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ABSTRACT

The oxytocin receptor (OTR) and the 5-hydroxytryptamine 2A receptor (5-HTR2A) are 

expressed in similar brain regions modulating central pathways critical for social and 

cognition-related behaviours. Signalling crosstalk between their endogenous ligands, 

oxytocin (OT) and serotonin (5-hydroxytryptamine, 5-HT) highlights the complex 

interplay between these two neurotransmitter systems and may be indicative of the 

formation of heteroreceptor complexes with subsequent downstream signalling 

changes. In this study, we assess the possible formation of OTR-5HTR2A heteromers 

in living cells and the functional downstream consequences of this receptor-receptor 

interaction. First, we demonstrated the existence of a physical interaction between the 

OTR and 5-HTR2A in vitro, using a flow cytometry-based FRET approach and confocal 

microscopy. Furthermore, we investigated the formation of this specific heteroreceptor 

complex ex vivo in the brain sections using the Proximity Ligation Assay (PLA). The 

OTR-5HTR2A heteroreceptor complexes were identified in limbic regions (inter alia 

hippocampus, cingulate cortex, and nucleus accumbens), key regions associated with 

cognition and social-related behaviours. Next, functional cellular-based assays to 

assess the OTR-5HTR2A downstream signalling crosstalk showed a reduction in 

potency and efficacy of OT and OTR synthetic agonists, carbetocin and WAY267464 

on OTR-mediated Gαq signalling. Similarly, the activation of 5-HTR2A by the 

endogenous agonist, 5-HT, also revealed attenuation in Gαq-mediated signalling. 

Finally, altered receptor trafficking within the cell was demonstrated, indicative of co-

trafficking of the OTR/5-HTR2A pair. Overall, these results constitute a novel 

mechanism of specific interaction between the OT and 5-HT neurotransmitters via 

OTR-5HTR2A heteroreceptor formation and provide potential new therapeutic 

strategies in the treatment of social and cognition-related diseases. 

KEYWORDS: OTR, 5-HTR2A, heteroreceptor complexes, fcFRET, PLA, Gαq-

mediated signalling crosstalk
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INTRODUCTION

Oxytocinergic signalling represents one of the major neuroendocrine systems in 

mammals 1. Oxytocin (OT), a nine-amino acid peptide hormone, is produced in 

paraventricular (PVN) and supraoptic nuclei of the hypothalamus. Peripherally-

secreted OT is mainly known to stimulate uterine smooth muscle contractions 

associated with parturition and milk ejection during lactation 2–5. The known actions of 

OT are mediated through the OT receptor (OTR), which belongs to the largest 

subclass of the rhodopsin-β adrenergic receptor family (class A) of G-protein coupled 

receptors (GPCRs) 6,7. Detection of OTR in kidney,  thymus, bone cells, osteoblasts,  

cardiomyocytes, vascular endothelial cells and different types of cancer cells highlights 

the vast spectrum of peripheral OT functionalities from fertility regulation to controlling 

the immune and cardiovascular systems, bones and muscles formation, and growth 

of certain cancer cells 8–10. 

Within the central nervous system, OT is released in a number of brain regions, 

including limbic structures and sensory processing areas, where this peptide functions 

as a neurotransmitter 11,12. Central OT has been found to primarily modulate complex 

social and cognitive behaviours, such as; social memory, recognition and reward, 

attachment, cooperation, exploration, motivation, as well as anxiety and aggression 
13–16. Furthermore, dysfunction in the OT system is associated with several mental 

disorders characterized by social impairments, including autism spectrum disorders 

(ASD), social anxiety disorder and schizophrenia 17,18. Many pre-clinical and clinical 

data have shown beneficial effects of OT administration on social cognition and 

prosocial behaviour 14,19,20. The promising therapeutic potential of exogenous OT on 

social related behaviours was demonstrated across multiple studies in healthy 

subjects as well as in patients with ASD and schizophrenia 21,22. However, an 

increasing number of studies is also showing evidence of inconsistent effects of 

exogenous OT administration between subjects, especially in patients with ASD and 

schizophrenia 23–25. These variable OT responses, highlight that the efficacy of the OT 

administration in human has not yet been firmly established 26–28. The differences in 

effects between subjects may be explained by the complex nature of the OT signalling 

system, as well as different basal levels of neurotransmitters in specific brain regions. 

This may suggest that the OT system is able to interact with multiple 
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neurotransmitters, modulating social related behaviours through different 

mechanisms, which influence the final functional outcome 29–31. 

The ability of OT to modulate the serotonin (5-hydroxytryptamine, 5-HT) system have 

been demonstrated across multiple studies 31–34. Serotonergic projections innervate 

almost every brain region, and 5-HT represents the key neurotransmitter involved in 

several behaviours including, mood, stress, and social behaviours 35,36. Interestingly, 

OT administration has been shown to significantly increase 5-HT axon length and 

density in the amygdala and hypothalamus of prairie vole males during development, 

demonstrating OT-mediated modulation of  5-HT innervation in early life 33. The OT 

neuropeptide is also known to influence 5-HT synthesis and release from 5-HT 

neurons in the midbrain raphe nuclei, leading to a reduced anxiety-like behaviour in 

mice 32. The modulation of 5-HT release by the OT peptide is driven through OTR and 

serotonin 2A/2C receptors (5-HTR2A/2C), which are both expressed on 5-HT neurons. 

Interestingly, 5-HT receptors, including the 5-HTR2A/2C, have been shown to mediate 

OT secretion from the PVN of the hypothalamus  37–39. In addition, several studies 

have demonstrated the impact of elevated plasma 5-HT, as seen in one-third of ASD 

patients, on OT system dysregulation in a developmental hyperserotoninemic model. 

Hyperserotonemic rodents were characterized by a decreased number of OT 

expressing cells in the PVN, which was correlated with significantly lower expression 

of the 5-HTR2A on these neurons 40–42. Recent studies have yielded very exciting 

results, demonstrating that the coordinated activity of OT and 5-HT neurotransmitters 

in the nucleus accumbens of mice is crucial for the rewarding properties of social 

interactions 31. This specific interaction between OT and 5-HT systems was then 

validated in nonhuman primates and in humans, where OT administration influenced 

5-HT signalling in the amygdala, insula, hippocampus, dorsal raphe nucleus, and 

orbitofrontal cortex, key limbic regions implicated in the control of stress, mood, and 

social behaviours 29,34. Although the OTR and 5-HTRs have been suggested to be 

involved in behaviours listed above, the precise mechanism of the neurotransmitter 

system interaction has not yet been fully elucidated. Nevertheless, evidence is 

emerging highlighting a specific crosstalk between the OT and 5-HT neurotransmitter 

systems, with a particular role for the OTR and 5-HTR2A.

Similarly to the OTR, the 5-HTR2A also belongs to class A GPCRs, being primarily 

coupled to Gαq proteins following its activation 43,44. Both GPCRs are critical signal 
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transducers in the brain and have received much attention as promising therapeutic 

targets for social and cognition related disorders 45–47. In addition, both OTR and 5-

HTR2A are well known to crosstalk with other GPCRs through formation of 

heteroreceptor complexes 48–51. Oligomerization of GPCRs is known to modulate their 

downstream signalling and exert a significant impact on receptor physiology and 

function 48,52–54. Interestingly, the changes in the formation and function of GPCRs 

heterodimers are associated with many neuropsychiatric disorders 55–58. For example, 

formation of an OTR/dopamine 2 receptor (D2R) heteroreceptor complex has been 

shown to affect downstream signalling of both receptors and modulate the OT-

mediated anxiolytic effect 49,53,59. Downstream signalling of the 5-HTR2A in complexes 

with the D2R and the metabotropic 2 receptor (mGluR2) have also been shown to be 

affected 48,57. Furthermore, the formation of such specific 5-HTR2A heteroreceptor 

complexes has been implicated in the mechanism of antipsychotic and hallucinogenic 

drugs actions 55,60,61. The mechanism of atypical antipsychotics is also a good example 

that compounds interacting simultaneously with multiple GPCRs are clinically more 

effective, compared to drugs specific for one receptor 62. Identification and 

characterization of novel crosstalk and heteromerization between different GPCRs are 

poised to yield promising future pharmacotherapeutic strategies for the development 

of novel drug with high efficacy and specificity for many central nervous system (CNS) 

disorders, especially for those with a multifactorial and polygenic aetiology.  

Based on the reciprocal interaction of the OT and 5-HT systems, and the fact that both 

the OTR and 5-HTR2A are involved in social and cognition related behaviours with an 

overlapping central expression profiles within brain regions associated with these 

processes, we hypothesize that the OTR and 5-HTR2A may form heteroreceptor 

complexes. In this study, we first evaluate the possible formation of OTR-5HTR2A 

heterororeceptor complexes in vitro using a flow cytometry-based FRET (fcFRET) 

approach and confocal microscopy. Next, the formation of these specific 

heteroreceptor complexes is investigated ex vivo, in rat brain sections with the use of 

Proximity Ligation Assay (PLA) 63. Finally, functional cellular-based assays, including 

intracellular calcium mobilization, IP-One accumulation and ligand-mediated 

trafficking 54,64 are used to demonstrate the significant changes in the Gαq-dependent 

signalling and trafficking of both receptors. Overall, these data show for the first time 

convincing evidence for the formation of the OTR-5HTR2A functional heteroreceptor 
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complex, which may represent a novel molecular mechanism underpinning the OT 

and 5-HT signalling system crosstalk in the brain.
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RESULTS AND DISCUSSION

Flow cytometry-based FRET demonstrates a physical interaction between the 
OTR and 5-HTR2A. 

