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Abstract 

Streams and rivers are amongst the most endangered ecosystems in the world. Water 

quality is an important measure for maintaining ecosystem function. Despite several 

decades of the EU Nitrates and Water Framework Directives, inputs of nutrient-rich 

organic matter of both agricultural and municipal origin continue to pollute many 

waterways in Ireland, most of which are not routinely monitored in terms of water 

quality. This lack of data hampers efforts to improve water quality. Citizen science 

projects involve non-experts contributing to scientific data voluntarily and have been 

identified by the EU as a growing field of practice that is likely to yield significant 

outcomes for water quality and data capture. 

In this thesis a biotic index called the Citizen Science Stream Index (CSSI) was 

established using a principal component analysis of an EPA data set of  

macroinvertebrates. A further analysis was made using the provided Q-Values in this 

data set to find the most indicative macroinvertebrates for a citizen science index. The 

CSSI uses six easily identifiable and common benthic macroinvertebrates with narrow 

pollution tolerances that indicate water quality, to give a rapid indication of the 

ecological status of a stream in a sampled area. The CSSI is an easily taught and simple 

to use biomonitoring index that enables non-experts to identify where pollution has 

affected the macroinvertebrate community. The protocol involves taking a thirty second 

kick sample and checking it for the presence or absence of the six taxa, giving a score 

from -3 to +3. This is repeated three times and the resulting three scores are summed to 

give a CSSI score between -9 and +9. From this score the sampler can band the water 

quality of the stream into three water quality bands, red (poor), orange (moderate) and 

green (good). 
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This thesis validates the CSSI’s indicator taxa, protocol and scoring system by using 

multiple data sets with varying spatial distribution, water quality and seasonality, 

comparing the CSSI with contemporary metrics such as the EPA Quality-Values (Q-

Values), the Biological Monitoring working Party’s (BMWP) Average Score Per 

Taxon (ASPT) and the Small Stream Risk Score (SSRS). A pilot study to further test 

the quality, accuracy and feasibility of the index in the field was carried out on the 

Nore River catchment with volunteers from the NoreVision project.  

It was found that the CSSI compared sufficiently with the contemporary metrics tested 

and provided accurate results in the field study. Therefore, it is fit for purpose as a 

rapid biomonitoring citizen science index. The CSSI is currently being rolled out in 

volunteer initiatives around Ireland. The CSSI has received a positive response from 

participants and provided consistently reliable data capture when compared to existing 

data points thus far. 
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Streams and rivers are amongst the most endangered ecosystems in the world.  Water 

quality is an important measure for maintaining ecosystem function (O’Boyle et al., 

2019). Despite several decades of the EU Nitrates and Water Framework Directives, 

inputs of nutrient-rich organic matter of both agricultural and municipal origin 

continue to pollute many waterways in Ireland, most of which are not routinely 

monitored in terms of water quality. This lack of data hampers efforts to improve 

water quality.  

1.1 Water quality 
 

In general water quality can be described as the suitability of water for a particular use 

such as drinking, recreation or irrigation. In regard to river water, the term ‘water 

quality’ can be used to refer to different aspects based on selected physical, chemical 

and biological characteristics. Turbidity, temperature, total solids, conductivity, 

dissolved oxygen, levels of phosphorus, nitrates, pH, total alkalinity, faecal bacteria, 

biochemical oxygen demand (BOD) and macroinvertebrate biodiversity for example. 

By using these types of measurements, standards can be set and changes in water 

quality can be monitored to maintain healthy and safe water (Rolston and Linnane, 

2020).  

In Ireland there are over 84,000km of waterways but only 13,200km (16%) of these 

are surveyed over a three-year cycle (Toner et al., 2006, Clabby et al., 2008, O’Boyle 

et al., 2019, Feeley et al., 2020). Stream order is a measure of the relative size of 

streams. The smallest tributaries are referred to as first-order streams, when two 

streams with the same order join, the resulting stream is categorised at the next highest 

order. First, second and third order streams are usually called headwater streams. The 

majority of the rivers surveyed in Ireland are third order rivers, yet 77% of Ireland’s 
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waterways are first and second order headwaters (McGarrigle, 2014). This lack of 

monitoring could result in polluting inputs going unnoticed and not amended. 

