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Abstract: This paper deals with the short-term forecasting of electrical energy demands at the local level, incorporating Advanced

Metering Infrastructure (AMI), or “smart meter" data. It provides a study of the effects of aggregation on electrical energy demand

modelling and multi-nodal demand forecasting. This paper then presents a detailed assessment of the variables which affect

electrical energy demand, and how these effects vary at different levels of demand aggregation. Finally, the paper outlines an

approach for incorporating AMI data in short-term forecasting at the local level, in order to improve forecasting accuracy for

applications in distributed energy systems, microgrids and transactive energy. The analysis presented in the paper is carried out

using large AMI data sets comprised of recorded demand and local weather data from test sites in two European countries.

1 Introduction

Short-Term Energy Forecasting (STEF) can be defined as the prob-
lem of forecasting energy demands over time periods from several
hours to one week ahead. STEF is critical for the efficient oper-
ation of power and energy systems, particularly in the areas of
energy balancing, energy market trading and management of system
reserves [1, 2].

Recent developments in distributed energy systems, microgrids
and transactive energy have led to new applications for STEF at a
local, disaggregated level. A number of research works have investi-
gated the forecasting of demand at each substation in the electricity
network, or even at the individual feeder or end-user level [3–10].

The availability of Advanced Metering Infrastructure (AMI), or
“smart meter" data provides much more detailed information on
electricity end-use than was available in the past, greatly increasing
the potential for accurate STEF at the local level. This paper deals
with the application of AMI data in multi-nodal, localised demand
forecasting. STEF is particularly challenging at the local level, since
disaggregated demands are more volatile and noisy [10].

This paper presents several contributions in this area. First, this
paper includes a study of the effects of aggregation on electrical
energy demand modelling and multi-nodal demand forecasting. Sec-
ond, it presents a detailed assessment of the variables which affect
electrical energy demand, and how these effects vary at different
levels of demand aggregation. Finally, it outlines an approach for
incorporating AMI (or “smart meter") data in STEF at the local
level, in order to provide more accurate STEF for applications in
distributed energy systems, microgrids and transactive energy. The
analysis presented in the paper is carried out using large AMI data
sets comprised of recorded demand and local weather data from test
sites in two European countries.

The paper is structured as follows: Section 2 discusses previous
work and the current state of the art in this area. Section 3 provides
a detailed assessment of the correlations between electrical energy
demand and the variables which influence it, at each level of aggre-
gation in the electricity network. Section 4 outlines the forecasting
methods used, and Section 5 provides the results. Section 6 discusses
the results and their implications and concludes the paper.

2 Literature Review

STEF approaches and techniques are very well-established, particu-
larly for system-level applications in electricity market and transmis-
sion system operation. These forecasts typically focus on large-scale
aggregated loads, such as electricity demands for entire countries or
regions, or large network areas under Transmission System Opera-
tor (TSO) control. A range of different STEF approaches have been
proposed in the literature, ranging from well-established regression
methods [1], to approaches based on neural networks [11–13], to
hybrid, or ensemble forecasting methods [14–16]. A summary of the
current state of the art in STEF research can be found in [2, 17].

Recent work has examined the possibilities for improving system-
level STEF by properly considering the demand and weather diver-
sity across a large geographical area [18]. In [19], it was shown
that local weather information can be exploited to improve system-
level forecasts (i.e. using weather information from multiple weather
stations improves results compared to a single average value.). A
detailed study on combining point load forecasts is provided in [20].
Local demand correlations can potentially be exploited to improve
the system level forecast, such as in [21], where this is achieved
by clustering of residential users’ smart meter data. Previous stud-
ies have also investigated pattern identification and clustering of
smart meter data in order to classify user types and user behaviour
(e.g. [22]), which can be useful for applications such as the design
of demand response schemes.

At the electrcity distribution level, previous work has been car-
ried out in the estimation of demands at the nodal or secondary
substation level. Earlier work in this area investigated “load alloca-
tion", or the estimation of nodal demands through using the limited,
low-resolution data available at the time, e.g. a combination of lim-
ited customer measurements, transformer peak load analysis and
monthly billing data [23, 24]. The load allocation could also be car-
ried out by applying user demand profile models, as in [25]. An
Artificial Neural Network (ANN)-based model for distribution-level
nodal demand forecasting was described in [26]. A method for time
series STEF at distribution substations was discussed in [27] using
information from individual large customers (which had detailed
consumption measurement data) and customer load curves (for
customers without detailed consumption measurements).

