 

The location of the polaron is further confirmed through the calculated Bader atomic 

charges and spin magnetisations. For a polaronic oxygen, the computed Bader charge is 

reduced from 7.4 electrons (lattice O2-) to 6.7 (6.9) electrons for Cu-doped rutile (anatase). 

The spin magnetisations for these O ions are 0.85 (0.71) µB in rutile (anatase). In rutile, 

the other five oxygen ions neighbouring the dopant have spin magnetisations in the range 

of 0.16-0.22 µB. Similarly, in anatase, five of the six oxygen ions neighbouring the dopant 

have spin magnetisations in the range of 0.12-0.17 µB, with a value of 0.33 µB on a sixth 

oxygen, namely, the lower apical oxygen bonded to the dopant in Figure 4.2.6.d. The 

Bader charges of the Cu dopant are 9.6 electrons for rutile and 9.7 electrons for anatase, 

consistent with the Cu2+ oxidation state.33 

Figures 4.2.5 and 4.2.6 display the projected electronic density of states (PEDOS), 

projected onto the Ti and Cu 3d states and the O 2p states. The PEDOS plots show 

qualitatively similar behaviour for both doped phases. The PEDOS for the standard DFT 
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calculations, with the delocalised symmetric solution, have states associated with the 

oxygen holes positioned just above the VB, crossing the Fermi level, as shown in Figure  

4.2.5. For anatase, in which the polaron is partially localised over oxygen ions near the 

dopant, even without the +U correction, an O 2p state appears in the gap, just above the 

VB. These results concur with previous ab initio studies of rutile25 and anatase.34   

Applying the +U correction to the O 2p, Ti 3d and Cu 3d states, proved necessary to 

obtain a properly localised polaron description27, 29-30 and the PEDOS plots consequently 

display the typical empty oxygen hole polaron state in the middle of the VB-CB energy 

gap, as shown in Figure 4.2.6. The onsite Coulomb interaction pushes the defect state 

into the middle of the gap, as opposed to an unoccupied continuum state at the top of the 

valence band. With standard DFT, the empty Cu 3d states lie just above the valence band 

edge, while with the +U correction on the Cu 3d states there is clear shift of these states 

into the energy gap. Examining the position of the empty Cu 3d states, one may conclude 

that the TiO2 energy gap could be reduced by up to 0.5 eV upon Cu doping.  

The charge compensation mechanism for doping of TiO2 with lower valence cation 

dopants is the formation of oxygen vacancies (CuTi
′′ + 2OO

 → CuTi
′′ +OO

X + VO
′′). 

Therefore, given the +2 oxidation state of Cu, one neutral oxygen species per Cu is 

removed from different sites in Cu-doped rutile and anatase. Apical and equatorial oxygen 

sites neighbouring the dopant were determined to be most stable for compensating oxygen 

vacancy formation, with vacancy formation energies of 0.46 (0.16) eV and 0.02 (-0.40) 

eV in rutile (anatase). This trend corroborates that found in a previous study of the effect 

of oxygen vacancies on the magnetic moment of Cu-doped rutile TiO2.25 These oxygen 

sites show either negative or small, positive formation energies, confirming that oxygen 

vacancy formation is the charge compensation mechanism in Cu-doped TiO2. 
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Figure 4.2.7 Excess spin density and PEDOS plots of charge compensated Cu-doped (a) 

rutile and (b) anatase TiO2. Cu is represented by a blue sphere and the black circle marks 

the location of the charge compensating oxygen vacancy. (c) Cu-doped anatase with a 

second, reducing oxygen vacancy, where O1 and O2 indicate the site of the compensating 

and reducing oxygen vacancies. The spin density isosurface is set to 0.02 electrons Å-3. 

Figure 4.2.7 shows the geometry of the charge compensated structures of Cu-doped TiO2. 

For rutile and anatase the copper dopant and two neighbouring titanium ions each 

coordinate to five oxygen ions. This under-coordination leads to a distortion, with the 

titanium ions moving off their lattice sites and outwards from the vacancy site along the 

direction of the missing bond. This distortion is accompanied by a shortened Ti-O bond 
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to the oxygen ion positioned opposite the vacancy. For rutile, this shortened bond is 1.84 

Å, compared to 2.02 Å for equivalent bonds away from the vacancy site. In anatase, the 

Ti-O distances are shortened by up to 0.15 Å. The oxygen vacancy has little effect on the 

remaining Cu-O bonds. 

Figure 4.2.7 also shows the excess spin density plots and the associated PEDOS for the 

compensating oxygen vacancy. The same trend is exhibited in the excess spin density 

plots of both rutile (Figure 4.2.7.a) and anatase (Figure 4.2.7.b), in that the excess spin 

is localised on the Cu dopant. The small spin on four neighbouring oxygen ions arises 

from covalency in the Cu-O bonds. The fifth oxygen, in both cases, is that positioned at 

an equatorial site opposite the vacancy. The computed Bader charges for Cu are 9.7 and 

9.8 electrons for rutile and anatase, consistent with a Cu2+ oxidation state, which is 

unaffected by the charge compensation process. 

For both TiO2 polymorphs, the PEDOS plots are significantly altered upon forming the 

compensating vacancy. The PEDOS displays a peak attributed to the empty 3d orbital of 

the Cu2+ oxidation state. For rutile, this peak lies in the gap just below the CB minimum, 

whereas for anatase, this peak coincides with the bottom of the CB. For both polymorphs, 

the charge compensating vacancy thus shifts the Cu 3d states closer to the CB edge of 

TiO2. Around the valence band region, Cu-doped anatase shows a filled Cu 3d state above 

the TiO2 valence band edge, while for rutile, this state lies below the valence band edge. 

The empty oxygen hole states disappear after charge compensation, as expected. 

Thus, a small reduction in the band gap at this Cu doping concentration is proposed for 

rutile and anatase. For rutile, the shift is 0.3 eV and for anatase the proposed band gap 

decrease is 0.2 eV. Since these results should be regarded with caution, given that this 

DFT+U set-up is not quantitatively describing the band gap of TiO2, we ran single point 
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hybrid DFT calculations of Cu-doped TiO2. These use the HSE06 functional, with 25% 

Fock exchange and a screening parameter of 0.2 Å-1. The PEDOS in Figure 4.2.8 for 

doped anatase shows similar trends as the DFT+U result, despite the differences in the 

DFT+U and hybrid DFT energy gaps. With no charge compensating oxygen vacancy, the 

position of Cu 3d and O 2p polaron states are similar to those from DFT+U. With the 

charge compensating vacancy, the occupied Cu 3d states are similar to those found with 

DFT+U, but the empty Cu 3d states lie above the TiO2 conduction band edge. This gives 

a band gap reduction of 0.2 eV, similar to DFT+U. Thus, both DFT approaches appear to 

suggest that doping with Cu induces only a small, if any, red shift in light absorption. 

 

Figure 4.2.8 Hybrid DFT-computed PEDOS for Cu-doped TiO2. (a) Cu-doped anatase 

with no compensating oxygen vacancy, (b) Cu-doped anatase with the compensating 

oxygen vacancy. 

Finally, the formation of a neutral oxygen vacancy in charge compensated Cu-doped 

anatase has been studied. This is motivated by the experiments described previously, in 

which TiO2 is calcined to over 500 °C, at which temperatures the formation of oxygen 

vacancy defects is likely. We compute a formation energy of 3.3 eV for the most stable 

oxygen vacancy site in charge compensated 3% Cu-doped anatase, with the atomic 

structure, spin density and PEDOS shown in Figure 4.2.7.c. Given the elevated 

temperatures in the experiments, such reducing oxygen vacancies will be present and we 
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can examine the effect of these vacancies on the electronic properties of Cu-doped 

anatase. We note that the computed oxygen vacancy formation energy of Cu-doped 

anatase is lower than that of un-doped anatase, which is 4.92 eV in our DFT+U set-up, 

suggesting that Cu-doping promotes the formation of oxygen vacancies, which would 

then lower the temperature at which the phase transition takes place. However, we find 

that as the concentration of oxygen vacancies increases, the computed formation energy 

in Cu-doped anatase increases from 3.3 eV to 3.6 eV for a third vacancy. We can conclude 

that the mechanism that underpins the experimental observation that the anatase phase 

persists to higher temperatures with Cu doping cannot be fully accounted for by the 

thermodynamics of simple oxygen vacancy formation. It is possible the sulphate in the 

copper precursor also contributes to inhibiting the phase transformation.35 

After formation of the second oxygen vacancy, the computed Bader charge on Cu is 10.4 

electrons, with a spin of 0.1 µB, which is consistent with reduction to Cu1+. One Ti cation 

has a Bader charge of 10.5 electrons and a spin of 0.95 µB, which is consistent with a Ti3+ 

cation (all other Ti cations are Ti4+ with computed Bader charges of 9.6 electrons). The 

formation of a neutral oxygen vacancy thus reduces one Ti cation to Ti3+ and the Cu 

dopant to Cu1+. Comparing with the XPS data, this is consistent with the assignment of 

reduced Cu1+ at elevated temperatures. The decrease in peak intensities of the Cu2+ 

satellites with increasing temperature is also consistent with Cu2+ reduction by oxygen 

vacancy formation. Finally, the PEDOS in Figure 4.2.7.c shows the introduction of 

occupied Cu1+ states in the TiO2 valence-conduction band energy gap. These states can 

enhance charge recombination after excitation, which could result in reduced 

photocatalytic activity, as was observed in the photocatalytic measurements. 
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4.3 Mo-doped TiO2 

What follows is adapted from an article entitled: “Mo doped TiO2: impact on oxygen 

vacancies, anatase phase stability and photocatalytic activity”, published in the Journal 

of Physics: Materials.2 

 

DOI:  https://doi.org/10.1088/2515-7639/ab749c 

 https://cora.ucc.ie/handle/10468/9708 

 

4.3.1 Introduction 

Doping TiO2 with an element of higher oxidation state compared to Ti4+ can improve 

charge carrier separation on the photocatalyst surface.36 Molybdenum (Mo; with a highest 

oxidation state of Mo6+) as a dopant is inexpensive, non-toxic and has high solubility in 

the TiO2 anatase lattice.36 The ionic radius of Mo6+ is almost identical to that of Ti4+, 

https://doi.org/10.1088/2515-7639/ab749c
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being 0.062 nm and 0.068 nm, respectively, facilitating the substitution of Mo6+ ions at 

Ti4+ sites in the anatase crystal lattice.37-38 This kind of doping would minimise lattice 

distortions.38-39 Mo doping could also generate energy states within the band gap of TiO2 

to enhance light absorption and minimise electron-hole recombination.38-40  

Various studies36, 41-43 (discussed in more detail in Chapter 3) show that Mo-doping has 

the potential to improve the photocatalytic performance of TiO2. Mo doping could 

influence the surface characteristics, oxygen vacancies, crystallinity, and formation of 

Ti3+ centres. However, there are still no comprehensive studies on the antimicrobial 

activity of high-temperature stable anatase Mo–TiO2. Thus, the focus of this study was to 

investigate, systematically, the influence of Mo doping on the phase stability of anatase, 

formation of oxygen vacancies, and the photocatalytic activity of anatase. The results 

show that Mo doping can preserve the anatase content at high calcination temperatures 

and thus enhance the activity of TiO2.  

A comprehensive analysis on the relationship between the dopant concentration and the 

surface characteristics of TiO2 is discussed. Electron–hole recombination was studied 

through photoluminescence (PL) spectra. DFT calculations were performed to examine 

the Mo oxidation state and the formation energy of oxygen vacancies and their role in the 

oxidation states of the cations and the resulting electronic structure, which is vital for the 

photocatalytic activity. The photocatalytic activity of Mo-doped anatase was studied 

using the disinfection of total bacteria in wastewater under UVA-LED light irradiation.  
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4.3.2 Results 

4.3.2.1 Selected Experimental Results 

X-ray Diffraction (XRD) Characterisation 

Table 4.3.1 Phase percentages of Mo-TiO2 samples calcined at various temperatures. (A 
= anatase; R = rutile). 

 

Samples 

500 °C 600 °C 700 °C 750 °C 800 °C 

A R A R A R A R A R 

0.0 % Mo-TiO2 100 - 7 93 - 100 - 100 - 100 

0.5 % Mo-TiO2 100 - 30 71 7 93 4 96 - 100 

1.0 % Mo-TiO2 100 - 84 16 52 48 15 85 - 100 

1.5 % Mo-TiO2 100 - 100 - 87 13 14 86 - 100 

2.0 % Mo-TiO2 100 - 100 - 87 13 67 33 - 100 

 

The phase percentages, determined from XRD analysis, of Mo-TiO2 samples calcined at 

600, 700, 750 and 800 °C are shown in Table 4.3.1. The anatase phase of TiO2 is 

significantly preserved up to 750 °C by Mo doping.41 A small red shift was observed for 

the anatase peak when the Mo content is increased from 0 to 2 mol. %, suggesting dopant-

induced lattice distortion.44 Doping sites of TiO2 are mainly decided through the ionic 

radii, coordination numbers and valence electrons of the dopant.45 The ionic radius of 

Mo6+ (0.062 nm) is close to that of Ti4+ (0.068 nm), suggesting substitutional doping of 

Mo6+ at Ti4+ sites in the anatase lattice.  

 

X-ray Photoelectron Spectroscopy (XPS) 

Binding interactions and oxidation states of elements in Mo-TiO2 were analysed by XPS. 

Scans of Ti 2p, O 1s, and Mo 3d for un-doped TiO2, calcined at 500 °C, and 2 mol. % 

Mo-TiO2, calcined at 750 °C, are displayed in Figure 4.3.1. The representative spin-orbit 
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coupling peaks of Ti 2p (Ti 2p3/2, Ti 2p1/2) are observed at 458.86 eV and 464.53 eV, as 

shown in Figure 4.3.1.a, which are ascribed to Ti4+.46-47 The O 1s spectrum of TiO2 is 

composed of two peaks, shown in Figure 4.3.1.b. The peak located at 530.03 eV is 

attributed to lattice O2- in TiO2
47 and the surface O-H group of TiO2 is detected around 

531.94 eV.46-47  

 

Figure 4.3.1 XPS scans for un-doped TiO2, calcined at 500 °C  ((a) Ti 2p and (b) O 1s), 

and for 2 mol. % Mo-TiO2, calcined at 750 °C ((c) Ti 2p (d) O 1s (e) Mo 3d). 
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The peak positions of Ti 2p and O 1s are shifted for 2 mol. % Mo-TiO2, compared to pure 

TiO2, as shown in Figures 4.3.1.c and 4.3.1.d. This is attributed to the high 

electronegativity of Mo compared to Ti, and suggests a lattice shift due to substitution of 

Mo6+ for Ti4+. 37  

The peaks observed at 233.28 eV and 236.40 eV, in Figure 4.3.1.e, are attributed to Mo 

3d5/2 and Mo 3d3/2 of Mo6+. The sub components, detected by peak fitting, at 231.84 eV 

and 235.42 eV, are ascribed to Mo 3d5/2 and Mo 3d3/2 of Mo5+. XPS results showed that 

the percentage of Mo6+ is higher than that of Mo5+. The existence of Mo5+ denotes that 

the oxygen atoms in the anatase lattice are inadequate to reinforce Mo6+ ions38 and based 

on DFT calculations this is consistent with reduction to Mo5+ after oxygen vacancy 

formation (see below).  

 

Photoluminescence (PL) 

PL spectra of Mo-TiO2 samples calcined at 700 °C are shown in Figure 4.3.2. The PL 

emission peaks of pure TiO2 are quenched by introduction of the Mo dopant. The intensity 

of the PL peaks are in the order: anatase (500 °C) > rutile (700 °C) > 0.5 Mo-TiO2 > 2 

Mo-TiO2 > 1.5 Mo-TiO2 > 1 Mo-TiO2. As will be shown in the computed PEDOS plots, 

Mo doping introduces states in the TiO2 band gap, just below the TiO2 CBM and this 

could suppress radiative electron-hole recombination processes.48 Photo-generated 

electrons may become trapped and localised at the Mo dopant (Mo6+→Mo5+), reducing 

the probability of photo-generated electron-hole recombination.49 In addition, the PL 

intensity could be influenced through the mobility of carriers.50 
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Figure 4.3.2 . PL spectra of anatase, calcined at 500 °C, rutile and Mo-TiO2, calcined at 

700 °C. 

 

Photocatalytic Wastewater Disinfection 

The photocatalytic activity of un-doped anatase (calcined at 500 °C) and 2 mol. % Mo-

TiO2 (calcined at 750 °C) for the removal of total bacteria in WW under 385 nm and 395 

nm UVA LED light irradiation is displayed in Figure 4.3.3. N/N0 percentages were 

plotted against the irradiation time. N and N0 are the number of bacteria (CFU/mL) at 

irradiation times ‘t’ and 0, respectively. The efficiency is denoted by a rate coefficient,  

‘b’, from the exponential decay curves.  

For 385 nm LED light irradiation, total bacteria removal for 2 mol. % Mo-TiO2 is ~1.5 

times higher than that of TiO2. However, total bacteria removal for 2 mol. % Mo-TiO2 is 

~2.8 times higher than pure TiO2 under 395 nm LED light irradiation. Total disinfection 

was achieved in almost 30 min of 395 nm LED light irradiation. The high activity of Mo-

TiO2 under 395 nm LED light is attributed to the maximum light absorption with respect 
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to its band gap and electronic properties, suggesting the generation of more charge 

carriers responsible for microbial disinfection.51  

 

Figure 4.3.3 Photocatalytic disinfection efficiency of TiO2 and Mo-TiO2 under UVA 

LED light irradiation ((a) 385 nm and (b) 395 nm). 

The photocatalytic activity could be influenced by the competitive reaction between the 

microbes and other organic matter in the WW.52 Mo doping could enhance the surface 

active sites and interfacial charge transfer.51, 53 The Mo dopant could influence the 

crystallite size and surface active sites of TiO2 to promote the adsorption of microbes on 

the photocatalyst surface,54 with Mo-derived gap states extending the lifetime of photo-

induced charge carriers.  

 

4.3.2.2 Computational Results 

Local Atomic Structure and Oxygen Vacancy Formation 

Formation of lattice oxygen vacancies and the emergence of energy levels in Mo-TiO2 

were studied via DFT calculations. The relaxed structure of Mo-doped anatase TiO2 is 

shown in Figure 4.3.4.a. The computed Bader charge for Mo is 9.13 electrons, 
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corresponding to Mo6+, based on comparisons with the Bader charge computed for Mo in 

bulk MoO3. Mo-O distances are 1.94 Å and 2.01 Å for oxygen ions in equatorial and 

apical positions, respectively. These values are almost identical to those computed for Ti-

O distances in the un-doped supercell (1.94 Å and 2.00 Å), owing to the similar ionic 

radii of Mo6+ and Ti4+. These bond lengths compare with experimentally determined Ti-

O distances of 1.94 Å and 1.96 Å,55 for apical and equatorial oxygen sites. 

 

Figure 4.3.4 Relaxed geometry of Mo-doped anatase TiO2 for (a) stoichiometric Mo-

TiO2 and (b) after formation of a single, reducing oxygen vacancy. The vacancy site sits 

at an equatorial position relative to the Mo-dopant and the formation energy is included 

in the inset of panel (b). The yellow iso-surface encloses spin densities of up to 0.02 

eV/Å3. The site of the removed O ion is indicated by the black circle and dashed black 

lines show the ions to which the removed oxygen was bound. In this and subsequent 

figures, Ti is represented by grey spheres, O by red and Mo by blue  

We consider reduction of the system via oxygen vacancy formation, as such defects are 

implicated in the ART.1, 3, 56-57 The most stable site for the formation of an oxygen 

vacancy is an equatorial site of the Mo-dopant and the relaxed geometry and excess spin 

density are shown in Figure 4.3.4.b. The formation energy is 5.05 eV and this is more 

stable than the next most stable vacancy by 0.1 eV. By comparison, the vacancy formation 
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energy in the un-doped anatase supercell is 5.26 eV and so Mo-doping, at this 

concentration, will not promote vacancy formation to a significant degree.  

After formation of a neutral oxygen vacancy, two electrons are released and these localise 

in the vicinity of the vacancy site, as shown in the excess spin density plot of Figure  

4.3.4.b. The computed Bader charge for Mo increases from 9.13 electrons, in the 

stoichiometric system, to 9.91 electrons in the reduced system, indicating reduction to 

Mo5+. The spin magnetisation in the d-orbital of Mo is 1.1 μB. For one of the Ti ions to 

which the removed oxygen was bound, the Bader charge increases from 9.61 to 9.91 

electrons. This Ti ion has a computed spin magnetisation of 0.2 μB. These results suggest 

that the excess charge occupies the vacancy site rather than localising at only the Mo and 

Ti ions (Figure 4.3.4.b). Typically, Ti3+ ions exhibit computed Bader charges of 10.0-

10.5 electrons and spin magnetisations of 0.8-1.0 μB.1, 58 The values computed for the 

partially reduced Ti ion in the current work are consistent with our work on In-doped 

TiO2, which will be discussed in the next section.3 This study showed excess charge 

distributed over the vacancy site in the reduced system, rather than localised at cation 

sites; the computed Bader charge and spin magnetisation for Ti sites neighbouring the 

vacancy were 9.7/9.8 electrons and 0.1/0.2 μB, respectively. The excess spin density plot 

in Figure 4.3.4.b shows that the charges are distributed over Mo and Ti and the electron 

density extends towards the vacancy site. 

 

Electronic Properties 

The projected electronic density of states (PEDOS) were computed for the stoichiometric 

and reduced system, with one oxygen vacancy, and these are shown in Figure 4.3.5. For 

the stoichiometric system (Figure 4.3.5.a), Mo s-states emerge at the CBM of the TiO2 

host and the Mo d-states overlap with the titania CB. GGA studies of Mo-doped TiO2 
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also report the emergence of Mo-derived defect states below the CBM.39, 59 These studies 

identify Mo d-states below the CBM, but there is no discussion of the Mo s-states. In the 

current work, we find that Mo d-states lie above the CBM and this may be due to the 

implementation of a Hubbard U on Mo d-states, which shifts these states with respect to 

the TiO2 CBM. After vacancy formation and reduction of Ti and Mo, occupied Ti and 

Mo d-states emerge in the band gap at 1.65 eV above the valence band maximum (VBM), 

as shown in Figures 4.3.5.b and 4.3.5.c. 

 

Figure 4.3.5 Computed PEDOS for (a) stoichiometric Mo-doped anatase TiO2 and (b) 

reduced Mo-doped anatase TiO2, with one oxygen vacancy. Panel (c) shows the occupied 

Ti3+ and Mo5+ states which emerge in the band gap after vacancy formation. 
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4.4 In-doped TiO2 

What follows is adapted from an article entitled: “In-doped TiO2 photocatalysts with 

high temperature anatase stability”, published in the Journal of Physical Chemistry C.3 

 

DOI: https://doi.org/10.1021/acs.jpcc.9b06811 

 

4.4.1 Introduction 

Indium (In) is a transition metal with 5s2 5p1 electronic configuration and it generally 

takes a +3 oxidation state. It has the tendency to create oxygen vacancies in TiO2.60-61 

Indium is considered an effective dopant for TiO2, owing to its electronic properties and 

low toxicity.61-62 Doping of such metal ions into TiO2 would be beneficial to enrich the 

photocatalytic activity63 by inhibiting photo-generated charge carrier recombination and 

promoting the adsorption of microbes/pollutants at active sites of the photocatalyst.61  

There are no comprehensive or systematic studies available in the literature on the ART 

of In-TiO2. In this paper, we studied the ART of In-doped TiO2 (In-TiO2) nanoparticles, 

https://doi.org/10.1021/acs.jpcc.9b06811
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calcined for 2 h at temperatures in the range of 500-900 °C; this range includes the 

temperature at which un-doped anatase transforms to rutile. In-TiO2 was synthesised 

using a sol-gel technique with different mol. percentages of In (0, 2, 4, 8 and 16%). The 

energetics involved in the formation of charge compensating and subsequent oxygen 

vacancies, the DOS of the ground state and reduced system, and charge localisation after 

reducing oxygen vacancy formation were investigated through DFT. The anatase phase 

of TiO2 is well maintained by the In dopant up to 800 °C. Charge carrier recombination 

is highly minimised via the emergence of In 5s states in the TiO2 band gap. 

The formation energies of charge compensating and reducing oxygen vacancies in In-

TiO2 were computed through the DFT model. There is no impact on the band gap due to 

In-doping in the charge compensated system, however, after localisation of charge in the 

vicinity of the In-dopant after the formation of a reducing oxygen vacancy, occupied 

states emerge in the band gap of TiO2. A model of a nanocluster of composition In4O6 at 

the anatase (101) surface (denoted In4O6-a101) was considered to examine the impact of 

In2O3 formation at high calcination temperatures. 

 

4.4.2 Results 

4.4.2.1 Selected Experimental Results 

X-ray Diffraction (XRD) Characterisation 

The phase percentages, determined from XRD analysis, of In-TiO2 samples calcined at 

600, 700, 750, 800 and 850 °C are shown in Table 4.4.1. At 500 °C, the diffraction peaks 

of all samples corresponded to the anatase phase TiO2. At 600 °C, un-doped TiO2 is 

composed of 90% rutile and 10% anatase. The anatase phase is well retained for In-TiO2 



179 

 

samples up to 700 °C. A mixture of anatase and rutile phases is formed for In-TiO2 

samples at 800 °C and all samples are 100% rutile for calcination at 850 °C and above.  

Table 4.4.1 Phase percentages of In-TiO2 samples calcined at various temperatures. (A = 

anatase; R = rutile). 

 

Samples 

600 °C 700 °C 750 °C 800 °C 850 °C 

A R A R A R A R A R 

0 % In-TiO2 9.3 90.7 - 100 - 100 - 100 - 100 

2 % In-TiO2 100 - 100 - 81.9 18.0 4.9 95.1 - 100 

4 % In-TiO2 100 - 100 - 92.6 7.4 34.3 65.7 - 100 

8 % In-TiO2 100 - 100 - 100 - 52.4 47.6 - 100 

16 % In-TiO2 100 - 100 - 100 - 63.7 36.3 - 100 

 

XRD patterns of pristine TiO2 and In-TiO2 calcined at 800 and 900 °C are shown in 

Figure 4.4.1 and display additional peaks due to the formation of indium oxide (In2O3). 

The peak intensities for In2O3 increase with the In dopant concentration.  

 

Figure 4.4.1 XRD patterns of In-TiO2 calcined at (a) 800 °C and (b) 900 °C. (A = 

anatase; R = rutile; In = In2O3). 

 

X-ray Photoelectron Spectroscopy (XPS) 

The oxidation states of the elements in In-TiO2 were examined by XPS and the results  

are displayed in Figure 4.4.2 for 16% In-TiO2. The electron binding energies of Ti 2p3/2 
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and Ti 2p1/2 are observed at 458.78 eV and 464.45 eV, respectively, corresponding to Ti4+ 

(Figure 4.4.2.a).1, 64 There are no peaks observed for Ti3+ and Ti2+ states. The 

electronegativity of In3+ (1.78) is higher than that of Ti4+ (1.54), which may cause electron 

transfer from Ti4+ and O2- to In3+,65 thereby increasing the binding energies of Ti 2p and 

O 1s.  

 

Figure 4.4.2 XPS spectra of 16% In-TiO2, calcined at 800 °C: (a) Ti 2p, (b) O 1s, and (c) 

In 3d.  

The O 1s spectrum of In-TiO2 is comprised of three peaks, shown in Figure 4.4.2.b; the 

main peak at 530.01 eV is ascribed to lattice oxygen (O2-) in TiO2. The additional peaks 

at 531.62 eV and 532.32 eV are attributed to In-O and surface hydroxyl groups, 

respectively.65-66 The presence of more surface hydroxyl groups is beneficial to the 
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photocatalytic activity,64 through the formation of hydroxyl radicals. Figure 4.4.2.c 

shows peaks for In 3d5/2 and In 3d3/2 at 444.74 eV and 452.29 eV, respectively, indicating 

In3+ in In2O3.67  

 

Photoluminescence (PL) 

 

Figure 4.4.3 PL spectra of TiO2 anatase, TiO2 rutile and In-TiO2 samples. 

PL spectra of pure TiO2 anatase, calcined at 500 °C, pure TiO2 rutile and In-TiO2, calcined 

at 800 °C, are shown in Figure 4.4.3. Besides CB to VB radiative recombination, PL 

emission spectra also show recombination of electrons and holes wherein the electron 

reaches a defect state via a non-radiative processes before radiative recombination with a 

VB hole;68 the latter signals are mainly attributed to the existence of surface states and 

defects.67 The peaks at 461 nm are associated with TiO2 anatase.64, 69 The peak at 423 nm 

is related to the formation of oxygen vacancies in TiO2 due to In doping. The peaks at 

485 nm and 527 nm are ascribed to the transition of electrons (two trapped and one 

trapped) from the oxygen vacancies to the VB of TiO2.68  
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For electron-hole recombination, photo-generated electrons can transfer first from the CB 

to the oxygen vacancies (non-radiative process) and then to the TiO2 VB (fluorescence 

emission). Figure 4.4.3 shows that the intensity of PL peaks decreases with increases in 

In dopant concentration. This indicates that the transition of electrons from the CB of 

TiO2 to the oxygen vacancies is suppressed by the creation of new In-derived energy 

levels. As we will see in the next section, the formation of In-derived states in the band 

gap is confirmed by DFT+U calculations, which show In 5s states in the TiO2 energy gap. 

PL results show that the photo-generated electron-hole recombination in TiO2 is 

suppressed by In doping, which may lead to a higher photocatalytic activity.69-71  

 

Photocatalytic H2 Production 

 

Figure 4.4.4 H2 production efficiency of In-TiO2 (0.5 g/L) under simulated solar light 

irradiation. 

The samples were tested for photocatalytic H2 production efficiency via water splitting 

under simulated solar light irradiation. The H2 production efficiencies of 2% In-TiO2 
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(calcined at 700, 750 and 850 °C), 4% In-TiO2 (750 °C) and 16 % In-TiO2 (800 °C) are 

shown in Figure 4.4.4. The H2 production rates (μL/h) are presented, in order of activity, 

in Table 4.4.2. The photocatalytic activity of 2% In-TiO2 (700 °C) is comparable with 

that of pure anatase (0% In-TiO2 (500 °C)). The efficiency of In-TiO2 is strongly 

influenced by the anatase percentage, calcination temperature and In concentration. The 

water splitting efficiency decreases with increasing In content, which is attributed to poor 

dispersion, agglomeration, and a decrease of active surface area at high In content.72-78 

Table 4.4.2 H2 production rates for In-doped samples with different In concentrations 

and calcination temperatures. The production rates (𝜇L/h) are listed in order (highest-
lowest). 

Sample H2 production rate (𝝁L/h) 

0% In-TiO2 (500 °C; anatase) 145.6 

2% In-TiO2 (700 °C) 105.2 

0% In-TiO2 (800 °C; rutile) 65.4 

4% In-TiO2 (750 °C) 31.5 

2% In-TiO2 (750 °C) 28.2 

16% In-TiO2 (800 °C) 25.6 

2% In-TiO2 (850 °C) 19.2 

 

The colour of nanoparticles changed from white to black during 6 h of light irradiation. 

This is attributed to the photo-reduction of In(III) to In(I) or In(0), and indicates poisoning 

of catalyst surface under prolonged light irradiation. Excesses of In dopant may act as 

electron-hole recombination centres.72 This could be rectified with the help of a suitable 

co-catalyst.79 There are no detailed studies for the water splitting efficiency of In-TiO2 

samples. In a recent study, a similar trend was observed for In-doped barium titanate (In-

BaTiO3).72 The efficiency of In-BaTiO3 was improved with the help of a cadmium 

selenide co-catalyst. However, the efficiency decreased for In concentrations of more 

than 2%.  
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4.4.2.2 Computational Results 

4.4.2.2.1 In-doped Anatase TiO2 

Local Atomic Structure 

 

Figure 4.4.5 Panel (a) shows the positions of In-dopant in the anatase lattice. Panel (b) 

shows the excess spin density plot for the computational set up with no +U correction on 

the O 2p states. Panel (c) shows the excess spin density plot for the computational set up 

with an additional +U correction on the O 2p states and for which the geometry was 

distorted from symmetry prior to relaxation. Ti is represented by grey spheres, O by red 

spheres, In by green spheres and the oxygen hole polarons (O-) are highlighted in yellow. 

The blue iso-surface encloses spin densities up to 0.02 electrons/Å3. 

Figure 4.4.5.a shows the (2 × 2 × 1) anatase supercell and the local atomic structure in 

the vicinity of In dopants. The most favourable dopant configuration is that in which both 

In ions are incorporated at Ti sites in the same Ti (001) sub-lattice plane, as shown in 

Figure 4.4.5. However, a number of other configurations were very close in energy 

(within 0.2-6.0 meV per TiO2 unit). The geometry about the dopant sites is symmetric. 

In-O distances are 2.22 Å for apical (Oap) and 2.03 Å for equatorial (Oeq) oxygen sites. 

These values compare with values of 2.00 Å and 1.94 Å for equivalent Ti-O distances in 

un-doped anatase. Replacing two Ti4+ with two In3+ ions means a deficit of two valence 

electrons and, in this computational set up, the excess charge is distributed over all O ions 

in the supercell as shown in Figure 4.4.5.b.  
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Applying +U correction to the O 2p states, with U = 5.5 eV, yields a solution in which 

the excess charge is distributed only over the O ions found at apical positions relative to 

the In-dopants. Bader charges for these sites decrease from 7.2 to 7.1 electrons and 

computed spin magnetisations are 0.3 μB. After this localisation of charge, each In-Oap  

distance increases to 2.24 Å. If we now distort the initial structure about the dopant sites 

to break the symmetry, the geometry relaxes to an asymmetric solution, which is more 

favourable than the symmetric solution by 0.34 eV (Figure 4.4.5.c). In this configuration, 

the excess charge localises predominantly on a single apical oxygen site neighbouring 

each In-dopant (2TiTi
X + 2OO

X → 2InTi
′ + 2OO

 ). The computed Bader charges decrease 

from 7.2 to 6.8 electrons and the computed spin magnetisations are 0.7 μB for these 

oxygen sites, indicating the formation of oxygen polarons (O-).73-74 It is this localisation 

of charge that produces the asymmetric geometry distortion. In-O- distances are 2.31 Å, 

In-Oap distances are 2.19 Å and In-Oeq distances are 2.02-2.05 Å. 

 

Oxygen Vacancy Formation 

Oxygen vacancy formation is the mechanism by which the charge mismatch that results 

from substitution of Ti ions with lower valent In-dopants is compensated (2InTi
′ + 2OO

 →

2InTi
′ +OO

X + VO
).1 The computed formation energies for a single compensating oxygen 

vacancy were in the range -0.24 eV to +0.84 eV, depending on the O site considered. The 

negative oxygen vacancy formation energy confirms that the charge compensated 

structure is favourable. Formation of the most stable vacancy was more favourable than 

the next most stable by 0.12 eV and the resulting geometry is shown in the top panels of 

Figure 4.4.6. The most stable oxygen vacancy in the fully relaxed structure has a 

formation energy of -0.11 eV, which shows that oxygen vacancy formation takes place to 

charge balance the In dopant. 
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Figure 4.4.6 The top panels display distortions to the lattice of In-doped anatase TiO2 in 

response to the charge compensating oxygen vacancy. Bottom panels show the atomic 

structure after formation of a second, reducing oxygen vacancy. The xy-plane geometry, 

shown in (a) and (d), and the xz-plane geometry, shown in (b) and (e), highlight the 

movement of the In-dopants towards the vacancy sites and the movement of Ti ions away 

from the vacancies, represented by black circles. Panel (c) and (f) indicate the cations to 

which the removed oxygen ions were bound. 

The removed O ion was in an equatorial position relative to the In-dopant and, after 

formation of a vacancy at this site, the neighbouring Ti and In sites are five-fold 

coordinated. The Ti ions move off their lattice sites by 0.2 Å, away from the vacancy, and 

the Ti-O distances opposite the vacancy are shortened by 0.10-0.14 Å, relative to the bond 

lengths prior to vacancy formation. The In-dopant moves 0.2 Å closer to the vacancy and, 

since there are no oxygen polarons after charge compensation, the In-Oap distances are 

shortened to 2.09 and 2.15 Å. The remaining In-Oeq distances are 2.00-2.08 Å. For the 



187 

 

second In-dopant, away from the vacancy site, the In-Oap distances are 2.14 and 2.19 Å 

and the In-Oeq distances are 2.02-2.12 Å. 

Formation of a second, reducing oxygen vacancy, which is implicated in the ART, was 

considered, and the computed formation energies lie in the range of 3.80-5.84 eV. 

Energies at the lower end of this range mean that the In-doped system is reducible with 

moderate energy costs, and given the elevated preparation temperatures, such reducing 

oxygen vacancies will be expected to form. In the fully relaxed super cell, the most stable 

reducing oxygen vacancy forms with an energy cost of 4.41 eV. While this cost is larger 

than that in the fixed supercell, it is still moderate when compared with an energy cost of 

5.2 eV to produce a single, reducing oxygen vacancy in the (2 × 2 × 1) un-doped anatase 

supercell, computed with the same input parameters. The most stable site for the 

formation of a reducing vacancy is an equatorial site of the second In-dopant, as shown 

in the bottom panels of Figure 4.4.6. In this instance, the In-dopants move 0.4 Å off the 

lattice site and towards the vacancy sites, while the Ti ions move 0.1-0.3 Å outwards from 

the vacancy sites. The geometry in the vicinity of both In dopants is similar; the In-Oap  

distances are 2.18 Å, two In-Oeq distances are 2.10 Å and the third, opposite the vacancy, 

is longer, at 2.22 Å.  

With two oxygen vacancies in In-doped anatase, there is an excess of two electrons and 

the computed Bader charges reveal that some of this charge is distributed over the cations 

to which the removed oxygen ions were bound. For the In-dopants the Bader charges 

increase from 11.0 to 11.5 electrons and these sites have spin magnetisations of 0.2 μB. 

For the Ti sites, the Bader charges increase from 9.6 to 9.7/9.8 electrons, where the 

vacancy sits in an equatorial/apical position relative to the Ti ion. Similarly, these Ti sites 

have computed spin magnetisations of 0.1/0.2 μB. These values, in particular those for the 

spin magnetisation, indicate that the excess electrons are not fully localised. The excess 
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spin density plots in Figure 4.4.7 show that the charge is distributed over site of the 

removed oxygen atom, similar to an F-centre, and with some localisation onto 

neighbouring Ti and In sites. 

 

Figure 4.4.7 Excess spin density plots showing the localisation of electrons after 

formation of a second, reducing oxygen vacancy in In-doped anatase TiO2. Panels (a), 

(b) and (c) display the geometry in the xy-plane, xz-plane and from an angled view. The 

yellow isosurface encloses spin densities up to 0.02 electrons/Å3. 

The energy cost to produce a third oxygen vacancy is in the range of 5.1-5.9 eV, 

depending on the vacancy site. This can be compared with an energy cost of 5.2 eV to 

produce a single, reducing oxygen vacancy in the (2 × 2 × 1) un-doped anatase 

supercell, computed with the same input parameters. Thus, In doping can lead to less 

favourable vacancy formation, although the precise details of the ART mechanism may 

be more complicated than simple oxygen vacancy formation. 

 

Electronic Properties 

The projected electronic density of states (PEDOS) plots are shown in Figure 4.4.8 for 

(a) un-doped anatase, (c) the ground state In-doped system, with a single, compensating 

oxygen vacancy, and (d) the reduced In-doped system, with two oxygen vacancies. For 

reference, the computed PEDOS for In-doped anatase prior to charge compensation is 
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shown in Figure 4.4.4.b. However, as this does not represent a physical system, due to 

oxygen vacancies forming spontaneously at 0 K, it is included only for completeness.  

 

Figure 4.4.8 The projected electronic density of states (PEDOS) computed for (a) un-

doped anatase and (b) In-doped anatase with no oxygen vacancies are included for 

reference. The PEDOS of the ground state structure, with a single, charge compensating 

oxygen vacancy and the reduced system with two oxygen vacancies are shown in panels 

(c) and (d). 

For the ground state In-doped system, the PEDOS plot in Figure 4.4.8.c yields a band 

gap of 2.44 eV, which compares with a value of 2.70 eV for the un-doped system. For the 

PEDOS plot in Figure 4.4.8.d, the titania-derived band gap is 2.49 eV and states emerge 

in this gap due to cation reduction in response to formation of a second, reducing oxygen 

vacancy and are associated with the spin density as shown in Figure 4.4.7. The first peak 

emerges at 1.59 eV above the valence band maximum (VBM) of the TiO2 host and is 
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associated with the singly-occupied, 5s orbitals of the In-dopants. The next states lie 

higher in energy, at 2.17 eV above the TiO2 VBM, and are derived from the empty 5s 

orbitals of the In-dopants.  

 

4.4.2.2.2 In4O6-modified Anatase (101) 

Atomic Structure and Oxygen Vacancy Formation 

 

Figure 4.4.9 The relaxed atomic structure of (a) stoichiometric In4O6-a101 and (b) 

reduced In4O5-a101. The yellow iso-surface encloses spin densities up to 0.02 

electrons/Å3. 

To examine the influence of In2O3 on the properties of In-doped anatase, a model of an 

In4O6 nanocluster modifying the anatase (101) surface (In4O6-a101) was implemented. 

The computed adsorption energy is -3.42 eV, showing that the cluster-surface interaction 

is favourable. However, at high calcination temperatures, it is possible that the 

nanoclusters will desorb or migrate and aggregate at the surface to form larger 

nanoclusters. The latter eventuality would lead to enhanced In2O3 signals in the XRD 

spectrum.   
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The relaxed structure of stoichiometric In4O6-a101 is shown in Figure 4.4.9.a. In4O6 

binds to the surface via the formation of three In-O and three Ti-O bonds. Three In ions 

are four-fold coordinated and the fourth In ion is three-fold coordinated; In-O bond 

lengths are in the range 1.96-2.19 Å. Three cluster O ions are three-fold coordinated and 

the remaining three O ions are doubly coordinated. The interfacial Ti-O distances are 

1.86-2.08 Å. The computed Bader charges for In ions in the stoichiometric cluster are 

11.2-11.3 electrons, to which we ascribe an oxidation state of In3+. 

The formation energy for the most stable oxygen vacancy in the supported In4O6 

nanocluster is computed as 2.19 eV. The relaxed structure of In4O5-a101 is shown in 

Figure 4.4.9.b. In this configuration, there are seven interfacial bonds (four In-O and 

three Ti-O bonds); In-O distances are in the range 2.06-2.36 Å and interfacial Ti-O 

distances are 1.88-1.96 Å. Two electrons are released after the formation of a neutral 

oxygen vacancy and these localise at In ions, as shown in the excess spin density plot 

(Figure 4.4.9.b); the Bader charges for these sites increase from 11.2 and 11.3 electrons 

to 11.8 electrons. Electron localisation is further confirmed by computed spin 

magnetisations of 0.3 and 0.4 μB. Based on these results, and given the moderate oxygen 

vacancy formation energy, should In2O3 form at the anatase surface, In ions will be 

present in a mixture of oxidation states. In particular, localisation of charge at In ions at 

the surface may contribute to the photocatalytic activity. 

 

Electronic Properties 

The PEDOS of In4O6-a101 and In4O5-a101 are shown in Figure 4.4.10.a and 4.4.10.b, 

respectively. For In4O6-a101, states derived from cluster O ions extend to 0.2 eV above 

the VBM of titania. In addition, In-derived states emerge in the bandgap at 0.5 eV below 

the CBM. For the reduced system (In4O5-a101), cluster O 2p-derived states persist to 0.4 
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eV above the VBM and additional In-derived occupied states emerge in the titania 

bandgap at 1.3 eV above the VBM. For both stoichiometric In4O6-a101 and reduced 

In4O5-a101 systems, these features suggest a red-shift in the light absorption edge and 

could enhance the lifetime of charge carriers on the photocatalyst surface as compared to 

bare anatase (101).  

 

Figure 4.4.10 Projected electronic density of states (PEDOS) computed for (a) 

stoichiometric In4O6-a101 and (b) reduced In4O5-a101. 
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4.5 Conclusions 

Anatase to Rutile Transition 

In this chapter, we have examined the impact of Cu-, Mo- and In-doping of anatase TiO2 

on the anatase to rutile phase transition at elevated temperatures. Cu-doped samples retain 

more of the anatase phase at elevated temperatures, than un-doped TiO2. At 600 °C, un-

doped TiO2 contained 34.3% anatase, while all doped samples were 100% anatase. At 

650 °C, 4% and 8% Cu-TiO2 had anatase contents of 27.3% and 74.3% respectively. All 

samples heated to 700 °C were 100% rutile. 

Mo doping also strongly influences the ART; 67% of the anatase phase was retained at 

750 °C for the 2% Mo-doped sample. Similarly, the results show that In is an effective 

dopant to preserve the anatase content of TiO2; up to 64% at a temperature as high as 800 

°C (16% In-doping). The impact of doping on the ART varies with dopant concentration. 

XRD results revealed that In3+ retards the crystallisation of TiO2 through the substitution 

of Ti4+ ions.  

 

Oxygen vacancies 

For Cu-TiO2, DFT results show that charge compensating oxygen vacancies form to 

balance the lower +2 oxidation state of Cu and computed formation energies for the 

formation of reducing oxygen vacancies are lower compared to un-doped anatase, 

although the energy cost increases with vacancy concentration. Thus, the increases in the 

ART transition temperature are most likely not solely due to oxygen vacancy formation, 

with sulphate from the copper precursor potentially playing a role. Formation of reducing 

oxygen vacancies reduces Cu2+ to Cu1+ and Ti4+ to Ti3+, with a localised Cu-derived gap 

state that can act as a recombination centre and degrade the photocatalytic activity of 
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anatase. XPS also showed that increases in temperature resulted in copper being reduced 

from Cu2+ to Cu1+. 

The computed energy required for oxygen vacancy formation in Mo-TiO2 is comparable 

to that of un-doped anatase and, hence, vacancies should be present in the doped system 

in similar concentrations to pure anatase, under equivalent preparation conditions. After 

vacancy formation, the dopant is reduced to Mo5+ and Ti3+ is also present. XPS results 

show the existence of Mo5+ in addition to Mo6+ in Mo-TiO2 samples.  

Charge compensating oxygen vacancies form spontaneously in In-doped TiO2 and the 

formation of further, reducing oxygen vacancies has moderate energy costs. 

Considerations of oxygen vacancy formation as the primary mechanism in the ART is 

therefore insufficient in accounting for the inhibition of the transition reported in the 

experimental findings. 

 

Electronic Properties 

For Cu-TiO2, the density of states shows localised peaks near the valence and conduction 

band edges, arising from the empty Cu 3d state of Cu2+. These result in a predicted small 

red shift in the adsorption edge. After formation of reducing oxygen vacancies, additional 

energy levels emerge in the gap due to localised Cu1+ and Ti3+ states. 

