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PHYSICAL REVIEW D, VOLUME 62, 084034

Diffusion of the electromagnetic energy due to the backscattering off Schwarzschild geometry

Edward Malec
Physics Department, University College Cork, Cork, Ireland
and Institute of Physics, Jagellonian University, 30-059 Krak&eymonta 4, Poland
(Received 24 May 2000; published 27 September 2000

Electromagnetic waves propagate in the Schwarzschild spacetime like in a nonuniform medium with a
varying refraction index. A fraction of the radiation scatters off the curvature of the geometry. The energy of
the backscattered part of an initially outgoing pulse of electromagnetic radiation can be estimated, in the case
of dipole radiation, by a compact formula depending on the initial energy, the Schwarzschild radius, and the
pulse location. The magnitude of the backscattered energy depends on the frequency spectrum of the initial
configuration. This effect becomes negligible in the short-wave limit, but it can be significant in the long-wave
regime. Similar results hold for the massless scalar fields and are expected to hold also for weak gravitational
waves.

PACS numbse(s): 04.30.Nk, 04.70-s, 94.30.Tz

[. INTRODUCTION characterize this quantitatively. The magnitude of the back-
scattering can be characterized as the ratio of the backscat-
Backscattering is a phenomenon that prevents waves frotered energy versus the initial energy of outgoing waves.
being transmitted exclusively along null cones. That aspecthis is vanishingly small in the short-wave regime but it can
of waves propagation has been investigated for a long timbe quite significant in the long part of the radiation spectrum.
for various wave equationésee, for instance[l]). It has  This kind of dependence on the frequency can be expected to
been established that solutions of the Klein-Gordon equatiohold also for higher multipoles. The scale is essentially set
with nonuniform coefficients generically do exhibit back- by the gravitational radius of the gravity source. All results
scattering[1]. This topic has been investigated in generalof this paper hold true for any material sources of the
relativity since the early 1960%,3,4,5,8; a comprehensive Schwarzschild geometry—including stars, white dwarves,
bibliography can be found ifi6]. The propagation of elec- neutron stars, and black holes—although the effects can re-
tromagnetic waves and of the resulting tails were studied irally matter only in the two latter classes of objects.
the early 1970$4,7] and recently by Chingt al. [8] in the The order of the remaining parts of this paper is follow-
context of Schwarzschild spacetime and by H8dlin the ing. The next section defines notation, basic equations and a
context of Kerr spacetime. The backscattering effect can bdecomposition of the electromagnetic potential. The subse-
understood as the result of wave propagation in a nonuniguent sections of this work deal only with dipole radiation.
form medium with a varying refraction indgx.0]. In Sec. lll is derived an energy estimate. Section 1V is dedi-
In Ref.[11] a classical aspect of the phenomenon that wagated to the derivation of a bound, depending on the initial
not previously studied has been assessed—the energy diffenergy, of the backscattered part of the potential. Section V
sion through null cones—in the example of a sphericallyis devoted to the derivation of useful estimates of a pair of
symmetric massless scalar field propagating in the Schwarzsull-line integrals. In Sec. VI the equations are formulated in
child geometry. The novel aspect of that work was a compadhe language of characteristics. Previously found restrictions
estimate of the magnitude of the backscattered energy ion the backscattered part of the potential allow one to esti-
terms of the energy of initial data. mate radiation intensities. Section VII brings an improved
This paper is dedicated to the investigation of propagatiorestimate of the backscattered potential, again based on the
of electromagnetic fields in a background Schwarzschilthethod of characteristics. The next section proves the main
spacetime. Similar t§11] the main attention is focused on results—a bound on that fraction of the energy that can dif-
Obtaining bounds on the backscattered fraction of the radi%se due to the backsca‘[ter off the Schwarzsch”d geometry
tion energy, in terms of initial data. From the notional point cyryvature. Section IX shows that in the case of short-wave
of view the present paper paralldisl], with three notable yadijation the dipole radiation backscatter is negligible. In
exceptions. First, the crucial technical points of the formercontrast, in the long-wave regime the effect can be signifi-
work could have been applied only to spherically symmetriccant, Section X discusses how the effect depends on a dis-
fields. In order to overcome this difficulty, the electromag-tance and evaluates the exactness of the obtained criteria.

netic fields have to be split, with the extraction of a knownThe |ast section presents a short summary and conclusions.
part which defines initial data. Then the standard expansion

in terms of vector spherical harmonics leads to a problem
that can be tackled with methods applied earliglih]. Sec-
ond, an energy inequality is proved. Third, this paper shows
that the energy diffusion depends on the frequency of the The spherically symmetric geometry outside matter is
radiation. An example of a dipole radiation allows one togiven by a Schwarzschildean geometry line element:

Il. FORMALISM
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dR2+R2d0?,
(2.2

2m
— _ 2
ds? (1 = dt?+

1-2m/R

wheret is a time coordinateR is a radial coordinate that
coincides with the areal radius, ad€)?=d 6%+ sir? 6d¢? is
the line element on the unit spheres@®<27 and 0<§6
<.
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outgoing radiation(or even of a fraction of the outgoing
radiation is independent of whether or not the ingoing ra-
diation is present.