Distribution-level STEF has been carried out using more detailed
disaggregated load data from SCADA or from smart metering sys-
tems in [3–10, 28–31]. In [29], the authors demonstrated an approach
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for multinodal forecasting in New Zealand distribution system using
General Regression Neural Networks (GRNNs). In [30], the authors
examine the impacts of user grouping on forecasting accuracy in
the context of local electricity trading. A semi-parametric additive
model for bus-level forecasting at around 2000 distribution sub-
stations automatically with highly-accurate results is demonstrated
in [31]. In [32], each node in the distribution system is classified as a
regular node or an irregular node. Nodes classified as irregular are
forecasted by an individual forecasting model at each node.

Recently, applications in active distribution networks and micro-
grids have motivated research in STEF at the local level. These
applications include: prediction of user load profiles for demand side
management, e.g. [4, 5, 33]; energy storage optimisation (selection
of optimal charge/discharge times and rates) [6]; electric vehi-
cle integration [8]; and microgrid and virtual power plant appli-
cations [7, 34–36]. In addition, STEF at the local level can be
used to provide load estimates for use in distribution system state
estimation [9, 37].

In distribution-level STEF, a “top-down" approach has been
widely used to forecast demand at multiple nodes. In the top-down
approach, a forecast is made at the “parent" node (e.g. a primary
distribution substation), and this is later allocated to the “child"
nodes (e.g. the secondary substations connected downstream), using
Load Distribution Factors (LDFs). The LDFs are calculated based
on historical measurements or estimates of consumption at the child
node. Alternatively, a “bottom-up" approach can be applied, where
a forecast is made at each individual child node. The child node
forecasts are then summed to provide the parent node forecast.
With the widespread introduction of smart metering, much more
detailed, localised information on electricity consumption is avail-
able, allowing for new possibilities for “bottom-up" forecasting
approaches.

In the sections that follow in this paper, the “top-down" and
“bottom-up" forecasting approaches are compared using two large
smart meter data sets. The results in Section 5 indicate that a
“bottom-up" approach incorporating smart meter data can give more
accurate results than traditional “top-down" LDF-based forecasting,
since LDF methods are based on the assumption that the demand
pattern of each “child" node follows the demand pattern of its “par-
ent" node. This assumption is often not valid at the distribution level,
particularly if “smart grid" technologies such as electric vehicles,
embedded generation, and energy storage are present in the demand.
The following sections of the paper analyse the correlations between
disaggregated demand and the variables which affect it, and discuss
the effect of aggregation level on multi-nodal load forecasting.

3 Aggregation Effects on Energy Forecasting

The proliferation of AMI, or smart metering infrastructure, has led
to the availability much more detailed, granular energy demand data
for utilities, including energy demands at the individual user level.
Energy demands at the lower levels of aggregation (e.g. individual
user energy demand) are generally much more volatile than aggre-
gated demands, where the averaging effect over a large number
of users makes the demand time series less volatile and easier to
forecast in the short-term.
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Fig. 1: Time series of aggregated energy demand for 1000 users.
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Fig. 2: Time series of energy demand for one individual user.

The concept of increasing demand volatility at lower aggregation
levels is illustrated in Figs. 1 and 2. Figure 1 shows the aggregated
energy demand for 1000 users over a period of around two weeks,
indicating a clear day/night pattern and morning evening peaks in the
time series. Figure 2 shows the energy demand for one randomly-
selected individual user over the same two-week period. Here the
time series is much more volatile with no clear daily pattern, and
therefore it can be expected that it will be more difficult to predict
this time series accurately.

Fig. 3 shows a sample of the day-ahead forecasting results from
a linear autoregressive prediction model at various levels of demand
aggregation, taken from previous work by the authors in [28]. It is
clear that STEF accuracy decreases at low levels of aggregation. This
is expected due to the higher volatility and variability of disaggre-
gated loads. In the following sections of the paper, this “aggregation
effect" is examined in detail.

