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Nonlinear analytical modeling and characteristic analysis of symmetrical wire 
beam based composite compliant parallel modules for planar motion 
 
Guangbo Haoa,1, Xianwen Kongb 
a School of Engineering, University College Cork, Cork, Ireland.  
b School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.  
 
ABSTRACT 
This paper mainly deals with the nonlinear analytical modeling and characteristic analysis of two types of composite multi-
beam modules for planar motion to enable rapid analysis and design synthesis. Each type of composite multi-beam module 
consists of identical, uniform and parallel wire beams, distributing uniformly along circle(s), with symmetrical cross sections. 
Analytical models of basic multi-beam modules with all beams uniformly spaced around a circle are firstly revisited. 
Analytical and nonlinear load-displacement equations are derived for the composite multi-beam modules, each of which is 
composed of two basic multi-beam modules with the same type connected either serially or in parallel. Finite element analysis 
(FEA) is carried out to compare and verify the analytical models. Detailed characteristic analysis and comparisons are 
conducted to compare three types of compliant six-beam modules whose twisting rotations are well constrained. These 
analytical results are capable of capturing some key quantitative nonlinear characteristics, such as kinematic effects, load-
stiffening effect and nonlinear twisting stiffness (torsional stiffness), and can promote the design and analytical modeling of 
compliant parallel manipulators composed of compliant multi-beam modules. In addition, the nonlinear analytical models of 
other variations of parallel double multi-beam modules are derived. 
 
Keywords: Compliant mechanisms; Composite modules; Symmetrical wire beams; Planar motion; Analytical modeling; 
Characteristic analysis  
 
1. Introduction 
 
  Compliant mechanisms (also flexure mechanisms) transmit/transform motions/loads by deformation of their compliant 
members/links, which possess positive stiffness or even zero stiffness and negative stiffness [1-3]. They have advantages 
including increased performance and reduced cost including eliminated backlash and friction, reduced wear and lubrication, 
and reduced number of parts (up to a monolithic configuration), and have therefore been extensively used in a variety of 
applications such as a high-precision manipulator [4], a vibratory bowl feeder [5] and a compliant assembly system device [6].  

Recently, wire-beam based compliant mechanisms/modules have drawn much attention from researchers. For example, a 
number of synthesis works have been reported in [7-13], spatial 3-DOF translational compliant parallel manipulators 
composed of only identical wire-beam based compliant mechanisms have been proposed in [14-15], and nonlinear 
analysis/modeling and mobility analysis have been presented in [16-18]. This paper is limited to a class of wire-beam based 
compliant modules with planar motion (two translations and one rotation) as the primary motion, which is composed of 
identical, uniform and parallel wire beams with symmetrical cross sections. For convenience, this class of wire-beam based 
compliant module refers to the compliant multi-beam module throughout this paper, which has the following potential 
applications/merits. 

(a) The compliant multi-beam module can be fabricated using the carbon nanotubes (CNTs). This may lead to novel CNT-
based compliant mechanisms [19-21] used in the emerging nano-electro-mechanical-systems (NEMS). 

(b) The compliant multi-beam module may act as a standalone motion stage actuated by the non-contact electromagnetic 
actuators [17]. This motion stage has a very simple configuration and large out-of-plane stiffness, and has no heat effect from 
the electromagnetic actuator due to the non-contact actuation. Due to the fact that the output stage acts as the input stage as 
well, no lost motion exists and fewer sensors are needed.  

(c) Compliant multi-beam modules can also be used as compositional units of new multi-axis compliant parallel 
manipulators, for example as a spatial leg to enhance the out-of-plane stiffness of an XY compliant parallel manipulator [22], 
and as a passive PPR joint of an XYZ compliant parallel manipulator [14-15] (see Fig. 1 for example). Here, P and R represent 
prismatic joint and revolute joint, respectively. This compliant multi-beam module offers an alternative to produce multi-axis 
compliant parallel manipulators instead of using leaf-beam or lumped-compliance joints [23, 24], and has larger out-of-plane 
stiffness than them. 

(d) A simpler and more accurate analytical model can be derived for the compliant multi-beam module since the 3D 
modeling of wire beams is easier and better developed [16, 25-27] compared with the 3D modeling of the conventional 
lumped-compliance hinge/pivot and leaf/blade/sheet used in the modeling of the compliant joints [23, 24].  

(e) The compliant multi-beam module can provide large-range planar motion with well-constrained out-of-plane motion and 
does not produce very large primary motion stiffness. This enables the use of the voice coil actuator for large-range motion 
since a larger primary stiffness will require a bulkier voice coil actuator to produce higher peak force [14, 28]. 

There are mainly three types of compliant multi-beam modules with regularly distributed wire beams, which have been 
mentioned in [16, 29], and further detailed below. 

The first type of compliant multi-beam module is a simple purely parallel mechanism, composed of a base, multiple 
identical and uniform parallel beams (beam number n>2) with symmetrical cross sections, and a motion stage. The base and 
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motion stage, which are both assumed to be rigid, are connected by the wire beams (Fig. 2a). Here, all the beams are uniformly 
spaced around a circle, pitch circle, of radius rn on the base and on the motion stage. This type of compliant multi-beam 
mechanism is called the basic multi-beam module throughout this paper. A basic six-beam module is shown in Fig. 2a. 

The other two types of compliant multi-beam modules are referred to the composite multi-beam modules throughout this 
paper, each of which is composed of two basic multi-beam modules with the same type connected either serially or in parallel. 
As shown in Figs. 2b and 2c, the second type is a hybrid mechanism, composed of two basic three-beam modules in series (Fig. 
2b), i.e. one serial double three-beam module; and the third type is a purely parallel mechanism, composed of two basic three-
beam modules in parallel with beams uniformly spaced around two circles (Fig. 2c), i.e. one parallel double three-beam 
module. Note that the second type (Fig. 2b) involves an uncontrollable/under-constrained secondary stage with internal in-
plane DOFs (degrees of freedom). 

 
Fig. 1. A compact and decoupled XYZ compliant parallel manipulator composed of identical basic compliant four-beam 
modules: (a) a 3-PPPR XYZ compliant parallel manipulator, and (b) a corresponding monolithic design fabricated from a 
cubic material by three orthogonal directions’ cutting. 

