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PHYSICAL REVIEW D, VOLUME 62, 084034
Diffusion of the electromagnetic energy due to the backscattering off Schwarzschild geometry

Edward Malec
Physics Department, University College Cork, Cork, Ireland

and Institute of Physics, Jagellonian University, 30-059 Krako´w, Reymonta 4, Poland
~Received 24 May 2000; published 27 September 2000!

Electromagnetic waves propagate in the Schwarzschild spacetime like in a nonuniform medium with a
varying refraction index. A fraction of the radiation scatters off the curvature of the geometry. The energy of
the backscattered part of an initially outgoing pulse of electromagnetic radiation can be estimated, in the case
of dipole radiation, by a compact formula depending on the initial energy, the Schwarzschild radius, and the
pulse location. The magnitude of the backscattered energy depends on the frequency spectrum of the initial
configuration. This effect becomes negligible in the short-wave limit, but it can be significant in the long-wave
regime. Similar results hold for the massless scalar fields and are expected to hold also for weak gravitational
waves.

PACS number~s!: 04.30.Nk, 04.70.2s, 94.30.Tz
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I. INTRODUCTION

Backscattering is a phenomenon that prevents waves f
being transmitted exclusively along null cones. That asp
of waves propagation has been investigated for a long t
for various wave equations~see, for instance,@1#!. It has
been established that solutions of the Klein-Gordon equa
with nonuniform coefficients generically do exhibit bac
scattering@1#. This topic has been investigated in gene
relativity since the early 1960s@2,3,4,5,6#; a comprehensive
bibliography can be found in@6#. The propagation of elec
tromagnetic waves and of the resulting tails were studied
the early 1970s@4,7# and recently by Chinget al. @8# in the
context of Schwarzschild spacetime and by Hod@9# in the
context of Kerr spacetime. The backscattering effect can
understood as the result of wave propagation in a non
form medium with a varying refraction index@10#.

In Ref. @11# a classical aspect of the phenomenon that w
not previously studied has been assessed—the energy d
sion through null cones—in the example of a spherica
symmetric massless scalar field propagating in the Schwa
child geometry. The novel aspect of that work was a comp
estimate of the magnitude of the backscattered energ
terms of the energy of initial data.

This paper is dedicated to the investigation of propaga
of electromagnetic fields in a background Schwarzsch
spacetime. Similar to@11# the main attention is focused o
obtaining bounds on the backscattered fraction of the ra
tion energy, in terms of initial data. From the notional po
of view the present paper parallels@11#, with three notable
exceptions. First, the crucial technical points of the form
work could have been applied only to spherically symme
fields. In order to overcome this difficulty, the electroma
netic fields have to be split, with the extraction of a know
part which defines initial data. Then the standard expans
in terms of vector spherical harmonics leads to a prob
that can be tackled with methods applied earlier in@11#. Sec-
ond, an energy inequality is proved. Third, this paper sho
that the energy diffusion depends on the frequency of
radiation. An example of a dipole radiation allows one
0556-2821/2000/62~8!/084034~11!/$15.00 62 0840
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characterize this quantitatively. The magnitude of the ba
scattering can be characterized as the ratio of the backs
tered energy versus the initial energy of outgoing wav
This is vanishingly small in the short-wave regime but it c
be quite significant in the long part of the radiation spectru
This kind of dependence on the frequency can be expecte
hold also for higher multipoles. The scale is essentially
by the gravitational radius of the gravity source. All resu
of this paper hold true for any material sources of t
Schwarzschild geometry—including stars, white dwarv
neutron stars, and black holes—although the effects can
ally matter only in the two latter classes of objects.

The order of the remaining parts of this paper is follo
ing. The next section defines notation, basic equations a
decomposition of the electromagnetic potential. The sub
quent sections of this work deal only with dipole radiatio
In Sec. III is derived an energy estimate. Section IV is de
cated to the derivation of a bound, depending on the ini
energy, of the backscattered part of the potential. Sectio
is devoted to the derivation of useful estimates of a pair
null-line integrals. In Sec. VI the equations are formulated
the language of characteristics. Previously found restricti
on the backscattered part of the potential allow one to e
mate radiation intensities. Section VII brings an improv
estimate of the backscattered potential, again based on
method of characteristics. The next section proves the m
results—a bound on that fraction of the energy that can
fuse due to the backscatter off the Schwarzschild geom
curvature. Section IX shows that in the case of short-wa
radiation the dipole radiation backscatter is negligible.
contrast, in the long-wave regime the effect can be sign
cant. Section X discusses how the effect depends on a
tance and evaluates the exactness of the obtained crit
The last section presents a short summary and conclusio

II. FORMALISM

The spherically symmetric geometry outside matter
given by a Schwarzschildean geometry line element:
©2000 The American Physical Society34-1
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EDWARD MALEC PHYSICAL REVIEW D 62 084034
ds252S 12
2m

R Ddt21
1

12 2m/R
dR21R2dV2,

~2.1!

where t is a time coordinate,R is a radial coordinate tha
coincides with the areal radius, anddV25du21sin2 u df2 is
the line element on the unit sphere, 0<f,2p and 0<u
<p.