It will be convenient to decompose the sought solution

W, (r*,t) into the known part¥, and an unknown function
5| .

=T+ . 2.9

As concerns the electromagnetic fields, it is convenient to

assume that the scalar component of the electromagnetic p
tential vanishes while the vector potential satisfies the Cou-
lomb gauge condition. Using a multipole expansion of the
electromagnetic vector potential in terms of vector spheric

harmonics, one obtairf42]

2m

R

I(1+1)
— .

(—ag+a,2*)qf|:(1 (2.2)

W’s should be essentially two-index functiols,, (where
M is the projection of the angular momentyrbut since the
evolution equation isp independent, the indek is sup-
pressed. The variabla*=R+2mIn(R2m—1) is the

Regge-Wheeler tortoise coordinate. The backreaction exerte
by the electromagnetic field onto the metric has been ne-
glected in the present analysis. That is readily justified for

any gravitational sources other than black holes. In the case

al

anally, 8,=39p6,=0. A similar splitting is done 4], who
then seek a series expansion&®f This will be avoided in
}hls paper, in favor of finding a number of estimatesdpf
that would provide the needed information about the back-
scattered part of the radiation.

In the rest of this paper only the dipole radiatién will
be considered. Consequently, all angular-momentum-related
subscripts will be omitted.

Ill. ENERGY ESTIMATE

The dipole term constitutes the most important part of the
Jectromagnenc radiation. Assume dipole-type initial data

f(x(R))

Y (X(R)=—0 R

dr+ F(X(R))+ (3.1

of a black hole this approximation holds true some distance

away from its horizorf13].
Consider a set of functions of the form

Is(r _t)

with the initial support &,¢) of a C2-differentiablef and
x(R)=r*(R)—r*(a). The differentiability off guarantees
that the initial energy density is continuous and vanishes on
the boundana.

Vy(t,r*)= 2 (2.3 Lemma 1 Definel, .(R):
where the function® | are given by the recurrence relations L (R)= fRdr f2(x(r)) (32
a,e - 4+2¢ .
: R
({52
r* Y1 2 10y and
G Wiia = [(s(5+ 1) (1 +1)W Z(X(r))
r* ¥l(s+1) 2(S+1)[ S(S ) ( ) Is ,Ba(R) J’ dr ! (3'3)

—2m(s*= 1) W5 1)]. (2.9

where 0<2e<1. Then fora>2m(1+1/J1+2¢) the fol-
In [2] is shown a dipole solution of this typEl4]. In  |owing inequality holds:
Minkowski space-time i=0), ¥, solves Eq.(2.2); it rep-
resents a purely outgoing electromagnetic radiation.

Let a function¥, be given by Eqs(2.3 and(2.4) and
assume thatfor spacelike sections with=0) its support is
compact and located entirely in the vacuum region outside
some radiuaa>2m, i.e., outside the Schwarzschild radius.
Let the initial data of a solutio¥| of Eq. (2.2) coincide with
¥, att=0. Thus initially ¥, is a purely outgoing partial
wave. It should be noted that the assumption that initial data
are(initially) purely outgoing is made in this paper only for
the sake of clear presentation. The propagation of electro-
magnetic waves is a linear process as far as the backreaction

can be neglected. Therefore the propagation of the initially Proof. Notice that

Ba(R) 1-(alR)*

€a’ (1+2e)(1—2m/a)’—4m?/a?’
(3.9

la,(R)=

Remark The integral 8,(R) is bounded above by the
electromagnetic enerdyg(t)/(47) defined later. Therefore,

Ea.(R1) 1-(a/R)%¢
47ea’ (1+2¢€)(1—2m/a)’—4m?/a’

la,(R)=

084034-2
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while the expression inside the second pair of curly brackets

2 r 2
f (x(r))_“ I

RS is bounded above by
_ 1+2€
ST oms TS T (1+2e)
2 Equation(3.9) can be now written as
fdssu 2mis) (< PRI @R [ 2m |2ladn)
2V pla?ie(1+ 2¢) a—2m/ 1+2e¢’
2 frd 2mf g 3 (3.10
Y2 ) seaamis ] @9

Rearranging Eq3.10 so that the two terms with, (R) are

the second inequality follows fromA(+B)?<2A%+2B2.  on the left-hand side, one obtains
The factor 1/(1-2m/s) that appears in the integrands can be 5 5
2m ) 1 Ba(R)[1-(a/R)*]

bounded above by %, where l.(R)|1— = 5 :
: a—-2m/ 1+2e nia’ce(1+2e)