  
Fig. 2. Three types of compliant six-beam modules including basic and composite configurations 

 
In comparison with finite element analysis (FEA) using commercial software, the analytical modeling for the compliant 

multi-beam modules in this paper enables rapid analysis and design synthesis, and provides exact analytical constraint models. 
Using the constitutive, compatibility and equilibrium conditions, Ref. [16] presented thorough theoretical solutions to the 
nonlinear load-displacement equations of the basic multi-beam modules using free body diagram method. Three nonlinear 
methods of increasing accuracy and complexity were proposed: an approximate analytical method, an improved approximate 
analytical method and a numerical method. The constitutive conditions for the single wire beam used in [16] are based on the 
assumption that the two bending deformations are decoupled or are weakly coupled irrespective of twisting moment. A more 
accurate analytical spatial beam constraint model for the single symmetrical wire beam was recently derived in [25, 26, and 30] 
without the above decoupling assumptions. However, due to the nature that the two bending angles are well constrained in the 
compliant multi-beam modules, the nonlinear models for the basic multi-beam modules proposed in [16] are as accurate as 
those obtained using the spatial beam constraint model proposed in [25, 26, and 30]. This can be verified by comparing the 
analytical models in [16] and general analytical models of basic multi-beam modules in [30, 31] using a nonlinear strain 
energy method, principle of virtual work (see Eqs. (6.73)－(6.75) in [30] and Eqs. (54)－(56) in [31] for example). Note that 
compared with the free body diagram method, the energy based method can reduce the number of unknown variables to only 
six via eliminating the internal load variables. However, the internal loads are desirable to be known in compliant mechanisms 
for estimating stress level etc. Also, due to the involved non-linearities it will be extremely complex to invert the relations to 
obtain displacements in terms of forces as demonstrated in [30], which is eventually desired in this paper. 

Based on the above advances and under intermediate displacement range and Euler-Bernoulli-beam assumptions2, this paper 
                                                           
2This article accounts for the non-linearity of load-equilibrium equations under the condition of intermediate displacement range where the transverse 
displacement is up to ±10% of beam length or the rotational displacement is up to ±0.1 radians [3]. Euler-Bernoulli-beam assumptions include: (1) Plane 
cross-sections remain plane (without warp effect) and perpendicular to the neutral axis in deformation; (2) The in-plane distortion of the plane cross-sections 
after deformation are neglected. Note that although εyy and εzz, caused by the principle strain σxx are not negligible due to the Poisson ratio. However, these 
presences don’t affect the calculation of the end displacements of the slender beam because stresses σyy and σzz are both zero. 
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mainly studies on nonlinear analytical modeling of the two types of composite multi-beam modules, and then implements 
analytical characteristic analysis and comparisons of three types of compliant multi-beam modules. These works will 
contribute to the design and analytical modeling of standalone desktop-size XY motion stages [17] and translational compliant 
parallel manipulators [14, 15, and 22] 

This paper is organized as follows. Section 2 revisits the previous work on basic multi-beam modules. In Section 3, the 
nonlinear and analytical load-displacement equations of composite multi-beam modules are investigated, and several typical 
analytical models are compared with FEA results. Section 4 analyzes and compares the characteristics of three types of 
compliant six-beam modules. Discussions are presented in Section 5. Finally, conclusions are drawn. 

To simplify the derivations and make translational displacements and rotational angles (or forces and moments) comparable 
[18], all translational displacements and length parameters are divided by the beam length L, forces by EI/L2, and moments by 
EI/L. Here, E and I denote, respectively, the Young’s modulus and the second moment of the area of a symmetrical cross-
section. For example, I=πD4/64 for beams with round cross-section of a diameter D and I=T4/12 for beams with square cross-
section of a thickness of T. The normalized beam is equivalent to a beam with unit length, unit Young’s modulus and unit 
cross-sectional moment. Throughout this paper, non-dimensional quantities are represented by the corresponding lower-case 
letters.  

 
2. Basic Multi-Beam Modules Revisited 
 
2.1. A basic three-beam module 
 
  The free body diagram of a basic three-beam module is shown in Fig. 3 [16]. All external loads, p (axial force), fy, fz 
(transverse forces), mx (twisting moment), my and mz (bending moments), can be regarded to act at the center, O', of the motion 
stage to cause the motion stage to move by deformation of the compliant beams. p, fy and fz are the forces along the X-, Y- and 
Z-axes, respectively; mx, my and mz are the moments about the X-, Y- and Z-axes, respectively. Here, the O-XYZ coordinate 
system is the global one. For the purpose of simplification, the gravity of the motion stage (including the payloads on it) is 
integrated into the axial force, and the weights of the compliant beams, which are very small, are neglected.  

 

 
Fig. 3. Free body diagram of a basic three-beam module [16] 

 
 

All translational displacements of the center, O', along the X-, Y- and Z-axes are denoted by xs (axial displacement) ys and zs 
(transverse displacements), respectively. All rotational displacements (angles) of the motion stage about the X-, Y- and Z-axes 
are denoted by θsx (twisting angle), θsy and θsz (bending angles), respectively. In the basic three-beam module, the three out-of-
plane motions are well suppressed, and its motion stage is constrained to move within the YZ plane, which leaves ys, zs and θsx 
as the three outputs (DOFs). Institutively, if the pitch-circle radius r3 of the beams (accordingly the motion stage) becomes 
relatively large, the rotation of the motion stage about the X-axis will be constrained as well.  

Note that, in the following sections for the compliant multi-beam modules: basic and composite, all loads and displacements 
shown in all the figures are represented by the non-dimensional quantities in the coordinate system O-XYZ unless indicated 
specifically otherwise, and the global coordinate system, loads and displacements are defined in a similar way to the basic 
three-beam module. 
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2.2. Nonlinear analytical models of basic multi-beam modules 
 

Throughout this paper, we will use the approximate nonlinear analytical solutions (Eq. (1)) proposed in [16] for enabling 
characteristic analysis of basic multi-beam modules. These solutions offer a solid foundation for deriving analytical models of 
composite multi-beam modules since they are simple, analytical and accurate enough for most engineering applications 
especially if the twisting rotation and/or the bending moments can be very small. 
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where n=3 or an even number greater than 3. The approximate displacements of the motion stage for a given set of loads are 
obtained in the sequence of (a) the twisting angle, θsx, (b) the two transverse displacements, ys and zs, (c) the two bending 
angles, θsy and θsz, and (d) the axial displacement, xs. 