As concerns the electromagnetic fields, it is convenien
assume that the scalar component of the electromagnetic
tential vanishes while the vector potential satisfies the C
lomb gauge condition. Using a multipole expansion of t
electromagnetic vector potential in terms of vector spher
harmonics, one obtains@12#

~2]0
21] r*

2
!C l5S 12

2m

R D l ~ l 11!

R2 C l . ~2.2!

C’s should be essentially two-index functionsC lM ~where
M is the projection of the angular momentum!, but since the
evolution equation isw independent, the indexM is sup-
pressed. The variabler * [R12m ln(R/2m21) is the
Regge-Wheeler tortoise coordinate. The backreaction exe
by the electromagnetic field onto the metric has been
glected in the present analysis. That is readily justified
any gravitational sources other than black holes. In the c
of a black hole this approximation holds true some dista
away from its horizon@13#.

Consider a set of functions of the form

C̃ l~ t,r * !5(
s50

l
C ls~r * 2t !

Rs , ~2.3!

where the functionsC ls are given by the recurrence relation

] r* C l152
l ~ l 11!

2
C l0 ,

] r* C l ~s11!5
1

2~s11!
@„s~s11!2 l ~ l 11!…C ls

22m~s221!C l ~s21!#. ~2.4!

In @2# is shown a dipole solution of this type@14#. In
Minkowski space-time (m50), C̃ l solves Eq.~2.2!; it rep-
resents a purely outgoing electromagnetic radiation.

Let a functionC̃ l be given by Eqs.~2.3! and ~2.4! and
assume that~for spacelike sections witht>0! its support is
compact and located entirely in the vacuum region outs
some radiusa.2m, i.e., outside the Schwarzschild radiu
Let the initial data of a solutionC l of Eq. ~2.2! coincide with
C̃ l at t50. Thus initially C l is a purely outgoing partia
wave. It should be noted that the assumption that initial d
are ~initially ! purely outgoing is made in this paper only fo
the sake of clear presentation. The propagation of elec
magnetic waves is a linear process as far as the backrea
can be neglected. Therefore the propagation of the initi
08403
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outgoing radiation~or even of a fraction of the outgoing
radiation! is independent of whether or not the ingoing r
diation is present.

It will be convenient to decompose the sought soluti
C l(r * ,t) into the known partC̃ l and an unknown function
d l :

C l5C̃ l1d l . ~2.5!

Initially, d l5]0d l50. A similar splitting is done in@4#, who
then seek a series expansion ofd l . This will be avoided in
this paper, in favor of finding a number of estimates ofd l
that would provide the needed information about the ba
scattered part of the radiation.

In the rest of this paper only the dipole radiationC1 will
be considered. Consequently, all angular-momentum-rel
subscripts will be omitted.

III. ENERGY ESTIMATE

The dipole term constitutes the most important part of
electromagnetic radiation. Assume dipole-type initial data

C̃„x~R!…52] r* f „x~R!…1
f „x~R!…

R~r * !
, ~3.1!

with the initial support (a,`) of a C2-differentiable f and
x(R)[r * (R)2r * (a). The differentiability of f guarantees
that the initial energy density is continuous and vanishes
the boundarya.

Lemma 1. DefineI a,e(R):

I a,e~R![E
a

R

dr
f 2
„x~r !…

r 412e , ~3.2!

and

ba~R![E
a

R

dr
C̃2

„x~r !…

r 2 , ~3.3!

where 0,2e,1. Then for a.2m(111/A112e) the fol-
lowing inequality holds:

I a,e~R!<
ba~R!

ea2e

12~a/R!2e

~112e!~122m/a!224m2/a2 .

~3.4!

Remark. The integralba(R) is bounded above by the
electromagnetic energyER(t)/(4p) defined later. Therefore

I a,e~R!<
Ea~R,t !

4pea2e

12~a/R!2e

~112e!~122m/a!224m2/a2 .

Proof. Notice that
4-2
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f 2
„x~r !…

r 2 5F E
a

r

ds]s

f ~s!

s G2

5F E
a

r

ds
1

122m/s
S 2

C̃

s
1

2m f

s3 D G 2

<2F E
a

r

ds
2C̃

s~122m/s!G 2

12F E
a

r

ds
2m f

s3~122m/s! D G2

; ~3.5!

the second inequality follows from (A1B)2<2A212B2.
The factor 1/(122m/s) that appears in the integrands can
bounded above by 1/ha , where

ha[12
2m

a
. ~3.6!

Subsequently, the use of the Schwarz inequality and sim
integrations yield

f 2
„x~r !…

r 2 <
2ba~r !~r 2a!

ha
2 1

8m2I a,e~r !

ha
2~122e!

S 1

a122e2
1

r 122eD .

~3.7!

The insertion of Eq.~3.7! into the integral of Eq.~3.2! gives

I a,e~R!<E
a

R

dr
1

r 212e F2ba~r !~r 2a!

ha
2

1
8m2I a,e~r !

ha
2~122e!

S 1

a122e2
1

r 122eD G . ~3.8!

ba(r ) and I a,e(r ) are nondecreasing functions: therefo
taking them in front of the appropriate integrals would n
make the corresponding terms smaller. Straightforward in
gration of the obtained expressions yields

I a,e~R!<
ba~R!

ha
2a2e H 1

2e F12S a

RD 2eG
1

1

112e F211S a

RD 112eG J
1

2I a,e~R!

