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Abstract 

For industrial applications, solid-state O2 sensors based on the quenching of 

photoluminescence, should be accurate, robust, easy-to-use in a calibration-free 

manner. These sensors generally consist of an O2 sensitive luminescent dye in a 

polymer matrix. The properties of this matrix such as dye compatibility, O2 

permeability, mechanical strength and chemical resistance have a significant 

influence on the sensors final operating parameters.  

Although used in many applications, the existing solid-state sensing materials and 

manufacturing processes remain complex, rigid and expensive for large scale 

fabrication while incurring a substantial extra cost. Currently, as few sensors fit these 

ideals, there is a need for new sensor materials, fabrication techniques and 

integration technologies.  

We created and evaluated five new solid-state O2 sensitive materials: four based 

on microporous polypropylene fabric materials and one on polyphenylene sulphide 

films. The onus was on simplifying composition of sensors and ergo reduction in 

material consumption and manufacturing cost. The sensors exhibited lifetime signals 

and working characteristics suitable for use in food packaging. When tested in food 

simulants and in direct contact with food, the sensor based on ungrafted 

polypropylene membrane fabricated by the swelling method, outperformed the other 

sensors. This sensor is cheaper than commercial sensors, is easily incorporated into 

current packaging materials by means of heat-sealing or lamination and has a storage 

shelf-life of at least 12 months when stored in normal atmospheric conditions.  

Proof-of-concept tests, using commercial sensors, were carried out for industry 

customers. Sensors were used to track oxygen levels in meat packaging and also to 

select optimum packaging for a beverage product.   
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1 Chapter 1: Literature Review - The use of 

phosphorescent solid-state O2 sensors as a means to 

monitor product quality in food packaging.  

1.1 Smart packaging 

The traditional function of food packaging has been to extend shelf-life, maintain 

quality and safety and to protect the food product from physical damage or 

contamination. There has been increased attention to intelligent and active packaging 

technologies as a means to increase the above attributes. More effort has also been 

made to reduce food wastage, use more environmentally friendly materials and to 

limit the amount of packaging through the use of new packaging approaches.   

Active packaging methods are used to increase shelf-life and prolong food 

quality. Active packaging concepts include freezing, chilling, acidifying, vacuum 

and modified atmosphere packing, scavengers, moisture absorbers, antimicrobial and 

antioxidant releasing components 1. While active packaging is efficient, intelligent 

packaging is required to monitor in-pack conditions. Intelligent (or smart) packaging 

contains additional elements which enables the key quality attributes of food 

products to be monitored from the point of packaging in the factory to when it 

reaches the consumer’s fork1-2. Intelligent packaging senses, records and informs on 

deterioration of the food package or food product, and alert any issues with 

production or transport 3. Examples of existing intelligent packaging systems include 

those with sensors or indicators which can measure physical, chemical and biological 

parameters of the package4. A sensor detects or responds to the presence of a specific 

analyte or physical property and reports the presence by means of an indicator or 

electronic transmission. Indicators, in particular, report the presence or absence of an 
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analyte through a characteristic change, such as colour or fluorescence. Indicator 

systems (such as the time-temperature indicators) are usually irreversible/end-point, 

while sensors provide reversible, real-time response to an analyte.  

One of the most widely used active packaging concepts is MAP which acts as a 

barrier against contaminants and reduces the potential of microorganisms to spoil 

food. In MAP packaging, food products are enclosed in gas impermeable containers 

and flushed with set gas mixture compositions before sealing. 

 While MAP systems are relatively efficient and reliable, failures can occur due to 

many factors; such as incorrect gas composition, oxygen (O2)  ingress due to poor 

barrier materials, flushing or storage condition, damage occurring during handling 

and transport. Conventional MAP systems provide no real time data of the 

conditions within the packaging, and detection of MAP quality is carried out using 

relatively expensive and destructive techniques. For instance, headspace analysis by 

GC, and O2/CO2 gas analysers such as DansensorTM 5 which often need a skilled 

operator and consume the analyte being measured. 

Initial quality monitoring involved the use of time-temperature indicators (TTI) to  

provide temperature tracing of a food product over time6. These sensors can be based 

on enzymatic reactions7, polymerisation reactions8 or temperature dependent 

diffusion9 and display irreversible visual readouts of temperatures to which the 

product has been exposed. Since then, TTI indicators have been combined with other 

sensor technology such as radio frequency identification tags (RFIDs) as a means of 

contactless product tracing via radio waves 10.  

As additional sensing technologies were developed, freshness indicators became 

popular. These sensors produce a response (e.g. colour changes) due to chemical 
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interactions between the indicator material and analyte within the package 11.  In 

particular, detection of metabolites such as H2S
12, amine-based compounds 13, 

ethanol 14 and lactic acid 15 which can be attributed to microbial action within the 

product, have been connected to product freshness and quality. The above sensors 

can be used to correlate food quality to any points in the food chain where the quality 

is put at risk.  

As well as monitoring the food product itself, it is necessary to monitor the 

packaging which protects the food from outside interference. Integrity indicators 

which use dyes that change colour on oxidation, denote when packages have been 

punctured or ruptured. One of the most commonly used sensors based on this 

principle is the Ageless EyeTM produced by the Mitsubishi company 16. The material 

turns from colourless (methylene blue in reduced form when [O2] < 0.1 %) to blue 

when oxidised by O2 concentrations greater than 0.5 %.  It has the advantages of 

being irreversible and easily incorporated into food packaging by printing or spin-

coating. However, due to the heightened sensitivity to trace levels of O2 and 

irreversible nature, false readouts can occur. In addition, careful storage of the 

indicators in inert conditions is necessary before incorporation into the packages.   

Residual O2 is an important parameter of both food quality and also of package 

integrity. Even trace levels of O2 can cause major disruption in food quality through 

lipid oxidation, encouragement of microbial growth, loss of taste, fast ripening and 

browning through enzyme catalysed reactions or oxidisation of vitamin C in some 

beverages.   

As a result, the development of luminescence based solid-state sensors has come 

to the fore. These sensors utilise the principle of quenching of luminescence 
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lifetime/intensity of dye molecules embedded in a polymeric support, by collision 

with O2 molecules. These sensors are advantageous over conventional systems as 

they provide quick, quantitative, contactless and non-destructive readouts of O2 

content and can be modified or adapted to fit a multitude of purposes17. In addition, 

the sensors can be made inexpensive, disposable, calibration free (or batch 

calibrated) and can be used on a large scale to mass monitor the quality of packages 

on the manufacturing line in real time. This is an improvement on electrochemical 

techniques such as Clark’s electrode18, where packages must be taken at random off 

the production line and are destroyed during the testing process.  Additionally, there 

are issues with the method’s sensitivity to gas flow rate, stirring rate, operational 

temperature and poisoning by other gases19 

 

1.2 Quenched-luminescence sensing of O2  

Luminescent O2 sensors utilise the quenching by molecular oxygen of 

electronically excited triplet state molecules 20. (Fig. 1.1) 

 
Fig.  1.1 Diagram showing different photophysical processes occurring within O2-sensitive luminescent dyes 

when excited by electromagnetic radiation. Molecular oxygen interacts with long-liver triplet states and 

quenches them and phosphorescence emission.  
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For phosphorescence to occur, the dye must have high triplet state yield upon 

light excitation and low deactivation by non-radiative pathways.  

At this point, the triplet state dye molecules can be deactivated through collisions 

with O2 molecules which decrease the intensity and lifetime of the phosphorescence 

in a concentration dependent way.   

The main detection formats for quantifying O2 concentration/partial pressure are 

based on the intensity (I) or lifetime (τ) measurements. The relationships are 

described by the Stern-Volmer equation (Eq. 1) 20 :  

][1][1 220
00 OKOk

I

I
SVq +=+== τ

τ

τ
    (Eq. 1) 

Where I0 and I are luminescent intensities of the dye; in the absence and presence of 

O2 respectively. τ0 and τ are the corresponding lifetime values; kq is the quenching 

constant. 

Stern-Volmer plots reflect the relationship between the sensor luminescence 

parameters and the O2 concentration21. (Fig. 1.2). 

 
Fig.  1.2 Schematic representation of a Stern-Volmer plot for Intensity or lifetime showing the ideal linear plot 

(broken line) and the more common curved plot (solid line).  

 

The plot is linear when the dye dispersion within the sensor is homogeneous 22. 

For heterogeneous polymeric sensor materials, the Stern-Volmer plots deviate from 

the linearity. Such cases are often better described by the two-site model 23: 
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Where I and I0 are the luminescence intensities of the dye; in the presence and in 

the absence of O2 respectively, and τ and τ0 are the corresponding lifetimes. f1 and f2 

represent the fractions of total emission arising from each component and f1 + f2 =1. 

K1
SV and K2

SV are the Stern-Volmer constants corresponding to each component. 

Although, designed primarily for intensity quenching, equation 2 can be used to 

analyse lifetime quenching in non-linear systems23-24. O2 concentration is quantified 

as a function of lifetime and the Stern-Volmer constant of the particular sensor (KSV) 

(Eq. 3). 

SVK
O

1
][

0

2

−
= τ

τ

                                        (Eq. 3) 

Intensity-based systems are used in some O2 sensors, but they can be influenced 

by factors such as position of the sensor, fluctuation of light-source intensity, 

changes in path light, degradation of dye molecules within the sensor, detector drift 

and instrument to instrument variability. This can lead to unstable calibrations and 

measurement errors. To combat this, ratiometric intensity methods can be used in 

which intensities are read at two different wavelengths, where one is O2-sensitive 

and the other is insensitive25. The ratio generally gives more stable and reliable 

readouts. However, it usually requires two dyes in a sensor (one-dye systems are also 

known26), suffers from different photo-bleaching of the dyes, light scattering and 

auto-fluorescence of samples, and detector noise which can influence the intensity 

ratio.  
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Luminescent lifetime is a fundamental parameter of the dye, which is independent 

of instrument variability and dye concentration (except in cases of dye aggregation at 

higher concentrations), and it informs on dye micro-environment. Luminescence 

lifetime can be measured in time or phase domains. In time-resolved measurements 

the dye is excited with a short pulse and its luminescent decay is measured. Mocon’s 

OpTechTM instrument operates based on time-domain principles. Phase-resolved 

methods measure phase-shift which is related to the analyte concentration. When a 

luminescent material is illuminated with a sinusoidal light source, the sinusoidal 

emission will occur after a delay. The shift difference between the excited and 

emitted waves is referred to as the phase angle or shift (θ)27. For O2 sensitive 

luminescent dyes, this shift is also O2 sensitive. A diagrammatic representation of 

the principle of phase measurement is shown (Fig 1.3).  

 

Fig.  1.3 Principle of  phase-resolved luminescence lifetime measurement 

 

Phase-based instruments have the advantages of not requiring complex 

instrumentation and allow the use of low-cost and simple light-sources and 
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equipment27-28. Examples of instruments based on phase-shift reading are the 

FiboxTM produced by PreSens and FirestingTM instrument produced by Pyrosciences. 

If luminescence emission   is   proportional to the excitation light and the 

luminescence decay is monoexponential, phase readings can be converted to lifetime 

values by the use of the following formula:  

)2(

)tan(

πϑ

θ
τ =        (Eq. 4) 

 Where τ is lifetime (µs), θ is phase shift (in radians) and  is the modulation 

frequency of excitation (Hz). The majority of modern O2 measurement devices are 

reliant on time-domain and frequency domain measurements.  

 

1.2.1 O2 sensitive dyes  

Luminescent O2 sensors are created by encapsulation of the dye in a suitable O2 

permeable substrate 17a. Transition metals complexes and metalloporphyrins 17c, 29 are 

the most commonly used; due to their relatively long-lived emission (lifetime in the 

µs range) at room temperature and moderate quenchability by O2.  

Original O2 sensor investigations looked into the use of polycyclic hydrocarbons 

(PAHs) as sensing dyes. These fluorescent dyes possess nanosecond lifetime and can 

be quenched by O2 in the 0-40 kPa range making them suitable for a variety of 

biological applications 30. For example, 1-pyrenebutyric acid 17c has a longer 

fluorescent lifetime of 0.2 µs making it suitable for optical O2 sensing. However, 

these dyes are not readily compatible with many common polymer matrices, prone to 

aggregation and possess low sensitivity unless encapsulated in high gas-permeable 
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matrixes such as silicones. In addition, their UV excitation (300-390 nm range), 

cause interference by biological matrices.  

Organic chromophores such as erythrosine B 31 and boron-dipyrromethene 

(BODIPY) derivatives 32 have also been proposed, as they phosphoresce at room 

temperature. However, they exhibit lower wavelength excitation, low brightness and 

photostability.  

Polypyridyl complexes of Ru (II) such as [Ru(bpy)3]
2+ and [Ru(dpp)3]

2+ have 

been extensively studied, due to their ease of synthesis and commercial 

availability17a, 33. They exhibit unquenched lifetimes 0.7-5 µs, moderate Stokes shift 

(the difference in wavelength or frequency between the maxima of the absorption 

and luminescence bands) and extinction coefficient. Due to poor solubility in 

hydrophobic matrices, ionic Ru (II) are usually adsorbed on SiO2  or TiO2 
34 or 

paired with lipophilic counter anions (such as dodecyl sulphate) 35. Ru (II) 

complexes have moderate quantum yield (usually <0.1), brightness and O2 

quenchability, and high temperature sensitivity which limit their uses in O2 sensing 

36. An example of a commercial Ru (II) based sensor is the O2xydotTM which is 

produced by Oxysense Inc, based on [Ru(dpp)3](ClO4)2 incorporated into silicone 

rubber 37. 

Some research has gone into Ir2+ polypyridine complexes which are soluble in 

organic polymers. They have strong green phosphorescence with a long lifetime (< 

2.0 µs). Tris(2-phenylpyridine) iridium(III) is one complex which shows a relatively 

long lifetime (1.5 µs) relative to other iridium based compounds. It can be 

immobilized in different polymer matrices such as poly(styrene-co-

trifluoroethylmethacrylate) (TFEM)38  in order to be applied as an O2 sensor. 

However, due to poor molar absorption coefficients (generally <10,000 M-1 cm-1) 
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and lifetimes shorter than metalloporphyrins, their use in solid-state O2 sensors is 

limited.  

The other main candidate dye for luminescent O2 sensors are Pt(II)-porphyrins 

and related structures29. These complexes show strong phosphorescence at room 

temperature, a large Stokes shift, and a long emission lifetime (µs) which is 

moderately quenched by O2. The central metal ion within the porphyrin influences 

the properties of the dye with Pd(II)-porphyrins showing 5-10 times longer lifetimes 

and much higher sensitivity to O2 is due to the heavier Pd (II) ions having higher 

spin-orbital coupling39. Pd-porphyrins are mostly used for trace O2 analysis.  

Early sensors used Pt(II) octaethylporphyrin (OEP) which has low photo-stability 

and deteriorated quickly in the polymer matrix 40. Pt-tetrakis(pentafluorophenyl) 

porphyrin (PtTFPP) incorporated electron withdrawing perfluorophenyl substituents 

which improved photo-stability of the dye by reducing electron density on the 

porphyrin ring 41 is much better in this regard. The major limitation of PtTFPP is the 

need for excitation at 400 nm in order to achieve high brightness, while excitation at 

Q bands is weak, which makes it less usable in packaging applications.  

Dyes that absorb in the red/near-IR region are more preferred for packaging 

applications, as they are less susceptible to auto-fluorescence and scattering  

interferences. In addition, powerful LEDs and laser diodes are available to excite the 

NIR dyes. A summary of the photophysical properties of commonly used O2-

sensitive dyes is seen on the next page (Table 1.1). 
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Table 1.1 Summary of photophysical properties of the commonly used O2-sensitive dyes. 
42 

Dye 
λλλλmax 

Abs/nm 

(εεεε /M-1cm-1) 

λλλλmax
Em/n

m 
φφφφ in 

solution 
ττττ (µµµµs) 

Brightness 

in PSa Ref. 

[Ru(dpp)3]
2+ 

463 

(2.86 ×104) 
618 0.366 6.4 10467 

36a 

N N

NN

F

F

FF

F

F F

F F

F

F

F

F

F

F

F F

F

FF

Pt

PtTFPP 

394 

(32.3 ×104) 
504 

(2.32 ×104) 
538 

(2.94×104) 

647 
710 

(shoulder) 
0.088 60 

92000 
5600 
7600 

43 
 

PtOEPK 

398 

(8.62 ×104) 
592 

(5.51 ×104) 

758 0.12b 60b 
19000 
12000 

44 

N N

NN

F

F

F

FPt

 
PtTPTBPF 

430 

(21.2 ×104)), 
615 

(14.6×104)) 

773 0.60 50 
149000 
102000 

45 

a Brightness values were taken from Ref 43b, calculated using, φ of Ir(Cs)2(acac) in PS as 1; b in 
micellar sulphite solution 

 

Several porphyrin dyes exist that have red/NIR phosphorescence. Pt (II) 

complexes of porphyrin ketones44 and PFPP-lactone46 have red-shifted and high 

absorption. Thus, PtOEP-ketone encapsulated in polystyrene shows phosphorescence 

at 759 nm at room temperature and unquenched lifetime of approximately 61.4 µs. 

However its brightness is moderate.  
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Pt(II) benzoporphyrins have absorption and emission in the visible-far-red region 

(550-700 nm) and are compatible with a variety of different food-safe polymers. 

Brightness of the dye (defined as: molar extinction coefficient × luminescence 

quantum yield42) is a critical factor as dyes with higher brightness can be 

incorporated into polymers at lower concentrations, hence reducing aggregation and 

cost of manufacture.  

Tetrabenzoporphyrins (TBPs) have extended π-conjugation by incorporation of 

benzo ring fused to the core and exhibit red-shifted absorption and emission47. By 

substituting the H-atom of the meso-phenyl ring with a fluorine atom in PtTPTBPF, 

a red-shift in the phosphorescent emission (λmax approx. 773 nm) and an increase in 

the brightness, photo-stability and quantum yield was observed45. Further 

substitution of H atoms yielded dyes with reduced quantum yield. The meso-

substituted dye is also less likely to aggregate when incorporated into non-polar 

polymers. When encapsulated in PS (τ0 = 52.6 µs) and poly(styrene-block-

vinylpyrrolidone) nanobeads (τ0 = 59.6 µs) the dye showed optimal sensitivity 

towards O2 in the 0-100 % range.    

 

1.2.2 Polymer matrices 

In solid-state O2 sensors, dyes have to be incorporated into polymer supports or 

matrices, in order to shield them from quenching interferences and facilitate handling 

and reuse (Fig. 1.4). Polymer matrices are chosen based on factors such as solubility, 

retention of the dye (i.e. no leaching or aggregation) and the O2 permeability (i.e. 

quenchability) 48. In addition, the polymer itself should have stable chemical and 

thermal properties, with minimal change in microstructure over time.  
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Fig.  1.4 Diagram showing components of traditional solid-state O2 sensors 

 

The sensitivity of the sensor is dependent on the lifetime of the O2-sensitive dye 

and the O2 permeability of the polymer. Dyes with shorter lifetimes such as 

[Ru(dpp)3]
2+ require polymers with high O2 permeability, such as silicones and 

fluorinated co-polymers. Dyes with longer lifetimes such as the Pt-porphyrins 

mentioned above, require polymers with medium to low O2 permeability. As a result, 

the Pt-porphyrins are generally compatible with many food-grade polymers such as 

polyolefins (polyethylene (PE) and polypropylene (PP)), polysulfone (PSu), 

polystyrene (PS) and biodegradable and sustainable polymers such as polylactic acid 

(PLA) and polyphenylene sulphide (PPS).  

Sensors can be tuned to measure specific ranges of O2 depending on the 

dye/polymer combination selected. The use of dyes with moderately high 

unquenched lifetime, such as Pt (II)-porphyrins with a moderately O2-permeable 

polymer matrix, leads to a sensor which can read O2 in the range of 0-21 kPa. 

Likewise using a dye with long-lived lifetimes, such as Pd (II)-porphyrins with 

highly O2 permeable polymers, can lead to the production of highly sensitive sensors 

which measure in the low to trace levels of O2.  

Hydrophilic polymers, such as polyurethane and polyacrylamide, show low O2 

permeability and are rarely used in solid-state sensors. This is also due to these 
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polymers swelling in humid conditions, which can shift the O2 calibrations. 

However, these polymers can be used for developing biosensors as they show high 

biocompatibility49. Sensor dye microparticles have been incorporated into 

polyurethane hydrogels for sensing several different analytes 50.  

Sol-gel matrices are synthesised through the hydrolysis of silane precursors. 

These matrices possess desirable properties for O2 sensing, due to their high optical 

transparency, good mechanical properties and chemical stability 51. The porosity and 

O2 permeability of sol-gels can be tuned, by varying the fabrication parameters; for 

example pH, aging time and the ratio of water to precursor 52. However, there are 

issues with reproducibility of sensors, sol-gel process complexity, response times 

and drifts in calibration, due to their tendency to undergo alteration in the network 

structure (as a result of condensation reactions of the free silanol groups).  

Hydrophobic organic polymers, such as polystyrene, are used in O2 sensors due to 

their high chemical and mechanical stability, moderate O2 permeability and ability to 

form transparent coatings 17a. In addition to the polymer matrix in which the dye is 

incorporated, conventional sensors which usually comprises of a thin film coating (to 

provide fast response) will often need a support material. It is fragile and hard to 

handle, therefore support materials such as polyester film (e.g. Mylar® 35b) or 

microporous supports 53 are needed, to enable easy handling, improved mechanical 

stability and brightness. The development of covalently conjugated Pt (II) and Pd (II) 

benzoporphyrins to silicone rubber by Borisov et al. 
54 has been reported to 

overcome issues with leaching, migration and aggregation seen in dyes mentioned in 

the previous section. 
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Polyolefins are some of the most commonly used polymers in packaging 

laminates and represent almost half of the total industrial polymers produced in the 

world 55. As well as being inexpensive, these polymers exhibit suitable O2 

permeability and good mechanical and chemical properties. However their use in 

sensors is hindered by limited process-ability and insolubility in commonly used 

solvents and poor compatibility with common sensor dyes. Some sensors based on 

PP and PE have been created via solvent crazing 56 and melt-extrusion 56b which 

showed promise and general suitability for food packaging, due to their planar nature 

and thermal stability, lamination and heat sealing options. Discrete sensors have also 

been produced by spot-crazing on HDPE and PPS films 56a, 57, which exhibited linear 

Stern-Volmer plots, but also cross-sensitivity to humidity. New sensors which 

overcome these limitations will be described in later chapters 58.  