Equation (1) can capture the desirable nonlinear characteristics such as buckling load (pcrit=－10n if my and mz are quite 
small), load-stiffening effects [16] attributing to the positive axial tensile force in the output equations (ys, zs and θsx), and the 
kinematic effects (including purely kinematic and elastokinematic) [16] in the DOC (degree(s) of constraint) equations (xs, θsy 
and θsz). Some characteristics such as kinematic and load stiffening effects cannot be observed from linear analytical load-
displacement equations [18] for the basic multi-beam modules. It can be observed that the twisting angle, θsx, is the dominant 
factor to couple the motion together. If θsx=0, all motion equations can be largely simplified with two transverse motions 
independent of each other. Other stiffness characteristics (including the primary motion stiffness and the parasitic motion 
stiffness) will be detailed in the following sections in comparisons with other two types of composite multi-beam modules. 

In Eq. (1) and throughout this paper, the non-dimensional numbers are defined as follows [16, 25, and 31]: 
  a= 12, b= 4, c=－6;  
  d=16/(D/L)2 for round beams with diameter of D or 12/(T/L)2 for square beams with a thickness of T as examples; 
  e= 1.2, g= 2/15, h=－0.1; 
  i=－0.6, j=－1/15, k= 1/20; 
  r= 1/700, s= 11/6300, q=－1/1400; 
  δ=2G/E=1/(1+v) (G is the Shear Modulus, and v is the Poisson Ratio). 

Based on the improved approximate analytical model in [16], more accurate analytical models of basic multi-beam modules 
can be obtained as follows.  
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Moreover, these nonlinear and analytical models (Eq. (1)) can be used to deal with the more general basic multi-beam 
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modules with more generalized beams by modifying the scalar coefficients, a, b, c, d, e, g, h, i, j, k, q, r and s based on the 
work in [32] and using δ=G/(Ea0). Here, a generalized beam with characteristic length L (overall length) is a lumped-
compliance beam composed of two identical uniform compliant segments separated by one rigid segment [32], and a0 denotes 
the normalized length of each compliant segment. a0=0.5 is the case of distributed-compliant wire beam. 

The primary motion stiffness of the basic multi-beam module increases with the increase of the number of wire beams 
without affecting the maximal allowable motion range. In addition, with the increase of the pitch-circle radius, all the rotational 
angles decrease without affecting the transverse displacements.  

It is noted that, due to the symmetry of the cross section, Eq. (1) can be used to deal with the basic multi-beam module with 
square/round cross-sections in the following diverse layouts with the same pitch-circle radius and the same remaining 
conditions (see Fig. 4 for the basic four-beam module example with square cross sections).  

 
Fig. 4. Top views of the square cross-section layouts in basic four-beam modules with the same pitch-circle radius 

 
 

3. Composite Multi-Beam Modules 
 

In this section, we will investigate the load-displacement equations for composite multi-beam modules (Fig. 2). For any two 
composite multi-beam modules with the same inner and outer pitch-circle radii but different layouts (Fig. 5), they have the 
same analytical models based on the results in Fig. 4. Note that the Y- and Z-axes in the composite 2n-beam module are set up 
to be the same as those in the above basic n-beam module. 

 

 
Fig. 5. Top view for a composite four-beam module with two basic four-beam modules connected either serially or in parallel  

 
 

3.1. Nonlinear analytical modeling of serial double multi-beam modules 
 
3.1.1. Case composed of two basic three-beam modules 
 

Considering the serial double three-beam module (i.e. composite six-beam module) on the right-hand side in Fig. 2b, let θsx1, 
θsy1, θsz1, xs1, ys1, zs1 be the displacement components of the motion stage with regard to the global coordinate system O-XYZ, 
which results from the inner basic three-beam module deformation alone, θsx2, θsy2, θsz2, xs2, ys2, zs2 be the displacements of the 
secondary stage with regard to the local coordinate system O'-X'Y'Z', which results from the outer basic three-beam module 
deformation alone. 
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where r3 is the radius of the pitch circle around which the three inner beams are uniformly spaced. 
We use the resultant moments acting on the secondary stage in the deformed configuration to further obtain the following: 

)3/(3

)]
3

)((
3

[

)3/(3

)])(()[(
3

2'
3

2'
3

sx1
yzzyyyzzx

2'
3

2'
3

ys1zyzs1yzx

sx2 perar
pea

pe
mfmffmfm

pea
em

perar

fpzfmfpyfm
pea

em

−+
+

−++
−

−−
=

−+

−−+−+−+
−

+−
≈

δ

θ

δ
θ ,    (9) 

pea
epzfmf

y
−

−+−+−
≈

3
)( sx2s1zyy

s2
θ

,                                                                  (10) 

 
pea

epyfmf
z

−

−++
≈

3
)( sx2s1yzz

s2
θ

,                                                                    (11) 

s2sx2s2s1zy
2
s2

2
s22'

3
sy2 2])3()[1(

3
2 yizphcpzfmrzry

dr
θθ −−+−+−++≈ ,                                           (12) 

s2sx2s2s1yz
2
s2

2
s22'