122e S 2m

a22mD 2H 1

112e F12S a

RD 112eG
2

1

2 F12S a

RD 2G J . ~3.9!

One should note that the expression inside the first pai
curly brackets can be estimated as follows:

1

2e F12S a

RD 2eG1
1

112e F211S a

RD 112eG
<

1

e~112e! F12S a

RD 2eG ,

08403
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while the expression inside the second pair of curly brack
is bounded above by

122e

2~112e! F12S a

RD 112eG .
Equation~3.9! can be now written as

I a,e~R!<
ba~R!@12~a/R!2e#

ha
2a2ee~112e!

1S 2m

a22mD 2 I a,e~r !

112e
.

~3.10!

Rearranging Eq.~3.10! so that the two terms withI a,e(R) are
on the left-hand side, one obtains

I a,e~R!F12S 2m

a22mD 2 1

112eG< ba~R!@12~a/R!2e#

ha
2a2ee~112e!

;

~3.11!

this gives the postulated bound ofI a,e(R) if a.2m(1
11/A112e), as assumed above.

The obtained formula is not exact, but with the approp
ate choice off and e the error is small. Take, for instance
f 5C within (a1a1 ,b2b1),a1 ,b1!a,b@a ~which obvi-
ously means thatb2a@a1 ,b1!, and letf be smoothly joined
to zero outside~a, b! by some intermediary functions. Unde
those conditions, a direct calculation gives

I a,e~b!

ba~b!
'

3

~312e!a2e , ~3.12!

as compared with 1/e(11e)a2e, which follows from Eq.
~3.11!. If e'1/2, then the exact result differs by less th
25% from the bound Eq.~3.11!. Later on, the valuee51/8
will be used~which appears to be more economical in su
sequent calculations!, in which case the above estimate d
teriorates significantly. The exact value ofI a,e(b)/ba(b) is
then roughly 15% of that predicted by Eq.~3.11!.

IV. ESTIMATING d

d is initially zero, and its evolution is governed by th
following equation:

~2]0
21] r*

2
!d5S 12

2m

R D F 2

R2 d1
6m f

R4 G . ~4.1!

DefineG̃ (R,t)—a null geodesic that originates at~R, t! and is
directed outward. If a point lies on the initial hypersurfac
thenG̃ (R,0)[G̃R . By G̃ (R0 ,t0),(R,t)) a segment ofG̃ (R0 ,t0) end-
ing at ~R, t! will be understood.

Later will be needed the following bound.
Theorem 2. Let the support of initial data be (a,b),b

<` and let G̃R0 ,(R,t) be the outgoing null geodesic from

(R0 ,t50) to ~R, t!. Then

ud~R!u
R

<mC1Aba~b!
1

aeARhR
S 1

R0
12e2

1

R12eD , ~4.2!
4-3
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EDWARD MALEC PHYSICAL REVIEW D 62 084034
where

C1[
6&

ha
3/2~12e!

A 1

e@~112e!ha
224m2/a2#

~4.3!

andhR5122m/R.
Proof. Define an energyH(R,t) of the fieldd contained in

the exterior of a sphere of a radiusR:

H~R,t !5E
R

`

drF ~]0d!2

12
2m

r

1S 12
2m

r D ~] rd!21d2
2

r 2G .

~4.4!

One can easily show that

~] t1] r* !H~R,t !52S 12
2m

R D F S 12
2m

R D

3S ]0d

S 12
2m

R D 1]RdD 2

1
2

R2 d2G
212mE

R

`

dr]0d
f

r 4

<212mE
R

`

dr]0d
f

r 4 , ~4.5!

the inequality following from omission of the nonpositiv
boundary term. The right-hand side can be bounded fur
by

12mF E
R

`

dr~]0d!2G1/2F E
R

`

dr
f 2

r 8G1/2

, ~4.6!

due to the Schwarz inequality. That in turn can be boun
by

12m

R22eAhR

H1/2F E
R

`

dr
f 2

r 412eG1/2

. ~4.7!

The integral in Eq.~4.7! cannot increase along outgoing nu
directions, and therefore is bounded by initial valu
*R

`dr f 2/r 412e<*R0

` dr f 2/r 412e[I R0,e
(R). Since I R0,e

(`)

<I a,e(`), one arrives at

~] t1] r* !H~R,t !1/2<6AI a,e~`!
m

AhaR22e
. ~4.8!

The integration of Eq.~4.8! along G̃R0 ,(R,t) yields, replacing

I a,e(`) by its bound expressed in Eq.~3.4!,
08403
er

d
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AH~R,t !<
6m

ae

Aba~`!

ha
3/2~12e!

A 1

e@~112e!ha
224m2/a2#

3S 1

R0
12e2

1

R12eD
5

mC1

&ae S 1

R0
12e2

1

R12eD . ~4.9!

Notice that initially d vanishes and that its propagation
ruled by a hyperbolic equation. Thence at any finite timt
the support ofd is bounded. Therefore

ud~R!u
R

5U ÈR

] r

d~r !

r U<S ÈR 1

r 2D 1/2F ÈRS ] rd2
d

r D 2G1/2

<
1

AR22m
~2H !1/2~R!. ~4.10!

Inequalities~4.9! and~4.10! yield the bound of theorem 2 in
the case whenb5`.