The interaction between the OTR and 5-HTR2A was assessed in human embryonic 

kidney (HEK293A) cells expressing the receptors under investigation using flow 

cytometry-based FRET (fcFRET). The fcFRET analysis allows the evaluation of the 

physical interactions between receptors in a large population of cells, providing 

statistically more robust and reliable data compared to confocal microscopy. In 

addition, this method classifies the population of cells and elucidates the difference in 

fcFRET efficiency with other cellular parameters, such as; viability, size and 

granulation 51. Indeed, fcFRET is a non-invasive, sensitive and quantitative method 

that has been successfully used to assess protein-protein interactions, including the 

physical interaction between GPCRs 66–68. 

To optimize an assay for quantitative measurements of fcFRET signal HEK293A cells 

with the expression of fluorescent protein tags (tGFP and tRFP), without any GPCRs 

were first analysed. Analysis of fcFRET signal was performed on the gated population 

of single, live, and successfully transduced cells. As expected, cells containing both 

fluorescent proteins (HEK293A-tGFP-Lv-tRFP) did not show a significant fcFRET 

signal and neither did cells expressing each tag separately or HEK293A cells without 

tags (Figure 2, supplementary data). This result indicates that the fcFRET signal 

detected between receptors under investigation is not due to an overexpression, 

random collision or dimerization of fluorescent proteins. Next, we demonstrated a 

significantly higher fcFRET signal in cells co-expressing the OTR tagged with tGFP 

and OTR tagged with tRFP (HEK293A-OTR-tGFP-Lv-OTR-tRFP) (28.8 ± 1.5%) when 

compared to cells expressing either the OTR tagged with tGFP (0%), or OTR tagged 

with tRFP (0.2 ± 0.2%) (Figure.1 supplementary data). In addition, cells with the 

expression of the donor construct and the control acceptor construct (HEK293A-OTR-

tGFP-control-tRFP) were used for quantification of nonspecific fcFRET signal (1.4 ± 

0.4%) 66. These results confirmed the ability of the OTR to form constitutive 

homodimers 50,69 and showed the reliability of the experimental settings. 

Next, analysis of fcFRET signal between the OTR and 5-HTR2A receptors was 

performed. A significant increase in the percentage of fcFRET positive cells was 

observed for cells co-expressing 5-HTR2A-EGFP and OTR-tRFP (HEK293A-5HTR2A-
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EGFP-Lv-OTR-tRFP) (23.3 ± 3.1%) compared to cells solely expressing the donor 

construct (HEK293A-5HTR2A-EGFP) (0.3 ± 0.03%) or acceptor construct (HEK293A-

Lv-OTR-tRFP) (0.3 ± 0.03%) and compared to cells expressing the 5-HTR2A-EGFP 

with control-tRFP construct (3.2 ± 0.6%) (Figure 1A and 1C). Furthermore, fcFRET 

signal analysed as median fluorescence was also significantly higher in cells co-

expressing the OTR/5-HTR2A pair (48 ± 1.6 RFU) compared to cells with the 

expression of the donor (15,3 ± 5.2 RFU) or acceptor (18,7 ± 10.3 RFU) construct only 

and compared to cells expressing the 5-HTR2A-EGFP with the control-tRFP construct 

(14.2 ± 6.9 RFU) (Figure 1B and 1D). Taking together, the above results highlighted 

the constitutive and specific association between the OTR and 5-HTR2A within the cell, 

indicating the formation of a heteroreceptor complex between these receptors in vitro, 

in intact HEK293A cells.
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9

Figure 1. fcFRET between the OTR and 5-HTR2A. The fcFRET signal is presented as a 
percentage of cells (A,C) and as median fluorescence (B,D) in wild-type HEK293A cells, cells 
stably expressing the 5-HTR2A tagged with EGFP (donor), cells transiently transduced with 
lentiviral vector expressing OTR tagged with tRFP (acceptor), cells expressing 5-HTR2A 
tagged with EGFP and the control-tRFP, and cells co-expressing 5-HTR2A tagged with EGFP 
and OTR tagged with tRFP. Graphs represent mean ± SEM from three independent 
experiments (A,B). Statistical significance of fcFRET signal in cells co-expressing both 
receptors compared to cells expressing donor with the control acceptor constructs is denoted 
as * for p < 0.05 and *** for p < 0.001. Dot plots (C) show percentage of cells with fcFRET 
signal (FRET vs EGFP plots), histograms (D) demonstrate median fluorescence of fcFRET 
signal (Cell count vs FRET signal). Dot plots and histograms are representative of three 
independent experiments.

Cellular colocalization of the OTR and 5-HTR2A.
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Cellular localization of the receptors was investigated using a confocal microscopy in 

intact living HEK293A cells co-expressing the OTR and 5-HTR2A. The 5-HTR2A was 

mainly found within the cell membrane which was shown by the green fluorescence 

signal from 5-HTR2A fused with EGFP (Figure 2A). The red fluorescence signal from 

OTR fused with tRFP was shown on the cell membrane, as well as in the intracellular 

space (Figure 2B). The ubiquitous expression of the OTR-tRFP within the cell may be 

explained by constitutive (ligand-independent) activity and internalization of the OTR, 

as well as the previously described low rate of recycling back to the cell membrane 
70,71. Moreover, a similar pattern of OTR expression is observed in a number of 

heterologous expression systems as well as endogenously in different type of tissues 
72–75 (also see Figure 3 in supplementary data). Interestingly, an overlap between 

green and red fluorescence as indicated by the yellow signal demonstrated 

colocalization of both receptors on the cell membrane and within the cytoplasm of cells 

(Figure 2C, merged picture). The colocalization of the OTR/5-HTR2A pair within the 

same confocal plane is evidence for the potential formation of OTR-5-HTR2A 

heteromers and reinforces the observed fcFRET signal (Figure 1). What is more 

interesting colocalization between the OTR and 5-HTR2A observed intracellularly may 

indicate possible co-trafficking of both receptors within the cell, which was previously 

observed in the case of other GPCRs heterodimer pairs 64,76,77. 

Figure 2. Cellular colocalization of the OTR/5-HTR2A pair. HEK293A cells stably expressing 
the 5-HTR2A tagged with EGFP (green) (A) were transiently transduced with lentiviral vector 
expressing OTR tagged with tRFP (red) (B). Merged picture (yellow/orange) shows 
colocalization of the two receptors within the cell (C).

The OTR and 5-HTR2A form heteroreceptor complexes in rat brain regions.
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In the dorsal hippocampus of WT SD rats (Bregma -3.6 mm) a high density of PLA 

positive OTR-5HTR2A heteroreceptor complexes clusters was found in the pyramidal 

cell layer of the CA2 and CA3 regions, while only a few were found in the stratum 

oriens and radiatum of these areas. This was similar to the background found in 

negative controls and the myelinated bundles of the crus cerebri (CC) (Figure 3A). A 

multiple z-scan (20) confocal microscopy photograph corresponding to the CA3 region 

with higher magnification of the high-density PLA positive clusters is shown in Figure 

3A. The quantitative data present the number of PLA clusters (blobs) per nucleus per 

sampled field (30X30 µm). They range mainly from 8-13 PLA clusters in the CA2 and 

CA3 regions to 4-6 PLA clusters in the polymorphic layer of the dentate gyrus (PoDG) 

and it shows the high density in the pyramidal cell layer. A very low density of the PLA 

clusters is found in the granular cell layer of the dentate gyrus (gDG). The molecular 

cell layer of the dentate gyrus (mDG) contains densities similar to the densities and 

values found in negative controls. 

In the cingulate cortex (Bregma 1.2 mm) a PLA positive OTR-5HTR2A heteroreceptor 

complexes clusters is found in layers II and III, shown in low and high magnifications 

(Figure 3B). Also, a PLA positive clusters was found in the nucleus accumbens shell 

and core (Bregma 1.2 mm) (Figure 3B). In the dorsal striatum these receptor 

complexes could not be clearly observed.