2
ma=1- " 36 (3.1

this gives the postulated bound of (R) if a>2m(1
Subsequently, the use of the Schwarz inequality and simple-1/\/1+2¢€), as assumed above.
integrations yield The obtained formula is not exact, but with the appropri-
) ) ate choice off and e the error is small. Take, for instance,
FPx(r)) _2Ba(r)(r—a) 8mia(r)( 1 1 f=C within (a+a;,b—b;),a;,b;<a,b>a (which obvi-
re 72 na(1—2¢) \al™2¢ 172 ously means that—a>a,,b,), and letf be smoothly joined
(3.70  to zero outsidéa, b) by some intermediary functions. Under
those conditions, a direct calculation gives

The insertion of Eq(3.7) into the integral of Eq(3.2) gives

1 T2 la,e(b) 3 (3.12
R r(r—a ~ < -
Ia,E(R)sf dr >z Bl )(2 ) Ba(b) ~ (3+2€)a®
a Na
5 as compared with &(1+ €)a?¢, which follows from Eq.
8milaer)( 1 1 ) (3.9 (3.12). If e~1/2, then the exact result differs by less than
n2(1-2¢) |al™2¢ rl72 ' 25% from the bound Eq(3.11). Later on, the value=1/8

will be used(which appears to be more economical in sub-
Ba(r) and |, (r) are nondecreasing functions: therefore,sequent calculationsin which case the above estimate de-
taking them in front of the appropriate integrals would notteriorates significantly. The exact value lgf (b)/B4(b) is
make the corresponding terms smaller. Straightforward intethen roughly 15% of that predicted by E@.11).
gration of the obtained expressions yields

2 IV. ESTIMATING é

R Ba( ) (2
la,e )\ 2¢ R 6 is initially zero, and its evolution is governed by the
Lio following equation:
a €
+ —1+l5 ] 2m 6mf
1+2e R (_ag+(9r2*)5=<1—ﬁ 2Ot R (4.1
21, (R)[ 2m )2 1 L a\ltee
1-2¢ \a—2m/ [1+2¢ R DefineT (g y—a null geodesic that originates @, § and is
1 a\2 directed outward. If a point lies on the initial hypersurface,
3|15 ] (3.9 thenl'gp=I'r. By I'r 1,).r1t) @ segmentof  :,end-

ing at(R, 9 will be understood.

One should note that the expression inside the first pair of Later will be needed the following bound.
curly brackets can be estimated as follows: Theorem 2 Let the support of initial data bea(b),b
<o and IetFRO,(R,t) be the outgoing null geodesic from

1 a 2e a 1+2€ (R 0) (R 0 Th
_ Y | — _ Jt= to , D). en
2¢|T7IR] | T1r2e TR 0
1 al2e |&( )|< e 1 ( 1 1
s 1 B (b) T—¢ pl—e]? (42)
' RCRCTAL S

S——\1-|=
e(1+2e¢) R

084034-3
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where m VBa() 1
VHRb=— 2
. 613 i y 7941—€) V €[ (1+2¢€) n5—4m?/a?]
" 71— V€ (1+26) 52— 4m?a?] “3 o1
Ré*e Rl*e
and yg=1-2m/R.
Proof. Define an energild (R,t) of the field 5 contained in _ meC, [ 1 1
, , T |- 4.9
the exterior of a sphere of a radits v2ac\Rg R
o (306)2 2m 2 Notice that initially & vanishes and that its propagation is
H(R,t) f dr om ( )(0 )%+ &% ruled by a hyperbolic equation. Thence at any finite time
ROo222 the support ofs is bounded. Therefore
r
(4.4 |6(R)| | (R &(r) R1\Yq (R s\ 2"
ISRL_| (%, 201_[ [*4)"T (7,52
One can easily show that - -
2m 2m < ;(ZH)”Z(R). (4.10
(ﬂt+(9:€)H(R!t):_<1_ﬁ) (1—?) VvR—2m
Inequalities(4.9) and(4.10 yield the bound of theorem 2 in
5 the case whebh =
o9 Let the initial data be of finite suppoff, b). Define a

2
+0rS| + 5267 : O _
m R region )y, consisting of points R=b,t) acausal to If,t

2
( 1- F) =0). The energy (b(t),t) obviously vanishes for any point
(b(t),t) located insideQ),. In this case the inequality of

0 f .
_1an dr305r_4 theorem 2 can be stated as follows:
R
¢ |6(R)] N \/1—(a/b)26( 1 1 )
o gm - -
\—1Z‘nf drdgd—, (4.5 R 1VPalt] af\/R—nR Ré RT
" r (4.11

the |nequa||ty f0||ow|ng from omission of the nonpOSmVe In what follows it will be assumed that the initial data have
boundary term. The right-hand side can be bounded furthefompact support located in an annular regianb).
ingoing geodesic that originates @, 1. I'(g gy Will be

by
12rn“ dr(aoé)z} U dr—
R R T
shortened td'g. A segment oﬂ“(R ) connecting Rq,t4)

due to the Schwarz inequality. That in turn can be boundegith (R, ¢ (t,<t,R,>R) will be denoted ad (R, 1R -
101 (R