Let the initial data be of finite support~a, b!. Define a
region Vb consisting of points (R>b,t) acausal to (b,t
50). The energyH„b(t),t… obviously vanishes for any poin
„b(t),t… located insideVb . In this case the inequality o
theorem 2 can be stated as follows:

ud~R!u
R

<mC1Aba~b!
A12~a/b!2e

aeARhR
S 1

R0
12e2

1

R12eD .

~4.11!

In what follows it will be assumed that the initial data ha
compact support located in an annular region~a, b!.

V. ESTIMATES OF TWO „NULL … LINE INTEGRALS

In analogy withG̃ (R,t) defined earlier, letG (R,t) be a null
ingoing geodesic that originates at~R, t!. G (R,t50) will be
shortened toGR . A segment ofG (R1 ,t1) connecting (R1 ,t1)

with ~R, t! (t1,t,R1.R) will be denoted asG (R1 ,t1),(R,t) .
Let a point ~R, t! be an intersection of an ingoing nu

geodesicGR1
with an outgoing null geodesicG̃a . Let (r ,t),

r>R, be a point ofGR1 ,(R,t) and define@R0(r ),t50# as a
point of the initial hypersurface such thatG̃R0

ùGR1

5(r ,t). Fixing a andR1 , one can viewR0 as a function of
r; obviously, R0(R)5a, while R0(R1)5R1 . On the other
hand, fixing onlya and viewingR1 as a function ofR, one
hasR1(a)5a; this will be used in the forthcoming proof.

One can prove the following.
Lemma 3. Under the above conditions and ifR1<b, the

line integral along a null segment geodesicGR1 ,(R,t) is
bounded from above:

E
R

R1
dr

r 2R0

R0rA122m/R
<

1

2 F ln
R

b
1 lnS b22m

a22mD G .
~5.1!
4-4
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Lemma 4. Under the above condition, but with the initia
point (R1 ,s) (s.0) of the null geodesic segmen
G (R1 ,s),(R,t) lying on G̃b ~Fig. 1!, one can prove

E
R

R1
dr

r 2R0

R0rA122m/R
<

1

2
lnS b22m

a22mD . ~5.2!

Proof of Lemma 3. Let r be a radial coordinate of a poin
lying on the intersection ofG̃R0

andGR1
~Fig. 2!. One finds

that the areal distances of three points„R0(r ),0…, (r ,t), and
(R1,0) satisfy the following:

R0~r !52r 2R112m lnS ~r 22m!2

~R0~r !22m!~R122m! D .

~5.3!

That implies

dR052
122m/R0

122m/r
dr. ~5.4!

Replacingr by R0 in the integral of Eq.~5.1!, one obtains

FIG. 1. Solid linesG̃a ,G̃b are outgoing null curves. Dashed line
are ingoing null curvesGb ,G (R1 ,s) .

FIG. 2. Solid linesG̃a ,G̃R0(r ) are outgoing null curves. The
dashed line isGR1

, an ingoing null curve.
08403
E
R

R1
dr

r 2R0

R0rA122m/r
5E

R

R1 dr

A122m/r
S 1

R0
2

1

r D
5

1

2 Ea

R1
dR0

A122m/r

R022m

2E
R

R1 dr

rA122m/r

<
1

2
lnS R122m

a22m D2 ln
R1

R

5 ln
R

AaR1

1 1
2 ln

122m/R1

122m/a
.

~5.5!

Next, one can show thatR1>2R2a. Indeed, assuming tha
a is fixed, one has, from Eq.~5.4!, dR1 /dR>2; since the
initial condition isR1(a)5a, the conclusion follows.

Taking into accountR1>2R2a, one gets

ln
R

AaR1

< ln
R

Aa~2R2a!
< lnAR

a
. ~5.6!

ReplacingR1 by b in the last term of Eq.~5.5! and inserting
Eq. ~5.6!, one arrives at the first of conjectured inequalitie
Eq. ~5.1!.

In order to prove lemma 4 one should start from relati
between areal distances of four points (r ,t), „R0(r ),0…,
(R,t), and (a,0) ~see Fig. 2!:

2S r 2R12m ln
r 22m

R22mD5R02a12m ln
R022m

a22m
.

~5.7!

The variabler ranges fromR1.b to R. Fixing a andR, one
again obtains

dR052
122m/R0

122m/r
dr. ~5.8!

A straightforward calculation, in whichdr is replaced by
dR0 , shows that

E
R

R1
dr

r 2R0

R0rA122m/R
<

1

2
lnS b22m

a22mD2 ln
R1

R
. ~5.9!

SinceR1>R, one immediately obtains Eq.~5.2!.

VI. ESTIMATE OF THE AMPLITUDES BACKSCATTERED
INWARD

Define the intensity of the backscattered radiation tha
directed inward:

h2~R,t !5
1

122m/R
~]01] r* !d. ~6.1!
4-5
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EDWARD MALEC PHYSICAL REVIEW D 62 084034
Equation~4.1! reads now

~2]01] r* !F S 12
2m

R Dh2G5S 12
2m

R D F 2

R2 d1
6m f

R4 G .
~6.2!