Some research has gone into producing environmentally friendly and sustainable 

sensors. Sensors have been fabricated using ethyl cellulose and cellulose acetate 

matrices. Cellulose derivative polymers possess medium permeability (approx 3-12 

cm3 STP  17c), however by adding a plasticizer such as tributyl phosphate (TBP) O2 

permeability is increased. A study performed by Mills et al. 59 immobilized Pt(II) 

and Pd(II) porphyrins in a cellulose acetate and TBP film. However, ethyl cellulose 

is very hygroscopic leading to limited applications especially in conditions of 

varying humidities.  

Additives can be added to polymers in order to tailor polymer properties such as 

to improve stability and to tune O2 permeability of the polymers 

Adding plasticizers can improve the efficiency of the O2 quenching in addition to 

improving the mechanical properties of the polymer. Plasticizers are often added to 
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poly(vinyl chloride) polymers to reduce brittleness and facilitate easier handling 17a. 

However, the addition of plasticizers can cause issues with leaching which can 

change sensor function and can also lead to product contamination making sensors 

produced this way unsuitable for applications in food products.  

Fluoropolymers (which have fluoride monomers added) generally have a high O2 

permeability and a negative charge which help hinder photo-oxidation 17c. O2 

solubility improves 3-10 times on that in parent polymer 17a. This leads to lower 

limits of detection and faster response times. Metalloporphyrins have been 

immobilized in fluoropolymers such as poly(styrene-co-trifluoroethylmethacrylate 

41c to produce working O2 sensors. In addition, it was shown that increasing the 

fluorination unit in the polymer increases sensitivity to O2. Using a combination of 

fluorination and gas blocking additives, the O2 permeability of polymers can be 

adjusted within desired ranges.  

However, more complex chemistry results in a more complex sensor structures 

and expensive fabrication procedures which are not desirable for food packaging. A 

summary of commonly used sensor materials is on the next page (Table 1.2). 
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Table 1.2 Summary of commonly used sensor matrices, more detailed tables available in Wang et al. review 
17a

 

Polymer 
O2 

permeability 
Advantages Disadvantages Dyes 

Ethyl cellulose Moderate 
Environmentally friendly, Good mechanical 

strength 
Hygroscopic 

Ru(dpp)3(ClO4)2) 
60, Ir (ppy-

NPh2)3 
61, PdEOP 62 

Fluoropolymer High 
Good stability, Tuneable permeability, 

Limited photo-oxidation 
Higher complexity, Added cost PtOEP 63, PtOEPK 64 

PMMA Moderate Low cost, Moderate stability 
Background fluorescence in UV range, 

Requires plasticizer 
Ru(dpp)3(Ph4B)2  

35a, 
PtOEP/PdOEP 59 

Polyolefins Moderate 
Low cost, Good stability, Easily available, 

Good mechanical properties 
Poor compatibility with common solvents, 

Limited process-ability 
Fluoranthene 65, PtBP 56a 

Polystyrene Moderate Easily manufactured, Low cost, Good stability 
Needs support material, Highly hydrophobic 
leading to slow response in aqueous samples 

Ru(dpp)3(ClO4)2) 
66, Ir(ppy)3

38, 
PtOEP 67, PtOEPK 40b 

PVC Low 
Good mechanical properties, Good optical 

properties 
Low O2 permeability, Needs plasticizers 

which can leach 

Camphorquinone 68, 
Ru(dpp)3(ClO4)2) 

60  

Silicone 
Rubber 

High 
Good mechanical properties 

, Good optical properties, High thermal 
stability, May be steam sterilized 

Cannot be easily plasticized, Poor hosts for 
highly polar dyes, May contain unknown 
components in precursor material, Final 
attributes affected by curing procedure 

Pyrene 69, 
Ru(dpp)3(laurylsulfate)2) 

70, Pd 
coproporphyrins 71 

Sol-gel Tuneable 
Good mechanical properties, Good optical 

properties 
Poor reproducibility, Process complexity, 

Change in structure over time (aging) 
Ru(bpy)3 

72, PtOEP 73, PtTFPP  
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1.2.3 Methods of dye encapsulation 

Dyes can be incorporated into polymer matrixes in a variety of ways. The most 

common method involves dissolving the dye and polymer in a suitable solvent, 

spreading such ‘cocktail’ onto a suitable substrate (usually a support like Mylar® 

film or glass slide) as thin film and drying. This method works when the dye and 

polymer are compatible with the same solvent. Previous efforts at sensor fabrication 

involve the use of spin-coating (usually on a glass substrate), fabrication of dye 

solutions in printable ink formats74, and spotting a dye cocktail on a porous 

membrane such as filter paper 75.  

Some dyes can be covalently linked to the backbone of matrix polymer to form 

stable sensors which have no leaching and dye migration issues 76. Dyes with 

cationic groups such as [Ru(dpp)3]
2+ can be adsorbed onto polymeric particles with 

negatively charged surfaces such as silica. Dyes are increasingly being incorporated 

into polymer micro and nanoparticles24, 77 which provide a protective and stable 

environment for the dye and liquid/dispensable sensor formulation. O2-sensitive 

microparticles with tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) dichloride 

([Ru(dpp)3]
2+ absorbed on SiO2/TiO2 were also co-extruded into polymer films 56b.  

Sensors have also been created by solvent-crazing method 56a, 57 on HDPE and 

PPS (Fig. 1.5)  which allows for previously non-compatible components to be 

combined. Solvent-crazing of polymers in physically active liquid environments 

(PALE) allow the incorporation of previously incompatible dyes and polymers. The 

basic concept of crazing involves the tensile drawing of a polymer film in a suitable 

solvent which leads to the creation of nanoporous structures in the polymer known as 

‘crazes’. If an additive is dissolved in the crazing solvent, it can be sucked into and 

trapped in the crazes once the tensile pressure is released. The crazing is controlled 
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by the nature of the polymer (crystallinity, chemical structure etc.), PALE, the way 

the strain is introduced to the polymer (i.e. the tensile strain, applied stress, strain 

rate and temperature) and the concentration of additive (or dye) in the crazing 

liquid78. In addition to swelling and spot crazing methods, which are generally batch 

produced, efforts have been made to make sensors on a continuous basis 79. 

 
Fig.  1.5 Diagram showing batch spot-crazing system 

56a
.  

 

Recently, there has been some interest in fabricating sensors in a micro and nano 

sized fibre format. Fibres are attractive as sensor matrices as they have high 

sensitivity, fast response times, high porosity and could be easily exposed to analytes 

80. Nanofibres have been fabricated from polystyrene 81, polycaprolactone82, and 

more recently, from PE and PP 80. Although, possessing formidible attributes, 

production of such fibres consume large amounts of solvent which can increase the 

production cost. In addition, sensors based on these polymers sometimes have issues 

wth aggregation within the nanoporous structure, cross-sensitivity to humidity and 

the fragile nature of the fibres leads to them being quite difficult to handle.  

Luminescent dyes can be incorporated into polymer matrices by swelling method. 

Some polymers, with higher chemical resistance, swell to many times their original 

size when absorbing a compatible solvent. Additionally, by dissolving compatible 

dye in the swelling solvent, the dye molecules can diffuse into the polymer. When 

removed from the swelling solvent, the polymer returns to its original volume 
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trapping the dye molecules within. The degree of swelling is dependent on the 

compatibility of the polymer with the solvent and the strength of the solvent. 

 

1.2.4 Preferred Sensor Materials for Food packaging 

applications 

Although there are many O2 sensing dyes and materials, only a few are actively 

used in food packaging applications. The main selection criteria are spectral 

properties, O2 sensing performance and cost. In addition, the sensor materials have to 

be compatible with common packaging materials and processes, and are safe to be in 

packs and in contact with food as laid out by legislation. 

For practical applications, the dyes should be compatible with available excitation 

sources such as LEDs and lasers. The chemical stability and photo-stability of the 

dyes are also critical factors, as in food packaging the sensors will be exposed to a 

variety of harsh lighting and chemical conditions. As they will potentially also be in 

contact with food, the sensors should exhibit low toxicity with no leaching of the 

dye. Therefore the solvents used to create the sensors should be considered carefully. 

Furthermore, for large scale food applications the sensors should be reproducible, 

robust and use minimal components for fabrication 4a. 

The sensors should preferably be planar to assist easier integration into food 

packaging. Integration techniques include free-standing sensor inserts which can 

placed in containers with the food, adhesive stickers attached to the packaging, 

printed sensor labels printed on the inside of the packaging label and lamination 

where the sensor is laminated between the outer barrier packaging and an inner O2 

permeable layer. The main requirements for integration are: the allowance of easy 
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access of the sensor to the container atmosphere, the interrogating instrument and 

protection of the sensor from the atmosphere outside of the package. 

Additionally, integration processes can often protect the sensor from the food 

product and vice versa. This is often vital as some food components (e.g. meat 

juices) can affect the sensors characteristics (reduced signals due to discolouration, 

shift of calibration due to plastification and changing of the availability of O2 to the 

sensing dye) and leads to inaccurate readings. From a food safety perspective, the 

use of a gas permeable film, such as HDPE, laminated on top of the sensor, between 

the sensor and food product, can prevent migration of the sensor components (dye 

and polymer matrix) into the food, and product contamination with particles that 

could be accidentally ingested.  

 

1.2.5 Characterization of sensors 

Before implementation, new sensors should undergo detailed characterization. 

Initial characterization involves plotting the sensors intensity/lifetime readings over a 

range of O2 concentrations to obtain a calibration. For applications in food 

packaging, the sensor should show reproducible calibrations, generally over the 

range of 0.05-21 kPa O2. Some food products such as raw MAP meat require sensors 

measuring up to 100 kPa O2, while other products require measurement trace O2 

levels (ppm range). The sensors should have no cross-sensitivity to humidity, as 

humidity is not controlled in many food packages.  

Most solid-state sensors show a dependence on temperature and their sensitivity 

decreases at low temperatures. As many food products are stored in a variety of 

conditions and transported to various climates abroad, the sensors should exhibit 
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predictable response over a representative range of temperatures (- 20 °C - + 30 °C). 

Unfortunately, only a few systematic studies have been performed over such a wide 

temperature range 83. The cross-sensitivity of a sensor to temperature is strong, and 

luminescence measurements must be corrected for temperature fluctuations in food 

packages.  

Additionally, response time is a critical factor. Use of thin film coatings and 

microporous membranes with high gas permeability, allows for fast (second 

timescale) response times which are generally desired, especially for in-line 

monitoring of packaging integrity of large-scale lines. Finally, as mentioned above, 

photo-stability and long shelf-life stability of the sensors are essential when 

designing sensors to be applied to food packaging monitoring. 

 

1.2.6 Instrumentation 

Currently, several commercial optical O2 sensors and instruments are available for 

industrial applications. However, only a few are directly suitable for packaging 

applications, which demand special requirements, such as operation with detachable, 

disposable, calibration-free sensors, a broad range of working temperatures, a 

portable handheld measurement device, high level of validation (i.e. knowledge of 

cross-sensitivities and interferences) and affordable costs.  

Comparison of several most suitable systems is provided on the next page (Table 

1.3) 42: 
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Table 1.3 Summary of photophysical properties of the commonly used O2-sensitive dyes 
42

. 
Company Mocon Inc & Luxcel Ltd. Oxysense PreSens GmbH 

Sensor OpTechTM-O2 Platinum O2xydots® Pst3 

Dyes PtTBP [Ru(dpp)3]Cl2 PtTFPP 

Forms Adhesive stickers(peel able 
from a card) 

Sensor dots applied 
with silicon glue 

Sensor dots applied 
with silicon glue 

Measuring range 
0.001- 30 % permeation mode 
(g) 0.015 %-25 % headspace 

mode (g) (0.006-10.5 mg/L (l)) 

0-30 % 
0-100 %  (g) 

(0-45 mg/L (l)) 

Accuracy 
± 2 % or ± 150 ppm (whichever 

is greatest) 
5 % of reading 

± 0.4 % @ 20.9 % O2 

± 0.05 % @ 0.2 % O2 

Detection limit 0.03 % (0.03 kPa) 
0.03 % (gas) 

15 ppm (liquid) 

0.03 % (gas) 

15 ppm (liquid) 

Compensation 
Automatic temperature 

(contactless IR sensor) and 
pressure compensation 

Integrated 
temperature and 
pressure probes 

Integrated 
temperature, and 
pressure probes 

Operating 

temperature 
5-40 °C 0 °C - 70 °C 0-50°C 

Response time 
< 3 sec (gas) 

<30 sec (liquid) 
< 30 sec 

< 6 sec (gas) 

< 40 sec (liquid) 

Price per sensor $3 $4.30 $33 

 

These systems often require quick re-calibration of sensor (or whole system with 

instrument) before use to confirm their accuracy. The OpTechTM sensors are 

calibration-free, but they also have validation “Calcard” (or calibration vial for 

needle sensors). Oxydots® come with factory calibration however user calibrations 

may be carried out if deemed necessary.  PreSens sensors use a two-point calibration 

at 0 kPa and 21 kPa before operation. These companies offer customised sensor 

modification such as sensors for trace O2 analysis (PSt6, PreSens) and individual 

deployable sensor beads (dOxybeadTM, Luxcel-Mocon). (Fig. 1.6) 
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Fig.  1.6 Images of various types of O2 sensors: A) Presens Sensor spots; B) Oxysense sensor spots glued to the 

bottle; C) Mocon OpTech
TM

-O2 Platinum adhesive stickers on a card and CalCard for system validation, D) 

sheet of extruded sensor film, E) Mocon needle-taken from Banerjee et al. 
42

. 

 

Easy integration of the sensors into food packaging is essential. Oxydot® and 

Presens sensors must be stuck to the packaging using silicone glue. Mocon’s 

OpTechTM sensors come as a self-adhesive sticker, or imPULSETM probe and a 

needle sensor for minimally destructive headspace analysis. Although convenient, 

use of the above sensors is limited by their expense, which in turn limits their 

inclusion in mass scale manufacturing. The viability of sensors to be used in food 

packaging are reliant on their production cost which should be less than 1 cent 4a. As 

a result, many new studies are carried out to attempt to manufacture new optical 

sensors, which use less expensive components and can use existing reading 

instrumentation or newly designed instruments.  
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1.3 Applications of O2 sensing in food packaging 

Much of the proof of concept work on the use of non-destructive luminescence 

based O2 sensing in food packaging was done in the 2000s. Prior to the appearance 

of advanced commercial O2 sensor systems; such as Fibox (Presens), O2 analyser 

(Oxysense) and OptechTM (Mocon), prototype O2 sensors and instruments 84 were 

used.  

In initial studies, O2 sensors were used to detect compromised packages so that 

manufacturers could be aware of failures. MAP protects food products from outside 

contamination, in addition to inhibiting microbial growth and other degradative 

processes by tailoring of gases within the packages. Some red meats, such as steaks, 

require medium levels of O2 to promote oxygenation of the myoglobin within the 

meat, which maintains the aesthetically pleasing red colour. Unlike beef, chicken 

products require lower O2 levels (< 1 % O2) in order to maintain quality. Lipid 

oxygenation can occur in the presence of very low levels of O2, therefore in products 

such as cooked meats, O2 levels must be kept very low in order to prevent quality 

decline 85. 

As O2 is an important quality indicator, it is therefore a very important analyte to 

monitor. Levels within packages must be monitored closely, to pick up on any 

damaged or compromised products where the atmosphere is no longer intact. Packs 

on manufacturing lines which fail to meet strict O2 guidelines should be rejected or 

repackaged if this is a viable alternative before they can leave the factory.  

Originally, prototype sensors comprising of phosphorescent PtOEPK dye 

dissolved in polystyrene and spotted on polymeric membranes or filter paper were 

used to track O2 levels in packaged beef and hams 75, 85. These sensors were also 



 34 

used to demonstrate the commercial feasibility of such sensors as a means to detect 

compromised packages. The use of disposable O2 sensors in individual packs were 

found to be very useful and informative when placed in direct contact with the food 

or attached to the lidding material and exposed to package headspace. Reliable 

optical signals and hence quantitative information about the O2 levels within the 

pack were obtained.  

In particular, the ham study showcased the great need for continuous monitoring 

of food packages 85. Although the products were packaged under anoxic atmosphere, 

residual O2 levels in the packs were significant (0.1-1 %) and gradually increased 

during storage. This can be due to O2 exchange between O2 trapped within food 

products and the package headspace, the permeability of the packaging materials 

and/or imperfect sealing. Screening of the ham packs exposed multiple failures (1-5 

in each batch) which could be missed using the traditional headspace analysis 

methods, which take packs off the line for analysis on a statistical basis. Prompt 

detection of these failures can save the company money, as the failed packages can 

be repackaged without any degradation of the food product if caught in time (Fig. 

1.7). 

 
Fig.  1.7 Representative results of screening of a batch of MAP food product with disposable O2 sensors 

(adopted from Banerjee et al. review
42

)  

 



 35 

PtOEPK sensors were packaged with cheddar cheese and used as integrity 

checkers 86. The study found 3 failures out of 67 packs and yet again demonstrated 

the need for individual integrity checks in packaging.  

PtBP dye based sensors were adhered to green and brown wine bottles to assess 

the bottles for leaks and track O2 ingress through the cork 54. 

Fresh produce, such as vegetables and salads, are highly perishable and 

“breathable” i.e. require O2 to maintain freshness. As these products are alive and 

respiring, there needs to be minimal time between harvesting, processing and 

packaging 87. Perforated lidding was traditionally required for fresh produce to 

ensure that O2 levels were sufficient to allow respiration. However this allows air 

exchange with the food product which encourages microbial growth. Therefore, 

many of these products are now packaged using MAP88 which protects the product 

from outside contamination while ensuring O2 levels are sufficient. PtOEPK sensors 

in combination with Mocon’s OpTechTM instrument, were shown to provide accurate 

and comprehensive information on O2 headspace levels, when placed within 

commercially packaged bags with fresh salad leaves 88. In addition, respiration 

profiles of different types of lettuce were shown to be easily obtained using these 

sensors.  

Lettuce leaves have different rates of respiration subject to the species of the 

lettuce. It is therefore important to track lettuce respiration as the O2 levels within the 

pack must correlate to the leaf with the highest O2 requirement to maintain freshness 

for a seven day shelf-life and avoid wilting of any component. The study on lettuce 

using optical O2 sensors showed that MAP can be tailored to the type of produce 

being packaged in order to extend shelf-life.  
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O2 sensors can also be used to test preservative measures taken on food. PtOEPK 

sensors were used to track the effects of different ethanol based atmosphere 

modifiers on MAP breads 89. Although MA packaged with anoxic atmosphere, the 

sensors tracked a rise to approximately 14 % O2 as a result of O2 release from the 

bread products which was introduced during processing. This rise in O2 encouraged 

the growth of mould on day 12. The use of an ethanol spray reduced the onset of 

mould to day 13 but left an undesirable aroma and taste on the product. In 

comparison, the ethanol-emitting LDPE sachet postponed mould growth until day 30 

with no noticeable changes in sensory properties of the bread. Therefore, the 

objective of the study to extend shelf-life was achieved and O2 sensors tracked the 

O2 content over the period of the study.  

Sensory properties such as colour, taste and aroma have a major effect on how the 

food product is appraised by producers and consumers. Even a slight increase in O2 

can have a noticeable effect on these parameters and decrease the quality of the food. 

Therefore, the monitoring of O2 levels and relating these levels to degradative 

processes is fundamental in forecasting shelf-life and ensuring quality of food 

products from factory to fork.  

One such study used PtOEPK O2 sensors to correlate O2 levels to lipid oxidation 

in samples of raw and cooked beef both vacuum-packaged and MA-packaged 75. It 

was shown that although oxidation did not occur up to day 35 in vacuum-packed raw 

and cooked meats, MAP meat had an oxidative stability of 12 days, most likely due 

to its higher initial O2 levels. The study also concluded that although O2 is needed 

for lipid oxidation it is not the driving factor as revealed when comparing oxidation 

levels in MAP cooked meat to vacuum-packed cooked meat. Instead, it was shown 

that temperature was the driving factor of lipid oxidation as demonstrated by higher 
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lipid oxidation in cooked meats versus raw meats. This finding indicates measures 

should be taken to reduce exposure to O2 between cooking and packaging to limit 

lipid oxidation. 

In the same way, OpTechTM O2 sensors have been used to measure the depletion 

of O2 in raw beef and chicken fillets 90. Both samples were packaged with a 21 % 

headspace. The beef and chicken showed a decrease in O2 levels over a 9 and 10 day 

span respectively. This confirms that aerobic bacteria which are the most common 

cause of food spoilage, consume headspace O2 over time. However, as no sensory 

data was available in the study, there is no way to ascertain whether the food was 

deemed spoiled before the O2 levels were depleted. As chicken is conventionally 

packaged in 0 % O2 atmosphere, it would seem likely that this product would be 

considered spoiled before 10 days due to other degradative processes such as lipid 

oxidisation.  

Studies have also tracked the correlation between the growth of microorganisms 

on food and O2 levels. In the cheddar cheese study mentioned previously, PtOEPK 

sensors were used to trace the O2 profile of a faulty package of cheese (which is 

usually packaged in an anoxic environment), showing that as mould grew on the 

contaminated product the O2 levels steadily decreased 86. This is an important factor 

to consider when monitoring quality and degradative processes within food products, 

as initial high O2 concentrations, which would usually indicate a leak, are often 

depleted to original levels by oxidation and microbial actions within certain windows 

of time.  

Along with influencing some chemical reactions in solid foods, O2 plays a key 

role in the quality of liquid products and beverages. Many chemical reactions occur 
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during the maturation of red wine and the effect of O2 (either positively or 

negatively) can impact the final wine characteristics. Therefore, O2 content in wine 

products must be quantified and controlled.  