A PLA positive signal validates the in vitro results and demonstrates the formation of 

OTR-5HTR2A heteroreceptor complexes in rat brain sections under endogenous 

expression levels of both receptors. Moreover, specific distribution pattern of OTR-

5HTR2A heteroreceptor complexes indicate their potential role in distinct cortical and 

subcortical limbic regions. The formation of these receptor complexes in the CA2 and 

CA3 regions of the hippocampus and cingulate cortex may be involved in modulation 

of OTR dependent social recognition and memory 20 as well as 5HTR2A driven social 

exclusion processing 78. It is also tempting to hypothesize that OTR-5HTR2A 

heteromers identified in nucleus accumbens can be partially responsible for the 

crosstalk between OT and 5-HT neurotransmitters shown to be crucial for rewarding 

properties of social interactions 31. In conclusion, the above results underlie the 

potential role of OTR-5HTR2A heteroreceptor complexes in distinct limbic circuits 

relevant to social interactions.
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Figure 3. Illustration of the OTR-5HTR2A heteroreceptor complexes in the dorsal 
hippocampus and nucleus accumbens of rat brain. (A) Microphotographs from transverse 
sections of the rat dorsal hippocampus (Bregma level: -3.6 mm) show the distribution of the 
OTR-5HTR2A heteroreceptor complexes in CA3 using the in situ proximity ligation assay (in situ 
PLA) technique. The square outlines the CA3 area from which the picture was taken. Receptor 
complexes are shown as red PLA blobs (clusters) found in high densities per cell in a large 
number of nerve cells in the pyramidal cell layer using confocal laser microscopy. No specific 
PLA blobs were found in the stratum moleculare and radiatum of the CA3-CA2 regions (cornus 
ammonis). The nuclei are shown in blue by DAPI staining and the neuronal marker in green 
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(Neuro-ChromTM Pan neuronal marker antibody-Alexa488 conjugated, ABN2300A4). In the 
higher right panel the PLA blobs are presented in higher magnification in the pyramidal cell 
layer. In the lower right part of the figure the density (per nucleus per sampled field) of the PLA 
positive complexes in PoDG (polymorph layer of the dentate gyrus), CA3, and CA2 are highly 
significantly different (***) from the density found in crus cerebri (CC) and the granular cell layer 
of the dentate gyrus (gDG). The density is also significantly higher in the CA2 (+) and CA3 (++) 
versus PoDG (Mean ± SEM, 4 rats per group). (B) The upper panel of B show representative 
examples of these PLA receptor complexes from transverse sections of the rat cingulate cortex, 
area 1 (Bregma level: 1.2 mm). They present the distribution of OTR-5HTR2A heteroreceptor 
complexes. They are shown as red PLA blobs (clusters) in layers II and III. Layer III represents 
the external pyramidal cell layer where large PLA positive clusters are found and appear to be 
located on the surface of many pyramidal cells. Higher magnifications of the two squares 
outlined in left panel are shown in the two right panels. The nerve cell bodies and apical 
dendrites are seen in green (neuronal marker). The lower panel in B is taken from nucleus 
accumbens shell (AcbSh). The neuronal marker (Neuro-ChromTM Pan neuronal marker 
antibody-Alexa488 conjugated, ABN2300A4) shows the neurite network. A number of nerve 
cell bodies are associated with a PLA positive blobs representing OTR-5HTR2A heteroreceptor 
complexes that may also have an intracellular location through trafficking. The outlined squares 
in the left panel are shown in higher magnifications in the two right panels (B).

Ligand-mediated internalization of the OTR and 5-HTR2A.  

Desensitisation and subsequent internalization of GPCRs provides an important 

physiological mechanism that protects cells against overstimulation 73,79,80. Most 

GPCRs, including the OTR and 5-HTR2A  are rapidly internalized following agonist 

treatment and efficiently recycle to the cell surface after agonist removal 71,79–81. It has 

been documented that the formation of heteroreceptor complexes can affect basal and 

ligand-mediated internalization of the heterodimer protomers within the cell 64,76,82. 

Thus, we investigated the effect of co-expression of the OTR and 5-HTR2A on their 

cellular trafficking under basal conditions and following treatment with their respective 

endogenous ligands, oxytocin (OT) (100 nM) and serotonin (5-HT) (1 µM) (Figure 4). 

Significant OT-mediated internalization of the OTR tagged with tRFP was observed in 

cells solely expressing the OTR (HEK293A-Lv-OTR-tRFP) (Figure 4A). Similarly, 

significant internalization of the 5-HTR2A tagged with EGFP was shown following 5-HT 

treatment in cells solely expressing the 5-HTR2A (HEK293A-5HTR2A-EGFP) (Figure 

4B). Interestingly, in cells co-expressing both receptors (HEK293A-5HTR2A-EGFP-Lv-

OTR-tRFP), a significant increase in basal internalization of the OTR was observed. 

Further increase in OT or 5-HT-mediated internalization compared to control 

conditions although small also was noted in these cells (Figure 4A, blue bars with 

stripes). Moreover, we observed that the basal internalization of the 5-HTR2A in cells 

co-expressing both receptors (HEK293A-5HTR2A-EGFP-Lv-OTR-tRFP) was 

consistently increased compared to cells solely expressing the 5-HTR2A (Figure 4B). 
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Interestingly, when both receptors were co-expressed (HEK293A-5HTR2A-EGFP-Lv-

OTR-tRFP) a small, albeit insignificant increase in 5-HTR2A internalization was 

consistently observed following OT treatment compared to the control condition 

(untreated cells) (Figure 4B).

Changes in basal trafficking properties of the OTR and 5-HTR2A following their co-

expression in mammalian cells may at least partially explain the colocalization of both 

receptors observed not only on the subcellular membrane but also intracellularly 

(Figure 2C). Moreover, these observations are similar to what was shown for the 5-

HTR2A and the metabotropic glutamate receptor 2 (mGluR2) 60. These receptors 

demonstrated to form stable 5-HTR2A-mGluR2 heterodimers in HEK293 cells, which 

significantly increased their intracellular presence under basal conditions. This 

indicates that both receptors are assembled as heterocomplexes at an early stage, 

during maturation and trafficking to the cell membrane 77. Several other studies have 

shown that GPCRs are indeed secreted to the cell surface as oligomerized complexes 
50,83,84. Thus, the significant intracellular presence of the OTR and 5-HTR2A following 

their co-expression in cells may suggest that OTR and 5-HTR2A also form constitutive 

heteromers during maturation and trafficking from endoplasmic reticulum to the cell 

membrane. Alternatively, the above results may indicate an increase in basal activity 

of both receptors and a subsequent higher internalization rate as previously shown for 

cannabinoid CB1 and orexin OX1 receptor complexes 76. Noteworthy, the increased 

internalization of the 5-HTR2A after treatment with OT may support the hypothesis that 

the 5-HTR2A is co-internalized along with the OTR, from the cell membrane to 

membranes of the endosomal compartment as previously demonstrated for the 5-

HTR2A-mGluR2 and the 5-HTR2C-GHSR1a heteromers 60,64. The OT-induced changes 

in cellular trafficking of the 5-HTR2A are also consistent with the formation of stable 

OTR-5-HTR2A heteromer complexes demonstrated in Figure 1.  

Finally, the changes in basal and ligand-mediated cellular receptor trafficking may also 

lead to alterations in the downstream signalling pathways of each protomer. This may 

be particularly relevant for increased signalling over the β-arrestin pathway, which not 

only leads to an increased receptor internalization 85 but also directly affects the G 

protein-dependent downstream signalling pathways of GPCRs 86.
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Figure 4. Cellular trafficking of the OTR and 5-HTR2A. Representative images (left panel) 
and quantitative analysis (right panel) of ligand-mediated internalization of OTR tagged with 
tRFP (A) and 5-HTR2A tagged with EGFP (B) versus cells co-expressing both receptors. 
Graphs represents mean ± SEM from three independent experiments run in triplicate. 
Statistical significance of cells co-expressing both receptors compared to cells solely 
expressing the corresponding receptor is denoted as; ** indicating p < 0.01; or *** indicating p 
< 0.001. Statistical significance of cells following OTR or 5-HT treatment compared to the 
control condition is denoted as; # # # indicating p < 0.001.

Downstream signalling changes following the OTR and 5-HTR2A co-expression 
in cells.

Next, the downstream signalling consequences following co-expression of the OTR 

and 5-HTR2A were investigated. The OTR and 5-HTR2A are known to mainly signal 

through the Gαq-mediated pathway, where activation of the Gαq protein leads to 

generation of the second messenger, D-myoinositol 1,4,5-triphosphate (IP3), causing 

subsequent intracellular calcium release from the endoplasmic reticulum into the 

cytoplasm 3,87. Therefore, we assessed the ligand-mediated changes in intracellular 

calcium mobilization in HEK293A cells solely expressing the OTR or the 5-HTR2A and 
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cells co-expressing both receptors. The cellular response was detected following the 

addition of endogenous receptor ligands, OT and 5-HT. The potency of OT (EC50 = 

0.12 ± 0.01 nM) in cells solely expressing the OTR (HEK293A Lv OTR) and potency 

of 5-HT (EC50 = 12.6 ± 0.7 nM) in cells solely expressing the 5-HTR2A (HEK293A-5-

HTR2A) were consistent with literature data (Figures 5A and 5B), which confirms the 

functionality of the receptors expressed in the  heterologous expression system 79,88,89. 