From the monitoring of Ireland’s waterways that is being done it is clear that 

urbanisation, arable farming and extent of pasturelands are the principal pressures, at 

the catchment scale, that impact on the ecological quality of streams and rivers 

throughout Ireland and Europe (Trodd and O’Boyle, 2020). As a result, the European 

Union introduced directives for the improvement of water quality in all European 

waterways and the surrounding catchments such as the Water Framework Directive 

(WFD) (Teodosiu et al., 2003, the Environmental Quality Standards Directive 

(EQSD), (Directive 2008/105/EC), the Groundwater Directive (GWD), ( Directive 

2006/118/EC), the Floods Directive (FD), ( Directive 2007/60/EC) and the Nitrates 

Directive (ND), ( Council Directive of 12 December 1991 (91/676/EEC)). These 

ambitious directives aim to bring in a new era for European water management, 

focusing on understanding and integrating all aspects of the water environment, to be 

effective and sustainable. Despite the fact that many of these initiatives have been in 

place for many years, it is clear that the water quality of Europe’s rivers has been 

declining for a number of years (Trodd and O’Boyle, 2020, Yoshimura et al., 2001, 

Malmqvist and Rundle, 2002, Saunders et al., 2002, Wolfram et al., 2021), suggesting 

that a change is necessary. In order to improve water quality, the identification of 

pollution must be improved. One non-traditional source of data collection shown to be 

useful at complimenting official data sources is citizen science (König et al., 2020). 
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1.2 Pollution 
 

Water pollution is the release of substances into waterways to the point where the 

substances interfere with the beneficial use of the water or with the functioning of 

natural ecosystems (Nathanson, 2021). Water can be polluted by many different 

sources including domestic wastes, insecticides and herbicides, food processing waste, 

livestock operation outputs, volatile organic compounds (VOCs), heavy metals, 

chemical waste and others (Iyyanki et al., 2017). These substances are described as 

pollutants. The prevention and amending of anthropogenic pollution are the main 

purposes of most river monitoring initiatives and directives.  

Water pollution is described as coming from a point or a non-point source (Schultz 

and Edwin, 2000). Point sources are associated with pollutants that can be traced to a 

single source, such as an outflow pipe or runoff coming from a farmyard entering at 

one point (Nathanson, 2021). Once a point source has been identified, managing the 

effluent from the point source requires a commitment of time and money but can be 

tended to by government officials or the owner of the land. If identified these sources 

of pollution can be reported to government officials in Ireland such as the Local 

Authority Waters Program (LAWPRO) or Agricultural Sustainability Support and 

Advisory Programme (ASSAP). Non- point sources are more diffuse and associated 

with the landscape and its response to water movement and land use (Nathanson, 

2021). These types of pollution are more difficult to pinpoint but can still be identified 

and rectified in a number of different ways such as instituting natural wetlands and 

changing farming practices (Scholz, 2016).  
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1.3 Biomonitoring 
 

Physical and chemical analysis can detect pollutants in the water, but this type of 

analysis is not always possible as it is often time-consuming, cost-intensive and 

dependent on specialist instruments (Aazami et al., 2015). Petchy and Gaston 

described biomonitoring as the quickest and most cost-effective way of accurately 

identifying pollution (Petchey and Gaston, 2006), although this is not necessarily the 

case in all situations.  

Biomonitoring is the act of monitoring and assessing ongoing changes in ecosystems, 

components of biodiversity and landscape including the types of natural habitats, 

populations and species (Bondaruk et al., 2015). Biomonitoring allows monitoring of 

an environment without the need for chemical and physical analysis and can often 

provide an accurate and rapid view of a river’s ecosystem (Moog et al., 2018, Polatera 

et al., 2001, Cairns and Der Schalie, 1980, Cairns and Der Schalie, 1998, Matthews et 

al., 1982, Herricks and Cairns, 1982, Buikema et al., 1982, Cherry and Cairns, 1982).  

Biomonitoring is routinely used in many different fields of science. For example, 

monitoring of lichens and bryophytes indicate air pollution (Pescott et al., 2015).  