Many wine-makers add controlled concentrations of O2 to wine in order to 

optimise the maturation of the wine.  The influence of different O2 exposures on the 

evolution of several volatile sulphur compounds (VSCs) such as H2S, methyl 

mercaptan (MeSH) and ethyl mercaptan (EtSH)  during Shiraz maturation was 

investigated by Ugliano et al. 91. Their aim was to create O2 procedures to control the 

evolution of VSCs in the wine. Each bottle was fitted with two PreSens Pst3 sensors; 

one to measure headspace O2 and the other to measure dissolved O2 in the wine. The 

study findings implied O2 had a direct effect on the H2S and MeSH levels, which in 

turn affected the odour of the wine. By plotting the O2 levels obtained by the sensors 

against the concentrations of VSCs, a correlation between lower O2 levels and higher 

VSCs was made. 

Similar to wine, the flavour and visual appearance of beer are dependent on 

oxidations during processing and packaging stages 92. Stability of beer flavour is 

dependent on low O2 concentrations. Although, beer should be O2 free after 

fermentation, it is most vulnerable to oxidation at this point. Bottles are filled to the 

top with carbonated beer and capped aim to minimise the O2 trapped in the bottles. 

When the foam dissolves, the O2 levels left in the headspace should be negligible. 

However, this process is often affected by the different foam structures formed in 

bottle necks which trap some O2. High O2 levels lead to higher levels of carbonyls 

and development of undesirable tastes during storage. As beer degrades, these 

carbonyls increase, suggesting that beer would taste best straight after production. O2 

sensors have been used to monitor residual O2, oxidation and quality of beer over 
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time. PtOEPK sensors were adhered on the inside of bottles and a phase detector was 

used to measure the signals from the sensors. The study showed pasteurisation (a 

technique used to kill microorganisms) caused headspace O2 to diffuse into the 

product which was in turn rereleased into the headspace over time. This indicated 

that O2 was not utilised in spoilage processes however, sensory analysis performed 

as part of the study, showed that beers with initial headspace O2 > 1 % were 

considered unacceptable by the tasting panel. Therefore, O2 sensors were 

demonstrated to allow continuous quality monitoring with set quality criteria such as 

O2 levels < 1 % O2.  

Ascorbic acid (AA), otherwise known as Vitamin C, is a stabilising antioxidant 

which can be oxidised and broken down into undesirable by-products. When AA is 

oxidised over time, it converts into L-dehydroascorbic acid (DHA), which has an 

antioxidant activity five times lower than AA, 93 which sequentially increases 

browning in the juice. Additionally, as DHA increases, the biological action of 

vitamin C is lost. As a result, packaged orange juices are considered to be highly 

perishable and O2 sensitive products, resulting in O2 concentrations being monitored 

as quality factors during their production and storage. Therefore, residual O2 and in 

turn, packaging permeability, is considered to have an effect on the sensory and 

nutritional quality of the juice. Oxydots® were used in studies by Van Bree et al. and 

Wibowo et al. to link O2 in headspace to the degradation of AA94. Both studies found 

a correlation between higher O2 levels and rapid, higher DHA formation. This 

indicates that precautions should be taken to control O2, during the processing and 

packaging of orange juice to minimise degradation.  

Lastly, the link between storage temperature and O2 to lipid oxidation in rapeseed 

oils has been investigated using Oxydots®. Kozak et al. 95 monitored the rate of O2 
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consumption during storage of rapeseed oil products, with ambient headspace at 

varying temperatures. The study revealed that higher temperatures increased O2 

consumption and led to higher formation of hydrogen peroxides (a by-product of 

lipid oxidation). Samples stored with nitrogen headspace showed minor hydroxide 

peroxide formation. Thus, the optical O2 measurement technique could be applied to 

all liquid oil products in order to evaluate optimal storage conditions.  

In MAP systems, a gradient of the gas is created between the inner compartment 

containing the food and external atmosphere (usually air). The permeation of 

packaging materials, even if they have barrier material properties, can still allow 

atmospheric O2 pass into the product. Therefore, having a quantified measurement of 

packaging gas permeability is very important in the food and packaging industries. 

Usually, the O2 permeability of films and other materials are measured on special 

instruments such as Mocon’s Ox-Tran® Model 2/21 system or Oxysense’s Oxyperm 

OTR system. Although very accurate, these systems are limited to planar empty 

samples, have low sample throughput and are time-consuming. The Oxyperm system 

has made efforts to combat this by producing an adaption for measuring bottle 

permeation but is still limited by expense and the need for a trained operator 37.  

Introduction of disposable O2 sensors and non-destructive, contact-less optical 

measurements can address the shortcomings of the conventional instruments and 

enable an extended range of gas permeation tests. These sensors can be adhered to 

almost any surface of an assortment of shaped packs, including whole composite 

material e.g. trays with sealed lidding, closed bottles, packages filled with liquid or 

food. In addition, the sensors can be used to measure packaging materials being 

stressed on the packaging line.  
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PET carboys, which are used in home winemaking, were evaluated for O2 

permeability using a Mocon OpTechTM instrument 96. The O2 sensor stickers were 

adhered to the neck of each carboy and interrogated regularly for the O2 content in 

the carboy. The study was dual-purpose by both affirming the suitability of the 

carboy for use and demonstrating the suitability of the Mocon OpTechTM system for 

measurement of packaging permeability.  

A similar study was carried out by Diéval et al. using Presens Fibox 3 O2 meter 

and PSt6 sensors 97. Upon adherence of the sensors on glass bottles, bottles with 

different Normacorc closures were examined for differences in O2 ingress over 250 

days. The bottle necks with closures were also tested on the Mocon Ox-Tran® 

instrument for comparison. The Presens sensors were shown to perform well against 

the Ox-Tran® -instrument and provide a simple easy-to-use alternative to traditional 

O2 permeability measurement devices. J. Wirth et al. 98 and Ugliano et al. 99 have 

both carried out similar studies assessing O2 transmission rates using Presens 

sensors. 

Although packaging science has advanced significantly in the last few years, the 

choice of packaging is often a case of trial-and-error which is time-consuming and 

wasteful. In an interesting study, Van Bree et al. carried out a systematic study into 

the permeation levels of different multilayer packaging compositions 100. The 

outcome of the study was the development of simulation software, which could 

predict the optimum headspace O2 concentration dependent on packaging 

configuration and storage conditions. The software was validated using Oxydots®. 

Simulations include the influence of different packing materials, thicknesses, 

temperatures and headspace on overall O2 concentration within the pack. This 
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software has the potential to eliminate some of the package material testing required 

for new food products.  

Dissolved O2 can also be measured by some optical O2 sensors. In wines, the 

concentration of O2 has a major effect on the wine’s final properties. If 

concentrations are too low, aroma defects such as reduction (dominant smell of egg 

or rotten vegetables 101) can occur. In contrast, if O2 levels are too high, there can be 

an increase in oxidation and discolouration of the wine 102. Many of these studies 

utilize the PreSens sensors as they are non-invasive and can be continuously 

monitored.  

Wine can be discoloured if exposed to excess O2 e.g. white wine is known to turn 

brown and red wine an orange-red tone. However, as wines are often required before 

the colour and texture can be stabilised naturally by aging, controlled oxygenation of 

the wine is required 103. This oxygenation usually occurs after fermentation. 

However, in recent times, the use of rotary fermenters has been recommended to 

introduce the optimum concentrations of O2 required for chemical reactions to occur. 

As these fermenters are closed systems, optical O2 sensors from Presens were used 

as they can be used to measure O2 concentration within the system non-invasively. 

From the data obtained from the PSt3 and PSt6 sensors, correlations were made 

between higher O2 concentrations and lower tannin concentrations; resulting in more 

stable wine colour and lower astringency. Both astringency and lower tannins 

increase the desirability of wines to consumers.  

Ascorbic acid (AA) is often added to wine in order to reduce oxidative 

degradation104. Along with its antioxidant effects, AA has also been shown to 

improve wine colour and flavour. Ascorbic acid can degrade both oxidatively and 
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non-oxidatively. If uncontrolled, the latter can lead to shortened shelf-life as it 

depletes sulphur dioxide which provides anti-microbial protection to the wine 105. As 

data on non-oxidative degradation of AA is sparse, it can be hard to predict optimal 

O2 levels in the wine suitable to maintain oxidative degradation (the by-products of 

which are scavenged by sulphur dioxide). As a solution to this, a study on non-

oxidative degradation of AA was carried out by Wallington et al. which gathered 

kinetic data on the process. To ensure anoxic conditions, Presens’ sensors were used 

to measure dissolved O2 (PSt3) and gaseous O2 (PSt6). Although, anoxic conditions 

are difficult to achieve, O2 concentrations were kept below the limit of detection of 

the sensors (PSt3 < 50 µg/L) to ensure non-oxidative degradation of the AA would 

occur. The data showed that lower temperatures inhibited non-oxidative AA 

degradation. This implies that wines should be stored and transported at lower 

temperatures to limit non-oxidative degradation of AA.  

Although several commercial optical O2 sensor systems exist, there have been 

very few validation and benchmark tests performed on these systems against existing 

instrumental methods. The  Mocon OpTechTM system, which has the range of 0-25 

% O2 was compared to the traditional destructive headspace analyser DansensorTM 

which has a range of 0-100 % O2 
87. The DansensorTM punctures the package 

through a septum in order to analyse the atmosphere while the OpTechTM sensor can 

give readouts via a contactless reader. The study showed closely corresponding 

values up to 40 % O2, after which the OpTechTM started to show inaccurate readings. 

At the same time, OpTechTM showed a better sensitivity in the low O2 range – 0.03 

% as opposed to 0.1 % for the DansensorTM (which can only give one decimal point 

readings).  
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Likewise, very few studies have looked in detail at sensor behaviour and 

calibration upon its exposure to food products in packs or sensor stability. Likewise 

the accuracy of O2 readings in conditions of real life operation with different 

packaged foods and beverages has rarely been assessed. This data is particularly 

important when sensors are operating in direct physical contact with food product 

that may have high fat content (plastification by oil), strong flavours, varying water 

content or long-term experiments with liquid samples. Package contents could shift 

sensor calibrations and, if not compensated for, lead to inaccurate readings 106.  A 

summary of food based O2 sensor studies is found in Table 1.4 on the next page. 
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Table 1.4 Summary of sensors used in food based applications. 

Product 
Analytical 

Task 

Sensor 

Material 
Instrument Result Ref 

Food 

Beef 
(Cooked/R

aw) 

Residual O2 
levels 

PtOEPK/PS 
on filter paper 

Phosphorescence 
phase detector 

Lipid oxidation 

correlated to O2 levels 
75 

Beef/Chick
en (Raw) 

Residual O2 
levels 

OpTechTM  
stickers 

Mocon OpTechTM 
O2 consumption of meat 

products tracked 
90 

Bread 

Tracking O2 
levels/ 
product 

shelf-life 

PtOEPK/PS 
on filter paper 

Phosphorescence 
phase detector 

Optimum shelf-life 
extending treatment 

discerned 

89 

Cheese 
Integrity 
testing 

PtOEPK/PS 
on filter paper 

Phosphorescence 
phase detector 

Compromised packages 
detected, 

O2 correlated to 

microbiological growth 

86 

Lettuce 
Monitor O2 

levels 
PtOEPK/PS 

on filter paper 
Mocon OpTechTM 

Respiration profiles of 
product obtained 

88 

Ham 
Monitor O2 

levels 
PtOEPK/PS 

on filter paper 
Phosphorescence 

phase detector 
Compromised packages 

detected 
85 

Liquids 

Beer 
Headspace 
O2 levels 

PtOEPK/PS 
on filter paper 

Fluorescence phase 
detector 

Tracked O2 profile, 
headspace >1  not 

palatable 

92 

Orange 
juice 

Monitor O2 
levels 

O2xydots® 
Oxysense® 210T 

probe 
O2 correlated to AA 

degradation 
94 

Rapeseed 
oil 

Monitor O2 
levels 

O2xydots® 
Oxysense® 4000B 

system 

Storage temperature 
correlated to O2 

consumption 

95 

Wine 
Leak 

detection and 
O2 ingress 

PtBP/PDMS 
on PE foil 

Pyroscience 
FirestingTM 

Proof of concept 54 

Wine 
Dissolved O2 

levels 
Presens PSt3 

sensor 
Presens Fibox 3 

Decreasing O2 = 
Increasing VSCs 

91 

Wine 
Tracking O2 

levels 

Presens 
PSt3/PSt6 

sensors 
Presens Fibox 3 

Increasing O2 = 
Decreasing tannins 

103 

Wine 
Ensuring 
anoxic 

atmosphere 

Presens 
PSt3/PSt6 

sensors 
Presens Fibox 3 

Model for non-oxidative 
AA in wine obtained 

105 

Packaging materials 

Normacorc 
closures 

O2 ingress PSt6 Presens Fibox 3 
Determined most 
efficient closure 

97 

Packaging 
materials 

Validation O2xydots® 
Oxysense® 210T 

probe 
Validated packaging 
simulation software 

100 

PET 
Carboys 

O2 
permeability 

OpTechTM- 
stickers 

Mocon OpTechTM 
Carboy suitability 

affirmed 
96 
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1.4 Conclusions 

The above outlines the principle of operation, background and current approaches 

when using solid-state O2 sensors to monitor quality in food packaging. Disposable 

O2 sensors can provide robust, repetitive, fast, non-destructive and reliable readings 

of dissolved and gaseous O2 in food products. They have been used in a variety of 

packaging compositions and have proven to be a useful tool for the monitoring of 

food quality from production, packaging and transport. By rights given how useful 

they are, disposable O2 sensors should be actively used in the food industry for both 

new product development and maintaining the quality of current products.   

Regrettably, this is still not the case. Even though sensor technology has advanced 

majorly in the past few decades, sensors are still not ideal for food packaging 

applications. Sensors are still considered as research tools by the food industry rather 

than a food safety necessity. This is almost completely down to the high cost and 

complexity of current sensors. Due to low profit margins in the food industry, 

sensors need to be low-cost and easily incorporated into current packaging materials. 

Current sensors are still expensive (>$3 a piece), inflexible and are mostly time-

consuming to integrate. Before they become viable, several critical factors will have 

to be addressed. These factors include cost, analytical performance, robustness and 

ability to be more easily incorporated into current packaging.  

In addition, during sensor development, more research needs to go into real-world 

testing of the sensors. Interactions between the sensor and food product, stability of 

the sensor in contact with the food, cross-sensitivities and the safety of such sensors 

need to be studied in depth before they will be deemed suitable for inclusion in food 

packaging. The sensors in the following chapters have been designed to address 

these aspects.  
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2 Chapter 2: Experimental 

2.1 Materials 

Platinum(II) benzoporphyrin dye (PtBP) was kindly donated by Luxcel 

Biosciences (Cork, Ireland). Toluene (≥ 99.3 %), tetrahydrofuran (HPLC grade), 2-

butanone (analytical grade), ethyl acetate (analytical grade), anisole (analytical 

grade) and Kolliphor P188 were purchased from Sigma-Aldrich (Ireland). Nitrogen, 

O2 and carbon dioxide (CO2) gases (99.999 % purity) were from Irish Oxygen (Cork, 

Ireland). All solid chemicals were obtained from Sigma-Aldrich (Ireland).   

The non-woven spunbond polypropylene (PP) grafted with acrylic chains (type 

700/70, thickness 130 µm ± 20 µm, fibre size 8-12 µm, mean pore size 17 µm), non-

woven wetlaid PP (type 700/30K, thickness 160 µm ± 20 µm, fibre size 8-12 µm, 

mean pore size 18 µm) and ungrafted PP (type FS2192i, thickness 80 µm ± 20 µm, 

fibre size 8-12 µm, mean pore size 17 µm) were purchased from Freudenberg, UK. 

High-density polyethylene (HDPE) films (25 µm thick) were from DSC/SABIC 

(Netherlands), the Fortron® film (blown PPS, 127 µm thick) was from CSHyde 

(Netherlands) and polypropylene film was obtained from Goodfellow (UK).  

Low O2-permeable trays (polystyrene/ethylene vinyl alcohol (EVOH)/PE, 

permeation 8-12 cm3 m-2 day-1 at STP) sealed with a laminate of orientated 

polypropylene (OPP) (thickness 20 µm) and co-extruded layer of PE/EVOH/PE 

were purchased from Cyrovac/WR Grace Europe Inc. (Lausanne, Switzerland).     

The meat samples of beef steak and chicken were store-bought. The cheese 

samples were obtained from a local cheese factory. Beef samples were sourced from 

a local meat processing factory.  
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Phosphorescent O2-sensing probe, GreenlightTM, was from Luxcel Biosciences 

(Ireland). Standard 96-well plates (clear polystyrene, flat bottom, with lids, packed 

sterile) were from Sarstedt (Ireland). Sterile Stomacher bags, Stomacher Lab System 

Model 400, were from Colworth (UK). 96-well plates were measured by the 

fluorescent plate reader, FLUOstar Omega (excitation/emission 380/650 nm) 

controlled by the MARS software.  

 

2.2 Luminescence measurements 

For screening and optimization experiments, the phosphorescence intensity and 

lifetime signals were recorded with a handheld instrument OpTechTM (Mocon, 

Minneapolis, USA) using the sensors held in place in a clear 20 mL polystyrene vial 

(Sarstedt, Ireland). Each sensor strip/spot was measured five times in different 

locations and average values and standard deviations (S.D.) were calculated.  

Dry and humid gas calibrations of the sensors were carried out by a FirestingTM 

instrument (Pyrosciences GmbH, Germany) which operates with a 1 mm plastic fibre 

optic probe under standard manufacturer settings. As the probe is brought into 

contact with the sensor, phase shift readings were measured and converted into 

lifetime values by using Eq. 4 (pg. 15).  

For sensor calibration, O2/N2 gas mixtures in varying ratios between 0-100 kPa 

were produced using a precision gas mixer (LN Industries SA, Switzerland). These 

gas mixtures were pumped through a flow cell with a glass window through which 

the O2 sensors were interrogated by the FirestingTM instrument. The flow cell was 

submerged in a circulating water bath (Julabo) to just below the level of the window 

keeping the window and probe dry, to equilibrate the gas to the correct temperature. 



 49 

This water bath was also used to calibrate the sensor at different temperatures in 

order to observe any cross-sensitivities the sensors had to temperature (Fig. 2.1). 

 

 
Fig.  2.1 Calibration set-up. 

 

The photostability of the sensors were tested using this set-up over a prolonged 

period (> 12 h).  

Phosphorescence intensity measurements were carried out on a Cary Eclipse 

fluorescence spectrometer (Varian) equipped with a Peltier temperature control.  

 

2.3 Microscopic Measurements 

Wide-field optical imaging was performed on an inverted microscope Axiovert 

200 which is equipped with a Plan Neofluar 40 x/1.3 oil immersion objective (Carl 

Zeiss), pulsed excitation module (590 nm LED), gated CCD camera (LaVision 

Biotech), excitation 595/40 nm and emission 780/60 nm filter cube, and incubation 

chamber with O2 and temperature control (PeCon). In fluorescence and differential 

interference contrast (DIC) modes the exposure time was 3-30 ms. The 
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phosphorescence lifetime (PLIM) imaging settings at 21 kPa O2 were as follows: 

pulse width 10 µs, repetition time 170 µs, gate time 10 µs, delay time 0-100 µs, 11 

images; exposure time 15 ms, no binning. At 1 kPa O2 the settings were: pulse width 

10 µs, repetition time 190 µs, gate time 20 µs, delay time 10-140 µs, 11 images; 

exposure time 5 ms, no binning. 

 

2.4 Relative air humidity tests 

The relative humidity (RH) standards comprised of saturated aqueous solutions of 

solid salts at 20 °C 107. The saturated salt solutions prepared represented various 

humidity levels as stated in the brackets: H2O (100 %), Na2HPO4 (95 %), Na2SO4 

(93 %), Na2CO3 (90 %), (NH4)2SO4 (81 %), CH3COONa (76 %), CuCl3 (68 %), 

MgCl2 (33 %). 1.5 mL of each standard solution was transferred  to a 3 mL glass vial 

and the sensor sample fixed 1 cm above the solution. The vials were sealed with a PP 

stopper, covered with tinfoil and left at room temperature for 48 h to equilibrate. The 

lifetime signal of each sensor was then measured using the OpTechTM instrument.  

 

2.5 Estimation of dye leaching from sensors 

The amount of dye encapsulated in each sensor was estimated by extracted the 

dye from each sensor with toluene. The sensors were submerged in 1 mL toluene in 

1.5 mL vials and incubated at 50 °C for 24 h. The absorbance of the supernatant was 

then obtained by UV/Vis spectrometry (HP/Agilent 8453 General Purpose UV-

visible). The absorbance of the supernatant was then compared to a calibration curve, 

generated by serial dilutions of the PtBP dye stock (0.1 mg/mL in toluene), in order 

to ascertain the concentration of dye present in the supernatant.  
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2.6 Food simulant tests 

Stock solutions of food simulants were made up of 95 % EtOH, 10 % EtOH, 5 % 

acetic acid, 3 % lactic acid, 3 % NaHCO3, H2O, 3 % NaCl and 20 % sucrose 108. 

Sensors were placed in HPLC vials and immersed in 2 mL of simulant solution. The 

vials were sealed and incubated in a shaker at 40 °C over a 21-day period. The vials 

were assayed periodically on day 7, day 14 and day 21. The sample solutions and 

PtBP dye standard was assayed by reverse phase HPLC using an Agilent 1100 series 

system consisting of a quaternary pump, diode array photometric detector, an auto 

sampler and an Agilent Eclipse XDB-C18 column (150 x 4.6 mm, 5 µm, Agilent). 

10 µL of a PtBP dye in tetrahydrofuran (THF) standard (0.02 mg/mL) or the 

simulant solution was injected into a mobile phase of H2O/TFA (mobile phase A) 

and eluted with an ascending stepwise gradient of THF (mobile phase B), using 

gradient 0-70 % B over 22 mins. A calibration curve of PtBP in THF was prepared 

and quantified on Agilent 8453 UV-vis spectrometer and the extinction coefficient 

obtained.  

 

2.7 Packaging Methods 

For packaging in MAP containers, sensors were adhered in duplicate to the 

sealing laminate using scotch tape. The trays were MAP packaged using a VS 100 

BS packaging system (Gustav Muller and Co., Bad Homberg, Germany). The gas 

ratio was set at 55 % O2 in beef sample trays and 0 % O2 in the chicken and cheese 

sample trays. Samples were stored in two orientations: one upright with the product 

in contact with the headspace and the other inverted with the food product in direct 
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contact with the sensors. All packages including the blanks were stored in a cold 

room (4°C) and measured at different time intervals. At the end of the study, sensors 

were removed from the trays and washed thoroughly with H2O.  