Fig. 3: Sample of results for day-ahead forecasting of hourly
residential demand profiles at various levels of load aggregation [28].

3.1 Description of Data Sets

In this paper, two large data sets comprised of smart meter record-
ings were used. The first data set is taken from the EU project
“SmartHG" [38]. Smart meter demand data was obtained from 1400
customers from a Danish distribution network operator for a con-
tinuous period of 24 months during 2012-2014, at a resolution of 1
hour. The corresponding local weather forecast data (including typi-
cal 24-hour ahead forecast errors) were obtained by request from the
Danish Meteorological Institute [39].

The second data set is taken from the Irish Smart Metering Elec-
tricity Customer Behaviour Trials [40] which recorded half-hourly
smart meter demand from 6500 customers over a period of 18
months at various distribution network locations in Ireland. Corre-
sponding weather data was requested from the Irish Meteorological
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Service [41]. In the paper, these data sets are subsequently referred
to as the “Denmark" and “Ireland" data sets, respectively.

3.2 Selection of Predictor Variables

The variables which affect electrical energy demand in the short-
term typically fall into three categories: time-related (e.g. day, hour
of day, whether or not the day is a normal working day); historical
(e.g. previous hour demand, previous week equivalent hour demand,
previous 24 hour average); and weather-related (temperature has by
far the greatest influence, but other weather factors such as humid-
ity/precipitation, solar irradiation, and wind can also have effects).
These correlation effects vary according to the level of aggregation
of the energy demand.

In a multiple regression model the dependent variable is expressed
as a function of several independent variables. The careful selection
of the independent variables is an important issue and guarantees the
quality of the model. Scatter and box plots can be used in a graphical
analysis to gain insight into the relationship between dependent and
independent variables.

Figure 4 shows the total aggregated demand in MW for all 1400
users in the Denmark data set. The demand is negatively correlated
with the temperature and the dew point and positively correlated with
the previous week equivalent hour demand, previous day equivalent
hour demand and previous 24 hour average demand. In contrast, the
relation between the load and the hour of day in Fig. 4 (b) does not
show a clear linear correlation.
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Fig. 4: Scatter plots of power demand (primary substation, Den-
mark) with respect to: (a) temperature, (b) hour of day, (c) previous
week equivalent hour demand and (d) previous 24 hour average
demand.

The graphical analysis suggests a linear relationship between
demand and temperature, previous week equivalent hour demand,
previous day equivalent hour demand, previous 24 hour average
demand and working/non-working day condition∗. Based on this
graphical analysis, the independent variables, or “predictor vari-
ables" are selected for developing a linear demand forecasting model
for examining the effects of aggregation in the analysis below.

More details on the relationship between the dependent and
independent variables can be obtained with parametric regression

∗The model distinguishes between working and non-working days, but it

does not specifically account for public holidays or other special events.

In practice, the STEF model prediction accuracy may be slightly reduced

during public holidays and other days with special events.

Table 1 Results of the linear regression.

Variable Estimate t-statistic p-value
Intercept 7.30 · 10−2 23.33 1.25 · 10−118

Temperature −3.66 · 10−3 −33.23 6.02 · 10−235

Hour of day 1.87 · 10−3 18.74 1.39 · 10−77

Working day 2.75 · 10−2 22.81 1.58 · 10−113

Prev. week 2.18 · 10−1 48.01 0

Prev. day 7.11 · 10−1 148.19 0
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Fig. 5: Scatter plots of the residuals from linear regression with
respect to: (a) temperature and (b) previous day equivalent hour
demand.

techniques. These methods determine the unknown model param-
eters by minimizing some error index, usually the quadratic error
between measured and predicted values of the dependent variable.
The statistical significance of the obtained parameters can be tested
using t-statistics or p-values.

For the Denmark and Ireland data sets, a linear model with an
intercept (constant term) and eight regressors (independent vari-
ables) has been considered. The results showed that the intercept,
temperature, hour of day, working/non-working day condition, pre-
vious week equivalent hour demand and previous day equivalent
hour demand are significant at the 1% significance level (|t| > 2.58).
In contrast, parameters related to the dew point, weekday and previ-
ous 24 hour average demand were less significant. The high value of
the coefficient of determination (R2 = 0.958) suggests a good fit of
the model.