The integral form of Eq.~6.2! reads

S 12
2m

R Dh2~R,t !5E
R1

R

drF 2

r 2 d1
6m f

r 4 G1h2~R1 ,s!;

~6.3!

here the integration contour coincides with a null ingoi
geodesicsG (R1 ,s),(R,t) . (R1 ,s) lies on the initial hypersurface

(s50) if R1<b; thus, h2(R1 ,s50)50, since the initial
data are entirely outgoing. IfR1.b, then (R1 ,s)
PG̃b,(R1 ,s) ; also in this caseh2(R1 ,s)50, becauseG̃b,R1

constitutes the outer boundary of the outgoing impulse
either case the radiation amplitude satisfies the integral e
tion

S 12
2m

R Dh2~R,t !5E
R1

R

drF 2

r 2 d1
6m f

r 4 G . ~6.4!

The second term is bounded above by

E
R

R1
dr

6mu f u
r 4 <6mS E

R

R1
dr

f 2

r 412eD 1/2S E
R

R1
dr

1

r 422eD 1/2

5
6m

A322e
S E

R

R1
dr

f 2

r 412eD 1/2 1

R~3/2!2e

3A12
R322e

R1
322e

<
6m

A322e
S E

R

R1
dr

f 2

r 412eD 1/2

3
1

R~3/2!2eA12
a322e

b322e, ~6.5!

where the first inequality follows from the Schwartz inequ
ity and the last inequality is due to the fact thatR/R1>a/b
~Appendix A!.

In order to find the integral from the last line of Eq.~6.5!,
it is useful to project it onto the initial data surface, alo
outgoing null geodesicsG̃R0 ,(r ,t) . Notice that

dR052
122m/R0~r !

~122m/r !
dr;
08403
n
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see Eq.~5.4!. The f 2/r 412e term cannot decrease during th
projection. One arrives at

E
R

R1
dr

f 2~r !

r 412e <E
a

R1
dR0

122m/r

2~122m/R0~r !!

f 2~R0!

R0
412e

<
I a,e~R1!

2ha
. ~6.6!

Inserting the energy estimate of lemma 1 into Eq.~6.6!, one
gets finally

E
R

R1
dr

6mu f u
r 4 <Aba~b!

mC2

aeR3/22eA12S a

bD 2e

. ~6.7!

Here the constantC2 is given by

C25
3A2~12a322e/b322e!

ha
3/2A e F ~112e!ha

22
4m2

a2 G ~322e!

. ~6.8!

The d-related term of Eq.~6.4! is bounded, due to Eq.~4.2!,
by

2mC1

ae Aba~b!A12S a

bD 2eE
R

R1
dr

1

hRr 3/2 S 1

R0
12e2

1

r 12eD .

~6.9!

Here r>R0 and r, R0PG̃R0 ,(r ,t) . Thus 1/(r eR0
12e)<1/R0 .

Therefore expression~6.9! is bounded above by

2mC1

ae
Aba~b!

A12~a/b!2e

R3/22e E
R

R1
dr

1

hR
S 1

R0
2

1

r D .

~6.10!

The results of lemma 3 and 4 lead now to a pair of estima
If R1<b, then

2E
R

R1
dr

udu
r 2 <mC1Aba~b!

A12~a/b!2e

aeR3/22e S ln
R

a
1 ln

hb

ha
D ,

~6.11!

and if R1.b @in which case (R,t)PG (R1 ,s)#, then

2E
R

R1
dr

udu
r 2 <mC1Aba~b!

A12~a/b!2e

aeR3/22e S ln
b

a
1 ln

hb

ha
D .

~6.12!

In summary, the radiation amplitude is bounded above b
S 12
2m

R D uh2~R,t !u<
C3

aeR3/22e FC41C1 ln
bQ„R1~R!2b…1RQ„2R1~R!1b…

a G , ~6.13!
4-6
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where Q(b2R1)50 if b2R1,0 and Q(b2R1)51 if b
2R1>0. The constantsC3 andC4 are defined by

C3[mAba~b!A12S a

bD 2e

,

C4[C21C1 ln
hb

ha
. ~6.14!

VII. REFINING THE BOUND ON d

Equation~6.1! can be written in the integral form

d~R,t !5E
R0

~R,t !
dr h21d~R0!, ~7.1!

where the integration contour coincides withG̃ (R0),(R,t) and

R0 is a point of the initial Cauchy slice defined earlier. Sin
initially d vanishes, one hasd(R,t)5*R0

R dr h2 . It becomes

clear in Sec. VIII that one needs to boundd(R,t) only along
G̃a,` ; in what follows, this situation is always meant. Defin
R(b)[@R:R1(R)5b# ~see Fig. 1!. Inserting the bound of
Eq. ~6.13! @but notice that Eq.~6.13! boundsh r uh(r )u, not
uh(r )u itself#, one obtains

ud~R!u<
C3

haae FC4E
a

R dr

r 3/22e 1C1Q„R~b!2R…E
a

R

dr
ln~r /a!

r 3/22e

1C1Q„R2R(b)…S E
a

R~b!

dr
ln~r /a!

r 3/22e

1 ln
b

a ER~b!

R dr

r 3/22eD G . ~7.2!