V. ESTIMATES OF TWO (NULL) LINE INTEGRALS
12
, (4.6 In analogy withI' g ;) defined earlier, let’ ) be a null

by Let a point(R, t) be an intersection of an ingoing null
1 geodesid"R with an outgoing null geodesit, . Let (r,7),
12m H /2 drf— (4.7) r=R, be a pomt ofFR (rt) and defing[ Ry(r), t—O] as a
R2™€\ng retee ' point of the initial hypersurface such thafg NT'gr,

=(r,7). Fixing a andR;, one can viewR, as a function of
The integral in Eq(4.7) cannot increase along outgoing null r; obviously, Ry(R)=a, while Ry(R;)=R;. On the other
directions, and therefore is bounded by initial valueshand, fixing onlya and viewingR, as a function ofR, one
JRdr f2/r4+2€sf§0dr f2/r4+2fEIROE(R). Since Ig, (*)  hasRy(a)=a; this will be used in the forthcoming proof.
<l, (=), one arrives at ' ' One can prove the following.
’ Lemma 3 Under the above conditions andRf;<b, the
line integral along a null segment geodeﬂf@ll(R,t) is

(0 + P ) H(RDY2<6 1, () J— ——. (48  bounded from above:
le R 1 R+I b—ZmH
The integration of Eq(4.8) alongl'r (v Yields, replacing R Rorm N a—2m
l5,() by its bound expressed in E(B.4), (5.1

084034-4



DIFFUSION OF THE ELECTROMAGNETIC ENERGY DB. ..

FIG. 1. Solid lined",,T', are outgoing null curves. Dashed lines
are ingoing null curvefb,l“(Rl,s).

Lemma 4 Under the above condition, but with the initial
point (R;,S) (s>9) of the null geodesic segment
I, 9.y lying onI'y (Fig. 1), one can prove

led r-Ry 1I b—Zm) 5.2
[————==1In . .
R Ryry1-2m/R 2 \a—2m

Proof of Lemma 3Letr be a radial coordinate of a point
lying on the intersection oFR0 andFR1 (Fig. 2). One finds
that the areal distances of three poi(f&(r),0), (r,7), and
(R4,0) satisfy the following:

Ro(r)=2r —Ry+2ml (r—2m)? )
r)y=<r— min .
° ! (Ro(r)—2m)(Ry—2m)
(5.3
That implies
dRy=2 = R0 5.4
Ro=2 7 mr & G4

Replacingr by R, in the integral of Eq(5.1), one obtains

AN

Ry b

a Ro(r)

FIG. 2. Solid linesT,,T'r ) are outgoing null curves. The
dashed line isl“Rl, an ingoing null curve.

PHYSICAL REVIEW D 62 084034

r—-Ry

of V1— 2m/r

Ry

Tl

R yI_2m/r\Ro T

le 1- 2m/r
2 Ro— "Ro—2m
R1 dr
R ry1—2m/r

Rl—Zm
a—2m

[

n
"R

R

-1
vaRy

1-2m/Ry
n 1-2m/a’

=In

(5.5

Next, one can show th&®;=2R—a. Indeed, assuming that

a is fixed, one has, from Eq5.4), dR;/dR=2; since the

initial condition isR;(a)=a, the conclusion follows.
Taking into accounR;=2R—a, one gets

R R \F
< < —. .

n \/a_Rl In m In a (5.6)
ReplacingR; by b in the last term of Eq(5.5) and inserting
Eq. (5.6), one arrives at the first of conjectured inequalities,
Eq. (5.1).

In order to prove lemma 4 one should start from relation
between areal distances of four points,7), (Ry(r),0),
(R,t), and @,0) (see Fig. 2

—2m

Ro—2m
—2m

=Rp—a+2min

r
2( r—R+2min =
(5.7

The variabler ranges fromR;>b to R. Fixing a andR, one
again obtains

) 21 2m/R0d £g
Ro= 1-2m/r 5.8
A straightforward calculation, in whicldr is replaced by
dR,, shows that

led r-Rg 1I b—2m> 59
————<2n|l ———| - :
R Ryry1-2m/R 2 \a—2m

SinceR;=R, one immediately obtains E¢5.2).