Headspace analysis was performed using the OpTechTM Platinum-O2 system and 

DansensorTM Checkmate 3 headspace analysis instruments. The DansensorTM covers 

a range of 0-100 % O2/CO2. O2 concentration is read via a zirconia O2 sensor and 

CO2 readings are read by dual beam infrared. Readings can be taken 3 times before 

package failure. Sample volume is 6 mL taken over 10 secs. Accuracy is ± 0.01 % 

O2 and ± 0.08 % CO2. Blank containers were filled before and after filling of the 

food trays and checked for consistency with the DansensorTM device by applying a 

special septum, piercing the sealing laminate with a needle probe and extracting and 

analysing headspace gas for O2 and CO2 levels. At the end of each study, all packs 

were tested by the DansensorTM before the sensors were recovered, to assess final 

gas concentrations.  

Dissolved O2 contents in the beverage study were carried out using 

dOxybeadTM sensors comprising 5 mm porous glass beads with PtBP-based O2-

sensitive coating were kindly provided by Luxcel Biosciences. 

 

2.8 Microbial Load Measurements 

The method used for microbial load tested for the presence of aerobic bacteria. 

Peptone buffered water (BPW) was made up using peptone (10.0 g), sodium chloride 

(5.0g), disodium phosphate (3.5 g), monopotassium phosphate (1.5 g) and adjusted 

to pH 7.2 ± 0.2 using concentrated sodium hydroxide solution. The GreenlightTM 

probe was reconstituted using 1 mL of BPW and diluted up to 10 mL BPW. 10 g of 
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the meat sample and 90 mL BPW was placed in a stomacher bag which was 

homogenised for 1 min. 100 µL of reconstituted GreenlightTM probe was added to 

each assay well of the 96-well plate. 100 µL of the homogenated sample was added 

to each well. 100 µL of pre-warmed mineral oil was used to seal each well. The plate 

was measured kinetically on the FLUOstar Omega plate reader for 10-12 h at 30 °C. 

The microbial load (CFU/g) of each sample was calculated using a pre-determined 

calibration. Pre-set acceptance criteria for microbial load were as follows (Table 

2.1): 

Table 2.1 Pre-set acceptance criteria for Greenlight
TM 

test 

CFU/g Comment 

< 5 x 105 Satisfactory 

5 x 105- 5 x 106 Acceptable 

> 5 x 106 Unacceptable 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 54 

3 Chapter 3: Development of new O2 sensors 

 

3.1 Introduction  

In recent times, there has been an increase in the use of O2 sensors, based on 

luminescent quenching, in the fields of biological research 17b, environmental 

monitoring 30, process control in the chemical industry 109, in the food42, 

pharmaceutical industries and in medical and clinical settings. This increased usage 

can be correlated to the development of stable, robust, disposable,  easy-to-use 

sensors which are not prone to electrical interferences 17a and can be integrated easily 

into a number of systems. As a result, luminescent sensors are held as a viable 

alternative to destructive O2 quantifying methods 30 as they possess a reversible 

response and can measure O2 in an non-invasive and contactless manner 4a.  

The most promising luminescent O2 sensors for use in food packaging are solid-

state O2 sensors. These sensors usually consist of O2-sensitive indicator dye 

encapsulated within an O2-permeable polymer matrix17a, 110. The properties of the 

dye and polymer matrix, such as O2-solubility, permeability and mechanical 

attributes, influence the final characteristics and operational performance of the 

sensor unit in particular. In addition, the cross-sensitivity (i.e. to temperature, 

humidity etc.) and intensity amplitude are influenced by both the materials and 

methods used in sensor fabrication.  

Pd(II)- and Pt(II)-porphyrins and some related structures are common indicator 

dyes used in solid-state O2 sensors due to being excited in the red region (580-650 

nm) and emitting in the near-IR region (700-800 nm). For the encapsulation of such 

dyes, hydrophobic polymers such as polystyrene, polydimethylsiloxane and 
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fluorinated polymers, which have a moderate to high O2 permeability 17a are often 

used. O2 solid-state sensors are usually fabricated as thin films or coatings by 

solution-based processes, such as a ‘cocktail’ solution in organic solvent being dried 

on a support matrix 111, polymerizing or curing liquid precursors 112 or other 

methods; such as adsorption113, covalent binding 114, solvent crazing56a and polymer 

swelling 35a.  

The thin film nature (which assists O2 diffusion) of many of these sensors usually 

requires an additional support material to enhance the mechanical properties of the 

sensor 53. Examples of materials commonly used as supports are glass, PMMA and 

polyester film Mylar®, microporous membranes. The addition of these materials 

often lead to higher fabrication costs due to the consumption of more materials, 

formation of mixed polymer phases and the extra post-processing steps. To ensure 

cost-viability which is an important factor in food applications, a binary component 

sensor material and simple fabrication process are desirable.  
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3.2 Development of spotting methods to produce discrete O2 

sensors 

3.2.1 Optimised sensor fabrication 

For the optimized sensor fabrication, an emulsion of Kolliphor P188 (17 mg/mL) 

in 60:40 EtAc/H2O containing PtBP dye (0.01 mg/mL) was prepared by dissolving 

the surfactant in 0.4 mL H2O and the dye in 0.6 mL EtAc and combining the two 

solutions together. Strips of PP fabric (type 700/70 and 700/30K, 40 mm x 40 mm) 

were spotted with 20 µL of the solution (Fig. 3.1) and allowed to air dry for 1 h. The 

sample was then rinsed in H2O, dried and annealed at 70 °C for 2 h in a dry oven.  

 
Fig.  3.1 Diagram showing spotting fabrication apparatus.  

 

3.2.2 Selection of optimum fabrication conditions 

Non-woven polypropylene (PP) fabric materials have microporous fibre-like 

structure, large surface area and are compatible with most solvents. Therefore, 

indicator dyes can be incorporated in such matrices via solvent-mediated methods 
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110. The efficiency of dye incorporation is dependent on several factors; the diffusion 

of solvent and dye into the polymer, the degree of polymer swelling, the solvent 

evaporation rate and the drying time. Sensors based on PP grafted with hydrophilic 

chemical groups for better wettability do not require an additional support layer, as 

they are mechanically stable and relatively thin (approx. 80 µm). They can also be 

easily incorporated into food packages due to their planar nature and heat or 

adhesive sealing capabilities.  

In this study, we systematically investigated and optimized discrete sensors 

produced by the spotting method. 

These sensors were fabricated on two new non-woven grafted polyolefin 

substrates, which were manufactured using two different methods: 

� Spunbond materials which comprise continuous pure PP fibres produced 

by melt extrusion and bonded by pins or the application of heat to 

produce sheet structures.  

� Wetlaid fabrics consisting of a combination of PE and PP fibres and 

produced by adaption of the wetlaid paper manufacturing technique.   

Both fabrics were grafted in a two-step process in which free radicals were 

created on the surface of the monofibres by UV radiation and were then combined 

with vinyl monomer units, in order to produce hydrophilic acrylic acid chains  115. 

As a result of the modification, both materials have good wettability, wicking 

characteristics and are stable in organic solvents.  
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The indicator dye was the near-infrared-emitting PtBP (615 nm excitation/760 

nm emission)30, since it can be measured with OpTechTM (Mocon, US) and 

FirestingTM (PyroScience, Germany) instruments available in our lab.   

A design of experiment was created, adapting each parameter which influences 

the final characteristics of the sensors. These parameters included dye concentration, 

solvent and the amount of surfactant required for miscibility with water. Each 

parameter was optimised to achieve a sensor with high brightness, robust and stable 

lifetime signal and high reproducibility between sensors. The initial optimization 

was carried out on the spunbond material and later adapted to the wetlaid material. 

The results of the optimization are laid out (Table 3.1, pg 61). 

The fabricated sensors were compared to commercial polystyrene-based 

OpTechTM Platinum sensors (Mocon). The differences were ascribed to the 

difference in O2 permeability of the materials; as polystyrene has an O2 permeability 

approximately two-fold higher than that of PP and PE. This leads to higher dye 

quenching in the polystyrene-based sensor at 21 kPa.   

Initially we tested the effects of solvent on sensor signal. Lifetime and intensity 

signals were measured from sensor spots produced by applying 0.02 mL aliquots of 

PtBP dye dissolved in pure THF, toluene, butanone and EtAc onto the spunbond PP 

material. The EtAc-based sensor spots yielded the most consistent lifetime readings, 

however intensity signals were below the threshold required for reliable readings on 

OpTechTM instrument. In contrast, toluene-based spots yielded higher intensity 

signals but showed greater variability in lifetime values most likely due to 

aggregation of the dye molecules.  Sensor spots produced with pure solvent showed 

too much spread, leading to spots with large diameter (30 mm for EtAc and 26 mm 
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for toluene). Lifetime signals also showed considerable reductions due to dye 

aggregation and self-quenching.  

In order to reduce spot area and evaporation rate (to allow further penetration of 

dye into the substrate), we prepared an emulsion of solvent and water stabilised with 

Kolliphor® P188 surfactant which showed a noticeable thickening effect on the 

solution at 17 mg/mL. The surfactant allowed for two previous immiscible solutions 

to mix forming a viscous solution. The solution was prepared by the dissolution of 

the surfactant in water and the dye in solvent, followed by mixing the two solutions 

together and vortexing. The optimal water:solvent ratio which achieved stable 

emulsion formation was 60:40 for EtAc/H2O and 70:30 for toluene/H2O. Spotting of 

0.02 mL aliquots the sensor surfactant cocktail on the fabrics formed ≈ 9 mm 

diameter spots which exhibited uniform shape and colour.  

By trying different concentrations of dye, 0.1 mg/mL was found to be optimal to 

provide high intensity, stable and reproducible lifetimes and low internal quenching. 

As the sensors were designed for food applications, the less toxic EtAc solvent 

(short-term exposure limit = 400 ppm) was chosen for further use.  

The use of surfactant provided significant improvement of sensor signals. 

However it also necessitated the need for a washing step to be added to the 

fabrication method in order to remove residual surfactant. Final post-processing 

involved initial rinsing with water to remove water soluble components, followed by 

annealing at 70 °C to stabilise luminescent signals and lower their variability 58, 106, 

116. This post processing reduced internal quenching effects, stabilised lifetime 

signals and released the internal stresses within the sensors. The effects of different 

sequences of post-treatment are shown in Fig. 3.2.  
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Fig.  3.2 Effect of post-processing sequence on sensor lifetime and intensity signals. Spunbond sensor spotted 

with 0.02 mL EtAc/H2O/surfactant cocktail.  
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Table 3.1 Effects of the main process parameters on sensor intensity (I) and lifetime (τ) signals in N2 (0 kPa O2) and air (21 kPa O2).  
a 

Approximate Ksv calculated using 0 kPa and 21 kPa O2 

lifetime values.  
b
After annealing. cInitial optimization was performed on spunbond PP membrane.  dUsing EtAc/surfactant, eThin film coating on microporous support. 

 

 

Parameter Variation τ0 (0 kPa) τ21 (21 kPa) Ksv
a 

I0 (0 kPa) I21 (21 kPa) 

Ethyl Acetate 43.92 ± 0.02 25.53 ± 0.03 0.03 963.63 ± 37.17 548.22 ± 23.90 
(a) Pure solvent 

Toluene 41.13 ± 0.04 12.90 ± 0.11 0.10 1999.78 ± 162.04 656.38 ± 82.75 

Ethyl Acetate 51.00 ± 0.03 22.21 ± 0.03 0.06 4680.44 ± 535.83 1391.89 ± 165.80 
(b) Solvent & surfactant 

Toluene 51.09 ± 0.01 31.87 ± 0.01 0.03 5858.40 ± 1132.23 2787.00 ± 319.08 

0.1 mg/mL 51.00 ± 0.03 22.21 ± 0.03 0.06 4680.44 ± 535.83 1391.89 ± 165.80 

0.2 mg/mL 45.02 ± 0.05 14.27 ±0.04 0.10 10704.40 ± 2136.92 2328.60 ± 431.84 (c) Dye concentration 

0.3 mg/mL 47.00± 0.03 14.59 ± 0.03 0.11 10792.20 ± 1636.81 2139.60 ± 286.69 

Spunbond
c
 49.30 ± 0.29 31.27 ± 0.08 0.03 9982.40 ± 675.94 4552.20 ± 397.08 

(d) Optimized Sample
b 

Wetlaid
d
 53.87 ± 0.06 27.24 ± 0.09 0.05 11808.60 ± 348.1893 4821.57 ± 185.41 

(e) Reference sensor (OpTech
TM

) Polystyrene
e
 59.80 ± 0.10 19.60 ± 0.09 0.10 25533 ± 2175.39 10026 ± 111.55 
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3.2.3 Characterisation 

Using the above fabrication method, we fabricated sensors based on two separate 

fabrics; spunbond and wetlaid PP membranes.  Detailed characterisation included 

full O2 calibrations (0-100 kPa) performed at 10, 20 and 30 °C. These conditions 

represent the range of storage temperatures and O2 concentrations that food products 

habitually experience. The calibrations of the spunbond and wetlaid PP sensors in 

dry gas at 10 °C are shown in Fig. 3.3.  
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Fig.  3.3 (a) O2 calibrations in lifetime scale for spunbond (dark grey, ♦) and wetlaid (light grey, ■) PP spotted 

sensors in dry gas, 10 °C, (b) their Stern-Volmer plots and (c) temperature dependencies.  

 

Going from 0 kPa to 21 kPa O2, the lifetime reading of the spunbond sensor 

decreased from 49.30 ± 0.29 µs to 31.27 ± 0.08 µs, whereas the wetlaid sensors 

exhibited a larger lifetime change – from 58.87 ± 0.06 µs to 27.24 ± 0.09 µs. As 

indicated by smaller deviation values, the dye was more uniformly dispersed in the 

wetlaid sensor than the spunbond sensor.  

Linearity of the Stern-Volmer plot is important for one or two point calibrations 

of O2 sensors. Linearity is connected to the micro heterogeneity of the polymer, 

uniformity of the dye dispersion within the sensor and the accessibility of the dye 

molecules to the atmosphere to allow quenching by O2 molecules 22. The spunbond 

PP sensor showed good linearity; however a slight curved trend was seen within the 
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wetlaid PP plot. This curvature is seen in many sensor calibrations and is thought to 

be due to the existence of different environments around the dye molecules and/or 

aggregation of the dye molecules 117.  The KSV (sensitivity) of the wetlaid sensor was 

1.4 higher (calculated by ratio of Ksv of wetlaid and spunbond sensor) than the 

spunbond sensor making it more suitable for measuring in atmospheres with low O2 

concentrations. 

The dynamic quenching of the sensor dye by O2 is also influenced in a complex 

manner by temperature (T)56a, 118:  

RT

E

q
RT

E

nrf

qnr

eAeAk

∆−∆−

++= 001

τ
     Eq. 5 

where k0f – kinetic constant of the fluorescent decay, Anr- pre-exponential of the 

non-radiative process, A0
q – pre-exponential of the non-radiative and O2 quenching 

process, ∆E – activation energies of the non-radiative and quenching process 

respectively, R- gas constant, and T – absolute temperature. This equation was 

derived from the relationship between Ksv (Stern-Volmer), τ0 (lifetime in absence of 

quenching molecule) , DO2 (O2 diffusion coefficient) and SO2  (solubility of O2 inside 

membrane) described in detail in the paper by Badocco et al.  

The studied temperature ranges in this study, showed our sensors obeying a 

linear dependence from 10 °C to 30 °C. This allows for temperature compensation to 

be calculated and applied to our sensors using a simple algorithm. Negative slopes 

indicate that lifetime decreases with an increase of temperature. The temperature 

coefficient of the Stern-Volmer calculated by: 
T

SV

∆

∆
(where ∆SV is the difference the 

Stern-Volmer constants and ∆T is the difference of temperature) was found to be -
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3.20 x 10-2 kPa -1 C -1 and -3.45 x 10-2 kPa -1 C -1 for the spunbond and wetlaid 

sensors respectively, for the range 10-30 °C.  

The variability of O2  readings between sensors in the same batch was calculated 

as 3*STD (standard deviation) and were found to be 0.11 kPa and 0.10 kPa at 0 and 

21 kPa respectively for the spunbond sensor and 0.22 kPa at both 0 and 21 kPa for 

the wetlaid sensor. The batch-to-batch variability generated a RSD (relative standard 

deviation) value of 1.98 % at 21 kPa and 0.47 % at 0 kPa (n = 6). These deviations 

are expected to improve on up-scaling and automation of the fabrication process.  

While the working characteristics of the sensors were good in dry air, a marked 

cross-sensitivity to humidity was noted upon exposure to humid air. Both sensor sets 

showed a marked decrease of lifetime signal in humid gas. The effect of humidity on 

the wetlaid sensor was studied in greater detail by application of a relative humidity 

study (Fig. 3.4) , as this sensor showed the most prominent sensitivity to relative 

humidity (RH, %) with a drop of 9 µs at 100 kPa, compared to a drop of 4 µs at 100 

kPa observed in the spunbond sensor.   
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Fig. 3.4 (a) and (c) O2 calibrations in lifetime scale for spunbond (♦) and wetlaid (■) PP spotted sensors 

respectively in dry gas (dark grey) and humid gas (light grey), 10 °C, (b) and (d) their respective Stern-Volmer 

plots and (e) Humidity dependence of lifetime. 

 

At 0 kPa, O2 upon exposure to humid gas (RH = 100 %) at 10 °C, the lifetime 

signals of the wetlaid sensors decreased by ≈ 1 µs at 0 kPa (from 53.87 ± 0.01 µs in 

dry gas to 52.66 ± 0.01 µs in humid gas) and by 9 µs (from 14.38 ± 0.04 µs in dry 

gas to 5.40 ± 0.03 µs in humid gas) at 100 kPa compared to dry gas (RH=0)(Fig 

3.4(c)). Even so, upon being dried, the sensors produced the original calibration 

which indicates that the humidity effects are fully reversible and do not lead to 

degradation of the sensor. The Stern-Volmer plots generated in humid gas 

calibrations are linear, indicating the homogeneity of the sensors has not changed 

and the KS-V was three times that of the KSV obtained in dry gas (Fig 3.4(d)).  
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To confirm this effect, the sensors were exposed to different levels of RH (0-100 

% range at room temperature, 21 kPa O2, 48 h). A gradual decrease of sensor 

lifetime readings with increasing RH was measured (Fig 3.4(e)), which can be fitted 

to a second polynomial line. As a result of these experiments, we can ascribe the 

effects of humidity on the sensors to either: 

(a) Some of the dye being encapsulated in the hydrophilic grafted layer rather 

than the hydrophobic bulk PP. When the sensor is exposed to humidity, this 

hydrophilic layer absorbs the water and swells leading to a change in the 

micro-environment of the dye and better accessibility of the O2 molecules to 

the dye. This increases the quenching efficiency.   

(b) Alternatively, some surfactant with solubilised dye may have remained in the 

polymer material producing a similar effect. 

Both spotted sensors showed the same fast and reversible response times (Table 

3.2).  

Table 3.2 Response and recovery times in humid gas at 10 °C from 21 to 10 kPa O2 

  Humid air @ 10 °C  

  Response (min) Recovery (min)  

Wetlaid spotted PP 4.4 4.9 

Spunbond spotted PP 4.4 4.9 

OpTech
TM

 reference sensor 26.5 28.2 

 

Both sensors showed response times of 4.4 min in humid gas at 100 % response 

(Fig. 3.5). In contrast, the commercially available polystyrene based sensors showed 

greater hydrophobicity leading to a much longer response time (6 times) in humid 

gas (26.5 min). These times included the time required for tonometer and gas cell 

equilibration (approximately 5-10 seconds).  
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Fig.  3.5 Response and recovery curves of A) Wetlaid and spunbond spotted sensors B) Reference sensor 

(OpTech
TM

) at 10 °C in humid gas from 21 kPa O2 to 10 kPa O2.  

 

The sensors were examined for dye distribution, at 1 kPa and 21 kPa O2,, by 

wide-field microscopy based on gated CCD camera detection phosphorescence 

lifetime imaging (microsecond FLIM or PLIM) 117.  

The bright-field image of the top layer of the sensor membrane is shown in Fig. 

3.6 (a). The phosphorescence intensity image shows areas of higher fibre density 

exhibiting higher intensity signals; this is due to more dye being present in these 

areas. The lifetime image at 21 kPa O2 and the corresponding histogram, line profile 

and surface map show the spread of lifetime values across the selected cross-section 
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of the sensor 119. These plots suggest the distribution of dye is quite homogeneous, 

with a relatively narrow and Gaussian spread of lifetimes (21-23 µs).  

 

 
Fig.  3.6 Wide-field microscopy image of dry wetlaid PP spotted sensor : (a,) bright field image (b) 

phosphorescence intensity image (c) PLIM image (d) histograms (e) line profile (f) 3D surface graph of 

lifetimes. Sample area analysed: 100 x 100 pixels, 11536.21µm
2
. Measured at room temperature, 21 kPa, 40 X 

magnifications.  
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3.3 Fabrication of PP sensors by swelling method 

3.3.1 Sensor fabrication 

The final swelled sensors were fabricated using an impregnation method. A 

solution of PtBP dye in 70:30 THF/H2O (0.03 mg/mL) was prepared and 8 mL 

aliquots were placed in disposable 15 mL plastic vials (Sarstedt). Strips of the PP 

fabric (24 mm x 12 mm) were cut out from the sheets and inserted into each vial 

(one strip immersed in each vial). These vials where then capped, sealed with 

polyfilm, placed in an oven set at 65 °C and incubated for 1 h (Fig 3.7). After this 

time, the sensor strips were extracted from the vials, rinsed with water to remove any 

residual dye mixture and allowed to dry in air for 18 h. Subsequently, the sensors 

were then annealed in a dry oven at 70 °C for 16 h. Optionally, after the initial 

incubation step, the vials with grafted PP strips (type: 700/70) were opened and 

incubated in a water bath at 40 °C for 16 h, ensuring the membranes were still 

submerged the entire time, to allow the solvent to evaporate off.  