Another important issue in linear models is the problem of mul-
ticollinearity. Multicollinearity denotes the phenomenon when two
or more predictor variables have a high degree of correlation. In
both data sets used in this paper, a high correlation between the
temperature and dew point regressors (correlation coefficient of
0.95) suggests that the temperature can be estimated from the dew
point and vice versa. Furthermore, the previous 24 hour average
demand can be predicted from the temperature and the previous day
equivalent hour demand with a high degree of accuracy.

The information gathered in the previous analyses is used to select
the most appropriate regressors. The graphical analysis and the t-
statistic showed a negligible linear relationship between substation
demand and weekday. In the case of the dew point and the previous
24 hour average demand, the graphical analysis reveals a clear lin-
ear relationship with the substation demand. The low significance
of these regressors observed in the linear regression was a result
of the detected multicollinearity. Based on the findings, the linear
regression was repeated without the dew point, weekday and previ-
ous 24 hour average demand. The obtained t-statistics and p-values
(see Table 1) underline the significance of the chosen independent
variables. Furthermore, the coefficient of determination R2 = 0.958
did not decrease with respect to the first regression.

The residuals of the linear regression, i.e. the difference between
the measured and the estimated values, are frequently analysed for
model validation. Different graphical and numerical methods can be
used to check homoscedasticity, independence of residuals and other
properties. A graphical analysis did not show any significant correla-
tion between the residuals from the regression for the Denmark data
set and the independent variables (see Fig. 5 for an example).

IET Research Journals, pp. 1–8

c© The Institution of Engineering and Technology 2015 3



0 10 20 30
0

20

40

60

substation [-]

in
te

rc
ep

t (
t-

st
at

.)

(a)

0 10 20 30
0

20

40

60

substation [-]

te
m

pe
ra

tu
re

 (
t-

st
at

.)

(b)

0 10 20 30
0

10

20

30

40

substation [-]

ho
ur

 o
f d

ay
 (

t-
st

at
.)

(c)

0 10 20 30
0

10

20

30

40

50

substation [-]

w
or

ki
ng

 d
ay

 (
t-

st
at

.)

(d)

0 10 20 30
0

50

100

150

substation [-]

pr
ev

. w
ee

k 
po

w
er

 (
t-

st
at

.)

(e)

0 10 20 30
0

50

100

150

200

substation [-]

pr
ev

. d
ay

 p
ow

er
 (

t-
st

at
.)

(f)

Fig. 6: T-statistics (bars) and 1 % significance level (dashed lines)
for linear model parameters (Danish secondary substations): (a)
intercept, (b) temperature, (c) hour of day, (d) working/non-working
day, (e) previous week equivalent hour demand and (f) previous day
equivalent hour demand.

The multiple regression was repeated for each of the 30 secondary
electricity distribution substations in the geographic area of the Den-
mark data set. The number of users at each substation varied, with an
average of 47 individual users connected downstream. The detailed
analysis showed a strong linear relationship between the secondary
substation demand (predictor variable) and temperature, hour of day,
working/non-working day condition, previous week equivalent hour
demand and previous day equivalent hour demand (dependent vari-
ables). It was proven that the estimated model parameters (intercept
and five regressors) are significant at the 1% significance level for
almost all secondary substations (see Fig. 6). For the secondary sub-
station models the obtained average coefficient of determination is
R2 = 0.748.

3.3 Aggregation Effects on Demand Modelling and
Forecasting

In this section, the influence of the aggregation effect on energy
forecasting is examined using multiple linear regression. Multiple
linear regression models are very well-established and widely used
for STEF [1]. The general model can be expressed as:

yi = β0 + β1xi1 + β2xi2 + ...+ βkxik + ei (1)

where the y represents the deviation of observed values from the
mean demand value µy . The predictor variables (e.g. temperature,
previous week demand, previous day demand) are represented by
x1, x2, ..., xk , and the coefficients for the predictor variables are
β1, β2, ..., βk . The intercept is represented by β0 and e is the model
error for observations i = 1, 2, ..., N .