For Mo-TiO2, analysis of the computed PEDOS plot for the stoichiometric system 

indicates that Mo 5s states emerge below the CBM of TiO2. Vacancy formation leads to 

the emergence of occupied Mo 4d and Ti 3d states in the energy gap. PL analysis showed 

that electron-hole recombination is minimised via the appearance of Mo electronic states 

below the CB of TiO2. The lifetime of photo-induced charge carriers is extended by Mo-

doping.  
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The computed DOS plots for In-doped bulk anatase TiO2 reveal that, upon formation of 

reducing oxygen vacancies, states emerge in the bandgap due to localisation of charge in 

the vicinity of the In-dopants. Our model for In2O3 formation at the anatase (101) surface 

indicates that the In4O6 nanocluster is bound at the surface with a moderate adsorption 

energy. We predict that for higher calcination temperatures the In2O3 at the surface will 

desorb or migrate and aggregate at the surface. The latter outcome would explain the 

enhanced In2O3 signals in the XRD spectrum for those samples calcined at higher 

temperatures. Formation of a reducing oxygen vacancy in the surface-bound In2O3 has 

moderate formation energies, with the resulting excess charge localizing at In sites at the 

surface. The presence of In2O3 at the surface extends the VBM of the titania support to 

higher energies and, in combination with In-derived states in the bandgap for both 

stoichiometric and reduced In2O3, a red shift in the light absorption edge is predicted. The 

lifetime of photo-generated charge carriers in TiO2 was also extended by In doping.  

 

Photocatalytic activity 

Photocatalysis studies indicated that inclusion of copper induced a significant reduction 

in the rate of photodegradation of 1, 4-dioxane. The sample with the highest 

photocatalytic activity was the 0% Cu-TiO2 (100% anatase), which showed a 1, 4-dioxane 

removal of approx. 90% after 450kJL-1 (240 minutes). All copper doped samples showed 

1, 4-dioxane removal of between 20-40% over the same time and radiation. When we 

compare these findings to the DFT results, we suggest that the reduction in activity over 

un-doped TiO2 most likely arises from the presence of the Cu1+/Cu2+-induced defect 

states, which act as bulk traps for charges and thus promote recombination. 

The photocatalytic activity of Mo-TiO2 was tested for the removal of microbes from 

wastewater. The findings suggest that Mo-TiO2 is an excellent candidate for the 
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fabrication of indoor building materials with light active antimicrobial characteristics. 

The photocatalytic activity of 2% In-TiO2, calcined at 700 °C, is comparable to that of 

pure anatase, but the activity decreases with increasing In-content. For low levels of In-

doping, the activity could be further improved with the help of an appropriate co-catalyst. 

The photocatalytic activity is strongly affected by the calcination temperature and anatase 

percentage. Overall, the results demonstrate that In is an effective dopant for the 

fabrication of thermally stable anatase TiO2 with photocatalytic activity. 
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5 Surface-modified TiO2 

5.1 Introduction 

This chapter presents the results of four computational studies of surface-modified titania. 

The modifiers are MgO and SnO;1 hBN;2 CeO2;3 and MnOx.4 In each study, we analyse 

the stability of the composite surfaces; their interfacial atomic structure; the impact of 

modification on the valence and conduction band edges of the titania supports; and charge 

localisation after excitation. 

For the metal oxide modifiers, further analysis includes an assessment of the ground state 

stoichiometry and reduction via oxygen vacancy formation. Point defects, such as oxygen 

vacancies, are active sites at metal oxide surfaces. A more reducible surface will lose 

oxygen more readily and be more active in solar thermal5 or Mars van Krevelen 

processes.6-7 The importance of oxygen vacancies as active sites for water dissociation at 

the rutile (110) surface8-9 and ceria surfaces10 has been widely discussed and reduced Ti3+ 

ions are active in the chemistry at titania surfaces.11-12 For anatase TiO2, oxygen vacancies 

are more stable at subsurface sites than on the surface.13-14 However, the surface can be 

reduced by electron bombardment14-15 and the reaction of these vacancy sites with water 

and O2 results in water dissociation. These studies highlight the necessity of engineering 

photocatalytic surfaces for which vacancies can be produced with moderate energy costs.  

Water adsorption at CeO2-TiO2 and MnOx-TiO2 will be discussed in Chapter 6. 

Computational methodology and Supporting Information for each study in this chapter 

are provided in Chapter 2 and Appendix B. 
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5.2 MgO- and SnO-modified TiO2 

What follows is adapted from an article entitled: “Impact of surface hydroxylation in 

MgO-/SnO-nanocluster modified TiO2 anatase (101) composites on visible light 

absorption, charge separation and reducibility”, published, by invitation, in Chinese 

Chemical Letters.1  

 

DOI: https://doi.org/10.1016/j.cclet.2017.11.036 

 

5.2.1 Introduction 

In this paper, we present a DFT study of TiO2 anatase (101) modified with sub-nm 

nanoclusters of compositions Sn4O4 and Mg4O4. Importantly, we go beyond the perfect, 

clean surface models of TiO2 and investigate the impact of surface hydroxylation, through 

adsorption of dissociated water, on the nanocluster adsorption and stability. This builds 

on previous work,16-17 which showed that surface hydroxylation has a significant impact 

on the properties of the nanocluster-TiO2 composite system.  

We predict that modification of anatase (101) will induce a red shift in light absorption 

due to the emergence of nanocluster derived electronic states that shift the valence band 

https://doi.org/10.1016/j.cclet.2017.11.036
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to higher energy, irrespective of the state of the anatase surface. Surface modification 

promotes charge separation, with electrons and holes localising on surface cation and 

nanocluster anion sites, respectively. Finally, we show that the reducibility of the 

composite systems is enhanced over bare anatase (101) and we predict that the composite 

surfaces will be more reactive. Combined with a red shift in light absorption, these results 

yield an insight into the design of new photocatalytic materials. 

 

5.2.2 Results 

Local Atomic Structure 

To examine the impact of surface hydroxyl species on the interfacial chemistry, 

calculations were performed on a model where four water molecules are adsorbed 

dissociatively at the anatase (101) surface. This corresponds to a partial water coverage 

of 50%. Note that we are not trying to determine the most favourable water adsorption 

coverage and structure on anatase (101), but instead use this model to examine the effect 

of the presence of surface hydroxyl groups on the nanocluster-TiO2 composite system. 

The bare and hydroxylated anatase (101) surfaces are henceforth denoted as oxidised (o-

anatase) and hydroxylated (oh-anatase). Figure 5.2.1.a shows the atomic structure of 

the ideal, extended anatase (101) surface, free from point defects and surface hydroxyls. 

The surface is terminated by alternating rows of two- (O2f) and three-fold (O3f) 

coordinated oxygen atoms. Of the two sublayers of Ti atoms, the outermost consists of  

rows of five-fold coordinated Ti5f atoms and the next sublayer has rows of six-fold 

coordinated Ti6f atoms. With 16 Ti atoms accessible on our (2 × 4) surface supercell, the 

eight outermost Ti5f atoms act as sites for water adsorption. In our model hydroxylated 

surface, we adsorb four dissociated water molecules, as shown in Figure 5.2.1.b, at 50% 
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coverage. This is not aiming for the most stable water adsorption structure at the anatase 

(101) surface, but is a reasonable model to explore the influence of surface hydroxylation.  

 

Figure 5.2.1 Atomic structure of (a) the bare and (b) hydroxylated anatase (101) surface. 

In this and subsequent figures, Ti is indicated by a grey sphere, O by a red sphere and H 

by a white sphere. 

We adopt the following notation for the different atoms present in the composites: surface 

oxygen atoms are denoted OS and further differentiated by coordination number (O2f and 

O3f), as are surface Ti atoms (Ti5f and Ti6f). Cluster oxygen atoms are denoted OC and 

oxygen atoms present in hydroxyls are labelled OW.  

The relaxed atomic structures of the MgO- and SnO-modified surfaces are presented in 

Figures 5.2.2 and 5.2.3. The adsorption energies of the nanoclusters at the o-anatase and 

oh-anatase (101) surfaces are -5.73 eV and -7.49 eV for Mg4O4 and -1.89 eV and -2.16 

eV for Sn4O4. The negative values indicate a favourable nanocluster-surface interaction 

while the magnitudes suggest that the nanoclusters will be stable against desorption and 

surface migration, particularly for MgO modification. The most stable gas phase 

geometries for the Mg4O4 and Sn4O4 nanoclusters are cubes and adsorption on the anatase 

(101) surface changes these structures substantially. This allows for the formation of more 

metal-oxygen interfacial bonds, which strengthens the interaction between the cluster and 

the surface.  
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Figure 5.2.2 Atomic structures of (a) and (b) Mg4O4-o-anatase, (c) and (d) Mg4O4-oh-

anatase (101). Insets of panels on the left show adsorption energies. Atoms of the clusters 

are enlarged for clarity. Ti is light grey, O is red, H is white and Mg is green. 

For Mg4O4, the interaction between the nanocluster and both surfaces is strong with more 

favourable adsorption at the hydroxylated surface. The atomic structure of Mg4O4 

adsorbed at the o-anatase (101) surface is shown in Figures 5.2.2.a and 5.2.2.b. Three of 

the four cluster oxygen atoms form a bond with surface Ti5f atoms. Two Mg atoms in the 

cluster make two bonds with surface O2f and O3f ions and are four-fold coordinated. The 

other Mg atoms are three-fold coordinated with one sharing a bond with a single surface 

O2f and the other bonded only to OC atoms. Adsorption involves the formation of eight 

bonds between the nanocluster and the bare surface; of these, three are Ti-OC bonds with 

lengths in the range of 1.9-2.1 Å. These Ti atoms migrate out from the Ti5f plane by up 

to 0.4 Å. Four of the five interfacial Mg-OS bonds have distances in the range of 2.1-2.2 

Å; the fifth Mg-OS distance, which involves a three-fold coordinated Mg cation, is 1.9 Å. 

The single O3f site involved migrates out from the surface layer by 0.3 Å; this distortion 

breaks the bond between the O3f site and the Ti6f sub-surface atom. 
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Comparing with adsorption at the oh-anatase (101) surface (Figure 5.2.2.c and 5.2.2.d), 

we see that only two of the OC atoms form bonds with surface Ti5f atoms, with Ti-O 

distances of 1.9 and 2.0 Å. This is to be expected as the presence of the OHT groups 

results in fewer Ti5f atoms being accessible. However, one Mg atom forms bonds with 

four surface oxygen ions (two O2f and two O3f) to make it six-fold coordinated, with Mg-

OS distances of 2.1-2.2 Å. Another Mg atom is four-fold coordinated and binds with two 

surface O2f and an OW atom from an adsorbed terminal hydroxyl (OHT) group. The two 

remaining cluster cations are three-fold coordinated with one sharing a bond with an OW  

and the other bonded only to cluster oxygen ions.  The MgO-anatase interaction at the 

oh-anatase surface results in surface Ti atoms, which form bonds to the nanocluster, 

migrating out of the Ti5f plane to a more significant degree than observed in adsorption 

at the o-anatase surface. In one instance, in which a surface Ti atom shares bonds with 

both the supported nanocluster and an adsorbed OHT group, the Ti migrates out from the 

Ti5f plane by 1.0 Å and this distortion leads to the breaking of two Ti-OS bonds. The two 

O3f atoms that form bonds to the nanocluster migrate out from the surface layer by 0.4 Å.  

For the Sn4O4 nanocluster, the interaction of Sn4O4 with the o-anatase and oh-anatase 

(101) surfaces is weaker than that of the Mg4O4 nanocluster. Nanocluster adsorption is 

more favourable at the hydroxylated surface by 0.27 eV. We can attribute the weak 

adsorption to the formation of fewer interfacial bonds between SnO and anatase, 

compared to MgO and anatase, with only five and four interfacial bonds formed for 

adsorption at the bare and hydroxylated surfaces, respectively. Figures 5.2.3.a and 

5.2.3.b show the atomic structure of the Sn4O4 nanocluster adsorbed at the o-anatase (101) 

surface. Two oxygen atoms in the nanocluster do not bind with the anatase surface. The 

third oxygen forms a bond with a single surface Ti5f cation and the fourth OC atom is two-

fold coordinated, sharing one interfacial bond with a surface Ti5f cation. This contrasts 
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with the Mg4O4 case in which each of the OC ions are three-fold coordinated with three 

forming bonds with the surface. Each of the four Sn atoms in the nanocluster are three-

fold coordinated and three have interfacial bonds with a single row of bridging surface 

O2f ions. The two Ti-OC distances are 1.8 and 1.9 Å, with the shorter distance 

corresponding to the lower-coordinated OC site. The Sn-OS distances are in the range of 

2.1 to 2.3 Å. For adsorption of the Sn4O4 nanocluster at the oh-anatase (101) surface 

(Figures 5.2.3.c and 5.2.3.d), none of the cluster oxygen ions bind to the surface and all 

four interfacial bonds involve three-fold coordinated cluster Sn ions. Two of these bind 

to OW atoms, with Sn-OW distances of 2.1 and 2.3 Å, and two to bridging surface O2f ions 

with bond lengths of 2.1 and 2.2 Å. 

 

Figure 5.2.3 Atomic structures of (a) and (b) Sn4O4-o-anatase, (c) and (d) Sn4O4-oh-

anatase (101). Insets of panels on the left show adsorption energies. Atoms of the clusters 

are enlarged for clarity. Ti is light grey, O is red, H is white and Sn is dark grey. 

Upon adsorption and relaxation of both nanoclusters at the oh-anatase (101) surface we 

observe migration of H atoms from surface hydroxyls to bind with OC atoms. In the 

Mg4O4 case, one H atom migrates from a surface O2f bridging hydroxyl (OHB) to a two-
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fold coordinated OC atom. This facilitates the formation of new bonds between a Mg site 

and the surface O2f site. Another H atom migrates from an adsorbed OHT group to bind 

with a nanocluster oxygen leaving a terminal, singly coordinated OW bound to a surface 

Ti5f. This is accompanied by a distortion in which the surface Ti is drawn out from the 

Ti5f plane by 0.6 Å, breaking a bond with a subsurface OS and leaving the oxygen atom 

two-fold coordinated. Migration of H atoms from the hydroxylated surface to oxygen 

sites of the adsorbed Mg4O4 nanocluster makes each OC site three-fold coordinated, as in 

the Mg4O4-o-anatase (101) case.  

When the Sn4O4 nanocluster adsorbs at the oh-anatase surface two H atoms migrate from 

surface O2f to OC ions. Again this facilitates the formation of interfacial Sn-O bonds 

through the provision of more low-coordinated OS sites to which the Sn cations can bind. 

However, in this instance not all OC sites are rendered three-fold coordinated through this 

migration; one OC site is two-fold coordinated such that the coordination configuration of 

the Sn4O4 nanocluster at the hydroxylated surface is the same as that at the bare surface. 

 

Electronic Properties 

Figures 5.2.4.a and 5.2.4.b display the calculated spin polarised projected electronic 

density of states (PEDOS) of the Mg4O4 nanocluster modifying the o-anatase and oh-

anatase (101) surfaces, respectively. In each instance, the top panels show the contribution 

to the DOS due to surface Ti 3d and cluster Mg 3s and 3p states. The bottom panels show 

the contribution due to O 2p states, separated according to whether the oxygen ion is 

found in the surface (OS), the supported nanocluster (OC) or adsorbed water/hydroxyl 

(OW). The PEDOS plots for the unmodified bare and hydroxylated anatase (101) surfaces 

are presented in Figure B.1.1 in Appendix B. 
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Figure 5.2.4 Spin polarised projected electron density of states plots for (a) Mg4O4-o-

anatase (101), (b) Mg4O4-oh-anatase (101), (c) Sn4O4-o-anatase (101) and (d) Sn4O4-oh-

anatase (101). Top panels display metal PEDOS and bottom panels display oxygen 2p 

PEDOS.  

Examination of the PEDOS shows that modification of o-anatase and oh-anatase (101) 

with Mg4O4 introduces new states into the gap just above the VB edge. Focusing on 

Mg4O4 at the o-anatase (101) surface (Figure 5.2.4.a), we see that modification results in 

an enhanced DOS at the VB edge and the emergence of OC 2p derived states around 0.5 

eV above the VBM. From this qualitative description of the DOS we predict a red shift 

in the band gap due to the Mg4O4 modification, which could lead to improved 

photoactivity in the visible range. Enhanced UV activity is also postulated due to the 
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increased DOS at the VB edge and the presence of empty Mg-derived states above the 

CB edge.18  

Similar features are observed in the PEDOS of Mg4O4 modifying the oh-anatase (101) 

surface (Figure 5.2.4.b). However, the presence of hydroxyl species on the surface, in 

combination with the Mg4O4 modification, appears to extend the valence band to higher 

energy, into the anatase band gap, pushing the VB edge to 0.5 eV above that of bare TiO2, 

as shown in the inset of Figure 5.2.4.b. The overall effect on the band gap is comparable 

to that observed in the bare surface and the same conclusions may be drawn regarding 

improvements in activity, in both the visible and UV range. 

The top panels of Figures 5.2.4.c and 5.2.4.d present the Ti 3d and Sn 5s and 5p PEDOS 

for Sn4O4 modifying the o-anatase (101) and oh-anatase (101) surfaces, respectively; 

bottom panels show DOS contributions from OS, OC and OW 2p. In both instances features 

emerge in the anatase energy gap, which are attributable to the surface modification. For 

Sn4O4 modifying the o-anatase (101) surface (Figure 5.2.4.c), the impact on the 

electronic band structure is similar to that of the Mg4O4 modification (Figure 5.2.4.a). 

OC 2p-derived states are present at the top of the TiO2-derived VB and contribute to a 

new state that lies 0.5 eV above the TiO2 VBM. Sn-derived states also appear in the TiO2 

band gap, at around 0.5 eV above the VBM, with empty Sn-derived states lying above 

the TiO2 CB edge. This arises from the Sn2+ oxidation state and the highest lying occupied 

states show contributions from both Sn 5s/5p and O 2p states.19-21  

The effect of modification on the electronic structure is more dramatic for Sn4O4 at the 

oh-anatase (101) surface (Figure 5.2.4.d). OW and OC 2p states enhance the DOS at the 

TiO2 VB edge with some OC 2p-derived states appearing as much as 1 eV above the 

VBM. Sn 5s/5p-derived states lie at similar positions at the top of the VB.  
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For each of the four heterostructures presented, we propose that modification will result 

in a reduction of the energy gap of anatase TiO2, thus inducing a red shift in light 

absorption. We also predict improved UV photocatalytic activity, with the alignments of 

the surface and nanocluster energy bands facilitating charge separation. 

 

Photoexcitation Model 

Table 5.2.1 Vertical singlet-triplet energy difference (Evertical), the relaxed singlet-triplet 
energy difference (Eexcite) and the relaxation energy (Erelax) for nanocluster modified o-

anatase and oh-anatase (101). Values for unmodified o-anatase and oh-anatase (101) have 

been included for reference. 

Composite structure Evertical (eV) Eexcite (eV) Erelax (eV) 

Bare-anatase (101) 2.70 1.76 0.94 

Mg4O4-o-anatase (101) 2.50 0.96 1.53 

Sn4O4-o-anatase (101) 2.38 1.09 1.29 

    

Hydroxylated-anatase (101) 2.69 1.39 1.30 

Mg4O4-oh-anatase (101) 2.63 0.59 2.05 

Sn4O4-oh-anatase (101) 1.69 0.40 1.29 

 

Table 5.2.1 presents the energies computed from the model of the photoexcited state, 

introduced in Chapter 2. The underestimation of the band gap inherent in approximate 

DFT is present in the current DFT+U computational set-up. The +U corrections are 

chosen to localise electrons and holes rather than to reproduce the band gap of bulk TiO2. 

This underestimation is clear in the computed values for Evertical and Eexcite which are 

clearly smaller than the experimental values. However, what is important is the change in 

these quantities with modification of the anatase surfaces.  
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We note that Eexcite is always smaller than the simple VB-CB energy gap and Evertical, as 

the former energy includes ionic relaxations and polaron formation in response to 

“exciting” the electron, which then lowers the energy of the triplet electronic state. 

However, comparison of these computed energies across different structures yields valid 

qualitative information.19, 22-26 In particular, a reduction in Evertical for a composite 

structure, relative to the unmodified metal oxide, will correspond to light absorption at 

lower energies for the surface modified system. 

Table 5.2.1 shows that the modification of anatase, whether bare or hydroxylated, with 

MgO and SnO nanoclusters always results in a red shift, with both the vertical and 

excitation energies being reduced upon modification. The reduction in the excitation 

energy arises from the greater degree of structural relaxation in the nanocluster, as 

evidenced by the values for Erelax. The relaxation, or trapping energy, is an indication of 

the stability of the electron-hole pair and the larger relaxation energy for hydroxylated 

anatase indicates a higher stability of the localised electron-hole pair compared to the o-

anatase (101) surface. 

Looking at differences between the nanoclusters, we see that MgO modification has a 

more significant effect than SnO modification of the o-anatase (101) surface; 

modification with Mg4O4 and Sn4O4 gives reductions in Eexcite of 1.80 and 0.67 eV relative 

to the bare surface. The opposite is true for the oh-anatase (101) surface; Eexcite is 

calculated to be lower by 0.80 (0.99) eV upon modification with Mg4O4 (Sn4O4). These 

results, in combination with analysis of the ground state PEDOS, indicate a red shift in 

light absorption for the modified surfaces. In terms of the stability of the localised 

electrons and holes, Mg4O4 modification shows significantly enhanced electron and hole 

trapping at both the bare and hydroxylated surfaces. The presence of hydroxyls at the 

surface facilitates the trapping of the electron-hole pair for both the bare surface and that 
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modified with Mg4O4, but has no impact on the trapping energy of the Sn4O4-modified 

surface. 

 

Figure 5.2.5 Spin density plots for the photoexcited electron and hole in (a) and (b) 

Mg4O4-o-anatase, (c) and (d) Mg4O4-oh-anatase (101). The spin density isosurfaces 

enclose spin densities up to 0.2 electrons/Å3. Yellow isosurfaces represent electrons and 

blue isosurfaces represent holes. 

In addition to energy gap considerations, another factor affecting the efficiency of 

photocatalytic materials is the fate of photoexcited charge carriers. Charge recombination 

must be suppressed and charge separation promoted. In addition, a higher relaxation 

energy indicates higher stability of the photoinduced charges. We have examined the 

localisation of photoexcited charges through analysis of computed Bader charges, spin 

magnetisations and excess spin density plots. 

Figure 5.2.5 shows the spin density plots for the Mg4O4-modified o-anatase and oh-

anatase (101) surfaces after relaxation of the triplet state. For both modified surfaces we 
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see that the electron localises on a single surface Ti5f atom. The computed Bader charge 

for Ti4+ cations is 1.27 electrons. The Bader charge increases to 1.70 electrons at the site 

on which the electron is localised. These Bader charges are consistent with formation of 

a localised Ti3+ electronic state. The computed spin magnetisation for the Ti3+ site is 0.99 

µB and compares with values of less than 0.03 µB for all other Ti sites. Finally, the Ti-O 

distances around this site are elongated by 0.1 Å relative to the singlet ground state, which 

is typical of the formation of a localised, reduced Ti3+ state. 

For Mg4O4 supported on the bare surface (Figures 5.2.5.a and 5.2.5.b), the hole state 

predominantly localises at a three-fold coordinated oxygen site in the nanocluster. The 

computed Bader charge for the OC atom is reduced from 7.93 electrons to 7.23 electrons 

upon localisation of the hole state. The computed spin magnetisation is 0.67 µB, which is 

usual for a localised oxygen hole in the DFT+U formalism.27 These values indicate the 

formation of a localised oxygen hole state. There is some spreading of the hole state to a 

neighbouring surface O2f site, which shares multiple bonds with the nanocluster. This 

spreading is reflected in a computed spin magnetisation of 0.21 µB at the O2f site, an 

elongation of the Ti6f-O2f bond by 0.1 Å and the breaking of the Ti5f-O2f bond.  

For Mg4O4 supported on the oh-anatase (101) surface (Figures 5.2.5.c and 5.2.5.d) we 

can see that the hole state localises at a singly coordinated, originally hydroxyl, oxygen 

site, OW. Hole localisation is accompanied by a reduction in the Bader charge for the 

terminal oxygen from 7.16 electrons in the singlet state to 6.73 electrons in the triplet 

state. The computed spin magnetisation is 0.81 µB. Again these values are typical of a 

localised oxygen hole species. The Ti-O distance is elongated by 0.2 Å relative to that in 

the singlet ground state, consistent with the formation of a localised oxygen hole polaron.  
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The spin density plots for the Sn4O4-modified o-anatase (Figures 5.2.6.a and 5.2.6.b) and 

oh-anatase (101) (Figures 5.2.6.c and 5.2.6.d) surfaces show an electron localised on a 

single Ti lattice site. In both instances, these are surface Ti5f and the computed Bader 

charges (spin magnetisations) are 1.72 electrons (0.97 µB) and 1.67 electrons (0.99 µB) 

on the o-anatase and oh-anatase (101) surfaces, respectively. These results indicate the 

formation of a reduced, localised Ti3+ species and further confirmation is provided by the 

distortions of the atomic structure in the vicinity of the localisation. The Ti3+-O bond 

lengths increased by as much as 0.13 Å in the excited state, relative to the equivalent 

distances in the ground state. 

For Sn4O4 modifying the o-anatase (101) surface (Figures 5.2.6.a and 5.2.6.b) the hole 

state is distributed over two doubly-coordinated OC atoms and a cluster Sn atom to which 

they are each bonded. This localisation arises because the top of the valence band is 

composed of Sn 5s + 5p and O 2p states from the SnO nanocluster. The computed Bader 

charges decrease from 7.3-7.4 and 12.64 electrons for oxygen and tin in the singlet ground 

state, to 7.15-7.18 and 12.36 electrons for the same atoms in the relaxed triplet state. 

Considering that a Bader charge of 12.75 electrons is computed for Sn2+ ions in the gas 

phase Sn4O4 nanocluster, we assign a +3 oxidation state to the Sn atom at which hole 

localisation occurs. Correspondingly, a -1 oxidation state (oxygen hole) is assigned to the 

two OC sites over which the hole is distributed. The charge is uniformly spread over the 

three sites with spin magnetisations of 0.19, 0.22 and 0.24 µB computed for the two 

oxygen sites and the tin site, respectively. These values compare with computed spin 

magnetisations of less than 0.01 µB on the other Sn and O sites; there is a small 

distribution of charge to a neighbouring OS site, as shown in Figure 5.2.6.a, and this is 

reflected in a computed spin magnetisation of 0.06 µB.  
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Figure 5.2.6 Spin density plots for the photoexcited electron and hole in (a) and (b) 

Sn4O4-o-anatase, (c) and (d) Sn4O4-oh-anatase (101). The spin density isosurfaces 

enclose spin densities up to 0.2 electrons/Å3. Yellow isosurfaces represent electrons and 

blue isosurfaces represent holes. 

Electron localisation is accompanied by an extension of the Ti-OC bond by 0.1 Å, but the 

distances between the various sites over which the hole is distributed are contracted 

relative to the ground state. The two Sn3+-OC and the Sn3+-OS bond lengths are reduced 

by 0.09-0.15 Å and this distortion contributes to the breaking of a Sn-OC bond involving 

one of the oxygen polaron sites; the OC in question was three-fold coordinated in the 

ground state (Figure 5.2.3.b) and is two-fold coordinated in the excited state (Figure  

5.2.6.b), so that both OC sites at which hole localisation occurs are two-fold coordinated.  

For the Sn4O4-modified oh-anatase (101) surface (Figures 5.2.6.c and 5.2.6.d), we see 

that the hole state is distributed over a tin site and three oxygen sites in the supported 

Sn4O4 cluster. The computed Bader charge and spin magnetisations are 12.26 electrons 

and 0.28 µB for the Sn site, to which we assign a +3 oxidation state. The computed spin 
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magnetisations for the three OC sites are 0.08, 0.15 and 0.15 µB; the computed Bader 

charges are 7.25, 7.62 and 7.65 electrons. The distances between the cluster sites over 

which the hole state is distributed are contracted, with a reduction of 0.09-0.17 Å in the 

Sn3+-OC bond lengths.  

For all systems studied, the model photoexcited state results in the localisation of an 

electron at a surface Ti5f site to form a reduced Ti3+ polaron species. This is consistent 

with the nature of the lowest lying conduction band states, which are dominated by Ti 3d 

states. The nature of the hole states depends on the identity of the nanocluster modifier 

and the state of the anatase (101) surface. For modification with the Mg4O4 nanocluster, 

the hole can localise at a single OC site (bare surface) or OW site (hydroxylated surface). 

For the Sn4O4 nanocluster modifier, the hole is distributed over metal and oxygen sites in 

the nanocluster.  

The proximity of the charge carriers to each other contrasts with previous work on surface 

modified rutile (110) where electron localisation occurred at subsurface Ti sites.22-24 Still, 

the stability of the electron and hole and their spatial separation are improved relative to 

the bare anatase (101) surface (Figure B.1.2 in Appendix B). Modification with larger 

nanoclusters may improve charge separation, as the general trend observed in previous 

work is that hole localisation occurs at the lower-coordinated sites in the cluster.19, 22-23, 25 

However, the impact of an increase in cluster size on the light absorption properties of 

the heterostructures would need to be reassessed, due to well-known size effects.   

Surface modification promotes separation of photoexcited charge, with holes, localised 

on or distributed over sites of the nanocluster, available for participation in oxidation 

reactions. However, for this separation and localisation to result in enhanced 
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photocatalytic activity, reductant species must preferentially adsorb at the nanocluster 

modifier rather than the TiO2 support.  

 

Oxygen Vacancy Formation 

 

Figure 5.2.7 Relaxed atomic structure of the nanocluster modified TiO2 surfaces after 

formation of the most stable oxygen vacancies. (a) and (b) Mg4O4-o-anatase (101), (c) 

and (d) Mg4O4-oh-anatase (101). Insets of panels on the left show vacancy formation 

energies. The orange spin density isosurfaces enclose spin densities up to 0.2 

electrons/Å3. 

Labelling the cluster oxygen atoms I-IV (Figure B.1.3 in Appendix B), we examine 

oxygen vacancy formation by removing each nanocluster oxygen and relaxing. The 

results of these calculations, presented in Table B.1.1 of Appendix B, allow us to 

examine the reducibility of modified anatase and any impact of surface hydroxylation. 
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The relaxed geometries of the composite surfaces upon formation of the most stable 

oxygen vacancy are presented in Figures 5.2.7 and 5.2.8. 

For MgO-o-anatase (101), the most stable oxygen vacancy has a formation energy of 2.82 

eV, while for SnO-o-anatase (101), the cost is 1.82 eV. Hence, the energy required to 

produce the most stable oxygen vacancy in the nanocluster-modified surface is notably 

reduced over the unmodified anatase surface, for which the formation energy of an 

oxygen vacancy is 3.6-3.8 eV, from a study with similar computational parameters.28  

For the MgO-o-anatase (101) system, the most favourable configuration with one O 

vacancy site is shown in Figures 5.2.7.a and 5.2.7.b. The relatively high energy cost is 

probably due to the resulting under-coordination of the cluster metal ions in the non-

stoichiometric structure, as a result of a lack of oxygen sites with which the Mg atoms 

can form bonds. After oxygen vacancy formation, new interfacial Mg-O3f bonds were 

established and all cluster metal ions were at least three-fold coordinated upon relaxation. 

This draws the O3f atoms out from the surface, breaking Ti6f-O3f bonds and leaving Ti6f 

ions under-coordinated at the surface. Thus, the surface distortions that accompany 

oxygen vacancy formation act against the gain in energy when the structure relaxes in 

response to oxygen vacancy formation. 

For the Sn4O4 modifier at the o-anatase (101) surface (Figures 5.2.8.a and 5.2.8.b), the 

most stable oxygen vacancy site in the nanocluster has a cost of 1.82 eV. For the most 

stable oxygen vacancy, the removed oxygen atom was originally two-fold coordinated. 

The single Sn site that was bound to the removed oxygen atom maintains its three-fold 

coordination by forming a new bond with a surface O3f site; this means that the atoms of 

the nanocluster maintain the same coordination configuration as in the stoichiometric 

case. The O3f site migrates out from the surface by 0.3 Å to accommodate this bond and 
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this breaks a bond with a subsurface Ti site. The Ti5f site to which the removed oxygen 

was bound relaxes back into the surface and rebinds to an OS site in the substrate to remain 

five-fold coordinated.   

 

Figure 5.2.8 Relaxed atomic structure of the nanocluster modified TiO2 surfaces after 

formation of the most stable oxygen vacancies. (a) and (b) Sn4O4-o-anatase (101), (c) and 

(d) Sn4O4-oh-anatase (101). Insets of panels on the left show vacancy formation energies. 

The orange spin density isosurfaces enclose spin densities up to 0.2 electrons/Å3. 

Turning now to the hydroxylated, modified surfaces, the problem of cation under -

coordination that results in a large vacancy formation energy for Mg4O4-anatase is 

alleviated when the nanocluster is supported on the hydroxylated surface. This is because 

the surface terminating OH groups provide additional sites, close to the nanocluster, for 

the formation of new interfacial metal-oxygen bonds that maintain the Mg coordination. 

Two of the four Mg cations are four-fold coordinated, strengthening the interaction with 

the surface (Figures 5.2.7.c and 5.2.7.d). This is reflected in the quite favourable oxygen 
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vacancy formation energy of 0.61 eV. The Mg-O interaction is strong enough that a 

surface Ti5f site is rendered four-fold coordinated upon reduction, with an OHT group 

migrating from the Ti site to a Mg site in the nanocluster. 

For SnO-modified oh-anatase, (Figures 5.2.8.c and 5.2.8.d) each of the OC and Sn atoms 

are three-fold coordinated. The reduced Sn4O3 nanocluster interacts too weakly to form 

the interfacial bonds necessary to stabilise it at the surface; however, in the presence of 

hydroxyls at the surface, the energy required to produce the most stable oxygen vacancy, 

at 1.59 eV, is reduced by 0.2 eV relative to the Sn4O4-modified o-anatase (101) surface. 

The formation of a neutral oxygen vacancy releases two electrons. Through an analysis 

of the excess spin density plots, shown in Figures 5.2.7 and 5.2.8, and computed Bader 

charges and spin magnetisations we find that, for all systems, the electrons localise at two 

surface Ti sites. Electrons localise at low-coordinated Ti sites, whether these are Ti5f sites 

or Ti6f sites which have lower coordination due to surface restructuring in response to 

nanocluster adsorption and reduction.  

For Mg4O3 at the hydroxylated surface, one electron localises at a four-fold coordinated 

Ti site. The exception is Sn4O3 at the hydroxylated surface where electron localisation 

occurs at two Ti5f sites which are six-fold coordinated due to the presence of OHT species; 

these OHT species form Sn-OW bonds with the reduced nanocluster. In all instances, 

electron localisation is accompanied by an increase in the computed Bader charges of 0.4 

electrons; spin magnetisations are in the range of 0.97 – 1.00 µB. These values indicate 

the formation of reduced Ti3+
 species. 

It is difficult to predict a priori the impact of surface hydroxylation on oxygen vacancy 

formation. For the Mg4O4 modifier, the formation energy decreased in the presence of 

surface hydroxylation; while this was true of the Sn4O4 modifier, the effect was much less 
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pronounced. We expect that these results depend on the geometry of the nanoclusters and 

the degree of surface coverage with hydroxyl groups. The strength of interaction at the 

nanocluster-surface interface may also play a role, particularly the metal-surface 

interaction. 
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5.3 hBN-modified TiO2 

What follows is adapted from an article entitled: “Modification of TiO2 with hBN: High 

Temperature Anatase Phase Stabilisation and Photocatalytic Degradation of 1, 4-

Dioxane”, published in the Journal of Physics: Materials.2 

 

DOI:  https://doi.org/10.1088/2515-7639/ab5a31 

 https://research.thea.ie/handle/20.500.12065/3043 

 

5.3.1 Introduction 

Boron nitride (BN) modification of titania has been investigated in recent years as a 

means to modify the properties of TiO2.29-34 Various of these studies have found that BN-

modification enhances the photodegradation activity of titania, including under visible 

https://doi.org/10.1088/2515-7639/ab5a31
https://research.thea.ie/handle/20.500.12065/3043
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light.30, 32, 35 However, to date there have been no comprehensive, systematic studies on 

the effect of the concentrations of BN and calcination temperatures on the anatase to rutile 

phase transition (ART) and the resulting photocatalytic activity of BN-modified TiO2. 

For the latter, we chose removal of 1, 4-dioxane as a model system. 

The primary materials advance in this work is the comprehensive examination of the 

impact that BN-modification has on the ART and on the photocatalytic activity of TiO2 

for 1,4-dioxane removal. TiO2 was interfaced with BN at five different concentrations (0-

16% BN-TiO2) and samples were calcined at four temperatures (500-700 °C). These 

interfacial materials were characterised using X-ray diffraction (XRD), Raman 

Spectroscopy and X-ray photoelectron spectroscopy (XPS). DFT studies were performed 

to provide detailed insights into the bonding of BN with the anatase surface and the origin 

of the enhanced photocatalytic activity. Details for the materials and methods are 

provided in Appendix A and for the model constructions in Chapter 2 and Appendix B. 

 

5.3.2 Results 

5.3.2.1 Selected Experimental Results 

X-ray Diffraction (XRD) Characterisation 

XRD was used to determine the phase of each sample and from this analysis the impact 

on the transition temperature can also be concluded. The intensities of the main anatase 

(25°) and rutile (27°) peaks were used to determine the ratios of anatase and rutile present 

in each sample. The XRD patterns for the unmodified TiO2 and BN-modified samples, 

calcined at  600 °C, are shown in Figure 5.3.1.a. Additionally, Figure 5.3.1.a shows the 

presence of bulk boron nitride peaks, with the peak at 26° indicating the graphite-like 

hBN structure.36-39 All samples were 100% anatase when calcined up to 500 °C. At 600 

°C, 0% BN-TiO2 had converted to 100% rutile, while the BN-modified samples with 2%, 
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4%, 8% and 16% BN show anatase contents of 13.2%, 25.9%, 64.4% and 65.5%, 

respectively. All samples converted to the rutile phase when calcined at 650 and 700 °C, 

irrespective of BN concentration. The peak at 26° is only present for 16% BN-TiO2 when 

calcined at 600 °C and above.  

 

Figure 5.3.1 (a) XRD of all BN-TiO2 samples calcined at 600°C. (A = anatase; R = rutile 

and * = BN). (b) XPS spectra of B 1s and N 1s for 16% BN-TiO2, calcined at 500, 600 

and 700 °C. 

 

X-ray Photoelectron Spectroscopy (XPS) 

XPS analysis was used to determine the elemental composition and oxidation states of 

elements that were found on or close to the surface of pure and BN-modified TiO2, 

calcined at 500, 600 and 700 °C. The elements found in the samples were carbon, boron, 

nitrogen, oxygen and titanium; the atomic (at.) % varied depending on the samples. 

The composite samples (2%-16% BN-TiO2) contained B 1s and N 1s peaks; the spectra 

for 16% BN-TiO2 can be seen in Figure 5.3.1.b. The B 1s spectra show the presence of 

two peaks, the first at 190.68-190.78 eV and the second at 191.36-191.83 eV. The fitted 

peaks at ~190 eV (pink) show the presence of elemental boron when examining boron 

doped TiO2.40 The second fitted peak at ~191 eV (green) has a significantly lower 
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intensity and indicates the presence of doping with B3+ ions in interstitial modes.40 Liu et 

al. suggested that this peak could also be a result of “edge/interfacial boron dangling 

bonds” which are linked with -OH.30 It is important to note that the XPS analysis does 

not show the presence of Ti-B bonds (187 eV) or boron being incorporated into TiO2 and 

its environment (Ti-B-O at 192 eV).41 Finally, the N 1s peaks that are present in the 16% 

BN-TiO2 range from 398.28-398.48 eV, which  relate to B-N bonding and refer to the 

trigonal units of BN layers (BN3 and NB3).30 The peak which indicates Ti-N interactions 

(~396 eV) is not present in the N 1s spectra.42-43  

 

Photocatalytic Degradation of 1, 4-dioxane 

 

Figure 5.3.2 Photocatalytic removal of 1,4-dioxane for pure anatase, pure rutile and 16% 

BN-modified titania. 

The photocatalytic activity of 16% BN-TiO2 materials was determined by examining the 

photodegradation of 1, 4-dioxane and compared to pure TiO2. The reduction of 1, 4-

dioxane under solar light with no photocatalyst present (TiO2 = 0) was also examined and 

this showed the removal of 15.8% of 1, 4-dioxane after 4 hours, shown in Figure 5.3.2.  

At 500 and 700 °C, the 16% BN-TiO2 photocatalyts showed a removal rate of 86.3% and 

73.4%, respectively, after 4 hours (Figure 5.3.2). For un-doped anatase TiO2, calcined at 
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500 °C, the removal rate was 60.5% (Figure 5.3.2), while after calcination to 700 °C 

(pure rutile), only 17.9% of 1, 4-dioxane was removed after 4 hours, which is not 

significantly different from the activity with no catalyst. Therefore, the 16% BN-TiO2 at 

given temperatures showed a significant improvement in the photocatalytic activity 

compared to pure anatase and rutile.   

 

5.3.2.2 Computational Results 

Local Atomic Structure 

The relaxed geometries of the anatase TiO2 surface modified with one, two and three hBN 

rings are shown in Figure 5.3.3 and the adsorption energies are included in the insets. 

The large, negative adsorption energies indicate that the interaction between the hBN 

rings and the surface is favourable and the magnitudes of the energies increase 

approximately linearly with the number of adsorbed rings. For the anatase surface 

modified with one and two hBN rings, multiple starting geometries were considered. 

Those presented in Figure 5.3.3 correspond to the most stable structures of those 

sampled. Additional interfacial structures are described in Section B.2 of Appendix B. 

However, it was found that key properties of the interfacial system are not dependent on 

the precise orientation of the hBN rings at the anatase (101) surface. 

The geometries presented herein were computed with the DFT-D2 approach to account 

for vdW interactions (see Appendix B). The geometries computed within vdW-DF are 

qualitatively equivalent with the exception that interfacial bonds are slightly elongated (< 

0.01 Å) in the latter scheme. The adsorption energies are moderated in the vdW-DF 

calculations; the difference between the computed adsorption energies is at most 0.3 eV 

per hBN ring. 
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For 1-(BN)3-a101, shown in Figure 5.3.3.a, five interfacial bonds are established between 

the hBN ring and the titania surface. There are two Ti-N bonds, each of length 2.00 Å, 

and the interaction draws the Ti ions out from the surface by 0.1 Å. There are three B-O 

bonds; of these, two involve bridging O ions (Obr), with B-O distances of 1.44 Å, and the 

third involves an in-plane O ion (Oip), with a B-O distance of 1.48 Å. B-N distances 

elongate from 1.36 Å in the gas-phase and are in the range 1.42-1.47 Å. 

 

Figure 5.2.3 Relaxed structures of (a) 1-(BN)3-a101, (b) 2-(BN)3-a101 and (c) 3-(BN)3-

a101. The adsorption energies, computed within the DFT-D2 (vdW-DF) approach, are 

included in the insets of the panels on the left. The panels on the right show the top view 

of the modified surface. In this and subsequent figures, Ti are represented by grey spheres, 

O by red, B by pink and N by blue. 
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In the gas phase (BN)3 rings, the N ions exhibit computed Bader charges of 8.0 electrons, 

correspondig to N3-. The computed Bader charges for the two N ions that bind to Ti 

decrease from 8.0 electrons, in the gas-phase, to 7.5 electrons. The computed Bader 

charge for the third N ion decreases from 8.0 to 7.8 electrons. This charge is distributed 

over the TiO2 surface. In particular, the computed Bader charge for the Oip bonded to B 

increases from 7.2 to 7.5 electrons.  

In the 2-(BN)3-a101 system, shown in Figure 5.3.3.b, a second hBN ring is adsorbed at 

the surface, neighbouring the first. The geometry of the first ring at the surface is 

consistent with that described for 1-(BN)3-a101, while the second hBN ring is adsorbed 

edgewise, forming two bonds with the surface, B-Obr and Ti-N, of lengths 1.46 Å and 

1.87 Å. A third bond is established between the hBN rings with a B-N distance of 1.51 

Å. The Bader charges for the three N ions that bind to Ti of the surface decrease by 0.5-

0.6 electrons and an Oip ion and Obr ion gain 0.3 and 0.6 electrons, respectively. 

Figure 5.3.3.c shows the relaxed structure of 3-(BN)3-a101, in which the three hBN rings 

adsorbed at the surface are not in direct interaction. The geometry of the rings at the 

surface is similar to that described for 1-(BN)3-a101, above. However, N ions of the rings 

labelled 2 and 3 in Figure 5.3.3.c bind to the same Ti ion; this Ti ion moves out from the 

surface by 0.9 Å. This distortion shortens the bond length to the N ion of ring 2 to 1.97 Å 

and the Ti ion binds to the third N ion of ring 3 with a bond length of 2.14 Å. The Bader 

charges for the N ions decrease by 0.2-0.5 electrons, and correspondingly, 10 O ions of 

the surface gain between 0.1-0.6 electrons. 

The relaxed structure of (BN)24-a101 is shown in Figure 5.3.4 and adsorption energies of 

-13.71 and -13.60 eV are computed within the DFT-D2 and vdW-DF frameworks; in each 

case this corresponds to adsorption energies of -0.57 eV per BN unit. The relaxed 
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geometries are qualitatively consistent, but computed bond lengths are elongated by 0.01-

0.02 Å in the vdW-DF set-up, relative to those computed in DFT-D2.  

 

Figure 5.3.4 Relaxed atomic structure of (BN)24-a101. Panels (a) and (c) show the 

interfacial bonds formed along the B-terminated and N-terminated edges of the hBN 

ribbon, respectively. Panel (b) shows the interfacial distance between the centre of hBN 

ribbon and anatase (101) surface and panel (d) shows a top view of the modified surface. 

The adsorption energies are included in the inset of the panel (a), as computed via DFT-

D2 (vdW-DF). 

One side of the hBN strip has B ions at the outermost edge (Figure 5.3.4.a), while the 

other consists of N ions (Figure 5.3.4.c). At the B-terminated edge, three B-O bonds are 

formed of lengths in the range 1.35-1.42 Å. Two bonds involve Obr and the third involves 

Oip; these ions migrate out from the surface by 0.3-0.5 Å. At the N-terminated edge there 

are three interfacial bonds, two Ti-N bonds of length 2.04 Å and the distance of edge N 

to the nearest surface O is 1.43 Å. The Ti ions move out from the surface by 0.2-0.3 Å. 

The hBN-layer is anchored at the surface by the interfacial bonds at the B- and N-
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terminated edges and bows towards the centre of the strip to a maximum distance of 3.3 

Å.   

Bader charges for Ti4+ and O2- ions are in the range 9.6-9.7 and 7.1-7.2 electrons, 

respectively. The Bader charges for two surface Ti ions along the B-terminated edge 

increase to 10.0 electrons and the computed spin magnetisations are 0.9 μB; these values 

are typical of reduction to Ti3+. A third Ti ion in the vicinity of the B-terminated edge has 

a computed Bader charge of 9.8 electrons and a spin magnetisation of 0.3 μB, indicating 

partial reduction. The reduction of these cations along the B-terminated edge results from 

charge transfer along the B-O-Ti bond, which is established to maintain the oxidation 

state of the B ions. This is further confirmed by increased Bader charges of 7.7 electrons 

for those surface O ions that bind to the B sites of the hBN ribbon. Along the N-terminated 

edge, the N ion which does not bind to the surface has a computed Bader charge of 7.1 

electrons and a spin magnetisation of 0.6 μB, indicating a localised hole state, due to 

under-coordination. The N and O ions which share a bond each have a Bader charge of 

6.8 electrons. These results indicate a considerable reorganisation of charge at the 

interface; in total, two electrons are transferred from the hBN ribbon to the TiO2 surface. 

The relaxed geometry of the second ribbon model, (BN)42-a101, is shown Figure 5.3.5. 