 
Fig.  3.7 Diagram showing swelling method. Fabric strip and dye/solvent cocktail are placed in plastic vial and 

incubated in oven at 65 °C for 1 h.  
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3.3.2 Selection of optimum fabrication conditions 

As above, non-woven polypropylene-based matrices were selected for O2 sensor 

fabrication consisting of small PP monofibres bound together in planar sheets 120. In 

addition to being flexible, these matrices also possess a large surface area, good 

mechanical and light-scattering properties and optional surface modifications by 

grafting the surface of the monofibres.  

Simple impregnation by swelling the polymer in a dye-solvent solution can be 

used to incorporate O2 sensitive dyes. This approach is commonly used with 

suspensions of polymeric microparticles 26. Once the dye is impregnated, no further 

support is needed, making such sensors binary in nature with only the dye and 

encapsulation matrix.  

With the adaption of this technique, we sought to create solid-state O2 sensors 

which were based on non-woven PP substrates and PtBP dye. Unmodified bulk PP 

material is hydrophobic which limits its wettability and dye compatibility. The 

spunbond grafted PP provides a hydrophilic and wettable surface. Both features are 

useful when designing optical O2 sensors for food packaging applications. 

To assist the incorporation of hydrophobic dye molecules into the mostly 

hydrophobic bulk polymer sheets, we applied a gradient of polarity, where the low 

polarity solvent was slowly depleted by evaporation from the dye solution (which 

contains a low water content and the initial polarity of which causes the polymer to 

swell) 121. This encouraged the dye molecules to partition favourably out of the 

increasingly hydrophilic aqueous solution into the hydrophobic bulk polymer. In 

addition, the increasing polarity of the solution causes the polymer to de-swell and 

trap the dye molecules. Elevated temperatures (which were below the solvent boiling 
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point) were used to speed up the diffusion rates and the re-equilibration processes in 

the system. The dye incorporation process is shown in Fig. 3.8. 

 

 
Fig.  3.8 Fabrication process of swelled sensors. 

 

The systematic optimization of the sensors was carried out in a similar fashion to 

that of the spotting sensors with each parameter optimized. The aim of each 

optimization was to obtain high intensity, stable lifetime signals and good 

reproducibility of signal readings between sensors, while keeping usage of 

fabrication materials to a minimum. The results are collated in Table 3.3 on pg 75. 

The penetration of dye into a substrate is largely dependent on the solvent used. 

To facilitate dye penetration, the solvent must be both compatible with the dye and 

not degrade the polymer and provide effective swelling. However, as polypropylene 

is highly chemi-resistant, there are few non-compatible solvents. Therefore, as the 

dye is hydrophobic, solvents with compatibility with dye and polymer were chosen, 

such as THF, ethyl acetate, butanone and toluene. Initial tests showed THF produced 

the highest intensity and lifetime signals in nitrogen. In the other solvents, issues 

arose with partial aggregation of dye, some evaporation of solvent leading to the dye 

crashing out of solution and quenching of the dye after impregnation.  



 73 

It was discovered that using pure solvents with grafted PP yielded inadequate 

intensity signals. Therefore, the solvent was combined with a higher polarity solvent 

(water) to aid compatibility. A mix of 70:30 THF:H2O was deemed the most 

effective mix, as it gave the highest intensity signals, particularly after the solvent 

evaporation step. The optimal dye concentration was found to be 0.025 mg mL-1.  

Incubation times were varied between 1 h, 2 h and 3 h to assess if longer 

incubation periods yielded higher intensities. It was found that there was no 

correlation between longer incubation times and intensity, therefore the fastest time 

of 1 h was selected. Likewise the incubation temperature was varied as temperature 

affects rate of dye diffusion into the polymer matrix. The temperatures selected were 

around the boiling point of THF (66 °C) in the range of 60 °C to 70 °C. A 

temperature of 65 °C yielded the highest lifetime and intensity signals.  

After incubation, the grafted PP sensors were placed in a water bath in a fume 

hood, in order to allow solvent to evaporate from the dye solution and therefore 

allow further penetration of the dye into the polymer. Slow evaporation of the 

solvent at 40 °C increased the concentration of the dye within the polymer and in 

turn raised its intensity signal by approximately 116 %.  Like the previous spotting 

based sensors, all swelling method sensors were annealed at 70 °C to reduce internal 

stresses. This increased lifetime signal in nitrogen and air and increased their dye 

homogeneity (S.D.).  

For comparison, swelled PP sensors were prepared based on the non-grafted PP 

material. Different dye/solvent ratios were tested and a ratio of 50:50 was found to 

be optimal. The solution became increasingly polar as the THF evaporated during 

incubation, leading to the dye partitioning out of the less favourable solution into the 
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more favourable hydrophobic membrane. The concentration of 0.035 mg mL-1 

yielded a higher lifetime and intensity signal, however the difference was found to be 

too minor to justify the higher dye usage; therefore a concentration of 0.025 mg mL-1 

was selected for further fabrications. The already high intensity signals after the 

incubation step of the ungrafted PP sensor also rendered the solvent evaporation step 

defunct. This was ascribed to the higher hydrophobicity and/or the different structure 

of the polymer membranes which lead to higher penetration of the dye.  

The dye from each type of sensor (24 mm x 12 mm) was extracted in order to 

estimate the dye concentration. The dye concentration in the grafted sensor and 

ungrafted sensor was calculated to be 0.57 µg and 0.39 µg respectively. Batch-to-

batch variability was assessed by mean and the relative standard deviation of lifetime 

readings.  The RSD of the grafted PP sensors was found to be 2.90 % at 21 kPa and 

0.94 % in 0 kPa, n = 6. In comparison, the RSD of the ungrafted PP sensors were 

found to be 2.19 % at 21 kPa and 2.16 % at 0 kPa, n = 4. These deviations are 

expected to reduce upon up-scaling of the process.  
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Table 3.3 Effects of the main process parameters on sensor intensity (I) and lifetime (τ) signals in N2 (0 kPa O2) and air (21 kPa O2). 
a 

Approximate Ksv calculated using 0 kPa and 21 kPa O2 

lifetime values. 
b 

Initial optimization was performed on the grafted PP membrane, 
c
 Optimized sample: Grafted PP (hydrophilic material), 70:30 THF/H2O solution, 0.025 mg/ml dye, 

solvent evaporation dried, annealed. 
d
 Ungrafted PP (hydrophobic material), 70:30 THF/H2O solution, 0.025 mg/ml dye, air dried, annealed. 

Parameter Variation Material Ksv
a 

τ0 τ21 I0 I21 

Toluene Graftedb 0.03 48.21 ± 1.07 30.39 ± 0.10 2550 ± 610 1151 ± 255 

THF (100 %) Grafted 0.02 49.29 ± 0.67 33.78 ± 0.13 5556 ± 485 2709 ± 215 

THF (80 %) Grafted 0.03 51.03 ± 0.30 33.41 ± 0.06 5805 ± 626 2757 ± 317 
a) Solvent 

THF (70 %) Grafted 0.02 50.21 ± 0.52 33.68 ± 0.04 14161 ± 1314 6796 ± 573 

0.025 mg/mL Grafted 0.03 50.77 ± 0.01 29.53 ± 0.02 10752 ±758 4446 ± 272 
b) Dye conc. 

0.035 mg/mL Grafted 0.02 49.54 ± 1.85 32.55 ± 0.24 15778 ± 2316 7340 ±1059 

Annealed Grafted 0.02 50.80 ± 0.34 33.75 ± 0.09 2527 ± 349 1404 ± 221 c) Annealing 

Status Not Annealed Grafted 0.02 49.20 ± 0.93 32.82 ± 0.16 3767 ± 846 1771 ± 298 

Solvent evaporation Grafted 0.03 51.25 ± 0.48 32.25 ± 0.05 5438 ± 696 2274 ± 347 d) Drying 

regime Air dried Grafted 0.02 50.80 ± 0.34 33.75 ± 0.09 2527 ± 349 1404 ± 221 

 Grafted
c
 0.03 50.77 ± 0.01 29.53 ± 0.02 9896.71 ± 467.50 4271.80 ± 239.35 e) Optimized 

Sample  Ungrafted
d 

0.07 57.32 ± 0.09 22.45 ± 0.07 7539.00 ± 276.05 3485.86 ± 86.65 



 

 

3.3.3 Characterisation 

Using the optimized fabrication method, two sensors based on two fabric types; 

grafted and ungrafted PP membranes, were fabricated.  Detailed characterisation 

included full O2 calibrations (0-100 kPa) performed at 10, 20 and 30 °C. The 

calibrations of the grafted and ungrafted PP sensors in dry gas at 10 °C are shown in 

(Fig. 3.9).  

Fig.  3.9 (a) O2 calibrations of grafted PP (dashed line) sensors in dry gas (▲) and humid gas (●) and ungraHed 

PP (solid line) in dry gas (♦) and humid gas (■) in lifetime scale. (b) Corresponding Stern-Volmer plots (c) 

Temperature dependence of grafted (▲) and ungrafted (♦) sensors at 21 kPa and 0 kPa in dry gas. 

 

Going from 0 kPa to 100 kPa O2, the lifetime reading of the grafted sensor 

decreased from 50.77 ± 0.01 µs to 14.90 ± 0.01 µs, whereas the ungrafted sensors 

exhibited a much larger lifetime change – from 57.32 ± 0.09 µs to 7.93 ± 0.01 µs. As 

indicated by the smaller deviations, the dye was more uniformly dispersed in the 

grafted sensor. 
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Stern-Volmer constants indicate the sensitivity of the sensors. Higher Stern-

Volmer constants are a reflection of higher sensitivity of the sensor to O2 
122. Both 

sensors exhibit linear behaviour indicating even distribution of the O2 sensing dye in 

the polymer support. The ungrafted PP sensor is approximately twice more sensitive 

than that of the grafted PP sensor. As the bulk polymer (PP) of both sensors is the 

same, the difference is most likely due to their manufacturer fabrication methods and 

the thinner nature of the ungrafted PP sensor. The limits of detection for both sensors 

were 0.09 kPa and 0.27 kPa at 0 and 21 kPa respectively. The grafted PP sensor also 

demonstrated linear temperature dependence within a narrow T range, indicating that 

the sensors can be T-compensated. The temperature coefficient of the Stern-Volmer 

calculated was found to be -3.55 x 10-2 kPa -1 C -1 for the range 10-30 °C. In contrast, 

the ungrafted PP plots display a polynomial fitted curvature meaning that a more 

complicated T-compensation will need to be applied.  

Quite often, a hydrophobic polymer-based sensor displays poor wettability and 

formation of microbubbles within sensor materials. As a result hydrophobic sensors 

may show slow response to O2 concentration in aqueous samples 53. Despite this, the 

ungrafted PP sensors showed fast response times in both dry and humid gas (Table 

3.4) unlike the conventional OpTechTM sensors which responded 4-5 times slower in 

humid gas.  

Table 3.4 Response and recovery times in humid gas at 10 °C from 21 to 10 kPa O2 

 Humid gas @ 10 °C 

 Response (min) Recovery (min) 

Grafted swelled PP 4 4.7 

Ungrafted swelled PP 7.7 7.9 

OpTech
TM

 reference sensor 26.5 28.2 
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The grafted sensor which is hydrophilic showed a slightly faster response than 

the ungrafted sensor. Both sensors showed reversible responses, the results are 

shown in Fig. 3.10.   

 

Fig.  3.10 Response and recovery curves of A) Grafted PP sensor B) Ungrafted PP sensor at 10 °C in humid gas 

from 21 kPa to 10 kPa O2. 

 

 

The microstructure and distribution of dye within the sensor were observed under 

wide-field optical microscopy and FLIM. As the sensing membranes were quite 

thick (approximately 80 µm thick) and opaque, it was only possible to focus on the 

top layer of each sensor membrane. As seen in Fig. 3.11, the ungrafted PP exhibits 

narrower fibres than the grafted PP most likely due to difference in fabrication 
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method and also to the fact that the grafted PP sensor has a layer of acrylic fibres 

grafted onto its surface. 

 
Fig.  3.11 Wide-field microscopy images of grafted and ungrafted  PP sensors: (a, b) bright field images of  

grafted and ungrafted PP; (c, d) phosphorescence intensity images of  grafted and ungrafted sensors 

respectively (e, f) PLIM images grafted and ungrafted sensors ,  (g) histograms  &  (h) line profiles of grafted 

and ungrafted PP  (light grey – grafted, dark grey - ungrafted), (i, j) 3D surface graphs of lifetimes of grafted 

and ungrafted sensors . Sample area analysed: 100 x 100 pixels, 11536.21 µm
2
. Measured at room 

temperature, 21 kPa, 40 X magnifications. 

 

The phosphorescence images were obtained under 21 kPa and 1 kPa O2 pressures 

to demonstrate the effect of quenching on the sensor. The intensity images acquired 

in air correlate to that seen in the bright-field image. Regions of higher intensity 

correspond to areas of high fibre density, demonstrating that more dye is entrapped 

in these regions. The ungrafted PP sensor showed a more even dispersion of dye 

over the sensor (15.00 ± 0.34 µs) compared to the grafted PP sensor which showed a 
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wider dispersion (27.25 ± 0.77 µs) at 21 kPa.  This is confirmation of the line 

profiles and histograms generated from the lifetime images, on which the distribution 

of pixel intensities for selected sections of each sensor can be seen123. The 3-D 

surface graphs generated from intensity data for the same sections show that the 

spread of lifetimes for both sensors are relatively uniform.  

As the distribution of phosphorescence lifetime in air is Gaussian in nature, it can 

be inferred that the ungrafted PP sensor has uniform distribution of dye and a 

homogeneous micro-environment. The grafted PP sensor, despite having higher 

intensity and quenching of dye, shows broader distribution of the lifetime values 

indicating less uniformity. 
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3.4 Development of sensors produced by solvent crazing method 

3.4.1 Final sensor fabrication 

The crazed sensors were produced using a puncture test machine (Mecmesin 

Multitest-I system, 1000 N load cell, Emperor software controlled). A round-

bottomed PP test-tube (Sarstedt, 13 mL) was pierced with a 23 G needle and a cut 

poly-foam sponge (9 x 9 x 4 mm, 52 mg) was added to the bottom of the tube 

centred over the pinpricked hole. A 2-butanone dye solution (0.1 mg/mL, 40 µL) 

was added to the sponge and the puncture test probe was lowered and centred over 

the sponge before zeroing the instrument (Fig 3.12). The film was then displaced 

downwardly at a rate of -10 mm/min until a displacement of 16 % (approx. 8 mm) 

was obtained. After this displacement was achieved, the pressure was released and 

the solvent was allowed to evaporate off. The residual solvent was wiped off with 

H2O. No other post-processing of the sensors was carried out.  

 

 
Fig.  3.12 Diagram showing crazing method 
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3.4.2 Selection of optimum fabrication conditions 

Our lab had previously fabricated discrete O2 sensors based on a solvent-crazing 

method. In that method, a piece of polymeric film such as HDPE or PPS was 

clamped in a custom-made device, spotted with PtBP dye solution in 2-butanone and 

elongated manually with a screw mechanism 57. Although, the method produced 

discrete spot sensors with linear Stern-Volmer plots and an O2 measurement range of 

0-100 kPa, there was clear disadvantages. The customized set-up was not 

commercially available, tended to be reliant on operator skill and could only create 

one sensor at a time (2-3 min per sensor minimum). As a result, we aimed to modify 

the crazing method to use commercially available equipment and standardize it so 

results were no longer dependent on operator bias.  

To this end, we adapted the process on an automated puncturing machine in a 

continuous process with PPS tape. The puncture-test machine is a standard 

instrument used in food and pharmaceutical packaging and has the potential to be 

adapted for continuous and automated use. Puncture-test machines (also known as 

material testers) are used for a wide range of applications within the packaging 

industry. Different adaptions allow several different types of material testing such as 

tension and compression testing and force or puncture testing using specialized 

software (EmperorTM). The instrument is suitable for small-scale testing in 

laboratories or can be programmed for rapid batch-testing in production settings. The 

latter could be utilized when up-scaling this method.    

Initial trials involved testing the different adaptions to the puncture test 

machine’s original probe (aluminium conical pin, upper diameter 13 mm, point 

diameter 6 mm). The original probe was found to be too sharp to promote controlled 

and uniform elongation without rupturing the polymer. In addition, there were issues 
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with feeding the solvent into the cracks formed. A spherical abrasive head (diameter 

20 mm) was then attached to the probe and tested. These also proved insufficient as 

although the material was crazed, the abrasive coating caused scratching on the 

surface of the polymer material and the bit itself absorbed too much of the dye 

solution, leading to issues with reproducibility and cleaning.  

Ultimately, a two part adaption was designed comprising of a pierced round 

bottomed polypropylene test tube inserted on the original probe of the puncture test 

machine and which contained a small poly-foam sponge which was soaked with a set 

amount of solvent before crazing. The test tube eliminated the previous issues caused 

by the sharpness of the original probe, while the sponge helped to control the release 

of the solvent into the crazes in a reproducible and controlled way through the 

piercing in the polypropylene tube.  

After a reliable fabrication system had been selected, we then evaluated its 

effectiveness on several polymers which had been selected for use based on the 

previous crazing studies performed in our lab56a, 57. The polymers selected were high 

density polyethylene (HDPE) and polypropylene with toluene as the crazing solvent, 

and PPS with 2-butanone as crazing solvent. The first tests ascertained maximum 

and optimal elongation of the polymer before breakage. For reference, 1 % negative 

displacement was the equivalent of 0.5 mm elongation (395 % of original polymer 

width). The maximum elongations for PP and HDPE using the puncture test machine 

were in excess of 10 mm. The PPS showed a maximum elongation of 9 mm due to 

its more rigid nature. Elongations of 2.5 mm, 5 mm and 10 mm tested for HDPE and 

PP as they were below the rupture point of the polymer. 2.5 mm and 5 mm showed 

no crazing, however the phosphorescent signals obtained from the 10 mm elongation 

crazed sensors were too low (28.0 and 10.9 FU on Cary spectrometer respectively 
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(Fig 3.13)). This indicated that these sensors would not be reliable when read by 

commercial instruments such as the OpTechTM. In comparison, despite the PPS 

exhibiting low signals at 2.5 mm elongation, it showed very bright signals (>1000 

FU under the same conditions) saturating the instrument at 5 mm and 8 mm 

elongation. 

 
 

Fig.  3.13 Luminescence intensity spectra of puncture test machine crazed PP (dark grey) and HDPE (light 

grey) sensors obtained on CARY spectrometer.  
 

Further testing of different elongations confirmed that elongated PPS by 8 mm 

produced a sensor with the highest intensity and most stable and reproducible 

lifetime readings. The resultant sensor spots were 9 mm in diameter and less than 0.5 

mm thick. The dye concentration added to the sensor was varied from 0.05 mg/mL to 

0.4 mg/mL dye in 2-butanone and an optimal concentration of 0.1 mg/mL was 

selected based on most stable lifetime signal and response to O2. The amount of dye 

added to the sponge was determined by testing a range from 20-60 µL solution. 40 

µL was deemed the optimum volume to allow the dye into the crazes and also to 

limit the amount of dye being removed and therefore wasted once pressure was 

released and the sensor was washed off with water.  
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3.4.3 Characterisation 

The sensors were then subjected for detailed characterisation including O2 

calibrations (0-100 kPa) in dry and humid conditions at 10, 20 and 30 °C (Fig 3.14).  

When tested at 10 °C sensors exhibited average lifetime values of 38.23 ± 0.22 

µs in air and 48.62 ± 0.34 µs in nitrogen with intensity values of 1251.00 ± 148.49 

and 2011.50 ± 273.28, respectively and a KSV of 0.011. For contrast, the sensors 

produced by the custom hand-drawn method gave lifetime values of 29.64 ± 0.94 µs 

in air and 44.61 ± 0.26 µs in nitrogen with intensity values five times higher than our 

sensors and a KSV of 0.01557. These differences can be attributed to a lower 

concentration of dye (0.1 mg/mL vs. 0.04 mg/mL) and a thicker polymer being used 

(130 µm vs. 75 µm) along with a different micro-environment created in the new 

crazing process. However, our sensors still show adequate sensitivity for packaging 

applications covering the range 0-100 kPa O2, no cross-sensitivity to humidity, good 

reproducibility (as denoted by RSD) and there is no need for any post-treatment of 

the sensors.  
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Fig.  3.14 (a) O2 calibrations of PPS sensors in dry gas (light grey) and humid gas (dark grey) presented in the 

lifetime scale at 10 °C. (b) Corresponding Stern–Volmer plots. (c) Temperature dependence of PPS sensor at 

21 kPa (dark grey) and 0 kPa (light grey) in dry gas.  

 

The RSD of the lifetime signals of the sensors was 3.02 % in air and 1.90 % in 

nitrogen n = 4. The Stern-Volmer plot is linear, which allows the sensors to be 

calibrated by simple one point instrument calibrations. Linear temperature 

dependence was noted, the temperature coefficient of the Stern-Volmer calculated 

was found to be -1.9 x 10-4 kPa -1 C -1 for the range 10-30 °C.  

The response time of the sensors were relatively slow (approximately 8 mins 

from 21 to 10 kPa O2) (Table 3.5), however this is still an adequate window to 

enable the sensors to be used in food packaging. 

 



 87 

Table 3.5 Response and recovery times in humid gas at 10 °C from 21 to 10 kPa O2 

  Humid air @ 10 °C  

  Response (min) Recovery (min)  

PPS crazed sensor 17.9 19.1 

OpTech
TM

 reference sensor 26.5 28.2 

 

In addition, the response and recovery times were faster than those of the 

commercial OptechTM sensors in humidity (Fig 3.15).  

 

Fig.  3.15 Response and recovery curves of A) Wetlaid and spunbond spotted sensors B) Reference sensor 

(OpTech
TM

) at 10 °C in humid gas from 21 kPa O2 to 10 kPa O2 
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3.5 Sensor integration tests 

A proof of concept study was performed on the PP fabric sensors and the PPS 

sensors to ascertain whether they could be easily incorporated into food packaging. 

The PP sensors were initially heat-sealed on the edges of the sensors to the PA/PE 

packaging materials. Upon calibration of these sensors, no differences in calibration 

or response time were noted.  

The PPS and PP sensors were then laminated with a barrier material on one side. 