The model parameters b0, b1, b2, ..., bk are calculated by fitting a
sample of the data by a least-squares error minimisation. The sample
regression model can be expressed as:

yi = b0 +
∑k

i=1
bixik + ei (2)

where bk is the sample estimate of βk . The coefficient of determina-
tion R2 is given by:

R
2 =

∑N
i=1

(ŷi − ȳ)
∑N

i=1
(yi − ȳ)

(3)

R2 is a measure of the amount of variability in y that is explained
by the x variables in the model, and is used here an indicator of the
“fit" of the linear prediction model.
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Fig. 7: Effect of aggregation on coefficient of determination R2 and
24 hour ahead prediction error: (a) R2 for 1-90 users, Denmark data
set; (b) R2 for 1-90 users, Ireland data set; (c) MAPE for 1-90 users,
Denmark data set; (d) MAPE for for 1-90 users, Ireland data set.

Figure 7 shows the changes in R2 and in the 24 hour ahead pre-
diction error for 1-90 users in both data sets, using the multiple
linear regression model. The prediction error is expressed as the
Mean Absolute Percentage Error (MAPE). It is shown in Figure 7
that R2 increases almost exponentially as more users are aggregated
together, indicating that the model fit improves as more users are
aggregated together. There is a corresponding exponential decrease
in the prediction error (MAPE). Similar results were obtained for
both the Denmark and Ireland data sets.

Figure 8 shows the R2 prediction error in MAPE, for a larger
number of users (1-1400 users from the Ireland data set). Again
R2 increases exponentially until it converges on a value of approx-
imately R2 = 0.96 at around 200 users. The prediction error
decreases exponentially until it reaches a MAPE of 5-6% with 1000
users.
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Fig. 8: Effect of aggregation on coefficient of determination R2 and
24 hour ahead prediction error with larger number of users: (a) R2

for 1-1400 users, (b) MAPE for 1-1400 users.

The above multiple regression analysis provides insight into the
effect of aggregation on modelling fit and prediction accuracy. This
analysis allows us to determine what level of forecasting accuracy
can be expected at each level of aggregation, for example, 20 users
aggregated together is likely to result in an R2 value of 0.85 and a
24 hour ahead forecasting error in the range of 15%, while 50 users
aggregated together can be expected to give R2 > 0.9 and MAPE of
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10%. The analysis above also illustrates the difficulty in forecasting
with small numbers of individual users. When the number of users
is less than 10, model fitting is problematic with R2 < 0.8 and large
forecasting errors (MAPE > 20%).

4 Multi-nodal Demand Forecasting

This section outlines the forecasting methodology used in the paper
for forecasting demand at multiple nodes in a distribution network.
It compares the traditional Top-Down (TU) forecasting approach
and the proposed Bottom-Up (BU) approach using smart meter data.
Figure 9 shows an example of recorded demands at a “parent" node
(e.g. at a distribution network substation), and the corresponding
“child" nodes downstream (e.g. the individual distribution feeders),
over a period of one week.
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Fig. 9: Example of recorded demands at “parent" node and “child"
nodes downstream.

Fig. 10: Load forecasting: (a) Top-Down (TD) approach and (b)
Bottom-Up (BU) approach.

The TD and BU approaches to load forecasting are illustrated
graphically in Figure 10. In the TD approach, the load forecast Lp

at the “parent" node (e.g. the substation) is made using the model
Mp. The parent node forecast is then allocated, or divided, propor-
tionately among the “child" nodes downstream (e.g. the distribution
feeders), using Load Distribution Factors (LDFs).

4.1 “Top-Down" and “Bottom-Up" Forecasting Approaches

Load Distribution Factors (LDFs) are widely used for top-down load
forecasting at the distribution level, in order to allocate parent load
forecast proportionately among the child nodes downstream. This is
based on the principle that the load pattern of the child node follows
that of the parent node. The LDFs used in this paper were calcu-
lated using the method outlined in [32]. In order to forecast the load

of node i on day k, LDFs are estimated by the averaged LDFs of
the past S weeks having the same day of the week index. This is
expressed mathematically as:

LDF (i, k, t) =
1

S

S∑

s=1

Lc(i, k − 7s, t)

Lp(k − 7s, t)
(4)

where: s represents the day of the week index, t represents the
time (expressed in this paper in hours), Lc(i, k, t) is the child node
forecast and Lp(k, t) is the parent node load forecast.