VI. ESTIMATE OF THE AMPLITUDES BACKSCATTERED
INWARD

Define the intensity of the backscattered radiation that is
directed inward:

(9o+ dpx ). (6.1)

1
h-(RO=T5mR

084034-5
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Equation(4.1) reads now

1 2m holo(qo 2m\| 2 st 6mf
(Zdotde) | 17 R |- =17 /) RO A
(6.2
The integral form of Eq(6.2) reads
2m f
1—— h_(Rt)= f dr 25+ +h_(Ry,S);
(6.3

here the integration contour coincides with a null ingoing
geodesicf(Rl,S),(R,t). (Rq,8) lies on the initial hypersurface
(s=0) if Ry=<b; thus, h_(R;,s=0)=0, since the initial
data are entirely outgoing. IfR;>b, then R,s)
€Ty (r, 9 also in this casé_(R;,5)=0, becausd g,

constitutes the outer boundary of the outgoing impulse. In
either case the radiation amplitude satisfies the integral equa-

tion

2 6mf
CAMNE

} . (6.9

12 o [
R —( 1)_ Rl r

The second term is bounded above by

Ry 6m|f] Ry 2\ Y2/ (R 1\
J dr —z—=<6m f dr —+»¢ f dr ——;
R r R r R r

Rl fz 2 g

\/W
Ry f2
s
R r

6m
3—2¢

=

M Z+2¢

)1/2
1 337 €
X SELRT 1- 3 2¢

where the first inequality follows from the Schwartz inequal-
ity and the last inequality is due to the fact thRitR,;=a/b
(Appendix A).

In order to find the integral from the last line of E&.5),
it is useful to project it onto the initial data surface, along

outgoing null geodesicERO,(r,T). Notice that

(6.9

1-2m/Ry(r)
(1—2m/r)

dRy=

m Cs
R |h7(R,t)|\E—R3/zT C4+Cy

PHYSICAL REVIEW D 62 084034

see Eq(5.4). Thef?/r**2¢ term cannot decrease during this
projection. One arrives at

[l

Ia,s(Rl)
= .
27,

1-2mir f2(Ry)
2(1—2m/Ry(r)) RET2€

(6.6)

Inserting the energy estimate of lemma 1 into Ej6), one
gets finally

Ry 6m|f| 02 a\?e
f dr <VBa(b)egame V1-|| - 67
Here the constant, is given by
3V2(1-a’ %> %
C,= v2( 2) (6.9
ngfz\/e (1+2€) n2——|(3—2¢)

The &related term of Eq(6.4) is bounded, due to E¢4.2),

by
2mc:l / Rl 1 1
Vﬂa(b ( ) J’ 3/2<Rl € rle)'
(6.9
Herer=R, andr, RyeT'r .. Thus 1/¢ R~ )<1/Ro.
Therefore expressio(6.9) is bounded above by
2m¢C,; \/1 (a/b)? JRl 1
ae R32 ¢ 7’R R_0 F .
(6.10
The results of lemma 3 and 4 lead now to a pair of estimates.
If R;<b, then
V1-(alh)* 7
J’ df \mcl Ba(b)—cgam—e— In— In—/,
R a Na
(6.11
and if R;>b [in which case R,t) e F(Rl,s)]! then
R _ / 2€
2f arl <me, ﬁa<b>—m—‘e(3(l ~+1In @)
R I3 R Ma
(6.12

In summary, the radiation amplitude is bounded above by

b® (Ry(R)—b)+RO(—Ry(R)+b)

In ,
a

(6.13

084034-6
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where ®(b—R;)=0 if b—R;<0 and®(b—R;)=1 if b
—R;=0. The constant€; andC, are defined by

2e
Cs=myBa(b) \/1—(2) ,

C4ECZ+ClIn%.

a

(6.14

VIl. REFINING THE BOUND ON &

Equation(6.1) can be written in the integral form

(Rt

S(R,t)= dr h_+8(Ry), (7.2)

Ro

where the integration contour coincides WE@RO),(RJ) and

Ry is a point of the initial Cauchy slice defined earlier. Since
initially & vanishes, one ha&(R,t)szOdr h_. It becomes

clear in Sec. VIl that one needs to bous(R,t) only along

PHYSICAL REVIEW D 62 084034

I—R(b)+®R Rblb I—b
- - —=<
n— ( (bDIn- "R’
one arrives at
2 3 a 1/2—€
e L
201 a 1/2—€ a 1/2—€
1726/ | RD) TC1{ R
I b 7.4
X nm . ( . )
Define
k=(b—a)la. (7.9
One can showsee Appendix Bthat
a+b a+b

I'; - in what follows, this situation is always meant. Define the equality is achieved in Minkowski space-tima=0).
R(b)=[R:Ry(R)=Db] (see Fig. 1 Inserting the bound of Sinceb=a+ax, one haR(b)=a+ 5,«/2 or, defining

Eq. (6.13 [but notice that Eq(6.13 bounds,|h(r)|, not
|h(r)| itself], one obtains

Cy R dr R In(r/a)
[8(R)|=——= C4f 3/2—5+Cl(R(b)_R)f dr —sp—
naa ar a r

R(b) In(r/a)
+C1®(R—R(b))f drﬁﬁ
a
b (r dr
+In— 3= |- (7.2)
a Jrmr

The integrand of the second integral is non-negative: there-
fore, extending the integration up ®(b) can give only a