Again no difference in calibration or response time was noted (Fig. 3.16). Upon 

lamination with a barrier layer on one side and an O2 permeable layer on the side 

facing the O2 atmosphere, a longer response time was noted with no deterioration in 

lifetime signal. This could be due to the extra layer on the sensors slowing the O2 

permeating into the sensors.  

 

 
Fig.  3.16 (a) O2 calibrations of PPS sensors: Laminated sensor facing downwards (light grey), Laminated 

sensor facing upwards (medium grey) Non-laminated sensor (dark grey) presented in the lifetime scale. (b) 

Corresponding Stern–Volmer plots, 10 °C, dry gas.  
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3.6 Long term storage tests 

Finally, a long term storage stability study was carried out to assess whether our 

sensors aged with time. Three units of the swelled sensors (grafted and ungrafted PP) 

and spotted sensors (spunbond and wetlaid) were fabricated and measured. They 

were stored in a cupboard in plastic containers at ambient room temperature in 

ambient atmosphere. Results are found in Table 3.6  

Table 3.6 Averaged lifetimes at 21 kPa O2  and 0 kPa 02 of sensors over the duration of the study (52 weeks). 

 Day 0 Day 14 Day 90 Day 365 

O2 21 kPa 0 kPa 21 kPa 0 kPa 21 kPa 0 kPa 21 kPa 0 kPa 

Grafted PP 21.12 55.45 25.01 56.24 22.85 56.97 24.29 57.06 

Ungrafted PP 12.06 56.42 15.21 56.70 13.38 57.21 14.82 56.28 

Spunbond spot 27.98 56.19 30.14 56.32 26.36 55.59 27.42 53.89 

Wetlaid spot 23.11 54.66 25.61 55.36 23.20 55.60 23.18 55.81 

 

The swelled ungrafted sensors performed well over time with changes of less 

than 0.5 µs at 0 kPa over 12 months (Fig. 3.17). Small variations in the signals at 21 

kPa could be down to differing sites of measurement. The grafted and spotted 

sensors showed greater deviations of 1-2 µs over twelve months. The grafted sensor 

showed the lifetime signal increase incrementally over the 12 months from the 1 

month time-point while the spotted sensors showed fluctuating lifetimes from two 

weeks onward culminating in a change in lifetime signal of greater than 2 µs overall 

at the 12 month time-point.  
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Fig.  3.17 Averaged lifetimes at 21 kPa O2 (blue) and 0 kPa 02 (red) of A) ungrafted sensors, B) grafted sensors, 

C) spunbond spotted sensors and D) wetlaid spotted sensors over the duration of the study (52 weeks).  

 

 

3.7 General discussion, conclusions and potential applications 

Although possessing good working characteristics in terms of life-time signal 

and linear calibrations, the high cross-sensitivity of the spotted sensors to humidity 

restrict their use to aqueous samples (e.g. dissolved O2 measurements) as they are 

unsuitable in packaging conditions which have variable water vapour content.  

Therefore, other fabrication methods were selected in the hopes of creating 

sensors more suited to food applications. The sensors based on PP fabric material 

created using a polymer swelling method, show good wettability, high signals and 

stable calibrations in both dry and humid conditions. The swelled grafted PP sensor 

showed lower sensitivity which implies it can be applied to the monitoring of higher 

O2 concentrations (0-100 kPa) whereas the ungrafted PP sensor is better suited for 

monitoring of low O2 levels (0-21 kPa). Therefore both sensors are suitable for O2 

monitoring of food products in packaging.   

A) B) 

C) D) 
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The PPS sensor created with a new faster method of fabrication show high 

reproducibility, easy incorporation and create discrete spot sensors which are 

desirable as no further processing is needed. However, their slow response to O2 in 

humidity (Fig. 3.15 pg 87) could cause issues on a fast production line where 

atmosphere leakages may not be caught in time. 

A summary of the main characteristics of each new sensor fabrication versus the 

commercial sensor is available in Table 3.7.  

Table 3.7 Comparison of main characteristics of each sensor 
Sensor Type Swelled Spotted Crazed OpTech

TM 

Homogeneity High Medium Medium High 

Reproducibility High Medium High High 

Response time in water < 6 mins < 4 mins 40 mins > 30 mins 

Consumption of materials High Low Low High 

Cross-sensitive to humidity No Yes No No 

Ease of manufacture Slow Fast Fast Slow 

Discrete spots formed No Yes Yes No 

Incorporation into 

packaging 
Heat-

sealable 
Heat-

sealable 
Heat-

sealable 
Sticker added to 

support 

Appearance 

 
 

 

 

 

 

 

 

 

 

 

Grafted PP 

Ungrafted PP 
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4 Chapter 4: Applications of sensors in packaging 

4.1 Introduction 

O2 is an important parameter to monitor in food packaging as a shelf-life limiting 

factor. Insufficient O2 control can lead to premature spoiling of food by oxidation, or 

providing the necessary conditions for the growth of bacteria and other microbes. In 

addition, oxidation can change the sensory properties of certain foods such as taste, 

texture and aroma and decrease the nutritional value of food (potato snacks) which 

can negatively impact the perceptions of the final consumers. 

In order to prolong the quality of food products, active packaging methods can be 

used. MAP, one of the most widely used active packaging methods, involves the 

tailoring of gas composition inside packages to optimal levels, in order to inhibit 

microbial growth without affecting the quality of the food product.  

Traditional analysis of headspace O2 entails the removal of packages at random 

from the product line, inserting a thin needle and withdrawing a precise volume of 

headspace gas 5. As well as creating a large amount of wastage, this only provides a 

time of analysis snapshot of the conditions in the selected packets. This is 

insufficient to detect all below quality packages with incorrect gas levels, which 

have been shown to be numerous124. Alternatively, an online gas analyser is attached 

to the feed line from the gas mixer to ensure the correct levels of gas are being fed 

into the individual packages. Although speedier than headspace analysis, this does 

not account for faults in packaging materials themselves, such as insufficient sealing 

or damage to packaging during processing or transport allowing ingress of O2.  

Although successful in many applications, existing commercial sensor systems 

are not very compatible with large-scale applications such as food packaging due to 
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their expensive, inflexible and complex natures. To be viable for incorporation in 

food packaging, sensors should be reproducible, stable and cost less than 1c per cm2 

4a. The use of polypropylene (PP) and polyethylene (PE) as matrices for the dye 

incorporation helps achieve this goal as they possess many desirable qualities for 

sensor fabrication such as inexpensive cost, good stability and suitable gas 

permeability.  

As outlined in the previous chapter, polypropylene membranes can be used to 

make robust, stable, low-cost, disposable sensors. In the following studies, we 

evaluated the stability of these sensors when exposed to various food simulants, meat 

and cheese products and in modified atmosphere packaging. In addition, we 

investigated the viability of using O2 sensors in real-life quality control situations, 

shelf-life extending procedures and in selecting correct packaging. 

 

4.2 Stability testing 

The initial screen testing of the sensors in food simulants is designed to assess 

sensor performance in a variety of food simulants. After exposure to the sensing 

materials, simulants were tested by HPLC for the presence of PtBP dye which could 

indicate that the dye is leaching out of the sensors into the simulants. The sample 

solutions and PtBP dye standard was assayed by reverse phase HPLC. 10 µL of a 

PtBP dye in tetrahydrofuran (THF) standard (0.02 mg/mL) or the simulant solution 

was injected into a mobile phase of H2O/TFA (mobile phase A) and eluted with an 

ascending stepwise gradient of THF (mobile phase B), using gradient 0-70 % B over 

22 mins.  
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HPLC data showed that no leaching occurred for the sensors in the simulants 

with the exception of the 95 % EtOH control sample (Table 4.1). No leaching of the 

crazed PPS sensor occurred at all, even in the positive 95 % EtOH control. The 

leached dye obtained from the swelled ungrafted PP sensor (1.47 x 10-4 mg/mL) was 

attributed to aggregated dye on the surface of the sensor which was not washed off 

during the water wash stage.  

Table 4.1 Summary of dye leached from sensors in positive control, sensors described in Chapter 3. 

Sensor Concentration dye (µg/mL) Estimated dye leached out of sensor (%) 

Swelled ungrafted PP 0.15 37.69 

Swelled grafted PP 2.07 36.33 

Spotted spunbond PP 0.49 24.25 

Spotted wetlaid PP 0.24 11.95 

Crazed PPS No leaching No leaching 

 

No notable drift in the lifetime signal of the swelled ungrafted PP sensor was 

observed in air or nitrogen atmospheres (lifetime signal difference < 0.5 µs in all 

samples)(Fig. 4.1). The swelled grafted PP and spotted PP (wetlaid and spunbond) 

sensors show no signal after 7 days immersed in the control (95 % EtOH), this is due 

to all the dye being leached by the simulant solution. 
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Fig.  4.1 Averaged lifetimes of swelled ungrafted PP sensors at A) 21 kPa O2 and B) 0 kPa O2 at day 0 (Blue) at 

day 21 (Orange) 
 

The grafted sensor showed a rise in lifetime signal at 21 kPa in solutions 2,3,4,7 

and 8 but this trend is not seen in the 0 kPa, which signifies a change in O2 

availability to the dye (Fig. 4.2). The degradation caused by solution 2 could be due 

to the redistribution of the dye by the EtOH. Degradation by the other simulants 

could be due to the solution sediments blocking or lowering the permeability of the 

microporous membrane, reducing the availability of O2 to quench the lifetime signal.  
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Fig.  4.2 Averaged lifetimes of swelled grafted PP sensors at A) 21 kPa O2 and B) 0 kPa O2 at day 0 (Blue) at day 

21 (Orange). 

 

In contrast, the crazed PPS sensor HPLC data shows no leaching in any of the 

sensors, indicating that the dye is firmly embedded in the polymer. Although lifetime 

data indicates a rise in lifetime signals at 21 kPa and 0 kPa (Fig. 4.3), it is hard to 

take any relevant information from this, as crazed PPS sensors have been shown to 

have quite heterogeneous lifetime signals dependent on location of reading.  
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Fig.  4.3 Averaged lifetimes of crazed PPS sensors at A) 21 kPa O2 and B) 0 kPa O2 at day 0 (Blue) at day 21 

(Orange). 

Like the swelled grafted PP sensors, the spotted spunbond (Fig. 4.4) and wetlaid 

sensors (Fig. 4.5) show a change in lifetime both in air and nitrogen which can be 

attributed to the same effect. In addition, it was theorized that liquid could solubilise 

any residual surfactant retained in the spotted sensors, which could also affect a 

change in the lifetime signals.  
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Fig.  4.4 Averaged lifetimes of spunbond sensors at A) 21 kPa O2 and B) 0 kPa O2 at day 0 (Blue) at day 21 

(Orange). 
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Fig.  4.5 Averaged lifetimes of wetlaid sensors at A) 21 kPa O2 and B) 0 kPa O2 at day 0 (Blue) at day 21 

(Orange). 
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4.3 Stability testing of sensors with packaged food 

Based on the results from the simulant studies, the swelled ungrafted PP, swelled 

grafted PP and crazed PPS sensors were chosen for stability studies involving 

exposure to meat products and cheese products. The spotted sensors were excluded 

due to their cross-sensitivity to humidity. Two of each sensor type was attached to 

the sealing film using scotch tape before the package was sealed (Fig. 4.6).  

 

 

 
Fig.  4.6 Picture of sensors inserted in A) meat package B) chicken package and C) cheese package. 
 

An OpTechTM Platinum-O2 sticker was included in each packet as a control. 

Once sealed, the meat packages were transferred to a 4 °C cold room and one stored 

upright and the other stored inverted. O2 levels were measured at day 2, day 5 and 

day 7 using the OpTechTM handheld instrument. Measurements of O2 and CO2 gas 

content were taken by the DansensorTM gas analyzer on the first and last days of the 

study (Table 4.2). Measurements showed that in the packages with chicken, O2 
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content reduced by 0.1 %. This could be an indication of O2 being absorbed by the 

meat product.  

Table 4.2 O2 and CO2 concentrations in packages measured by Dansensor
TM

 instrument, n=2 for each reading. 
  Before storage (%) After storage for 7 days (%) 

Sample O2 CO2 O2 CO2 

Blank 55.30 ± 0.00 40.90 ± 0.07 55.40 ± 0.00 40.50 ± 0.07 

Beef UPR 55.30 ± 0.00 40.90 ± 0.00 54.30 ± 0.00 41.40 ± 0.07 

Beef INV 55.30 ± 0.00 41.20 ± 0.00 54.30 ± 0.00 41.50 ± 0.07 

Chix UPR 0.10 ± 0.02 41.00 ± 0.02 0.03 ± 0.07 36.00 ± 0.07 

Chix INV 0.09 ± 0.02 41.40 ± 0.00 0.00 ± 0.07 35.80 ± 0.07 

 

 The screening of the sample packages (Fig. 4.7) showed the swelled ungrafted 

PP sensor having the least lifetime deviation (< 0.3 µs (< 0.18 kPa O2)) over the 

seven day period in both the chicken packages and the beef package which was 

stored in an upright position. A higher deviation was observed in the inverted beef 

package, which could be due to the sensor being soaked in the blood juices from the 

product throughout the storage period. Likewise, the swelled grafted PP sensor 

showed small deviations in lifetime signal in chicken packages. However, there were 

noticeable deviations observed in the beef samples (1.5 µs (1.13 kPa O2) in the 

upright sample and 14.3 µs (14.00 kPa O2) in the inverted sample). The smaller 

deviation can be attributed to condensation within the packet which gathered around 

the sensor. The larger deviation was caused by the impregnation of the sensor with 

blood juices which can limit the O2 availability of the sensor due to the fatty nature 

of the juice. The crazed PPS sensor also performed well, with a major deviation of 

2.5 µs (9.14 kPa O2) found in the inverted beef package.  
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Fig.  4.7 Lifetime values of sensors in packages in A) Upright steak package B) Inverted steak package C) 

Upright chicken package D) Inverted chicken package. 

 

After removal from the packages, all sensors were washed thoroughly with water 

to remove any residual meat juices. Characterisation of the sensor, post-

incorporation, included a full O2 calibration (0-100 kPa) performed at 20 °C in dry 

gas. Calibrations were carried out for each type sensor in each different meat and 

storage orientation (Fig. 4.8). Sensors stored in the empty package were used as the 

controls. The swelled ungrafted PP sensors performed well after exposure, with 

calibrations showing slight deviations (< 0.7 µs) from the calibration of the swelled 

ungrafted PP sensor in the empty package, however this is within the accepted range 

for the sensor.  
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Fig.  4.8 Lifetime calibrations of A) Swelled ungrafted PP sensors C) Swelled grafted PP sensors and E) crazed 

PPS sensors with corresponding Stern-Volmer plots  (B, D and F) post-exposure at 20 °C, 0-100 kPa dry O2 gas.  
 

As observed previously, during screening of the packages, the swelled ungrafted 

PP sensor in the inverted chicken package deviated slightly from the original 

calibration, with differences in lifetime signal of 2.9 µs at 21 kPa and 1.9 µs at 0 

kPa. This would suggest that the juices from the chicken product are interfering with 

the signal and such juices are hard to remove with only water washing. This could be 

prevented by lamination of the sensor with HDPE to protect it from the juices and 

prevent soakage.  

The swelled grafted PP and crazed PPS sensors showed greater deviation from 

their original calibrations compared with the ungrafted swelled PP sensor, with 

deviations of up to 3.7 µs in the swelled grafted PP sensor and crazed PPS sensor. 
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Like the swelled ungrafted PP sensor, the greatest deviation in the crazed PPS sensor 

was seen with the sensor that was in direct contact with the chicken. In contrast, the 

swelled grafted PP sensor showed the least variation in the inverted chicken 

container indicating that the hydrophilic layer may have facilitated easier washing of 

the sensor. There was no observed difference in response times seen between any of 

the exposed and non-exposed sensors.  

The sensors are intended for applications where they would be exposed to many 

different types of food. Therefore cheddar cheese was selected for additional contact 

testing. The cheese was sliced and divided between two MAP containers with an 

additional MAP container left empty as a control. As before, the sensors were 

adhered to the sealing film with tape and sealed in an atmosphere of 32 % CO2 and 

68 % N2. Blank containers were included in each sealing run. The containers were 

then stored both upright and inverted in a cold room (3 °C) and tested intermittently 

over a 32 day time-span. The blank containers were tested using the DansensorTM 

gas analyzer at the beginning of the study to confirm atmosphere concentrations of 

CO2 and O2. Upon the end of the study, the DansensorTM instrument was used to 

analyze the final gas levels in the packages. The results are outlined in Table 4.3. 

Table 4.3 O2 and CO2 concentrations in packages measured by Dansensor
TM

 instrument, n=2 for each reading. 
  Before storage (%) After storage for 32 days (%) 

Sample O2 CO2 O2 CO2 

Blank 0.14 ± 0.00 32.70 ± 0.01 1.22 ± 0.00 28.40 ± 0.00 

Cheese UPR 0.09 ± 0.00 32.70 ± 0.00 0.02 ± 0.00 16.70 ± 0.00 

Cheese INV 0.10 ± 0.00 32.60 ± 0.00 0.02 ± 0.07 20.10 ± 0.14 

 

Screening showed both the upward and inverted sensors performing well over 

the time period with a slight upward drift in lifetime signal (0.5 µs) in the 

commercial OpTechTM sticker over 32 days (Fig. 4.9). This corresponded to upward 
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drifts in the swelled ungrafted PP and crazed PPS sensors of 0.7 µs  and the swelled 

grafted PP sensor showed the lowest drift of 0.2 µs. The upward drifts in signal 

indicate a depletion of the already trace level of O2, possibly due to the cheese 

absorbing O2 from the atmosphere. This corresponds to DansensorTM data which 

indicates that O2 levels in the containers have decreased by over 0.7 % over the 

course of the study.   

 

Fig.  4.9 Lifetime values of sensors in packages in A) Upright cheese package B) Inverted cheese package. 

 

The blank container containing sensors used as control was found to have a leak 

as indicated by lower sensor readings. The OpTechTM sensors showed a reading of 

approx 46 µs instead of the 48-49 µs signals obtained from the cheese containing 

packages, indicating O2 ingress had occurred. Upon examining the DansensorTM 

data, which showed similar O2 concentrations in all packages, it was assumed that 

the package containing the sensors had not sealed correctly. This highlights the need 

of quality testing all packages on-line as the blank package which was sealed on the 

same run had sealed correctly according to DansensorTM data.  

Upon removal from packages on day 32, the sensors were washed with water and 

dried overnight. Characterisation of the sensor, post-incorporation, included a full O2 

calibration (0-100 kPa) performed at 20 °C in dry gas. Calibrations were carried out 

for each type sensor in each storage orientation. Sensors stored in the empty package 
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were used as the controls. As seen with the meat products, swelled ungrafted PP 

sensors performed well, with calibrations showing slight deviations within the 

accepted range (< 0.8 µs, 0.34 kPa O2), from the calibration of the swelled ungrafted 

PP sensor in the empty package (Fig. 4.10).   

 
Fig.  4.10 A) Lifetime calibration curves of swelled ungrafted PP sensors B) corresponding Stern-Volmer plot 

post-exposure at 20 °C, 0-100 kPa dry O2 gas.  
 

The swelled grafted PP and crazed PPS sensors showed greater deviation from 

the original calibration (Fig. 4.11), with deviations of up to 1.2 µs (1.03 kPa O2) in 

the swelled grafted PP sensor and 1.8 µs (3.00 kPa O2) crazed PPS sensor. The 

greatest deviation in the swelled grafted PP sensor was seen with the sensor that was 

not in direct contact with the cheese product. This difference was attributed to a 
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slightly different availability of O2 to the dye within the sensor as the signal only 

began to deviate as O2 concentrations increased. In contrast, the crazed PPS sensor 

showed the greatest deviation in the inverted cheese container indicating that there 

may be interference from the oily nature of the cheese. As before, there was no 

observed difference in response times seen between any of the exposed and non-

exposed sensors. 

 
Fig.  4.11 Lifetime calibration curves of A) swelled grafted PP sensors, C) crazed PPS sensor and corresponding 

Stern-Volmer plots (B & D) post-exposure at 20 °C, 0-100 kPa dry O2 gas.  
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4.4 Application of O2 sensors at a meat processing factory 

Although, our newly fabricated sensors show good responses when in contact 

with food products, the signal interference observed in interaction with meat juices 

require further study and quite possibly lamination to protect the sensors. Therefore, 

as lamination was not possible in-situ at factory site packaging facilities, 

commercially proven OpTechTM Platinum-O2 stickers were used to carry out the 

following proof-of-concept studies.  

 

4.4.1 QC of vacuum packing machines 

Three vacuum-packer machines, in a large-scale meat processing factory, were 

assessed for efficiency using OpTechTM Platinum-O2 stickers. Packaged meat cuts 

were tested based on aesthetic appearance, O2 content, and shelf-life performance. A 

total of 26 samples were tested, 10 of which were packaged on an older conventional 

vacuum packing machine (Code: MVac) and another 10 were packaged on the rotary 

vacuum packing (Code: Oct). These pieces were created from cow chuck split and 

divided into 20 pieces. Finally, a shin piece was cut into six pieces and packaged in a 

new conventional vacuum packing machine (Code: FVac). 