Interestingly, the intracellular calcium release following an increasing concentration of 

OT was significantly reduced in cells co-expressing both the 5-HTR2A and OTR 

(HEK293A-5-HTR2A Lv OTR) compared to cells expressing only the OTR (Figure 5A). 

The concentration-response curve of OT was characterized by a significantly lower 

potency (EC50 = 1.0 ± 0.4 nM) and efficacy (Emax = 71.1% ± 6.7) in cells co-expressing 

both receptors compared to cells solely expressing the OTR (EC50 = 0.1 ± 0.01 nM, 

Emax = 130.1% ± 15.1) (Figure 5A). Similarly, the concentration-response curve of 5-

HT was characterised by a lower potency (EC50= 67.5 ± 19.6 nM) but no significant 

changes in efficacy (Emax = 84.3% ± 3.2) in cells co-expressing both receptors 

compared to cells solely expressing the 5-HTR2A (EC50 = 12.6 ± 0.7 nM, Emax = 72.0% 

± 6.1) (Figure 5B). 

The transient release of calcium into the cytosol is also mediated by IP3. Therefore, 

we evaluated the ligand-mediated changes in the production of this second 

messenger. The concentrations of OT (10 nM and 1 nM) and 5-HT (100 nM and 10 

nM) were chosen based on the calcium assay results (Figures 5A and 5B). As 

expected, OT-mediated IP-One (inositol monophosphate) accumulation was 

significantly decreased in cells co-expressing the 5-HTR2A/OTR pair compared to cells 

solely expressing the OTR, depicted as a significant increase in percentage IP-One 

values of control (Figure 5C). The analogous results were obtained for 5-HT-mediated 

IP-One accumulation in cells co-expressing both receptors (Figure 5D), validating the 

observed changes in Gαq-mediated signalling in calcium accumulation assay (Figures 

5A and 5B).

In addition, the observed attenuation in ligand-mediated Gαq signalling in cells co-

expressing the OTR and 5-HTR2A was shown to be independent of changes in the 

expression level of both receptors. Flow cytometry analysis of EGFP and tRFP 

assessed before each experiment showed no changes in the expression level of both 

receptors between cell lines. The transient transduction with OTR-tRFP did not affect 

Page 16 of 50

ACS Paragon Plus Environment

ACS Chemical Neuroscience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



17

the 5-HTR2A-EGFP expression level in cells co-expressing both receptors (HEK293A-

5HTR2A-EGFP-Lv-OTR-tRFP) compared to non-transduced cells solely expressing 

the 5-HTR2A-EGFP. Similarly, the level of OTR-tRFP expression following transient 

transduction did not differ in cells co-expressing both receptors compared to cells 

solely expressing the OTR-tRFP (Figure 4, supplementary data). Control experiments 

measuring OTR-mediated calcium release between cells stably expressing the OTR-

tGFP and cells transiently expressing the OTR-tRFP (following lentiviral transduction) 

demonstrated no significant differences (Figure 6A, supplementary data). This clearly 

shows no effect of the gene delivery mode (stable expression versus transient lentiviral 

transduction) or different fluorescent tags (EGFP or tGFP) on the OTR-mediated Gαq 

signalling. Moreover, additional control experiments performed using non-trasfected 

and non-transduced HEK293A cells as well as HEK293A cells stably expressing tGFP 

didn’t show any unspecific activation of Gqα signalling (Figure 5, supplementary 

material). Finally, there were no changes in the OTR-mediated calcium response 

between cells solely expressing the OTR-tGFP and cells co-expressing the OTR-tGFP 

with OTR-tRFP (following lentiviral transduction), again showing no effect of the 

lentiviral transduction protocol, nor the OTR overexpression on Gαq-mediated 

signalling (Figure 6B, 6C, 6D, supplementary data). 

The above results highlight a significant attenuation in the OTR and 5-HTR2A-mediated 

Gαq signalling, which appears to be dependent on the specific interaction between the 

two receptors, rather than on changes in their expression level, fluorescent tags or 

gene delivery mode.
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Figure 5. Co-expression of the OTR and 5-HTR2A attenuates Gαq-dependent signalling 
of both receptors. Intracellular calcium release induced by increasing concentration of OT 
(A) and 5-HT (B) in HEK293A cells stably expressing the 5-HTR2A tagged with EGFP, in cells 
transiently expressing OTR tagged with tRFP, and in cells co-expressing both receptors. 
Intracellular calcium mobilization is presented as a percentage of maximal calcium response 
elicited by the control (3% FBS). Graphs represent means ± SEM from at least three 
independent experiments run in triplicates. IP-One production induced by 10 nM and 1 nM OT 
(C), and 100 nM and 10 nM 5-HT (D) in HEK293A cells stably expressing 5-HTR2A tagged 
with EGFP, in cells transiently expressing OTR tagged with tRFP, and in cells co-expressing 
both receptors. IP-One production is presented as a percentage of control (100% for non-
stimulated cells). Graphs represent means ± SEM from experiments run in triplicate. Statistical 
significance of cells co-expressing both receptors compared to cells solely expressing one 
receptor is denoted as * for p < 0.05, ** for p < 0.001, and *** for p < 0.001. 

Next, further experiments were performed to investigate if specific antagonists of the 

OTR and 5-HTR2A could affect the observed attenuation in the Gαq-dependent 

downstream signalling pathway. Two antagonists of the OTR (Atosiban and L-371-

257) and two antagonists of the 5-HTR2A (M100907 and Eplivanserin) were used 

(Figure 6). As expected, both 5-HTR2A antagonists used in 1 µM concentration were 

able to inhibit 5-HT-induced calcium mobilization in cells solely expressing the 5-

HTR2A and cells co-expressing both receptors (Figures 6B and 6D). Moreover, the lack 

of a non-specific interaction between OT and 5-HTR2A antagonists was demonstrated 

in cells solely expressing the OTR (Figures 6A and 6C). Although a weak inhibition in 

OT-induced calcium mobilization after co-administration with M100907 can be 
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observed, it is not statistically significant (Figure 6A). The lack of non-specific 

interaction between these two ligands in cells solely expressing the OTR was also 

confirmed in additional experiments with various concentrations of OT and M100907 

(data not shown). Importantly, none of the 5-HTR2A antagonists significantly 

modulated OT-mediated calcium release in cells co-expressing the OTR and 5-HTR2A 

(Figures 6A and 6C). These observations for 5-HTR2A antagonists were confirmed 

following their pre-treatment with cells co-expressing both receptors (Figure 7, 

supplementary data). Treatment with OTR antagonists (Atosiban and L-371-257) 

yielded similar results as observed for 5-HTR2A antagonists. Both, Atosiban and L-

371-257 used in 1 µM concentration inhibited OT-induced calcium mobilization in cells 

solely expressing this receptor (Figures 6F and 6H) but did not affect 5-HT-induced 

calcium signalling in cells co-expressing the OTR and 5-HTR2A (Figures 6E and 6G). 

Taking together, none of the antagonists used in the experiment were able to modulate 

the attenuation in Gαq-dependent signalling observed in HEK293A cells co-

expressing the OTR-5-HTR2A pair (Figure 5).
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Figure 6. Pharmacological inhibition of the OTR or 5-HTR2A does not affect the OTR-5-
HTR2A heterocomplex specific Gαq-dependent signalling. Intracellular calcium release in 
cells solely expressing OTR, cells solely expressing 5-HTR2A, and cells co-expressing both 
receptors induced by 10 nM OT alone and in the presence of 1 µM 5-HTR2A antagonists; 
M100907 (A) and Eplivanserin (C), as well as 1 µM OTR antagonists; Atosiban (F) and L-371-
257 (H). Intracellular calcium release induced by 100 nM 5-HT alone and in the presence of 1 
µM OTR antagonists; Atosiban (E) and L-371-257 (G), as well as 5-HTR2A antagonists; 
M100907 (B) and Eplivanserin (D). All graphs represent means ± SEM from at least two 
independent experiments run in triplicates, demonstrated as percentage of maximum calcium 
response (3% FBS). Statistical significance of cells co-expressing both receptors compared 
to cells solely expressing corresponding receptor is denoted as * for p < 0.05, ** for p < 0.001, 
and *** for p < 0.001.
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The effect of the 5-HTR2A on OTR-dependent Gαq signalling induced by OT is more 

pronounced in our in vitro model compared to the effect of the OTR on 5-HTR2A. Thus, 

to further investigate pronounced alteration in OTR-mediated Gαq signalling, cells with 

the co-expression of the OTR and 5-HTR2A were treated with different concentrations 

of two synthetic OTR agonists; carbetocin and WAY267464 90,91. Similar to what we 

observed for OT, the intracellular calcium release induced by increasing 

concentrations of carbetocin and WAY267464 was significantly reduced in cells co-

expressing the 5-HTR2A and OTR compared to cells solely expressing the OTR 

(Figure 7). The potency and efficacy of carbetocin was significantly lower (EC50= 9.4 

± 2.5 nM, Emax = 21.9% ± 4.1) in cells co-expressing both receptors compared to cells 

solely expressing the OTR (EC50 = 0.5 ± 0.3 nM, Emax = 86.0% ± 11.0) (Figure 7A). 