_7a
a==, (7.7

R(b)=a+ ak. The insertion of the above into Eq7.4)
yields

C3 1/2—€
|5(R)|<W[C4[l—<§) +Csy,

bigger quantity. Thus one gets, after elementary integration,

_ 2 3 ( a 1/2—€ 2C1
|a(R)[= 7a(1—2¢€)al? Cal-lr 1-2e
1/2—¢€ 1/2—€
Plaml Jredam
R(b)
X —|HT+®(R—R(b))
b (R(b))l/Zé )
X|n5 1- T . (7.3

Dropping out the negative term

b ( R(b))lIZE

and taking into account that

(7.8
where
N[+ /(14 ak)]
5= V1 (l+(1K)l/27€
2C, 1 79
f12e\ Y @r e 09

This estimate gives a better control over the asymptotic be-
havior of 5than the former one, E¢4.10), by a factor 1{/R.

In particular, now§?/R? is known to be integrable. This
integrability will be exploited in the next section.

VIIl. BOUNDING THE RADIATION ENERGY LOSS

The energyEg(t) of the electromagnetic field con-
tained in the exterior of a sphere of a radRiseads

_ * (‘90\1’)2 2m 2(\1,)2
cutt =2 [ e 150 1= T 2
8.1)

Let the initial data be as specified hithertb(t=0)=¥ and
doW (t=0)=9o,¥ for some¥; thus, they vanish outside an

084034-7



EDWARD MALEC PHYSICAL REVIEW D 62 084034

annular regior(a, b). DefineEgz EL(0) as the energy of the m 2m)\ 286

initial pulse. If initial configuration is purely outgoing, then ~ (dot drx)Ea= —277( 1- ﬁ)[( 1- ﬁ) h® + ﬁz—}

V=3V +1,4(1R). (8.5
Let an outgoing null coneC, originate from @,0). In -

Minkowski space-time the outgoing radiation contained out-The energy loss is equal to a line integral aldryy

side C, does not leak inward and its energy remains con- o om 252

stant. In a curved spacetime, however, some energy will be SE,= Ea—Ew=27rJ dr (1— —1|h%+ —2—} (8.6)

lost from the main stream due to the diffusion of the radia- a r r

tion h_ throughC, . Most of the backscattered radiation Will The derivation of Eq.8.2) requires the use of estimates

fall onto the center of the gravitational attraction. The forth-(g 13 and(7.8). The calculation of thes-related part of the

coming theorem gives a bound on the amount of diffusedight-hand side of Eq(8.6) is straightforward and it yields
energy.

Theorem 3Under the above assumptions, the fraction of
the diffused energyE, /E" satisfies the inequality

47Tf dr S5 =4mBy(b)
a

21 _ 2e 2
SE, [2m\21—1/(1+ K)% 2m|“1 21/(“")2 2 2¢
$ —_— S — — — —
Eg_ a 7 a 75(1—2€) (3—2€)(1—¢)
1-2e¢
y Ci E_ﬁ_ 262 +C§+ ZC4CSE . (8.7
(1—€)\ 16 (1—2€)%(3—2¢)
5 In order to bound the contribution coming from the backscat-
N Cs - 2C,Cs 8.2 tered radiation amplitude_ , one needs the estimai@.13.
(1-2€)2 7% (1-2€)(3—2¢)] ' A straightforward calculation shows that
) . o 2m) ,
whereC;—Cs have been defined earlier and 277[ dr| 1—- e h<
a
c 7.C3 (Inz[(1+/<)/(1+a:<)] . 2m\21—1/(1+ k)3
6~ —2e =1 _ ) —
16(1—¢) (1+ax)? 2 a a 27%(1—¢)
1—1/(1+K/§)2—26 5 c2 colon P 1
(1—¢€) 7 TCiC4ly HWJFm( y)
. CiCama (2|n[(1+K)/(21w;aK)] LY b y R(b) - InL
16(1—¢) (1+ax) H2" R(b) 2(1—-e) a R(b)
( C1|n(1+ K/2 1
2C4(1—¢€) + m(l—y) : (8.9
2—2e
1-11+«/2) 8.3 wherey=[a/R(b)]?> 2. Neglecting the negative term with
(1-e) ' In... and, using the bounds of Appendix B bhR(b), one

arrives at a bound that in conjunction with E8.7) proves
is i theorem 3.
Proo. The rate of the energy change alodgis given by Remark The above estimate depends on the parameter
which should be chosen in such a way as to optimize the
(do+dr+)Eq bound. The exact value of the optimatlepends om and «,
om om PR 2 but the values=1/8 is proved to yield satisfactory estimates.
=—onf1- 27 (1= 30 o |