The pieces were tested on day 0, day 30, day 60 and day 90 (Table 4.4). Each 

piece was checked for any off-tones and colour changes. It was noted that both the 

MVac and Oct samples only showed a slight brown turn in colour from pink-red on 

day 90 with some off-notes recorded also. In contrast, the FVac samples had turned 

from an initial pink-red to a pink-white slimy appearance on day 60 to a brown 

colour on day 90. In addition, the samples had off-notes in smell on day 60 and had a 

rancid smell indicating it was completely gone off on day 90.  
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Table 4.4 Aesthetic appearances of samples on Day 0, 30, 60 and 90. 
 Sample Smell Colour 

MVac samples OK Pink/red 

Oct samples OK Pink/red 

Day 0 

FVac samples OK Pink/red 

Oct7 OK Pink red 

Oct8 OK Pink red 

Oct9 OK Pink red 

MVac7 OK Pink red 

MVac8 OK Pink red 

MVac9 OK Pink red 

Day 30 

FVac5 OK Pink red 

Oct4 OK Pink red 

Oct5 OK Pink red 

Oct6 OK Pink red 

MVac4 OK Pink red 

MVac5 OK Pink red 

MVac6 OK Pink red 

FVac3 Gone off Pink/white 

Day 60 

FVac4 Gone off Pink/white 

Oct1 Off-tone red-brown-pink 

Oct2 Off-tone Pink red 

Oct3 Off-tone Pink red 

MVac1 Off-tone red-brown-pink 

MVac2 Off-tone Pink red 

MVac3 Off-tone Pink red 

FVac1 Very bad smell Pink brown 

Day 90 

FVac2 Very bad smell Pink brown 

 

The packages’ O2 readings were taken before opening and averaged over 3 

samples (Table 4.5, Fig. 4.12). All O2 levels remained below 0.25 % O2 from day 30 

onwards, indicating that no package was leaking or allowing O2 ingress. The FVac 

samples showed significantly higher initial O2 levels on day 0 (approximately 0.3 

%). The O2 levels in all packs declined until day 60 and plateaued on day 90, 

indicating that some microbial growth and/or lipid oxidation may have occurred in 

the packs. This would correspond with the off-note scents recorded on day 90 in 

aesthetic tests.    
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Table 4.5 Averaged O2 levels in packs  
O2 (%) Day 0 Day 30 Day 60 Day 90 

MVac 0.50 ± 0.22 0.09 ± 0.02 0.05 ± 0.03 0.07 ± 0.04 

Oct 0.65 ± 0.43 0.14 ± 0.03 0.04 ± 0.03 0.06 ± 0.02 

FVac 0.94 ± 0.82 0.23 ± 0.41 0.02 ± 0.02 0.05 ± 0.04 
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Fig.  4.12 O2 levels in packs over 90 days. 

 

To confirm whether the O2 depletion was caused by microbial growth, lipid 

oxidation or a combination of both, microbial testing via the GreenlightTM 96-well 

plate method was performed (Table 4.6, Fig. 4.13). The microbial levels stayed 

within the pre-set satisfactory levels over the 90 days for the MVac and Oct samples. 

However, the FVac showed the highest growth, outside of acceptable limits from day 

30. Day 60 and day 90 showed lower growth levels, this could be due to more 

unfavourable growth conditions i.e. as seen from the O2 data, causing microbial 

death.  

Table 4.6 CFU values over 90 days. 
Log CFU Day 0 Day 30 Day 60 Day 90 

MVac < 2.0 4.56 ± 0.03 4.71 ± 0.05 4.20 ± 0.83 

Oct < 2.0 4.89 ± 0.04 4.67 ± 0.05 3.43 ± 0.54 

FVac < 2.0 6.84 ± 0.26 6.68 ± 0.26 4.40 ± 1.50 
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Fig.  4.13 CFU values over 90 days. 
 

The FVac samples yielded the poorest performance over the 90 day study. 

Unacceptable levels of microbial growth were detected from day 30 and 

corresponded to the off-notes in smell, which increased in pungency on day 60 and 

day 90. In addition, there was a notable colour change from red-pink on day 0 to a 

white/slimy and brown colour from day 30 onwards. These results indicate that a 

combination of microbial growth and lipid oxidation occurred. Chuck meat has also 

been tested on the same vacuum packer and withheld acceptable microbial load 

limits over the same time limit (see Table 2.1), it can be assumed that the different 

type of meat used (shin meat rather than chuck meat) was the influencing factor on 

the decline of quality in the meat, rather than the failure of the packaging machine.  
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4.4.2 Large scale QC testing 

O2 sensors can be used to assess efficiency of large scale vacuum packing 

techniques and quantify quality control parameters for O2 content within these 

packages. A study on large scale meat containers was performed using OpTechTM 

Platinum-O2 stickers as the sensors fabricated in Chapter 3 had not been assessed 

fully for food safety at time of the study. The OpTechTM Platinum-O2 stickers 

(approx 20 stickers per container) were applied to the packaging materials of three 

containers before the containers were filled with approximately 300 kg of forequarter 

meat between layers of dry ice (Fig. 4.14). These containers were allowed to rest for 

approximately 45 min before sealing.  

  

 

 

 

 

 

 

 

 

 

 

The containers were then vacuumed (Fig. 4.15) and stored in the cold room 

warehouse (approximately 1 °C) over 15 days. The stickers which were still 

accessible were read using the OpTechTM instrument at regular intervals on day 1, 

day 3, day 7, day 11 and day 15.  
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Fig.  4.14 Orientation of sensors on bin 
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Fig.  4.15 Photo demonstrating vacuum pulled on bin. 
 

On day 15, the vacuum was still visibly sufficient in the bins. The sensors were 

recovered from the packaging and meat samples were taken for microbial content 

testing. 

In bin 1, the O2 levels remained below 5 % O2 throughout the 15 day study with 

the majority of sensors giving readings of less than 2 % (Table 4.7, Fig. 4.16). The 

initial high O2 levels seen on day 1 were attributed to the distribution of O2 and the 

temperature not being equalized as packaging took place on the factory floor which 

is a higher temperature than the storage warehouse. O2 levels stayed relatively stable 

in the following days, with one sensor showing outlying results of 4.5 % on day 3 

which decreased to below 1 % on day 8.  

 

 

 

 



 114 

Table 4.7 O2 level readings of each sensor in bin 1 (%). 
Location Day 1 Day 3 Day 8 Day  11 Day  15 

Front 1 0.00 0.00 0.11 0.22 0.32 

Front 2 1.05 0.25 0.42 0.42 0.75 

Front 3 0.45 0.46 0.29 0.33 0.57 

Front 4 1.85 0.01 0.13 0.14 0.36 

Front 5 0.83 1.63 0.27 0.23 0.16 

Front 6 1.13 1.64 0.56 0.81 1.06 

Front 7 0.00 4.47 0.97 1.02 0.98 

Front 8 2.64 0.03 0.08 1.13 0.00 

Front 9 6.80 0.21 0.72 0.12 0.08 

Front 10 7.53 1.63 0.25  0.15  0.23 

Back 1 1.17 0.00 0.11 0.14 0.43 

Back 2 0.00 0.17 0.13 0.07 0.10 

Back 3 0.00 0.56 0.19 0.34 0.63 

Back 4 0.98 0.05 0.08 0.21 0.29 

Back 5 0.06 0.02 0.04 0.14 0.19 

Back 6 3.35 0.18 0.07 0.04 0.07 

Back 7 2.17 0.65 0.70 0.10 0.12 

Back 8 N/A 0.72 0.53 0.59 0.17 

Back 9 N/A 0.35 0.07 0.99 0.49 

Back 10 N/A 1.02 0.21 0.20 0.11 
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Fig.  4.16 O2 concentration readings obtained from stickers in bin 1. 
 

Likewise, bin 2 showed O2 levels maintained lower than 2 % O2 throughout the 

study (Table 4.8, Fig. 4.17) . Upon exclusion of day 1 results, the O2 levels remained 

below 1 % in most cases with the exception of one outlier sensor.  
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Table 4.8 O2 level readings of each sensor in bin 2 (%). 
Location Day 1 Day 3 Day 8 Day  11 Day  15 

Front 1 0.33 0.50 0.00 0.47 0.36 

Front 2 0.00 0.41 0.11 0.76 0.79 

Front 3 0.45 0.46 0.11 0.15 0.00 

Front 4 0.00 0.36 0.14 0.28 0.00 

Front 5 0.00 0.27 0.08 0.31 0.00 

Front 6 0.23 0.31 0.59 0.00 0.23 

Front 7 0.51 0.36 0.13 0.11 0.34 

Front 8 3.52 0.42 0.08 0.82 0.32 

Front 9 0.63 0.41 0.17 0.30 0.69 

Front 10 2.61 0.00 0.17 0.00 0.66 

 Back 1 1.24 0.38 0.18 0.39 0.43 

Back 2 2.23 7.19 3.36 1.65 0.50 

Back 3 0.00 0.17 0.00 0.00 0.74 

Back 4 0.66 0.49 0.00 0.55 0.43 

Back 5 3.32 0.80 0.26 0.50 0.21 

Back 6 0.73 1.71 0.08 0.19 0.43 

Back 7 2.19 0.30 0.28 0.32 0.25 

Back 8 0.00 0.28 0.14 0.19 0.00 

Back 9 3.17  N/A  N/A  N/A  N/A 

Back 10 3.07  N/A  N/A  N/A  N/A 
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Fig.  4.17 O2 concentration readings obtained from stickers in bin 2. 
 

In contrast, bin 3 showed much lower O2 levels (lower than 1 %) throughout the 

study (Table 4.9, Fig. 4.18). This could be attributed to the bin being sealed right 

first time with a good vacuum being pulled during sealing. In comparison, bin 1 and 

bin 2 did not have a sufficient vacuum pulled on the first attempt and so needed to be 

opened and resealed. This allowed some of the CO2 atmosphere generated by the dry 
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ice to escape and be replaced with O2 atmosphere. From day 3, O2 levels in bin 3 

remained below 0.4 % excepting two sensors which showed a slight increase on day 

15. This increase could have been due to the rupture of the packaging or shaking of 

the bin while being transported from the warehouse to the production floor via 

forklift. This identified a possible point where product quality could fail. As the O2 

levels throughout the study was consistently low, it showed the importance of 

packaging large-scale meat packages right first time to maintain quality of meat.  

Table 4.9 O2 level readings of each sensor in bin 3 (%). 
Location Day 1 Day 3 Day 8 Day  11 Day  15 

Front 1 0.00 0.28 0.07 0.08 0.20 

Front 2 0.14 0.26 0.08 0.13 0.17 

Front 3 0.01 0.24 0.01 0.05 0.20 

Front 4 0.11 0.13 0.13 0.16 0.84 

Front 5 0.00 0.26 0.08 0.19 0.10 

Front 6 0.10 0.21 0.11 0.17 0.31 

Front 7 0.03 0.19 0.10 0.16 0.22 

Front 8 0.43 0.15 0.07 0.17 0.24 

Front 9 0.20 0.00 0.05 0.21 0.32 

Back 1 0.00 0.27 0.04 0.13 0.19 

Back 2 0.00 0.30 0.12 0.12 0.14 

Back 3 0.00 0.27 0.09 0.21 0.38 

Back 4 0.00 0.28 0.06 0.09 0.80 

Back 5 0.00 0.14 0.04 0.04 0.19 

Back 6 0.30 0.20 0.10 0.08 0.26 

Back 7 0.00 0.34 0.00 0.01 0.02 

Back 8 0.00 0.20 0.10 0.00 0.27 

Back 9 0.00 0.16 0.00 0.00 0.00 

Back 10 0.00 0.28 0.00 0.10 0.14 
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Fig.  4.18 O2 concentration readings obtained from stickers in bin 3. 
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The bin O2 distribution was averaged, to see if any trends in O2 levels could be 

observed (Fig 4.19). Day 1 showed increasing O2 from the bottom to the top of the 

bins. This could be due to CO2 generated by the dry ice pushing out the O2 

atmosphere and top section of the bin being more vulnerable to O2 ingress before 

sealing. Bin 1 and 2 show greater O2 concentrations than bin 3 due to their not being 

sealed properly on the first try. Day 3, 8 and 11 all show the same random 

redistribution of O2 concentration throughout each bin. However on day 15, there is 

a noticeable shift in the distribution, possibly due to the movement of the bins from 

their storage location in the warehouse.  

 
Fig.  4.19 Comparison of top, middle and bottom O2 concentrations in bin on A) day 1, B) day 3, C) day 11 and 

D)  day 15.  
 

Total Viable Count (TVC) tests were carried out on the bins on day 1 and day 15 

to ensure meat quality (Fig. 4.20). The microbial count tests showed no growth of 

bacteria on day 0 or day 15, therefore it is assumed that no growth, or growth below 

the limit of detection of the tests (approximately 100 CFU/g), occurred in the bins. A 
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positive control test was carried out on a piece of meat left out on bench-top for 48 h 

to ensure the microbial testing was valid.   

 
Fig.  4.20 Microbiological results obtain via Greenlight

TM
 96- well plate test on A) day 0 and B) day 15. 
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4.4.3 Testing of shelf-life extending treatment 

Nα-Lauroyl-L-arginine ester monohydrochloride, otherwise known as LAE®, is a 

derivative of lauric acid, L-arginine and ethanol. The molecule has anti-microbial 

properties and is considered safe for human consumption 125 by the FDA in levels up 

to 200 ppm and by the EFSA in cooked meats in levels up to 160 ppm. However, 

studies have shown this compound has anti-microbial effects in µg/mL dosages in 

the range of 2-128 µg/mL against a wide range of common food-related bacteria, 

yeasts and moulds125-126. 

The LAE works on the cytoplasmic membranes in order to disrupt metabolic 

cycles and inhibit their normal cycle. Although, LAE has not been approved yet for 

use on raw meats in the EU, we carried out a study involving treating cuts of meat to 

assess its ability to extend shelf-life of the meat. Cuts (small steer pieces (approx 500 

g) and large chucks (approx. 7 kg)) were treated with a 100 % concentrated solution 

of LAE, a 50 % LAE/50 % H2O diluted solution and compared directly to results 

obtained from non-LAE-treated samples. Each sample was vacuum-packed with an 

OpTechTM Platinum-O2 sticker and stored in a cold room (1 °C) over an 80 day 

period.  

 

4.4.3.1 Small Chuck Study 

Samples were divided into three categories: Non-treated (Code: NT), 100 % 

concentrate (Code: Conc) and 50/50 % diluted (Code: S5050). 2 samples of each 

category of the small steer pieces were tested every 10 days for O2 concentration and 

microbial levels. The large chucks were stored on-site in the chilled warehouse and 

tested on day 40 and day 80.  
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At each time-point, the scent and colour of the samples were assessed on opening 

(Table 4.10). The non-treated samples began to display some brown off-colours on 

day 40 along with some off-notes in smell. Although the coated samples turned a 

brown-red colour from day 40, there were no off-notes in smell noted over the 80 

day study.  

Table 4.10 Aesthetic appearances of samples every 10 days over an 80-day period. 
 Sample  Smell Colour 

NT 1 OK Fresh red 

NT 16 OK Fresh red 

Conc 8 OK Pink red 

Conc 16 OK Pink red 

S5050 8 OK Off-red/pink 

Day 10 

S5050 16 OK Off-red/pink 

NT 2 OK Fresh red 

NT 15 OK Red (green/blue sheen) 

Conc 7 OK Faded pink red (white sheen) 

Conc 15 OK Pink red 

S5050 6 OK Pink red 

Day 20 

S5050 15 OK Pink red 

NT 3 OK Pink red 

NT 14 OK Pink red 

Conc 6 OK Dark red 

Conc 14 OK Dark brown red 

S5050 7 OK Pink red 

Day 30 

S5050 14 OK Brown red 

NT 4 OK Dark red 

NT 13 Off tones noted Dark red 

Conc 5 OK Brown red 

Conc 13 OK Brown red 

S5050 5 OK Dark red 

Day 40 

S5050 13 OK Dark red 

NT 5 Off-tones Red-pink 

NT 12 Off-tones Red with brown parts 

Conc 4 OK Brown-red 

Conc 12 OK Brown-red with some pink 

S5050 4 OK Brown-red 

Day 50 

S5050 12 OK Brown-red 

NT 6 Off-tones Whitish sheen on red pink 

NT 9 Off-tones Red with some brown 

Conc 3 OK Red brown 

Conc 11 OK Red brown 

S5050 3 OK Red brown 

Day 60 

S5050 11 OK Red brown 

NT 7 Sour smell Pink red 

NT 11 Off-tones Pink red 

Conc 2 OK Brown-red 

Conc 10 OK Brown-red 

Day 70 

S5050 2 Slight off-tones Brown-red 
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S5050 10 OK Brown-red 

NT 8 Off tones Pink red 

NT 10 Very slight off-tones Pink red 

Conc 1 Very slight off-tones Brown-red 

Conc 9 Very slight off-tones Brown-red 

S5050 1 OK Brown-red 

Day 80 

S5050 9 OK Brown-red 

 

Samples were measured for O2 content using the OpTechTM instrument before 

opening and the average obtained between two samples (Fig. 4.21). All O2 levels 

remained below 0.2 % O2 indicating that no leakages occurred over the study. As O2 

concentrations were so consistently low throughout the study, no correlations were 

seen between microbial load and O2. However, the inclusion of sensors ensured that 

the integrity of the packages was maintained. This allowed package rupture to be 

excluded, when considering causes of outlier results.  
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Fig.  4.21 O2 levels in packs over 80 days. 
 

All samples were analyzed for microbial load, every 10 days, until day 80 (Fig. 

4.22). The non-treated samples showed high CFU levels from day 30 onwards. 

Growth fluctuated from day 20 to day 80 in the non-treated samples. The coated 

samples showed no microbial growth over the 80 days, with the exception of outliers 

in a Conc treated piece on day 60 and in a S5050 piece on day 80. These outlying 
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growth patterns were attributed to either local contamination or the meat samples not 

being fully coated in LAE before packaging.  
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Fig.  4.22 CFU readings in packs over 80 days. 
  

 

4.4.3.2 Large Chuck Study 

The 7 kg chuck samples were analyzed for O2 content on day 40 and day 80 

(Table 4.11). O2 levels were observed to be < 1 % on day 1 and further decreased to 

< 0.1 % on day 40. A downward trend was observed in the SConc (d80) sample over 

the 80 days. The NT (d80) sample showed an increase from 0.058 % O2 to 0.09 % 

on day 40 indicating a leak. The sample was repackaged into a new vacuum package 

however there was an additional increase to 0.27 %, indicating that the attempts to 

save the sample on day 40 were rendered ineffective.  

Table 4.11 O2 levels in chucks over 80 days. 

 O2 (%) 

Chuck code Day 0 Day 40 Day 80 

NT (d40) 0.06 0.07 N/A 

NT (d80) 0.06 0.09 0.27 

SConc (d40) 0.18 0 N/A 

SConc (d80) 0.07 0.06 0.09 

S5050 (d40) 0.07 0.05 N/A 

S5050 (d80) 0.68 0.06 0.04 
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The samples were measured for microbial content on day 40 and day 80 (Table 

4.12. On day 40, the non-treated sample showed low CFU within satisfactory limits. 

However on day 80, despite smelling rancid, the non-treated sample showed no CFU 

growth, perhaps due to large-scale lipid oxidation, rendering conditions unsuitable 

for bacterial growth or survival. Alternatively, as the GreenlightTM test tests 

exclusively for aerobic bacteria, this could be an indicator that there are anaerobic 

bacteria present which could be competing with the aerobic bacteria and causing the 

decline in aerobic bacteria colonies. This highlights the need for developing low cost 

O2 and CO2 sensors for use as food quality monitors in packaging so that both types 

of bacteria can be monitored.   Both the SConc and S5050 samples showed no 

growth on day 40. However, the SConc sample showed growth within satisfactory 

limits on day 80. The S5050 sample showed growth within the acceptable limits on 

d80 while having no discernable off-notes in smell.  

Table 4.12 CFU levels in chucks over 80 days. 
Chuck code Log CFU CFU Pass/fail 

NT (d40) 3.78 6104.13 Satisfactory 

SConc (d40) N/A N/A N/A 

S5050 (d40) N/A N/A N/A 

NT (d80) N/A N/A N/A 

SConc (d80) 4.83 68083.48 Satisfactory 

S5050 (d80) 5.74 544644.40 Acceptable/High 
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4.4.4 Use of O2 sensors for optimising Beverage closures  

Solid-state O2 sensors can be used as a means to assess O2 ingress of packaging 

materials, in addition to monitoring any in-product processes that can lead to the 

degradation of the product. A study was performed on the behest of an herbal 

beverage company, to assess the most efficient storage packaging for a fruit-based 

beverage.  

Initial tests involved three different beverage conformations; vials, jars and 

bottles. The jars had been assessed by the company previously to maintain a product 

shelf-life of 6 months. The two new conformations (vials with G-type caps and 

bottles) had never been tested for O2 ingress or shelf-life.  

Five of each conformation were hot-filled with the beverage with two vials hot-

filled with water as control (Table 4.13). Two commercial types of sensors were 

used in this study; OpTechTM Platinum-O2 stickers and dOxybeads, as our previously 

fabricated sensors had not been assessed for stability in the product matrix. The jar 

and vial samples contained one OptechTM sticker sensor on the neck and a dOxybead 

at the base of each jar. The narrow nature of the bottle neck made the secure 

adherence of the OptechTM sticker difficult, therefore only dOxybeads were used in 

these conformations. Only OptechTM stickers were used in the water controls.  
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Table 4.13 Packaging conformations and sensors used in beverage study. 
Conformation OpTech

TM
- Platinum  O2  dOxybead Image 

Jar Yes Yes 

 

Bottle No Yes 

 

Vial Yes Yes 

 

 

The samples were placed on a shaking table at 250 rpm for 16 days and 

measured using the OpTechTM instrument at regular intervals.  

The water vials, used as controls, showed little deviation in O2 concentration 

over the 16 day period with standard deviations of less than 0.3 % (Table 4.14, Fig. 

4.23). As the water used was sterile, no microbial growth was noted.  

Table 4.14 O2 results in water blanks. 
 Average O2 (%) concentrations  

Day 1 2 3 4   5 6 7  8  13 16 

Blank 1 8.46 8.79 8.96 9.13 9.07 8.80 8.85 9.05 7.85 8.73 

Blank 2 7.59 8.39 8.30 8.53 8.80 8.44 8.68 8.69 7.48 8.35 
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Fig.  4.23 O2 trends in water blanks. 
 

The jar conformations also showed minor O2 fluctuations in the 7-10 % range 

throughout the study (Table 4.15, Fig. 4.24). However, as the jars were previously 

shown to maintain a good shelf-life, it sets an acceptable range of O2 fluctuations 

(approximately 3 %) for both the OpTechTM sensors and the dOxybeads. 