3
sz2 2])3()[1(

3
2 ziyphcpyfmrzry

dr
θθ −−−−+++≈ ,                                         (13) 

rzpyfmypzfmkzyrrpirrzypizy
d
px sx2s2s1yzs2s1zysy2s2sz2s2

2
sx2

2'
3

2
sx2

2'
3

2
s2

2
s2

2
s2

2
s2s2 ])()[(

3
2)(2

3
2)(

3
)(

3
θθθθθ −++−+−−−+

−
+++

−
+++

−
≈  (14) 

where r3' is the radius of the pitch circle around which the three outer beams are uniformly spaced. 
Then, we calculate the displacements of the motion stage of the serial double three-beam module as 

sx2sx1sx θθθ −= ,                                                                                 (15) 
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s2s1s xxx −= .                                                                                   (20) 
Substituting Eqs. (3) − (14) into Eqs. (15) − (20) accordingly, the displacements of the motion stage under applied loads can 

be obtained. 
  In the case that the twisting angle is well constrained, for example, the compliant multi-beam module is employed as either a 
standalone XY motion stage under a very large pitch-circle radius [17] or a building block of the translational compliant 
parallel manipulators [14, 15, and 22], Eqs. (15) − (20) can be simplified as 
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As shown in Eq. (21) or (22), the primary stiffness of the serial double three-beam module reduces to half and the motion 
range increases to double. Especially, the serial double three-beam module can significantly reduce the load-stiffening effect 
and produce reduced primary stiffness regardless of the direction of the axial force as a result. The small load-stiffening effect 
attributes to that the primary transverse stiffness always slightly decreases with increase of the absolute value of the axial 
tensile force. In addition, the serial double three-beam module can approximately eliminate the purely kinematic effect upon its 
axial displacement as the transverse forces imposed on the secondary motion stage produce positive axial displacement, while 
the transverse forces imposed on the motion stage produce negative axial displacement. In the case that the axial force is equal 
to zero, there is no axial displacement. 
 
3.1.2. Case composed of two basic n-beam modules 
 

Likewise, the nonlinear analytical load-displacement equations for the serial double n-beam module (i.e. composite 2n-beam 
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module) can be easily deduced based on Eqs. (3) – (20) via using the analytical models (Eq. (1)) of each individual basic n-
beam module instead of those of each individual basic three-beam module during the above derivation in Sec. 3.1.1. Under the 
assumption of very small twisting angles, similar to Eqs. (21) – (26), we can further simplify the analytical models for the 
serial double n-beam module as 
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      (27)         

where n=3 or an even number greater than 3. rn' (or rn) is the radius of the pitch circle around which the n outer (inner) beams 
are uniformly spaced. The motion stage is supported by the n inner beams.  

Either of the two transverse displacement equations in Eq. (27) shows that the buckling condition: pcrit1=±na/e=±10n occurs 
when the transverse stiffness becomes zero. The twisting angle equation shows the second and third buckling conditions: pcrit2=
－n(δ+arn

2)/(ern
2)=－[10n+nδ/(ern

2)] and pcrit3=n(δ+arn'2)/(ern'2)=[10n+nδ/(ern'2)] when the twisting stiffness (also torsional 
stiffness) becomes zero. Therefore, the buckling axial load for the serial double n-beam module is  

|pcrit|= min (|pcrit1|, |pcrit2|, |pcrit3|) =10n. 
where it is shown that the buckling load depends on the transverse stiffness, i.e. pcrit1=±10n. This buckling condition implies 
that the buckling axial load along the positive/negative direction can always induce buckling of one basic three-beam module, 
which builds on the assumption that my and mz are quite small. 

Moreover, the axial force in the three output (DOF) equations shows the load-stiffening effect. The purely kinematic term, 
associated with transverse motion(s), in the axial displacement vanishes due to the introduction of the secondary stage but the 
purely elastic and elastokinematic terms remain.  
  From Eq. (27), we can also conclude that if we only exert two transverse forces at the symmetric center of all beams on the 
motion stage, all parasitic rotational displacements, θsy and θsz, vanish. This loading action position refers to the center of 
stiffness [33] (also see Fig. 2b). In addition, if the axial force is equal to zero, Eq. (27) further reduces to 
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  If rn'=rn, Eq. (28a) reduces to 
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Note that the tiny purely kinematic and elastokinematic effects involving rotations can be further added into the axial 
displacement in the case of the axial force being very small. For example, if we take the purely kinematic effect from the 
product of transverse motion and bending rotation into account, the general form of the axial displacement can be modified as 
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  If the serial double n-beam modules are used independently as a planar motion stage, the only large twisting moment acting 
on motion stage doesn’t cause the parasitic axial displacement as long as two the pitch-circle radii are equal. A CAD prototype 
of serial double four-beam module in this case is shown in Fig. 6. Although, different beam lengths for the inner four beams 
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and the outer four beams with different circle radii can be employed to produce no axial displacement under pure twisting 
moment, but will negatively result in extra kinematic effect contributing to the axial displacement under pure transverse force. 
  In addition, there are other variations of composite multi-beam modules with secondary stages, each of which is composed 
of multiple (such as three or four) basic multi-beam modules connected serially to increase the motion range, as discussed in 
[29]. Their analytical modeling can be easily done by following the process of the above load-displacement modeling. 

 
Fig. 6. A CAD model of the serial double four-beam module with two equal pitch-circle radii: r4'=r4 

 
3.2. Analytical modeling of parallel double multi-beam modules 
 
3.2.1. Case composed of two basic three-beam modules 
 

Following the approximate nonlinear analytical modeling for the basic three-beam module in [16], we can obtain the load-
displacement equations for the parallel double three-beam module (i.e. composite six-beam module) on the left-hand side in 
Fig. 2c based on the detailed derivation shown in Appendix A.1. 
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where r3 and r3' are the radii of the pitch circles around which the three inner beams and the three outer beams are uniformly 
spaced, respectively. This equation is also applicable to the parallel double three-beam module on the right-hand side in Fig. 2c. 

From the twisting angle equation in Eq. (29), we can learn that the twisting stiffness increases with the increase of the 

twisting angle due to the introduction of the additional term (positive): )]
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the denominator in comparison with the twisting angle equation of the basic six-beam module (Eq. (1)). The additional term is 
caused by the axial displacement compatibility for the inner three-beam module and the outer three-beam module since the two 
individual basic three-beam modules used separately with different pitch-circle radii produce different axial displacements for 
the same twisting rotation. 

The nonlinear twisting stiffness can be further derived as follows: 
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The larger both d and 22'
3

2
3 )( rr − are, the larger the twisting stiffness nonlinearity is. In addition, the transverse motions, ys 

and zs, affect the nonlinear twisting stiffness. Specifically, the increase of the transverse motion decreases the twisting stiffness 
nonlinearity slightly if d is small enough. If d is larger, the contribution from the transverse motion becomes larger. 
Furthermore, if r3 approaches to r3', Eq. (30) reduces to the nonlinear equation of the basic six-beam module approximately.   