Adsorption energies of -15.04 and -14.74 eV are computed within DFT-D2 and vdW-DF, 

respectively, corresponding to adsorption energies of -0.36 and -0.35 eV per BN unit. Six 

interfacial bonds are established along each edge of the ribbon (Figure 5.3.5.a and 

5.3.5.b). Of these interfacial bonds, six are B-Obr bonds with lengths in the range 1.40-

1.45 Å. The six Ti-N bonds have lengths of 2.02-2.17 Å. Once again, these bond lengths 

are elongated by 0.01-0.02 Å, in the vdW-DF set-up. 
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Figure 5.3.5 Relaxed atomic structure of (BN)42-a101. Panels (a) and (b) show the 

interfacial bonds formed along the edges of the ribbon and panel (c) shows a top view of 

the modified surface. The adsorption energies are included in the inset of the panel (a), 

as computed via DFT-D2 (vdW-DF). 

Those ions of the ribbon that bind to the surface neighbour each other along their shared 

edge, as shown in Figure 5.3.5.a, and the ions of the edge opposite this binding site are 

not bound to the surface. Hence, the ribbon is twisted at the surface in this binding 

configuration. 

For (BN)42-a101, there is no interfacial charge transfer, although there is some 

redistribution of charge. The computed Bader charges for those Obr ions which bind to B 

increase from 7.1 to 7.6 electrons, while the Bader charges for N sites which bind to the 

surface decrease from 8.0 to 7.5-7.8 electrons. For (BN)42-a101, 12 of the 28 edge sites 



234 

 

bind to the surface; this compares with six of eight edge sites binding to the surface in 

(BN)24-a101. This is reflected in the adsorption energies per BN-unit, which are -0.35 and 

-0.57 eV for (BN)24-a101 and (BN)42-a101, respectively. 

 

Electronic Properties 

 

Figure 5.3.6 Computed PEDOS plots for (a) 1-(BN)3-a101, (b) 2-(BN)3-a101, (c) 3-

(BN)3-a101, (d) (BN)24-a101 and (e) (BN)42-a101. The VBM of the titania support is set 

to 0 eV. 

The computed projected electronic density of states (PEDOS) plots for BN-modified TiO2 

are shown in Figure 5.3.6. For 1-(BN)3-a101 (Figure 5.3.6.a), N-p derived peaks emerge 

at 0.5, 0.8 and 1.7 eV above the VBM of the titania support. For 2-(BN)3-a101 (Figure  
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5.3.6.b), N-p derived peaks emerge at 0.4 and 1.8 eV, with additional peaks extending 

from 0.8 to 1.3 eV, above the VBM.  For 3-(BN)3-a101, shown in Figure 5.3.6.c, N-p 

states extend to 1.4 eV above the O-p derived VBM.  

Figure 5.3.6.d shows the PEDOS for (BN)24-a101 and we see that N-p states extend to 

1.5 eV above the titania VBM. Reduced Ti3+ states emerge in the titania energy gap at 1.0 

and 1.3 eV above the VBM, as indicated by the dashed peaks in Figure 5.3.6.d. In 

addition, the N ion at which the hole localises, as described previously, contributes an 

empty state just below the CBM. For (BN)42-a101 (Figure 5.3.6.e), N-p states extend to 

1.8 eV above the VBM. 

The PEDOS plots computed for hBN-modified anatase TiO2 show that modification has 

a significant impact on the energy gap. In particular, for the hBN ring models, 

modification enhances the DOS at the VBM while having little or no effect on the titania 

CBM. For the hBN ribbon model, the features of the DOS depend on the nature of the 

bonds formed at the interface. Under-coordinated B ions will bind to O sites of the surface 

and transfer charge across the interface, reducing surface Ti ions to Ti3+ and these 

occupied states will emerge in the band gap. Holes localise at low-coordinated N ions and 

this results in empty states below the titania CBM. Consistent across all models are N-p 

states that extend into the energy gap and we predict that modification of TiO2 with hBN 

will yield a red-shift in the light absorption edge.  

The extent of the impact on the DOS is coverage dependent. At low coverages, N-p peaks 

emerge in the energy gap, as shown in Figures 5.3.6.a and 5.3.6.b, while at higher 

coverages a continuum of states extend the VBM to higher energies. These features 

suggest facile charge transfer from the hBN modifiers to the TiO2 support, with 

consequences for the photocatalytic activity. 
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Photoexcitation Model 

Table 5.3.1 Energies computed in the photoexcitation model. Vertical singlet-triplet 
energy difference (Evertical), the relaxed singlet-triplet energy difference (Eexcite) and the 

relaxation energy (Erelax) for hBN-modified anatase (101). Values computed for the 

unmodified TiO2 anatase (101) surface have been included for reference. 

Composite structure Evertical (eV) Eexcite (eV) Erelax (eV) 

Anatase (101) 2.72 2.19 0.53 

1-(BN)3-a101 1.63 0.31 1.32 

2-(BN)3-a101 1.64 0.51 1.13 

3-(BN)3-a101 1.47 0.31 1.17 

(BN)42-a101 0.98 0.20 0.79 

 

The photoexcitation model is applied only to the hBN ring modified surfaces and (BN)42-

a101, as the accumulation of charge at the interface of (BN)24-a101 complicates 

implementation of the model with this system. Within this model, three energies are 

computed: the vertical single-triplet energy (Evertical); the singlet-triplet energy  (Eexcite); 

and the relaxation, or trapping energy (Erelax). These computed energies are presented in 

Table 5.3.1. 

From the values for Evertical in Table 5.3.1, it is clear that the underestimation of the band 

gap, which is inherent in approximate DFT, persists in the current computational setup. 

Despite these shortcomings, inferences regarding the impact of the modification may be 

drawn by comparing the energies computed in the photoexcitation model across the 

different systems and, in particular, with reference to the unmodified anatase (101) 

surface.1, 3-4  

The values for Evertical indicate that modification with hBN results in a reduction of the 

optical band gap. This is expected from analysis of the DOS plots, which show N-p states 
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lying higher in energy than O-p states of the anatase support, so that the modified energy 

gap involves transitions from the occupied N-p states to the Ti-d dominated CBM. Values 

for Evertical of 1.63 eV, 1.64 eV, 1.47 eV, and 0.98 eV are computed for 1-(BN)3-a101, 2-

(BN)3-a101, 3-(BN)3-a101 and (BN)42-a101, which can be compared with a computed 

value of 2.72 eV for the unmodified surface. 

In addition to decreases in the values for Evertical, the modification also enhances the 

stability of the photoexcited electrons and holes. The values for Eexcite between 0.2-0.5 eV 

indicate that the stability of the triplet electronic state is significantly enhanced with 

respect to the unmodified surface and suggest a facile transfer of charge across the hBN-

TiO2 interface. Further evidence for the stability of the charges is given by the values for 

Erelax which are larger for the ring-modified surfaces by 0.6-0.8 eV and for (BN)42-a101 

by 0.2 eV, relative to bare anatase (101).  

Localisation of electrons and holes is shown in the excess spin density plots in Figure  

5.3.7 for the hBN-modified anatase surfaces. For each of the surfaces the electron 

localises at a surface Ti site; the computed Bader charge increases from 9.6 to 9.9 

electrons for Ti in 1-(BN)3-a101, 2-(BN)3-a101 and (BN)42-a101, and from 9.7 to 10.0 

electrons for 3-(BN)3-a101.  

For each system, the spin magnetisation computed for the Ti ion at which the electron 

localises is 0.9 μB. These results correspond to reduction of Ti to Ti3+. The hole 

predominantly localises at a two-fold coordinated N site for 1-(BN)3-a101 (Figure  

5.3.7.a), 3-(BN)3-a101 (Figure 5.3.7.c) and (BN)42-a101 (Figure 5.3.7.d). For these sites 

the Bader charges decrease from 7.8 to 7.1 electrons and the computed spin 

magnetisations are 0.6 μB. For 2-(BN)3-a101 (Figure 5.3.7.b), the hole is distributed over 
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two doubly-coordinated N ions; for these sites the Bader charges decrease from 7.9 to 7.5 

electrons and the spin magnetisations are 0.3 μB. 

 

Figure 5.3.7 Excess spin density plots showing the localisation of photoexcited electrons 

and holes in (a) 1-(BN)3-a101, (b) 2-(BN)3-a101, (c) 3-(BN)3-a101 and (d) (BN)42-a101. 

The spin density isosurfaces are yellow for electrons and blue for holes and enclose spin 

densities of up to 0.02 electrons/Å3. 
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5.3.3 Discussion 

The anatase to rutile transition occurs between 600-700 °C. The BN-TiO2 samples 

showed an increased transition temperature when compared with the control (0% BN-

TiO2). The control is 100% rutile from 600 °C, while the modified samples were mixed 

phased at this temperature and only converted to 100% rutile at 650 °C. In addition to 

TiO2 peaks, XRD also showed the presence of hexagonal BN, based on its characteristic 

peak at 26°. Due to Ti-B or Ti-B-O not being present in the XPS analysis, we conclude 

that the BN is present on the TiO2 surface and is not doped within the TiO2 crystal lattice 

structure. While DFT calculations suggest the prescence of Ti-N bonds at the interface, 

XPS analysis did not show the presence of Ti-N peaks.43 

The photocatalytic activity of the 0% and 16% BN-TiO2 were evaluated by examining 

the photocatalytic oxidation of 1, 4-dioxane. The absence of the more photocatalytically 

active anatase phase after calcination at 700 ºC reduces the catalytic efficiency and the 

removal rate was not significantly different to that obtained without a catalyst. 

Unmodified anatase TiO2, calcined at 500 ºC, removes part of the 1, 4 dioxane after 240 

minutes (~60%).  

The 16% BN-TiO2 samples calcined at 500 and 600 °C both showed a significant 

improvement compared to the unmodified anatase catalyst. The 16% BN-TiO2 (500 °C) 

yielded the best removal efficiency, probably due to the higher proportion of the anatase 

phase (100% versus 65.5% for 16% BN-TiO2 (600 °C)) and the presence of BN. Although 

16% BN-TiO2 (500 °C) and unmodified TiO2 (500 °C) consist of 100% anatase phase, 

with similar particle sizes, the presence of BN clearly enhances the removal efficiency 

and kinetics. This could be due to the better visible light response of BN-TiO2 in 

comparison to unmodified TiO2.30, 35 Different authors report that the formation of B-O-
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Ti bonding extends the absorption edge from UV to the visible range, which has 

implications for photocatalytic treatment under solar conditions.30, 35 

 

Figure 5.3.8 Proposed photocatalytic mechanism of BN-TiO2 nanocomposites. 

Lui et al. and Singh et al. propose that the TiO2 nanoparticles are bonded onto the hBN 

sheets and suggest that this is done via a B-O-Ti bond.30, 35 Sheng et al. further confirmed 

this during their examination of the BN-TiO2 nanocomposites for the photocatalytic 

degradation of Rhodamine B and methylene blue.34 Figure 5.3.8 shows the proposed 

photocatalytic mechanism that occurs between hBN and TiO2. The photogenerated 

electrons transfer across the B-O-Ti bond from the TiO2 CB to BN, seen in Figure  

5.3.8.30, 35 The electrons are not in a fixed position within the π-π conjugate system of 

BN.35 As a result of this, there is a slower rate of recombination of the electron-hole pair. 

This results in an increased rate of photocatalysis for TiO2.35 
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5.4 CeOx-modified TiO2 

What follows is adapted from an article entitled: “CO2 and Water Activation on Ceria 

Nanocluster Modified TiO2 Rutile (110)”, published in the Journal of Materials 

Chemistry A.3 

 

DOI:  https://doi.org/10.1039/C8TA01270A 

 https://cora.ucc.ie/handle/10468/6042 

Note: Despite the title of this article, and in the interests of brevity and remaining on topic 

with the rest of this thesis, results pertaining to CO2 activation are omitted from this  

section. 

 

5.4.1 Introduction 

In this paper, we present a DFT study of heterostructures of TiO2 rutile (110) modified 

with sub-nm nanoclusters of CeO2. The clusters have compositions Ce5O10 and Ce6O12 

and complement earlier work on Ce2O3 reduced nanoclusters supported on rutile (110).44-

46 Ceria is an interesting modifier as Ce 4f states are crucial in optical properties, 

reducibility and reactivity.47-48 The facile conversion between Ce4+ and Ce3+ oxidation 

https://doi.org/10.1039/C8TA01270A
https://cora.ucc.ie/handle/10468/6042


242 

 

states has important implications for catalytic performance and metal/CeOx/TiO2 

composites with Ce3+ cations display enhanced activity for the water gas shift (WGS) 

reaction.44-46, 49  

 

5.4.2 Results  

Stoichiometric CeO2-modified TiO2 structures 

 

Figure 5.4.1 Top panels show the relaxed atomic structure of the Ce5O10-rutile-(110) 

composite in (a) stoichiometric form and after the formation of (b) one (ground state) and 

(c) two  (reduced state) oxygen vacancies. Bottom panels show the atomic structure of 

the Ce6O12-rutile-(110) composite in (d) stoichiometric form and after the formation of 

(e) two (ground state) and (f) three (reduced state) oxygen vacancies. Insets of the left 

panels show the adsorption energies of the stoichiometric nanoclusters. The numbers in 

the black circles indicate the order in which oxygen atoms are removed from the 

nanocluster and are consistent with Table 5.3.1. In this and subsequent figures, Ti is 

indicated by a grey sphere, O by a red sphere and Ce by a cream sphere. 
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We focus on ceria nanoclusters of two compositions, Ce5O10 and Ce6O12, and we first 

examine the stoichiometric nanocluster adsorption energies and structures shown in 

Figures 5.4.1.a and 5.4.1.d. The adsorption energies are -8.26 eV for Ce5O10 and -5.91 

eV for Ce6O12 adsorption on rutile (110). The negative adsorption energies show that 

adsorption is favourable, with the magnitude of the energy indicating the strength of the 

interaction. From the adsorption energies we expect the nanoclusters to be stable at the 

surface without desorbing or migrating over the surface to form aggregates. Henceforth, 

the composites will be denoted as Ce5Ox-rutile-(110) and Ce6Ox-rutile-(110), where the 

subscript x will vary according to the stoichiometry. Oxygen atoms of the surface and 

nanocluster are denoted OS and OC, respectively. 

In the Ce5O10-rutile-(110) composite (Figure 5.4.1.a), two Ce ions are coordinated to four 

OC atoms; three Ce cations are five-fold coordinated and form interfacial bonds with 

bridging OS ions with Ce-O distances of 2.3-2.4 Å. Each OC ion is two-fold coordinated 

with the exception of one at the centre of the cluster which coordinates to three cluster 

cations. Three OC ions bind to surface Ti ions with Ti-OC distances of 1.8-2.0 Å.  

For Ce6O12-rutile-(110) (Figure 5.4.1.d), five Ce are five-fold coordinated with one four-

fold coordinated Ce cation. Two cluster Ce each bind to two bridging OS with Ce-O 

distances of 2.4-2.6 Å. The OC ions bind to three metal cations with the exception of three 

terminal OC, which are singly coordinated to Ce ions. Ce-O distances involving singly 

coordinated OC ions are 1.9 Å and compare with typical Ce-O distances in the range of 

2.1-2.6 Å for the other OC atoms. Two OC each form a single interfacial bond with surface 

titanium ions, with Ti-OC distances of 1.8 Å and 1.9 Å. 

The interfacial bonding between the nanocluster and the surface results in an appreciable 

distortion of the local atomic structure at the surface. Where a bridging OS is bound to a 
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nanocluster cation, the Ti-OS bond is elongated by up to 10% compared with a typical 

unmodified bond length of 1.88 Å. Ti atoms that bind with OC migrate out of the surface 

plane towards the cluster by as much as 0.92 Å, increasing the subsurface Ti-O distance.   

 

Reduction of CeO2-rutile by oxygen vacancy formation. 

Table 5.4.1 Computed oxygen vacancy formation energies in CeO2-rutile composites. 

The listed values correspond to the most favourable configuration after removal of one, 

two or three oxygen atoms in the cluster and correspond to the numbering in Figure 5.4.1. 

Reaction Oxygen vacancy Formation energy (eV) 

Ce5O10 → Ce5O9 Evac,1 +0.02 

Ce5O9  → Ce5O8 Evac,2 +1.33 

   

Ce6O12 → Ce6O11 Evac,1 -0.26 

Ce6O11 → Ce6O10 Evac,2 -0.62 

Ce6O10 → Ce6O9 Evac,3 +0.31 

 

From the relaxed, stoichiometric nanocluster-surface composites, we remove OC ions and 

compute the corresponding vacancy formation energies. Previous work on small CeO 2 

structures on rutile (110) has shown that these prefer to be reduced, with loss of oxygen 

in the ground state, giving composition Ce2O3.46-47 It is not known if a similar composition 

would be found for larger but still sub-nm ceria clusters. The oxygen vacancy formation 

energies are important as their stability determines the stoichiometry of the composite. If 

the composite is then reduced, the formation energy can be a further important factor in 

determining if feedstock species will interact with the CeOx-rutile composites. If the 

energy cost to form a reducing vacancy is low, the system favours non-stoichiometry and 

fixation and activation of molecular species, via a redox or Mars van Krevelen process, 
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may not occur and no reactions can take place. Conversely, while large vacancy formation 

energies can promote reoxidation via feedstock reduction, these require a large initial 

energy input and may also result in too strong interaction with molecular species, leading 

to poisoning of the surface. 

Table 5.4.1 presents the most favourable computed oxygen vacancy formation energies 

in each supported ceria nanocluster; a full set of vacancy formation energies is presented 

in Table B.3.1 in Appendix B. The most stable oxygen vacancy in Ce5O10-rutile-(110), 

which forms Ce5O9-rutile-(110), has a small cost of +0.02 eV so that the ground state is 

off-stoichiometric. For a second oxygen vacancy, to give Ce5O8-rutile-(110), the most 

stable vacancy site has an energy cost of +1.33 eV, relative to Ce5O9-rutile-(110). Thus 

the second oxygen vacancy is the reducing oxygen vacancy and this has a moderate cost.  

For Ce6O12-rutile-(110), the first two oxygen vacancies have negative formation energies, 

of -0.26 eV and -0.62 eV, and will form spontaneously at T = 0 K; the ground state is 

highly off-stoichiometric, with composition Ce6O10-rutile-(110). This instability of the 

stoichiometric composite sheds light on the small adsorption energy of Ce6O12 relative to 

Ce5O10. The energy cost required to produce the most stable third oxygen vacancy, giving 

Ce6O9-rutile-(110), is +0.31 eV. This cost is moderate and we consider the Ce6O9-rutile-

(110) composite as being in a reduced state. Thus, for rutile modified by a sub-nm ceria 

nanocluster, we expect a highly non-stoichiometric system with multiple potential 

activation sites at moderate temperatures, consistent with the work of Graciani et al.
47 

Figure 5.4.1 shows the atomic structures of the non-stoichiometric ground state (5.4.1.b 

and 5.4.1.e) and reduced (5.4.1.c and 5.4.1.f) nanocluster-surface composites; black 

circles in the images indicate the site number of the removed oxygen, corresponding to  

Table 5.4.1.  
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After formation of the first oxygen vacancy in Ce5O10-rutile-(110), the two Ce ions which 

were bound to this oxygen maintain their coordination by binding to OS atoms (Figure  

5.4.1.b). In total, three new nanocluster-surface bonds are formed, two involving bridging 

OS and the third involving an in-plane OS, which migrates out from the surface by 0.1 Å. 

One Ce-OS bond is broken during the relaxation; the coordination of the Ce is maintained 

by binding to the central OC atom with the latter now four-fold coordinated. After 

formation of the second vacancy, yielding Ce5O8-rutile-(110) (Figure 5.4.1.c), one Ce 

ion is three-fold coordinated, while the remaining Ce are four- and five-fold coordinated. 

In both the ground state, with one O vacancy, and the reduced composite, with two O 

vacancies, there are nine interfacial bonds, up from seven in the stoichiometric Ce5O10-

rutile-(110) composite. 

For Ce6O12-rutile-(110), the formation of oxygen vacancies to produce the ground state, 

Ce6O10-rutile-(110) (Figure 5.4.1.e), and reduced, Ce6O9-rutile-(110) (Figure 5.4.1.f), 

composites has no impact on the number of interfacial bonds. However, the Ce ions to 

which the removed terminal O atoms were bound relax towards the nanocluster, 

increasing their coordination by binding to other OC atoms. 

In these non-stoichiometric nanocluster-surface composites we expect to find two 

electrons released for each neutral oxygen vacancy and spin density plots are used to 

determine the location of the electrons after relaxation. Spin density plots for the ground 

and reduced states of CeOx-rutile are presented in Figure 5.4.2. Electron localisation 

occurs at Ce atoms in each nanocluster, which results in the formation of reduced Ce3+ 

cations. Ce3+ form in preference to Ti3+ cations, as also reported in DFT+U studies of Ce-

doped TiO2
50-52 and some surfaces.44-45 
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Figure 5.4.2 Excess spin density plots for Ce5O10-modified rutile (110) with (a) one 

(ground state) and (b) two (reduced) oxygen vacancies and Ce6O12-modified rutile (110) 

with (c) two (ground state) and (d) three (reduced) oxygen vacancies. The spin density 

isosurfaces are yellow and enclose spin densities of up to 0.2 electrons/Å3. The roman 

numerals in the panels on the right hand side correspond with the labelling in Table 5.4.2. 

For the non-stoichiometric ground states, with compositions Ce5O9-rutile-(110) and Ce6-

O10-rutile-(110), two and four Ce atoms are reduced as shown in Figures 5.4.2.a and 

5.4.2.c. When the composites are reduced, giving compositions Ce5O8-rutile-(110) 

(Figure 5.4.2.b) and Ce6O9-rutile-(110) (Figure 5.4.2.d), four and six Ce atoms are 

reduced respectively.  
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Table 5.4.2 Computed Bader charges for the cerium ions in the supported nanoclusters 

before and after formation of one or more oxygen vacancies. Superscripts a, b, and c denote 

the stoichiometric, off-stoichiometric ground state, and reduced nanocluster-surface 

composites respectively. Reduced Ce3+ are highlighted in bold. 

  aCe5O10 bCe5O9 cCe5O8     aCe6O12 bCe6O10 cCe6O9 

CeI 9.6 9.9 9.9  CeI 9.7 10.0 10.0 

CeII 9.6 9.6 9.9  CeII 9.7 9.8 10.0 

CeIII 9.8 9.8 9.8  CeIII 9.8 10.0 10.0 

CeIV 9.7 9.9 9.9  CeIV 9.7 9.9 9.9 

CeV 9.7 9.7 10.0  CeV 9.7 9.7 9.9 

          CeVI 9.7 9.9 9.9 

 

These results are confirmed through Bader charge analysis, shown in Table 5.4.2. Typical 

net atomic charge values for Ce4+ ions are in the range of 9.6 to 9.8 electrons for the 

stoichiometric nanoclusters. Upon oxygen vacancy formation and the subsequent 

localisation of excess spin on Ce atoms, the net atomic charges increase by 0.2 electrons 

for reduced cations; this is typical for Ce4+→ Ce3+ reduction.50 The computed spin 

magnetisations for reduced Ce3+ cations are 0.97-0.98 μB. 

In general, Ce-O distances involving Ce3+ species are elongated by 0.1-0.2 Å due to the 

larger ionic radius of Ce3+ compared to Ce4+; this effect is less strong in cases where the 

reduced Ce ions have a lower coordination or where the Ce ion was previously bound to 

a singly coordinated O atom. See Table B.3.2 in Appendix B for details of the Ce-O 

distances in each case. 

 

 

 



249 

 

Electronic properties 

 

Figure 5.4.3 Spin polarised projected electron density of states (PEDOS) for (a) Ce5O10-

, (b) Ce5O9-, (c) Ce5O8-, (d) Ce6O12-, (e) Ce6O10- and (f) Ce6O9-rutile-(110). The top half 

of each panel displays Ti 3d- and Ce 4f-derived states. Bottom halves of the panels display 

contributions to the DOS from surface (OS) and nanocluster (OC) oxygen 2p-derived 

states. Insets in the top panels show the mid-gap Ce-derived states in the range [-0.25 eV, 

+ 2.25 eV]. 

The spin polarised projected electronic density of states (PEDOS) for the stoichiometric, 

off-stoichiometric ground state and reduced nanocluster-surface composites are presented 

in Figure 5.4.3. Figures 5.4.3.a and 5.4.3.d show the stoichiometric configurations, 

where the most obvious feature is the presence of states at the top of the VB for the Ce6O12 

nanocluster. These states are due to singly coordinated OC ions (see Figure 5.4.1.d). 

However, nanocluster-derived oxygen 2p states above the TiO2 VB persist even after 
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removing these oxygen ions. In Figures 5.4.3.b, 5.4.3.c, 5.4.3.e and 5.4.3.f, which 

correspond to the off-stoichiometric CeOx-rutile composites, new states emerge in the 

TiO2-derived band gap, due to the singly occupied 4f1 orbital configuration of reduced 

Ce3+ cations in the oxygen deficient nanoclusters. Modification of rutile with CeOx 

nanoclusters will result in a red shift of the TiO2 adsorption edge; this is due to a 

combination of 2p states of low coordinated OC sites pushing the VBM to higher energy 

and the emergence of mid-gap states associated with reduced Ce3+ ions in the off-

stoichiometric composites. Absorption spectra were computed for unmodified rutile (110) 

and for the ground state composites, Ce5O9- and Ce6O10-rutile-(110) and are shown in 

Figure B.3.2 of Appendix B. The results show a red shift in the adsorption edge due to 

modification and corroborate the analysis of the DOS plots. 

 

Photoexcitation Model 

We apply the photoexcited model to the ground state systems, Ce5O9-rutile-(110) and 

Ce6O10-rutile-(110). Table 5.4.3 presents the computed vertical, singlet-triplet and the 

electron-hole localisation (relaxation) energies, as discussed in Chapter 2. Comparison 

of these computed energies across different structures yields useful qualitative 

information about the effect of surface modification. In particular, a reduction in Evertical 

for a composite structure relative to the unmodified metal oxide will correspond to a red 

shift in light absorption for the surface modified system. 

We note that Eexcite is always smaller than Evertical and the simple VB-CB energy 

difference, as the former includes ionic relaxations and polaron formation in response to 

“exciting” the electron, which stabilise the triplet electronic state. The energies presented 

in Table 5.4.3 show that modification of rutile (110) with CeO2 nanoclusters leads to a 
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red shift in light absorption, whether we consider the vertical or excitation energies. This 

effect is stronger for the larger nanocluster, consistent with the PEDOS. Relaxation 

energies of 0.8 eV upon charge localisation in each heterostructure indicate high stability 

of the photogenerated electron-hole pairs.  

Table 5.4.3 Vertical singlet-triplet energy difference (Evertical), the relaxed singlet-triplet 

energy difference (Eexcite) and the relaxation energy (Erelax) for nanocluster rutile (110). 

Values for unmodified rutile (110) have been included for reference. 

Composite structure Evertical (eV) Eexcite (eV) Erelax (eV) 

Bare-rutile (110) 2.02 1.97 0.05 

Ce5O9-rutile (110) 1.76 0.96 0.80 

Ce6O10-rutile (110) 1.30 0.51 0.80 

 

 

Figure 5.4.4 Spin density plots for the photoexcited electron and hole in Ce5O9-rutile-

(110) for (a) side and (b) top view. The spin density isosurfaces are yellow for electrons 

and blue for holes and enclose spin densities of up to 0.02 electrons/Å3. 
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We can also examine the localisation of the electron-hole pair through analysis of 

computed Bader charges, spin magnetisations and excess spin density plots. Figure 5.4.4 

shows the spin density plots for Ce5O9-rutile-(110) after relaxation of the triplet state; 

electrons are shown in yellow and holes in blue. Spin density plots and analysis for the 

excited state model applied to Ce6O10-rutile-(110) can be found in Section B.3 of 

Appendix B.  

Since the modifier is off-stoichiometric in the ground state, reduced Ce3+ ions are present 

prior to imposing the excited state. For Ce5O9-rutile-(110), shown in Figure 5.4.4, there 

are three unpaired electrons; two are due to the neutral oxygen vacancy and are localised 

at CeI and CeIV (compare with Figure 5.4.2.a). The third electron is the photoexcited 

electron and is localised on CeII; this Ce ion, which was five-fold coordinated in the 

ground state, is four-fold coordinated after localisation of the photoexcited electron and 

the Ce-O bonds are elongated by as much as 10%. Electron localisation at the Ce ion 

increases the computed Bader charge by 0.2 electrons, similar to the trend presented in  

Table 5.4.2, and the computed spin magnetisations are 0.97 μB. 

The hole predominantly localises on a single, low-coordinated OC site, shown in blue in 

Figure 5.4.4. For Ce5O9-rutile-(110), the oxygen site at which the hole predominantly 

localises is two-fold coordinated both before and after photoexcitation; the Ce-O 

distances increase from 2.1 Å in the ground state to 2.4 Å in the excited state. Hole 

localisation is accompanied by a change in the computed Bader charge of the oxygen ion 

from 7.1 to 6.7 electrons. There is some spreading of the hole to neighbouring two-fold 

coordinated OC sites. This is accompanied by changes of <0.1 electrons in the computed 

Bader charges; we can conclude the hole predominantly localises on one OC site. This is 

confirmed by a computed spin magnetisation of 0.73 μB for the oxygen hole on Ce5O9-

rutile-(110).  
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For the CeOx-rutile-(110) composites, both the electron and hole localise on the 

nanocluster modifiers, which may have consequences for recombination. However, the 

spatial separation of the charges is maximal (see Figures 5.4.4 and B.3.3), given that both 

electrons and holes localise at nanocluster sites. In addition, the large relaxation or 

trapping energies act to impede migration of the charges and thus the impact on 

recombination should be minor. We note that this photoexcited model, which imposes a 

triplet state to induce a transition from the VB to the CB, precludes transitions from the 

highest occupied, Ce 4f-derived states of the off-stoichiometric ground states (see Figures 

5.4.3.b and 5.4.3.e). Such transitions amount to electron hopping between Ce sites of the 

nanocluster with no change in electronic configuration after “excitation”. Rather, our 

model with a triplet electronic state (in addition to the unpaired electrons on reduced Ce3+) 

will induce transitions from OC 2p-derived states, which sit at the top of the titania-derived 

VB, to the unoccupied Ce 4f states. 
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5.5 MnOx-modified TiO2 

What follows is adapted from an article entitled: “Activation of water on MnOx-

nanocluster-modified rutile (110) and anatase (101) TiO2 and the role of cation 

reduction”, published in Frontiers in Chemistry.4 

 

DOI:  https://doi.org/10.3389/fchem.2019.00067 

https://cora.ucc.ie/handle/10468/8827 

 

5.5.1 Introduction 

In this study, we examine the photocatalytic properties of manganese oxide modified 

TiO2, using model systems of Mn4O6-nanoclusters modifying the rutile (110) and anatase 

(101) surfaces and consider the role of partial surface hydroxylation in the interfacial 

chemistry.  

MnOx is an interesting modifier as manganese is a multi-valent, reducible element, which 

crystallises in oxides with a variety of oxidation states;53 this will have implications for 

the light absorption properties and reducibility of sub-nm nanoclusters of MnOx dispersed 

https://doi.org/10.3389/fchem.2019.00067
https://cora.ucc.ie/handle/10468/8827
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at the titania surfaces. We have previously studied similar systems of MnOx-modified 

TiO2, in collaboration with experiment, to interrogate their activity for CO2 capture and 

reduction.17  

We investigate the impact of surface hydroxylation on the reduction of the 

heterostructures via oxygen vacancy formation and apply a model for photoexcitation to 

examine the associated energetics and charge localisation. In ref. 17, the Mn4O6-TiO2 

composites were found to be stoichiometric in the ground state for both modified rutile 

and anatase, albeit with moderate costs to produce reducing oxygen vacancies (+0.59 eV 

for rutile and +1.1 eV for anatase). However, the impact of surface hydroxyls on the 

formation of oxygen vacancies was not investigated; in this paper we show that vacancy 

formation is promoted with hydroxyls already present at the TiO2 surfaces. The 

photoexcited state model, which examines localisation of electrons and holes at 

nanocluster metal and oxygen sites, sheds light on experimental observations, which 

suggest that the MnOx-modifiers may facilitate recombination.17 In addition, active 

oxygen vacancy sites play a crucial role in the subsequent interaction of water molecules 

and their adsorption modes, which will be discussed in Chapter 6. In particular, 

dissociation is favoured for the reduced systems; this is an important step in the water 

oxidation reaction.  

 

5.5.2 Results 

Stoichiometric Mn4O6-modified TiO2 OH-rutile (110) and OH-anatase (101). 

To model surface hydroxylation (before the nanoclusters are adsorbed) and the impact on 

the heterostructure chemistry, four water molecules are dissociatively adsorbed at the 

clean rutile (110) and anatase (101) surfaces, which gives a partial coverage of 50%. The 
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computed energy gain when the TiO2 surfaces are hydroxylated at half coverage is -1.03 

eV per water molecule for rutile (110) and -0.80 eV for anatase (101), referenced to the 

total energy of four gas phase water molecules. These indicate favourable water 

adsorption and surface hydroxylation and these models have been used in our previous 

studies.16-17, 54-55 The nature of water molecules adsorbed at metal oxide surfaces, and in 

particular TiO2 surfaces, is widely investigated both experimentally and computationally 

54-56 and readers are referred to ref.57 for a review of the state of the art.  

These models are representative of hydroxylated rutile and anatase surfaces and we are 

not attempting to describe the most stable solutions for water or dissociative water 

adsorption at these titania surfaces.16, 54-55 The hydroxylated surfaces are denoted by OH-

r110 and OH-a101. Oxygen atoms of the surface, cluster and surface bound hydroxyls 

are denoted OS, OC and OOH, respectively, and similar notation is adopted for OH groups. 

For the interaction of water with the modified surfaces, water-derived oxygen and 

hydroxyls are denoted OW and OHW. 

Figures 5.5.1.a and 5.5.1.b show the adsorption energies and relaxed atomic structures 

of the stoichiometric Mn4O6-nanocluster modifying the OH-r110 and OH-a101 surfaces. 

The large, negative adsorption energies indicate that the nanocluster-surface interaction 

is favourable and that the nanoclusters will be stable against desorption and aggregation. 3, 

54-55, 58-60 For Mn4O6-OH-r110 (Figure 5.5.1.a), three Mn ions are four-fold coordinated 

and to each of these is bound a terminal OH. Of these OH groups, one has migrated from 

a Ti site in the rutile surface to an Mn ion of the cluster (OHOH) and two OH groups result 

from the migration of hydrogen from surface hydroxyls to OC atoms (OHC). The fourth 

Mn ion is five-fold coordinated and is bound to three OC and two OS ions (one bridging 

OS and one in-plane OS). Five O ions of the OH-r110 surface bind with Mn of the 

nanocluster (three OS and two OOH) and two OC ions bind to Ti of the surface. Mn-O 
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distances are in the range 1.8-2.1 Å; the shorter distances involve two-fold coordinated O 

ions and for Mn bound to the in-plane OS ion the Mn-O distance is 2.2 Å. Ti ions which 

bind to the nanocluster migrate out from the surface by 0.1 Å, however, distortions to the 

geometry of the rutile (110) surface are minimal. 

 

Figure 5.5.1 Relaxed atomic structures of Mn4Ox modifying the hydroxylated titania 

surfaces. The stoichiometric composites are shown in (a) for Mn4O6-OH-r110 and (b) for 

Mn4O6-OH-a101; the nanocluster adsorption energies are included in the inset. The 

atomic structures after formation of the most stable single OV are shown in panels (c) for 

Mn4O5-OH-r110 and (d) for Mn4O5-OH-a101. The atomic structures of the most stable 

composites with two OV are shown in panels (e) for Mn4O4-OH-r110 and (f) for Mn4O4-

OH-a101. The energy costs to produce OV are included and computed relative to the 

structure with one less OV. Atomic species and oxidation states are indicated by the 

colours in the legend on the right hand side. 
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For Mn4O6-OH-a101 (Figure 5.5.1b), three Mn ions are four-fold coordinated and one 

Mn is five-fold coordinated. Five OC sites are two-fold coordinated with one OC ion 

binding to three Mn ions and a H atom which has migrated from a bridging OS site. Of 

the six interfacial bonds between the Mn4O6 nanocluster and OH-a101, three involve Mn 

and OHOH groups; two involve Mn and bridging OS sites and the sixth is a Ti-OC bond. 

Mn-O distances are in the range 1.7-2.1 Å. 

For Mn4O6 adsorbed at OH-r110 and OH-a101, the computed Bader charge for each of 

the Mn ions is 11.3 electrons, which is typical of Mn3+ ions (see Table 5.5.1).17 The spin 

magnetisations for these sites are each 3.9 μB, which reflects the 3d4 configuration of the 

Mn3+ ion. 

Table 5.5.1 Computed Bader charges for the manganese ions in the supported 

nanoclusters, before and after formation of one or more OV. Also included are Bader 

charges for titanium ions of the support which are reduced after vacancy formation. 

Reduced Mn2+ and Ti3+ are highlighted in bold. 

Surface  OH-r110     OH-a101  

Modifier Mn4O6 Mn4O5 Mn4O4     Mn4O6 Mn4O5 Mn4O4 

MnI 11.3 11.5 11.5  MnI 11.3 11.5 11.5 

MnII 11.3 11.2 11.2  MnII 11.3 11.3 11.6 

MnIII 11.3 11.2 11.5  MnIII 11.3 11.3 11.6 

MnIV 11.3 11.5 11.5  MnIV 11.3 11.5 11.5 

TiI 1.3 1.3 1.7        

 

For the Mn4O6 nanocluster adsorbed at OH-a101, there is an accumulation of positive 

charge at those OC sites that are doubly-coordinated to Mn ions of the nanocluster. 

Computed Bader charges of 7.0 electrons for these OC sites compare with 7.3-7.7 

electrons computed for O2- anions of the OH-a101 surface. The nanocluster-surface 

interaction is not as strong at the OH-a101 surface, as indicated by the smaller adsorption 
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energy. As a consequence, the supported nanocluster retains characteristics of the gas 

phase, for which the OC ions have computed Bader charges in the range 7.0-7.1 electrons. 

 

Oxygen Vacancy Formation 

The most stable modified surfaces with a single OV are shown in Figure 5.5.1.c for 

Mn4O5-OH-r110 and Figure 5.5.1.d for Mn4O5-OH-a101. For the modified OH-r110 

surface the formation energy of a single OV is -0.26 eV and this formation energy 

indicates that OV will form spontaneously. The next three most stable vacancy sites have 

formation energies in the range 0.60-0.82 eV. After formation of the most stable vacancy, 

two Mn ions are three-fold coordinated and the third and fourth Mn cations are four- and 

five-fold coordinated. Two bridging and one in-plane surface oxygen are bound to Mn 

ions of the nanocluster. Two OC ions bind to surface Ti sites, while three OC ions are 

bound only to Mn and H ions.  

The formation of the neutral oxygen vacancy releases two electrons. Bader charge 

analysis reveals that the electrons localise at the three-fold coordinated Mn sites of the 

nanocluster. The computed Bader charges on these sites increase from 11.3 to 11.5 

electrons; see Table 5.5.1 for computed Bader charges of reduced Ti and all Mn sites. 

The computed spin magnetisations are 4.6 μB for these Mn sites; this is typical of the 

formation of reduced Mn2+ ions, which has an electronic configuration of 3d5.  

The most favourable structure with one OV is more stable than the second most favourable 

by 0.9 eV. However, the relaxed atomic structures of these configurations are very similar 

(compare Figure 5.5.1.c with Figure B.4.2.a in Appendix B). The difference in energy 

arises from the distribution of excess charge. For the OV structure shown in Figure  

B.4.2.a, one excess charge localises at a five-fold coordinated surface Ti site, for which 
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the Bader charge increases from 1.3 to 1.7 electrons. A computed spin magnetisation of 

1.0 μB reflects the 3d1 configuration of reduced Ti3+.  

For the modified OH-a101 surface, the most stable OV has a formation energy of -0.42 

eV, which indicates that it will form spontaneously, so that the ground state is off-

stoichiometric (vacancy formation energies for other sites of the nanocluster were in the 

range 0.5-1.3 eV). This compares with Mn4O6 modifying bare anatase (101) which was 

found to be stoichiometric in the ground state.17 After the formation of this OV, two Mn 

ions relax towards the titania surface and bind with bridging OS sites so that, in this 

configuration, each Mn ion is four-fold coordinated. Bader charge analysis and computed 

spin densities indicate that two Mn ions are reduced to Mn2+, having computed Bader 

charges of 11.5 electrons and computed spin magnetisations of 4.6 μB. The next most 

stable structure with one OV is shown in Figure B.4.2.b; in this configuration three Mn 

ions are reduced to Mn2+ and this is accompanied by an accumulation of postive charge 

on two-fold coordinated OC ions, for which the Bader charges were computed as 7.0 

electrons. 

The formation of the second OV has a moderate energy cost for both MnOx-modified TiO2 

surfaces, however the modified anatase surface is reducible at a lower energy cost. Given 

that the anatase surface is more easily hydroxylated,57 which these results indicate 

promotes vacancy formation, one would expect more OV present on modified anatase. 

That OV formation is more facile for modified anatase corroborates previous experimental 

work on MnOx-TiO2.17 The most stable configurations of the heterostructures with two 

OV are shown in Figures 5.5.1.e and 5.5.1.f for Mn4O4-OH-r110 and Mn4O4-OH-a101, 

respectively. For Mn4O4-OH-r110, the two most stable OC sites for formation of a second 

OV had similar formation energies. One such configuration is described here and the other 

is included in Section B.4 of Appenxix B. For the structure shown in Figure 5.5.1.e, the 



261 

 

removed OC ion was two-fold coordinated to a cluster Mn and surface Ti ion. After 

vacancy formation the Mn ion binds to a bridging OS ion and remains three-fold 

coordinated. In this configuration three Mn ions are reduced; the Bader charges and spin 

magnetisations for these sites are 11.5 electrons and 4.6 μB, respectively. Similarly, for 

the Ti site to which the removed OC was bound, the Bader charge and spin magnetisation 

are 1.7 electrons and 1.0 μB. Hence, the Mn4O4-OH-r110 heterostructure with two oxygen 

vacancies has one Ti3+ and three Mn2+ ions. 

For the modified OH-a101 surface, a three-fold coordinated OC site, which forms a 

hydroxyl group bridging two Mn ions, has the lowest cost to produce a second OV. One 

Mn ion that was bound to the removed OC atom is two-fold coordinated, having been 

originally coordinated to three OC ions and one OOH ion. The second Mn ion is three-fold 

coordinated, having been four-fold coordinated prior to vacancy formation. The H ion 

which was bound to the removed OC migrates to another OC ion. In this Mn4O4-OH-a101 

configuration, there are four Mn2+ ions, with computed Bader charges of 11.5-11.6 

electrons and spin magnetisations of 4.6 μB.  

Additional structures with two OV are presented in Figures B.4.2.c, for Mn4O4-OH-r110, 

and B.4.2.d, for Mn4O4-OH-a101; these are close in energy to the configurations 

described above, and differ in the distribution of excess charge over Mn and Ti sites. 

Hence, Mn and Ti sites should be present at the surface in a variety of oxidation states. 

The localisation of electrons at Ti and Mn sites is also accompanied by localised geometry 

distortions. The cation-O distances increase by ~0.1 Å after reduction, reflecting the 

larger ionic radii of Mn2+ and Ti3+, compared to Mn3+and Ti4+.61 
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Electronic Properties  

 

Figure 5.5.2 Projected electronic density of states (PEDOS) plots for (a) Mn4O5-, and (b) 

Mn4O4-OH-r110 and (c) Mn4O5-, and (d) Mn4O4-OH-a101. The titania VBM is set to 0 

eV and the Fermi energy is indicated with a dashed line. The top half of each panel 

displays Ti and Mn 3d states. The bottom halves of the panels show contributions from 

O 2p states of the surface (OS), surface bound hydroxyls (OOH) and nanocluster (OC). The 

inset in panel (b) shows the mid-gap occupied Ti 3d states in the range [0 eV, 1 eV]. 

The projected electronic density of states (PEDOS) for the heterostructures are presented 

in Figure 5.5.2. Since the heterostructures are off-stoichiometric in the ground state, the 

PEDOS plot for Mn4O6-OH-r110 and Mn4O6-OH-a101 have been omitted from Figure 

5.5.2, and are included in Figure B.4.3 in Appendix B, for completeness. The top panels 

of Figure 5.5.2 show the PEDOS of modified OH-r110 for (5.5.2.a) the ground state with 

one OV and (5.5.2.b) the reduced state with two OV. Occupied nanocluster-derived states 



263 

 

(Mn 3d and OC 2p) extend to 0.3 and 0.8 eV above the valence band maximum (VBM) 

of the rutile support for Mn4O5- and Mn4O4-OH-r110, respectively. Unoccupied Mn 3d-

derived states also emerge in the titania band gap at 0.1 and 0.3 eV below the conduction 

band minimum (CBM) for the ground state with one OV and the reduced state with two 

OV. Additional states emerge in the band gap due to occupied Ti3+ states (see inset of 

Figure 5.5.2.b), for the heterostructure with two OV.  

The bottom panels of Figure 5.5.2 display the PEDOS of the modified OH-a101 surface 

for (5.5.2.c) the ground state, with one OV, and (5.5.2.d) reduced state with two OV. The 

PEDOS plot for the ground state, with one OV, shows that occupied Mn 3d- and OC 2p-

derived states extend to 1.3 eV above the titania derived VBM, while unoccupied Mn 3d 

states emerge at 1 eV below the CBM, leading to a significant reduction in the computed 

energy gap relative to TiO2. For the reduced structure, with two OV, each of the Mn ions 

is reduced to Mn2+, and the highest occupied of these states is 1 eV above the VBM. The 

lowest energy, unoccupied state is Mn-derived and is 1 eV below the CBM. For Mn4O4-

OH-a101 the energy gap is 0.6 eV, with our DFT+U set-up showing a reduction over 

unmodified anatase. 

These features of the PEDOS for Mn4Ox-TiO2 can be attributed to formation of interfacial 

bonds, the presence of low-coordinated Mn and OC sites, and the facile formation of OV 

in the supported metal oxide nanocluster. Modification pushes the VBM to higher energy 

and results in the emergence of empty states below the CBM; these effects, and the 

consequent red shift, are greater for modified anatase, consistent with previous reports.17 

These metal oxide nanocluster-modified surfaces are of interest for the oxygen evolution 

half reaction (OER) of the water splitting process and in this context raising the VBM 

from that of TiO2 and towards the water oxidation potential is a desirable effect. Lowering 

of the titania CBM from its favourable position straddling the water reduction potential 
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is detrimental to the hydrogen evolution reaction (HER) activity. However, as H adsorbs 

too strongly at metal oxide surfaces, such heterostructures will in any case not be suitable 

photocathodes for water splitting. 

 

Photoexcitation Model 

Table 5.5.2 Vertical singlet-triplet energy difference (Evertical), the relaxed singlet-triplet 

energy difference (Eexcite) and the relaxation energy (Erelax) for Mn4O5-OH-r110 and 

Mn4O5-OH-a101. Values for hydroxylated rutile (110) and anatase (101) surfaces have 

been included for reference. 