Indicator species are also used to identify ancient woodlands requiring protection which 

are a priority for conservation (Abe et al., 2021). Multiple different fungal communities 

are monitored to detect nitrogen compounds (Trundell and Edmonds, 2004, Trundell et 

al., 2004), and indicator fungi also predict declines in forests (Mair et al., 2017). The 

migration of indicator birds help to monitor climate change (Sullivan et al., 2009). 

These projects use the presence or absence of indicator organisms with narrow 

tolerances for environmental stressors, to deduce the ecological state of an ecosystem 

in question without sampling and quantifying the whole ecosystem.  
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River biomonitoring on the other hand usually involves investigating the benthic 

community on the riverbeds such as fish, algae, plants, and other periphyton (Li et al., 

2010). River biomonitoring is a well-established practice to detect pollutants such as: 

organic pollution (Armitage et al., 1983, Rae, 1989, Zamora- Muñoz and Alba-

Tercedor, 1986), heavy metals (Winner et al., 1980, Smolders et al., 2003, Poulton et 

al.,1995), nutrient enrichment (Hellawell, 1986, Hynes, 1960, Hellawell, 1978, Hering 

et al., 2006, Johnson et al., 2006), hydromorphological degradation (Lorenz et al., 2004, 

Friberg et al., 2009) and acidification (Sandin and Johnson, 2000, Braukmann, 2001, 

Sandin et al., 2004, Davy-Bowker, 2005). It should be noted that different indices are 

used to test for different pollutants. For example, very different indices are used to test 

for heavy metals than for organic/nutrient pollution. 

Using biotic organisms to detect the above stressors has been demonstrated in many 

studies. Three of the most common organisms used to detect these stressors are 

periphyton (Coste et al., 2008, Whitton, 2013, Vis et al., 1988, Whitton and Rott, 1996), 

benthic macroinvertebrates (Statzner et al., 2001, Rosenberg and Resh, 1993, Buffagni 

et al., 2004, Bhadrecha and Khatri, 2016) and fish (Joy and Death, 2002, Pont et al., 

2006, Oberdorff et al., 2002). Of these three, macroinvertebrates are the easiest and 

most reliable organisms to use in a citizen science initiative. 
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1.4 Macroinvertebrates 
 

Macroinvertebrates are defined as any animal lacking a backbone and large enough to 

be seen without the aid of a microscope (Michaluk, 2019). Macroinvertebrates are part 

of almost every freshwater ecosystem in the world, even those that are seemingly 

inhospitable to life. They form the base of the aquatic food chain serving as a source of 

food for other animals (Michaluk, 2019). By participating in the breakdown of both 

living and dead plant material in freshwater ecosystems, they transfer plant material into 

forms of energy that can be consumed by other aquatic animals (Callisto et al., 2001). 

Alone they are the most common and widely used biomonitoring organisms for rivers. 

Using macroinvertebrates to indicate water quality is a well-established technique that 

was first documented in 350 BC by Aristotle (Moog et al., 2018). Many biotic indices 

have been established based on macroinvertebrate sampling as they are nonmigratory, 

spending all their lives in a small area, are easy to collect using a kick net and differ in 

their tolerance to polluted environments where pollutants have changed percentage 

dissolved oxygen, pH or increased harmful chemical levels for example (Tampo et al., 

2021).  

1.5 Historical river biomonitoring  
 

The first published paper noting the relationship between organic pollution and river 

fauna came from two European researchers A. H. Hassal, London in 1850 and F. Cohn, 

Breslau around the mid-1800s as a result of a severe cholera outbreak (Moog et al., 

2018). Around 1900, two German scientists R. Kolkwitz and M. Marsson developed 

the saprobic system to determine the state of a river using macroinvertebrates where 

saprobic organisms are found in waste waters and katharobic organisms are found in 

clean rivers (Kolkwitz and Marsson, 1902). This saprobic system was later adopted by 
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Liebman after World War II who listed indicative species and “colour branded” the 

quality and ecological status of the river (Liebmann, 1951). The Trent Biotic Index 

(TBI) did not follow the saprobic system but derived water quality from a mix of the 

presence or absence of certain indicator species and the number or diversity of taxa (or 

groups) of organisms present (Woodiwiss, 1964). The TBI made findings more 

understandable to non-biologists by presenting them in numerical form as an index 

value or score. Although some biologists were sceptical about expressing complex 

biological communities as a single numerical value (Hawkes, 1956; Hynes,1960), this 

proved accurate and was followed by others like the Indice Biotique (IB) (Verneaux 

and Tuffery, 1967), Chandler Biotic Score (Chandler, 1970) and the Department of the 

Environment (DOE) classification (Department of the Environment and Welsh Office, 

1971). 