The integrand of the second integral is non-negative: th
fore, extending the integration up toR(b) can give only a
bigger quantity. Thus one gets, after elementary integrat

ud~R!u<
2C3

ha~122e!a1/2XC4F12S a

RD 1/22eG1
2C1

122e

3F12S a

R~b! D
1/22eG1C1S a

R~b! D
1/22e

3H 2 ln
R~b!

a
1Q„R2R~b!…

3 ln
b

a F12S R~b!

R D 1/22eG J C. ~7.3!

Dropping out the negative term

2Q„R2R~b!…ln
b

a S R~b!

R D 1/22e

and taking into account that
08403
e-

n,

2 ln
R~b!

a
1Q„R2R~b!…ln

b

a
< ln

b

R~b!
,

one arrives at

ud~R!u<
2C3

ha~122e!a1/2 H C4F12S a

RD 1/22eG
1

2C1

122e F12S a

R~b! D
1/22eG1C1S a

R~b! D
1/22e

3 ln
b

R~b!J . ~7.4!

Define

k[~b2a!/a. ~7.5!

One can show~see Appendix B! that

a1b

2
2mk<R~b!<

a1b

2
; ~7.6!

the equality is achieved in Minkowski space-time (m50).
Sinceb5a1ak, one hasR(b)>a1hak/2 or, defining

a[
ha

2
, ~7.7!

R(b)>a1ak. The insertion of the above into Eq.~7.4!
yields

ud~R!u<
C3

ha~122e!a1/2 H C4F12S a

RD 1/22eG1C5J ,

~7.8!

where

C5[C1

ln@~11k!/~11ak!#

~11ak!1/22e

1
2C1

122e S 12
1

~11k/2!1/22eD . ~7.9!

This estimate gives a better control over the asymptotic
havior ofd than the former one, Eq.~4.10!, by a factor 1/AR.
In particular, nowd2/R2 is known to be integrable. This
integrability will be exploited in the next section.

VIII. BOUNDING THE RADIATION ENERGY LOSS

The energyER(t) of the electromagnetic fieldC con-
tained in the exterior of a sphere of a radiusR reads

ER~ t !52pE
R

`

drF ~]0C!2

122m/r
1S 12

2m

r D ~] rC!21
2~C!2

r 2 G .
~8.1!

Let the initial data be as specified hitherto,C(t50)5C̃ and
]0C(t50)5]0C̃ for someC̃; thus, they vanish outside a
4-7
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annular region~a, b!. DefineEa
b5Ea(0) as the energy of the

initial pulse. If initial configuration is purely outgoing, the
] tC52] r* C̃1 f ] r* (1/R).

Let an outgoing null coneCa originate from (a,0). In
Minkowski space-time the outgoing radiation contained o
side Ca does not leak inward and its energy remains c
stant. In a curved spacetime, however, some energy wil
lost from the main stream due to the diffusion of the rad
tion h2 throughCa . Most of the backscattered radiation w
fall onto the center of the gravitational attraction. The for
coming theorem gives a bound on the amount of diffus
energy.

Theorem 3. Under the above assumptions, the fraction
the diffused energydEa /Ea

b satisfies the inequality

dEa

Ea
b <S 2m

a D 2 121/~11k!2e

ha
2

3F C4
2

~12e! S ha

16
1

2e2

~122e!2~322e! D
1

C5
2

~122e!2 1C61
2C4C5

~122e!~322e!
G , ~8.2!

whereC1–C5 have been defined earlier and

C65
haC1

2

16~12e! S ln2@~11k!/~11ak!#

~11ak!222e

1
121/~11k/2!222e

~12e!2 D
1

C1C4ha

16~12e! S 2 ln@~11k!/~11ak!#

~11ak!222e

3S 11
C1ln~11k/2

2C4~12e! D
1

121/~11k/2!222e

~12e! D . ~8.3!

Proof. The rate of the energy change alongCa is given by

~]01] r* !Ea

522pS 12
2m

R D F S 12
2m

R D S ]0C

122m/R
1]RC D 2

1
2

R2 C2G522pS 12
2m

R D F S 12
2m

R D S h22
f

R2D 2

1
2

R2 ~C̃1d!2G . ~8.4!

The functionsf and C̃ are assumed to vanish on the nu
cone Ca . ThereforeC5d, ]RC5]Rd, and ] tC5] td on
Ca . In such a case the rate of the energy change reads
08403
-
-
e
-

-
d

f

~]01] r* !Ea522pS 12
2m

R D F S 12
2m

R Dh2
2 1

2d2

R2 G .
~8.5!

The energy loss is equal to a line integral alongG̃a :

dEa[Ea2E`52pE
a

`

drF S 12
2m

r Dh2
2 1

2d2

r 2 G . ~8.6!

The derivation of Eq.~8.2! requires the use of estimate
~6.13! and ~7.8!. The calculation of thed-related part of the
right-hand side of Eq.~8.6! is straightforward and it yields

4pE
a

`

dr
d2

r 2 <4pba~b!

3S 2m

a D 2 121/~11k!2e

ha
2~122e!2 FC4

2 2e2

~322e!~12e!

1C5
212C4C5

122e

322e G . ~8.7!

In order to bound the contribution coming from the backsc
tered radiation amplitudeh2 , one needs the estimate~6.13!.
A straightforward calculation shows that

2pE
a

`

drS 12
2m

r Dh2
2

<pba~b!S 2m

a D 2 121/~11k!2e

2ha
2~12e!