The forecast for child node i is then given by:

L̂c(i, k, t) = L̂p(k, t) ∗ LDF (i, k, t) (5)

In the BU approach, forecasts are made at each child
node Lc1, Lc2, ..., LcN using individual node forecasting models
Mc1,Mc2, ...,McN . These can then be combined to create the
forecast at the parent node:

L̂p(k, t) =
N∑

i=1

L̂c(i, k, t) (6)

5 Multi-nodal Forecasting Results

This section provides results of STEF applied at multiple nodes
in an electricity distribution network, and compares the TD and
BU approaches using smart meter data aggregated at the secondary
substation level. STEF at this level of aggregation is becoming
increasingly important for applications in distributed grid operation,
microgrids, and transactive energy. The Denmark data set is used for
the analysis in this section, since the geographical location and the
network node each individual user is connected to is known∗.

The multiple linear regression described in (1)-(2), Section 3.2 is
applied to carry out STEF at each node. The Denmark data set was
split in a 50:50 ratio into “model training" data and “model valida-
tion" data, resulting in 12 months of training data and 12 months
of validation data. The forecasting model was specified and trained
using the training data only, and all forecasting results shown are
calculated using the validation data only.

There are 30 secondary electricity distribution substations, or net-
work nodes, in the geographic area of the Denmark data set, where
each node had an average of 47 individual users connected down-
stream. The electricity demand at each of these nodes is made up
mainly of residential electricity consumption. The corresponding
forecasting results for both the TD and BU approaches are shown
in Section 5.1.

In order to consider a future scenario with significant numbers
of Electric Vehicles (EVs) embedded at the residential level, EV
charging load is added to this residential demand. The added EV
charging loads are taken from actual vehicle charging data from the
Test-an-EV project in [42]. The EVs considered in the analysis have
16 kWh battery capacity and 13 kW power rating. In the analy-
sis in Section 5.2, EV charging loads are added to a percentage of
randomly-selected households in the residential demand data set.

5.1 Multi-nodal Forecasting of Electricity Demands

A summary of the results obtained at multiple nodes in the electric-
ity distribution network is shown in Figs. 11-13. At the secondary
substation level, it was observed that better forecasting accuracy was
obtained using the BU approach.

The error statistics for the TD and BU approaches are given in
Table 2. The results show that the BU forecasting approach provided
a 8.5% improvement in the mean error and a 23.6% improvement in

∗For the Ireland data set, the smart meter data are randomised and the

network locations are unknown, and therefore it is not possible to assign

individual users to the correct node.

IET Research Journals, pp. 1–8

c© The Institution of Engineering and Technology 2015 5



the standard deviation of the error compared to the TD approach. The
bias error is defined as the mean or expected value of the forecasting
error. The TD and BU forecasts are considered unbiased since the
bias errors are very small in both cases (< 0.02%).

In order to determine if the difference in errors between the TD
and BU forecasting approaches was significant, a two-sample t-test
was carried out. It was found that the improvement in forecasting
error using the BU approach was statistically significant at 21 of the
30 secondary substation nodes tested, with a mean t-statistic of 6.4
across the 30 nodes. The significance level considered was 5%.
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Fig. 11: Summary of 24 hour ahead forecasting errors at secondary
substations: average MAPE values.
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Fig. 12: Summary of 24 hour ahead forecasting errors at secondary
substations: TD approach boxplots.
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Fig. 13: Summary of 24 hour ahead forecasting errors at secondary
substations: BU approach boxplots.

Table 2 Summary of error statistics for TD and BU approaches at 30 nodes.

Average Std. dev. Bias

MAPE [%] MAPE [%] Error [%]

TD 10.78 7.03 0.0044

BU 9.87 5.37 0.0160

5.2 Multi-nodal Forecasting with Embedded Electric Vehicle
Load

In this section, the same forecasting analysis using the TD and BU
approaches is carried out, for EV penetrations of 10% and 20%,
using actual EV charging data from the "Test-an-EV" project [42].
The results for 10% EV penetration are summarised in Fig. 14 and
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Fig. 14: Summary of 24 hour ahead forecasting errors at secondary
substations with 10% EV penetration.