Today, there are many different biomonitoring protocols and indices in use that classify 

and score the hundreds of macroinvertebrates and other organisms to indicate water 

quality. Commonly used biomonitoring approaches include biotic indices, multi-metric 

approaches and multivariate approaches, functional feeding groups (FFG) analysis and 

multiple biological traits analysis. Among these techniques, biotic indices, multivariate 

approaches and multi-metric approaches are most frequently used to evaluate the 

environmental state of streams and rivers (Li et al., 2010). FFG analysis and multiple 

biological trait analysis which can detect more subtle changes in the aquatic community 

structure than would be apparent from biotic indices are used less often. 
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1.6 Biotic indices 
 

A biotic index is a scale for showing the quality of an environment by using the 

sensitivity or tolerance of organism collections within that environment (Marques, 

2008). This results in a numerical expression referred to as a score. Within freshwater 

river biomonitoring, the relationship between water quality and the macroinvertebrate 

community is usually described by one numerical value or score. Although such a 

compression of biological information, inevitably results in a loss of information this 

compression is generally regarded as a necessary method to indicate the water quality 

of a river in simple terms to non-professionals (Hawkes, 1998, Toner et al., 2006).  

Many macroinvertebrates show a narrow tolerance range of water quality that they can 

live in, so their presence or absence is a particularly good indicator of water quality 

(Krabbenhoft and Kashian 2020). Different biotic indices use different methods of 

achieving a score to classify the populations of macroinvertebrates at that sampling 

point. A score can be generated, for example, as an average of scores of several 

indicators to reflect an index (Lamberti, 2017). The principle of biotic indices is to 

assign different types of taxa to different levels of anthropogenic disturbance. Sensitive 

taxa decrease or disappear, and tolerant taxa emerge or increase under stress (Moog et 

al., 2018).  

1.6.1 The Biological Monitoring Working Party 

(BMWP)  
 

The Biological Monitoring Working Party (BMWP) is a biotic index that forms the 

basis for most of the currently used biotic indices (Moog et al., 2018). In 1976 The 

Biological Monitoring Working Party, the namesake of the index, was set up by the 
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British Department of the Environment in response to criticism of the 1970 National 

River Pollution Survey which used biomonitoring but found that the type of river also 

affected the benthic community not just the pollution levels. To overcome this, the 

working group of 11 members set up a standard scoring system that successfully 

classified relationships between the macroinvertebrate communities and the 

environmental factors of the river (Biological Monitoring Working Party, 1978; 

Hawkes, 1998; Armitage et al., 1983). This index proved accurate and useful in many 

regions although it required certain adaptions depending on the region (Barton and 

Metcalfe-Smith, 1992, Zamora-Munoz and Alba-Tercedor, 1996, Capitulo et al., 2001, 

Mustow, 2002, Czerniawska, 2005). The BMWP system considers the sensitivity of 

invertebrates to pollution; families are assigned a score between 1 and 10 with 1 being 

the most tolerant of pollution and families assigned 10 the least tolerant to pollution. 

The BMWP score is the sum of the values for all families present in the sample. Scores 

greater than 100 are associated with clean streams, while the scores of heavily polluted 

streams are less than 10 (Mason, 2002). The BMWP system requires the ability to 

identify all the families of macroinvertebrates in a river system (Biological Monitoring 

Working Party, 1978, Department of the Environment, 1976; Barbour et al., 1999). 