3FC4
2

2
1C1C4S y ln

b

R~b!
1

1

2~12e!
~12y! D

1C1
2S y

2
ln2

b

R~b!
2

y

2~12e!
ln

R~b!

a S 122 ln
b

R~b! D
1

1

4~12e!2 ~12y!G , ~8.8!

wherey[@a/R(b)#222e. Neglecting the negative term with
ln... and, using the bounds of Appendix B onb/R(b), one
arrives at a bound that in conjunction with Eq.~8.7! proves
theorem 3.

Remark. The above estimate depends on the parametee,
which should be chosen in such a way as to optimize
bound. The exact value of the optimale depends ona andk,
but the valuee51/8 is proved to yield satisfactory estimate

IX. DEPENDENCE OF BACKSCATTER ON THE
FREQUENCY OF WAVES

The coefficientsC4–C6 appearing in theorem 3 chang
with k, but remain finite in the whole~0, `! range of possible
values ofk5(b2a)/a. In the case when the support of th
initial radiation is very narrow, i.e.,k!1, then the coefficient

121/~11k!2e

ha
2 ;k.

In such a case one obtains that
4-8
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dEa

Ea
b <CS 2m

a D 2

k, ~9.1!

whereC is a constant. In the limitk→0 the ratiodEa /Ea
b

becomes 0; the backscattering is negligible in the case
initial pulses of electromagnetic energy that are very narr
And conversely, the bound becomes bigger with an incre
of the width of the radiation pulse. The physical meaning
that can be deduced with the help of the Fourier transfo
theory. Thesimilarity theorem@15# states that compressio
of the support of a function corresponds to expansion of
frequency scale. If a support of initial data is made narro
then the wavelength scale of the pulse extends in the di
tion of short lengths. Therefore the message behind the
tained results must be that high-frequency radiation is es
tially unhindered by the effect of backscattering and t
long waves can be backscattered.

This dependence of the backscattering on the wavele
has been in fact observed in the numerical investigation
the propagation of pulses of scalar massless fields@16#. In
this case halving of the length has led to a similar decreas
the fraction of the diffused energy.

In the case of a black hole or a neutron star, the scal
set essentially by the Schwarzschild radiusRS52m; waves
with lengths much shorter thanRS are not backscattered
while waves of lengths;RS can reveal quite a strong effec
Moreover, one can show that the (2m/R)2 dependence of the
effect implies that most of the energy diffusion occurs
regions that are not very far~as compared to the Schwarz
child radius! from the center.

In order to exemplify the above remarks, consider
diffusion effect in following two cases. Assume the sam
location a54RS , of both radiative dipoles and~i! k51/8
~i.e., the fundamental wavelengthRS! for a pulse I, and~ii !
k51/128 ~i.e., the fundamental wavelengthRS/16! for the
pulse II.

In the calculation that is reported below,e is chosen to be
1/8, in accordance with the remark ending the preceding
tion. Then in case I one obtainsdEa /Ea

b,0.37, while in case
II ~of shorter waves! one getsdEa /Ea

b,0.004.
The evolution equation~6.2! can be written in anothe

form as

~]01] r* !F S 12
2m

R Dh1G5S 12
2m

R D F 2

R2 d1
6m f

R4 G ,
~9.2!

where

h1~R,t !5
1

122m/R
~2]01] r* !~d1 f ! ~9.3!

is the intensity of the outgoing part of the radiation. T
inequality~3.7! can be written as follows, applying lemma
and the remark following it:

u f ~R!u
R3/2 <CAEa

bS 12Fa

bD 2eG ; ~9.4!
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here,C is some constant. The integration of Eq.~9.2! along a
null geodesicG̃a yields now

S 12
2m

R Dh1„R~ t !,t…2S 12
2m

a Dh1„R~0!,t50…

}
1

a3/2F12S a

bD 2eG , ~9.5!

where the proportionality constant depends only one, 2m/a,
and the initial energyEa

b . Fixing the energyEa
b , one notices

that in the regime (b2a)/a!1 the right-hand side of Eq
~9.5! is essentially zero. Thus the product (122m/R)h1 is
constant. In this case one clearly sees the manifestatio
the redshift—the rescaling of the amplitudeh1 :

h1~`!5hah1~a,t50!. ~9.6!

See also a discussion of that fact in a massless scalar
theory @11#.

X. DISTANCE DEPENDENCE OF ENERGY DIFFUSION
AND SHARPNESS OF THE ESTIMATES

The bound of theorem 3 depends on the sou
location—it contains, among other factors, a square of
factor 2m/a. Thus the bounds in question decrease with
increase ofa. The dependence on the distance can actu
be much stronger. In order to see this, consider the dip
radiation II of ~ii !, described in the preceding section, b
located ata54m ~instead ofa58m, as assumed formerly!.
One obtains that nowdEa /Ea

b,0.77, instead of the forme
bound 0.004. Numerical results concerning the propaga
of massless scalar fields also show that the backscatt
energy decreases rapidly with the increasing distance@11#.