Table 3 Summary of error statistics with 10% EV penetration.

Average Std. dev. Bias

MAPE [%] MAPE [%] Error [%]

TD 11.22 7.75 0.0125

BU 10.23 5.94 0.0176

Table 3. The BU forecasting approach provided a 8.8% improvement
in the mean error and a 23.3% improvement in the standard devia-
tion of the error compared to the TD approach. It was found using the
two-sample t-test that the improvement in forecasting error using the
BU approach was statistically significant at 21 of the 30 secondary
substation nodes.

Finally, the results for 20% EV penetration are given in Fig. 15
and Table 4, where BU forecasting approach provided a 8.6%
improvement in the mean error and a 22.9% improvement in the
standard deviation of the error compared to TD. The improvement in
forecasting error using the BU approach was statistically significant
at 20 of the 30 secondary substation nodes.
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Fig. 15: Summary of 24 hour ahead forecasting errors at secondary
substations with 20% EV penetration.

Table 4 Summary of error statistics with 20% EV penetration.

Average Std. dev. Bias

MAPE [%] MAPE [%] Error [%]

TD 11.26 7.68 0.0076

BU 10.29 5.92 0.0170

5.3 Computational Requirements

The BU approach requires more computational effort than TD, since
more individual forecasts need to be made; the BU approach requires
forecasting at all child nodes, while TD only requires a forecast to
be made at the parent node. In order to calculate the results shown in
Figs. 11-15, with one parent node and 30 child nodes, each daily
load profile forecast required 0.014s using the TD approach, and
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0.083s using the BU approach∗ . The computational effort for the
BU approach increases linearly with the number of child nodes.

6 Conclusions

This paper discusses the application of AMI, or “smart meter" data
to multi-nodal short-term energy forecasting at the distribution net-
work level. In the first part of the analysis, the aggregation effect
is examined in detail using multiple linear regression. It was shown
using large AMI data sets from two European countries that model
fit and prediction accuracy are highly dependent on the number of
individual users aggregated together.

These results have important implications for applications such
as transactive energy and microgrids, since they clearly illustrate the
limitations of standard forecasting models when applied to smaller
groups of users. Specifically, the results in Section 3 demonstrate the
difficulty in achieving an acceptable model fit and prediction accu-
racy (e.g. R2 > 0.8 and day ahead forecasting MAPE < 10%) for
groups of less than 20 users using a standard linear prediction model.
This analysis can be used to better quantify the model fitting for
varying numbers of users, and to select the appropriate aggregation
level for energy forecasting using AMI data.

The results in Section 5 demonstrate the advantages of a “bottom-
up" forecasting approach compared to the traditional “top-down
approach used for load forecasting, which applies Load Distribution
Factors (LDFs). The key point is that traditional LDF-based forecast-
ing is based on the idea that the demand pattern of each “child" node
(e.g. a secondary substation) generally follows the demand pattern of
its “parent" node (e.g. a primary substation). However, this assump-
tion is not valid at the distribution level, particularly if smart grid
technologies such as EVs are present in the demand.

If applied correctly, a “bottom-up" forecasting approach using
smart metering data gives better results. Overall the results showed
better performance for the “bottom-up" approach in all cases anal-
ysed in the paper. The bottom-up approach requires more compu-
tational effort due to fact that each node needs to be forecasted
individually. However, the presented linear prediction model is fast
enough that this extra computational burden is not expected to be
a major concern (e.g. several seconds for day-ahead forecasting of
1000s of nodes).

There was some slight seasonal variation in both the TD and BU
model performance, with lower errors occurring in winter and spring
(8-9% average MAPE) and higher errors occurring in summer and
autumn (9-10% average MAPE). For simplicity, only one prediction
model to cover all of the seasons was considered in this paper. It
may be possible to gain improvements in the model prediction accu-
racy by developing seasonal multiple linear regression models, at the
expense of increased complexity and modelling effort.

Future work will investigate the incorporation of smart meter data
in multi-nodal STEF with more advanced forecasting methods than
the simple multiple linear regression model used in this paper. This
will include the application of artificial intelligence-based methods
to estimate the STEF model parameters. In addition to this, the use
of machine learning tools such as neural networks for forecasting
multi-nodal demands will be examined.
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