Intracellular calcium response induced by increasing concentrations of WAY267464 

was completely abolished in cells co-expressing the OTR and 5-HTR2A (EC50= nc, 

Emax = 2.7% ± 1.5) compared to cells solely expressing the OTR (EC50= 11.6 nM, Emax 

= 61.2% ± 1.2) (Figure 7B). Nevertheless, pre-treatment of cells with 5-HTR2A 

antagonist (eplivanserin) did not affect carbetocin (Figure 7C) nor WAY267464 (Figure 

7D) induced calcium response in cells co-expressing both receptors. In the same 

experimental setup, eplivanserin was able to inhibit 5-HT-mediated intracellular 

calcium accumulation in cells solely expressing the 5-HTR2A confirming compound 

specificity (data not shown).
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Figure 7. Synthetic OTR ligand-mediated attenuation of Gαq-dependent signalling in 
cells co-expressing the OTR and 5-HTR2A. Intracellular calcium release induced by 
increasing concentration of Carbetocin (A) and WAY265464 (B) in cells expressing OTR, in 
cells expressing 5-HTR2A, and in cells co-expressing both receptors. Graphs present mean ± 
SEM from et least two independent experiments run in triplicates. Statistical significance of 
cells co-expressing both receptors compared to cells solely expressing corresponding 
receptor is denoted as ** for p < 0.001, and *** for p < 0.001. Intracellular calcium release 
induced by increasing concentration of Carbetocin (C) and WAY (D) in the presence of 5-
HTR2A antagonist; Eplivanserin in cells co-expressing both receptors. Graphs present mean ± 
SEM from an experiment run in triplicate. Results are demonstrated as a percentage of 
maximum calcium response (3% FBS). 

The results clearly show that one receptor induces highly reproducible functional 

attenuation in partner receptor signalling. A significant decrease in 5-HTR2A dependent 

signalling has been demonstrated upon co-expression with the OTR. The attenuated 

OTR-mediated signalling is even more evident compared to 5-HTR2A-mediated 

signalling changes. These interesting observations may be related to conformational 

rearrangements of one protomer resulting in trans-inhibition of another after agonist 

binding. Moreover, the lower potency and efficacy of OTR agonists are completely in 

line with the increasing attenuation of the receptor downstream signalling (Figures 5A, 

7A and 7B). This may suggest that the potency of receptor ligands to activate Gαq 

signalling is lower for the OTR-5-HTR2A heteromer complexes than for the 

corresponding receptor homodimers. Interestingly, current findings are in line with 
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antagonistic interactions previously observed between the 5-HTR2A and mGluR2 

which have been established in vitro in heterologous expression models and across 

multiple ex vivo and in vivo studies 57,60. The formation of  5-HTR2A heteromeric 

complexes with the D2R has also been demonstrated to result in D2R-mediated Gαi 

signalling attenuation 48. In contrast, concomitant activation of the D2R was shown to 

increase the 5-HTR2A-mediated Gαq signalling. Thus, the existence of a 5-HTR2A-

mediated D2R trans-inhibition mechanism was suggested. Considering the above, the 

5-HTR2A in heteroreceptor complexes with other GPCRs has a tendency to inhibit 

downstream signalling of the partner receptor. This further supports 5-HTR2A-

mediated inhibition of the OTR-dependent signalling observed in the current study. 

Interestingly, previous findings also demonstrated changes in downstream OTR 

signalling following the formation of OTR heteroreceptor complexes with other GPCRs 
50,53. In the case of OTR-D2R heterodimers both the Gq/11 and the MAPK pathways 

activation have been increased 53. By simple analogy we could hypothesize that co-

expression of the OTR and 5-HTR2A in HEK293A cells may also affect other signalling 

pathways including MAPK cascade. However, based on the broader literature and also 

our own experience specific heteromers are often able to only affect a single G-

protein-dependent signalling pathway 66. Evidence also suggests that GPCR 

heteromers can activate signalling cascades which are not activated by the individual 

protomers not in the complex 92. Additionally, different ligands can differently alter 

signalling pathways mediated by the formation of heteroreceptor complexes (biased 

signalling) 54,93. Thus, further studies investigating the full spectrum of downstream 

signalling pathways following modulation by different receptors ligands and their 

specific effects on the OTR-5-HTR2A heteroreceptor are now warranted. 

Taking together the above, previously described heteroreceptor complexes of the 5-

HTR2A with mGlu2 and D2R, as well as  formation of heteromers between the OTR 

and D2R, were shown to produce allosteric receptor-receptor interactions between the 

two protomers 48,53,60. Current results provide evidence that the formation of stable 

OTR-5-HTR2A heterocomplexes leads to bidirectional antagonistic receptor-receptor 

interactions with greater 5-HTR2A dominance. However, unlike previous studies, the 

antagonists of both OTR and 5-HTR2A did not affect the specific signalling driven by 

OTR-5-HTR2A heterocomplexes. Moreover, there was no synergistic nor additive 

effect in Gqα signalling when cell co-expressing both receptors were co-treated with 

their respective endogenous ligands, OT and 5-HT (Figure 8, supplementary data). 
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Thus, one of the possible mechanisms of this specific receptor-receptor interaction is 

the physical binding between the two protomers and subsequent conformational 

changes without a steric hinderance of the binding pockets. 

CONCLUSION 

GPCRs comprise the largest family of cell surface receptors, which are major 

signalling mediators for many hormones and neurotransmitters involved in diverse 

physiological functions ranging from glucose metabolism to neurotransmission. 

GPCRs were originally thought to function as monomers. However, oligomerization of 

these receptors has now become accepted as a fundamental process in GPCR 

signalling. Oligomerization of specific GPCR protomers is characterized by an 

increased receptor signalling diversity and exhibits unique functional and 

pharmacological properties adding a new dimension to GPCR pharmacology. Since 

mechanisms that lead to diverse brain pathologies such as social and cognition related 

disorders involve GPCR signalling, the distinct pharmacological profiles of GPCR 

assemblies may serve as novel mechanisms, important for the development of more 

specific pharmacological strategies to modulate cell response and regulate many 

physiological processes.

This study shows compelling evidence for a functionally relevant formation of a novel 

heteroreceptor complex between the OTR and 5-HTR2A. Both receptors have been 

shown to physically interact in living mammalian cells co-expressing both receptors 

(Figure 1). Confocal microscopy demonstrated that this specific interaction seems to 

appear at the cell membrane as well as intracellularly (Figure 2). Alterations in the 

trafficking of both receptors within the cell and their significant intracellular presence 

in basal conditions (Figure 4) are in line with the colocalized expression and strongly 

suggests changes in OTR and 5-HTR2A maturation and trafficking to the cell 

membrane. However, this phenomenon may also be a consequence of increased 

coupling to β-arrestin and subsequently higher basal activity of the two receptors. In 

any case both hypothesis support a physical interaction between the OTR and 5-

HTR2A within the cell. Noteworthy, a significant attenuation was demonstrated 

primarily in OTR but also in 5-HTR2A-mediated Gαq-dependent signalling (Figure 5 

and 7) indicating a functional relevant consequence of OTR/5-HTR2A interaction. In 

conclusion, the current study provides evidence that the OTR-5HTR2A heterocomplex 

formation leads to bidirectional antagonistic receptor-receptor interactions in vitro in 
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the heterologous system. As the antagonists of both receptors did not affect OTR-

5HTR2A heterocomplex specific signalling (Figure 6), it is likely that the physical 

binding between the two protomers serves as a mechanism for this specific receptor-

receptor crosstalk.

Moreover, the formation of OTR-5HTR2A heteroreceptor complexes were 

demonstrated ex vivo in rat brain sections using in situ PLA technique (Figure 3). OTR-

5HTR2A heteroreceptor complexes were observed in the pyramidal cell layer of CA2-

CA3 regions of the hippocampus, the layers II and III of the cingulate cortex and in a 

number of nerve cell bodies of the nucleus accumbens shell and core. The proximal 

dendrites of these nerve cells had a low number of PLA clusters located close to them. 

This specific distribution pattern may indicate the potential role of OTR-5-HTR2A 

heteroreceptor complexes in distinct cortical and subcortical limbic regions. The 

formation of these receptor complexes may therefore have special role in distinct 

limbic circuits of relevance for social salience and memory, bearing in mind the 

importance of OTR in social interactions.

The existence of novel functional OTR-5HTR2A heteroreceptor complexes constitutes 

one of the possible mechanisms for intriguing interactions between the OT and 5-HT 

neurotransmitter systems. It also provides potential novel therapeutic strategies in the 

treatment of social and cognition-related diseases. Further in vivo studies exploring 

the physiological and behavioural nature of the specific interactions observed between 

the OTR and 5-HTR2A in limbic regions are now warranted.
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METHODS

Receptors ligands.