  
3.2.2. Case composed of two basic n-beam modules 
 

Based on the results in Sections 3.2.1, the load-displacement equations of the parallel double n-beam module (composite 2n-

Base 
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beam module) can be deduced as follows: 
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where rn' (or rn) is the radius of the pitch circle around which the n outer (or inner) beams are uniformly spaced. if rn 
approaches to rn', it reduces to the nonlinear equation of the basic 2n-beam module approximately.    
  Equation (31) also shows that there are load-stiffening effects in the three output (DOF) equations (ys, zs, and θsx) and the 
buckling conditions can be obtained by setting up the transverse motion stiffness and/or twisting stiffness to be zero, which 
leads to pcrit=－20n if θsx is small enough. It deserves to mention again that this buckling condition works if my and mz are quite 
small. 

It is shown that the axial force in the three output (DOF) equations contributes to the load-stiffening effect. Note that the 
parallel double n-beam module has also a stiffness center at which the transverse force act with minimized parasitic bending 
angles. 
  In addition, there are other variations of parallel double multi-beam modules, which will be discussed and modeled in 
Appendices A.2 and A.3. Especially, a parallel double multi-beam module can consist of two same basic multi-beam modules 
in a mirror-symmetrical configuration (see the parallel double three-beam module in Fig. 7 for example, where the two basic 
three-beam modules are placed in different sides from the motion stage). As it will be shown in Appendix A.3, this system has 
a significant load-stiffening effect under large-range translational motion, resulting from the augmentation of transverse 
stiffness with the increase of motion displacement in the presence of gradually increased axial tension-force in the 
configuration of two mirror-symmetrical three-beam modules. Here, this load-stiffening effect significantly increases a) the 
primary motion stiffness, which may lead to the use of only small motion linear actuators such as PZT actuators, and b) the 
tensile stress, which may cause yield under large-range of motion. However, the stiffness center in the parallel double three-
beam module in the mirror-symmetrical configuration is at the center of the motion stage, which results in no parasitic 
rotation/translation under transverse forces and/or twisting moment. 

 
Fig. 7. Parallel double three-beam module in a symmetrical configuration 

 
 
3.3 FEA comparisons 
 

In order to measure the accuracy of the above derived analytical models and verify the correctness of the deduced models 
for a compliant n-beam module, FEA results are pursued to compare with the analytical models. Here, commercial software, 
COMSOL, is selected for nonlinear FEA using tetrahedral element and finest meshing with others default. 

Firstly, we pick up the composite eight-beam modules to compare their analytical models with FEA results of the primary 
transverse displacement for different cases. Let the material be a standard AL6061-T651 with the Young’s Modules of 69 GPa, 
and Poisson ratio of 0.33. The wire beam has square cross sections with thickness of 2 mm. The length of all identical wire 
beams is 50 mm, and the radii for the pitch circles around which the beams distribute are R4’=25 mm and R4=20mm for the 
serial double four-beam module, and R4’=25 mm and R4=20 mm for the parallel double four-beam module. Both Figs. 8 and 9 
show that the analytical results (Eqs. (27) and (31)) of the transverse displacement along the Y-axis for both composite cases 
are very close to the corresponding FEA results. 

Motion 
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Fig. 8. Transverse displacement comparison for the serial double four-beam module 
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Fig. 9. Transverse displacement comparison for the parallel double four-beam module 

 
Secondly, the double parallel three module is further chosen for verifying its twisting angle equation. Let all the beams have 

round cross sections of diameter D=0.5mm with length of L=5 mm, distributing round two circles with radii: R3=5 mm or 
25mm, and R3’=50 mm. The other conditions for material are kept the same as those in the above example. Figure 10 shows a 
very good agreement in twisting rotation for the second case between the analytical results (Eq. (30)) and FEA results with a 
small difference less than 5.5%.  
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4. Analytical Characteristic Analysis and Comparisons 
 
In this section, detailed characteristic analysis and comparisons will be carried out for three types of compliant multi-beam 

modules with the same total beam number such as the basic six-beam module, (denoted by I-module, Fig. 2a), serial double 
three-beam module (denoted by II-module, Fig. 2b) and the parallel double three-beam module (denoted by III-module, Fig. 
2c). We will focus on two particular applications for the three compliant six-beam modules whose twisting angles are well 
constrained: (a) the standalone XY motion stages under the large pitch-circle radius [17], and (b) the compositional units of 
translational compliant parallel manipulators [14, 15, and 22].  

Let the three types of compliant six-beam modules be composed of identical beams with d=20000 and δ=1/(1+0.33)=0.7519 
and also have the same overall size, i.e. the outer pitch-circle radii are same. 
 
1) Motion range 

Primary motion range of the I- II- and III-modules for both applications are approximately Δ, 2Δ and Δ. The II-module has 
the largest motion range, 2Δ. 
 
2) Ratio of twisting stiffness to transverse stiffness 

For the application as a standalone XY motion stage, the pitch-circle radius must be large enough (in desktop-size) 
compared to the beam length in order to well constrain the twisting angle. We specify the following with p=0: 
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where these values of the pitch-circle radii will be adopted for other stiffness analysis for the application as the standalone XY 
motion stage. 

Using the values of radii given above, the ratio of the twisting stiffness to the transverse stiffness for each compliant six-
beam module is derived using Eqs. (1), (27) and (31) as follows: 
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  Note that, in comparison with Eq. (31), some high-order terms associated with twisting angle in Eq. (32c) have been left out 
since they are trivial to the twisting stiffness calculation under a very small twisting rotation. 