Composite structure Evertical (eV) Eexcite (eV) Erelax (eV) 

OH-rutile (110) 2.08 1.61 0.46 

Mn4O5-OH-rutile (110) 2.00 0.68 1.31 

OH-anatase (101) 2.71 1.52 1.19 

Mn4O5-OH-anatase (101) 2.37 0.95 1.43 

 

We apply the model for the photoexcited state to the ground state systems, Mn4O5-OH-

r110 and Mn4O5-OH-a101. Table 5.5.2 presents the computed vertical, singlet-triplet and 

electron-hole trapping energies, as discussed in Chapter 2. Comparison of these 

computed energies across different structures nonetheless yields useful qualitative 

information about the effect of surface modification and results for the unmodified OH-

r110 and OH-a101 surfaces are included for reference. In particular, Evertical is analogous 

to the optical band gap, and a reduction in this value  for a heterostructure relative to 

unmodified titania implies that modification leads to a red shift in light absorption. 

When comparing Mn4O5-OH-r110 with unmodified OH-r110, we can see that the values 

for Evertical are similar, however Eexcite is reduced by 0.93 eV for the modified surface. 
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Comparing Mn4O5-OH-a101 with unmodified OH-a101, decreases in Evertical and Eexcite 

by 0.34 and 0.57 eV, respectively, indicate that modification leads to a significant red 

shift in light absorption. These results corroborate the analysis of the PEDOS. Erelax is the 

energy gained by the system after structural relaxation in response to the triplet electronic 

state and is related to the stability of the trapped electron and hole. The relaxation energy 

is larger for Mn4O5-OH-r110 than that computed for unmodified OH-r110 (1.31 eV vs 

0.46 eV) and reflects the greater flexibility of the modified system in accommodating the 

triplet electronic state. The relaxation energies for Mn4O5-OH-a101 and unmodified OH-

a101 are comparable. The mixture of Mn oxidation states and the proximity of the Mn 

ions to each other at the anatase surface (neighbouring Mn-Mn distances are in the range 

2.9-3.2 Å for Mn4O5-OH-a101 and 3.0-3.9 Å for Mn4O5-OH-r110) restricts the degree to 

which the nanocluster can respond structurally to the localisation of photoexcited charges.  

Through analysis of Bader charges and spin magnetisations we can determine the electron 

and hole localisation sites and the results of this analysis are represented graphically in 

Figure 5.5.3. For Mn4O5-OH-r110, in Figure 5.5.3.a and 5.5.3.b, the electron localises 

at an Mn site; the Bader charge and spin magnetisation for this site are 11.5 electrons and 

4.6 μB after electron localisation, which are typical of Mn2+ formation. The hole localises 

at an OC site, which is two-fold coordinated to the Mn2+ ion and a surface Ti. In this 

instance the Bader charge is 6.8 electrons and the spin magnetisation is 0.8 μB, which are 

consistent with formation of O-. The Mn2+-O- distance increases by 0.2 Å, relative to the 

ground state. The Ti-O- distance decreases by 0.1 Å. 

For Mn4O5-OH-a101 (Figures 5.5.3.c and 5.5.3.d), the photoexcited electron localises at 

an Mn site of the nanocluster, as confirmed by a computed Bader charge of 11.5 electrons 

and spin magnetisation of 4.5 μB. The hole state localises predominantly at an OC site that 

bridges Mn2+ and Mn3+ ions. After hole localisation the Bader charge for the O- ion is 6.7 
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electrons and the spin magnetisation is 0.8 μB. The Mn2+-O distances increase by 0.2-0.3 

Å. 

 

Figure 5.5.3 Atomic structure of the fully relaxed triplet electronic state imposed on 

Mn4O6-OH-r110 for (a) side and (b) top view and Mn4O5-OH-a101 for (c) side and (d) 

top view. Charge localisation and changes in oxidation state are distinguished by colour 

according to the legend on the right hand side. 

These results show that the electron localises at an Mn site of the supported nanocluster 

and the hole state localises at a neighbouring OC site. Based on this model for the 

photoexcited state, we can conclude that modification does not necessarily promote the 

spatial separation of photoexcited charges. However, both electrons and holes will be 

available at the modified surface for transfer to adsorbed species. 
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5.6 Conclusions 

Nanocluster Adsorption 

In each of the composite surfaces studied in this chapter, the nanocluster surface 

interaction was favourable – the nanoclusters adsorbed strongly at the titania surfaces. 

This indicates that the heterostructures are robust and that the nanocluster modifiers are 

stable against desorption.  

For the MgO and SnO modifiers, presented in Section 5.2, the presence of surface 

hydroxyls improves nanocluster adsorption by facilitating formation of interfacial bonds. 

The results of Section 5.3 show that, at low coverages, hBN rings adsorb strongly at the 

surface with the formation of B-O and Ti-N bonds at the interface. For higher coverages, 

hBN layers are anchored at the surface by bonds between B- and N-terminated edge sites 

and the TiO2 surface. For the hBN ribbon model, adsorption at the anatase surface led to 

electron transfer from the hBN modifier to the TiO2 support. 

For the Mn2O3 modifiers adsorbed at hydroxylated titania surfaces, as described in 

Section 5.5, the properties depend on the phase of the TiO2 substrate. For Mn4O6 adsorbed 

at the hydroxylated anatase (101) surface, one interfacial bond is established between a 

cluster oxygen ion and the surface and Mn ions bind mostly to oxygen ions of the surface 

bound hydroxyls. Conversely, for Mn4O6 at hydroxylated rutile (110), the nanocluster -

surface interaction is more intimate, with Mn ions binding to bridging and in-plane 

oxygen ions of the rutile surface. 

Stoichiometry 

In considering oxygen vacancy formation, we found that both CeO2- and Mn2O3-modified 

TiO2 exhibit off-stoichiometric ground states. In CeO2-TiO2, described in Section 5.4, 
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one or more oxygen vacancies form spontaneously or at very low energy cost, so that 

under typical experimental conditions, there will be oxygen vacancies present. As a 

consequence, Ce3+ ions will be present in the nanoclusters in their ground state. The CeO2-

rutile composites are more reducible compared to unmodified rutile (110) and moderate 

energy inputs are required to produce multiple oxygen vacancies. Electrons released after 

oxygen vacancy formation localise on Ce sites in the supported nanoclusters.  

Both Mn4Ox-OH-r110 and Mn4Ox-OH-a101 favour non-stoichiometry, in contrast to 

unhydroxylated modified TiO2 surfaces, as oxygen vacancies form spontaneously and 

both composites can be considered highly reducible with moderate energy costs for 

subsequent oxygen vacancy formation. Bader charge analysis shows that Mn ions are 

present in a mixture of oxidation states at the hydroxylated surfaces. Both Mn and Ti ions 

are reduced in response to vacancy formation.  

The reduction of the MgO- and SnO-modified composites is significantly enhanced 

compared to bare anatase (101), so that this modification will result in a more reactive 

surface. The role played by surface hydroxyls in the reducibility of the modified surfaces 

depends on nanocluster composition. For Mg4O4-anatase surface hydroxyls lead to a 

significant decrease in the energy cost to reduce the composite. 

Electronic Properties 

The impact of surface-modification on the electronic properties depends on the 

composition of the modifiers. MgO- and SnO-modification of the oxidised and 

hydroxylated anatase (101) surfaces enhances the DOS at the VBM, to give rise to a red 

shift in light absorption. Moreover, for the hydroxylated surfaces, hydroxyl O 2p states 

contribute to the DOS at the VBM. For each hBN-modified system, modification has a 
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significant effect on the energy gap. Occupied N-p states extend the VBM to higher 

energies, which should produce a red shift in light absorption.  

For CeO2-modified rutile TiO2, which has an off-stoichiometric ground state, occupied 

Ce 4f-derived states emerge in the TiO2-derived band gap and O 2p states are present 

above the TiO2 VB, due to low-coordinated oxygen atoms in the supported nanoclusters. 

Modification with Mn4Ox has a significant impact on the light absorption properties. 

Occupied Mn 3d states extend the VBM of the composites to higher energies relative to 

that of the titania support and empty states emerge below the CBM. These features may 

induce a red shift in light absorption, making these systems visible light active. 

Photoexcitation Model 

In all cases, surface modification can enhance the stability and spatial separation of 

photoexcited charges. For MgO- and SnO-modified TiO2, electrons localise at surface Ti 

atoms and holes localise at low-coordinated nanocluster or hydroxyl sites and the 

presence of surface hydroxyls increases the stability of the photogenerated electron-hole 

pair. For hBN-modified anatase, the photoexcitation model corroborated analysis of the 

computed PEDOS plots and showed electron excitation from high-lying N-p states to the 

TiO2 conduction band, with a hole localised on the hBN modifier.  

For CeO2-modified rutile TiO2, both electron and hole localisation occur at Ce and low-

coordinated OC sites, respectively. However, this proximity may not be detrimental as the 

electron-hole pair has a large trapping energy of 0.8 eV, so this can reduce the migration 

of charges over the nanocluster. For MnOx-TiO2, the red shift in the light absorption edge, 

predicted by analysis of the DOS, is confirmed by our model for the photoexcited state. 

In particular, the vertical energy, decreases significantly for Mn4O5-OH-a101 relative to 

that computed for the unmodified, hydroxylated anatase (101) surface. Analysis of this 
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model shows that electrons and holes localise at Mn and neighbouring OC sites, 

respectively, so that modification may not promote separation of photoexcited charges, 

but the trapping energies of the electron and hole are quite high, suggesting high stability.  

In conclusion, surface modification can impart properties important for photocatalytic 

applications. These properties include enhanced reducibility, leading to a higher 

prevalence of active oxygen vacancy sites at the surface, a red shift in light absorption, 

and enhanced stability of excited charges. Experimental corroboration was provided in 

our study of hBN-modified anatase TiO2. The photocatalytic activity of TiO2 was 

successfully increased by interfacing titania with BN. Along with higher anatase contents, 

the red shift in light absorption and promotion of charge carrier separation, which arise 

due to hBN modification, contribute to the observed enhancements in photocatalytic 

performance. The DFT analysis presented in this chapter can be implemented to inform 

the design and aid in the screening of new photocatalytic materials. 
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6 Water Adsorption and Oxidation 

6.1 Introduction 

This chapter presents the results of studies of the interaction of H2O with TiO2 surfaces 

modified with metal oxide nanoclusters. This is important for a number of reactions, such 

as water gas shift or water oxidation and one of the limiting steps in these reactions is 

water dissociation, which usually has an energy cost and an activation barrier.  Section 

6.2 describes the interaction of water with CeO2- and MnOx-modified TiO2, which were 

characterised in detail in Chapter 5.  We focus particularly on oxygen vacancies and 

reduced cations as active sites and identify the characteristics of activation, such as 

dissociation, geometry distortions and charge transfer to the adsorbed species. Given that 

oxygen vacancies have exothermic or moderate formation energies for the modified 

systems, such defects will be present in these composite materials under operating 

conditions or can be induced to form by pre-catalytic treatments. 

Section 6.3 presents the results of a combined experimental and computational study of 

the oxygen evolution reaction (OER) activity of rutile (110) modified with alkaline earth 

oxide (AEO) modifiers, MgO and CaO. The OER is accepted as the bottleneck in overall 

water splitting. A combination of experimental characterisation and DFT elucidates the 

role of AEO-modification in improving the photocatalytic performance. The modified 

surfaces are characterised in terms of photocatalytic material descriptors, similar to the 

analysis of Chapter 5. This study goes beyond the initial water adsorption to investigate 

pathways to water oxidation at various sites of the AEO-modified rutile TiO2 surfaces. 
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6.2 Water adsorption at CeOx- and MnOx-modified TiO2 

6.2.1 Water adsorption at CeOx-modified TiO2  

 

Figure 6.2.1 Relaxed atomic structures of the most stable configurations of H2O adsorbed 

at (a) and (b) Ce5O8-rutile-(110) and (c) and (d) Ce6O9-rutile-(110). Hydroxyl groups 

arising from the spontaneous dissociation at the surface are circled in blue for the water-

derived OH and in orange for the OH involving OC sites. H atoms are represented by 

small white spheres. 

We examined how water interacts at vacancy sites in the reduced CeOx-rutile-(110) 

composites, described in Chapter 5, and computed the adsorption energies. Water 

adsorption is favourable at multiple sites on the supported CeOx nanoclusters. Adsorption 

energies for the most stable adsorption configurations of water are -1.79 eV on Ce5O8-

rutile-(110) and -1.09 eV on Ce6O9-rutile-(110); the corresponding geometries are 
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displayed in Figure 6.2.1. Figure B.3.4 in Appendix B shows additional adsorption sites 

and energies for the H2O-CeOx-TiO2 interaction. 

Starting from water adsorption in molecular form, the most stable adsorption mode is that 

in which the water molecule dissociates spontaneously upon relaxation. This dissociation 

involves the transfer of a H atom to an OC site and the hydroxyl from the water molecule 

bridges two cluster Ce sites. For Ce6O9-rutile-(110), the moderate adsorption energy 

means that hydroxyls should not be over-stabilized and could be active in catalysis. Thus, 

water dissociation and activation can be promoted on these ceria-rutile composites. 

For adsorption of water at Ce5O8-rutile-(110) (Figures 6.2.1.a and 6.2.1.b), the water 

molecule interacts with low-coordinated cluster sites. The OH group fills a vacancy site 

(O1 from Figure 5.4.1.b), and binds to two Ce3+ sites that were four- and three-fold 

coordinated; the latter being the lowest coordinated cluster cation. The second H atom 

transfers to a two-fold coordinated OC site which neighbours the Ce sites bound to the 

hydroxyl and is among the lowest-coordinated OC sites. Ce-O bond lengths involving 

both cluster- and water-derived OH groups are elongated by up to 0.3 Å, relative to 

equivalent Ce-O distances prior to water adsorption. Bader charge analysis reveals that 

there is no charge transfer between the nanocluster and water and no Ce3+ cations are re-

oxidised. There is a charge redistribution, with an increase in charge of 0.3 electrons in 

the nanocluster as a result of formation of hydroxyls, which is predominantly transferred 

to the OC that binds with hydrogen.  

The dissociative adsorption of water at Ce6O9-rutile-(110) is qualitatively similar to 

adsorption at Ce5O8-rutile-(110). For the reduced Ce6O9 nanocluster, the O sites (Ce sites) 

show three-fold (four-fold) or higher coordination. The water molecule dissociates upon 

adsorption with transfer of an H atom to an OC site and the OH group binding to a single 



278 

 

neighbouring Ce ion (Figures 6.2.1.c and 6.2.1.d). The OC and Ce adsorption sites remain 

three- and four-fold coordinated after the interaction due to the breaking of their mutual 

bond. Ce-O bond lengths involving the cluster-derived OH group are elongated by 0.15 

Å, relative to their values before water adsorption. The distances between the Ce atom at 

which the water-derived OH group is adsorbed and the OC atoms with which it still shares 

bonds are similarly elongated. Despite this distortion of the larger nanocluster upon H2O 

adsorption, the interaction is strong and favourable, as shown by an adsorption energy of 

-1.09 eV. After water adsorption, there is a redistribution of charge, with water oxygen 

transferring 0.3 electrons to the nanocluster and this charge is donated to the nanocluster 

oxygen that binds with hydrogen from water. 

 These results compare with studies of water dissociation at Ce2O3-TiO2.1-2 In these 

studies the authors followed the energy pathway from water adsorbed in molecular form 

to dissociation, finding that the dissociation process was exothermic (-0.70 eV) with a 

small energy barrier of 0.04 eV. We found that dissociation of molecular water occurred 

spontaneously, suggesting that the size of the supported CeOx nanocluster and the number 

of Ce3+ sites play a role in the ability of the composite to dissociate water.  

While the ability of metal oxides to dissociate H2O is well established, the mechanism 

which promotes dissociation remains of interest. A number of studies have looked at 

CeO2 surfaces as model systems to study water dissociation, in which the presence of 

reduced Ce3+ species plays an important role.3-6 Defects, step edges and terraces in 

surfaces play a role as such features provide low-coordinated adsorption sites. CeO2 (100) 

and (111) surfaces with O vacancies and Ce3+ ions show a preference for dissociative 

water adsorption, relative to the pristine surfaces, where there is little energetic difference 

between adsorption in molecular and dissociated form.7 Similar results were reported in 

another study of CeO2 (111);8 the presence of O vacancies made dissociative adsorption 
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more favourable, by 1.1 eV relative to molecular water, with no energy barrier. The 

authors also found that Ni and Ni4 at the surface introduced Ce3+ ions and had a 

moderating effect on the water adsorption energies; for Ni/CeO2(111), dissociation was 

favoured by 0.3 eV with a small energy barrier of 0.13 eV. High lying 2p states, derived 

from low coordinated OC sites, with the presence of Ce3+ states in the gap, facilitates 

interactions with water to break O-H bonds.  

A recent study showed that increased lattice strain in the CeO2 (111) surface promotes 

dissociation of H2O over molecular adsorption.9 For the reduced Ce6O9-rutile-(110) 

composite, the Ce-O distances at the sites of H2O adsorption (see Figures 6.2.1.c and 

6.2.1.d), are longer by ~1% relative to typical distances (~2.37 Å) in the pristine CeO 2 

(111) surface. This suggests that tensile strain may indeed contribute to promoting the 

dissociation of water.  In Ce5O8-rutile-(110), Ce-O distances are shorter (~2.2 Å), due to 

the lower coordination of the OC sites, and elongate after the dissociative adsorption of 

H2O. However, the Ce-Ce distance prior to water adsorption is 4.2 Å, which is 

considerably longer than neighbouring Ce-Ce distances (~3.9 Å) in CeO2 (111). After 

dissociative adsorption of water, this Ce-Ce distance decreases to 3.6 Å, further indicating 

that tensile strain may play a role in driving dissociation.  

Figure 6.2.2 shows the PEDOS of the H2O molecule and reduced Ce5O8-rutile-(110) 

composite in the non-interacting case (H2O + surface) and after dissociative adsorption 

(H2O-surface). Similar analysis is provided for Ce6O9-rutile-(110) in Figure B.3.5 of 

Appendix B. For the non-interacting system the molecule and surface are relaxed in the 

same unit cell with sufficient spatial separation such that they do not interact. In the non-

interacting case (Figure 6.2.2.a), the water-derived OW 2p states show well defined peaks 

at energies of -2.9 eV and -0.8 eV relative to the VBM (0 eV) of the TiO2 support.  For 

the interacting case (Figure 6.2.2.b) the OW 2p-derived states overlap the OC 2p-derived 
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states near the VBM of the titania host. For water adsorbed at Ce5O8-rutile-(110), the OW  

2p states broaden and lie below the VBM, overlapping with OC derived states, as the OH 

groups each bridge two Ce sites of the nanocluster. Comparing Figures 6.2.2.a and 

6.2.2.b, the OW-derived states are shifted to lower energies upon dissociative adsorption.  

 

Figure 6.2.2 Spin polarized projected electron density of states (PEDOS) for (a) H2O + 

Ce5O8-rutile-(110) (non-interacting) and (b) H2O-Ce5O8-rutile-(110) (interacting). The 

top half of each panel displays Ti 3d- and Ce 4f-derived states. Bottom halves of the 

panels display contributions to the DOS from surface (OS), nanocluster (OC) and water 

(OW) oxygen 2p-derived states and H 1s states. Insets in the top panels show the mid-gap 

Ce-derived states in the range [-0.25 eV, +2.25 eV]. 

The interaction increases the gap between the occupied Ce 4f-derived states and the CBM 

of the TiO2 host (see insets of panels in Figure 5.4.6); i.e. the occupied Ce3+ states are 

pushed to lower energy after interaction. In addition, integrating the OC and OW-derived 

DOS lying above the TiO2 VBM in both the non-interacting and interacting cases shows 

that after interaction the occupied states are driven to lower energies. The number of states 

lying above the TiO2 VBM is reduced by 2 in the interacting case relative to the non-



281 

 

interacting system; this suggests that passivation of high lying O 2p states is a factor 

driving the interaction of water with the reduced CeOx-rutile-(110) composite surfaces. 

 

6.2.2 Water adsorption at MnOx-OH-TiO2 

For the interaction of water at the MnOx-modified rutile and anatase surfaces, only those 

composites with OV present were considered, as such vacancies are known to be active 

sites at metal oxide surfaces.10-13 Water adsorption is favourable at multiple sites of both 

modified surfaces and the geometries of the most stable adsorption configurations are 

displayed in Figure 6.2.3, while other, less stable, water adsorption structures are shown 

in Appendix B.  

 

Figure 6.2.3 Relaxed atomic structures of the most stable configurations of H2O adsorbed 

at (a) Mn4O5-OH-r110, (b) Mn4O5-OH-a101, (c) Mn4O4-OH-r110 and (d) Mn4O4-OH-

a101. Atomic species are distinguished by colour according to the legend on the right 

hand side.  
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We adsorb water in molecular form at the heterostructures and relax the geometry. For 

Mn4O5-OH-r110, shown in Figure 6.2.3.a, water is adsorbed exothermically in molecular 

form with a computed adsorption energy of -0.75 eV. In this instance, the water molecule 

binds to a three-fold coordinated Mn2+ site with a Mn-OW distance of 2.3 Å. Figure  

B.4.4.a shows dissociative water adsorption at the Mn4O5-OH-r110 surface, which has an 

adsorption energy of -0.31 eV. Upon dissociation, an H atom migrates to a bridging OS 

site and the water-derived hydroxyl (OHW) is singly coordinated to a Mn site with an Mn-

OW distance of 1.9 Å. The dissociation is accompanied by a transfer of charge from OW  

to the nanocluster modifier, indicated by a decrease of 0.4 electrons in the computed 

Bader charge for the OW ion. The Bader charges and spin magnetisations of cation sites 

are unchanged by the adsorption and dissociation.  

Water adsorbs molecularly at Mn4O5-OH-a101, as shown in Figure 6.2.3.b, with an 

adsorption energy of -0.74 eV. The H2O binds to a four-fold coordinated Mn3+ ion with a 

Mn-OW distance of 2.2 Å. Since Mn4O5-OH-r110 and Mn4O5-OH-a101 are the ground 

states of the systems, the single OV having formed spontaneously, these composites 

favour non-stoichiometry so that the strength of interaction with the water molecule is not 

sufficient to promote spontaneous dissociation and adsorption in molecular form is 

favoured. 

The surfaces with two OV show higher reactivity to water, as indicated by the larger 

adsorption energies in Figures 6.2.3.c and 6.2.3.d. Water adsorbs and spontaneously 

dissociates at both Mn4O4-OH-r110 (Figure 6.2.3.c) and Mn4O4-OH-a101 (Figure  

6.2.3.d). For Mn4O4-OH-r110, the water molecule adsorbs at an OV site. An H atom 

migrates to a bridging OS site and the OHW group is doubly coordinated to a Mn and a 

surface Ti site. The Mn-OW and Ti-OW distances are 2.2 Å. Bader charge analysis reveals 

that 0.3 electrons are transferred from the OW to the surface. Despite this charge transfer, 
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the Ti ion which binds to OHW and which was reduced to Ti3+ due to OV formation prior 

to water adsorption, remains in the Ti3+ state. This agrees with work by Henderson et al 

in which no charge transfer was observed between Ti3+ and bridging hydroxyls bound at 

oxygen vacancy sites at the TiO2 rutile (110) surface.14 The authors found that the reduced 

Ti site was only oxidised after interaction of O2 with the Ti3+-OH group. After water 

adsorption and dissociation, the distribution of cation oxidation states is unchanged so 

that there are three Mn2+ ions and one Ti3+. The Bader charge for the bridging OS site to 

which the H ion binds increases from 7.3 to 7.7 electrons which, as discussed in Chapter 

2, is typical of hydroxyl formation.  

For Mn4O4-OH-a101, the water molecule adsorbs at an OV site and after dissociation a H 

atom migrates to an OC ion, which shows an increase in Bader charge, from 7.1 to 7.6 

electrons. The OHW group binds to three Mn2+ ions; the Bader charges and spin 

magnetisations for cation sites are unchanged so that these ions are not involved in the 

charge transfer. However, for the water adsorption configuration shown in Figure  

B.4.4.d, a Mn2+ ion is re-oxidized to Mn3+ after dissociation of the water molecule. In this 

instance the adsorption energy is -1.89 eV and the OHW group is singly-coordinated to 

the re-oxidized Mn ion. 

 

6.2.3 Conclusions 

On both reduced ceria-modified TiO2 systems, water adsorption is exothermic and 

favourable and, importantly, this leads to spontaneous dissociation of water to form 

surface bound hydroxyls. For MnOx-TiO2, oxygen vacancies have an impact on the 

strength of interaction and the most favourable adsorption mode of H2O at the modified 

surfaces. For Mn4O5-OH-a101, with a spontaneously formed OV, water adsorbs only in 
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molecular form. With formation of reducing oxygen vacancies, water adsorption becomes 

more exothermic and leads to spontaneous dissociation to surface bound hydroxyls, 

similar to observations for water interacting at reduced TiO2
13-14 and CeO2

7 surfaces. 
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6.3 Water oxidation steps at AEO-modified TiO2 

What follows is adapted from an article entitled: “Surface modification of Rutile TiO2 

with Alkaline-Earth Oxide Nanoclusters for Enhanced Oxygen Evolution”, published 

in ACS Applied Nano Materials.15 

 

DOI:  https://doi.org/10.1021/acsanm.0c01237 

 https://cora.ucc.ie/handle/10468/10315 

 

6.3.1 Introduction 

In this work, we present an experimental and theoretical study of rutile TiO2 modified 

with nanoclusters of the alkaline-earth oxides (AEO), CaO and MgO. The combination 

of experiment and computation yields a comprehensive and cohesive analysis of the 

activity of AEO-modified rutile TiO2 as a catalyst for the OER.  

https://doi.org/10.1021/acsanm.0c01237
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The synthesis method in this work is incipient impregnation, which is a well-established 

technique for the deposition of modifiers at semiconductor surfaces.16-18 A similar 

synthesis approach has been used to deposit nanoclusters of PtOx,16, 19 SnOx,19 ZnO,20 and 

MoO3,21 on TiO2. Thus, based on this synthesis procedure, the rutile TiO2 surface will be 

modified with dispersed AEO nanoclusters, rather than being doped with the alkaline-

earths incorporated onto lattice sites. Samples were prepared with different loadings of 

the AEO nanocluster modifiers and the performance of nanocluster modified TiO2 as a 

catalyst for the OER was determined.  

In our DFT calculations, we implement models whose use has been widely reported in 

the literature and whose outputs are accepted as material descriptors for the photocatalytic 

performance. We apply this model approach to provide a comprehensive analysis of the 

OER activity of AEO-modified TiO2 and this is complemented by direct comparisons 

with experiment.  

 

Scheme 6.3.1 Multistep preparation synthetic route for alkaline earth oxide supported on 

rutile TiO2. Rational design and photocatalytic studies for OER. 

AEO modification has been previously reported to enhance the photoactivity of anatase 

TiO2 for dye degradation or H2 production using Pt as a co-catalyst.22-23 However, as far 
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as we know, this is the first time that the use of alkaline earth oxide nanocluster 

modification of rutile for OER is reported. Scheme 6.3.1 summarises the experimental 

and modelling approach in developing AEO nanocluster modified rutile for OER. 

We observe clear differences in the activities of CaO- and MgO-modified TiO2 for OER, 

depending on the loading of the AEO nanocluster. In particular, low coverages of highly-

dispersed MgO-nanoclusters yield a significant enhancement, doubling the photonic 

efficiency relative to unmodified rutile. 

We characterise the modified surfaces experimentally and computationally. The structure 

of the heterostructured surfaces was investigated via X-ray diffraction (XRD) and X-ray 

photoelectron spectroscopy (XPS). Further insight into this characterisation is provided 

through DFT calculations. We examine the aggregation of the nanoclusters at the rutile 

surface and, by comparison with metal-oxygen binding energies and formation energies, 

explain trends in the dispersion of the nanoclusters at the rutile surface. In addition, we 

assess the reducibility, via oxygen vacancy formation, of the composite systems.  

UV-vis diffuse reflectance spectroscopy and photoluminescence (PL) spectroscopy show 

the impact of modification on the light absorption properties and charge carrier dynamics, 

respectively. The analysis is supported by DFT computations of the density of states 

(DOS) and a model for photoexcitation, through which we assess the stability of the 

excited state and the localisation of photogenerated electrons and holes.  

To investigate active sites of AEO-modified TiO2 for the OER, we use DFT calculations 

to examine water adsorption at various sites of the stoichiometric and reduced nanocluster 

modified surfaces. This includes water adsorption at nanocluster sites, adsorption at the 

interface between the nanocluster modifier and the titania surface, and water adsorption 

at an already hydroxylated heterostructure. Here, we note that many DFT studies of water 
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oxidation at surfaces ignore the role of surface hydroxylation. We find that reduction of 

the system, and the presence of reduced Ti3+ cations, play a crucial role in the 

photocatalytic performance by stabilising OER intermediates at the surface. Moreover, 

we identify interfacial sites as active sites and this, importantly, indicates that small, 

dispersed nanoclusters will yield the highest OER activity. 

The following sections present selected experimental results, performed by our 

collaborators, and the results of complementary computational studies, performed by the 

author. 

 

6.3.2 Results 

6.3.2.1 Photocatalytic Performance for Water Oxidation 

 

Figure 6.3.1 (a) Photonic efficiencies for MgO- and CaO-modified TiO2 for the OER. 

(b) Photocatalytic O2 evolution (mmol/g) after 60 min for MgO- and CaO-modified TiO2 

(0.5 g/L catalyst, 0.02 M AgNO3, Hg lamp 125 W). 

A series of MgO- and CaO-modified rutile samples were prepared with alkaline earth 

loadings ranging from 0.05-3 at. %, (see Section B.5 of Appendix B). In Figure 6.3.1 

we show the photoactivity of the AEO-modified rutile materials for the OER, with a silver 

nitrate electron scavenger. Depending on the loading of the modifier, surface 
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modification of rutile with both MgO and CaO can lead to improvements in the OER 

activity and the photonic efficiency. 

This improvement is most pronounced for MgO-modified TiO2 (Figure 6.3.1). In 

particular, for an MgO loading of 0.05 at. %, the photonic efficiency and O2 production 

after 60 minutes are double that measured for bare TiO2 rutile. This is a remarkable result 

considering the extremely low levels of surface modification. The efficiency decays as 

the Mg2+ content increases, eventually reaching photoactivities similar to those of bare 

TiO2 for loadings of 2-3 at. %. Such an effect has been observed in other studies of 

surface-modification schemes, where increased loadings of the modifier have a 

detrimental effect on the activity.24-26 This suggests a bi-functionality, where sites of both 

the surface and the modifier play a role in the catalytic activity and indicates a key role 

for nanostructured MgO supported on TiO2. 

For CaO modification, the highest efficiency is attained at a higher Ca2+ ion content, 

compared to Mg2+, but the improvement is less significant compared to MgO 

modification. It is clear that the presence of these modifiers affects the photocatalytic 

activity of rutile TiO2 in different ways. To understand the influence of AEO-

modification we have performed a wide surface, structural and electronic characterisation 

of the catalysts. This analysis is complemented by first principles calculations, with 

particular focus on identifying active sites of water oxidation at the AEO-modified TiO2 

surface. 
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6.3.2.2 Structural and Surface Characterisation 

Experimental Results 

 

Figure 6.3.2 Structural and textural properties of TiO2 rutile photocatalysts: (a) XRD 

pattern of r-TiO2 support; (b) Raman spectra of bare r-TiO2 and alkaline modified r-TiO2; 

(c) N2 adsorption-desorption isotherm (inset: pore size distribution plot) of r-TiO2 

support; (d) SEM image of r-TiO2 support. 

TiO2 rutile was prepared by precipitation and further sulphuric acid pre-treatment. 

Sulphuric acid pre-treatment, prior to the calcination step, can delay the anatase to rutile 

transformation and favours the formation of well-crystallised anatase structures with 

relatively high surface areas.27 Thus, the presence of surface anchored sulphate groups 

stabilises the anatase structure at high temperatures, such as 650 ºC. The transition to 

rutile phase takes place once surface sulphates evolve during calcination. By calcination 
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at 725 ºC, the TiO2 samples show a dominant rutile phase, with a crystallite size of 55 

nm, which denotes a high degree of crystallisation (Figure 6.3.2.a).   

Raman spectra in Figure 6.3.2.b provide further evidence of the predominance of the 

rutile phase. Characteristic rutile Raman modes at 157 cm−1 (B1g), 235 cm−1 (multi-

phonon process), 447 cm−1 (Eg) and 610 cm−1 (A1g) are present. Since Raman 

spectroscopy is very sensitive to different crystalline structures, in accordance with the 

XRD data, tiny bands corresponding to the anatase phase can be seen. There are no strong 

distortions or shifts of the Raman modes after modification with the alkaline earths, 

indicating that there is no doping of the metals onto Ti sites in the rutile lattice. Doping 

would result in formation of oxygen vacancies to compensate the lower oxidation state of 

Mg and Ca, which would distort the local atomic structure and hence the Raman peaks. 

Due to the high calcination temperature to assure the rutile phase, the TiO2 support shows 

a notably low specific surface area of 13 m2/g, with a negligible porosity (Figure 6.3.2.c). 

As expected, the impregnation with the alkaline-earth oxide nanoclusters does not induce 

any notable change in the structure of modified rutile. The morphology of the sample in 

Figure 6.3.2.d for TiO2 rutile from SEM also confirms the sample sintering due to the 

high calcination temperature (Figure 6.3.2.d). 

The presence and dispersion of alkaline-earth ions at the rutile surface have been studied 

by XPS analysis. In Figure 6.3.3, we show the Mg 1s and Ca 1p XPS spectra for samples 

with different coverages of the alkaline earth oxides. The core electron binding energy is 

1304 eV for Mg 1s and 347 eV for Ca 2p, which correspond to Mg2+ and Ca2+.28-29 For 

Ti 2p, the observed binding energies all lie around 458.5 eV, which is the typical value 

for Ti4+ in TiO2. With the introduction of the alkaline earth modifiers, there is a small 

shift in the Ti 2p position towards lower binding energies. This shift has also been 

observed for Mg modified systems and indicates the formation of Ti-O-Mg bonds,30 
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which would be present with alkaline earth oxide nanoclusters supported on the rutile 

TiO2 surface coordinating to surface oxygen atoms. 

 

Figure 6.3.3 XPS spectra for alkaline earth modified TiO2 rutile photocatalysts. 

Differences between Mg and Ca modification can be seen by comparing the chemical 

features of the surface, represented by the data in Table 6.3.1. The Mg/Ti ratio for MgO-

modified TiO2 at the lowest loadings is significantly lower when compared to Ca-

modification at the same nominal loading and compared to higher Mg-loadings. This 

suggests a higher dispersion of Mg2+ at the rutile surface, but this dispersion is not 

observed for Ca2+, even at the lowest loadings. Moreover, as the alkaline-earth content 

increases, the AE/Ti ratio progressively increases for both modifiers, which denotes a 

lower degree of dispersion. This can be due to aggregation to form larger nanoclusters at 

the surface. For higher content samples, Ca/Ti atomic ratios are significantly lower than 

for Mg. 
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Table 6.3.1 Surface features of AEO-modified rutile TiO2 from XPS. 

AE-modified TiO2 AE/Ti ratio O/Ti OH (%) 

Bare TiO2 --- 2.21 11.0 

Mg2+ 

0.10 0.015 2.54 36.1 

1.00 0.587 2.88 27.0 

2.00 0.796 2.90 19.5 

3.00 0.867 2.64 18.0 

Ca2+ 

0.10 0.107 2.32 9.2 

1.00 0.147 2.87 16.9 

2.00 0.260 2.79 14.0 

3.00 0.479 3.08 21.9 

 

MgO-modified TiO2 samples with the lowest loadings show the highest level of surface 

hydroxylation, 36.1% for 0.1% Mg, and the trends in hydroxylation coverage with AE 

loading behave differently for MgO and CaO. For MgO modified rutile, the higher 

dispersion of Mg2+ ions at low coverages appears to favour hydroxylation. For example, 

the sample with Mg 0.1 at. % shows both high dispersion (lower Mg/Ti value of 0.015) 

and a high degree of surface hydroxylation (36.1%). This effect is not observed for the 

CaO-modified series, for which hydroxylation coverage increases with Ca2+ content. 

This result is consistent with previous work which showed that water dissociation is 

favourable for MgO nanoclusters supported on TiO2
31 and on ultra-thin MgO films 

supported on metals (Ag and Mo), but is not favourable on bulk MgO or beyond 3 

monolayer (ML) thick films.32-34 Therefore, as the loading of Mg increases, hydroxylation 

will become less favourable. By contrast, previous work clearly shows that water 

dissociation is favourable on CaO films and on the (100) bulk cleaved surface,35-36 so that 
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the degree of hydroxylation, as a result of water dissociation at the oxide, increases with 

an increase in the loading of CaO on rutile. 

 

Computational Results 

Further insight into the dispersion of AEO nanoclusters at the titania surface is provided 

by DFT calculations. To model AEO-modified rutile TiO2, the most stable rutile surface, 

the (110) facet, is modified with MgO and CaO nanoclusters of three compositions, 4, 8, 

and 12 MgO/CaO units, shown in Figure 6.3.4. The starting geometries for these clusters 

were published in the work of Haertelt et al.37 In this way, we investigate the effects of 

dispersion/aggregation and coverage, for comparison with experimental results.  

 

Figure 6.3.4 Relaxed geometries of the gas phase nanoclusters of MgO and CaO. 

Structures shown are (a) Mg4O4, (b) Mg8O8, (c) and (d) Mg12O12, (e) Ca4O4, (f) Ca8O8, 

(g) and (h) Ca12O12. In this and subsequent Figures Mg is represented by light green 

spheres, Ca by dark green and O by red. 
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For both MgO and CaO, the 4- and 8-unit clusters have similar geometries in the gas 

phase Figure 6.3.4. For the 12-unit clusters, two geometries are considered: a spherical 

cage structure and a cylindrical tube structure. For Mg12O12, the spherical geometry 

(Figure 6.3.4.c) is more stable by 0.26 eV, whereas for Ca12O12 the spherical geometry 

(Figure 6.3.4.h) is more stable by 1.74 eV. 

In addition, two and three 4-unit nanoclusters (NCs) were adsorbed at the surface in 

various configurations for comparison with adsorption of the 8 and 12-unit NCs. The 

most stable configurations, henceforth denoted M4O4-, M8O8- and M12O12-r110 (M = Mg, 

Ca), were used in subsequent calculations and these are shown in Figure 6.3.5. Additional 

geometries and discussion are presented in Appendix B (Figures B.5.2 and B.5.3). The 

systems shown in Figure 6.3.5 correspond to coverages of 25-50% for modification with 

NCs of sizes 4-12 MO units (M = Mg, Ca). 

 

Figure 6.3.5 The top panels show the relaxed atomic structure of rutile (110) modified 

with nanoclusters of composition (a) Mg4O4, (b) Mg8O8 and (c) Mg12O12. The bottom 

panels show the relaxed atomic structure of rutile (110) modified with nanoclusters of 

composition (d) Ca4O4, (e) Ca8O8 and (f) Ca12O12. The adsorption energies are included 

in the insets. In this and subsequent figures Ti is represented by grey spheres, O by red, 

Mg by light green and Ca by dark green. Atoms of the nanoclusters have been enlarged. 
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The modified surfaces shown in Figure 6.3.5 do not necessarily represent global minima, 

as the space of possible adsorption configurations is too large to easily investigate. Rather, 

these geometries are representative structures for which we may compute material 

descriptors relevant to the photocatalytic activity. They are the most favourable structures 

we have found in our search of different configurations. Previous work on modified metal 

oxide surfaces shows that key properties determining the chemistry of these structures are 

not sensitive to the precise adsorption structure of the modifiers at the surface. The 

properties of the modified surface are consistent, so long as the nanocluster modifier binds 

with the surface through new interfacial bonds; that is, new bonds that form between 

cations and anions in the surface and the nanocluster.38 To explore this, we analysed in 

detail a less stable Mg12O12-r110 geometry, Figure B.5.2.a, for which the results are 

discussed in the Appendix B. This analysis shows that there are small quantitative, but 

not qualitative, differences in the computed properties, so that the sensitivity to the precise 

structure is not significant. 

In each structure shown in Figure 6.3.5, the adsorbed geometry of the nanocluster differs 

considerably from the most stable gas-phase structures, which are shown in Figure 6.3.4. 

Upon relaxation, it is more energetically favourable for the MgO and CaO nanoclusters 

to wet over the rutile surface. This is driven by the formation of interfacial bonds between 

surface Ti and nanocluster oxygen as well as surface oxygen and nanocluster cations. Ti-

O or Mg/Ca-O distances shorter than 2.47 Å39 and 2.58/3.11 Å40 are considered as metal-

oxygen bonds. These bonds anchor the nanoclusters at the rutile surface.  

For the example of Mg4O4-r110, (Figure 6.3.5.a), 8 interfacial bonds are established 

between the cluster and the surface. Of these, 3 are Ti to nanocluster oxygen (OC) bonds, 

4 are Mg to bridging surface oxygen (Obr) bonds and there is a single Mg to surface in-

plane oxygen (Oip) bond. 
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For the Mg8O8 and Mg12O12 nanocluster, we can adsorb a single nanocluster or two/three 

Mg4O4 nanoclusters. The most stable relaxed geometries result from an initial structure 

whereby the nanoclusters are adsorbed as two and three Mg4O4 units, shown in Figures 

6.3.5.b and 6.3.5.c. In the relaxed heterostructures the surface Ti to OC distances are 1.76-

2.12 Å. Distances for Mg to surface oxygen sites are 1.92-2.45 Å for Obr and 2.10-2.38 Å 

for Oip. 

The CaO-TiO2 surface modification shows similar changes in the nanocluster structures 

upon adsorption and relaxation. The relaxed Ca4O4-r110 structure (Figure 6.3.5.d) is 

qualitatively similar to that of Mg4O4-r110 (Figure 6.3.5.a), with the formation of 8 

interfacial bonds, consisting of 3 Ti-OC bonds, 4 Ca-Obr bonds and 1 Ca-Oip bond. For 

Ca8O8-r110 (Figure 6.3.5.e), the most stable adsorption configuration is that in which 

two Ca4O4 nanoclusters are adsorbed in proximity but without interacting via shared 

bonds. The most stable Ca12O12-r110 structure (Figure 6.3.5.f) corresponds to three 

Ca4O4 nanoclusters in a contiguous cluster at the surface. The Ti-OC bond lengths from 

the surface to the nanocluster are 1.80-1.94 Å, the Ca-Obr and Ca-Oip bond lengths 

between the nanocluster and the surface are 2.14-2.93 Å and 2.43-3.05 Å, respectively.  

The effect of the modification with MgO and CaO on the rutile (110) surface is most 

notable for those Ti ions that bind to oxygen atoms of the adsorbed nanoclusters. These 

Ti ions migrate out from the surface, towards the nanoclusters, by up to 0.8 Å, breaking 

bonds to subsurface oxygen ions. However, modification of the rutile surface with AEO-

modifiers does not lead to a substantial reconstruction of the surface; this confirms the 

results of the experimental characterisation of the AEO-modified TiO2 systems. 

The magnitudes of the computed adsorption energies, shown in Figure 6.3.5, indicate 

that the nanoclusters adsorb strongly at rutile (110) and require significant temperatures 
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to desorb. Mg4O4 and Ca4O4 have similar computed adsorption energies, -7.46 eV and -

7.59 eV, while differences emerge in the computed adsorption energies of the larger 

nanoclusters. The adsorption energies for Mg8O8 and Mg12O12 are -7.98 eV and -8.66 eV, 

respectively, which are comparable to that of Mg4O4, indicating that there is little energy 

gained in the aggregation of MgO to form larger nanoclusters at the surface. Conversely, 

Ca8O8 and Ca12O12 have computed adsorption energies of -10.93 eV and -14.48 eV, 

which, although not so large as to prohibit the dispersion of smaller clusters at the surface, 

indicate that aggregation to larger clusters is preferred for CaO. These results are 

consistent with the experimental analysis that for low Mg contents, the MgO modifier is 

highly dispersed at the rutile surface, whereas CaO will be less dispersed and present as 

larger structures.  

As the loading increases, the configurations in which the modifiers form contiguous 

clusters, as shown in Figures 6.3.5.c and 6.3.5.f, are more stable by similar amounts, 2.25 

eV for Mg12O12 and 2.11 eV for Ca12O12, than the next most stable configurations, which 

consist of three isolated Mg4O4 and Ca4O4 nanoclusters, shown in Figures B.5.2 and 

B.5.3 of Appendix B. 

To investigate these trends in aggregation, we compare the per-unit binding energies of 

the AEO nanoclusters in the gas phase. The per-unit binding energy is defined as:  

 𝐸𝑏 =
𝐸(MnOn) − 𝑛[𝐸(M) + 1/2E(O2)]

n
 6.3.1 

The binding energies of the 4-, 8-, and 12-unit MgO nanoclusters are -2.93, -3.76 and -

4.14 eV, respectively; for CaO, the binding energies are -4.16, -4.56, and -4.86 eV. Thus, 

in comparing nanoclusters of similar sizes, CaO nanoclusters are more stable than their 

MgO analogues, in absolute terms. Based on this analysis, aggregation to form larger CaO 

nanoclusters is more favourable compared to aggregation of MgO. A similar trend was 
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reported by Malliavin et al in their study of (MgO)n and (CaO)n clusters with n ≤ 6.41 

Similarly, bulk calculations for the formation energies of Mg-O and Ca-O showed that 

CaO has a larger formation energy (-6.55 eV) compared to MgO (-6.12 eV).42 Moreover, 

Chen and colleagues reported greater stability of MgO nanoclusters relative to bulk MgO, 

as compared with the stability of CaO nanoclusters relative to CaO bulk.43-44 These results 

suggest that CaO favours aggregation to larger structures compared to MgO. Moreover, 

for the 12-unit nanoclusters at the rutile surface, there are 23 interfacial Ca-O bonds 

formed, compared with 13 interfacial Mg-O bonds; this is likely the result of the larger 

ionic radius of Ca2+ (1.06 Å) compared to Mg2+ (0.78 Å)44 and indicates a stronger 

interaction of CaO at the rutile surface. 

 

Figure 6.3.6 Relaxed atomic structures of AEO-modified rutile (110) with a single, 

reducing oxygen vacancy. Top panels show (a) Mg4O3-, (b) Mg8O7- and (c) Mg12O11-

r110. Bottom panels show (d) Ca4O3-, (e) Ca8O7- and (f) Ca12O11-r110. The yellow 

isosurfaces enclose spin densities of up to 0.02 electrons/Å3. 

To examine reducibility, the formation of a neutral oxygen vacancy was investigated at 

each oxygen site in the supported nanoclusters. The most stable structures with one 

oxygen vacancy are shown in Figure 6.3.6, along with the computed formation energies. 
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The full set of oxygen vacancy formation energies is included in Table B.5.2 in 

Appendix B. On all MgO-modified and CaO-modified TiO2 structures the energy cost to 

produce an oxygen vacancy increases with the size of the nanocluster. This is in 

agreement with an increase in the M-O binding energy with increasing nanocluster size.41 

Despite this, the modified surfaces are clearly more reducible than bare rutile (110), for 

which the computed energy cost to produce a single oxygen vacancy from a bridging 

oxygen site is +4.50 eV.  

On MgO-modified rutile TiO2, the formation energies in Figures 6.3.6.a, 6.3.6.b and 

6.3.6.c suggest that reducibility is enhanced at the lowest loadings, in which small MgO 

clusters are widely dispersed over the surface. As the coverage increases, and the 

modifiers aggregate to form larger nanoclusters, the energy cost to produce an oxygen 

vacancy increases. Similarly, for CaO modifiers, oxygen vacancy formation is computed 

to have lower energy costs for smaller clusters. However, for CaO-modified TiO2, 

aggregation to form larger clusters is favourable, even at lower coverages and this, 

combined with larger binding energies for CaO nanoclusters, means that the formation 

energies for oxygen vacancies are larger than on MgO-TiO2. 