Oxytocin (OT) (#O3251), carbetocin (#SML0748), 5-hydroxytryptamine (5-HT) 

(#H9523), atosiban (#A3480), and M100907 (#M3324) were purchased from Sigma-

Aldrich (Wicklow, Ireland). L-371-257 (#2410), WAY267464 (#3933) and eplivanserin 

hemifumarate (#4958) were purchased from Tocris Bioscience (Ellisville, MO). A 3 mM 

stocks of compounds were prepared in H2O (oxytocin, carbetocin, 5-HT, atosiban, 

M100907, WAY267464, eplivanserin hemifumarate) or in DMSO (L-371-257). All 

compound stocks were further diluted to the required concentrations in the proper 

assay buffer. 

Cell culture and stable transfection.

Plasmid containing the canonical sequence (transcript variant 1) of the human 

serotonin 2A receptor (5-HTR2A) (NM_000621) was supplied from University of 

Missouri–Rolla (#HTR02ATN00). The coding sequence of the receptor lacking its stop 

codon was amplified using forward 5’-

AGCTCGAGACCATGGATATTCTTTGTGAAGAAAATAC-3’ and reverse 5’-

GAGAGGATCCCACACACAGCTCACC-3’ primers containing XhoI and BamHI 

restriction sites, respectively. The amiplified sequence was then subcloned into the 

multicloning site of the pCMV-EGFP-N1 vector (Clontech #6085-1) to obtain the 5-

HTR2A C-terminally tagged with EGFP. The obtained plasmid construct; pCMV-5-

HTR2A-EGFP-N1 was verified by restriction analysis, sequencing and then used for 

stable transfection of Human Embryonic Kidney (HEK293A) cells. 

HEK293A cells (Invitrogen, Carlsbad, CA) were cultured in high glucose Dulbecco's 

modified Eagle's medium (DMEM, #D5796; Sigma-Aldrich, Wicklow, Ireland) 

supplemented with 10% heat inactivated Fetal Bovine Serum (FBS) (#F7524; Sigma-

Aldrich) and 1% Non-Essential Amino Acids (NEAA) (#11140035; Gibco Life 

Technologies, Gaithersburg, MD). Cells were maintained at 37°C in a humidified 

atmosphere with 5% CO2. HEK293A cells were transfected with the plasmid 

containing human 5-HTR2A sequence fused with EGFP in the presence of 

Lipofectamine LTX Plus reagent, according to the manufacturer’s instructions 

(#15338100; Invitrogen). 48 h after transfection, the cell media was changed for 

DMEM supplemented with 500 ng/µl G-418 (#345812; Calbiochem), allowing for the 
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selection of cells with stably integrated pCMV-5-HTR2A-EGFP-N1 plasmid. The cells 

with the highest expression of the receptor were selected using flow-assisted cell 

sorting (FACSAriaII, BD Biosciences), followed by clonal expansion in 96-well plates. 

Expression level of 5-HTR2A in generated monoclonal cell line was routinely monitored 

using an epifluorescence microscope (Olympus IX70) and a flow cytometer 

(FACSCalibur, BD Biosciences). 

Lentiviral transfection and transduction.

The coding sequences of the human oxytocin receptor (OTR) was subcloned into the 

multicloning site of the HIV-based, replication deficient, lentiviral expression vector; 

pHR-SIN-BX-tRFP. The construct containing the canonical sequence of the human 

OTR (NM_000916.3), C-terminally tagged with red fluorescent protein (tRFP) was 

generated by inserting the coding sequence of the receptor lacking its stop codon from 

pCMV6-AC-OXTR-GFP plasmid (#RG211797; OriGene, Rockville, MD) into the target 

vector (pHR-SIN-BX-tRFP) with the use of BamHI and XhoI restriction enzymes. The 

obtained pHR-SIN-BX-OXTR-tRFP plasmid construct was validated by restriction 

analysis and DNA sequencing. HEK293A cells were then transiently transduced with 

the obtained lentiviral expression vector using a second generation packaging, gene 

delivery, viral vector production system, previously described by our group 64. Briefly, 

HIV-based lentiviral particles containing the OTR sequence were produced using 

HEK293T-17 cells, by transient co-transfection of the expression construct; pHR-SIN-

BX- OXTR -tRFP, the packaging construct; pCMV ΔR8.91, and the envelope 

construct; pMD.G-VSV-G. Following this, HEK293A cells were transiently transduced 

with the OTR-tRFP expressing lentiviral particles diluted in transduction media, 

consisting of DMEM with 2% FBS, 1% NEAA, and 8 µg/ml polybrene (#H9268; Sigma). 

The efficiency of transduction was monitored with the use of an epifluorescence 

microscope (Olympus IX70) and a flow cytometer (FACSCalibur, BD Biosciences) 

before each experiment.

Flow Cytometry Fluorescence Resonance Energy Transfer (fcFRET).

HEK293A cells stably expressing 5-HTR2A tagged with EGFP were transiently 

transduced with lentiviral OTR sequence tagged with tRFP. Following transduction, 

cells were washed with PBS and mechanically removed from the wells. Cell 

suspension was then centrifuged for 4 min at 200 x g, at room temperature. The pellet 
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of cells was re-suspended in 400 µl of 2 nM EDTA (#E5134; Sigma) in PBS. Prior to 

analysis cells were passed through a 100 μm nylon mesh cell strainer (#10199-658; 

VWR) and collected in a 5 ml round bottom polystyrene tubes (#352054; Corning). 

The fcFRET analysis was performed on a FACS AriaII cytometer (BD Biosciences) 

according to the protocol optimized in our group (Chruścicka et al., 2018; Schellekens 

et al., 2015). Briefly, EGFP was excited at 488 nm from blue laser and detected with 

a 525/50 nm bandpass filter, whereas tRFP was excited at 561 nm from yellow/green 

laser and detected with a 610/20 nm bandpass filter. FRET signal between EGFP and 

tRFP was measured by excitation at 488 nm from blue laser and detection with a 

610/20 nm bandpass filter located on the same laser. For the proper separation of 

EGFP fluorescence and FRET emission from blue laser, a 505 Long Pass (LP) 

dichroic mirror (DM) was used. Wild-type HEK293A cells were used for initial 

instrument setup and to differentiate cells based on their size and granulation, 

according to forward and side scattering plot (FSC/SSC), which allowed to eliminate 

doublets, dead cells, and debris from further analysis. In the next step, cells expressing 

donor or acceptor construct only were used to fine tune PMT settings and to perform 

the proper compensation for spectral bleed through, in particular for EGFP emission 

in the tRFP-fcFRET detector. In addition, cells co-expressing the donor construct 

(GPCR-EGFP) with the control acceptor construct (control-tRFP; plasmid with the 

sequence of tRFP without the receptor) were used to further control unspecific fcFRET 

signal coming from the cross-excitation. The same number of cells (104) was recorded 

for each sample. Data was analysed using BD FACSDiva (BD Biosciences). 

Colocalization with the use of confocal microscope.

HEK293A stably expressing 5-HTR2A-EGFP were transiently transduced to co-

express OTR-tRFP. Following transduction, cells were passaged and seeded on poly-

L-lysine-coated (#P4707; Sigma) borosilicate glass slides (#631-0150; VWR 

International) at the density of 5 x 105 cells per well of 24-well plate, followed by 24 h 

incubation in the standard culture conditions. Co-localization of the receptors was 

assessed in living cells using laser scanning confocal fluorescent microscope (FV 

1000 Confocal System; Olympus). Pictures were taken with 63 x objective lens using 

Olympus fluoview FV3000 software. Co-localization between 5-HTR2A-EGFP and 

OTR-RFP was analysed by overlay with the use of ImageJ software (US National 

Institutes of Health).
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Receptors trafficking assay.

The trafficking of receptors was analysed by monitoring the fluorescent proteins 

translocation away from the cellular membrane into vesicles within the cytosol. 

HEK293A cells stably expressing the 5-HTR2A-EGFP and transduced with lentiviral 

OTR-tRFP, were seeded on 24-well plates (#83.3922.005; Sarstedt) at the density of 

5 x 104 cells/well. Cells were then incubated for 48 h at standard culture conditions. 

24 h before experiment, media was replaced with serum-free DMEM containing 1% 

NEAA. To investigate ligand-mediated changes in receptors trafficking, cells were 

incubated with different concentrations of 5-HTR2A or OTR endogenous agonists for 

30 minutes at 37oC. After the treatment, cells were fixed in 4% paraformaldehyde 

(PFA) for 20 min and washed two times in PBS. Ligand mediated internalization of the 

receptors was assessed using inverted fluorescence microscope (IX71; Olympus). 

Fluorescent images were acquired with 20 x objective lens using Olympus cell R 

software. Results demonstrated in the manuscript represent average from 3 

independent experiments each performed in duplicates (two wells for each condition 

in each experiment). Within each well, three images were captured. For each image 6 

cells were quantitatively analysed by two independent researchers. Quantification of 

the receptors trafficking was assessed by calculating the ratio between subcellular and 

membrane fluorescent intensity after excluding background fluorescence, with the use 

of Java image processing program (ImageJ, US National Institutes of Health). The 

obtained results were depicted using GraphPad Prism software (PRISM 5.0; 

GraphPAD Software Inc., San Diego, CA).