Figure 11 shows that the comparisons of the ratio of the twisting stiffness to the transverse stiffness for the application as the 
standalone XY motion stage under no transverse motion among three compliant six-beam modules. The stiffness ratios for the 
I- and II-modules have the same values with a constant 100 (Eqs. (32a) and (32b)). But the stiffness ratio of the III-module has 
a variable value which increases with the twisting angle’s increase (Eq. (32c)). The smaller r3 is, the more significant the 
nonlinearity is. However, when r3 in the III-module is the smallest, the stiffness ratio at zero point of the twisting angle is 50, 
half of that of the I- or II-module, while when r3 approach r3', the stiffness ratio at the zero point of the twisting angle is 
approaching to 100. Therefore, the determination of r3 depends on the actual requirements about the initial stiffness ratio or the 
twisting angle at the nonlinear stiffness ratio equal to 100. Figure 12 illustrates that the increasing transverse motion reduces 
the ratio of the twisting stiffness to the transverse stiffness. It can be found that the effect from the transverse motion below 
0.025 in both directions is negligible.  
  Compared with the I- or II-module, the III-module has the better twisting stiffness characteristic (nonlinear stiffening) in the 
case as the XY motion stage. 

For the application as a compositional unit of translational compliant parallel manipulators, the twisting angle is generally to 
be lower than 0.001 if the transverse motion is up to 0.1, i.e. the 0.01 times smaller than the transverse motion, and the pitch-
circle radius should be compatible to the beam length, so we specify the following with p=0: 

⎪
⎩

⎪
⎨

⎧

=

==

=

module-IIIfor  1

module-IIfor  1

module-Ifor  1

'
3

'
33

6

r

rr

r

.   

where these values of the pitch-circle radii will be adopted for other following stiffness analysis for the application as a 
compositional unit of translational compliant parallel manipulators. 
  Using the values of radii given above, the ratio of the twisting stiffness to the transverse stiffness for each module is derived 
accordingly as follows using Eqs. (1), (27) and (31): 
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  Note that the twisting stiffness (Eqs. (33a), (33b) and (33c)) is trivial compared to the corresponding bending stiffness. 
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Fig. 11. The ratio of the twisting stiffness to the transverse stiffness for the application as an XY motion stage under no 
transverse motion 
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Fig. 12. The ratio of twisting stiffness to transverse stiffness for the application as an XY motion stage under existing 
transverse displacements 
  
 
3) Transverse motion stiffness with load-stiffening effect  

For both applications mentioned above, the transverse motion stiffness can be obtained as follows using Eqs. (1), (27) and 
(31) and plotted in Fig. 13. 
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Fig. 13. Transverse stiffness with load-stiffening effect for both applications 

 
 

Figure 13 shows the transverse stiffness changes with the axial force which contributes to the load-stiffening effect. With the 
increase of the magnitude of the axial force, the transverse stiffness decreases slightly (load-softening effect) in the II module. 
However, with the increase of the positive axial force, the transverse stiffness increases dramatically in the I- and III-modules. 
It is noted that at p=0, the transverse stiffness of the II-module is one quarter of that of the I-/III-module. The lowest transverse 
stiffness of the II-module will facilitate the use of voice coil actuator for large-range motion. 

Therefore, among the three types of compliant six-beam modules, the II-module has a better characteristic in the minimized 
load-stiffening effect of the transverse motion for both applications, and is well suitable for the mirror-symmetrical design for 
large-range motion.  
 
4) Axial displacement 

For both applications under the well-constrained twisting angle, the axial displacements under p=0 are obtained using Eqs. 
(1), (27) and (31) as 
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izyx )(| 2
s

2
sIIIs += .                                                                                (35c) 

The axial displacement is herein the parasitic translational motion. The comparisons among three compliant six-beam 
modules for the axial displacement are shown in Fig. 14. It is physically observed that the axial displacement in the I- and III-
modules has a significant increase in magnitude if the transverse motion has a large increment. As a result, the II-module has a 
better axial displacement characteristic for both applications. 

 
5) Ratio of axial stiffness to transverse stiffness 

For both applications under the well-constrained twisting angle, the ratio of axial stiffness to transverse stiffness for each 
module under p=0 is derived from Eqs. (1), (27) and (31) as 
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Figure 15 illustrates that the ratio of axial stiffness to transverse stiffness goes down over the primary motion range [－0.1, 
0.1]. It is shown that the II-module has the worst ratio of the axial stiffness to the transverse stiffness with significant decrease 
over the primary motion in comparison with those of the I- and III-modules. The loss in the axial stiffness in the II-module is 
caused by the internal in-plane DOFs induced by the secondary stage. 
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Fig. 14. Axial displacement for both applications 

 

-0.1 -0.05 0 0.05 0.1
200

400

600

800

1000

1200

1400

1600

1800

ys

zs=0

R
at

io
 o

f a
xi

al
 s

tif
fn

es
s 

to
 tr

an
sv

er
se

 s
tif

fn
es

s

 

 

I
II
III

 
Fig. 15. Ratio of the axial stiffness to the transverse stiffness for both applications 

 
 
6) Ratio of bending stiffness to transverse stiffness 

For the application as a standalone XY motion stage under p=0, the ratio of bending stiffness (about the Y- or Z-axis) to 
transverse stiffness for each module is obtained based on Eqs. (1), (27) and (31) as follows  
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  It is shown from Fig. 16 that the ratio of bending stiffness to the transverse stiffness goes down over the primary motion 
range. The II-module has the best stiffness ratio of bending stiffness to transverse stiffness, and the III-module has the 
approximately same stiffness ratio of bending stiffness to transverse stiffness as that of the I-module if r3 is close to r3′. 
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Fig. 16. Ratio of bending stiffness to transverse stiffness for the XY motion stage application (color difference can be seen in 
the electronic version) 
 

For the applications as a compositional unit of translational compliant parallel manipulators under p=0, the ratio of bending 
stiffness (about each axis) to the transverse motion stiffness for each module with the help of Eqs. (1), (27) and (31) is shown 
as  
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Similarly, the II-module has the best stiffness ratio of bending stiffness to transverse stiffness (Fig. 17). 
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Fig. 17. Ratio of bending stiffness to transverse stiffness for the compositional unit application (color difference can be seen in 
the electronic version) 

 
 

7) Buckling load 
From Eqs. (1), (27) and (31), it is obtained that the buckling loads of the I-, II-, and III-modules for both applications are 60, 

30, and 60, respectively. The I- and III-modules have the largest buckling load, 60. 
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8) Dynamics 
 
The II-module has an under-constrained secondary stage/mass with three planar DOFs, and only behaves well under quasi-

static/low speed motion mode. The non-controllable mass would lead to uncontrolled vibrations in high-speed motion, which 
negatively affect dynamic performance. However, the I-/III-module is the exact-constrained design. 
   