After formation of a neutral oxygen vacancy, two electrons are released and their 

localisation is visualised with the excess spin density plots in Figure 6.3.6. These charge 

distributions emerge after relaxation of the systems with one O ion removed. In all cases, 

the two electrons localise on Ti sites on the rutile (110) surface, since Mg is not reducible. 

One electron localises at a subsurface Ti site, typical for reduced rutile (110).45-46 While 

there are studies in the literature showing that there are different energetics of different 

Ti3+ localisation patterns in unmodified rutile (110),45-46 we stress that in our nanocluster-

modified rutile structures, structural distortions are already present in the surface layer of 

the rutile substrate, which will promote the localisation of the second electron. 



301 

 

While the impact of electron localisation on different Ti sites could be examined, this will 

not change the key finding that the cost to remove an oxygen is significantly lower in 

surface modified rutile compared to the bare surface. The location of the second electron 

depends on the size of the modifier. On all reduced MgO-r110 structures, the second 

electron localises at a surface Ti. For Ca4O3-r110, both electrons localise at sub-surface 

Ti sites, while Ca8O7-r110 and Ca12O11-r110 show electron localisation similar to the 

corresponding MgO-TiO2 structures. The electron localisation at Ti sites is further 

confirmed by an increase in the computed Bader charge of Ti from 9.6-9.7 electrons, for 

Ti4+, to 9.9-10.0 electrons, for Ti3+,31, 47-48 while the computed spin magnetisations for 

Ti3+ sites are in the range 0.8-0.9 μB. Finally, the Ti3+-O distances increase by up to 0.2 

Å. 

 

6.3.2.3 Effect of AEO-modification on Light Absorption 

Experimental Results 

An absorption spectrum, produced via UV-vis diffuse reflectance spectroscopy is 

presented in Figure 6.3.7. Unmodified rutile and MgO- and CaO-modified rutile show 

similar band gaps around 3.1 eV, typical for the TiO2 rutile phase.49 However, 

examination of the absorption edge shows that, for the MgO and CaO modified samples, 

some light absorption is apparent in the visible range. This absorption should correspond 

to the emergence of states in the TiO2 valence to conduction band energy gap, due to the 

presence of the modifier or vacancies at the rutile surface. This red-shift in absorption is 

more pronounced for Ca2+ modified TiO2.  
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Figure 6.3.7 Absorption spectra for MgO- and CaO-modified rutile TiO2 (1 at. %). 

 

Computational Results 

DFT insights into the optical properties of AEO-modified TiO2 rutile are provided 

through analysis of the computed projected electronic density of states (PEDOS), focused 

on the 4- and 12-unit nanoclusters modifying the TiO2 surface. Figure 6.3.8 displays the 

PEDOS plots for the stoichiometric ground states (Figure 6.3.8.a, 6.3.8.b) and the 

reduced states, in which one oxygen vacancy is present, as described above, (Figure 

6.3.8.c, 6.3.8.d). The top half of each panel shows the contribution to the PEDOS from 

Ti-3d and Mg/Ca-(s + p) states while the bottom half shows the 2p states of surface 

oxygen (OS) and nanocluster oxygen (OC).  

The PEDOS for the bare rutile (110) surface is given in Figure B.5.5 in Appendix B for 

comparison and within our computational set-up the valence to conduction band energy 

gap is 2.2 eV. This underestimation of the energy gap is of course typical of approximate 

DFT methods and while it is possible to tune the +U correction to reproduce the 

experimental band-gap, this results in a poorer description of other material properties 
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and so is not advised. Rather, the Coulomb correction is implemented to overcome the 

self-interaction error (SIE) of standard DFT and to describe localised electronic states. 

However, comparison of the PEDOS across the different modified TiO2 structures yields 

qualitative information about the impact of AEO-modification. 

 

Figure 6.3.8 Computed projected electronic density of states (PEDOS) plots for AEO-

modified rutile (110). Top panels display the PEDOS for the stoichiometric ground states 

(a) Mg4O4-r110 and Mg12O12-r110 and (b) Ca4O4-r110 and Ca12O12-r110. The PEDOS in 

the bottom panels were computed after formation of a single oxygen vacancy and 

represent (c) Mg4O3-r110 and Mg12O11-r110 and (d) Ca4O3-r110 and Ca12O11-r110. The 

top half of each plot shows the contributions due to Ti-d (black) and M-(s + p) (M = Mg, 

Ca; blue). The bottom half of each plot displays OS-p (red) and OC-p (orange) 

contributions. The rutile (110) VBM is set to 0 eV and the insets in the bottom panels 

show occupied Ti3+ states in the band-gap in the range [0 eV, 2 eV]. 
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For stoichiometric structures, the computed PEDOS predicts a small red-shift in the band 

gap due to modifier-derived O 2p-states extending the valence band maximum (VBM) to 

higher energy and this effect is greater for the larger modifiers, and for CaO when 

compared to MgO. After modification, Ti 3d-states continue to dominate the conduction 

band minimum (CBM) with unoccupied Mg- and Ca-derived states lying higher in 

energy. For the reduced structures, the smaller nanoclusters show no OC-derived states 

above the VBM of the TiO2 support. Mid-gap states, due to reduced Ti3+, emerge at 1.0 

eV and 1.3 eV above the VBM for Mg4O3-r110 (the two peaks result from an asymmetric 

distribution of the two electrons) and at 1.0 eV above the VBM for Ca4O3-r110. Similarly, 

for Mg12O11-r110, high lying OC states are removed so that fewer nanocluster-derived 

states are present above the titania VBM and Ti3+ states emerge in the band gap at 0.9 eV. 

For Ca12O11-r110, cluster-derived states persist above the VBM after oxygen vacancy 

formation and Ti3+ states emerge at 1.0 eV and 1.2 eV above the VBM. 

In the context of measurements of the absorption edge of MgO-modified rutile TiO2, at 1 

at.% loading, analysis of the computed PEDOS for such a system, namely Mg4O3-r110 

(Figure 6.3.8.c), suggests that any impact on the light absorption properties will be 

minimal and due only to transitions from occupied Ti3+ states, which emerge in the band-

gap after reduction. For CaO-modification, the computed PEDOS plots indicate a 

potential red-shift in the absorption edge due to cluster-derived states above the titania 

VBM. While oxygen vacancy formation is promoted in CaO-r110 relative to unmodified 

rutile, the effect on the valence band edge persists after reduction in the case of larger 

CaO nanoclusters. 
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6.3.3 Photoluminescence and Charge Separation 

Experimental Results 

The influence of alkaline-earth modification on the charge carrier dynamics can be 

assessed using photoluminescence (PL) spectroscopy (Figure 6.3.9). The presence of 

both MgO and CaO induces a reduction in the magnitude of the PL signal compared to 

unmodified rutile TiO2, upon excitation at 320 nm. Therefore, it can be inferred that 

surface modification with these alkaline-earth ions enhances the separation of 

photogenerated charges and suppresses electron-hole recombination. Similar behaviour 

was reported by other authors for alkaline-earth doped ZnO systems.28 In that case, the 

difference in PL signal observed for doped systems was associated to the different ionic 

radii. In our case, small interesting differences can be noticed between Mg2+ and Ca2+. 

While for Mg2+ the PL signal is not strongly affected by the loading, for Ca2+ the 

modification with 0.05 at.% shows somewhat higher PL when compared to higher Ca2+ 

content. 

 

Figure 6.3.9 Photoluminescence spectra for Mg2+ and Ca2+ modified TiO2 upon 

excitation at 320 nm. 
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Thus, both MgO and CaO positively influence the charge separation upon excitation. In 

addition, for CaO modified systems we have observed a slight absorption in the visible 

range, probably due to intermediate states in the bandgap. However, the better 

photocatalytic behaviour shown by MgO-modified TiO2 is likely correlated with the 

surface features of the heterostructure, as already discussed, i.e. MgO modified TiO2 at 

low loadings exhibits a high degree of surface hydroxylation, as well as a notable Mg2+ 

ion dispersion, compared to the CaO modified systems. In addition, given that the MgO 

modifiers are present at the surface as small, dispersed nanoclusters, whereas the CaO 

modifiers tend to form larger aggregations, the MgO-modified systems are more 

reducible than the CaO-modified systems. 

 

Computational Results 

Table 6.3.2 Energies computed in the photoexcitation model. Vertical singlet-triplet 

energy difference (Evertical), the relaxed singlet-triplet energy difference (Eexcite) and the 

relaxation energy (Erelax) for the stoichiometric ground states of AEO-modified rutile 

(110). Values computed for the unmodified TiO2 rutile (110) surface have been included 

for reference. 

Composite 

structure 

Evertical 

(eV) 

Eexcite 

(eV) 

Erelax 

(eV) 

Rutile (110) 2.35 1.85 0.50 

Mg4O4-r110 2.28 1.21 1.06 

Mg12O12-r110 1.98 0.62 1.36 

Ca4O4-r110 2.39 0.19 2.20 

Ca12O12-r110 2.06 0.99 1.07 
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To explore the impact of AEO-modification on charge carrier separation and localisation 

within DFT, we impose a triplet electronic state and compute the vertical, singlet-triplet, 

and the electron-hole relaxation (trapping) energies (see Chapter 2 for full details). These 

energies are presented in Table 6.3.2 and values computed for the bare rutile (110) 

surface are included for reference. The values for Evertical represent the simple VB-CB 

energy difference and are analogous to the optical band gap. Hence, the energy gap for 

bare rutile (110) is 2.35 eV, and again, the underestimation of the bandgap, which is 

inherent in approximate DFT, persists with our computational set-up.  

The results in Table 6.3.2 show that modification of rutile (110) with the smaller 

nanoclusters, Mg4O4 and Ca4O4, has little effect on the optical band-gap; values for Evertical 

of 2.28 eV and 2.39 eV are computed for the surfaces modified with these nanoclusters. 

Surface modification with the larger nanoclusters, Mg12O12 and Ca12O12, yields values for 

Evertical of 1.98 eV and 2.06 eV, corresponding to decreases of 0.4 eV and 0.3 eV, 

respectively, so that at higher coverages, a small red shift in light absorption is predicted. 

The values for Eexcite, which is the energy difference between the fully relaxed triplet state 

and singlet ground state, accounts for structural relaxations and polaron formation in 

response to electron and hole localisation in the triplet electronic state. The energy gain 

in relaxation in the excited state is given by the values for Erelax, which represent the 

stability of the photogenerated electron-hole pairs and their trapping. The values for Erelax 

are considerably larger for the modified surfaces (1.06-2.20 eV) relative to that computed 

for the bare rutile (110) surface (0.50 eV). This reflects the greater degree of structural 

relaxation that is possible in nanocluster-modified TiO2 to accommodate the polarons 

formed in the triplet electronic state and suggests the photoexcited electron and hole will 

be more stable in the modified rutile structures. 
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Figure 6.3.10 Spin density plots for the photoexcited model applied to (a) Mg4O4-r110, 

(b) Mg12O12-r110, (c) Ca4O4-r110 and (d) Ca12O12-110. Localisation of electron and holes 

is indicated by yellow and blue isosurfaces, respectively, which enclose spin densities up 

to 0.02 electrons/Å3. 

Another important factor in the stability of photoexcited charges is their spatial 

separation, which we assess through excess spin density plots and the computed Bader 

charges. The excess spin density plots are shown in Figure 6.3.10. The charge localisation 

scheme is similar for each AEO-modified TiO2 structure. The photoexcited holes localise 

at oxygen sites on the nanocluster and the electrons localise at subsurface Ti sites in rutile 

(110). For Mg4O4-r110, an originally three-fold coordinated OC ion is now two-fold 

coordinated after hole localisation. For Mg12O12-r110, the OC ion at which the hole state 

localises is three-fold coordinated to Mg ions both before and after photoexcitation; 

however, the Mg-OC bond lengths increase by as much as 0.3 Å in the excited state. 
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For Ca4O4-r110, the OC ion at which the hole localises is two-fold coordinated to Ca ions 

and was originally three-fold coordinated in the ground state. For Ca12O12-r110, after hole 

localisation at OC, the ion remains three-fold coordinated, however, the Ca-OC bond 

lengths increase by 0.2 Å.  

Hole localisation at OC ions is confirmed by a change in the computed Bader charge from 

7.2 to 6.8 electrons and a computed spin magnetisation of 0.7 μB. These values are typical 

of oxygen hole polaron formation. For those Ti sites at which the photoexcited electrons 

localise, the Bader charges increase from 9.6 to 9.9 electrons and the computed spin 

magnetisations are 0.8 μB, indicating reduction to Ti3+. The results of this model suggest 

that modification of rutile (110) with AEO nanoclusters can promote the separation of 

photoexcited electrons and holes and thereby suppress charge carrier recombination, 

corroborating analysis of the PL spectra.   

 

6.3.3.1 Origin of Enhanced OER on AEO-modified Rutile (110) 

6.3.3.1.1 Water Adsorption at AEO-modified Rutile (110) 

To better understand the improved OER activity on MgO-modified TiO2, we studied 

water adsorption at MgO- and CaO-modified rutile (110) and the subsequent water 

oxidation pathways with the standard computational approach for OER,50-53 introduced 

in Chapter 2. We investigated multiple adsorption configurations of water at each 

stoichiometric and reduced AEO-modified rutile surface. Three adsorption schemes were 

considered: (1) adsorption of water at sites on the nanocluster, (2) adsorption of water at 

an interfacial site between the modifier and the rutile surface, and (3) adsorption of a 

second water at the interface site with dissociatively adsorbed water already present on 

the nanocluster. The 3rd model aims to elucidate the impact of hydroxylation, which has 
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been shown to be important on AEO-modified TiO2 structures, on the relative stabilities 

of the water oxidation intermediates and the free energies of each step in the OER model.  

Table 6.3.3 Adsorption energies computed for water adsorbed at cluster sites ((H2O)C), 

interfacial sites ((H2O)I), and interfacial sites after cluster hydroxylation ((H2O)C-

(H2O)I). The top and bottom data sets correspond to the stoichiometric and reduced 

surfaces, respectively. 

Adsorption site  Adsorption energy (eV)  

 Mg4O4-r110 Ca4O4-r110 Mg12O12-r110 Ca12O12-r110 

(H2O)C -3.32 -3.50 -2.68 -2.34 

(H2O)I -0.98 -0.95 -1.15 -1.63 

(H2O)C-(H2O)I -1.10 -1.00 -1.11 -0.97 

Adsorption site  Adsorption energy (eV)  

 Mg4O3-r110 Ca4O3-r110 Mg12O11-r110 Ca12O11-r110 

(H2O)C -1.97 -1.48 -2.39 -1.96 

(H2O)I -1.21 -1.02 -1.18 -1.00 

(H2O)C-(H2O)I -1.11 -0.91 -1.55 -1.01 

 

Table 6.3.3 presents the computed adsorption energies of water at different sites at AEO-

modified TiO2. The adsorption geometries are shown in Figures 6.3.11-6.3.16, and the 

computed adsorption energies are shown in the insets. For all adsorption sites, the 

adsorption of one water molecule is exothermic and leads to spontaneous dissociation to 

surface-bound hydroxyls. In the stoichiometric systems, the computed adsorption 

energies of water at sites of the nanoclusters are between -2.3 and -3.5 eV, which provides 

an origin for the previously discussed hydroxylation of the AEO-modified materials.  
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Figure 6.3.11 The relaxed geometry of a single water molecule adsorbed at cluster 

sites of stoichiometric AEO-modified rutile (110). The panels show water adsorbed at 

(a) Mg4O4-, (b) Mg12O12-, (c) Ca4O4-, and (d) Ca12O12-r110. In this and subsequent 

figures, water-derived O and ions are represented with light blue and dark blue spheres. 

 

Figure 6.3.12 The relaxed geometry of a single water molecule adsorbed at cluster 

sites of reduced AEO-modified rutile (110). The panels show water adsorbed at (a) 

Mg4O3-, (b) Mg12O11-, (c) Ca4O3-, and (d) Ca12O11-r110.  
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The computed adsorption energies for water at the same cluster sites on reduced AEO-

TiO2 are in the range of -2.4 eV to -1.5 eV, somewhat moderated from the stoichiometric 

cluster, but still highly exothermic. Thus, the nanocluster modifiers will promote 

hydroxyl formation through water dissociation. The atomic structure of these adsorption 

sites is shown in Figures 6.3.11 and 6.3.12. 

For the interfacial adsorption sites, shown in Figures 6.3.13 and 6.3.14 for the 

stoichiometric and reduced surfaces, respectively, the computed adsorption energies are 

less obviously dependent on whether the surface is stoichiometric or reduced. In addition, 

these are clearly less exothermic than adsorption on the nanocluster, with computed 

adsorption energies in the range of -1.2 eV to -1.0 eV. The exception is for water adsorbed 

at the interfacial site of Ca12O12-r110, for which the computed adsorption energy is -1.6 

eV (Figure 6.3.13.d).  

 

Figure 6.3.13 The relaxed geometry of a single water molecule adsorbed at interfacial 

sites of stoichiometric AEO-modified rutile (110). The panels show water adsorbed at 

(a) Mg4O4-, (b) Mg12O12-, (c) Ca4O4-, and (d) Ca12O12-r110.  
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Figure 6.3.14 The relaxed geometry of a single water molecule adsorbed at interfacial 

sites of reduced AEO-modified rutile (110). The panels show water adsorbed at (a) 

Mg4O3-, (b) Mg12O11-, (c) Ca4O3-, and (d) Ca12O11-r110.  

 

Figure 6.3.15 The relaxed geometry of a water molecule adsorbed at interfacial sites 

of stoichiometric AEO-modified rutile (110), after dissociative water adsorption at 

cluster sites. The panels show water adsorbed at (a) Mg4O4-, (b) Mg12O12-, (c) Ca4O4-, 

and (d) Ca12O12-r110.  
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Figure 6.3.16 The relaxed geometry of a water molecule adsorbed at interfacial sites 

of reduced AEO-modified rutile (110), after initial dissociation of water at cluster 

sites. The panels show water adsorbed at (a) Mg4O3-, (b) Mg12O11-, (c) Ca4O3-, and (d) 

Ca12O11-r110.  

After the dissociative adsorption of the first water molecule at cluster sites, the computed 

adsorption energies for the subsequent adsorption of a second water at interfacial sites of 

the modified surfaces are in the range of -1.6 eV to -0.9 eV. These results indicate that, 

for the coverages investigated, hydroxylation of the modifiers has little impact on water 

adsorption at interfacial sites. The adsorption geometries for water adsorbed at interfacial 

sites of AEO-modified surfaces, in which the modifiers are hydroxylated, are shown in 

Figure 6.3.15 and 6.3.16 for the stoichiometric and reduced systems, respectively. 

 

6.3.3.2 Water Oxidation at AEO-modified Rutile (110) 

In what follows, we examine the water oxidation pathway using the four PCET step model 

described in Chapter 2. In this model, the water adsorption configurations just described 
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represent the end of sub-step A1, in which water adsorbs and dissociates to surface bound 

hydroxyls.  

In general, we find that for water adsorbed at stoichiometric AEO-TiO2, the surface-

bound intermediates of the water oxidation pathway have high free energy costs for the 

subsequent OER steps. This is due to localisation of hole states at surface-bound *O 

species after dehydrogenation (sub-step A2 and step B) of the hydroxyls produced from 

dissociative water adsorption.  

This effect is mitigated for the reduced systems because electrons can transfer from a 

reduced Ti3+ site to stabilise under-coordinated *O species. Spin magnetisations of 0.4-

1.0 μB were computed for *O species after dehydrogenation at the stoichiometric systems. 

At reduced AEO-TiO2, the same *O species have spin magnetisations of 0 μB indicating 

a charge transfer from TiO2 to *O. At the same time, Ti ions of the surface cycle between 

Ti3+ and Ti4+, indicated by computed spin magnetisations of 0.8-0.9 μB and 0 μB, before 

and after formation of *O, respectively. After each dehydrogenation, one Ti3+ is oxidised 

to Ti4+, with the electron transferring to the resulting *O species. Moreover, for water 

oxidation at cluster sites of the reduced systems, we find that the final step, evolution of 

a molecule of O2, is excessively endothermic as the surface bound O2 species is over-

stabilised at cluster sites. For these reasons, we focus in particular on the OER proceeding 

at interfacial sites of the reduced AEO-modified surfaces. 

 

Water oxidation at interfacial sites of reduced AEO-TiO2, without prior nanocluster 

hydroxylation 

We consider the water oxidation pathway, using the model for water oxidation described 

in Chapter 2. This model was applied to the bare rutile (110) surface51 (see Table B.5.3 
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in Appendix B), for which the highest Gibbs free energy (ΔG) of a single step (viz the 

dehydrogenation of a surface OH group) was computed as +2.20 eV (step A). In 

identifying favourable reaction pathways at the modified surfaces, we consider that 

should the free energy cost of any PCET step (indicated previously as A, B, C or D in 

Chapter 2) exceed 2.20 eV there will be no enhancement in the OER over bare rutile 

(110). 

Table 6.3.4 Computed free energies for water oxidation PCET steps starting from a single 

water molecule adsorbed at interfacial sites of AEO-modified rutile (110) in the reduced 

state with one oxygen vacancy. 

1 x H2O Mg4O3-r110 Mg12O11-r110 Ca4O3-r110 Ca12O11-r110 

 ΔG (eV) ΔG (eV) ΔG (eV) ΔG (eV) 

Step A1 -0.53 -0.50 -0.34 -0.32 

Step A2 0.81 0.52 0.62 0.64 

Step A 0.28 0.02 0.29 0.32 

Step B 0.82 1.84 0.99 1.03 

Step C1 1.49 0.01 -0.96 2.61 

Step C2 0.31 1.95 2.25 0.38 

Step C 1.79 1.96 1.29 2.99 

Step D 2.03 1.09 2.35 0.58 

Sum 4.92 4.92 4.92 4.92 

 

We use reduced AEO-modified rutile as a model system because the ease of reduction 

means that oxygen vacancies will be present and, as discussed, the OER at the 

stoichiometric surface is not favoured. We summarise the results of the calculations of 

steps A-D in the OER, without and with hydroxylation of the AEO nanocluster, in Tables 

6.3.4 and 6.3.5. 
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The adsorption geometries in Figures 6.3.14 and 6.3.16 show water molecules 

dissociatively adsorbed at interfacial sites of the reduced AEO-modified systems, both 

without and with hydroxylation of the nanocluster. At the interfacial site, the water-

derived hydroxyl group is bound to a Ti site of the surface and a second hydroxyl forms 

after migration of the other hydrogen from water to bind with an OC site. Adsorption of 

OH at a Ti site results in the Ti ions migrating out from the surface and breaking a bond 

with subsurface oxygen.  

The adsorption geometries that are shown in Figure 6.3.14 represent the end of sub-step 

A1, viz dissociative water adsorption at the interface of the reduced AEO nanocluster and 

the rutile support. The computed free energies of this and subsequent steps are presented 

in Table 6.3.4. Only two of the reaction pathways shown in Table 6.3.4 meet the criterion 

that each PCET step has a computed ΔG of less than +2.20 eV. These are both for water 

oxidation on the reduced MgO-TiO2 structures. 

On all reduced AEO-modified TiO2 structures, sub-step A1 is exothermic, with computed 

ΔGA1 in the range -0.53 eV to -0.32 eV. The first dehydrogenation step (sub-step A2) is 

moderately uphill, with ΔGA2 in the range +0.52 eV to +0.81 eV. Thus, the PCET step A 

proceeds with overall free energies in the range +0.02 eV to +0.32 eV.  

The second dehydrogenation (step B) requires a larger free energy cost, with computed 

ΔGB in the range +0.82 eV to +1.84 eV. These free energies are however, well below the 

value of +2.20 eV, computed for bare rutile. After step B, a terminal oxygen ion is singly 

coordinated to a Ti ion of the surface and acts as a site for the adsorption of a second 

water molecule for step C.  

The computed free energies of step C are in the range +1.29 to +1.96 eV, with the 

exception of Ca12O11-r110 for which ΔGC is +2.99 eV, which is significantly larger than 
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the same energy step for bare rutile. Step D involves the evolution of O2 accompanied by 

the release of the fourth proton and an electron. For Mg4O3-r110 and Mg12O11-r110 the 

computed free energies are +2.03 eV and +1.09 eV, respectively. For Ca4O3-r110, the 

computed free energy, ΔGD, is +2.35 eV and so this pathway requires a larger energy 

input than that computed for bare rutile (110). 

 

Figure 6.3.17 Reaction pathway for water oxidation starting from dissociative water 

adsorption at an interfacial site of the reduced Mg12O11-r110 composite surface. The 

free energy profile of the pathway is shown for overpotentials U = 0, 1.23 and 1.96 V. At 

the equilibrium potential, U = 1.23 V, steps C and D are uphill and at U = 1.96 eV all 

reaction steps are downhill in free energy. The intermediate states in the upper panels 

represent the end-points of reaction sub-steps A1 and C1. In this figure, water-derived O 

ions are light blue and H ions are dark blue. 

The intermediate states of the water oxidation pathway proceeding at the interfacial site 

of reduced Mg12O11-r110 (with no nanocluster hydroxylation) are shown in Figure 
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6.3.17, and for Mg4O3-r110 in Figure B.5.6 in Appendix B. The first dehydrogenation, 

step A, is most favourable from the surface-bound hydroxyl group and leaves a terminal 

*O species and a hydroxyl group on the cluster. Step B involves dehydrogenation of the 

cluster-bound hydroxyl so that the reduced Mg12O11 nanocluster and the terminal *O 

species remain at the rutile (110) surface.  

After the second water adsorption (sub-step C1), *O and *OH species are bound to the 

surface Ti site and a second hydroxyl forms due to migration of the H atom to oxygen on 

the nanocluster. In sub-step C2, dehydrogenation occurs from the *OH species bound at 

the Ti site so that after relaxation, two *O species are bound to the same Ti site of the 

surface. In step D, these *O species desorb, as does the cluster-bound H atom. 

The energy profiles in Figures 6.3.17 and B.5.6 are based on the free energies presented 

in Table 6.3.4 with the inclusion of a potential bias term, ΔGU, which shifts the free 

energy of each PCET step by an amount –𝑒U, where U is the electrode potential relative 

to the standard hydrogen electrode. For each profile we consider three applied 

biases: U =  0 V; the equilibrium potential: U =  1.23 V; and the potential at which each 

PCET step becomes downhill in free energy. The difference between this potential and 

1.23 V is the overpotential required for the oxygen evolution reaction to proceed at the 

modified TiO2 surface.   

From the free energy profile, we see that at the equilibrium potential, 1.23 V, steps B and 

C are uphill and an applied bias of 1.96 V is required to render all steps downhill, 

corresponding to an overpotential of 0.73 V. Similarly, for the Mg4O3-r110 surface, as 

discussed in Appendix B, the computed overpotential is 0.80 V. For Ca4O3-r110 and 

Ca12O11-r110, the computed overpotentials are 1.07 V and 1.76 V respectively. This 

means that water oxidation is inhibited compared to the bare rutile surface. This result is 
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reflected in the experimental findings of decreased oxygen evolution activity for CaO-

modified rutile at low loadings. 

These results compare with an overpotential of 0.97 V, computed for water oxidation at 

the bare rutile surface by Valdés et al51 and indicates a favourable effect of the MgO-

modifier. On hematite, the highest free energy cost is 1.82 eV, which corresponds to an 

overpotential of 0.71 V, given that the authors computed a free energy of 1.11 eV per 

PCET step.52 A more recent study of OER at hematite surfaces demonstrated a 

considerable reduction in the overpotential (0.47 V) after formation of oxygen vacancies 

in the (110) surface.54 Similarly, oxygen vacancies reduced the overpotential by 0.3 V for 

water oxidation at the hematite (0001) surface.55 A first principles study of water 

oxidation on pristine and oxygen-deficient barium titanate found that, contrary to our 

results and experiment, the overpotential increased from 0.45 V for the pristine surface to 

1.47 V in the presence of oxygen vacancies.53 This was attributed to the strong 

stabilisation of *OH and *O species for the latter system, which is not observed in the 

current study. 

 

Water oxidation at interfacial sites of reduced AEO-TiO2, with prior nanocluster 

hydroxylation 

The role of prior hydroxylation of the catalyst surface is often overlooked in first 

principles OER studies. In the following, we examine the impact of hydroxylation of the 

AEO modifiers on the water oxidation pathways. In Table 6.3.5, we present the computed 

free energies for water oxidation proceeding at interfacial sites of the reduced AEO-

modified systems, in which the nanocluster is hydroxylated by dissociative water 

adsorption (see Figure 6.3.16).  
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Table 6.3.5 Computed free energies for water oxidation PCET steps starting from a water 

molecule adsorbed at interfacial sites of AEO-modified rutile (110) in the reduced state 

with one oxygen vacancy, after dissociative water adsorption at a cluster site. 

2 x H2O Mg4O3-r110 Mg12O11-r110 Ca4O3-r110 Ca12O11-r110 

 ΔG (eV) ΔG (eV) ΔG (eV) ΔG (eV) 

Step A1 -0.43 -0.87 -0.23 -0.33 

Step A2 0.40 1.05 0.52 0.66 

Step A -0.03 0.18 0.29 0.33 

Step B 1.02 0.98 1.03 1.01 

Step C1 1.88 2.06 2.38 2.08 

Step C2 0.09 -0.21 0.08 0.00 

Step C 1.97 1.85 2.46 2.08 

Step D 1.96 1.91 1.14 1.50 

Sum 4.92 4.92 4.92 4.92 

 

For each surface, sub-step A1 is exothermic with free energies in the range -0.87 eV to -

0.23 eV and the dehydrogenation step, sub-step A2, proceeds with ΔGA2 in the range 

+0.40 eV to +1.05 eV. Thus, the overall step A, has free energies between -0.03 and 0.33 

eV. The dehydrogenation in step B has ΔGB in the range +0.98 eV to +1.03 eV. These 

energies are comparable to those computed for the water oxidation pathway with no 

hydroxyls at the cluster sites; one exception is step B at Mg12O11-r110, which decreases 

by 0.86 eV in the presence of cluster-bound hydroxyls.  

Steps C and D have the highest free energy costs, with the free energies for step C in the 

range +1.85 eV to +2.08 eV and free energies of +1.50 eV to +1.96 eV for step D. For 

Ca4O3-r110, step C has the highest energy cost, with ΔGC = +2.46 eV, indicating no 

enhancement relative to the bare surface. This is consistent with the low OER activity 

measured for low Ca loadings. 
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However, water oxidation at the interface of Ca12O11-r110 is more favourable after 

hydroxylation of the cluster; the highest energy step decreases from +2.99 eV to +2.08 

eV, corresponding to an overpotential of 0.85 V. Conversely, hydroxylation of the cluster 

in Ca4O3-r110 renders water oxidation less favourable and increases the required 

overpotential by 0.1 V.  

The water oxidation pathway proceeding at the interfacial site of reduced, hydroxylated 

Mg12O11-r110 (Mg4O3-r110) is shown in Figure 6.3.18 (Figure B.5.7). The reaction site 

is highlighted with a black circle in the panel on the left. After water adsorption at the 

interfacial site, the water-derived hydroxyl is singly coordinated to a 5-fold coordinated 

Ti site, as previously described. The second H ion migrates to a neighbouring OC ion.  

Here we describe the reaction intermediates for Mg12O11-r110 and the details for Mg4O3-

r110 are provided in Appendix B. The first dehydrogenation is most favourable from the 

cluster-bound hydroxyl group and leaves a *OH species bound at the rutile (110) surface. 

After step B the terminal *O species remains at the surface. After the water adsorption 

described by sub-step C1, an *OOH species is bound to the surface Ti site and a second 

hydroxyl forms due to migration of the H atom to an OC site. In sub-step C2, 

dehydrogenation occurs from the *OOH species bound at the Ti site so that after 

relaxation, an *O2 species is bound to the surface. In step D, the O2 molecule evolves with 

the release of the cluster-bound H atom. 

The energy profiles in Figures 6.3.18 and B.5.7 are based on the free energies presented 

in Table 6.3.7. An applied bias of 1.91 V is required to render all steps downhill, 

corresponding to an overpotential of 0.68 V. Similarly, for the Mg4O3-r110 surface, as 

discussed in Appendix B, the computed overpotential is 0.74 V. 
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Figure 6.3.18 Reaction pathway for water oxidation starting from dissociative water 

adsorption at an interfacial site of the reduced Mg12O11-r110 composite surface, after 

hydroxylation of the cluster. The free energy profile of the pathway is shown for 

overpotentials U = 0, 1.23 and 1.91 V. At the equilibrium potential, U = 1.23 V, steps C 

and D are uphill and at U = 1.91 eV all reaction steps are downhill in free energy. The 

intermediate states in the upper panels represent the end-points of reaction sub-steps A1 

and C1. The reaction site is highlighted with the black circle in the panel on the left.  

In summary, we identify water oxidation proceeding favourably at interfacial sites of 

reduced MgO-modified rutile (110), with lower free energy costs for the PCET steps 

compared to water oxidation at rutile (110). These results highlight the role played by 

oxygen vacancies and the presence of reduced cations (Ti3+), which are produced by 

enhanced reduction of the MgO-TiO2 system, in promoting the oxygen evolution 

reaction. Furthermore, there is an important role for the water adsorption site, where water 

adsorption at the interface of the nanocluster modifier and the support is the most active 

site for OER. We also see that, after an initial dissociative water adsorption at cluster 
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sites, water oxidation proceeds with similar energy costs at interfacial sites of Mg4O3-

r110 and Mg12O11-r110; the values for ΔG are within 0.1 eV for these surfaces, with and 

without cluster-bound hydroxyls.  

While quantifying these results in the context of measured oxygen evolution activities is 

beyond the scope of the current models, our results corroborate those of experiment. We 

confirm an enhancement for water oxidation at MgO-modified rutile at low loadings and 

a negative impact due to CaO-modification, relative to unmodified TiO2. 

 

6.3.4  Conclusions 

By simple surface modification of TiO2 rutile with nanoscale MgO and CaO, the 

photoactivity for O2 evolution can be improved. The enhancement in OER activity is 

considerable for MgO at very low loadings and high dispersion, and decreases at higher 

loadings. From this we infer that both the surface and modifier are involved in the water 

oxidation reaction and this is confirmed by a first principles investigation of active sites 

of the nanocluster-modified surfaces. From the range of AEO modifier contents 

examined, it is expected that the modifier is present as a nanocluster on the rutile surface. 

This feature permits a close correlation with our theoretical models, and indeed, we 

achieved good agreement between experimental and computational results. In addition, 

the results show that the modifier must be in the nanocluster regime to modify the 

chemistry of the TiO2 support effectively. 

 From the structural and textural properties, the surface modification does not induce any 

major changes to rutile. However, the charge carrier dynamics are improved by the 

presence of alkaline ions at low loadings, which leads to lower recombination. DFT 

simulations show that the spatial separation of electrons and holes is promoted for the 
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modified systems. It has also been stated that alkaline ion dispersion on TiO2 surface was 

better for Mg2+ than for Ca2+. This high dispersion on Mg2+ at very low content is also 

accompanied by a higher hydroxylation degree. The greater dispersion of MgO at the 

surface was confirmed by first principles calculations, which indicate that aggregation of 

CaO to larger clusters is favoured.   

Oxygen vacancies form with moderate energy costs for the modified systems, leading to 

the reduction of Ti4+ to Ti3+. This has consequences for the DOS, however, the impact of 

modification on the light absorption properties was found to be small, both 

experimentally and based on computational results. 

Using a model for the water oxidation pathway we have computed the applied 

overpotential required for the OER to proceed. In general, for water adsorbed at cluster 

sites, the water oxidation intermediates are over-stabilised, impeding the reaction. We 

have identified a reaction pathway that proceeds at interfacial sites of the reduced MgO-

modified systems, which drives an enhancement of the O2 evolution activity relative to 

bare rutile TiO2.  

These results highlight the importance of nanocluster modifiers, oxygen vacancies and Ti 

reduction in promoting the OER and identify interfacial sites, present at low coverages of 

nanocluster MgO, as active sites for water oxidation. Moreover, this model confirms the 

enhanced performance for MgO-modification, relative to CaO-modification. Thus, by 

rational design, we have interpreted and explained the better photocatalytic performance 

that arises from alkaline earth modification of rutile TiO2, particularly due to Mg2+ 

modification at low loading. 

 

 



326 

 

6.4 Chapter References 

1. Graciani, J.; Plata, J. J.; Sanz, J. F.; Liu, P.; Rodriguez, J. A., A theoretical insight 

into the catalytic effect of a mixed-metal oxide at the nanometer level: The case of the 

highly active metal/CeO/TiO2(110) catalysts. The Journal of Chemical Physics 2010, 132 

(10), 104703. 

2. Park, J. B.; Graciani, J.; Evans, J.; Stacchiola, D.; Senanayake, S. D.; Barrio, L.; 

Liu, P.; Sanz, J. F.; Hrbek, J.; Rodriguez, J. A., Gold, copper, and platinum nanoparticles 

dispersed on CeOx/TiO2 (110) surfaces: high water-gas shift activity and the nature of the 

mixed-metal oxide at the nanometer level. Journal of the American Chemical Society 

2009, 132 (1), 356-363. 

3. Yang, Z.; Xie, L.; Ma, D.; Wang, G., Origin of the High Activity of the Ceria-

Supported Copper Catalyst for H2O Dissociation. The Journal of Physical Chemistry C 

2011, 115 (14), 6730-6740. 

4. Fuente, S.; Branda, M. M.; Illas, F., Role of step sites on water dissociation on 

stoichiometric ceria surfaces. Theoretical Chemistry Accounts 2012, 131 (3), 1190. 

5. Molinari, M.; Parker, S. C.; Sayle, D. C.; Islam, M. S., Water Adsorption and Its 

Effect on the Stability of Low Index Stoichiometric and Reduced Surfaces of Ceria. The 

Journal of Physical Chemistry C 2012, 116 (12), 7073-7082. 

6. Marrocchelli, D.; Yildiz, B., First-Principles Assessment of H2S and H2O 

Reaction Mechanisms and the Subsequent Hydrogen Absorption on the CeO2(111) 

Surface. The Journal of Physical Chemistry C 2012, 116 (3), 2411-2424. 

7. Mullins, D. R.; Albrecht, P. M.; Chen, T.-L.; Calaza, F. C.; Biegalski, M. D.; 

Christen, H. M.; Overbury, S. H., Water Dissociation on CeO2(100) and CeO2(111) Thin 

Films. The Journal of Physical Chemistry C 2012, 116 (36), 19419-19428. 

8. Carrasco, J.; López-Durán, D.; Liu, Z.; Duchoň, T.; Evans, J.; Senanayake, S. D.; 

Crumlin, E. J.; Matolín, V.; Rodríguez, J. A.; Ganduglia-Pirovano, M. V., In Situ and 

Theoretical Studies for the Dissociation of Water on an Active Ni/CeO2 Catalyst: 

Importance of Strong Metal–Support Interactions for the Cleavage of O–H Bonds. 

Angewandte Chemie International Edition 2015, 54 (13), 3917-3921. 

9. Fan, J.; Xu, B.; Zhao, J. Z.; Xu, H., Controllable dissociation of H2O on a 

CeO2(111) surface. Physical Chemistry Chemical Physics 2018. 

10. Ruiz Puigdollers, A.; Schlexer, P.; Tosoni, S.; Pacchioni, G., Increasing Oxide 

Reducibility: The Role of Metal/Oxide Interfaces in the Formation of Oxygen Vacancies. 

ACS Catalysis 2017, 7 (10), 6493-6513. 

11. Wang, F.; Wei, S.; Zhang, Z.; Patzke, G. R.; Zhou, Y., Oxygen vacancies as active 

sites for H2S dissociation on the rutile TiO2(110) surface: a first-principles study. Physical 

Chemistry Chemical Physics 2016, 18 (9), 6706-6712. 

12. Zhang, Y.; Dai, R.; Hu, S., Study of the role of oxygen vacancies as active sites 

in reduced graphene oxide-modified TiO2. Physical Chemistry Chemical Physics 2017, 

19 (10), 7307-7315. 

13. Schaub, R.; Thostrup, P.; Lopez, N.; Lægsgaard, E.; Stensgaard, I.; Nørskov, J. 

K.; Besenbacher, F., Oxygen Vacancies as Active Sites for Water Dissociation on Rutile 

TiO2. Phys. Rev. Lett. 2001, 87 (26), 266104. 

14. Henderson, M. A.; Epling, W. S.; Peden, C. H. F.; Perkins, C. L., Insights into 

Photoexcited Electron Scavenging Processes on TiO2 Obtained from Studies of the 

Reaction of O2 with OH Groups Adsorbed at Electronic Defects on TiO2(110). The 

Journal of Physical Chemistry B 2003, 107 (2), 534-545. 



327 

 

15. Rhatigan, S.; Sokalu, E.; Nolan, M.; Colón, G., Surface Modification of Rutile 

TiO2 with Alkaline-Earth Oxide Nanoclusters for Enhanced Oxygen Evolution. ACS 

Applied Nano Materials 2020, 3 (6), 6017-6033. 

16. Majrik, K.; Pászti, Z.; Korecz, L.; Trif, L.; Domján, A.; Bonura, G.; Cannilla, C.; 

Frusteri, F.; Tompos, A.; Tálas, E., Study of PtOx/TiO2 Photocatalysts in the 

Photocatalytic Reforming of Glycerol: The Role of Co-Catalyst Formation. Materials 

2018, 11 (1927). 

17. Munnik, P.; de Jongh, P. E.; de Jong, K. P., Recent Developments in the Synthesis 

of Supported Catalysts. Chemical Reviews 2015, 115 (14), 6687-6718. 

18. Lamai, W.; Bunphung, A.; Junumpun, I.; Wongkaew, A., Synthesis and 

Characterization of Ni@Pt core-shell catalyst over TiO2 support prepared by incipient 

wetness impregnation and electroless deposition. Materials Today: Proceedings 2019, 

17, 1396-1402. 

19. Tálas, E.; Pászti, Z.; Korecz, L.; Domján, A.; Németh, P.; Szíjjártó, G. P.; Mihály, 

J.; Tompos, A., PtOx-SnOx-TiO2 catalyst system for methanol photocatalytic reforming: 

Influence of cocatalysts on the hydrogen production. Catalysis Today 2018, 306, 71-80. 

20. Ahmad, W.; Mehmood, U.; Al-Ahmed, A.; Al-Sulaiman, F. A.; Aslam, M. Z.; 

Kamal, M. S.; Shawabkeh, R. A., Synthesis of zinc oxide/titanium dioxide (ZnO/TiO 2) 

nanocomposites by wet incipient wetness impregnation method and preparation of 

ZnO/TiO2 paste using poly(vinylpyrrolidone) for efficient dye-sensitized solar cells. 

Electrochimica Acta 2016, 222, 473-480. 

21. Yang, H.; Li, X.; Wang, A.; Wang, Y.; Chen, Y., Photocatalytic degradation of 

methylene blue by MoO3 modified TiO2 under visible light. Chinese Journal of Catalysis 

2014, 35 (1), 140-147. 

22. Castro, Y.; Durán, A., Ca doping of mesoporous TiO2 films for enhanced 

photocatalytic efficiency under solar irradiation. Journal of Sol-Gel Science and 

Technology 2016, 78 (3), 482-491. 

23. Lv, C.; Lan, X.; Wang, L.; Yu, Q.; Zhang, M.; Sun, H.; Shi, J., Alkaline-earth-

metal-doped TiO2 for enhanced photodegradation and H2 evolution: insights into the 

mechanisms. Catalysis Science & Technology 2019, 9 (21), 6124-6135. 

24. Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K.-C.; Uchimura, M.; 

Paulikas, A. P.; Stamenkovic, V.; Markovic, N. M., Enhancing Hydrogen Evolution 

Activity in Water Splitting by Tailoring Li+-Ni(OH)2-Pt Interfaces. Science 2011, 334 

(6060), 1256-1260. 

25. Christoforidis, K. C.; Fornasiero, P., Photocatalytic Hydrogen Production: A Rift 

into the Future Energy Supply. ChemCatChem 2017, 9 (9), 1523-1544. 

26. Xiang, Z.; Zhong, J.; Huang, S.; Li, J.; Chen, J.; Wang, T.; Li, M.; Wang, P., 

Efficient charge separation of Ag2CO3/ZnO composites prepared by a facile precipitation 

approach and its dependence on loading content of Ag2CO3. Materials Science in 

Semiconductor Processing 2016, 52, 62-67. 

27. Colón, G. H., M. C.;  Munuera, G.;  Ferino, I.;  Cutrufello, M. G.; Navío, J. A., 

Structural and surface approach to the enhanced photocatalytic activity of sulfated TiO2 

photocatalyst. Appl. Catal. B: Environ. 2006, 63 (1), 45-59. 

28. Haja Hameed, A. S.; Karthikeyan, C.; Sasikumar, S.; Senthil Kumar, V.; 

Kumaresan, S.; Ravi, G., Impact of alkaline metal ions Mg2+, Ca2+, Sr2+ and Ba2+ on the 

structural, optical, thermal and antibacterial properties of ZnO nanoparticles prepared by 

the co-precipitation method. Journal of Materials Chemistry B 2013, 1 (43), 5950-5962. 



328 

 

29. Zaki, M. I.; Ramadan, W.; Katrib, A.; Rabee, A. I. M., Surface chemical and 

photocatalytic consequences of Ca-doping of BiFeO3 as probed by XPS and H2O2 

decomposition studies. Applied Surface Science 2014, 317, 929-934. 

30. Olowoyo, J. O.; Kumar, M.; Singhal, N.; Jain, S. L.; Babalola, J. O.; Vorontsov, 

A. V.; Kumar, U., Engineering and modeling the effect of Mg doping in TiO2 for 

enhanced photocatalytic reduction of CO2 to fuels. Catalysis Science & Technology 2018, 

8 (14), 3686-3694. 

31. Nolan, M., Alkaline earth metal oxide nanocluster modification of rutile TiO2 

(110) promotes water activation and CO2 chemisorption. Journal of Materials Chemistry 

A 2018, 6 (20), 9451-9466. 

32. Song, Z.; Fan, J.; Xu, H., Strain-induced water dissociation on supported ultrathin 

oxide films. Scientific Reports 2016, 6, 22853. 

33. Jung, J.; Shin, H.-J.; Kim, Y.; Kawai, M., Controlling water dissociation on an 

ultrathin MgO film by tuning film thickness. Physical Review B 2010, 82 (8), 085413. 

34. Mu, R.; Zhao, Z.-j.; Dohnálek, Z.; Gong, J., Structural motifs of water on metal 

oxide surfaces. Chemical Society Reviews 2017, 46 (7), 1785-1806. 

35. Hu, X. L.; Carrasco, J.; Klimeš, J.; Michaelides, A., Trends in water monomer 

adsorption and dissociation on flat insulating surfaces. Physical Chemistry Chemical 

Physics 2011, 13 (27), 12447-12453. 

36. Fujimori, Y.; Zhao, X.; Shao, X.; Levchenko, S. V.; Nilius, N.; Sterrer, M.; 

Freund, H.-J., Interaction of Water with the CaO(001) Surface. The Journal of Physical 

Chemistry C 2016, 120 (10), 5565-5576. 

37. Haertelt, M.; Fielicke, A.; Meijer, G.; Kwapien, K.; Sierka, M.; Sauer, J., 

Structure determination of neutral MgO clusters—hexagonal nanotubes and cages. 