Animals

All experiments were performed using male Sprague-Dawley rats (SD) (Scanbur, 

Sweden). The animals were group-housed under standard laboratory conditions (20–

22°C, 50–60% humidity). Food and water available ad libitum. The rats were 3–4 

months of age at the time of experiments. All studies involving animals were performed 

in accordance with the Stockholm North Committee on Ethics of Animal 

Experimentation, the Swedish National Board for Laboratory Animal and European 

Communities Council Directive (Cons 123/2006/3) guidelines for accommodation and 

care of Laboratory Animals. 

In situ proximity ligation assay (in situ PLA)
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To study the OTR-5HTR2A heteroreceptor complexes the in situ proximity ligation 

assay (in situ PLA) was performed as described previously 94. Adult age-matched male 

Sprague–Dawley rats (n=4) were anaesthetized and perfused intracardially with 4% 

(wt/vol) formalin in saline. Brains were removed, post-fixed by immersion overnight in 

4% formalin in PBS and coronal sections (30 µm) were cut on a cryostat and 

processed for free-floating in situ PLA. Free-floating formalin fixed brain sections 

(storage at −20°C in Hoffman solution) at Bregma level (-3.6 mm and 1.2 mm) were 

washed four times with PBS and quenched with 10 mM Glycine buffer for 20 min at 

room temperature. Then, after three PBS washes, were permeabilized with a 

permeabilization buffer (10% FBS and 0.5% Triton X-100 or Tween 20 in Tris buffer 

saline (TBS), pH 7.4) for 30 min at room temperature. Again the sections were washed 

twice, 5 min each, with PBS at room temperature and incubated with the blocking 

buffer (0.2% BSA in PBS) for 30 min at room temperature. The brain sections were 

then incubated with the primary antibodies diluted in a suitable concentration in the 

blocking solution for 1-2 h at 37°C or at 4°C overnight. The day after, the sections were 

washed twice, and the proximity probe mixture was applied to the sample and 

incubated for 1 h at 37°C in a humidity chamber. The unbound proximity probes were 

removed by washing the slides twice, 5 min each time, with blocking solution at room 

temperature under gentle agitation and the sections were incubated with the 

hybridization-ligation solution (BSA (250 g/ml), T4 DNA ligase (final concentration of 

0.05 U/µl), 0.05% Tween-20, 250 mM NaCl, 1 mM ATP and the circularization or 

connector oligonucleotides (125-250 nM)) and incubated in a humidity chamber at 

37°C for 30 min. The excess of connector oligonucleotides was removed by washing 

twice, for 5 min each, with the washing buffer A (Sigma-Aldrich, Duolink Buffer A (8.8 

g NaCl, 1.2 g Tris Base, 0.5 ml Tween 20 dissolved in 800 ml high purity water, pH to 

7.4) at room temperature under gentle agitation and the rolling circle amplification 

mixture was added to the slices and incubated in a humidity chamber at 37°C for 100 

min. Then, the sections were incubated with the detection solution in a humidity 

chamber at 37°C for 30 min. In a last step, the sections were washed twice in the dark, 

for 10 min each, with the washing buffer B (Sigma-Aldrich, Duolink Buffer B (5.84 g 

NaCl, 4.24 g Tris Base, 26.0 g Tris-HCl. Dissolved in 500 ml high purity water, pH 7.5) 

at room temperature under gentle agitation. The free-floating sections were put on a 

microscope slide and a drop of appropriate mounting medium (e.g., VectaShield or 

Dako) was applied. The cover slip was placed on the section and sealed with nail 
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polish. The sections were protected against light and stored for several days at −20°C 

before confocal microscope analysis. The in situ PLA experiments were performed 

using the following primary antibodies: rabbit monoclonal anti-5-HTR2A 

(#SAB4301791, 1 µg/ml; Sigma-Aldrich, Stockholm, Sweden) and goat polyclonal 

anti-oxytocin receptor (#ab87312, 5µg/ml; Abcam, Stockholm, Sweden). As a 

neuronal marker the Neuro-ChromTM Pan neuronal marker antibody-Alexa488 

conjugated (#ABN2300A4, Merck/Sigma-Aldrich) was used. The PLA signal was 

visualized and quantified by using a Leica TCS-SL confocal microscope (Leica, USA) 

and the Duolink Image Tool software. A range of positive and negative controls have 

been used to guarantee the specificity of the PLA signal. The negative control consists 

in the suppression of the species-specific primary antibody corresponding to the 5-

HTR2A in the presence of the two PLA probes. As a positive control of the PLA assay, 

a parallel analysis of the 5-HTR1A-5HTR2A isoreceptor complexes and the D2R-OTR 

heteroreceptor complexes have been performed. Detailed quality control analysis for 

the 5HTR2A and for the OTR antibodies have been reported previously 49,63. 

Furthermore, both anti-5HTR2A and anti-OTR antibodies were previously validated in 

our team in terms of their quality (in Western blot in collaboration with Human Atlas 

project and in HEK293 cells with and without expression of each receptor subtype 

using confocal analysis). Antibodies were used under optimal conditions, taking into 

consideration parameters, such as; concentration, targeted epitopes, fixation 

conditions, and antigen-retrieval 94. 

Intracellular calcium mobilization assay.

Receptor-mediated changes in intracellular calcium (Ca2+) were monitored with the 

use of automatic fluorescent reader, FLIPR Tetra® (Molecular Devices, LLC 

Sunnyvale, CA) as previously described 54,95. HEK293A cells with the expression of 

the receptors under investigation were seeded in black 96-well microtiter plates at a 

density of 3.0 - 4.0 x 104 cells/well and incubated overnight in standard culture 

conditions. 24 h prior to the experiment growth media was replaced with serum-free 

DMEM containing 1% NEAA. At the day of experiment cells were incubated for 90 min 

with 80 µl of the Ca5 dye diluted in assay buffer containing 1 x Hank’s Balanced Salt 

Solution; HBSS (#14065049; Gibco Life Technologies, Gaithersburg, MD) and 20 mM 

HEPES (#H0887; Sigma-Aldrich) in the concentration recommended by the 

manufacturer's protocol (#R8186; Molecular Devices). The addition of receptor ligands 
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(40 μl/well) was performed with the use of automatic pipettor of the FLIPR Tetra®High-

Throughput Cellular Screening System. To investigate the effect of receptor 

antagonists, compounds were co-administered together with agonist or pre-incubated 

for 90 min with the Ca5 dye. Fluorescent readings were taken for a total of 

120 seconds with excitation wavelength of 485 nm and emission wavelength of 

525 nm. The relative increase in intracellular calcium [Ca2+] was calculated as the 

difference between the maximum and baseline fluorescence, and demonstrated as 

percentage relative fluorescent units (RFU) normalized to maximum response (100% 

signal) obtained for 3% FBS. Background fluorescence was recorded for non-

stimulated cells and subtracted from RFU. Data were analysed using GraphPad Prism 

software (PRISM 5.0; GraphPAD Software Inc., San Diego, CA). The concentration-

response curves of receptor ligands were generated using the nonlinear regression. 

The curves were fitted to a 3-parametric logistic equation, allowing for the 

determination of EC50 values.

HTRF based IP-One accumulation assay.

The detection of IP-One (inositol monophosphate) was performed in HEK293A cells 

expressing receptors under investigation, with the use of a homogeneous time-

resolved fluorescence (HTRF) IP-One assay (#62IPAPEB; Cisbio, Codolet, France). 

The assay was performed according to the manual’s instruction provided by Cisbio 

with minor modifications. Briefly, 24 h before experiment growth media was replaced 

with serum-free DMEM containing 1% NEAA. Directly before the experiment cells 

were scraped and centrifuged for 3 min at 200 x g. The cell pellet was then suspended 

in assay buffer (146 mM NaCl, 1 mM CaCl2, 10mM HEPES, 0.5 mM MgCl2, 4.2 mM 

KCl, 5.5 mM glucose) containing 50 mM LiCl to inhibit degradation of IP-One. For the 

stimulation step, 35 µL of cell suspension was pipetted to a flat bottom 96-well plate 

at the density of 3 x 105/well (#655075; Greiner Bio-One International) containing the 

appropriate concentration of compounds. Cells were incubated with compounds for 1 

h at 37 °C. Following this step, 15 µL of IP1-d2 conjugate and 15 µL of anti-IP1 cryptate 

conjugate diluted in lysis buffer were added and incubated for 1 h in room temperature. 

After 1 h of incubation, the fluorescence at 620 nm and 665 nm was read with the use 

of FlexStation instrument (Molecular Devices, LLC Sunnyvale, CA) and the readout 

setup recommended by the company (Cisbio, Codolet, France). The results were 

calculated as the 665-nm/620-nm ratio multiplied by 104 and depicted as percentage 
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of relative fluorescent units (RFU) normalized to maximum response (100% signal) 

obtained for non-stimulated cells. The specific signal is inversely proportional to the 

concentration of endogenous IP-One in the sample. Data were analysed using 

GraphPad Prism software (PRISM 5.0; GraphPAD Software Inc., San Diego, CA).