9) Summary 
 
  Tables 1 and 2 summarize the above characteristic analysis results for the three types of compliant six-beam modules. The I-
module possesses the simplest configuration. The II-module has the largest motion range, smallest primary motion stiffness 
and load-stiffening effect, smallest parasitic axial displacement, and largest bending stiffness ratio while it also has the worst 
axial stiffness ratio, buckling load, and dynamic performance. The III-module has the nonlinear twisting stiffness 
characteristics and larger axial stiffness. Therefore, the compliant multi-beam modules should be chosen based on the actual 
characteristics requirements in specific applications. 

It is noted when the compliant multi-beam module is used as a compositional unit, the transverse stiffness with load-
stiffening effect may also contribute to the cross-axis coupling, the parasitic axial displacement can also contribute to the cross-
axis coupling and/or actuator isolation effect, and the axial stiffness can also contribute to the actuator isolation, lost motion 
and/or drive stiffness effect [4]. 
 
Table 1 Primary performance characteristic comparisons for the XY motion stage (‘+’ denoting good and ‘0’denotes 
normal/bad) 
XY 
motion 
stage 

Motion 
range 

Twisting 
stiffness 

Transverse stiffness 
with load-stiffening 

effect 

Axial 
displacement 

Axial 
stiffness 

Bending 
stiffness 

Buckling 
load Dynamics

I-module 0 0 0 0 + 0 + +
II-module + 0 + + 0 + 0 0 
III-module 0 + 0 0 + 0 + +
 
Table 2 Primary performance characteristic comparisons for the compositional unit of translational compliant parallel 
manipulators (‘+’ denoting good and ‘0’ denotes normal/bad) 

Compositional 
unit 

Motion 
range 

Twisting 
stiffness 

Transverse stiffness 
with load-stiffening 

effect 

Axial 
displacement 

Axial 
stiffness 

Bending 
stiffness 

Buckling 
load Dynamics

I-module 0 0 0 0 + 0 + + 
II-module + 0 + + 0 + 0 0 
III-module 0 0 0 0 + 0 + + 

 
In addition, the following observations can be made for the compliant multi-beam modules: 
(1) The out-of-plane stiffness of the motion stage decreases with the increase of the transverse motion. 
(2) The out-of-plane load, such as axial force p, changes the in-plane motion stiffness of the motion stage. 

 
 

5. Discussions 
 

From the initial FEA results about the translational compliant parallel manipulators using compliant multi-beam modules as 
the building blocks, it has been found that the bending normal stress is the dominant factor associated with yield as compared 
with other tensile normal stress and/or shear stress. Here, the beams in the compliant multi-beam modules can be regarded as 
guided beams (zero end slopes). Because the compliant multi-beam modules can achieve translations along two directions, it is 
desired to investigate which type of symmetrical cross-section of guided beams can produce the maximal single-axis 
translation or the maximal two-axis translations (considering the bending normal stress superposition of two-axis bending) and 
identify where the maximal stress positions are for the single-axis bending and two-axis bending. 

There are many other options to optimize/improve the compliant multi-beam modules. These options could be non-identical 
beams, lumped compliance as opposed to distributed compliance, asymmetric cross sections, non-parallel beams, and slaving 
of secondary motion stages etc. 
 
 
6. Conclusions 
 

Nonlinear modeling and analytical characteristic analysis of compliant multi-beam modules have been investigated in this 
paper for enabling rapid characteristic analysis and design synthesis. The main contributions are: 

1) Nonlinear load-displacement equations have been derived and deduced for the composite multi-beam modules including 
the serial double multi-beam modules and the parallel double multi-beam modules (in non-symmetrical configuration).  

2) Detailed characteristic analysis and comparisons have been undertaken for three types of compliant six-beam modules. 
The present work provides a theoretical foundation for the design and nonlinear analytical modeling of the resulting 

compliant manipulators composed of compliant multi-beam modules. In addition, the work regarding the modeling and 
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analysis of exact-constrained compliant multi-beam modules can be beneficial to the analysis of buildings, supported by pillars, 
under wind loading.  

The general case of error analysis for the compliant multi-beam modules is still an open issue. 
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Appendix A. Nonlinear Analytical Modeling for Parallel Double Multi-beam Modules 
 
A.1. Parallel double three-beam module 
     

The nonlinear modeling of the parallel double three-beam module (Fig. 2c) can be derived starting from the approximate 
analytical solutions of the basic three-beam module (Eq. (1)). Since the displacements of the motion stage center are specified 
as the output displacements of the parallel double three-beam module under applied loads at this center. This center is also the 
specified point for the displacements (and loads) of the individual basic three-beam module. Therefore, the motion 
compatibility condition for two individual modules is that they have the same motion displacements denoted by xs, ys, zs, θsx, 
θsy and θsz. We also split the loads, p, fy, fz, mx, my and mz, into two groups. One loading group is pA, fyA, fzA, mxA, myA and mzA 
at the center contributing to the deformation of the inner basic three-beam module, and the other loading group is pB, fyB, fzB, 
mxB, myB and mzB at the center contributing to the deformation of the outer basic three-beam module. The load equilibrium 
equations are shown below: 
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  The load-displacements equations for each individual basic three-beam module can be written as 
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  Equaling the two axial displacements in Eqs. (A.2) and (A.3), we can derive the following relation: 
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The result of Eq. (A.4) combining the axial force equilibrium equation in Eq. (A.1) yields the axial load pB  
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  Then pA is obtained as 

)
633

1(2

)(
2 2

sx

2'
3

2
3

22

2
sx

2'
3

2
3

BA

rrrrzy
d

irrpppp
ss θ

θ
+

+
+

+

−
−=−= .                                                 (A.6) 