Table 4.15 O2 results in jar conformations where A = dOxybead and B = OpTech
TM

 sticker. 
Average O2 (%) concentrations 

Day 1 2 3 4 5 6 7 8 13 16 

Jar 1A 10.33 10.32 9.35 9.79 9.04 9.06 8.30 8.50 8.44 8.63 

Jar 1B
 10.18 10.26 9.87 10.12 10.03 9.75 9.65 9.74 7.61 7.10 

Jar 2A 11.25 10.13 9.12 9.06 9.93 9.93 9.22 10.22 9.50 9.72 

Jar 2B 9.73 9.80 9.21 9.74 9.58 9.03 8.83 9.13 7.29 7.42 

Jar 3A 11.19 10.63 9.69 10.02 10.29 9.36 9.33 9.09 9.68 9.74 

Jar 3B 9.98 8.37 8.32 9.25 9.36 9.09 8.25 8.83 7.44 6.89 

Jar 4A 10.01 8.71 8.95 8.76 8.43 7.96 8.15 8.61 8.34 7.83 

Jar 4B 8.10 8.76 8.55 9.37 8.78 8.56 7.66 8.86 6.99 7.15 

Jar 5A 9.97 9.07 8.51 8.65 9.03 8.44 8.29 7.58 7.66 7.23 

Jar 5B 8.74 9.30 8.95 9.02 8.87 8.69 8.64 8.63 6.67 6.84 
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Fig.  4.24 O2 trends in A) jar at baseline B) jar at neckline C) vial at baseline and D) vial at neckline. 

 

 

The vials and bottle samples showed minor variability of less than 3 % 

throughout the study excepting Vial 5, which had a cap replaced after initial filling 

due to a leakage (Table 4.16, Fig. 4.24). As a result, it was deemed that no O2 ingress 

occurred in either the vials with G-type caps or the bottles. Vial 5 showed a higher 

initial O2 concentration both at neckline and baseline sensors (12.78 % and 11.72 %) 

compared to the other bottles (approximately 8-9 % and 10-11 % respectively). In 

addition, a decrease in O2 from day 5 was observed in Vial 5, indicating the higher 

O2 levels within the product led to the occurrence of microbial growth, which 

depleted the O2 within the product.  
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Table 4.16 O2 results in vial conformations where A= dOxybead and B=OpTech
TM

 sticker. 
Average O2 (%) concentrations 

Day  1 2 3 4 5 6 7 8 13 16 

Vial 1A 10.24 9.05 8.78 8.37 8.58 7.77 7.82 8.05 8.23 8.20 

Vial 1B 8.66 8.61 8.27 8.16 8.19 7.11 7.13 8.26 6.40 6.32 

Vial 2A 10.28 9.20 8.82 7.97 8.63 8.76 8.56 8.71 8.40 9.22 

Vial 2B 8.23 8.95 8.95 9.26 9.11 8.08 8.40 8.94 7.29 7.53 

Vial 3A 10.83 9.31 8.56 8.39 8.22 7.66 8.12 7.88 8.07 9.29 

Vial 3B 9.38 9.82 9.56 9.15 9.20 8.33 8.38 9.30 8.32 8.63 

Vial 4A 11.11 9.96 9.90 8.92 9.11 8.24 8.44 8.59 9.14 9.98 

Vial 4B 9.38 9.62 9.70 9.06 9.42 8.54 8.34 8.91 7.93 7.81 

Vial 5A 12.78 10.92 10.29 10.19 9.71 3.19 0.86 0.40 0.15 0.26 

Vial 5B 11.72 12.27 12.04 11.94 11.88 9.85 4.21 1.31 0.00 0.00 

 

Bottle 4 also showed a slightly higher initial O2 concentration (approx. 10 %) in 

comparison to the other bottles (approx. 5.5 - 7.5 %) (Table 4.17, Fig. 4.25). Despite 

this higher concentration, no microbial growth occurred in the sample with O2 levels 

remaining stable. This indicates that upon filling, if O2 levels are kept below 11 %, 

no microbial growth will be encouraged.  

Table 4.17 O2 results obtained from dOxybeads in bottle conformations. 
 Average O2 (%) concentrations 

Day 1 2 3 4 5 6 7 8 13 16 

Bottle 1 6.68 6.68 6.70 6.51 6.70 6.98 6.63 6.98 6.35 7.59 

Bottle 2 5.71 4.78 6.35 6.10 5.29 6.70 5.85 5.72 5.21 5.14 

Bottle 3 7.10 6.99 6.83 7.21 7.85 7.38 6.82 6.46 6.71 6.40 

Bottle 4 9.86 9.85 9.82 10.00 10.16 9.84 9.44 9.50 9.19 9.26 

Bottle 5 7.35 6.99 6.75 7.12 5.81 5.64 5.77 6.60 6.11 8.77 
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Fig.  4.25 O2 trends in bottle conformations. 



 129 

Samples of each conformation were analyzed for microbial content and 

compared to the results of Vial 5 via the GreenlightTM 96-well plate method (Fig. 

4.26). No microbial growth was noted. This could be due to the growth being 

beneath the sensitivity of the test (< 102 CFU) as when the contents of Vial 5 was 

spread on nutrient agar and incubated at 35 °C for 48 h, some visual growth was 

seen.  

 
Fig.  4.26 Results of microbiological analysis of samples A) Greenlight

TM 
plate method and B) T.V.C. method. 

 

All conformations were shown to provide sufficient protection from O2 ingress.  

After the conformation was selected by the client, there were two different types 

of vial closures which they wanted to test for O2 ingress; the G-type closures used in 

the previous study and a new type of S-type closure. 2 sensors were placed in 20 

vials as before at neck level and baseline. 10 vials were capped with closure S-type 

which the remaining vials capped with G-type closures and all 20 vials were placed 

on a shaking table at 250 rpm for 7 days (Fig 4.27).  

 
Fig.  4.27 Shaking table with samples. 
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The majority of the G-type vials showed significant O2 depletions beginning to 

occur on day 2 (Table 4.18, Fig. 4.28). On consultation with the client, the closures 

were found to be recycled which could have led to the high levels of failures (8 out 

of 10). As the previous study showed that the G-type closures successfully deterred 

O2 ingress, this would indicate it is unadvisable to reuse closures when hot-filling 

beverage containers as torque damage or heat-damage could lead to the caps failing 

on reuse. 

Table 4.18 O2 readings obtained from G-type capped samples with OpTech
TM

 and dOxybead sensors. 
Temperature 17°C 17°C 18°C 18°C 19°C 

 O2 reading (%) 

OpTech
TM 

Sensors Day 1 Day 2 Day 3 Day 5 Day 6 

G1 0.047 0.057 0.057 0.045 0 

G2 4.529 4.527 4.539 4.035 2.677 

G3 5.393 5.342 5.328 5.023 3.382 

G4 0.004 0.03 0.037 0.043 0 

G5 4.665 4.282 0.064 0.034 0 

G6 0.046 0.064 0.061 0.032 0 

G7 1.278 2.628 0.044 0.031 0 

G8 5.891 5.853 4.579 0.024 0 

G9 6.38 6.47 5.559 0.041 0 

G10 0.452 0.005 0.034 0.034 0 

dOxybead Sensors Day 1 Day 2 Day 3 Day 5 Day 6 

G1 0.778 0.783 0.802 0.811 0.727 

G2 3.071 2.674 1.87 1.078 1.087 

G3 3.977 3.31 2.485 0.939 0.582 

G4 0.821 0.807 0.954 0.857 0.724 

G5 3.134 0.821 0.792 0.761 0.7 

G6 0.775 0.813 0.865 0.776 0.884 

G7 1.152 0.681 0.713 0.121 0.62 

G8 5.798 3.789 2.892 0.684 0.533 

G9 4.831 4.217 3.35 0.758 0.534 

G10 0.68 0.694 0.737 0.721 0.514 
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Fig.  4.28 O2 concentrations from A) G-type OpTechTM sensors B) G-type dOxybead sensors C) S-type 

OptechTM sensors and D) S-type dOxybead sensor 
 

The S-type caps showed 8 out of 10 samples fail, with O2 levels in excess of 12 

% on day 1 and a decrease in O2 levels noted from day 2 onwards (Table 4.19, Fig. 

4.28). This decrease indicates microbial growth. S6 was the only S-type sample to 

show sufficiently stable O2 levels, with an initial O2 level on day 1 of approximately 

9 %. All other vials, with the exception of S4, had O2 levels in excess of 12 % on 

day 1. This would indicate that the 9 other vials had failed quite soon after filling and 

O2 ingress had occurred in the time it took for the vials to reach the laboratory from 

the production plant. S4 showed lower O2 levels on day 1 (8 %), however due to the 

sample showing declining O2 levels it could be that microbial growth began from 

time of filling. 
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Table 4.19 O2 readings obtained from S-type capped samples with OpTech
TM

 and dOxybead sensors. 
Temperature 17°C 17°C 18°C 18°C 19°C 

 O2 reading (%) 

OpTech
TM

 Sensors Day 1 Day 2 Day 3 Day 5 Day 6 

S1 14.25 14.01 14.76 0 0 

S2 16.03 16.19 15.63 0.001 0 

S3 13.76 14.02 6.836 -0.007 0 

S4 8.203 2.455 0.028 -0.004 0 

S5 13.16 13.5 8.627 0.003 0 

S6 8.888 9.351 10.31 10.86 11.28 

S7 14.12 14.59 10.64 -0.001 0 

S8 13.98 14.13 11.11 0.005 0 

S9 15.21 15.23 9.569 -0.008 0 

S10 13.69 13.71 14.31 0.049 0 

dOxybead Sensors Day 1 Day 2 Day 3 Day 5 Day 6 

S1 13.52 12.5 12.15 7.066 2.481 

S2 15.05 14.38 13.21 2.293 0.745 

S3 14.06 12.58 10.05 1.276 0.62 

S4 2.079 0.931 0.916 1.028 0.977 

S5 12.32 10.08 6.488 0.994 0.931 

S6 6.375 5.527 4.92 4.142 3.405 

S7 11.18 10.19 9.406 3.071 0.656 

S8 14.3 13.03 10.97 1.983 0.621 

S9 14.57 11.99 7.008 0.819 0.729 

S10 13.86 11.44 14.43 1.017 0.963 

 

As a result of this additional study, it was recommended that new non-reused G-

type caps be used as closures in future products.  
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4.5 Conclusions 

Several sensors based on PP fabric and PPS were tested for stability both in 

storage conditions, in food simulants and in real-world conditions in meat and cheese 

packages (Pg. 93-107) The swelled ungrafted PP sensor exhibited the highest 

stability out of all the sensors with little change in lifetime signal in all conditions 

tested. This signifies that this could be a viable alternative for incorporation in food 

packaging, as previous tests indicate its thin film nature can be easily incorporated 

into food packaging by heat-sealing or lamination. It can also be produced less 

expensively than current commercial sensors. The sensors show satisfactory 

performance after exposure with quasi-linear calibrations and sufficient operation in 

the 0-50 kPa range.  

The new uses of O2 sensors in real-world food and beverage packaging 

applications were also demonstrated. These sensors provided non-invasive real-time 

data and clients were suitably impressed with the high level of information that was 

available from the use of O2 sensors. The demonstrations exhibited the usefulness of 

solid-state O2 sensors in food packaging, whether it is used to monitor existing food 

packaging or to choose new conformations.  
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5 Final Discussion 

A number of new solid-state O2 sensors were developed for application in food 

packaging. All sensors show good working characteristics with useful lifetime and 

intensity signals and quasi-linear and linear calibrations. 

The polypropylene sensors, fabricated by spotting method127, possess good 

working characteristics such as good lifetime signal and linear calibrations (Fig. 3.3 

pg 63). The ratio of lifetime signal of 0 kPa to 21 kPa is 1.56 and 2.16 for the 

spunbond PP and wetlaid PP sensors respectively, signalling that the wetlaid sensor 

would perform better in a low O2 atmosphere. This is further enforced by the Stern-

Volmer plots which show the wetlaid sensor having higher sensitivity than the 

spunbond sensor. However, the wetlaid sensor plot shows a curved trend indicating 

that the O2 sensitive dye distribution may be somewhat heterogeneous23. The 

spotting method consumes minimal materials and solvent as only 0.02 mL of the dye 

cocktail was used per spot. Additionally as the resultant spots were approximately 9 

mm in diameter, a strip of 10-12 mm wide PP membrane would suffice for on-line 

production of sensors. The use of EtAc which has a low toxicity makes the sensors 

suitable for applications in food packaging.  

However, noticeable cross-sensitivity to humidity is observed106. This sensitivity 

is attributed to either swelling of the hydrophilic grafted layer in the PP membrane or 

the inclusion of surfactant in the dye cocktail. This cross-sensitivity could potentially 

limit the sensors applications, as many food products have variable humidity content. 

To counter-act this, the spotted sensors would have to be laminated with an O2 

permeable, moisture barrier material such as HDPE before use. This would add to 

production time and materials cost which must be kept low in order to make O2 
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sensors viable in large-scale food packaging purposes. Alternatively, a moisture 

scavenger could be included in the packs128, where humidity is not necessary to 

maintain food quality, though this measure would also increase costs. 

 Issues with reproducibility are also observed in the spotted sensors but this is 

expected to be reduced upon up-scaling of the process. Up-scaling of the sensors in 

theory could be easily managed utilising and adapting current technologies which 

exist for filling parental products in pharmaceutical plants. The PP membrane could 

be line-fed as a continuous strip with a dispenser depositing the relevant amount 

(0.02 mL) of dye cocktail on the membrane in regular intervals via a 90° syringe. 

The washing and drying steps could be performed on a continuous basis in a similar 

manner. This up-scaling would have to be tested for viability in a packaging line.  

The sensors are easily incorporated by means of heat-sealing. However, as 

previously mentioned, the sensors would need to be laminated to prevent cross-

reaction to humidity. This would slightly lengthen response times, although no 

change in calibration would occur, making this a valid solution for humidity cross-

sensitivity.  While there are some minor fluctuations during long-term storage, the 

sensors are proven stable up to 12 weeks in normal atmospheric conditions. After 

this time, the sensor signals would no longer be reliable as the sensors show a 

change in lifetime signal of 2 µs from week 0 to week 52 at 0 kPa O2.  

The low consumption of materials, along with the discrete sensors formed, is 

ideal for application in food packaging4a. Exposure to food simulants shows no 

leaching of dye out of the sensors. Nonetheless, signal degradation was observed in 

some simulant solutions most likely due to the porous membrane being clogged with 

particulates. This further implies that the sensors will have to be protected by 
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lamination before use. As a result of the cross-sensitivity to humidity, the observed 

signal degradation in food simulants and no access to lamination within food 

packaging facilities, these sensors are currently ruled suitable only for aqueous non-

acidic samples in the 0-21 % range. The sensors will have to be laminated with 

moisture barrier materials before exposure to other food products in order to prevent 

signal degradation. This adds extra cost and complication to the sensor fabrication. 

In further studies, it would be interesting to test other food-safe surfactants in the dye 

cocktail to see if the cross-sensitivity could be reduced and to ascertain if the 

surfactant is the root cause of this sensitivity.   

The sensors produced by the swelling method58 also show excellent working 

characteristics (Fig. 3.9 pg 76). The ratio of lifetime signal of 0 kPa to 21 kPa is 1.71 

and 2.55 for the grafted PP and ungrafted PP sensors respectively, signalling that the 

ungrafted PP sensor would perform better than the grafted PP sensor in a low O2 

atmosphere. This is further enforced by the Stern-Volmer plots which show the 

ungrafted PP sensor having higher sensitivity than the grafted PP sensor. The grafted 

PP sensor has similar sensitivity to the spotted PP sensors, which was expected as 

both the grafted PP sensor produced by swelling method and the spotted sensors 

used the same grafted PP materials. In contrast, the ungrafted PP exhibits sensitivity 

approximately twice that of the grafted PP sensor. This demonstrates the influence 

sensor matrix has on the O2 sensitivity of the sensor.  

The grafted PP sensor outperforms the ungrafted PP sensor in terms of 

temperature compensation, as linear T dependence of the grafted PP make 

compensation simple118. The polynomial T dependence of the ungrafted PP makes 

for more complicated compensation. In comparison to the spotting sensors, swelled 
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sensors have a more homogenous distribution of dye throughout the sensor, as 

demonstrated by their linear Stern-Volmer plots. 

The swelling method is a batch method, which limits its up-scalability in 

continuous manner. A high amount of dye per sensor (0.24 mg) is currently used 

along with high solvent use (5.6 mL THF). It is envisioned upon up-scaling, the ratio 

of water to solvent may change. In addition, the dye remaining in the cocktail may 

be recovered by evaporation. However, further tests would have to be carried out on 

the recovered dye, to ensure that exposure to the solvent or high temperatures has not 

altered the dye properties. Small to medium up-scaling was envisioned to be 

performed on a rotary evaporator, which may involve further tailoring of dye 

concentration, pressure, THF/water ratio, fabrication time and the amount of PP 

material used. Larger up-scaling would have to be performed in industrial 

conditions.  

Although, THF is considered highly toxic, the solvent is evaporated off and the 

sensor is washed to remove any residues. Further post-processing of sensors would 

involve the cutting of sensor materials into spots or squares, as spots only need to be 

6 mm in diameter in order to get a reading. These spots can be heat-sealed to current 

packaging materials with no change in response times or calibration.     

 Both sensors are suitable for O2 monitoring in food packaging, the grafted PP for 

higher O2 concentrations (0-100 %) and the ungrafted PP sensor for lower O2 

concentrations (0-21 %). The grafted PP sensors are proven stable up to 12 weeks 

when stored in normal atmospheric conditions while the ungrafted sensors were 

proven stable in storage up to 12 months (Table 3.6 pg 89). Additionally, the 

ungrafted PP sensor shows the best performance in the food simulant test with no 
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significant drift in any solution (< 0.5 µs). The grafted PP shows a significant change 

in signal in several simulant solutions. In food contact tests, the ungrafted PP sensors 

show the least signal deviations in the beef, chicken and cheese contact tests (Fig. 

4.8 pg 103). However some interference is observed when in direct contact with beef 

juices, implying that some protection such as lamination will be required in food 

packaging with blood juices present. The grafted PP sensor shows greater signal 

deviations than the ungrafted PP sensors in the beef and chicken packages. The 

grafted PP sensor showed good performance in the cheese package both in screening 

and calibration with minimal deviation at 0 kPa O2 which is the most common 

storage condition for cheese. 

The PPS sensors129 produced by the puncture test machine show differing 

lifetimes to the custom-drawn PPS sensors57 and signal intensities five times lower 

(Fig. 3.14 pg 86). The ratio of lifetime signal of 0 kPa to 21 kPa is 1.27 in the new 

PPS sensor compared to 1.52 in the previous custom-drawn PPS sensor. However, 

the KSV values are similar indicating similar sensitivities. Linear temperature 

compensation can be applied to the PPS sensors. The sensors show adequate signal 

and sensitivity for food packaging applications.  

The batch-to-batch deviations in crazed PPS sensors are expected to decrease on 

automation and up-scaling of the production technique. The puncture test machine is 

advertised as being able to perform rapid batch-testing which could be utilised on a 

packaging production line to quickly and reproducibly created PPS crazed sensors130. 

Alterations to the instrument would involve adding the customized probe and a feed 

line to allow fast feeding of the solvent/dye cocktail to the sponge adaption. As spots 

are maximum 12 mm in diameter, the PPS strip would only have to be 25 mm in 

width to allow sufficient gripping while the crazing was performed. Post processing 
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would include washing any residual solvent off and the cutting out of the sensor 

from the bulk material. The PPS sensor was shown to be easily incorporated in 

current packaging materials by heat-sealing. It is expected that the PPS sensors will 

have a reliable shelf-life up to 12 months, however these tests will have to be 

performed in future studies.   

The PPS sensors show no dye leaching in the food simulant test, with signal 

deviations attributed to the heterogeneous nature of the PPS sensors. The PPS 

sensors perform poorly in the food contact tests, with noticeable deviations in 

contact with every matrix, indicating they may require protection such as lamination 

when in contact with food products. This should be investigated further when 

sensors are up-scaled and signal deviations lowered.  

In future work, as previously mentioned sensor production will need to be up-

scalable, as currently only small lab bench scale production of the sensors has been 

carried out. Although initial food simulant testing show promising results, further 

testing will be needed on the sensors to ensure they are safe and stable for use in 

food packaging applications. In particular, although no significant leaching was 

observed, apart in positive control samples, a full toxicity test will need to be carried 

out on the O2 sensitive dye to assess safety. Likewise, testing will have to be 

performed in additional food matrixes, such as seafood and salad, to observe if any 

more interference in sensor signal occurs. Finally, the viability of heat-sealing the 

sensors in large scale packaging lines needs to be assessed, along with the viability 

of laminating sensors on-line for use in red meat packaging. It is hoped upon up-

scaling, material consumption per unit will be reduced. In addition, the cost of the 

sensors will be assessed and is expected to be considerably less expensive than 

current commercialized O2 sensors.    
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As the testing mentioned above was not possible within the timeframe of the 

project, some proof-of-concept tests were performed using currently available solid-

state O2 sensors (OpTechTM Platinum-O2 sensors). The sensors were applied in 

vacuum-packed beef packages both in small packages to test vacuum-machine 

integrity and a new coating and large packages to test the efficiency of packaging 

technique. In the small-scale study, the sensors were shown to give accurate non-

invasive data of the conditions within the packaging and proved accurate in 

predicting punctured or ruptured packaging along with indicating microbial growth. 

The sensors also proved effective in revealing a previously unidentified meat quality 

issue.  

In the large-scale study, the sensors demonstrated the importance of packaging 

the product right first time especially when an O2-purging method such as dry ice is 

used. In addition, the sensors proved useful in identifying O2 trends within the 

containers and how different movements can affect the distribution of O2 within the 

container (Fig. 4.19 pg 117). If a puncture of the containers had occurred, the sensors 

would have indicated it, removing the risk of the product reaching the customer in a 

compromised quality state.    

 In a different application study, sensors were used to select optimum glass 

packaging used beverage containers. The data obtained from the sensors allow the 

O2 ingress to be tracked in each conformation and the optimum conformations were 

identified. Afterwards, a study was performed on two different cap types, which 

identified the optimal cap type, along with demonstrating why caps should not be 

reused when packaging new product.  
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In future industrial studies, it would be envisioned that the newly fabricated 

sensors, in particular the ungrafted PP sensor produced by swelling method, would 

be used in these application studies. However, for this to happen, the sensors would 

have to pass rigorous safety tests and their lifetime signals should be reliable in the 

tested food matrices so as to produce meaningful and trustworthy data. Also, the 

means to incorporate the sensors by lamination or heat-sealing quickly, securely and 

easily on the packaging used in such industrial plants is essential.   
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