R R/11-2m/R IX. DEPENDENCE OF BACKSCATTER ON THE
) om om £12 FREQUENCY OF WAVES
+t Vo =—2m 1- R o R h- R2 The coefficientsC,—Cg appearing in theorem 3 change
with «, but remain finite in the whol€, «) range of possible
n 3 T+ 52 8.9) values ofk=(b—a)/a. In the case when the support of the
RZ( )7 : initial radiation is very narrow, i.ex <1, then the coefficient

5 1—1/(1+ k)¢
The functionsf and ¥ are assumed to vanish on the null - 2 Tk
cone C,. ThereforeW =4, dg¥=0dgs, and 3,¥=4,6 on 7a
C,. In such a case the rate of the energy change reads In such a case one obtains that

084034-8
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2 here,C is some constant. The integration of £§.2) along a
K 9. null geodesid’, yields now

2m

a

whereC is a constant. In the limik—0 the ratio 5E,/E2 2m 2m
becomes 0; the backscattering is negligible in the case of |1~ 7 |h+R(1),0)—| 1= —]h.(R(0),t=0)

initial pulses of electromagnetic energy that are very narrow. )
€

And conversely, the bound becomes bigger with an increase 1 a
of the width of the radiation pulse. The physical meaning of 332 O bl I’ ©.9

that can be deduced with the help of the Fourier transform

theory. Thesimilarity theorem[15] states that compression é(vhere the proportionality constant depends onlyeo@m/a,

of the support of a function corresponds to expansion of th d the initial b " Fixing th b i
frequency scale. If a support of initial data is made narrow2"d the initial energy, . Fixing the energye, , one notices

then the wavelength scale of the pulse extends in the diredl@! in the regime {—a)/a<1 the right-hand side of Eq.
tion of short lengths. Therefore the message behind the ot9- iS essentially zero. Thus the productt2m/R)h. is
tained results must be that high-frequency radiation is esseffPnstant. In this case one clearly sees the manifestation of
tially unhindered by the effect of backscattering and thathe redshift—the rescaling of the amplitule :
long waves can be backscattered.

This dependence of the backscattering on the wavelength h (e)=n,h (a,t=0). (9.6)
has been in fact observed in the numerical investigation of
the propagation of pulses of scalar massless figlé$ In ee also a discussion of that fact in a massless scalar field
this case halving of the length has led to a similar decrease g eory[11].
the fraction of the diffused energy.

In the case of a black hole or a neutron star, the scale is
set essentially by the Schwarzschild radRis=2m; waves X. DISTANCE DEPENDENCE OF ENERGY DIFFUSION
with lengths much shorter thaRg are not backscattered, AND SHARPNESS OF THE ESTIMATES
while waves of lengths-Rg can reveal quite a strong effect.
Moreover, one can show that theni2R)? dependence of the
effect implies that most of the energy diffusion occurs in

The bound of theorem 3 depends on the source
location—it contains, among other factors, a square of the
regions that are not very faas compared to the Schwarzs- factor 2m/a. Thus the bounds in question decrease with the

increase ofa. The dependence on the distance can actually

child radiug from the center. b h st | der t thi der the diool
In order to exemplify the above remarks, consider the € much stronger. In order to see this, consider the dipole

diffusion effect in following two cases. Assume the same'adiation I of (ii),_ described in the preceding section, but
location a=4Rs, of both radiative dipoles an) x=1/g |ocated a@=4m (instead of%\=8m, as assumed formejly
(i.e., the fundamental wavelengBy) for a pulse 1, andii) One obtains that nov@Ea/Ea<O.77, mste.ad of the former_
x=1/128 (i.e., the fundamental waveleng®Ry/16) for the bound 0.004. Numen_cal results concerning the propagation
pulse 11, of massless scalar flglds qlso shqw that. the 'backscattered
In the calculation that is reported belowis chosen to be  €N€rgy dgcreases rapidly ,W'th the increasing d'fSt@mb i
1/8, in accordance with the remark ending the preceding sec- !t IS Of interest to establish how accurate the final estimate
tion. Then in case | one obtair&a/Eg<O.37, while in case 'S Most of the inequalities (_jerlved in this paper are sharp, in
Il (of shorter wavelsone getssE, /E<0.004. the sense that one can find e>§am.ples that saturate them.
The evolution equation{6.2) canabe written in another Thl.JS’ for instance, the. two nqll_-lme mtegrals_ of Sec. v are
form as ' estimated sharplythe inequalities saturate in Minkowski
space-timg Similarly results of Appendixes A and B are
om\[ 2 6mf also exact; again, the inequalities become equalities in
:( _) {_2 5+ —1|, Minkowski space-time. The energy estimate of Sec. Il is not
RJIR R sharp, but the “loss of sharpness,” to say, can be less than
(9.2 25% (see the final remark in Sec. JlIThe main source of
unsharpness is the omission of negative terms in a bound on
é (Sec. VI and in bounds of diffused energy in Sec. VIII,
1 but that becomes insignificant with the decreasecof.e.,
hy (Rt)= ————(—do+ dys ) (5+T) (9.3  When the width of the pulse becomes small in comparison to
1-2m/R the Schwarzschild radius. On the other hand, the combina-
tion of two exact steps can be associated with some loss in
is the intensity of the outgoing part of the radiation. Thethe accuracy.
inequality (3.7) can be written as follows, applying lemma 1 Taking this into account, it is quite likely that in the case
and the remark following it: of sources characterized ly< 1 the bound in question gives
f(R)| an order of the diffused energy. On the other handx if
B . >1, then the bound of theorem 3 becomes very inaccurate,
=T sC\/Eg(l , 04