Statistical analysis.

Data were analyzed using GraphPad Prism software (PRISM 5.0; GraphPAD Software 

Inc., San Diego, CA). The concentration-response curves of receptors ligands were 

generated using the nonlinear regression. The curves were fitted to a 3-parametric 

logistic equation, allowing for the determination of EC50 and Emax values. Statistical 

comparison of the concentration-response curves parameters (EC50 and Emax) 

between cells co-expressing both receptors and cells solely expressing the 

corresponding receptor, were performed using the Student’s test. Moreover, statistical 

comparison of each compound concentration used in calcium mobilization, IP-One 

accumulation, and ligand-mediated internalization assays between cells expressing 

the OTR, 5HTR2A and cells co-expressing both receptors was performed using Two-

way ANOVA with Bonferroni’s multiple comparison tests. Statistical analysis of fcFRET 

was performed using One-way ANOVA with Bolferroni’s multiple comparison tests. 

Statistical analysis of In situ PLA was performed using One-way ANOVA followed by 

Tukey post-test. All data are presented as Mean ± SEM. The differences between 

groups were considered significant for p<0.05. The number of independent 

experiments performed is provided in figure legends.
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Figure 1. fcFRET between the OTR and 5-HTR2A. The fcFRET signal is presented as a percentage of cells 
(A,C) and as median fluorescence (B,D) in wild-type HEK293A cells, cells stably expressing the 5-HTR2A 
tagged with EGFP (donor), cells transiently transduced with lentiviral vector expressing OTR tagged with 

tRFP (acceptor), cells expressing 5-HTR2A tagged with EGFP and the control-tRFP, and cells co-expressing 5-
HTR2A tagged with EGFP and OTR tagged with tRFP. Graphs represent mean ± SEM from three independent 
experiments (A,B). Statistical significance of fcFRET signal in cells co-expressing both receptors compared to 

cells expressing donor with the control acceptor constructs is denoted as * for p < 0.05 and *** for p < 
0.001. Dot plots (C) show percentage of cells with fcFRET signal (FRET vs EGFP plots), histograms (D) 

demonstrate median fluorescence of fcFRET signal (Cell count vs FRET signal). Dot plots and histograms are 
representative of three independent experiments. 
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Figure 2. Cellular colocalization of the OTR/5-HTR2A pair. HEK293A cells stably expressing the 5-
HTR2A tagged with EGFP (green) (A) were transiently transduced with lentiviral vector expressing OTR 

tagged with tRFP (red) (B). Merged picture (yellow/orange) shows colocalization of the two receptors within 
the cell (C). 
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Figure 3. Illustration of the OTR-5HTR2A heteroreceptor complexes in the dorsal hippocampus 
and nucleus accumbens of rat brain. Microphotographs from transverse sections of the rat dorsal 

hippocampus (Bregma level: -3.6 mm) show the distribution of the OTR-5HTR2A heteroreceptor complexes 
in CA3 using the in situ proximity ligation assay (in situ PLA) technique. The square outlines the CA3 area 
from which the picture was taken. Receptor complexes are shown as red PLA blobs (clusters) found in high 

densities per cell in a large number of nerve cells in the pyramidal cell layer using confocal laser microscopy. 
No specific PLA blobs were found in the stratum moleculare and radiatum of the CA3-CA2 regions (cornus 
ammonis). The nuclei are shown in blue by DAPI staining and the neuronal marker in green. In the higher 

right panel the PLA blobs are presented in higher magnification in the pyramidal cell layer. In the lower right 
part of the figure the density (per nucleus per sampled field) of the PLA positive complexes in PoDG 

(polymorph layer of the dentate gyrus), CA3, and CA2 are highly significantly different (***) from the 
density found in crus cerebri (CC) and the granular cell layer of the dentate gyrus (gDG). The density is also 

significantly higher in the CA2 (+) and CA3 (++) versus PoDG (Mean ± SEM, 4 rats per group) (A). The 
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upper panel of B show representative examples of these PLA receptor complexes from transverse sections of 
the rat cingulate cortex, area 1 (Bregma level: 1.2 mm). They present the distribution of OTR-5HTR2A 

heteroreceptor complexes. They are shown as red PLA blobs (clusters) with high densities in layer III and 
low to moderate densities in layer II. Layer III represents the external pyramidal cell layer where large PLA 

positive clusters are found and appear to be located on the surface of many pyramidal cells. Higher 
magnifications of the two squares outlined in left panel are shown in the two right panels. The nerve cell 

bodies and apical dendrites are seen in green (neuronal marker). The lower panel in B is taken from nucleus 
accumbens shell (AcbSh). The neuronal marker (Neuro-ChromTM Pan neuronal marker antibody-Alexa488 
conjugated, ABN2300A4) shows the neurite network.  Discrete nerve cell bodies are associated with a high 
density of PLA positive blobs representing OTR-5HTR2A heteroreceptor complexes that may also have an 

intracellular location through trafficking. The outlined squares in the left panel are shown in higher 
magnifications in the two right panels (B). 
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Figure 4. Cellular trafficking of the OTR and 5-HTR2A. Representative images (left panel) and 
quantitative analysis (right panel) of ligand-mediated internalization of OTR tagged with tRFP (A) and 5-

HTR2A tagged with EGFP (B) versus cells co-expressing both receptors. Graphs represents mean ± SEM from 
three independent experiments run in triplicate. Statistical significance of cells co-expressing both receptors 
compared to cells solely expressing the corresponding receptor is denoted as; ** indicating p < 0.01; or *** 

indicating p < 0.001. Statistical significance of cells following OTR or 5-HT treatment compared to the 
control condition is denoted as; # # # indicating p < 0.001. 
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Figure 5. Co-expression of the OTR and 5-HTR2A attenuates Gαq-dependent signalling of both 
receptors. Intracellular calcium release induced by increasing concentration of OT (A) and 5-HT (B) in 

HEK293A cells stably expressing the 5-HTR2A tagged with EGFP, in cells transiently expressing OTR tagged 
with tRFP, and in cells co-expressing both receptors. Intracellular calcium mobilization is presented as a 

percentage of maximal calcium response elicited by the control (3% FBS). Graphs represent means ± SEM 
from at least three independent experiments run in triplicates. IP-One production induced by 10 nM and 1 

nM OT (C), and 100 nM and 10 nM 5-HT (D) in HEK293A cells stably expressing 5-HTR2A tagged with EGFP, 
in cells transiently expressing OTR tagged with tRFP, and in cells co-expressing both receptors. IP-One 

production is presented as a percentage of control (100% for non-stimulated cells). Graphs represent means 
± SEM from experiments run in triplicate. Statistical significance of cells co-expressing both receptors 

compared to cells solely expressing one receptor is denoted as * for p < 0.05, ** for p < 0.001, and *** for 
p < 0.001. 
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Figure 6. Pharmacological inhibition of the OTR or 5-HTR2A does not affect the OTR-5-HTR2A 
heterocomplex specific Gαq-dependent signalling. Intracellular calcium release in cells solely 

expressing OTR, cells solely expressing 5-HTR2A, and cells co-expressing both receptors induced by 10 nM 
OT alone and in the presence of 1 µM 5-HTR2A antagonists; M100907 (A) and Eplivanserin (C), as well as 1 
µM OTR antagonists; Atosiban (F) and L-371-257 (H). Intracellular calcium release induced by 100 nM 5-HT 

alone and in the presence of 1 µM OTR antagonists; Atosiban (E) and L-371-257 (G), as well as 5-HTR2A 
antagonists; M100907 (B) and Eplivanserin (D). All graphs represent means ± SEM from at least two 

independent experiments run in triplicates, demonstrated as percentage of maximum calcium response (3% 
FBS). Statistical significance of cells co-expressing both receptors compared to cells solely expressing 

corresponding receptor is denoted as * for p < 0.05, ** for p < 0.001, and *** for p < 0.001. 

209x297mm (300 x 300 DPI) 

Page 51 of 50

ACS Paragon Plus Environment

ACS Chemical Neuroscience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Page 52 of 50

ACS Paragon Plus Environment

ACS Chemical Neuroscience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

Figure 7. Synthetic OTR ligand-mediated attenuation of Gαq-dependent signalling in cells co-expressing the 
OTR and 5-HTR2A. Intracellular calcium release induced by increasing concentration of Carbetocin (A) and 

WAY265464 (B) in cells expressing OTR, in cells expressing 5-HTR2A, and in cells co-expressing both 
receptors. Graphs present mean ± SEM from et least two independent experiments run in triplicates. 

Statistical significance of cells co-expressing both receptors compared to cells solely expressing 
corresponding receptor is denoted as ** for p < 0.001, and *** for p < 0.001. Intracellular calcium release 
induced by increasing concentration of Carbetocin (C) and WAY (D) in the presence of 5-HTR2A antagonist; 
Eplivanserin in cells co-expressing both receptors. Graphs present mean ± SEM from an experiment run in 

triplicate. Results are demonstrated as a percentage of maximum calcium response (3% FBS). 
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