It is of interest to establish how accurate the final estim
is. Most of the inequalities derived in this paper are sharp
the sense that one can find examples that saturate th
Thus, for instance, the two null-line integrals of Sec. V a
estimated sharply~the inequalities saturate in Minkowsk
space-time!. Similarly results of Appendixes A and B ar
also exact; again, the inequalities become equalities
Minkowski space-time. The energy estimate of Sec. III is n
sharp, but the ‘‘loss of sharpness,’’ to say, can be less t
25% ~see the final remark in Sec. III!. The main source of
unsharpness is the omission of negative terms in a boun
d ~Sec. VII! and in bounds of diffused energy in Sec. VII
but that becomes insignificant with the decrease ofk, i.e.,
when the width of the pulse becomes small in comparison
the Schwarzschild radius. On the other hand, the comb
tion of two exact steps can be associated with some los
the accuracy.

Taking this into account, it is quite likely that in the cas
of sources characterized byk,1 the bound in question give
an order of the diffused energy. On the other hand, ifk
@1, then the bound of theorem 3 becomes very inaccur
with
4-9
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dEa

Ea
b }CS 2m

a D 2

, ~10.1!

where C'104. As mentioned before, the main source
unsharpness is the omission of negative terms in a boun
d ~Sec. VII! and in bounds of Sec. VIII. A more accura
treatment would significantly improve the estimates in
long-wave regime.

XI. DISCUSSION

The main result of this paper, theorem 3, states that
dipole energy diffusion due to the backscattering depend
the square of 2m/a, wherem is the mass of the gravitationa
source anda is a location of the pulse of radiation. Sectio
IX and X show that the high-frequency radiation essentia
is not backscattered, but that the low-frequency radiation
manifest a significant diffusion effect. The last statemen
best described in terms of the dimensionless parametek̃
[RS /l, wherel is the fundamental radiation length. Ifk̃
@1, then the backscattering is negligible, but ifk̃'1, then it
can be significant. The above results demonstrate that
effect becomes negligible at distances much bigger than
Schwarzschild radius of a central mass. That rules out m
stars as objects that can induce observable backscatt
effects. For a star of a solar type andl;RS , for instance,
the ratiodEa /Ea

b can be at most 10220. In the case of white
dwarves andl;RS , the bound ~10.1! gives dEa /Ea

b

,1028. For long-wave radiation the bounds are bigger—
effect even looks as marginally relevant, for white dwarv
when dEa /Ea

b;1022. However, a sharper estimate wou
lower that by several orders.

On the other hand, two astrophysical compact obje
neutron stars and~most likely! black holes, are not exclude
as objects of interest.

The backscattering would damp the total luminosity p
duced in accretion disks that exist in vicinities of compa
objects, but since the most efficient regions of the disks
located at a distance of~at least! several Schwarzschild radi
the effect would be probably weak. More relevant can
‘‘echoes’’—aftermaths of violent flashy eruptions, produc
by a part of radiation reflected from a close vicinity of
horizon of a black hole. Numerical calculations done in t
massless scalar fields propagation suggest that the ampl
of the reflected radiation can constitute up to 20% of
incident one, assuming that the length of the wave is co
parable to the Schwarzschild radius of a black hole.

The results of this section can be in principle generaliz
into the case of higher-order multipoles. The key po
would consist in showing analogues of the energy estim
of Sec. III that would bound the higher multipole momen
That should lead to a variant of theorem 3 valid under r
ervations similar to those expressed earlier.

An analysis similar to that of the present paper can
repeated also in the case of a weak gravitational radia
produced in disks rotating around Schwarzschildean bl
holes. The conclusions concerning the fraction of the d
fused energy can be similar.
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APPENDIX A

Lemma A. Let (R,t), R1PGR1 ,(R,t) , R1>R andR.4m.
Then,

R

R1
>

a

b
. ~A1!

Proof. There are two separate cases that need to be
sidered.

~i! If R1 lies on the initial hypersurface, thenR1<b and
R>a and the inequality follows immediately.

~ii ! If ( R1 ,s)PG̃b,(R1 ,s) . In this case one has

2S R12R12m ln
R122m

R22m D5b2a12m ln
b22m

a22m
.

~A2!

DefineX[R12R. One finds from Eq.~A2! that

d

dR
ln

X

R
5

2m/R

122m/R

1

R1X
2

1

R
<0 ~A3!

provided thatR<4m. ThusX/R is a nonincreasing function
which means thatR/R1 is a nondecreasing function an
R/R1>R(b)/b. SinceR(b)>a, one arrives at the postulate
inequality.

APPENDIX B

Lemma B. Define k[(b2a)/a<0. Define „R(b),t… as
the intersection point ofGb and G̃a . Then,

a1b

2
2mk<R~b!<

a1b

2
. ~B1!

Proof. The relation~5.3! ~see the main text!, with R1
5b, r 5R(b) andR05a, can be written as

a52R~b!2b12m lnS ~R~b!22m!2

~a22m!~b22m! D . ~B2!

We will treat Eq. ~B2! as a relation betweenb and R(b),
with fixed a. ObviouslyR(b)5b5a whenb5a. One easily
finds that

]bR~b!5
1

2

hR~b!

hb
. ~B3!

Notice thatR(b)<b. Thus]bR(b)<1/2. On the other hand
R(b)>a. Thus ]bR(b)>(1/2)hR(b)>(1/2)ha . The use of
those two bounds on]bR(b) and the initial conditionR(a)
5a immediately imply the lemma.
4-10
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