Note that the derivations for pA and pB mainly consider the independent contribution of the twisting rotation. 
  After adding the two axial displacement equations in Eqs. (A.2) and (A.3) together and combining the equilibrium equations 
in Eq. (A.1), we have the axial displacement along the X-axis 
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  Furthermore, the twisting displacement about the X-axis can be obtained by adding the two twisting displacement equations 
in both Eqs. (A.2) and (A.3) together, combining the force equilibrium equations in Eq. (A.1) and using the results in Eqs. (A.5) 
and (A.6): 
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Similarly, the transverse displacements along the Y- and Z- axes can be derived as  
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  It is noted that zs and ys can be represented by fy/(6a+pe) and fz/(6a+pe) in Eq. (A.8) based on the results in Eqs. (A.9) and 
(A.10). 
  The rotational displacements about the Y-axis in both Eqs. (A.2 and (A.3) can be re-written as 
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  The addition of Eqs. (A.11a) and (A.11b) along with the use of Eq. (A.1) gives 
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  Then the rotational displacement along the Y-axis is obtained as 
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  Similarly, the rotational displacement about the Z-axis is derived as follows: 
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A.2. Variations of parallel double multi-beam modules in a non-symmetrical configuration 
 

In this section, we will analyze other types of parallel double multi-beam modules where the number of the beams around 
inner pitch circle differs from that of the beams around the outer pitch circle. We will discuss a composite four-beam module 
and a composite nine-beam module as shown in Fig. A.1. 

 

 
Fig. A.1. Other types of parallel double multi-beam modules: (a) composite four-beam module with three beams distributed 
around a regular triangle and one beam connecting to the center; (b) composite nine-beam module with the layouts that three 
outer beams distributed around a regular triangle and the six inner beams distributed around a regular hexagon 
 
 
  Following the derivation in Section A.1, the nonlinear load-displacement equations for the above composite four-beam 
module (Fig. A.1a) can be derived as 
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where r3 is the radius of the pitch circle around which the outer three beams are uniformly spaced . 
From the twisting angle equation in Eq. (A.15), we can also learn that the twisting stiffness increases with the increase of the 

twisting angle due to the introduction of the additional term (positive), )]/1(4/[3 2
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denominator.   
  In addtion, the nonlinear analytical model for the above composite nine-beam module (Fig. A.1b) can be obtained as 
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uniformly spaced, and r6 is the radius of the pitch circle around which the six inner beams are uniformly spaced.  
 
A.3. Parallel double three-beam module in a symmetrical configuration 
 

Consider the parallel double three-beam module in a symmetrical configuration shown in Fig. 7. If there is only one 
transverse force, fy, acting at the center of the motion stage, there will be only a resulting transverse displacement, ys, with the 
other displacements of zero values at the motion stage center.    

Based on Eq. (1), configuration symmetry property and the above intuitive analysis results, we have 
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where p' is the internal tensile force (positive) caused by the primary motion.   
  From Eq. (A.18), we can solve for p' as 
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The plot of p’ versus ys (over [0, 0.1]) is shown in Fig. A.2. 
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Fig. A.2. The tensile force versus transverse displacement in normalized values 

 
  From Fig. A.2, we can observe that the significant increase of the internal tensile force, p', with the increase of transverse 
displacement of ys, which complies well with our intuitive analysis of load stiffening effect. Especially, when d increases, the 
tensile force becomes larger at any specified ys. 

Substituting Eq. (A.19) into Eq. (A.17), we obtain the transverse displacement as 
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Differentiating Eq. (A.20) with regard to ys, the transverse stiffness equation is derived as follows, which is also plotted in 
Fig. A.3: 
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Fig. A.3. The transverse stiffness versus transverse displacement in normalized values 
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  Figure A.3 clearly shows the load-stiffening effect that transverse stiffness, sy / yf ∂∂ , has a dramatic increase with the 
increase of transverse displacement of ys and approaches to 2250 at ys=0.1 under d=3000 in comparison with the transverse 
stiffness 72 at ys=0 under d=3000. It is also seen that the load-stiffening effect becomes drastic from ys=0.01 onwards, which 
indicates that this symmetrical system has approximately constant transverse stiffness within a very small motion range of 0.01. 
Note that the increase of d can strengthen the load-stiffening effect. 
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Fig. 1. A compact and decoupled XYZ compliant parallel manipulator composed of identical basic compliant four-beam 
modules: (a) a 3-PPPR XYZ compliant parallel manipulator, and (b) a corresponding monolithic design fabricated from a 
cubic material by three orthogonal directions’ cutting. 

  
Fig. 2. Three types of compliant six-beam modules including basic and composite configurations 

 
Fig. 3. Free body diagram of a basic three-beam module [16] 
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Fig. 4. Top views of the square cross-section layouts in basic four-beam modules with the same pitch-circle radius 

 

 
Fig. 5. Top view for a composite four-beam module with two basic four-beam modules connected either serially or in parallel  

 
Fig. 6. A CAD model of the serial double four-beam module with two equal pitch-circle radii: r4'=r4 

 
Fig. 7. Parallel double three-beam module in a symmetrical configuration 
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Fig. 8. Transverse displacement comparison for the serial double four-beam module 
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Fig. 9. Transverse displacement comparison for the parallel double four-beam module 
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Fig. 10. Twisting rotation 
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Fig. 11. The ratio of the twisting stiffness to the transverse stiffness for the application as an XY motion stage under no 
transverse motion 
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Fig. 12. The ratio of twisting stiffness to transverse stiffness for the application as an XY motion stage under existing 
transverse displacements 
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Fig. 13. Transverse stiffness with load-stiffening effect for both applications 
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Fig. 14. Axial displacement for both applications 
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Fig. 15. Ratio of the axial stiffness to the transverse stiffness for both applications 
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Fig. 16. Ratio of bending stiffness to transverse stiffness for the XY motion stage application (color difference can be seen in 
the electronic version) 
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Fig. 17. Ratio of bending stiffness to transverse stiffness for the compositional unit application (color difference can be seen in 
the electronic version) 
 

 
Fig. A.1. Other types of parallel double multi-beam modules: (a) composite four-beam module with three beams distributed 
around a regular triangle and one beam connecting to the center; (b) composite nine-beam module with the layouts that three 
outer beams distributed around a regular triangle and the six inner beams distributed around a regular hexagon 
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Fig. A.2. The tensile force versus transverse displacement in normalized values 
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Fig. A.3. The transverse stiffness versus transverse displacement in normalized values 

 
 

 
 
 

 
 
 