Physical Chemistry Chemical Physics 2012, 14 (8), 2849-2856. 

38. Byrne, C.; Rhatigan, S.; Hermosilla, D.; Merayo, N.; Blanco, Á.; Michel, M. C.; 

Hinder, S.; Nolan, M.; Pillai, S. C., Modification of TiO2 with hBN: high temperature 

anatase phase stabilisation and photocatalytic degradation of 1,4-dioxane. Journal of 

Physics: Materials 2019, 3 (1), 015009. 

39. Gagné, O. C.; Hawthorne, F. C., Bond-Length Distributions for Ions Bonded to 

Oxygen: Results for the Transition Metals and Quantification of the Factors Underlying 

Bond-Length Variation in Inorganic Solids. ChemRxiv. Preprint 2020. 

40. Gagne, O. C.; Hawthorne, F. C., Bond-length distributions for ions bonded to 

oxygen: alkali and alkaline-earth metals. Acta Crystallographica Section B 2016, 72 (4), 

602-625. 

41. Malliavin, M. J.; Coudray, C., Ab initio calculations on (MgO)n, (CaO)n, and 

(NaCl)n clusters (n=1–6). The Journal of Chemical Physics 1997, 106 (6), 2323-2330. 

42. Yan, J.; Hummelshøj, J. S.; Nørskov, J. K., Formation energies of group I and II 

metal oxides using random phase approximation. Physical Review B 2013, 87 (7), 

075207. 

43. Chen, M.; Felmy, A. R.; Dixon, D. A., Structures and Stabilities of (MgO) n 

Nanoclusters. The Journal of Physical Chemistry A 2014, 118 (17), 3136-3146. 

44. Chen, M.; Thanthiriwatte, K. S.; Dixon, D. A., Structures and Stabilities of 

(CaO)n Nanoclusters. The Journal of Physical Chemistry C 2017, 121 (41), 23025-23038. 

45. Chrétien, S.; Metiu, H., Electronic Structure of Partially Reduced Rutile 

TiO2(110) Surface: Where Are the Unpaired Electrons Located? The Journal of Physical 

Chemistry C 2011, 115 (11), 4696-4705. 

46. Deskins, N. A.; Rousseau, R.; Dupuis, M., Distribution of Ti3+ Surface Sites in 

Reduced TiO2. The Journal of Physical Chemistry C 2011, 115 (15), 7562-7572. 



329 

 

47. Rhatigan, S.; Nolan, M., Activation of Water on MnOx-Nanocluster-Modified 

Rutile (110) and Anatase (101) TiO2 and the Role of Cation Reduction. Frontiers in 

Chemistry 2019, 7 (67). 

48. Rhatigan, S.; Nolan, M., Impact of surface hydroxylation in MgO-/SnO-

nanocluster modified TiO2 anatase (101) composites on visible light absorption, charge 

separation and reducibility. Chinese Chemical Letters 2018, 29 (6), 757-764. 

49. Miyoshi, A.; Nishioka, S.; Maeda, K., Water Splitting on Rutile TiO2-Based 

Photocatalysts. Chemistry – A European Journal 2018, 24 (69), 18204-18219. 

50. Dahan, M. H.; Caspary Toroker, M., Water Oxidation Catalysis with Fe2O3 

Constrained at the Nanoscale. The Journal of Physical Chemistry C 2017, 121 (11), 6120-

6125. 

51. Valdés, Á.; Qu, Z. W.; Kroes, G. J.; Rossmeisl, J.; Nørskov, J. K., Oxidation and 

Photo-Oxidation of Water on TiO2 Surface. The Journal of Physical Chemistry C 2008, 

112 (26), 9872-9879. 

52. Liao, P.; Keith, J. A.; Carter, E. A., Water Oxidation on Pure and Doped Hematite 

(0001) Surfaces: Prediction of Co and Ni as Effective Dopants for Electrocatalysis. 

Journal of the American Chemical Society 2012, 134 (32), 13296-13309. 

53. Tymińska, N.; Wu, G.; Dupuis, M., Water Oxidation on Oxygen-Deficient 

Barium Titanate: A First-Principles Study. The Journal of Physical Chemistry C 2017, 

121 (15), 8378-8389. 

54. Zhang, X.; Klaver, P.; van Santen, R.; van de Sanden, M. C. M.; Bieberle-Hütter, 

A., Oxygen Evolution at Hematite Surfaces: The Impact of Structure and Oxygen 

Vacancies on Lowering the Overpotential. The Journal of Physical Chemistry C 2016, 

120 (32), 18201-18208. 

55. Nguyen, M.-T.; Piccinin, S.; Seriani, N.; Gebauer, R., Photo-Oxidation of Water 

on Defective Hematite(0001). ACS Catalysis 2015, 5 (2), 715-721. 

 

 

 

 

  



330 

 

7 HER at metal chalcogenide-modified 

TiO2 

What follows is adapted from an article entitled “Modification of TiO2 with Metal 

Chalcogenide Nanoclusters for Hydrogen Evolution”, published in Journal of Physics: 

Energy.1 

 

DOI: https://doi.org/10.1088/2515-7655/abe424 

 

7.1 Introduction 

In this work, we examine modification of the TiO2 rutile (110) surface with nanoclusters 

of composition M4X4 (M = Sn, Zn; X = S, Se). Surface modification in this way can be 

performed using atomic layer deposition,2 incipient wetness impregnation,3-5 or 

chemisorption-calcination cycles6-7 and permits modulation of the light absorption 

properties of the titania substrate, promotes separation and stability of photoexcited 

electrons and holes, and provides low coordinated active sites for catalytic reactions. In 

the context of hydrogen evolution, this strategy enables us to combine the desirable 

https://doi.org/10.1088/2515-7655/abe424
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properties of TiO2 through modification with nanoclusters that display low-coordinated, 

active chalcogen sites, which promote the HER.  

By computing the projected electronic density of states (PEDOS), we analyse the impact 

of modification on the energy gap and light absorption. The modification with the 

chalcogen nanoclusters extends the valence band maximum (VBM) to higher energies, 

thereby inducing a redshift in light absorption compared to unmodified TiO2. 

Modification promotes the separation of electrons and holes and enhances their stability 

in the excited state. 

Finally, we investigate the HER activity of the modified surface via computations of ΔGH. 

To be consistent with the literature and allow for errors in computed energies within the 

DFT set-up, we consider the range of ΔGH = (−0.15 eV, +0.15 eV) to be relevant for 

assessment of the potential for HER. As metal oxide surfaces easily form surface bound 

hydroxyls,8 we first compute ΔGH for H adsorbed at sites of the titania support and 

consider coverages that range from 1 H to enough hydrogen to saturate the available 

surface sites. For H adsorption at surface sites, we consider only the bridging oxygen sites 

(Obr) that have no interfacial bonds with the nanocluster modifier. For each surface H 

coverage, we then compute ΔGH for H adsorption at cluster sites. In these calculations, 

all chalcogen sites of the modifiers are considered and the most stable configurations that 

we find are discussed. We find that the sulphide modifiers exhibit free energies close to 

thermoneutral and within our desired range at most coverages. By contrast, for the 

selenide modifiers, the cluster sites are active only for low surface coverages of H. We 

rationalise these findings on the basis of the electronic structure of the chalcogen 

modifiers and propose metal sulphide-modified TiO2 as a material for hydrogen 

evolution. 
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7.2 Methodology 

 

Figure 7.1 Schematic of the workflow for the study of hydrogen adsorption at the M4X4-

modified rutile (110) surface. In the first set of calculations, shown in the top row, H 

atoms are adsorbed at the titania surface, up to saturation of the surface (Obr) sites. In the 

second set of calculations, shown in the second row, for each coverage of H at the TiO2 

surface, one H is adsorbed at a site on the chalcogenide nanocluster. For those 

configurations for which the hydrogen adsorption free energy at a cluster site is in the 

active range, we proceed with the third set of calculations in which a second H is adsorbed 

at a chalcogen nanocluster site, as shown in the third row. In each image, the red “H” 

represents the current calculation. 

Hydrogen adsorption is examined at both the surface and the nanocluster. We explore 

adsorption of H at twofold coordinated bridging O ions (Obr) of the rutile (110) surface 

and at chalcogen sites of the modifiers. We follow the workflow shown in the schematic 

in Figure 7.1 and begin with H adsorption at Obr surface sites. These calculations, 

represented by the top row of Figure 7.1, are performed first and we identify the most 

stable configuration for each hydrogen coverage ranging from 0 H to saturation of the 

surface sites. The adsorption energy of the 𝑛𝑡ℎ  H atom at the most stable surface with an 

existing coverage of (𝑛 − 1) H atoms is computed via: 
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 ΔEH = E𝑛H@𝑠𝑢𝑟𝑓 − E(𝑛−1)H@𝑠𝑢𝑟𝑓 −
1

2
(EH2) 7.1 

Where 𝐸𝑛H@𝑠𝑢𝑟𝑓 , 𝐸(𝑛−1)𝑠𝑢𝑟𝑓 , and 𝐸H2  are the computed energies of the surface with 𝑛 H 

atoms adsorbed, the surface with (𝑛 − 1) H atoms, and an isolated, gas phase H2 

molecule.  

In the second set of calculations, represented by the second row of Figure 7.1, for each 

surface coverage of hydrogen, we examine hydrogen adsorption at chalcogen sites. For a 

surface coverage of (𝑛 − 1) H, the adsorption energy of the 𝑛𝑡ℎ  H atom at a cluster site 

is computed via: 

 ΔEH = EH@𝑐𝑙𝑢𝑠𝑡𝑒𝑟 − E(𝑛−1)H@𝑠𝑢𝑟𝑓 −
1

2
(EH2) 7.2 

where EH@𝑐𝑙𝑢𝑠𝑡𝑒𝑟  is the energy of the system with 1 H at a cluster site and (𝑛 − 1) H 

adsorbed at surface sites. These calculations elucidate the impact of surface hydrogen 

coverage on the strength of interaction between H and the cluster site. For those 

configurations with adsorption free energies within our range, we proceed with the third 

set of calculations, represented by the third row in Figure 7.1, and examine adsorption of 

a second H atom at a cluster site to assess any trends in H coverage on the nanocluster 

modifier. 

From the chemisorption energies (ΔEH), we compute the free energy of adsorption using:  

 ΔGH = ΔEH+ ΔEZPE − TΔSH 7.3 

Where ΔEZPE is the difference in zero point energy (ZPE) between the H atom adsorbed 

at the surface and in the gas phase; and TΔ𝑆H accounts for the difference in entropy 

between the final and initial state. These quantities are calculated according to the 

description in Chapter 2. In this way, we compute ΔEZPE − TΔSH values of 0.35, 0.29, 
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and 0.26 eV for H adsorbed at O, S, and Se sites, respectively and these are consistent 

with other values used in the literature.9-12 

 

7.3 Results 

7.3.1 Atomic structure 

 

Figure 7.2 Relaxed atomic structures of (a) Sn4S4, (b) Sn4Se4, (c) Zn4S4 and (d) Zn4Se4. 

The relaxed structures of the M4X4 nanoclusters in the gas phase are shown in Figure 7.2 

and the composite M4X4-r110 surfaces are shown in Figure 7.3; the computed adsorption 

energies are included in the insets. The negative adsorption energies indicate that the 

modifier-surface interaction is favourable and the magnitudes of these energies suggest 

that the nanoclusters are strongly bound at the surface.13-17  
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For Sn4S4-r110, shown in Figure 7.3.a, there are two Ti-S bonds of length 2.5 Å and three 

Sn-O bonds of lengths 2.2-2.4 Å. For Sn4Se4-r110, in Figure 7.3.b, there are two Ti-Se 

bonds of lengths 2.7 and 2.8 Å and two Sn-O bonds of length 2.2 Å. For both Sn4S4-r110 

and Sn4Se4-r110, an additional bond forms between one Sn ion and a surface Ti with a 

bond length of 2.9 Å. 

 

Figure 7.3 Relaxed geometries of (a) Sn4S4-, (b) Sn4Se4-, (c) ZnsS4-, and (d) Zn4Se4-

r110. The adsorption energies of the nanoclusters at the rutile (110) surface are included 

in the insets. The colour scheme in the legend on the right applies to this and subsequent 

figures. 

For Zn4S4-r110, shown in Figure 2.c, there are two Ti-S bonds, both of length 2.5 Å and 

three Zn-O bonds; one Zn-O bond is 1.9 Å and two have length 2.1 Å. For Zn4Se4-r110, 

in Figure 2.d, there are two Ti-Se bonds of lengths 2.6 and 2.7 Å and three Zn-O bonds 

of lengths 1.9, 2.1 and 2.1 Å. 



336 

 

From these data, we can see that the Ti-S bonds are shorter than the Ti-Se bonds. This is 

expected as Se has a larger ionic radius than S.18-19 Nanocluster metal-S bonds are also 

shorter than metal-Se bonds, both in the gas-phase and after adsorption at the rutile TiO2 

surface. Metal-S bonds are consistently shorter by 0.12-0.16 Å, than equivalent bonds in 

the selenide structures. These values are in agreement with the ionic radii of S2- and Se2-, 

which are 1.84 and 1.98 Å, respectively.20 However, despite differences in the 

composition of the nanocluster modifiers, the adsorption energies are similar in all cases.  

 

7.3.2 Density of states 

 

Figure 7.4 Density of states (DOS) plots for (a) Sn4S4-, (b) Sn4Se4-, (c) Zn4S4-, and (d) 

Zn4Se4-r110. The VBM of the titania support is set to 0 eV and the dashed vertical lines 

indicate the Fermi level. Nanocluster contributions, (M = Sn, Zn and X = S, Se), are 

shown (× 10) for clarity. 

The projected electronic density of states (PEDOS) plots, computed for the M4X4-r110 

heterostructures, are shown in Figure 7.4. The VBM of the titania support has been set 
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to 0 eV and the band gap of the rutile (110) surface, from this computational set-up, is 

2.20 eV. After modification, occupied cluster-derived electronic states, which are 

predominantly chalcogen p states, extend into the energy gap. Occupied states emerge at 

1.18, 1.30, 1.33 and 1.57 eV above the titania VBM for modification with Sn4S4, Sn4Se4, 

Zn4S4 and Zn4Se4, respectively. This is combined with an enhancement of the DOS near 

the VBM of the titania support due to modification. Moreover, for Sn4X4
 modification, 

Sn-derived states emerge in the energy gap. These states are due to the lone pair, as has 

been discussed in previous work on Sn chalcogenides.21-22 

Thus, the modified surfaces exhibit a redshift in the energy gap, with respect to the 

unmodified rutile (110) surface. Moreover, modifier-derived states near the Fermi level 

will have important consequences for the HER activity. 

 

7.3.3 Photoexcitation model 

Table 7.1 Energies computed from the photoexcitation model. Vertical singlet-triplet 

energy difference (Evert), the relaxed singlet-triplet energy difference (Eexc) and the 

relaxation energy (Erelax) for M4X4-modified rutile (110). Values computed for the 

unmodified TiO2 rutile (110) surface have been included for reference. 

System Evert (eV) Eexc (eV) Erelax (eV) 

Bare r110 2.03 1.60 0.43 

Sn4S4-r110 1.17 0.16 1.01 

Sn4Se4-r110 1.11 0.14 0.97 

Zn4S4-r110 1.58 0.46 1.12 

Zn4Se4-r110 1.30 0.13 1.17 

 

The energies computed from the photoexcitation model are presented in Table 7.1. First, 

the model applied to the bare rutile (110) surface yields a vertical energy, Evert, of 2.03 
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eV. The values for Evert indicate that modification induces a redshift in the energy gap, as 

was also shown in analysis of the PEDOS plots. Optical gaps of 1.17, 1.11, 1.58 and 1.30 

eV are computed for the rutile (110) surface modified with Sn4S4, Sn4Se4, Zn4S4 and 

Zn4Se4, respectively. The excitation energy, Eexc, is the energy difference between the 

singlet ground state and the fully relaxed triplet excited state. Each of the modified 

surfaces exhibit a reduction in this value, with respect to that computed for the bare rutile 

(110) surface. The computed relaxation energies, Erel, are larger for the modified systems. 

Erel represents the energy gained by the system after structural changes and relaxation in 

the excited state and is a measure of the stability of electron and hole localisation.  

 

Figure 7.5 Excess spin density plots computed for the excited state of (a) Sn4S4-, (b) 

Sn4Se4-, (c) Zn4S4-, and (d) Zn4Se4-r110, after structural relaxation. The isosurfaces 

enclose spin densities of up to 0.02 eV/Å3. Electrons are indicated by yellow and holes 

by blue. 

To take part in photocatalytic reactions, photoexcited charges must separate and migrate 

to active surface sites and this entails overcoming the electron-hole binding energy, which 
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is not accounted for in this simple model for photoexcitation. However, low-coordinated 

surface sites can act as charge traps and suppress carrier recombination, and this is 

captured in our model. Moreover, the computed values Erel are useful as a measure of the 

stability of charge trapping and indicate that this is enhanced upon modification with the 

metal chalcogenide nanoclusters. Taken together, the values shown in Table 7.1 indicate 

that modification of rutile (110) with nanoclusters of composition M4X4 induces a redshift 

in light absorption and enhances the stability of photoexcited charges. 

By examining the excess spin density plots, shown in Figure 7.5, in combination with 

analysis of computed Bader charges and spin magnetisations, we identify at which ions 

the photoexcited charges localise. For each system, the electrons and holes localise at the 

surface and modifier, respectively, which promotes charge separation. The yellow 

isosurfaces show that the electrons localise at sub-surface Ti ions, resulting in a reduction 

from Ti4+ to Ti3+. This is corroborated by an increase in Bader charge from 1.3 electrons 

for Ti4+ to 1.6/1.7 electrons for Ti3+ and a computed spin magnetisation of 0.94 𝜇𝐵  for the 

reduced Ti3+ ion.  

For Sn4S4-r110, the hole state localises predominantly on an S ion and a neighbouring Sn 

ion. For the S ion, the Bader charge decreases from 6.9 to 6.7 electrons and this ion has a 

spin magnetisation of 0.29 𝜇𝐵 . For the Sn ion, the Bader charge decreases from 12.8 to 

12.6 electrons, indicating some hole localisation on Sn, consistent with the DOS analysis; 

the spin magnetisation for this Sn ion is 0.19 𝜇𝐵 . For Sn4Se4-r110, the hole localises on 

an Se ion, for which the Bader charge decreases from 6.8 to 6.4 electrons; the spin 

magnetisation for this ion is 0.41 𝜇𝐵 . 

For both Zn4S4-r110 and Zn4Se4-r110, the hole state is distributed over two chalcogen 

ions; the S ions have computed spin magnetisations of 0.27 and 0.39 𝜇𝐵 , while for the Se 
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ions the spin magnetisations are 0.32 and 0.35 𝜇𝐵 . For Zn4S4-r110, the Bader charges for 

these S ions decrease from 6.9 and 6.8 electrons to 6.7 and 6.5 electrons, respectively. 

Similarly, the Bader charges for the Se ions at which the hole localises in Zn4Se4-r110 

decrease from 6.8 to 6.5 electrons and from 6.6 to 6.4 electrons. In summary, each of the 

modified surfaces exhibit a reduction in the optical gap and an enhanced stability of 

excited charges, with respect to bare rutile (110). Moreover, after modification, the 

photoexcited electrons and holes are spatially separated; the electrons localise at 

subsurface Ti sites and the holes localise at chalcogen ions of the supported modifiers.  

 

7.3.4 Hydrogen adsorption 

Next, we examine the free energy of H adsorption at the modified surfaces and, as 

mentioned in the introduction, we consider that these modified materials will promote 

HER should they exhibit H adsorption free energies close to thermoneutral, i.e. 0 eV. For 

practical purposes, values of ΔGH between -0.15 eV and 0.15 eV are in the active range. 

For H adsorption at the rutile (110) surface, only the two-fold coordinated Obr ions are 

investigated. After modification, there are five such sites for Sn4S4-, Zn4S4- and Zn4Se4-

r110, and six for Sn4Se4-r110; full coverage of the surface sites corresponds to five or six 

H atoms (𝑁 = 5 or 6). For each surface coverage of 𝑛 = (1 → 𝑁) H, we identify the most 

stable configuration for the 𝑛𝑡ℎ  H atom adsorbed at a surface site by computing ΔGH 

relative to a surface coverage of (𝑛 − 1) H atoms for each available site, using equation 

7.1. The results of these computations are shown in the rows labelled ‘O’ for each surface 

in Table 7.2.  

For surface coverages between 0 and N hydrogens, we then examine hydrogen adsorption 

at all chalcogen sites and the computed ΔGH  for the most stable chalcogen sites are 



341 

 

presented in Table 7.2, in the rows labelled ‘X’, (X=S, Se). The adsorption free energy 

of the 𝑛𝑡ℎ  H atom at a cluster site is calculated relative to the surface with (𝑛 − 1) H at 

surface sites, according to equation 7.2. Henceforth, we distinguish between “coverage” 

and “surface coverage”; the former refers to the total H coverage, including adsorption 

sites at the nanoclusters, whereas the latter refers only to H adsorbed on O sites of the 

rutile (110) support. 

Table 7.2 Free energies (in eV) for H adsorption at surface sites (O) and cluster sites (S, 

Se) of Sn4S4-, Sn4Se4-, Zn4S4-, and Zn4Se4-r110. The data presented herein follows from 

the procedure described in the methodology section and summarized in Figure 7.2. For 

cluster sites, adsorption free energies in the active range are highlighted in bold. 

Modifier Site 0H 1H 2H 3H 4H 5H 6H 

Sn4S4 O 0.00 -0.85 -0.36 -0.18 -0.44 -0.16  

 S  -0.34 -0.25 -0.08 0.29 -0.00 0.04 

 S+S   -0.09 0.35 0.15 -0.13 0.25 

         

Sn4Se4 O 0.00 -0.65 -0.59 -0.30 -0.18 -0.12 -0.15 

 Se  -0.12 0.28 0.28 0.50 0.52 0.51 

 Se+Se   0.47     

         

Zn4S4 O 0.00 -0.81 -0.32 -0.21 -0.22 -0.06  

 S  -0.35 -0.19 -0.10 -0.08 0.02 0.12 

 S+S   0.07 0.67 0.12 0.52 0.74 

         

Zn4Se4 O 0.00 -0.56 -0.59 -0.25 -0.13 -0.08  

 Se  0.15 0.08 0.20 0.33 0.40 0.29 

  Se+Se     0.45        

 

For each modified surface, H adsorption at TiO2 bridging oxygen sites is exothermic for 

all surface coverages. As the surface coverage increases, approaching full occupation of 

Obr sites, ΔGH decreases. However, for all coverages, H adsorption at surface sites is more 

favourable than adsorption at chalcogen sites. Thus, for the 𝑛𝑡ℎ  H atom, ΔGH for 
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adsorption at a cluster site is computed relative to the system with a surface coverage of 

(𝑛 − 1) H.  

For configurations with a H atom adsorbed at a cluster site with a free energy in the active 

range, we also investigate ΔGH for adsorption at a second cluster site. The results of these 

computations are included in the rows labelled ‘X+X’ (X=S, Se). All adsorption 

configurations for the data in Table 7.2 are shown in Figures 7.6, for the example of 

Sn4S4-r110, and for this and the remaining heterostructures, the adsorption configurations 

at cluster sites with energies in the active range are summarised in Figure 7.7. All 

adsorption configurations for the other heterostructures are shown in Figures 7.8-7.10 at 

the end of this chapter.  

At all coverages, the bonds formed upon H adsorption at anion sites are consistent; O-H, 

S-H and Se-H bonds measure in the ranges (0.97-1.00), (1.35-1.40) and (1.47-1.49) Å, 

respectively. For Sn4S4-r110 and Zn4S4-r110, the first H atoms adsorb strongly at both 

surface and cluster sites; ΔGH of -0.85 and -0.81 eV are computed for surface Obr sites 

and the computed ΔGH is -0.34 and -0.35 eV for S sites. These values are quite exothermic 

and suggest that, at this coverage, the surface will be hydroxylated and the S-H bond is 

too stable for HER. However, starting from coverages of 2H, the computed ΔGH for 

cluster sites are generally in the active range (-0.15 eV, 0.15 eV).  
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Figure 7.6 Adsorption configurations of H adsorbed at Sn4S4-r110 for coverages between 

one and six H atoms. The top row shows H adsorbed only at surface (Obr) sites, the second 

row shows configurations in which 1 H is adsorbed at a cluster (S) site, at each coverage. 

The configurations in the third row have 2 H adsorbed at S sites, for each coverage. The 

adsorption free energies, ΔGH, are included in the insets and the red arrows indicate the 

configurations relative to which ΔGH is computed. At all coverages, H adsorption at Obr 

sites is more favourable than adsorption at cluster sites. In this and subsequent figures, 

values for ΔGH in the active range are highlighted in bold, for cluster sites. 
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Figure 7.7 H adsorption configurations with free energies in the range (-0.15 eV, +0.15 

eV), for adsorption at cluster sites of Sn4S4-, Sn4Se4-, Zn4S4-, and Zn4Se4-r110. The total 

H coverages are shown on the left hand side. “X” = adsorption of a single H at a chalcogen 

site of the cluster; “X+X” = adsorption of two H at chalcogen sites of the cluster. 

By contrast, for Sn4Se4-r110, only the first H adsorption free energy at a cluster site is 

within the active range, irrespective of the surface H coverage. Similarly, for Zn4Se4-

r110, only two adsorption configurations are in the active range, at coverages of 1H and 

2H. For higher coverages, while adsorption at O sites is favourable, adsorption at Se sites 

is endothermic and the free energies are outside the active range.  

In summary, the data presented in Table 7.2 indicate that the sulphide-modified surfaces 

will be more active in HER, with respect to the selenide-modified surfaces. In general, H 

adsorption at S sites is more favourable than adsorption at Se sites; adsorption at Se sites 

is mostly too endothermic for HER activity. This result is in agreement with a recent study 
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on the stabilisation of hydrogen adsorption on Chevrel-Phase Mo6X8 (X=S, Se, Te) 

electrocatalysts.23 Through a combination of experiment and computation, the authors 

reported that H adsorption strength increased with the electronegativity of the chalcogen 

(S = 2.58; Se = 2.55).24 This result manifests in the electronic structure as a lower p-band 

centre. The p-band centre is defined as: 

 X p-band centre =
∫ 𝐸∙𝐷𝑋𝑃

(𝐸)𝑑𝐸
∞
−∞

∫  𝐷𝑋𝑃
(𝐸)𝑑𝐸

∞
−∞

−𝐸𝐹  7.4 

This quantity can be extrapolated from the computed PEDOS and values of -2.08, -1.69, 

-2.23 and -1.97 eV were computed for the chalcogen species of Sn4S4-, Sn4Se4-, Zn4S4- 

and Zn4Se4-r110, respectively. The lower p-band centres for the sulphide-modified 

systems reflect the stronger hydrogen adsorption at cluster sites of these composite 

surfaces. The computed values for the p-band centres are lower for the ZnX modifiers, 

with respect to the SnX modifiers. However, this does not manifest in appreciable 

differences in the H adsorption free energies between ZnX and SnX modification, as 

shown in Table 2. Thus, the role of the metal in the M4X4 modifiers, whether Sn or Zn, 

does not appear to affect the HER activity and the nature of the chalcogen, whether S or 

Se, plays a greater role. Finally, hydroxylation of the rutile support, beyond a surface 

coverage of 1 H, does not qualitatively affect the strength of adsorption of H at cluster 

sites. 

For each of the H adsorption configurations at cluster sites with ΔGH in the range (-0.15 

eV, 0.15 eV), highlighted in bold in Table 7.2, we examine the subsequent Heyrovsky 

step in which a H atom interacts with H bound at S or Se of the nanocluster. This results 

in the formation and desorption of a H2 molecule in a process which amounts to the 

reverse of H adsorption; thus, the free energy corrections, ΔEZPE − 𝑇ΔSH, are the negative 

of those computed for H adsorption, i.e. -0.29 eV and -0.26 eV for desorption from S and 
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Se, respectively. For Sn4S4-r110, of the six adsorption configurations with ΔGH in the 

active range, the desorption free energies are in the range (-0.19 eV, +0.20 eV). For the 

four active configurations on Zn4S4-r110, the desorption energies are in the range (-0.34 

eV, 0.14 eV). The free energies are 0.40 eV for desorption from Sn4Se4- and -0.19 and 

0.53 eV for desorption from Zn4Se4-r110. This suggests that formation of H2 through the 

Heyrovsky step should be favourable on metal sulphide modified TiO2. 

 

7.4 Conclusions 

Metal chalcogenides have emerged as promising candidates for HER catalysis. Extensive 

experimental and computational studies of TMDs have revealed that low-coordinated 

chalcogen sites are active sites for HER. This is attributed to the near optimal adsorption 

free energy of H at chalcogen sites.  

In this work, we have examined, via DFT+U computations, the surface modification of 

TiO2 rutile (110) with nanoclusters of composition M4X4 (M = Sn, Zn; X = S, Se). Surface 

modification strategies aim to combine the desirable properties of the substrate (TiO2) 

with those of the nanocluster modifiers. In this instance, the M4X4 modifiers provide low-

coordinated chalcogen sites, which we have investigated for their HER activity via 

computations of the free energy of H adsorption. 

Our results indicate that the M4X4 modifiers bind to the rutile surface with the formation 

of interfacial M-O and Ti-X bonds. The modification induces a red shift in light 

absorption due to the emergence of occupied, nanocluster-derived (predominantly 

chalcogen 2p) states in the titania energy gap. In addition, modification with M4X4 
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nanoclusters promotes the spatial separation of photoexcited charges and enhances their 

stability in the excited state. 

Analysis of the free energies of H adsorption, ΔGH, reveals that the sulphide modifiers 

exhibit values close to thermoneutral, (-0.15 eV, +0.15 eV), for most H coverages, 

whereas this is only true for the selenide modifiers at low coverages. This is a widely 

accepted descriptor for HER activity and suggests that sulphide-modification will 

promote the HER to a greater extent than selenide modification. In general, H binding at 

sulphur sites is more favourable than at selenium sites; we attribute this to the higher 

electronegativity of S, with respect to Se. This effect is manifested in the computed p-

band centres of the modified systems – the sulphide-modified systems exhibit lower p-

band centres than the selenide-modified systems. 

In conclusion, modification of titania with dispersed metal chalcogenide nanoclusters has 

the potential to enhance the HER activity of the titania support. However, despite their 

desirable photocatalytic properties, chalcogenides can suffer from poor chemical 

stability25 and this must be accounted for in the design of practical photocatalysts. While 

metal chalcogenides can oxidise in aqueous environments, many of the catalysts 

presented in the review in Chapter 3 exhibit stable performances under HER conditions. 

Thus, one strategy for preserving the integrity of metal chalcogenide catalysts for water 

splitting applications will entail the design of a suitable photoelectrochemical cell, in 

which the OER and HER proceed in separate compartments. Another approach to 

promote the stability is to deposit very thin, protective layers via ALD or similar 

techniques.26-28  

Careful analysis is required to elucidate the impact of modification on the properties 

which govern the photocatalytic HER activity. However, rational selection of the 
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composition of the modifiers, in combination with first principles computations of 

appropriate material descriptors can facilitate high-throughput screening of candidate 

materials. 
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Figure 7.8 Adsorption configurations of H adsorbed at Sn4Se4-r110 for coverages 

between one and six H atoms. The top row shows H adsorbed only at surface (Obr) sites, 

the second row shows configurations in which 1 H is adsorbed at a cluster (Se) site, at 

each coverage. The configuration in the third row has 2 H adsorbed at Se sites. The 

adsorption free energies, ΔGH, are included in the insets and the red arrows indicate the 

configurations relative to which ΔGH is computed. At all coverages, H adsorption at Obr 

sites is more favourable than adsorption at cluster sites. 



350 

 

 

Figure 7.9 Adsorption configurations of H adsorbed at Zn4S4-r110 for coverages between 

one and six H atoms. The top row shows H adsorbed only at surface (Obr) sites, the second 

row shows configurations in which 1 H is adsorbed at a cluster (S) site, at each coverage. 

The configurations in the third row have 2 H adsorbed at S sites, for each coverage. The 

adsorption free energies, ΔGH, are included in the insets and the red arrows indicate the 

configurations relative to which ΔGH is computed. At all coverages, H adsorption at Obr 

sites is more favourable than adsorption at cluster sites. 
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Figure 7.10 Adsorption configurations of H adsorbed at Zn4Se4-r110 for coverages 

between one and six H atoms. The top row shows H adsorbed only at surface (Obr) sites, 

the second row shows configurations in which 1 H is adsorbed at a cluster (Se) site, at 

each coverage. The configuration in the third row has 2 H adsorbed at Se sites. The 

adsorption free energies, ΔGH, are included in the insets and the red arrows indicate the 

configurations relative to which ΔGH is computed. At all coverages, H adsorption at Obr 

sites is more favourable than adsorption at cluster sites. 
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8 TiO2 nanoparticle 

What follows is adapted from an article entitled “On the use of DFT+U to describe the 

electronic structure of TiO2 nanoparticles: (TiO2)35 as a case study”, published in the 

Journal of Chemical Physics.1  

 

DOI: https://doi.org/10.1063/5.0012271 

 

8.1 Introduction 

Titanium dioxide, TiO2, nanoparticles involving a mixture of anatase and rutile 

polymorphs, in particular, in the commercialised Degussa P25 form, constitute the most 

studied photocatalytic material and a model system for the mechanisms involved in 

photocatalysis.2-5 The performance of TiO2 depends largely on its optical, electronic, 

structural, morphological and surface properties,6-8 and one of the key properties of TiO2, 

https://doi.org/10.1063/5.0012271
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especially in the anatase polymorph, is the formation of photogenerated charge carriers 

(holes and electrons), activated by the absorption of ultraviolet (UV) light. Indeed, the 

need for UV radiation constitutes one of the major bottlenecks towards developing 

efficient TiO2 photocatalysts that can work under sunlight, as only ~5% of the incident 

solar spectrum corresponds to UV light. Hence, a major challenge in the development of 

competitive TiO2-based photocatalysts is reducing the energy gap to the visible (VIS) 

region.9 

In principle, the properties of TiO2 can be modulated by designing nanoparticles (NPs) 

with different sizes, shapes, crystallinities, and surface facets.10-13 However, to determine 

the relationship between structural and electronic properties of TiO2 nanoparticles, 

experimentally, is not a simple task. Alternatively, computational techniques provide a 

feasible, accurate, and unbiased approach to study such correlations and, consequently, 

can contribute to build connections between experiment and theory.14 

Density functional theory (DFT)15-16 has been widely used to study the properties of 

different types of materials with high accuracy in the prediction of crystal structures and 

reasonable description of electronic structure features at a moderate computational cost17 

and with a well-established reproducibility.18 Unfortunately, energy gaps computed using 

the popular local density approximation (LDA) and the generalised gradient 

approximation (GGA) are consistently underestimated by 30–100%.19-20 The error arises 

from the inherent lack of derivative discontinuity and the delocalisation error.21-23 To 

overcome the drawbacks of LDA and GGA for estimating this electronic property, hybrid 

functionals, which include a part of the nonlocal Fock exchange, have been proposed and 

widely employed.24-25 Depending on the type of basis set, the use of hybrid functionals 

can represent a significant increase in the cost of the calculations. Inspired by the Hubbard 

Hamiltonian,26 Anisimov et al.27 proposed to avoid the computational load inherent to 
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hybrid functionals by implementing an empirical on-site Hubbard (U) correction to a 

selected atomic energy level, within standard DFT. The resulting method is often referred 

to as DFT+U, an unfortunate term as DFT is an exact theory. DFT+U has been broadly 

used, especially after the contribution of Dudarev et al.28 and is particularly useful in the 

description of the partially filled d-states of the transition metals – in the case of TiO2, the 

U-correction is applied to the Ti 3d orbital.29-30  

The DFT+U method combines the high efficiency of standard DFT with an explicit, albeit 

approximate and empirical, treatment of electron on-site correlation, and constitutes one 

of the simplest approaches to describe the ground state of strongly correlated systems. 31 

However, the choice of appropriate U parameter value for each compound is a challenge. 

This obstacle can be solved through (i) a linear response, fully consistent method,32 or (ii) 

alternative routes based on comparison with experimental results for some physical 

property of interest, such as magnetic moment, energy gap, redox potentials or reaction 

enthalpies.33-35 For instance, the latter strategy has been employed in the study of the 

electron transport in the rutile phase,36-37 reduced forms of TiO2,38-39 and ultrathin films 

of the rutile phase.40  

Nevertheless, the selection of the U parameter is not straightforward. Moreover, the 

choice of the appropriate form of the projector functions inherent to the method is also a 

concern,41 especially after the work of Kick et al.42 who recently implemented DFT+U 

with a numerical atomic orbital basis set. The authors showed that the value for U depends 

on the choice of projector function, which in turn depends on the type of basis set (atomic 

orbitals or plane waves) used.  The aim of the current study is to evaluate the effect of the 

basis sets in the selection of the U value necessary to describe the electronic structure of 

semiconducting nanoparticles, taking a previously investigated, well-defined (TiO2)35 

bipyramidal NP as a case study.43  
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Nanoparticles exhibit features that are not present in bulk or extended surface models; 

these include large surface areas, low-coordinated surface sites and quantum confinement 

effects. Such features endow NPs with unique properties, which make them of interest, 

in particular, for photocatalytic applications.44 TiO2 NPs have been the subject of a 

number of DFT studies at different levels of the theory.45-53 An understanding of the 

performance of different implementations of DFT in the description of the structural and 

electronic properties of isolated nanoparticle systems is crucial for the effective 

application of computational methods. 

 

8.2 Methodology 

 

Figure 8.1 Stoichiometric (TiO2)35 anatase NP with bipyramidal morphology. All the 

exposed facets correspond to the (101) surface. The dimensions of the NP are indicated 

with double arrows. Wx and Wy denote the nanoparticle width in the x and y direction, 

respectively. Gray and red spheres represent Ti and O atoms, respectively. 
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The well-defined bipyramidal stoichiometric (TiO2)35 anatase NP, which fulfills the 

requirement of a Wulff construction,54 and was used in previous studies,42 is selected for 

the present study (Figure 8.1). This nanoparticle exposes the most favorable (101) facets 

only, as found in experiments.7 Furthermore, its ~2 nm size is also appropriate to 

rationalise experimental results reported for TiO2 anatase NPs.55  

The calculations reported here have been carried out using two widely used codes, namely 

the Vienna Ab Initio Simulation Package (VASP)56-57 and the Fritz Haber Institute ab 

initio molecular simulations (FHI-aims).58 VASP calculations were carried out in 

Tyndall, by the author, and use the computational set-up described in Chapter 2. 

However, the details are provided again here, to facilitate comparison with the FHI-aims 

set-up. The FHI-aims calculations were performed in the University of Barcelona. In both 

cases, the Perdew-Wang (PW91) exchange-correlation functional59 is used and spin-

polarisation is accounted for explicitly, although the final results do not exhibit any spin-

polarisation. The partially filled Ti3d states are consistently described by applying the 

Hubbard U correction26 under the simplified rotationally invariant approach introduced 

by Dudarev et al.27 In the following, we will refer to the resulting approach as PW91+U, 

which is more appropriate.  

The calculations carried out with VASP employ a plane waves (PWs) basis set with a 

kinetic energy cut-off of 396 eV. To account for the effect of inner electrons on the 

valence density, we implement the projector augmented wave (PAW) method of Bloch, 60 

as implemented by Kresse and Joubert,61 with 12 and 6 valence electrons for Ti and O 

atoms, respectively. The (TiO2)35 NP is included in a 20  20  40 Å supercell to give a 

vacuum gap of 11 Å in the x- and y-directions and 20 Å in the z-direction. Γ-point 

sampling is used and the convergence criteria for the energy and forces are 10 -4 eV and 

0.02 eV/ Å-2, respectively. 
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On the other hand, the calculations carried out by the FHI-aims code include all electrons 

(AEs) and account for relativistic effects through the so-called zero-order regular 

approximation (ZORA)62-63 proposed earlier by Chang et al..64 A tier-1 light grid 

numerical atom-centered orbital (NAO) basis set has been used, with a quality 

comparable to that of a triple-zeta valence polarised (TZVP) Gaussian Type Orbital basis 

set for TiO2.
Error! Bookmark not defined. Here, for the implementation of the Hubbard U 

correction, the projection functions for Ti3d states are introduced as an explicit linear 

combination of the NAO basis functions with the double-counting correction in the fully 

localised limit (FLL); see details in ref. Error! Bookmark not defined.. The 

convergence threshold for the energy is 10-4 eV. Note that, hereinafter, the notation of 

PW and NAO is used to refer to the calculations performed with VASP and FHI-aims, 

respectively. 

 

8.3 Results 

To provide a sound reference for the study, we first discuss the energy gap of fully relaxed 

anatase and rutile bulk phases as predicted from spin polarised DFT calculations with the 

PW91 GGA type density functional and using either PW or NAO basis sets. To avoid 

problems arising from a difference in the quality of the basis sets we increase the kinetic 

energy cutoff for the PW to 550 eV and used a more extended NAO basis set of tier-2 

tight quality. For rutile, the PW/NAO calculated band gap is 1.94/1.91 eV whereas for 

anatase the PW/NAO calculated band gap amounts to 2.25/2.10 eV. The difference in the 

anatase phase must be attributed to small differences in the optimised structure arising 

from the different treatment of the core electrons. In any case, the PW and NAO 

calculations for bulk rutile and anatase lead essentially to the same results with a deviation 
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of at most 0.15 eV in the band gap. Clearly, these calculated energy gaps are 

underestimated with respect to the experimental values, which are 3.0 and 3.2 eV, for 

rutile and anatase phases, respectively.65-67 Hybrid functionals with an ad-hoc amount of 

non-local Fock exchange are known to provide a better estimate, as discussed for instance 

by Ko et al..68 In this paper, based on calculations performed with FHI-aims, the authors 

tuned the percentage of Fock exchange in the PBE0 hybrid functional to reproduce the 

experimental band gap of bulk rutile and anatase TiO2. With 12.5% of Fock exchange, 

denoted PBEx, the bandgap of anatase was computed as 3.22 eV. A similar computational 

setup in VASP yields a value of 3.21 eV for the bulk anatase energy gap. While DFT+U 

can also be tuned to recover the experimental band gap, this is usually at the cost of a 

poorer description of other materials properties. 

Next we focus on the representative (TiO2)35 anatase NP, depicted in Figure 8.1. The 

atomic structure of this NP has been obtained from a geometry optimisation using both 

VASP and FHI-aims computational packages and PW91+U. However, to perform a 

rigorous comparison of the effect of U when using PW or NAO basis sets, we consider 

four different situations, which are as follows:  

(i) The structure is optimised in FHI-aims with PW91 (U=0) and single-point 

calculations are run with both FHI-aims and VASP at each U value, U=0-10 eV;  

(ii) The structure is optimised in VASP with PW91 (U=0) and single-point 

calculations are run with both FHI-aims and VASP at each U value, U=0-10 eV; 

(iii) The structure is fully optimised in both FHI-aims and VASP at each U=0-10 eV. 

(iv) Each structure obtained by FHI-aims (VASP) in (iii) is submitted to a single 

point calculation in VASP (FHI-aims) at the same U-value.   
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The first and second sets of calculations allow one to investigate differences in the 

description of the electronic structure that are not due to a difference in the atomic 

structure, but to the different type of basis set and the implementation of the +U term.Error! 

Bookmark not defined. The third set of calculations provides information about differences in 

the final optimised structure, and the effect of this optimisation on the energy gap. Finally, 

the fourth set of calculations shows to what extent the fully relaxed atomic structure 

impacts on the electronic structure. In each of these data sets we can compare the results 

of the different set-ups by a linear fit of the data. 

 

8.3.1 Structural analysis 

 

Figure 8.2 Evolution of the dimensionality of the stoichiometric (TiO2)35 anatase NP 

based on (a) length, (b) width in x and (c) width in y as a function of the U parameter for 

fully optimised structures by using VASP (blue dots) and FHI-aims (red dots) codes. 
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We start the discussion by analysing the structural properties of the (TiO2)35 NP, focusing 

mainly on its length and width (Figure 8.2). The PW91 (U=0) fully optimised structures 

of the (TiO2)35 NP predicted by VASP and FHI-aims are almost the same. In both cases, 

the nanoparticle length, which is taken from the terminal atoms located in the apical 

region (see Figure 8.1), is 19.61 Å. For the width of the NP, FHI-aims predicts a width 

that is 0.02 Å larger than VASP. Hence, in the absence of U, both types of basis set lead 

to the same structure, as expected.17  

Therefore, any difference in the PW91+U structure predicted by the two types of basis 

sets (codes) has to be attributed to differences in the implementation of U. Regarding the 

atomic structure, the main effect of U is to slightly increase the nanoparticle length 

(Figure 8.2.a). The tendency is consistent, regardless of the basis set, up to U = 5 eV. 

When U is larger than 5 eV, the lengths predicted by VASP and FHI-aims follow different 

trends. 

The analysis of the nanoparticle width presents some interesting features (Figures 8.2.b 

and 8.2.c). Here, the effect of U is different depending on whether the calculation is 

carried out with a PW or NAO basis set. When using NAO, the optimised NP width 

decreases almost linearly with increasing U up to U = 7 eV, whereas when using PW, the 

dependence with U is very small, almost negligible. We note that, when using PW, the 

trends are very stable along the interval of U. However, this is not the case when the NAO 

basis set is employed, and the regular trend is broken at U = 7 eV. Note also that the 

breaking of the trend at U > 7 eV for the NAO calculations indicates that this value is too 

large to correctly describe correlation effects, as it has an exceedingly large influence on 

the properties of the nanoparticle and induces structural discontinuities. Similar 

observations on the effect of U on the phase stability of TiO2 have been reported.33 It is 

assumed that the large effect of U on the atomic structure predicted by the calculations 
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using the NAO basis set arise from the more localised character of the atomic NAO 

Hubbard projectors as implemented in FHI-aims.41 

8.3.2 Energy Gap Analysis 

The analysis of the energy gap of the (TiO2)35 anatase NP provides further interesting 

comparisons. The Kohn-Sham energy gaps, computed in the set-ups described in 

scenarios (i) and (ii), above, are shown in Figure 8.3 and Table 8.1. This data corresponds 

to two structures, each optimised with the respective codes, FHI-aims and VASP, at the 

PW91 (U=0) level. We begin by comparing the results of the single-point PW 

calculations performed on the FHI-aims (green) and VASP (blue) relaxed structures. At 

each U-value, the difference in computed energy gap between the two structures is 

negligible; in this case, the PW basis set implementation of +U is not sensitive to the 

geometry at which the electronic structure is computed.  

 

Figure 8.3 Variation of the energy gap with the parameter of U. The energy gap trends 

of (i) optimised (TiO2)35 anatase NP with FHI-aims code at U = 0 eV are calculated by 

performing single point calculations with FHI-aims code (red) and VASP (green) and (ii) 

optimised structure with VASP code at U = 0 eV by using single point calculations with 



364 

 

FHI-aims (black) and VASP (blue). Details of the linear fit (𝐸𝑔𝑎𝑝 =  𝑎𝑈 +  𝑏) data for 

each trendline are listed in Table 8.1. 

This result contrasts with the NAO data: for each U-value, NAO calculations predict a 

larger energy gap for the FHI-aims structure, relative to the VASP structure. The energy 

gaps computed from single point NAO calculations over the FHI-aims relaxed structure 

(red) are positively offset by ~0.5 eV with respect to those values computed over the 

VASP relaxed structure (black).  