2m
(ao+a,*)[(1—ﬁ)h+

where

2e

b
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long-wave regime. APPENDIX A

Lemma AlLet (Rit), Riel'r (rt), Ri=R andR>4m.
XI. DISCUSSION Then,

The main result of this paper, theorem 3, states that the
dipole energy diffusion due to the backscattering depends on
the square of @/a, wherem is the mass of the gravitational
source anda is a location of the pulse of radiation. Sections  proof. There are two separate cases that need to be con-
IX and X show that the high-frequency radiation essentiallysidered.
is not backscattered, but that the low-frequency radiation can (j) | R, lies on the initial hypersurface, thé,<b and
manifest a significant diffusion effect. The last statement isR>a and the inequality follows immediately.
best described in terms of the dimensionless paranyeter
=Rg/\, where\ is the fundamental radiation length. %
>1, then the backscattering is negligible, buki 1, then it
can be significant. The above results demonstrate that the 2| R;,—R+2miIn
effect becomes negligible at distances much bigger than the
Schwarzschild radius of a central mass. That rules out most
stars as objects that can induce observable backscatteripgpfine X=R;—R. One finds from Eq(A2) that
effects. For a star of a solar type akd-Rg, for instance,
the ratio 6E,/E2 can be at most I0°. In the case of white d | X_2mR 1 1_
dwarves and\~Rg, the bound (10.1) gives SE,/E" dRM"R_1-2m/RR+X R
<10 8. For long-wave radiation the bounds are bigger—the ) ) ) )
effect even looks as marginally relevant, for white dwarvespProvided thaR<4m. ThusX/R is a nonincreasing function

when 6E,/EP~10"2. However, a sharper estimate would which means thaR/R; is a nondecreasing function and
lower that b; several orders. R/R;=R(b)/b. SinceR(b)=a, one arrives at the postulated

On the other hand, two astrophysical compact objectsn€quality.
neutron stars an¢most likely) black holes, are not excluded
as objects of interest. APPENDIX B

The .backscat.tering would da”.‘p t'he t'o'ta.l _Iuminosity PO | emma B Define k=(b—a)/a<0. Define (R(b),t) as
duced in accretion disks that exist in vicinities of compact . . . ~
objects, but since the most efficient regions of the disks art€ intersection point of, and I, . Then,
located at a distance ¢4t least several Schwarzschild radii, a+b a+b
the effect would be probably weak. More relevant can be ———mk<R(b)<s——. (B1)
“echoes”—aftermaths of violent flashy eruptions, produced 2 2
by a part of radiation reflected from a close vicinity of a Proof. The relation(5.3 (see the main text with R
horizon of a black hole. Numerical calculations done in the_b o N . 1

) : . “=b, r=R(b) andRy=a, can be written as

massless scalar fields propagation suggest that the amplitude
of the reflected radiation can constitute up to 20% of the (R(b)—2m)?
incident one, assuming that the length of the wave is com- a=2R(b)—b+2min (a—2m)(b—2m) |’
parable to the Schwarzschild radius of a black hole.

The results of this section can be in principle generalizequ will treat Eq(Bz) as a relation betweeh and R(b),

into the case of higher-order multipoles. The key pointwith fixed a. ObviouslyR(b) =b=a whenb=a. One easily
would consist in showing analogues of the energy estimategnds that

of Sec. Ill that would bound the higher multipole moments.

That should lead to a variant of theorem 3 valid under res- 1 7R

ervations similar to those expressed earlier. dpR(b)= 2 o (B3)
An analysis similar to that of the present paper can be

repeated also in the case of a weak gravitational radiatioNotice thatR(b)=<Db. Thusd,R(b)=<1/2. On the other hand,

produced in disks rotating around Schwarzschildean blacR(b)=a. Thus d,R(b)=(1/2)ng)=(1/2)n,. The use of

holes. The conclusions concerning the fraction of the dif-those two bounds on,R(b) and the initial conditiorR(a)

fused energy can be similar. =a immediately imply the lemma.

=

(A1)

2| o
olo

(i) If (Ry,8) €T, (g, ) - In this case one has

Ri—2m —b ol b—2m
R—2m, P-atemino—n
(A2)

0 (A3)

(B2)
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