Table 8.1 Linear fit (𝐸𝑔𝑎𝑝 =  𝑎𝑈 +  𝑏) data for (i) optimised (TiO2)35 anatase NP with 

FHI-aims code at U = 0 eV are calculated by performing single point calculations with 

FHI-aims code (red) and VASP (green) and (ii) optimised structure with VASP code at 

U = 0 eV by using single point calculations with FHI-aims (black) and VASP (blue) 

shown in Figure 8.3. 

 Plot Legend Trendline 

 Structure Single-point a b (eV) R2 

Red FHI-aims 

(U=0) 

FHI-aims 

(each U) 

0.103 2.510 0.989 

Green FHI-aims 

(U=0) 

VASP 

(each U) 

0.075 2.510 0.999 

Black VASP 

(U=0) 

FHI-aims 

(each U) 

0.106 1.980 0.984 

Blue VASP 

(U=0) 

VASP 

(each U) 

0.080 2.450 0.998 

 

The change in the energy gap with increasing U is consistent, regardless of the atomic 

structure, as revealed by the slopes (a-values) of the red and black trendlines, presented 

in Table 8.1; i.e. the 0.5 eV offset is maintained over the range of U-values. This result 

is interesting because, as discussed, both FHI-aims and VASP predict similar structures, 

vis length and width, at the PW91 (U=0) level. However, small differences in the atomic 

structures yield appreciable differences in the energy gaps computed with the NAO basis 

set, while no differences were shown with the PW basis set. This highlights that, to avoid 

misunderstanding interpretations in the analysis of the electronic properties, structural 
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relaxation is crucial when using the NAO basis set. It appears that the impact of U is 

greater with NAO, related to the localised projector functions.41  

It is also interesting to compare NAO and PW results when these calculations are 

performed on the same starting structure. For the FHI-aims relaxed structure, the energy 

gaps predicted by NAO (red) and PW (green) calculations are in agreement for small U-

values, but the differences in the predicted gaps increase with increasing U. This is 

reflected in the slopes (a-values) of the trendlines fitted to the NAO (red) and PW (green) 

data, which are 0.103 and 0.075, respectively (see Table 8.1). In this case, the energy gap 

varies to a greater extent in the NAO calculations, which consistently predict larger gaps 

with respect to the PW calculations. Conversely, for the VASP relaxed structure, the 

energy gaps predicted by NAO (black) and PW (blue) differ over the entire range of 

considered U-values. For U = 0 eV, the PW-computed energy gap is larger than that 

computed with NAO by ~0.5 eV, but this difference decreases with increasing U, in 

accordance with the larger slope for the NAO data (0.106), with respect to that of the PW 

data (0.080). These results suggest that the differences observed in the computed Kohn-

Sham energy gaps are not attributable to differences in the atomic structure, but rather to 

differences in the implementation of DFT+U for the NAO or PW basis set.  

Finally, we note that each of the computational set-ups, with the exception of NAO 

calculations on the VASP relaxed structure (black), predict similar energy gaps of ~2.5 

eV for U = 0 eV. For these three set-ups, the differences in the computed energy gaps are 

reasonable, i.e. within 0.15 eV, for U-values up to 4 eV. For U > 4 eV, the NAO basis set 

promotes a larger energy gap with respect to the PW basis set. 

The data obtained from the calculations described in scenarios (iii) and (iv), above, are 

presented in Figure 8.4 and Table 8.2. We first look at the computed energy gaps for the 
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structures optimised at each U-value in FHI-aims (red) and VASP (blue). The energy gaps 

computed with the NAO basis set increase from 2.5 eV to 3.8 eV as U increases from 0 

eV to 10 eV. This monotonic increase with U is expected and is corroborated in the 

trendline data, shown in Table 8.2.  

 

Figure 8.4 Variation of the energy gap with the parameter of U for: (scenario (iii)) the 

fully optimised (TiO2)35 anatase NP with the FHI-aims code (red) and VASP code (blue) 

and (scenario (iv)) single-point calculations in VASP (green) on the FHI-aims relaxed 

structure for each U and single-point calculations in FHI-aims (black) on the VASP-

relaxed structure at each U. Details of the linear fit (𝐸𝑔𝑎𝑝 =  𝑎𝑈 +  𝑏) data for each trend-

line are listed in Table 8.2. 

Interestingly, the opposite trend is observed for the energy gaps computed for the 

structures that were fully relaxed at each U with the PW basis set: in this case, the energy 

gaps decrease monotonically with increasing U. As seen in our discussion of Figure 8.3, 

increasing the U-value in a PW calculation on a fixed structure yields a larger energy gap. 

Thus, here we must attribute the decrease in the energy gaps to effects arising from the 

structural optimisation at each U. This result is surprising, not only because it is 

unexpected, but also because the changes in the PW-computed atomic structures over the 
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range of U-values are modest (see Figure 8.2), yet the impact on the electronic structure 

is significant, with states in the gap attributed to the presence of the low coordinated O 

atoms (see Figure 8.5). In fact, for the VASP-relaxed PW91 (U=0) structure, a single-

point PW calculation with U = 4 eV yields an energy gap of 2.76 eV whereas for the fully 

relaxed structure at U = 4 eV, the energy gap is 2.35 eV. In other words, the emergence 

of the gap states occurs at lower U values in the PW calculations. This is clearly seen in 

the results in Figure 8.5, corresponding to the VASP and FHI-aims calculations for U = 

2 and 6 eV, respectively. 

Table 8.2 Linear fit (𝐸𝑔𝑎𝑝 =  𝑎𝑈 +  𝑏) data for (iii) the fully optimised (TiO2)35 anatase 

NP with the FHI-aims code (red) and VASP code (blue) and (iv) single-point calculations 

in VASP (green) on the FHI-aims relaxed structure for each U and single-point 

calculations in FHI-aims (black) on the VASP-relaxed structure at each U shown in 

Figure 8.4. 

 Plot Legend Trendline 

 Structure Single-point a b (eV) R2 

Red FHI-aims 

(each U) 

- 0.136 2.520 0.993 

Green FHI-aims 

(each U) 

VASP 

(each U) 

0.095 2.550 0.994 

Black VASP 

(each U) 

FHI-aims 

(each U) 

0.027 2.310 0.358 

Blue VASP 

(each U) 

- -0.028 2.450 0.994 

 

Performing a single-point PW calculation on the FHI-aims relaxed structures at each U-

value produces the energy gaps represented with the green data points in Figure 8.4. Here 

we see that the data points agree with those computed with the NAO basis set (red) within 

0.1 eV, up to U = 4 eV, after which the differences increase. This is in agreement with 

the trendline data listed in Table 8.2; the slopes for the NAO (red) and PW (green) basis 

sets are 0.136 and 0.095, respectively. Importantly, single-point PW calculations on the 

FHI-aims relaxed structures, at each U, predict an increase in energy gap with increasing 
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U. This further confirms that the decreasing trend in energy gaps for the VASP-relaxed 

structures arises from structural effects.  

The energy gaps computed with single-point NAO calculations on the VASP-relaxed 

structures, at each U, are shown with the black data points in Figure 8.4. An outlier in 

this data is the energy gap computed for U = 0 eV, which is 2.02 eV. This value has been 

checked and the presence of an error in the calculation can be ruled out. Note, in addition, 

that the main effect of this calculation comes from the structural relaxation performed 

with VASP. Interestingly, for U = 1-10 eV, the computed energy gaps are consistently 

~2.5-2.6 eV and this data shows no discernible increasing or decreasing trend. Unlike the 

case of U = 0 eV, the structural effect induced by a previous relaxation with VASP is 

coupled to the U implementation as implemented in FHI-aims.  As seen in our discussion 

of single-point NAO calculations on both the FHI-aims and VASP PW91 (U=0) relaxed 

structures, the predicted energy gaps increase monotonically with increasing U. Once 

again, this suggests that subtleties in the structural optimisation within the PW 

implementation of DFT+U, probably linked to the low coordinated O atoms at the NP 

edge, produce these effects in the electronic structure. 

For the NAO calculations, consistent with the linear trends for the red data reported in the 

legends of Figures 8.3 and 8.4, the relaxation at each U value has a negligible effect, as 

expected, on the fitting offset with respect to the calculation at the PW91 (U=0) structure. 

However, the fully relaxed calculations result in changes in the fitting slope. Thus, the 

opening of the energy gap is more pronounced for the fully optimised structures when 

employing the NAO basis. 
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Figure 8.5 Projected electronic density of states (PEDOS) of the full relaxed (TiO2)35 NP 

using PW and NAO basis sets for U=0, 2, 4, and 6 eV. 
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This latter situation, where the NP structure is fully relaxed at each U in each code, is the 

most reasonable scenario to analyse the different behaviour observed between basis sets 

because artefacts due to the use of a structure not optimised within the method/basis set 

are ruled out. First of all, the energy gaps between the PW and NAO basis set are shifted 

by 0.25 eV (see Figure 8.3), which can be attributed to a different treatment of the effect 

of the core electrons and also relativistic effects.69-70 The former are included explicitly 

in the calculations with the NAO basis set, whereas they are included through a frozen 

orbital type approach through the PAW in the calculations with the PW basis. Similarly, 

the relativistic effects are included explicitly at the ZORA level with the NOA basis and 

implicitly through the PAW description of the core electrons in the PW calculations. In 

principle, the most accurate results are obtained from the all-electron basis set 

implemented in FHI-aims. The most relevant results are found in the variation of the 

energy gap in response to increasing U. These are depicted in Figure 8.4 and the trends 

(Table 8.2) are reflected in the linear fittings, with slopes of 0.136 and -0.028 for NAO 

and PW basis set, respectively. This result clearly shows the effect of U on the resulting 

energy gap does not only depend on the numerical value of this parameter but also on the 

projection of the Kohn-Sham states to determine the occupation numbers that enter the 

+U correction and the structural optimisation, which, in turn, depend on the basis set used.  

Thus, the +U part of the exchange-correlation potential severely depends on the DFT 

code, as already shown by Kick et al. for some systems.Error! Bookmark not defined.  

To clarify this issue, we comment on how results from the PW91+U approaches used in 

the present work can compare to those corresponding to synthetised bipyramidal TiO2 

NPs containing  almost 90% of (101) facets that morphologically match quite well with 

the (TiO2)35 NP model depicted in Figure 8.1. UV-Vis diffuse reflectance spectroscopy 

reported an energy gap of ca. 3.2 eV.71 To reproduce this result using PW91+U requires 
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a U value between 4 and 5 eV for the NAO basis set. No U-value can reproduce this 

energy gap for the optimised structures with a PW basis set; however, U = 8-9 eV, 

implemented with a single-point PW calculation on the PW91 (U=0) structure does 

reproduce the experiments. Therefore, the DFT+U implementation in FHI-aims entails 

much lower values of U to reproduce results obtained with other codes such as VASP. 

This is attributed to the strongly localised character of the atomic NAO Hubbard 

projectors. In short, to achieve a given band gap, the value of U that is required is much 

lower with the NAO basis set compared to the PW basis set. In addition, we compare the 

experimentsError! Bookmark not defined. with the hybrid PBEx (12.5 % Fock exchange) density 

functional on the (TiO2)35 NP. FHI-aims and VASP yields energy gaps of 3.81Error! 

Bookmark not defined. and 3.71 eV, respectively. Not surprisingly, these values exceed the 

experimental evidences due to the quantum confinement effect.Error! Bookmark not defined. 

Finally, to confirm that the present findings are not specific to the (TiO2)35 nanoparticle, 

we consider the anatase bulk phase and explore the transferability of U for calculations 

with PAW or NAO basis for a particular geometry. Hence, structural optimisations of the 

anatase bulk phase were first performed by using PW basis set and an energy gap of 3.17 

eV, close to the experimental value, was achieved for U  = 8 eV. Next, this structure was 

considered in NAO single point calculations to determine the U value that reproduces the 

energy gap and this was U = 6.5 eV. This confirms that the U value fitted to reproduce an 

experimental or hybrid functional calculated value using a given DFT code cannot be 

transferred to another code as it depends on the basis set used and on the method 

employed to define the corresponding projectors. Thus, for each materials system and 

DFT code, one should recompute suitable values for U through making initial 

benchmarks. 
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8.4 Conclusions 

The effect of the DFT+U method on the structural and electronic properties of the (TiO2)35 

NP is systematically investigated by two different basis sets, namely, plane-waves (PWs) 

and numerical atomic orbitals (NAOs), along with different approaches for the 

implementation of +U value. In the absence of U, PW and NAO calculations report the 

same structure and, consequently, the structural variations observed by its inclusion are 

due to the different implementation of U based on a simplified rotationally invariant 

approach and a linear combination of the NAO basis functions, respectively. 

Interestingly, the analysis of the energy gap reveals that a certain U value can reproduce 

the experimental value, however, it depends on the basis set and on the employed U 

parameter. Therefore, the transfer of U values between codes is not to be recommended 

and requires initial benchmarks for the property of interest as a reference to find the 

appropriate value. This study clearly shows that the DFT+U implementation in a localised 

basis set code such as FHI-aims entails much lower values of U to reproduce results 

obtained with a plane wave basis set code such as VASP.  
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9 Outlook and Perspectives 

9.1 Perspectives 

The preceding chapters have explored the modification of TiO2 via doping and surface 

modification strategies with a focus on their use for water splitting. Our studies focus on 

the material properties that are relevant to the photocatalytic activity. These properties 

include: light absorption, oxygen vacancy formation, photoexcited charge separation and 

localisation, and the interaction of feedstock species at active sites of the catalyst surface.  

Our approach is based on DFT calculations and involves the computation of material 

descriptors, which represent a set of key performance indicators and facilitate evaluation 

and comparison of candidate photocatalyst materials. In addition, we have collaborated 

with experimental colleagues on a number of these studies as this is crucial to establish a 

bidirectional means of refining and optimising computational models and materials 

preparation. 

Chapter 4, detailed the results of combined experimental and computational studies of 

Cu-, Mo-, and In-doped TiO2. Doping is perhaps the most widely studied approach to 

altering the material properties of TiO2 and is often implemented as a means to modulate 

the light absorption properties of the titania host and induce visible light absorption. 

While dopant-derived states can promote absorption of longer wavelengths of light, this 

does not always correlate with enhanced photocatalytic activity as these mid-gap states 

can act as charge recombination centres. Indeed, while Cu-doping yielded a small red 

shift in light absorption, it had a detrimental effect on the photocatalytic activity, as 

Cu1+/Cu2+-derived defect states acted as traps for photoexcited charges.  
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Our experimental collaborators paid particular attention to the impact of doping on the 

anatase-to-rutile phase transition (ART) temperature. Preserving the more 

photocatalytically active anatase phase under high temperature conditions is an important 

industrial concern. The results of Chapter 4 showed that the ART was suppressed and 

the anatase content of the doped samples was retained at temperatures up to 650, 750 and 

800 °C for Cu-, Mo-, and In-doped TiO2, respectively. As oxygen vacancies are 

implicated in the ART, our computational models included an examination of the impact 

of doping on the formation of oxygen vacancies. For both Cu and In dopants in TiO2, 

oxygen vacancies form spontaneously as the mechanism to ensure charge balance after 

substitution of Ti with the lower-valent dopants. The reducing oxygen vacancies also had 

moderate formation energies, relative to undoped TiO2. For Mo-doped TiO2, the vacancy 

formation energies were comparable to those computed for the un-doped system. Thus, 

the role of the dopants in the ART cannot be elucidated simply by the thermodynamics 

of oxygen vacancy formation and more complex models, involving kinetics and beyond 

the scope of this thesis, would be required. 

Mo-doped TiO2, calcined at 750 °C and with mixed rutile and anatase phases, performed 

better in the removal of bacteria from wastewater than un-doped anatase TiO2. In-doped 

TiO2, with 2% In, calcined at 700 °C and with mixed rutile and anatase phases, exhibited 

a photocatalytic activity comparable to that of un-modified anatase. Mo- and In-doping 

can be considered as approaches to preserve the anatase content of TiO2 at higher 

preparation temperatures, while maintaining or enhancing the photocatalytic activity. 

Thus, Mo and In are effective dopants for the fabrication of thermally stable anatase TiO2 

with photocatalytic activity. 

In Chapters 5, 6, and 7 we examined the photocatalytic properties of titania surfaces 

modified with nanoclusters of other materials. It is clear from these studies that surface 
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modification is a viable strategy to impart properties important for photocatalytic 

applications. By rational selection of materials, and with control over the size and 

dispersion of the modifiers, these properties can include a red shift in light absorption, 

promotion of charge separation and enhanced reducibility, leading to a higher abundance 

of active oxygen vacancy sites. We considered metal oxide and metal chalcogenide 

modification for the promotion of the OER and HER, respectively.  

Metal oxide modifiers, which are reducible with moderate energy costs, provide low 

coordinated ions, oxygen vacancies, reduced cations and interfacial sites with which 

feedstock species, such as H2O, can interact. Metal chalcogenides have emerged as 

potential catalyst materials for the HER, with activities approaching that of the benchmark 

Pt catalyst. Interfacing nanoclustered chalcogenides with TiO2 can combine the desirable 

properties of titania with intrinsically active sites for HER.  

The computational approaches applied in this thesis, which are based on calculations of 

material descriptors, can be implemented as a means to assess the candidacy of novel 

photocatalytic materials. Moreover, these models can be built upon, through 

complementary computational approaches and machine learning techniques, as will be 

discussed in Section 9.3. 

 

9.2 Outlook 

9.2.1  OER catalysts 

In Chapters 5 and 6, we examined titania surfaces modified with nanoclusters of CeO2 

and MnOx and analysis included the adsorption of water molecules at the reduced 

composite surfaces. CeO2-modified rutile (110) exhibited an off-stoichiometric ground 
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state and moderate energy costs to produce reducing oxygen vacancies. As a result, 

oxygen vacancies and reduced Ce3+ ions will likely be present under photocatalytic 

operating conditions.  In this study, we examined water adsorption at cluster sites of the 

reduced CeOx-TiO2 composite surfaces, which was favourable and led to spontaneous 

dissociation to hydroxyls.  

Subsequent work on CeOx-modified TiO2 as part of the H2020 M-ERA.net project 

RATOCAT has investigated, via computation and experiment, the mechanism by which 

CeOx can be deposited on titania surface using ALD.1 Future work can assess the water 

oxidation activity of CeOx-TiO2 composites, which can be complemented by simulations. 

Further computational models can expand on the results presented in Chapters 5 and 6 

and investigate additional adsorption sites at the nanocluster-surface interface and 

compute the free energies of reaction steps in the water oxidation pathway.  

MnOx-modified TiO2, with hydroxyls present on the surface, also exhibited an off-

stoichiometric ground state with moderate energy inputs required to produce reducing 

oxygen vacancies. Thus, the oxygen vacancies and reduced Mn2+ and Ti3+ ions will be 

present at the MnOx-TiO2 catalyst surface. The water adsorption mode at MnOx-TiO2 

depended on the stoichiometry: for the off-stoichiometric ground state surface, water 

adsorbed in molecular form, while water spontaneously dissociated at the reduced 

surfaces. 

These computational results indicate that MnOx-modification of TiO2 surfaces is a 

promising strategy to develop an active OER catalyst. An experimental characterisation 

of MnOx-modified TiO2 would help to refine the computational models and OER activity 

measurements will confirm or refute our computational results. Ongoing computational 

work is investigating the water oxidation pathway at sites of MnOx-modified anatase 
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(101) and rutile (110), both with and without surface hydroxylation. The MnOx clusters 

modifying the hydroxylated titania surfaces were described in detail in Chapter 5; the 

oxidised surfaces, modified with MnOx, are shown in Figure 9.1. The modified anatase 

surface has an off-stoichiometric ground state, with a single oxygen vacancy forming 

spontaneously, and a moderate energy input of +1.71 eV is required for formation of a 

second, reducing oxygen vacancy. Conversely, the modified rutile surface is 

stoichiometric in the ground state and a single, reducing oxygen vacancy requires an 

energy input of +0.50 eV. 

 

Figure 9.1 Top row: TiO2 anatase (101) surface, modified with Mn4O6 for the 

stoichiometric case, the ground state with one oxygen vacancy, and the reduced state with 

two oxygen vacancies. Bottom row: TiO2 rutile (110) surface, modified with Mn4O6 for 

the stoichiometric ground state and the reduced state with a single oxygen vacancy. The 

colour scheme is consistent with that in Chapters 5 and 6. 

For both Mn4O6-o-a101 and Mn4O6-o-r110, each of the Mn ions are in the +3 oxidation 

state, as evidenced by computed Bader charges of 11.2-11.4 electrons and spin 

magnetisations of 3.7-3.9 μB. The computed spin magnetisations correspond to the 3d4 
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configuration of the Mn3+ ion. After formation of a single oxygen vacancy, two Mn ions 

are reduced to Mn2+, in each case. This is confirmed by Bader charges of 11.5-11.6 

electrons and spin magnetisations of 4.4-4.6 μB. Upon formation of the second, reducing 

oxygen vacancy, to produce Mn4O4-o-a101, each of the Mn ions are reduced to Mn2+, 

with Bader charges of 11.6-11.7 electrons and spin magnetisations of 4.5-4.6 μB. This 

mix of oxidation states will have implications for the surface reactivity. 

Some preliminary results for the water oxidation pathway at MnOx-modified rutile (110) 

are included in Table 9.1. These results are for a single water molecule using models of 

the ground state and reduced state of MnOx at the oxidised (o-r110) and hydroxylated 

(oh-r110) surfaces. This model, based on four proton-coupled electron transfer (PCET) 

steps, was described in Chapter 2 and applied in Chapter 6 for water oxidation at AEO-

TiO2. Similar analysis is ongoing for MnOx-modified anatase (101) surfaces. 

Table 9.1 Computed free energies of water oxidation steps for water adsorption at sites 

of MnOx-modified O-r110 and OH-r110. GS = ground state; RS = reduced state.   

Surface GS RS   Surface GS RS 

O-r110 Mn4O6 Mn4O5   OH-r110 Mn4O5 Mn4O4 

  ΔG (eV) ΔG (eV)     ΔG (eV) ΔG (eV) 

Step A 1.1 0.85  Step A 1.06 0.12 

Step B 2.12 1.95  Step B 1.94 0.70 

Step C 1.56 1.07  Step C 0.92 1.58 

Step D 0.13 1.05  Step D 0.99 2.53 

Sum 4.92 4.92   Sum 4.92 4.92 

 

For the ground state, Mn4O6-o-r110, and reduced state, Mn4O5-o-r110, the highest energy 

step is step B, which is dehydrogenation of a surface bound hydroxyl. The step requires 

energy inputs of 2.12 and 1.95 eV for the ground and reduced states, respectively. These 

values suggest that overpotentials of 0.89 and 0.72 V are required for the water oxidation 

reaction to proceed. Similarly, for the ground state of the modified, hydroxylated surface, 
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Mn4O5-oh-r110, step B is the highest energy step and requires an input of 1.94 eV, 

corresponding to an overpotential of 0.71 V. For the reduced state, Mn4O4-oh-r110, step 

D, which is the release of O2 from the active site, is the rate-limiting step and has a 

computed free energy of 2.53 eV. This suggests that, for the MnOx-modified, 

hydroxylated rutile surface, the interaction with water will result in the surface cycling 

between the ground state and reduced state. However, further calculations, involving 

additional water adsorptions and various adsorption sites, are required before predictions 

regarding the OER activity of MnOx-TiO2 can be made. 

 

Figure 9.2 Relaxed atomic structure of CaMn3O6 and RuMn3O6 modifying the oxidised 

(top row) and hydroxylated (bottom row) anatase (101) surfaces. Ca is represented by a 

green sphere and Ru by a blue sphere. 

We have also adapted models of MnOx-TiO2 to include calcium (Ca) and ruthenium (Ru) 

ions. In these models, the oxidised and hydroxylated titania surfaces are modified with 
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nanoclusters of compositions CaMn3O6 and RuMn3O6. The relaxed structures of these 

models are presented in Figures 9.2 and 9.3, for modified anatase (101) and rutile (110), 

respectively.  

The goal with these models will be to perform the same analysis as described in Chapters 

5 and 6. This will include computations of oxygen vacancy formation energies, PEDOS 

plots, oxidation states, and the photoexcitation model to examine charge separation and 

localisation. Finally, the free energies of the PCET steps of the water oxidation pathway 

will be computed; this will provide insight into the impact of the inclusion of Ca and Ru 

on the OER activity of MnOx-modified TiO2. 

 

Figure 9.3 Relaxed atomic structure of CaMn3O6 and RuMn3O6 modifying the oxidised 

(top row) and hydroxylated (bottom row) rutile (110) surfaces. Ca is represented by a 

green sphere and Ru by a blue sphere. 
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9.2.2 HER catalysts 

In Chapter 7, the rutile (110) surface was modified with metal chalcogenide nanoclusters 

as a means to promote the HER activity. The metal chalcogenide clusters were of 

composition Sn4S4, Sn4Se4, Zn4S4 and Zn4Se4 and we found that the sulphide modifiers 

were more promising candidates for the promotion of the HER, due to optimal free 

energies of H adsorption. As discussed in detail in Chapter 3, there are a wealth of 

sulphide and selenide materials that can be interfaced with metal oxide catalysts to 

produce bifunctional composite catalysts for water splitting. In this endeavour, 

computational models provide a means for the efficient screening of materials. 

Metal Phosphides are another group of non-oxide materials that are seeing significant 

interest in HER. Similar to chalcogenide catalysts based on NiMo, Mo2C and MoS2, 

phosphide materials are HDS catalysts and are therefore potentially active for HER. 

Among phosphides, Ni2P, CoP, Fe2P and MoP and ternaries have been studied as HDS 

catalysts.2-5 

Ongoing computational work, similar to that described in Chapter 7, involves the 

modification of TiO2 rutile (110) with nanoclusters of composition Co6P3 and Ni6P3. The 

relaxed atomic structures for these composite surfaces, and the corresponding PEDOS 

plots, are shown in Figure 9.4. The adsorption energies indicate that the modifiers are 

strongly anchored at the rutile surface through the formation of interfacial metal-oxygen 

bonds. The PEDOS shows that these phosphide modifiers have a considerable effect on 

the band gap; Co and Ni 3d-states push the VBM of the titania support to higher energies. 

However, the extent of the impact on the energy gap is not discernible at this level of the 

theory (DFT+U) and Hybrid DFT calculations are necessary to yield a more quantitative 

picture. 
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Figure 9.4 Relaxed atomic structures and computed PEDOS plots for Co6P3- and Ni6P3-

modified rutile (110). Co, Ni and P are represented by blue, green and pink spheres, 

respectively. 

Further work on these composite surfaces will include application of the model for  

photoexcitation to elucidate the impact of modification on charge carrier separation and 

localisation. Computations of the free energies of H adsorption at sites of the nanocluster 

modifiers and rutile surface over a range of H coverages are ongoing. Both metal and 

phosphorous sites of the nanoclusters and bridging oxygen sites of the support are 

considered for H adsorption. 

 

 

 

 

 



388 

 

9.3 Accelerating Materials Discovery 

9.3.1 In situ and Operando Measurements 

As mentioned in Chapter 3, care must be taken with the application and interpretation of 

computational models. Describing the complexity of the catalyst surface and its 

environment represents a considerable challenge for first principles simulations. The 

relevance of computational results depends on the accuracy with which the models 

approximate the real system. Moreover, the nature of the catalyst surface is dependent on 

its environment 6-7 and ex situ characterisation can fall short in the description of crucial 

surface features that emerge during operation.  

For example, an X-ray absorption fine structure (XAFS) spectroscopic study of a 

PtO/TiO2 catalyst during water splitting revealed differences in the catalyst structure 

between the ex situ and operating conditions.8 Having identified PtO as the active site, 

the authors reported an increased Pt-O bond length, from 2.07 to 2.13 Å, and a decrease 

in the coordination number, from 4 to 2.5, for the catalyst in operando, relative to the 

catalyst ex situ, both before and after use. 

The changes induced during operation can be significant, leading to the assertion from 

some authors that the term “pre-catalyst” is more appropriate when referring to the ex situ 

materials.9-10  Despite this, it is often assumed that catalysts are stable under HER 

operating conditions and that in situ and operando analyses are more pertinent under 

harsh OER conditions.7 While this assumption can be true, it should of course be the 

subject of rigorous testing. Deng and co-workers used operando Raman spectroscopy to 

confirm the consensus that S atoms are the active sites in the HER catalysis at amorphous 

MoSx.11 In addition, spatially resolved, operando measurements performed with scanning 
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electrochemical cell microscopy (SECCM) indicate increased HER activity at edge sites 

of MoS2.12-14 

Favaro and co-workers performed operando XPS to gain an understanding of the OER 

mechanism at a CoOx catalyst.15 The catalyst consisted of interfaced Co3O4 and Co(OH)2 

phases on a Si support. Under applied anodic potentials, these phases underwent partial 

and complete conversion to CoO(OH), prior to catalysis. Operando XPS measurements 

revealed highly active Co4+ centres under catalytic conditions. Oakton and colleagues 

studied IrO2-TiO2 as an electrocatalyst for the OER using ex situ and operando 

measurements.16 The authors attributed the high OER activity to the presence of surface 

hydroxyls on IrO2, which convert to oxo species under OER conditions. The results 

indicated that the OER mechanism on IrO2-TiO2 was the same as that on IrO2, and the 

enhanced activity and stability of the composite catalyst was attributed to the stabilisation 

of small IrO2 clusters on TiO2. 

Zhang et al used post-catalysis analysis of Co2P and reported that the composition of the 

electrode surface was largely unchanged in acidic conditions but degraded to hydroxides 

in alkaline conditions.17 However, in situ X-ray absorption spectroscopy (XAS) 

measurements suggest that metallic cobalt is the active component for HER.18 Starting 

from amorphous metallic Co nanoparticles in pH 7 potassium phosphate solution, the 

authors found that the metal/phosphate ratio varied with changes in the cathodic potential. 

Saadi et al used operando spectroscopic techniques to show that the active component in 

HER at CoP films in acidic conditions consisted of an amorphous material with Co in a 

near-zerovalent state and P in a reduced state.19 Moreover, the authors reported 

considerable differences in the composition of the catalyst between ex situ and operando 

characterisation. 
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Zhu et al used a combination of operando measurements, such as in situ XAS, Raman 

spectroscopy, and liquid-phase transmission electron microscopy (LP-TEM) to elucidate 

the nature of active sites of P-doped CoSe2 in alkaline media under HER conditions.9 The 

authors found that P-substitution facilitated the formation of defects, which exposed 

active, metallic Co sites for the HER. 

Besides determining the true nature of the catalyst, operando can be used to gain greater 

insight into the reaction pathway. Wang et al used operando nuclear magnetic resonance 

(NMR) spectroscopy to elucidate the mechanism for the HER at anatase TiO2 decorated 

with Pd nanoparticles.20 Their study, which was supported by DFT calculations, yielded 

a detailed description of the key proton transfer steps involved in the HER, using 

methanol as a sacrificial hole scavenger. 

In situ and operando spectroscopies continue to gain considerable traction in the study of 

catalysis and developments in this area have been the subject of recent reviews.6-7 These 

considerations should serve to embolden rather than dishearten. As the tools at our 

disposal increase the breadth of our understanding, so too will they inform refined 

computational models and fabrication methods for the rational design of new 

photocatalyst materials. 

 

9.3.2 Solvent 

While free energy calculations are the workhorse of computational materials discovery, 

with demonstrable efficacy, there are efforts to bridge the gap between simple surface, 

vapour-phase models and the finite-temperature catalyst-solvent interface.21-22 

There are various strategies to account for the solvent and its role in the chemistry at the 

catalyst surface. The solvent can be incorporated implicitly, where the solvent is treated 
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in an average way and described as a continuous medium, or explicitly, where the 

molecules that constitute the solvent are included in the computation.23 

Explicit solvation models can range in complexity from single to multiple layers of 

molecules at the catalyst surface.24-26 Ping and co-workers examined the impact of water 

on the band positions of some common photocatalyst materials.24 They compared results 

among approaches including an explicit, single water layer, continuum solvation models 

(CSMs), and combinations of the two. The authors reported that, while CSMs were 

sufficient to account for the solvation shift in the band energies of hydrophobic surfaces, 

the inclusion of an explicit water layer was necessary to describe the stronger interactions 

at hydrophilic surfaces. 

Skúlason and colleagues implemented a water bilayer in their model of the HER at Pt 

(111).25 By varying the number of H atoms in the bilayer, the authors could examine the 

effect of the electrode potential on the activation energies in the HER. This is because the 

H atoms were solvated in the bilayer – the protons remained in the bilayer while the 

electrons moved to the catalyst surface. In this way, their model described the Helmholtz 

double layer.  

The treatment of such systems with DFT can be used to determine the effect of the solvent 

on the binding energies of reaction intermediates. However, DFT is a 0 K theory, and so 

cannot describe the temperature-dependent effects of a liquid solvent. Thus, an approach 

to modelling the solvent at finite temperatures is to implement molecular dynamics (MD). 

Classical MD simulations can be used to obtain an array of local minima in the solvent 

configuration, which are subsequently treated with DFT.23 In classical MD, quantum 

effects and electronic degrees of freedom are neglected and molecule positions are 
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determined by solving Newton’s equations of motion. This necessitates implementation 

of force fields, which must be parametrised for the system under study.27-28 

Another approach to modelling finite temperature solvents, explicitly, is ab initio MD 

(AIMD). AIMD differs from classical MD in that it is based on quantum, rather than 

classical, mechanics.29 Kronberg and colleagues compared AIMD with NEB in their 

study of the Volmer-Heyrovsky mechanism for the HER at an N-doped carbon 

nanotube.30 The authors reported substantial discrepancies between the activation and 

reaction energies computed with the two methods and highlighted the importance of 

explicitly including interfacial dynamics when studying the HER at the catalyst-

electrolyte interface. Cheng and coworkers used AIMD to examine the role of charge 

trapping during deprotonation of a surface-bound hydroxyl at rutile TiO2 (110).31 Gono 

et al found that the explicit inclusion of water molecules in their models affected the 

overpotential for water oxidation at rutile TiO2 by up to 0.5 V.26 

Van den Bossche and coworkers approximated the solvent by a polarisable dielectric 

continuum in their study of the HER at Pt surfaces.32 The authors maintained a constant 

electrode potential by varying the concentration of counterions in the electrolyte in 

response to changes in the number of electrons during the reaction. The results of this 

implicit approach compared favourably with the more rigorous and computationally 

expensive “extrapolation” approach.33-34 

Chang et al used both implicit and explicit solvent models to examine the HER at sub-

nm Au-Ag clusters.35 In their implicit model, the authors computed the solvation energy 

of the nanoclusters and thereby adjusted the electron affinity to account for the water 

environment. The explicit model implemented AIMD to test the catalyst stability and 

introduce thermal effects.  



393 

 

9.3.3 Other Computational Approaches 

Despite these advances in computational techniques to model the catalyst-electrolyte 

interface, descriptor-based approaches remain at the forefront of computation-driven 

design of new photocatalyst materials. Expanding on this theme and going beyond the 

usual application of DFT calculations to the OER and HER, machine learning approaches 

are being investigated. In machine learning, the algorithm is trained on a known data set 

related to the catalytic descriptor of interest and the resulting machine learning function 

is then used to explore a wide range of potential materials at much lower cost than a full 

DFT-level simulation.  

In one example of this, Jäger and colleagues adopted a machine learning approach36 in 

which they constructed a large data set of hydrogen adsorption energies on various sites 

of nanoclusters of MoS2 and Au40Cu40, Figure 9.5.a. This data set was characterised by 

structural descriptors and used to train a model to predict the adsorption energy for an 

arbitrary site based on its description. The goal of this study was to establish how many 

data points were required to interpolate the potential energy surface and predict the 

hydrogen adsorption energy, ΔEH, to an accuracy of 0.1 eV. Data sets consisted of 10,000 

single-point DFT calculations of ΔEH and comparisons were made between a number of 

structural descriptors: atom-centered symmetry functions (ACSF)37; many-body tensor 

representation (MBTR)38; and smooth overlap of atomic positions (SOAP)39-40. The 

authors concluded that each of the aforementioned descriptors performed satisfactorily 

well, provided they were given a training set of sufficient size, which is a key 

consideration in developing ML models. 

Another computational descriptor that can be used to assess the active sites of a catalyst 

surface is the Fermi softness, SF, which was introduced in Chapter 3.41 This descriptor 



394 

 

finds its analogue in frontier molecular orbital (FMO) theory42 which describes the spatial 

distribution of active sites of a molecule. Huang et al benchmarked this descriptor in a 

study of transition metal surfaces before examining active sites of a one-dimensional 

MoS2 edge.41 Based on analysis of 𝑆𝐹(𝑟), Figure 9.5.b, and subsequently confirmed by 

NEB calculations, the authors identified a subtlety in the reactivity at the MoS2 edge: an 

anisotropy exists which promotes the HER at intra-S-dimer bridge sites, relative to inter-

S-dimer bridge sites. 

 

Figure 9.5 (a) Hydrogen position scan on the surface of a triangular-shaped MoS2 cluster. 

The inset (b) shows the geometry of the MoS2 cluster. From ref. 36 (c) A 3D view of the 

calculated SF(r) isosurface (blue, on which SF=55 /keV/Å3) at the MoS2 edge. (d)  The 

SF(r) is projected onto two planes, which are normal to the x-direction. From ref.41. 

Ran and colleagues established a relationship between the HER activity and bond 

electronegativity in a study of TMDs.43 Citing a trial-and-error approach in existing 

endeavours to activating and optimizing catalysts for HER, the authors implemented a 

high-throughput first-principles strategy to identify a universal design principle. The 

study began with 2H-MoS2 doped with other TMs and examined H adsorption at S-sites 

neighbouring the TM-dopant. The authors presented a formula that describes the 
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characteristic S-H bonding electron number, based on the local properties of the active 

site. The descriptor, Ψ, takes into account bond electronegativity, coordination numbers, 

and valence electrons, and was used to predict potential HER catalysts with high 

activities; although experimental confirmation is required to confirm the validity of such 

predictions. 
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Appendix A: Materials and Methods 

All preparation of materials and experimental characterisation were carried out by 

experimental collaborators and the details contained in this Appendix are included for 

completeness. 

A.1 Cu-doped TiO2 

This section contains the materials and methods relevant to Section 4.2:  

“Effect of Cu Doping on the Anatase-to-Rutile Phase Transition in TiO2 Photocatalysts: 

Theory and Experiments” 

Chemicals & Reagents 

Titanium tetraisopropoxide (97%), copper sulphate pentahydrate (≥98.0%) and 

isopropanol (≥99.5%) were purchased from Sigma-Aldrich and were used without 

further treatment. 1,4-dioxane was purchased from Merck. 

Preparation of TiO2 

46.16mL of titanium isopropoxide (TTIP) was added to 200 mL of isopropanol (IPA). 

This solution was stirred for 15 min. To this solution 200 mL of deionised water was 

added. This mixture was stirred for another 30 min. The resulting gel was dried in the 

oven set at 100°C for 12 hrs. The resulting powder was annealed at 400, 500, 600, 650, 

700 and 800 °C, at a ramp rate of 10 °C/min and held at the target temperature for 2 hrs. 
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Preparation of copper doped materials 

For a 2% copper sample, 45.24 mL of TTIP was added to 200 mL of IPA and was stirred 

for 15 min (Solution A). 0.8705 g of copper sulphate (CuSO4) was added to 200 mL of 

deionised water, this was stirred for 15 min (Solution B). Solution B was added to 

Solution A and this was stirred for 30 min. The resulting gel was dried in the oven at 100 

°C for 12 hrs. The resulting powder was annealed at 400, 500, 600, 650, 700 and 800 °C, 

at a ramp rate of 10 °C/min and was held for 2 hrs. This method was repeated for the 4% 

and 8% copper samples by altering the amount of TTIP and CuSO4 (4% - 44.32 mL and 

1.7375 g; 8% - 42.47 mL and 3.5075 g). 

Characterisation 

All samples were analysed with X-ray Diffraction (XRD). The diffractograms were 

produced using a Siemens D500 X-ray powder diffractometer, using Cu Kα radiation (λ= 

0.15418 nm). The diffraction range examined was between 2θ=10°-80°. To determine the 

fraction of rutile in the samples, the Spurr equation was used (eq. A.1).1 

 
𝐹𝑅 =  

1

1 + 0.8[
𝐼𝐴(101)
𝐼𝑅(110)]

 
A.1 

where FR is the quantity of rutile in mixed sample and IA(101) and IR(110) are the 

intensities of the main anatase and rutile peaks. 

The crystallinity of the samples were calculated using the XRD spectra and the Scherrer 

equation (eq. A.2).2 

 𝛷 =  
𝐾𝜆

𝛽 𝑐𝑜𝑠𝜃
  A.2 
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where Φ is the crystallite size, K is the shape factor, λ is the X-ray wavelength, β is the 

full line width at the half-maximum height of the main intensity peak and θ is the Bragg 

angle. 

The Horiba Jobin Yvan LabRAM HR 800 with a grating of 300 gr/mm was used for 

Raman analysis. A 660 nm solid state diode laser standard bandwidth version with double 

edge filter upgrade was the laser used. The acquisition time was 3 seconds. When 

focusing onto the sample a (× 50) lens was used. 

A ThermoFisher Scientific Instruments (East Grinstead, UK) K-Alpha+ spectrometer was 

utilised in obtaining XPS spectra, with a monochromatic Al Kα X-ray source (h = 1486.6 

eV) and ~400 μm radius was used as an x-ray spot. The survey spectra and a high-

resolution core level spectrum for all elements was obtained using a Pass Energy of 200 

eV and 50 eV, respectively. The C 1s peak (285) was used as a charge reference to account 

for charging effects during acquisition. The non-linear (Shirley) background was 

removed from the high resolution, core level spectra before calculating the quantitative 

surface chemical analyses. The manufacturer’s Avantage software was used, which 

incorporates the appropriate sensitivity factors and corrects for the electron energy 

analyser transmission function.  

The surface morphology of the samples was analysed using the Siemens TM1000 

Scanning Electron Microscopy with Energy Dispersive X-Ray Analyser (SEM-EDX).  

To determine the surface area of the samples the Brunauer– Emmett–Teller method 

(BET) was used. The samples were first degassed for an hour at 300 °C. The adsorption 

isotherms were acquired at -196.15 °C. 

The following analyses were made according to the standard methods for the examination 

of water and wastewater (APHA 2005).  Total organic carbon (TOC) was measured by 
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the combustion-infrared method using a multi N/C® 3100 TOC/TN analyser (Analytik 

Jena AG, Jena, Germany), which performed the catalytic combustion on cerium oxide at 

850 °C. 

1,4-Dioxane was quantified using gas−liquid chromatography (GLC) on a 7980A 

instrument (Agilent Technologies Inc., Palo Alto, CA), equipped with a flame ionisation 

detector. The temperatures of the injector and the detector were 310 and 280 °C, 

respectively. Samples (2 µL) were injected using the pulsed-split mode (split ratio 5:1) 

and analysed in a TRB-FFAP (Teknokroma, Sant Cugat del Vallès, Spain) fused silica 

column (30 m x 0.25 mm internal diameter x 0.25 μm film thickness) with He (43 psi) as 

carrier gas, and the following temperature programme: 80-240 °C at a 15 °C/min ramp 

rate, after a 9 min initial hold. Peaks were identified according to relative retention time 

figures provided by commercial standards. Quantification was performed according to 

peak area, corrected with the response factors calculated for each compound using 1-

butanol (60 ppm) as internal standard, and the GC-ChemStation software Rev.B.04.02 

(96) from Agilent. 

Photocatalysis 

Experiments were performed with a synthetic solution of 1,4-dioxane (75 mg/L) that was 

kept stirred during the experiment using a magnetic device. The corresponding doped-

TiO2 catalyst was added to the suspension with a concentration of 1 g/L. The 

photocatalytic reaction was performed for duration of 240 minutes. Samples were 

withdrawn from the solution every 30 min. The source of UV light was a solar simulator 

supplied by Newport (Irvine, USA) equipped with a Xenon lamp (300 W). A correction 

filter (ASTM E490-73a) provides the simulated solar spectrum under ideal conditions. A 

total photon flux of 6.8·1019 photon·s-1 was calculated to flow inside the photochemical 
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reactor, as described by Liang et al. (2011). Light intensity between 200 to 400 nm 

resulted of 150 W·m-2 at 3 cm from the light source, which was the distance between the 

sample surface and the lamp. Light intensity was recorded using a radiometer (UV-

Elektronik, UV-VIS Radiometer RM-21, Ettlingen, Germany). 

The light intensity recorded on the irradiated liquid surface in Wm-2 (Js-1m-2) was 

converted to kJ/L, taking into account the volume of the solution (50 mL) and the 

irradiated surface (0.0104 cm-2) in order to normalise the data. Blank experiments either 

performed without adding the catalyst, without switching the UV lamp on, or using no 

dopant concentration were performed. All experiments were repeated three times.  
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A.2 Mo-doped TiO2 

This section contains materials and methods relevant to Section 4.3:  

“Mo doped TiO2: impact on oxygen vacancies, anatase phase stability and 

photocatalytic activity” 

Analytical grade chemicals were used in this study. All the chemicals were used as 

received without further purification.  

Synthesis of Mo-TiO2 

In a typical procedure to prepare 0.5 mol. % Mo-TiO2, titanium isopropoxide (TTIP; 41.81 

ml) was mixed with isopropanol (200 ml) under stirring for 15 min, denoted as solution 

A. In the meantime, solution B was prepared by mixing 0.1225 g of ammonium 

molybdate tetrahydrate ((NH4)6Mo7O24.4H2O) in 200 ml of double distilled water under 

vigorous stirring for 15 min. Afterwards, solution B was added drop by drop into solution 

A to initiate the hydrolysis process under stirring for 30 min. The resultant, milky white 

solution was dried at 100 °C for 24 h. The amorphous powders were then calcined at 

various temperatures (500, 600, 700, 750, and 800 °C) in a muffle furnace with a heating 

rate of 10 °C/min for 2 h. In a similar fashion, 1, 1.5 and 2 mol. % of Mo-TiO2 samples 

were also synthesised. Pure TiO2 (0 mol. % Mo-TiO2) was synthesised by the same 

procedure without addition of any Mo precursor. 

Photocatalytic wastewater disinfection 

The photocatalytic activity of Mo-TiO2 (0.1 g/L) was assessed by the disinfection of 

microbes in wastewater (secondary effluent of an urban wastewater (WW) treatment 

plant, Medinaceli, Soria, Spain) under LED light irradiation with different UVA 

wavelengths. The characteristics of effluent were determined by the standard method of 
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wastewater analysis. The parameters such as pH, conductivity, total volatile solids (TVS), 

total suspended solids (TSS), chemical oxygen demand (COD), and microbial count 

(Escherichia coli, non coliforms and other coliforms) were measured. Two parallel lines 

of 10 UVA LED lights (Seoul Viosys, Republic of Korea) of particular wavelength (385 

and 395 nm), which were widely scattered to equally cover the reactor surface, provided 

the irradiation source. 250 mA of current intensity was used in each LED light setup. This 

was equivalent to consuming 8.38 W and 8.25 W of electrical power by the 385 nm and 

395 nm LED lights, respectively. The lamp was located at a distance of 4.5 cm from the 

water surface. Under this experimental condition, the actual irradiated power was 

determined by potassium ferrioxalate actinometry method 3-4.The results showed that 

1682.8 ± 77.1 and 1607.7 ± 56.1 µmol m-2 s-1 of photons emitted from the 385 and 395 

nm LED lights, respectively. All the materials used in this experiment were previously 

sterilised in an autoclave at 100 ºC and 1.5 bar for 40 min. 100 ml of WW was treated in 

each trial in a glass reactor. 1.0 ml of aliquot was withdrawn from the photo-reactor at 

regular time intervals (such as 4, 8, 15, 30, 45, and 60 min) to measure the existence of 

bacteria, in terms of colony-forming units (CFU), by ISO 9308-1:2014 method 5.  

At first, 0.5 mL of the WW sample was mixed with 0.5 mL of saline water (0.9 g L-1 NaCl 

in distilled water). Then the samples were filtrated through 0.45 μm white-gridded mixed 

cellulose ester filter (GN-6 Metricel®, Pall, New York, USA) in a laminar flow hood to 

avoid external contamination. Chromocult® agar plates (Millipore, Merck, Darmstadt, 

Germany) were used as the media to grow the bacterial colonies. CFUs were enumerated 

after incubating the plates at 36 ± 2 ºC for 21-24 h. There are three types of colonies may 

be identified to grow on Chromocult® agar plates such as Escherichia coli (dark-blue to 

violet colour); other coliforms, namely: Enterobacter aerogenes, Citrobacter freundii, 
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(pink to red colour); and some non-coliform bacteria, namely: Enterococcus faecalis, 

Pseudomonas aeruginosa (colourless).  

Characterisation 

ART of Mo-TiO2 was investigated with the help of X-ray diffraction (XRD) and Raman 

spectroscopy. The crystallinity and phase changes were studied through XRD (Siemens 

D500) using Cu Kα radiation (λ= 0.15418 nm) in the 2θ range of 10 °- 80 °. Spurr equation 

(eq. A.1) was applied to determine the anatase and rutile phase composition. 

The Scherrer equation was used to determine the average crystallite size. Raman spectra 

of Mo-TiO2 samples were measured for an acquisition period of 3 s with a grating of 300 

gr/mm. The surface chemical composition, and the bonding interactions of Mo-TiO2 were 

analysed using X-ray photoelectron spectroscopy (XPS) with K-Alpha+ spectrometer. 

Photoluminescence (PL) analysis was recorded to study the effect of Mo doping on the 

lifetime of charge carriers (excitation wavelength of 350 nm). 
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A.3 In-doped TiO2 

This section contains materials and methods relevant to Section 4.4:  

“In-doped TiO2 photocatalysts with high temperature anatase stability” 

All the materials used were of analytical grade and they were used as received without 

further purification. Double distilled water was used in the experiments. 

Synthesis of indium doped TiO2 (In-TiO2) 

2 mol. % In-TiO2 was synthesised through a sol-gel technique as follows: In a typical 

experiment, 38 ml of titanium isopropoxide (TTIP) was taken in 200 ml of isopropanol 

and the mixture was stirred for 15 min at RTP (solution A). 0.786 g of indium nitrate 

(In(NO3)3.xH2O) was dissolved separately in 200 ml of double distilled water (solution 

B) at RTP. Then, solution B was added drop wisely into solution A under constant stirring 

for 30 min. The resulting gel was dried in an oven at 100 °C for 24 h. Afterwards, the 

powders were calcined in a muffle furnace at various temperatures (500, 600, 700, 750, 

800, 850 and 900 °C) at a ramp rate of 10 °C/min for 2 h. The samples were synthesised 

using various mol. % of In. The as-synthesised samples such as such as 0, 2, 4, 8 and 16 

mol. % In-TiO2 were labelled as TiIn-0, TiIn-2, TiIn-4, TiIn-8 and TiIn-16, respectively. 

Pure TiO2 was synthesised using the same procedure without the addition of In precursor. 

 

Characterisation 

ART and the TiO2 crystalline phases were studied with the help of X-ray diffraction 

(XRD) using Cu Kα radiation (λ= 0.15418 nm) in the 2θ range of 10 °- 80 ° in a Siemens 

D500 XRD instrument. The percentages of TiO2 anatase and rutile were calculated using 

the Spurr equation (eq. A.1)6-7: 
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The average crystallite size was determined using the Scherrer equation 8-9. ART was also 

analyzed via Raman spectroscopy (Horiba Jobin Yvan LabRAM HR 800) with a grating 

of 300 gr/mm. The acquisition time of Raman analysis was 3 seconds. The oxidation state 

of elements and the bonding interactions of In-TiO2 were examined by an X-ray 

photoelectron spectroscopy (XPS; ThermoFisher Scientific Instruments (East Grinstead, 

UK) with K-Alpha+ spectrometer). The charge carrier recombination process was studied 

in terms of photoluminescence (PL) spectroscopy with an excitation wavelength of 350 

nm. The photocatalytic activity (0.5 g/L) was evaluated using 0.5 g/L of nanoparticles for 

hydrogen (H2) production in a 230 ml stainless steel reactor with a quartz window. The 

experiments were carried out using 115 ml of double distilled water under simulated solar 

light irradiation (300 W ozone free Xe lamp). Glycerol (10 %) was used as a sacrificial 

agent. H2 gas was analysed through an Agilent gas chromatography (GC) with thermal 

conductivity detector (TCD) and flame ionisation detector (FID). Carboxen-1000 packed 

column was used in the GC. 
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A.4 hBN-modified TiO2 

This section contains materials and methods relevant to Section 5.3:  

“Modification of TiO2 with hBN: High Temperature Anatase Phase Stabilisation and 

Photocatalytic Degradation of 1, 4-Dioxane” 

Materials 

The chemicals used in this study were titanium tetraisopropoxide (97%), boron nitride 

and isopropanol (≥99.5%), all of them purchased from Sigma-Aldrich and used without 

any treatment. 1,4-dioxane (>99%) was purchase from Merck. 

Preparation of Nanomaterials 

TiO2 was modified with BN at five different concentrations (0, 2, 4, 8 and 16% BN-TiO2). 

For the 2 mol. % sample, 55.4 mL of TTIP was added to 200 mL of IPA and was stirred 

for 15 min (Solution A). 0.0948 g BN was added to 200 mL of deionized water, this was 

stirred for 15 min (Solution B). Solution B was added to Solution A and this was stirred 

for 30 min. The resulting sol-gel was dried in the oven at 100 °C for 12 hrs. The resulting 

powder was annealed at 500, 600, 650 and 700 °C at a ramp rate of 10 °C/min and was 

held for 2 hrs. This method was repeated for the 0, 4, 8 and 16% BN samples by changing 

the volume of TTIP and grams of BN (0% - 56.6 mL and 0 g; 4% - 54.2 mL and 0.1897 

g; 8% - 52.2 mL and 0.3793 g; 16% - 47.6 mL and 0.7587 g). 

Characterisation of Nanomaterials 

A Siemens D500 X-ray powder diffractometer was used for the XRD characterization, 

using Cu Kα radiation (λ = 0.15418 nm). The diffraction range examined was between 

2θ=10°-80°. To determine the fraction of rutile in the samples, the Spurr equation was 
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used (eq. A.1).1 XRD data were also used for determining the size of the crystalline 

structures in each sample; this was determined using the Scherrer equation (eq. A.2).2 

The Horiba Jobin Yvan LabRAM HR 800 with a grating of 300 gr/mm was used for 

Raman analysis. A 660 nm solid state diode laser standard bandwidth version with double 

edge filter upgrade was the laser used. The acquisition time was 3 seconds. When 

focusing onto the sample, a (× 50) lens was used.  

A ThermoFisher Scientific Instruments (East Grinstead, UK) K-Alpha+ spectrometer was 

employed for the XPS analysis of samples. A monochromatic Al Kα X-ray source (h = 

1486.6 eV) with a spot radius of ~400 μm was used to obtain the XPS spectra. A Pass 

Energy of 200 eV was used for acquiring survey spectra, while a Pass Energy of 50 eV 

was employed for producing core level spectra with high resolution for all elements. C 1s 

(285 eV) was used as a reference peak to correct for charging effects during acquisition. 

After accounting for the removal of a non-linear (Shirley) background, the core level 

spectra were used in calculating the quantitative surface chemical composition. To correct 

for electron energy analyser transmission function and integrate the applicable sensitivity 

factors, the manufacturers software (Avantage) was used. 

Measurements of 1,4-dioxane were performed by a gas liquid chromatography-flame 

ionization detector (GLC-FID) (Agilent 7980A, Palo Alto, CA). Samples of 2 µL were 

injected with a split ratio of 5:1 at 310 ºC and analysed in a Teknokroma capillary column 

TRB-FFAP 30 m × 0.25 mm ID × 0.25 μm film thickness (Teknokroma, Spain). Carrier 

gas was He, 43 psi. After 9 min initial hold, the temperature was increased at 15 °C/min 

from 80 °C to 240 °C. A FID detector was used, detection temperature was 280ºC. GC-

ChemStation software Rev.B.04.02 (96) from Agilent was used for quantification based 

on corrected peak areas. 60 ppm of 1-butanol was used as internal standard. 
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Photocatalysis 

Photocatalytic analysis was performed using a total volume of 50 mL of synthetic 

solution, which was comprised of 1,4-dioxane (100 mg·L-1) dissolved in deionized water 

and TiO2 catalyst (1 g·L-1). The concentration of 1,4-dioxane is similar or even lower than 

the concentration that may be found in industrial wastewater. 10-11 A sample was taken 

every 30 min, with a total reaction time of 240 min. There were three types of control 

experiments preformed: (1) without presence of UV radiation, (2) without any 

photocatalyst present, and (3) with photocatalyst not containing BN. All experiments 

were repeated in triplicate. 

A solar simulator equipped with a 300W Xenon lamp (from Newport, USA) was used as 

UV light source. An ASTM E490-73a correction filter was used to obtain the solar 

spectrum. A total photon flux of 6.8×1019 photon·s-1 was calculated to flow inside the 

photochemical reactor using the methodology described by Liang et al. (2011). Light 

intensity between 315 to 400 nm resulted of 50 W·m-2 at 3 cm from the light source on a 

total surface of 0.0104 cm-2. A UV-VIS Radiometer RM-21 (Elektronik, Germany) was 

used to record the light intensity 
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Appendix B: Supplementary Material 

B.1 MgO- and SnO-modified TiO2 

This section contains supplementary material relevant to Section 5.2:  

“Impact of surface hydroxylation in MgO-/SnO-nanocluster modified TiO2 anatase 

(101) composites on visible light absorption, charge separation and reducibility” 

 

Figure B.1.1 PEDOS for (a) bare and (b) hydroxylated anatase (101). 

Spin density plots for photoexcited model applied o-anatase and oh-anatase (101) are 

shown in Figure B.1.2. For o-anatase (101) (Figure B.1.2.a) the electron localises at a 

Ti6f atom of the surface which is rendered five-fold coordinated through the breaking of 

a bond with one of the oxygen sites (O2f) over which the hole is distributed. For the oh-
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anatase (101) surface (Figure B.1.2.b) the electron localises at a Ti5f site while the hole 

is distributed over an OW site and an O3f site in the surface. 

 

Figure B.1.2 Excess spin density plots for (a) bare and (b) hydroxylated anatase (101). 

 

Figure B.1.3 Oxygen atoms in the nanocluster are labelled using roman numerals from I 

- IV for (a) Mg4O4-o-anatase (101), (b) Mg4O4-oh-anatase (101), (c) Sn4O4-o-anatase 

(101) and (d) Sn4O4-o-anatase (101). 

The images in Figure B.1.3 represent the labelling scheme used in the calculations of the 

most stable nanocluster sites for the formation of an oxygen vacancy. Each oxygen site 
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of the supported nanoclusters is labelled with a Roman numeral (I-IV) according to their 

order in the input file (POSCAR).  

 

Figure B.1.4 Relaxed atomic structures for Mg4O4-o-anatase (101) with one oxygen 

vacancy. The most stable structure is highlighted in red. The labelling in the inset of each 

panel corresponds with the labelling in Figure B.1.3. Red border = most stable site. 

 

Figure B.1.5 Relaxed atomic structures for Mg4O4-o-anatase (101) with one oxygen 

vacancy. The most stable structure is highlighted in red. The labelling in the inset of each 

panel corresponds with the labelling in Figure B.1.3. Red border = most stable site. 
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Figure B.1.6 Relaxed atomic structures for Mg4O4-oh-anatase (101) with one oxygen 

vacancy. The most stable structure is highlighted in red. The labelling in the inset of each 

panel corresponds with the labelling in Figure B.1.3. Red border = most stable site. 

 

Figure B.1.7 Relaxed atomic structures for Sn4O4-oh-anatase (101) with one oxygen 

vacancy. The most stable structure is highlighted in red. The labelling in the inset of each 

panel corresponds with the labelling in Figure B.1.3. Red border = most stable site. 
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Table B.1.1 Computed oxygen vacancy formation energies for Mg4O4 and Sn4O4 

modified o-anatase and oh-anatase (101). The most stable vacancy sites are highlighted 

in bold.  

Structure Vacancy site Evac (eV) 

Mg4O4-o-anatase(101) OI 3.31 

 OII 4.97 

 OIII 2.82 

 OIV 3.69 

   

Mg4O4-oh-anatase (101) OI 0.67 

 OII 0.61 

 OIII 3.90 

 OIV 5.38 

   

Sn4O4-o-anatase (101) OI 3.47 

 OII 3.88 

 OIII 2.83 

 OIV 1.82 

   

Sn4O4-oh-anatase (101) OI 1.59 

 OII 2.57 

 OIII 3.27 

 OIV 2.88 
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B.2 hBN-modified TiO2 

This section contains supplementary material relevant to Section 5.3:  

“Modification of TiO2 with hBN: High Temperature Anatase Phase Stabilisation and 

Photocatalytic Degradation of 1, 4-Dioxane” 

 

 

Figure B.2.1 Construction of two BN-TiO2 interface models. In panel (a) the long axis 

of the BN layer unit cell is parallel to the [010] direction. In panel (b) the short axis of the 

BN layer unit cell is parallel to [010]. The adsorption energies are computed within the 

DFT-D2 (vdW-DF) framework. In this and subsequent figures, grey spheres represent Ti, 

red for O, blue for N and pink for B. 
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Figure B.2.2 Construction of the two ribbon models which are presented in the main text. 

Panel (a) shows the (BN)24-a101 model where the short axis of the BN unit cell is parallel 

to [101̅]. Panel (b) shows the (BN)42-a101 model in which the long axis of the BN unit 

cell is parallel to [101̅]. In both models the ribbons are periodic along [101̅]. The 

adsorption energies are computed within the DFT-D2 (vdW-DF) framework. 

BN-modified anatase TiO2 is modelled as one, two and three hBN rings in intimate 

contact with the anatase (101) surface, denoted 1-(BN)3-a101, 2-(BN)3-a101 and 3-(BN)3-

a101. The adsorption energies are calculated using: 

 𝐸𝑎𝑑𝑠 = 𝐸(𝑥(BN)3a101) − 𝐸(a101) − 𝑥𝐸((BN)3) B.2.1 
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where 𝐸(𝑥(BN)3a101) is the total energy of the modified surface, x is the number of 

BN rings,  𝐸(a101) is the total energy of the unmodified surface and 𝐸((BN)3) is the 

energy of a single BN ring in the gas phase. 

Two additional models consist of hBN ribbons, of compositions (BN)24 and (BN)42, at 

the anatase (101) surface. These models are denoted (BN)24-a101 and (BN)42-a101 and 

more details about their construction are provided provded below. In each model the hBN 

layer is continuous at the periodic boundary along [101̅], but discontinuous along [010] 

due to a mismatch between the lattice parameters of the hBN layer and the anatase (101) 

surface. Thus, the hBN layers resemble 1D periodic ribbons. For (BN)24-a101, one edge 

is terminated by B ions and the other by N ions and these edges are separated by 12 Å 

across the periodic boundary along [010]. For (BN)42-a101, the ribbon edges are 

terminated by alternating B and N ions, with these edges separated by 5.5 Å across the 

periodic boundary along [010]. For these ribbon models, the adsorption energy is 

computed as: 

 𝐸𝑎𝑑𝑠 = 𝐸((BN)xa101) − 𝐸(a101) − 𝐸((BN)x) B.2.2 

where x denotes the number of BN units per ribbon.  

Comparisons are made between the DFT-D21 and vdW-DF2-3 approaches to account for 

vdW interactions. In general, these approaches yielded qualitatively consistent results. 

Quantitative differences only arose in computed adsorption energies and interfacial bond 

lengths while computed density of states and charge localisation were not affected by 

choice of approach. Throughout the text, the results relevant to the DFT-D2 set-up will 

be presented in detail, with reference made to those computed within vdW-DF where 

appropriate. 

Figure B.2.1 shows two models of extended hBN monolayers at the anatase (101) 

surface. The model in Figure B.2.1.a is comprised of a (1 × 6) expansion of the (101) 
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anatase surface with a (4 × 5) BN layer. In this configuration strain on the BN unit cell 

is 2.5% along the short axis (parallel to [101̅]) and 4.5% along the long axis (parallel to 

[010]). The model shown in B.2.1.b is constructed of a (3 × 2) expansion of anatase 

(101) interfaced with a (7 × 3) BN layer. In this model the strain on the BN layer 1% 

along the short axis (parallel to [010]) and 2% along the long axis (parallel to [101̅]).  

The adsorption energies indicate that for the model shown in Figure B.2.1.a, the BN-

surface interaction is not favourable, likely due to the strain on the BN lattice. Conversely, 

the interaction between the surface and BN layer in the model shown in Figure B.2.1.a 

is favourable; the strain on the BN monolayer is this model is more moderate. 

In each case the adsorption energies computed with the vdW-DF scheme are more stable 

than those computed with DFT-D2. For both models, the gap between the anatase surface 

and the BN layer is computed as 2.6 (2.7) Å for DFT-D2 (vdW-DF). 

Figure B.2.2, in combination with Figure B.2.1, provides further insight into the 

construction of the ribbon models denoted (BN)24-a101 and (BN)42-a101 in the main text. 

For (BN)24-a101, shown in Figure B.2.2.a, one edge of the ribbon is terminated by N 

ions and the other by B ions. The ribbon is periodic along [101̅] with a strain of 2.5% for 

the BN lattice along this direction. For (BN)42-a101, shown in Figure B.2.2.b, both edges 

of the ribbon are terminated by alternating B and N ions. In this model the ribbon is 

periodic also along [101̅] with a strain of 2% for the BN lattice along this direction. 
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Figure B.2.3 Alternative geometries for a single hBN ring adsorbed at the anatase (101) 

surface. Panels on the left show the relaxed geometry in the ground state, the centre panels 

show the computed DOS for each geometry and the panels on the right show charge 

localisation after imposition of the triplet electronic state in the photoexcitation model. 

The spin density isosurfaces are yellow for electrons and blue for holes and enclose spin 

densities of up to 0.02 eV/Å3. The adsorption energies are computed within the DFT-D2 

(vdW-DF) framework. 

 

In addition to the models presented in the main text, alternative geometries of one and 

two hBN rings at the anatase (101) surface were considered. These geometries are 

presented in the left hand panels of Figures B.2.3 and B.2.4 and are less stable than those 

reported in the main text. What is important is that the electronic structure and interfacial 

charge transfer are unaffected by the precise orientation of the modifiers at the anatase 

surface. For the DOS plots, shown in the middle panels of Figures B.2.3 and B.2.4, the 

features which emerge in the band gap due to modification are qualitatively consistent. 

The N-p peaks which emerge above the VBM of the titania host are shifted depending on 
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the specific orientation of the hBN rings at the surface but the overall impact of 

modification is that mid gap states are introduced which will facillitate electron transfer 

from these filled states to the Ti-dominated conduction band. Based on these results, we 

predict a red shift in the light absorption edge. Further evidence for the direction of charge 

transfer at the interface is provided by the photoexcitation model (see right hand panels 

of Figures B.2.3 and B.2.4). The electron localises at a surface Ti site, reducing Ti to 

Ti3+, and the hole state localises at low-coordinated N-sites of the modifiers and this 

behaviour is unaffected by the details of the surface geometry.   

 

Figure B.2.4 Alternative geometries for two hBN rings adsorbed at the anatase (101) 

surface. Panels on the left show the relaxed geometry in the ground state, the centre panels 

show the computed DOS for each geometry and the panels on the right show charge 

localisation after imposition of the triplet electronic state in the photoexcitation model. 

The spin density isosurfaces are yellow for electrons and blue for holes and enclose spin 

densities of up to 0.02 eV/Å3. The adsorption energies are computed within the DFT-D2 

framework. 
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B.3 CeOx-modified TiO2 

This section contains supplementary material relevant to Section 5.4:  

“CO2 and Water Activation on Ceria Nanocluster Modified TiO2 Rutile (110)” 

 

Figure B.3.1 Relaxed atomic structures of stoichiometric gas phase nanoclusters, (a) 

Ce5O10 and (b) Ce6O12. 

The nanocluster modifiers, of compositions Ce5O10 and Ce6O12, shown in Figure B.3.1, 

were relaxed in the gas phase within the same computational setup described in Chapter 

2 for the study in Section 5.4, with no constraints on the ionic positions. These geometries 

are typical of the non-bulk-like structure found for this size of (predominantly) ionic oxide 

nanoclusters. 

These ceria nanoclusters were adsorbed at the rutile (110) surface in different 

configurations and each of these were relaxed, as described in previous work.4-10 The 

most stable (CeO2)n-rutile-(110) heterostructures were used in subsequent calculations. 

Although there are many possible adsorption structures of the nanoclusters on the rutile 

(110) surface, with a range of adsorption energies, we find that once the nanoclusters are 

adsorbed in stable configurations, the trends in key properties, such as band gap reduction, 

are unaffected.10 We use representative CeOx-rutile-(110) composites to examine the 

impact of modification on the photocatalytic properties and the interaction of CO2 and 
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water, and expect little significant effect due to the precise structure of the composite 

surface. 

Table B.3.1  Computed oxygen vacancy formation energies for each O site of the 

supported ceria nanoclusters. The most stable vacancy sites are highlighted in bold. 

Values in brackets were computed with aspherical gradient corrections. 

Ce5O10-rutile-(110) 
 

Ce5O9-rutile-(110) 
 

  

O site Evac (eV) 
 

O site Evac (eV) 
 

  

1 1.35 
 

1 2.96 
 

  

2 2.03 
 

2 2.95 
 

  

3 1.38 
 

3 1.86 
 

  

4 1.67 
 

4 2.03 
 

  

5 2.38 
 

5 2.38 
 

  

6 0.18 (0.02) 
 

6 2.30 
 

  

7 1.93 
 

7 1.44 (1.33) 
 

  

8 1.53 
 

8 1.76 
 

  

9 1.56 
 

9 2.35 
 

  

10 1.65 
 

     

Ce6O12-rutile-(110) 
 

Ce6O11-rutile-(110) 
 

Ce6O10-rutile-(110) 

O site Evac (eV) 
 

O site Evac (eV) 
 

O site Evac (eV) 

1 1.91 
 

1 1.56 
 

1 2.15 

2 1.68 
 

2 1.49 
 

2 2.97 

3 -0.10 
 

3 -0.16 (-0.62) 
 

3 3.35 

4 1.68 
 

4 1.60 
 

4 1.98 

5 1.26 
 

5 1.03 
 

5 2.60 

6 1.62 
 

6 1.72 
 

6 2.02 

7 0.58 
 

7 1.56 
 

7 2.68 

8 2.81 
 

8 2.49 
 

8 2.89 

9 3.09 
 

9 2.01 
 

9 0.30 (0.31) 

10 0.29 
 

10 0.14 
 

10 5.04 

11 -0.46 (-0.26) 
 

11 2.40 
 

  

12 2.70 
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Table B.3.2 Ce-O distances and coordination for each of the Ce ions in the supported 

nanoclusters in the stoichiometric, ground state and reduced state. Reduced Ce3+ ions are 

highlighted in bold. 

Stoichiometry Ion Coord 
 

 Ce-O distances  (Å) 
 

Ce5O10 CeI 5 2.42 2.24 2.19 2.17 2.14 
 

 CeII 5 2.38 2.31 2.31 2.17 2.15 
 

 CeIII 4 2.29 2.12 2.11 2.08 
 

 

 CeIV 5 2.44 2.29 2.24 2.16 2.15 
 

 CeV 4 2.24 2.15 2.13 2.08 
 

 

Ce5O9 CeI 6 2.59 2.57 2.54 2.45 2.33 2.31 

 
CeII 5 2.42 2.35 2.31 2.14 2.13 

 

 CeIII 4 2.34 2.15 2.14 2.01 
 

 

 CeIV 5 2.60 2.42 2.40 2.29 2.25 
 

 CeV 4 2.25 2.14 2.12 2.08 
 

 

Ce5O8 CeI 5 2.57 2.56 2.40 2.29 2.22 
 

 CeII 5 2.54 2.53 2.38 2.31 2.25 
 

 CeIII 4 2.34 2.13 2.09 2.07 
 

 

 CeIV 4 2.47 2.43 2.33 2.17 
 

 

 CeV 3 2.24 2.17 2.16 
 

  

Stoichiometry Ion Coord 
 

 Ce-O distances  (Å) 
 

Ce6O12 CeI 5 2.46 2.41 2.39 2.38 1.86 
 

 CeII 5 2.52 2.37 2.36 2.35 1.86 
 

 CeIII 4 2.19 2.19 2.13 2.07 
 

 

 CeIV 5 2.35 2.22 2.20 2.20 2.15 
 

 CeV 6 2.45 2.41 2.37 2.24 2.24 2.2 

 
CeVI 5 2.57 2.54 2.42 2.33 1.85 

 

Ce6O10 CeI 4 2.35 2.32 2.26 2.23 
 

 

 CeII 5 2.49 2.36 2.36 2.34 1.88 
 

 CeIII 4 2.35 2.32 2.26 2.23 
 

 

 CeIV 5 2.48 2.36 2.31 2.30 2.28 
 

 CeV 6 2.48 2.48 2.45 2.21 2.16 2.16 

 
CeVI 6 2.58 2.58 2.55 2.36 2.36 2.31 
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Ce6O9 CeI 4 2.31 2.29 2.28 2.26 
 

 

 CeII 4 2.32 2.28 2.28 2.25 
 

 

 CeIII 4 2.29 2.29 2.29 2.29 
 

 

 CeIV 5 2.48 2.41 2.34 2.28 2.28 
 

 CeV 6 2.57 2.56 2.51 2.34 2.33 2.32 

 
CeVI 6 2.60 2.58 2.56 2.37 2.33 2.32 

 

 

Light Absorption Properties 

 

Figure B.3.2 Computed absorption spectra for unmodified rutile (110), and the ground 

state heterostructures, Ce5O9- and Ce6O10-rutile-(110).  

To complement our analysis of the DOS plots and their implications for the light 

absorption properties of the modified surfaces we compute the real and imaginary parts, 

𝜖1 and 𝜖2 , of the frequency dependent dielectric function. From this we calculate the 

extinction coefficient, κ, via: 

𝜅 = √
√𝜖1

2 + 𝜖2
2 − 𝜖1

2

2
 



428 

 

and from 𝜅, we compute the absorption coefficient: 

𝛼 =
2𝜔𝜅

𝑐
 

where 𝜔 and c are the angular frequency and speed of light in vacuum respectively.  

The computed absorption spectra for the bare rutile (110) surface and the ground states 

heterostructures, Ce5O9- and Ce6O10-rutile-(110), are shown in Figure B.3.2. We observe 

the onset of light absorption at lower energies for the ceria-modified rutile structures; 

optical gaps are ~2.2 eV for unmodified rutile (110) and for Ce5O9- and Ce6O10-rutile-

(110), the optical gaps are ~1.8 eV and ~1.4 eV respectively. This agrees with trends 

observed in the DOS plots (Figure 5.4.3 of Section 5.4). For Ce5O9-rutile-(110) (Figure 

5.4.3.b), occupied states, due to Ce3+ ions, in the band gap are responsible for the red shift 

in the absorption edge. For Ce6O10-rutile-(110) (Figure 5.4.3.e), a combination of 

occupied Ce3+-derived states and OC 2p states contribute to the observed red shift. The 

reduced optical gap computed for Ce6O10-rutile-(110) relative to Ce5O10-rutile-(110) can 

be understood in regarding the insets of Figures 5.4.3.b and 5.4.3.e; for the larger 

nanocluster-surface composite, the occupied Ce 4f states lie higher in energy and closer 

to the conduction band of the TiO2 support. 

 

Photoexcitation Model 

For the photoexcited model applied to the Ce6O10-rutile-(110) composite, shown in 

Figure B.3.3, there are five unpaired electrons; four are due to the formation of two 

neutral oxygen vacancies and are localized at CeI, CeIII, CeIV and CeV (compare with 

Figure 5.4.2.c of Section 5.4). The fifth photoexcited electron localizes at CeV; CeV 

maintains a six-fold coordination, and the Ce-O distances increase by up to 10% relative 
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to their values in the ground state. In the Ce6O10-rutile-(110) system the hole localizes at 

a singly coordinated terminal oxygen site; the Ce-O distance increases from 1.9 Å in the 

ground state to 2.3 Å after excitation. Hole localization is accompanied by a change in 

the computed Bader charge of the oxygen by 0.4 electrons, from 7.1 to 6.7 electrons. A 

spin magnetization of 0.78 μB was computed for the singly terminated oxygen site at 

which the hole localizes in Ce6O10-rutile-(110). 

 

Figure B.3.3 Spin density plots for the photoexcited electron and hole in Ce6O10-rutile-

(110). The spin density isosurfaces are yellow for electrons and blue for holes and enclose 

spin densities of up to 0.02 eV/Å3. 
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H2O adsorption 

 

Figure B.3.4 Additional stable configurations of H2O adsorbed at (a), (b), (c) and (d) 

Ce5O8-rutile-(110) and (e) and (f) Ce6O9-rutile-(110). Panels on the left show side views, 

panels on the right show top views. Insets of panels on the left show the adsorption 

energies. Colour code: Ti, grey; O, red; Ce, cream; H, white. 

Figure B.3.5 shows the PEDOS of the H2O molecule and reduced Ce6O9-rutile-(110) 

composites in the non-interacting case (H2O + surface) and after dissociative adsorption 

(H2O-surface). In the non-interacting cases (Figure B.3.5.a), the water-derived OW 2p 

states are well defined peaks at energies of -3.9 eV and -2.0 eV relative to the VBM (0 

eV) of the TiO2 support.  For the interacting cases (Figure B.3.5.b) the OW 2p-derived 

states overlap the OC 2p-derived states near the VBM of the titania host.  
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Figure B.3.5 Spin polarized projected electron density of states (PEDOS) for (a) H2O + 

Ce6O9-rutile-(110) (non-interacting) and (b) H2O-Ce6O9-rutile-(110) (interacting). The 

top half of each panel displays Ti 3d- and Ce 4f-derived states. Bottom halves of the 

panels display contributions to the DOS from surface (OS), nanocluster (OC) and water 

(OW) oxygen 2p-derived states and H 1s states. Insets in the top panels show the mid-gap 

Ce-derived states in the range -0.5 eV – 2.0 eV. 

The differences in the adsorption geometries, and perhaps the underlying mechanisms 

driving dissociation, are reflected in the behaviour of the OW 2p-derived states after 

adsorption. For dissociated water on the Ce6O9-rutile-(110) surface, a sharp OW 2p-

derived peak lies above the VBM because the OH group is terminal, coordinating to a 

single Ce site. For adsorption at the Ce5O8-rutile-(110) composite (see Figure 5.4.6 of 

Section 5.4), the OW 2p states broaden and lie below the VBM, overlapping with OC 

derived states, as in this instance the OH groups each bridge two Ce sites of the 

nanocluster. Comparing Figures 5.4.6.a and 5.4.6.b, the OW-derived states are shifted to 

lower energies upon dissociative adsorption. This trend is not seen in comparing Figures 

B.3.5.a and B.3.5.b due to the aforementioned singly coordinated OH group which results 

from adsorption of H2O at the Ce6O9-rutile-(110) surface. 
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B.4 MnOx-modified TiO2 

This section contains supplementary material relevant to Section 5.5:  

“Activation of water on MnOx-nanocluster-modified rutile (110) and anatase (101) 

TiO2 and the role of cation reduction” 

 

Figure B.4.1 Relaxed atomic structure of the stoichiometric gas phase Mn4O6 

nanocluster. 

The Mn4O6 nanocluster modifier shown in Figure B.4.1, was relaxed in the gas phase 

within the same computational setup described in the Chapter 2, with no constraints on 

the ionic positions.  

The nanocluster was then adsorbed at the hydroxylated rutile (110) and anatase (101) 

surfaces in different configurations and each of these were relaxed, as described in 

previous work.4-10 The most stable Mn4O6-OH-r110 and Mn4O6-OH-a101 

heterostructures were used in the subsequent calculations. Although there are many 

possible adsorption structures of the nanoclusters on the titania surfaces, with a range of 

adsorption energies, we find that once the nanoclusters are adsorbed in stable 

configurations, the trends in key properties, such as band gap reduction are unaffected.7  



433 

 

Reduction via Oxygen Vacancy Formation 

The structures shown in Figure B.4.2, their formation energies and distribution of ions 

should be compared with those shown in Figure 5.5.1 of Chapter 5. For the 

configurations with one OV, the structures described in the main text are more stable by 

~0.9 eV than those shown in Figure B.4.2.a and B.4.2.b. For the configurations with two 

OV the formation energies are comparable and one would expect that Mn and Ti ions are 

present in a variety of oxidation states at the MnOx-modified titania surfaces. 

 

Figure B.4.2 Relaxed atomic structures of additional configurations of MnOx-modified 

titania surfaces with oxygen vacancies. (a) Mn4O5-OH-r110, (b) Mn4O5-OH-a101, (c) 

Mn4O4-OH-r110 and (d) Mn4O4-OH-a101. The formation energies are computed relative 

to the most stable structure with one less OV. 
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Figure B.4.3 Computed DOS plots for unmodified, hydroxylated rutile (110) and anatase 

(101), and the stoichiometric Mn4O6-OH-r110 and Mn4O6-OH-a101 composites.  

From Figure B.4.3.a, we can see that for unmodified rutile (110) that the presence of 

hydroxyls has no impact on the bandgap; the highest occupied hydroxyl-derived states lie 

lower in energy than the VBM of the rutile (110) surface. For unmodified anatase (101), 

the hydroxyl-derived states overlap the O 2p states of the surface at the valence band 

edge. From these plots we can conclude that the computed bandgaps are ca. 2 eV and 2.7 

eV for hydroxylated rutile (110) and anatase (101), respectively; this agrees with analysis 

of the photoexcited model applied to these systems and described in the main text. 
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For Mn4O6-OH-r110, shown in Figure B.4.3.c, nanocluster derived states extend to 0.3 

eV above the VBM of the rutile (110) surface. Unoccupied Mn 3d-derived states also 

emerge in the titania band gap at 0.4 eV below the CBM. For Mn4O6-OH-a101, the 

modifier-derived states span the titania bandgap. However, these systems favours non-

stoichiometry as OV form spontaneously and so are present in the ground state as Mn4O5-

OH-r110 and Mn4O5-OH-a101 (see Section 5.5). We may conclude that these computed 

DOS do not represent a physical system and they have been included here for 

completeness.  

 

Water adsorption 

 

Figure B.4.4 Relaxed atomic structures for stable configurations of H2O adsorbed at (a) 

Mn4O5-OH-r110, (b) Mn4O5-OH-a101, (c) Mn4O4-OH-r110 and (d) Mn4O4-OH-a101. 

Atomic species are distinguished by colour according to the legend on the right hand side. 
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Figure B.4.4 displays additional stable configuration for water molecules adsorbed at the 

off-stoichiometric Mn2Ox-modified titania surfaces. For the structures with a single OV, 

water only adsorbed at the vacancy site and did so both molecularly and dissociatively 

for Mn4O5OH-r110 and only molecularly for Mn4O5OH-a101. The final relaxed 

geometry and adsorption energy differed depending on the initial adsorption set-up and 

the most stable configurations are described in the main text. For the modified surfaces 

with two OV, water adsorption was favourable at multiple sites and led to spontaneous 

dissociation. The interaction is strongest for water adsorbed at Mn4O4-OH-a101; 

computed adsorption energies were in the range of -2.0 eV to -1.3 eV. 
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B.5 Water Oxidation Steps at AEO-modified TiO2 

This section contains supplementary material relevant to Section 6.3:  

“Surface modification of Rutile TiO2 with Alkaline-Earth Oxide Nanoclusters for 

Enhanced Oxygen Evolution” 

Methodology  

Catalyst characterisation 

BET surface area measurements were carried out by N2 adsorption at 77 K using a 

Micromeritics 2000 instrument. 

X-ray diffraction (XRD) patterns were obtained using a Siemens D-501 diffractometer 

with Ni filter and graphite monochromator. The X-ray source was Cu Kα radiation. From 

the line broadening of corresponding XRD peaks, we have calculated the mean crystallite 

size according to the Scherrer equation.  

Micro-Raman measurements were performed using a Lab-RAM Jobin Yvon 

spectrometer equipped with a microscope. Laser radiation (𝜆 = 532 nm) was used as the 

excitation source at 5 mW. All measurements were recorded under the same conditions 

(2 s of integration time and 30 accumulations) using a 100x magnification objective and 

a 125 mm pinhole. 

Diffuse reflectance spectra were obtained on a UV–vis scanning spectrophotometer 

Shimadzu AV2101, equipped with an integrating sphere, using BaSO4 as reference. UV-

vis spectra were performed in the diffuse reflectance mode (R) and transformed to a 

magnitude proportional to the extinction coefficient (K) through the Kubelka -Munk 

function, F(R∝). For the sake of comparison, all spectra were arbitrarily normalised in 
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intensity to 1. Band gap values were obtained from the plot of the modified Kubelka -

Munk function (F(R∝)E)1/2) versus the energy of the absorbed light, E. 

To investigate the recombination of photogenerated electrons/holes in the photocatalysts, 

the photoluminescence (PL) emission spectra of the samples were recorded. Room 

temperature PL emission spectra of the catalysts were recorded in a Horiba Jobin-Yvon 

Fluorolog3 spectrofluorometer operating in the front face mode with a xenon lamp at the 

excitation wavelength of 320 nm. 

XPS data were recorded on pellets, 0.5 mm thick, prepared by slightly pressing the 

powdered materials, which were outgassed in the prechamber of the instrument at room 

temperature up to a pressure below 2·10-8 torr to remove chemisorbed water from their 

surfaces. Spectra were recorded using a Leybold-Heraeus LHS-10 spectrometer, working 

with constant pass energy of 50 eV. The spectrometer main chamber, working at a 

pressure <2·10−9 Torr, is equipped with an EA-200 MCD hemispherical electron analyser 

with a dual X-ray source working with Al Kα (h𝜈 = 1486.6 eV) at 120 W and 30 mA. 

The C 1s signal (284.6 eV) was used as the internal energy reference in all the 

experiments.  

Field emission scanning electron microscopy (FE-SEM) was performed using a Hitachi 

S 4800 microscope. The samples were dispersed in ethanol using an ultrasonicator and 

dropped on a carbon grid. 
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Photocatalytic runs 

 

Figure B.5.1 Schematic of photocatalytic flow-reactor used for oxygen production rate. 

 

Results  

Alternative adsorption geometries for Mg12O12 and Ca12O12 at rutile (110) 

In Figure B.5.2 we can see that adsorption of the stable Mg12O12 gas-phase nanocluster 

at the surface (Figure B.5.2.a) is the least favourable configuration of those shown. More 

stable adsorption geometries were found when beginning from the adsorption of three 4-

unit clusters, as shown in Figures B.5.2.b, S4.c and B.5.2.d. This facilitates the formation 

of more interfacial bonds between the nanocluster and the rutile (110) surface. The most 

stable of these is shown in Figure B.5.2.d in which the clusters aggregate at the surface 

to form a single, contiguous cluster. A similar trend was observed among the adsorption 

geometries of Ca12O12 at the rutile (110) surface (see Figure B.5.3).  
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Figure B.5.2 Alternative geometries for Mg12O12 adsorbed at the rutile (110) surface. The 

adsorption energies are included. Ti are represented by grey spheres. 

 

Figure B.5.3 Alternative geometries for Ca12O12 adsorbed at the rutile (110) surface. The 

adsorption energies are included. 

As stated in Chapter 6, we do not attempt to find the structure that represents the global 

energy minimum. Of the different configurations examined in the current work, we 

perform analysis on those which are most stable. However, while these are representative 

structures and not the most stable ground state of all possible configurations, we find that 

the properties we investigate do not depend on the precise details of the NC-surface 

structure. Thus, we may investigate the photocatalytic properties of the composite 

surfaces without being overly concerned about the exact geometry of the heterostructure. 
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To further illustrate this point, we performed some calculations on a less favourable 

configuration for Mg12O12, shown in Figure B.5.2.a. The results of this analysis are 

presented in Figure B.5.4 and Table B.5.1, and show qualitatively similar behaviour, 

independent of the geometry. In Figure B.5.4, we see that when the photoexcitation 

model is applied, the electron consistently localises at a subsurface Ti site and the hole 

localises at O sites of the modifier. The values in Table B.5.1, indicate that the energies 

computed in the photoexcitation model differ only quantitatively. Similarly, the free 

energies ΔG of the initial PCET step A follow similar trends for both the stoichiometric 

and reduced surfaces. The largest difference is seen in the computed oxygen vacancy 

formation energy; the value for Evac is lower for the less stable structure, as expected. 

 

Figure B.5.4 Comparison of photoexcitation model applied to two configurations of 

Mg12O12 adsorbed at the rutile (110) surface. Localisation of electron and holes is 

indicated by yellow and blue isosurfaces, respectively, which enclose spin densities up to 

0.02 eV/Å3. 
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Table B.5.1 Comparison of selected energies computed for two configurations of the 
Mg12O12 cluster at the rutile (110) surface. The structure labelled A is the most stable of 

the geometries investigated in the current work and is shown in Figure B.5.2.d. The 

structure labelled B is less stable and is shown in Figure B.5.2.a. 

Structure: Energy (eV) A (Fig. B.5.2.a) B (Fig. B.5.2.a) 

Stoichiometric Evertical 1.98 1.93 

 Est 0.62 0.72 

 Erelax 1.36 1.21 

 𝚫𝐆(A1) -0.47 -0.87 

 𝚫𝐆(A2) 1.73 2.41 

 𝚫𝐆(A) 1.26 1.54 

Reduced Evac 2.58 1.97 

 𝚫𝐆(A1) -0.50 -1.18 

 𝚫𝐆(A2) 0.56 0.09 

 𝚫𝐆(A) 0.06 -0.09 
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Table B.5.2 Computed oxygen vacancy formation energies. Each site of the AEO-

modifiers was considered for the formation of a neutral oxygen vacancy formation. The 

most stable sites are highlighted in bold. (*) signifies a calculation that is not fully 

converged. 

Mg4O4-r110    Mg8O8-r110    Mg12O12-r110 

Site Evac (eV)  Site Evac (eV)  Site Evac (eV) 

1 1.90  1 2.33  1 4.85 

2 3.35  2 3.21  2 3.81 

3 2.40  3 2.69  3 3.05 

4 1.93  4 2.79  4 2.58 

   5 4.87  5 4.95 

   6 4.35  6 3.20 

   7 4.32  7 *6.10 

   8 2.46  8 *6.15 

      9 2.58 

      10 3.54 

      11 *4.34 

      12 *5.61 

Ca4O4-r110    Ca8O8-r110    Ca12O12-r110 

Site Evac (eV)  Site Evac (eV)  Site Evac (eV) 

1 2.01  1 1.94  1 *4.78 

2 3.32  2 1.95  2 *4.09 

3 2.90  3 3.45  3 3.45 

4 1.56  4 3.46  4 2.23 

   5 2.39  5 5.14 

   6 2.39  6 3.12 

   7 1.88  7 3.52 

   8 1.88  8 *4.43 

      9 3.24 

      10 3.68 

      11 *4.68 

      12 *5.64 
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Projected Electronic Density of States (PEDOS) for bare rutile. 

 

Figure B.5.5 Computed PEDOS for the bare TiO2 rutile (110) surface. The computed 

energy gap is 2.16 eV. 

 

Water Oxidation at TiO2 rutile (110) 

Table B.5.3 presents the results of the water oxidation applied to the bare rutile (110) 

surface. These results were obtained from a model which was constructed based on the 

work of Valdés et al.11 and the values from their work are included for comparison. 

Table B.5.3 Free energies for the water oxidation PCET steps proceeding at the bare 

rutile (110) surface. These results were obtained with standard DFT and DFT+U. The 

results from the work of Valdés et al.11 are included for reference. 

Step DFT DFT+U Valdes et al11 

A 2.42 2.19 2.20 

B 1.34 1.48 1.47 

C 1.31 1.21 1.55 

D -0.15 0.05 -0.30 
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Water Oxidation at AEO-modified TiO2 rutile (110) 

 

Figure B.5.6 Reaction pathway for water oxidation starting from dissociative water 

adsorption at an interfacial site of the reduced Mg4O3-r110 composite surface. The free 

energy profile of the pathway is shown for overpotentials U = 0, 1.23 and 2.03 eV. At the 

equilibrium potential, U = 1.23 V, steps B and C are uphill and at U = 2.03 eV all reaction 

steps are downhill in free energy. 

For the water oxidation pathway proceeding at the interfacial site of reduced Mg4O3-r110, 

the intermediates and free energy profile are shown in Figure B.5.6. In sub-step A1, as 

described previously, the water derived hydroxyl group is singly bound to a Ti site of 

rutile (110), causing the Ti ion to migrate out from the surface by 0.5 Å. A second 

hydroxyl is formed after migration of the second H ion to an OC site. The first 

dehydrogenation, described by sub-step A2, is most favourable at the cluster-bound 

hydroxyl and leaves the terminal hydroxyl group bound to Ti at the surface. After the 

second dehydrogenation (step B), the water-derived O ion remains singly bound at this 



446 

 

Ti site. Sub-step C1 involves the adsorption of a second water molecule which interacts 

with the terminal O ion. After relaxation, an O2 group is bound to Ti and two hydroxyls 

form when the H ions migrate to an OC site and a bridging OS site. It is this latter hydroxyl 

from which dehydrogenation is most favourable (sub-step C2). Finally, the surface-bound 

O2 group and the cluster-bound H atom desorb to restore the catalyst to its initial state, 

Mg4O3-r110. The free energy profile in Figure B.5.6 shows that at the equilibrium 

potential of 1.23 V, steps C and D are uphill. At a potential bias of 2.03 V each reaction 

step is downhill and this corresponds to an overpotential of 0.80 V.  

 

Figure B.5.7 Reaction pathway for water oxidation starting from dissociative water 

adsorption at an interfacial site of the reduced Mg4O3-r110 composite surface, after 

hydroxylation of the cluster. The free energy profile of the pathway is shown for 

overpotentials U = 0, 1.23 and 1.97 eV. At the equilibrium potential, U = 1.23 V, steps B 

and C are uphill and at U = 1.97 eV all reaction steps are downhill in free energy. The 

reaction site is highlighted with the black circle in the panel on the left. 
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For the OER proceeding at an interfacial site of the reduced Mg4O3-r110 composite 

surface, after hydroxylation of the cluster (Figure B.5.7), the first dehydrogenation is 

most favourable from the terminal hydroxyl group and leaves a *O species bound at the 

rutile (110) surface. After step B the terminal *O species remains at the surface. After the 

water adsorption described by sub-step C1, an *OOH species is bound to the surface Ti 

site and a second hydroxyl forms due to migration of the H atom to an OC site. In sub-

step C2, dehydrogenation occurs from the cluster and leaves an *OOH species bound at 

the Ti site. In step D, an O2 molecule evolves with the release of the cluster-bound H 

atom. 
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