Index scores are largely affected by the number of scoring taxa in a sample, as this is 

usually dependent on the sample size, sampling technique and sample processing 

efficiency. To overcome this variation, it was proposed that the index score should be 

divided by the number of contributing taxa providing an average pollution tolerance of 

all the families of organisms present in a sample. This is known as the Average Score 

Per Taxon (ASPT) and can be determined by dividing the index score by the number of 

scoring taxa present (Hawkes, 1998). A high ASPT score is considered indicative of a 

clean site containing large numbers of taxa indicationg good water quality. The ASPT 
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has been shown to diminish the possible impact of natural seasonal differences in the 

levels of organisms (Roche et al., 2010, Armitage et al., 1983).  

1.7 Multivariate approach  
 

The measurement of different biomonitoring organisms can be combined with each 

other, and with chemical, physical and bacteriological tests. This is called multivariate 

approach and gives a very thorough analysis of river water quality. Since this is an 

intensive investigation involving high levels of training, specialist equipment and prior 

knowledge of the river ecosystem, which is costly in terms of economy and workforce, 

it is often focused at one sample point, that is usually assigned a single numerical score. 

This compression of information makes such a thorough analysis inefficient and 

unlikely to be used to test a large number of first and second order headwaters. In other 

words, intensive small-scale sampling is useful but spatially extensive large-scale 

sampling would provide more data on where currently unmonitored streams are being 

polluted (Toner et al., 2006, Metcalfe, 1989).  

1.7.1 The Quality rating (Q-Value) 
 

The Environmental Protection Agency in Ireland use a Quality rating or Q-Value 

system to classify Irish streams. A Q-value is a multivariate approach used to 

standardize different water quality attributes so that they can be combined to find an 

overall water quality value for the river. The Q-Value investigates benthic 

macroinvertebrates by dividing them into five arbitrary 'Indicator Groups' as follows: 

Group A, the sensitive forms, Group B, the less sensitive forms, Group C, the tolerant 

forms, Group D, the very tolerant forms and Group E, the most tolerant forms as shown 

in Figure 1B For the assessment of organic pollution, the more commonly measured 
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physio-chemical parameters include dissolved oxygen (DO), biological oxygen demand 

(BOD), ammonia, oxidised nitrogen (nitrites plus nitrates) and phosphates. In practice 

this is impossible for financial, technical and logistical reasons (Toner et al., 2005). The 

Q value instead evaluates five, more discrete, physio-chemical “additional qualifying 

criteria”, namely: Cladophora spp. abundance, macrophytes (typical abundance), lime 

growths (sewage fungus), dissolved oxygen saturation and substratum siltation. These 

five criteria have allowances for each Q-Value band Q1-Q5. An overall assessment of 

all these criteria makes up the final score of the stream from Q1 to Q5 as shown in 

Figures 1A and 1B (Toner et al., 2005). This is a water quality index used by 

governmental agencies in Ireland and so can be used as a reference standard for water 

quality monitoring but requires a high level of training and a detailed knowledge of 

macroinvertebrate identification to carry it out.  

 

Figure 1A. Q-value scoring system (Toner et al., 2005) 
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Figure 1B. Q-value scoring system for macroinvertebrates (Toner et al., 2005) 

 

1.8 Multi-metric approach - The AQEM 
 

A multi-metric approach uses multiple different indices to produce one score for a river 

biomonitoring index. This was found to provide an accurate and full evaluation of the 

ecological status of water bodies (Hering et al., 2006). An example of a multi-metric 

approach is "The Development and Testing of an Integrated Assessment System for the 

Ecological Quality of Streams and Rivers throughout Europe using Benthic 

Macroinvertebrates” otherwise known as the “AQEM". This is a stressor-specific 

approach developed in 2002 by the European Union that uses different metrics 

depending on the stressors on the river to produce a water quality score ranging between 

1 and 5. By combining multiple different metrics depending on which stressors are 

thought to be affecting a river, the AQEM can accurately define how badly the 

suspected stressor is polluting the river as well as the overall water quality.  This is used 

to give information about possible degradation and direct future management practices 

(Buffagni et al., 2004). 
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Although all of the above can give a good view of the ecosystem’s ecological state, the 

cost (economic and manpower), need for expert knowledge of river organisms and need 

for specialist equipment pose challenges to monitoring a large number of first and 

second order headwaters (Rae et al., 2019, Lewandowski and Specht, 2015, Pinto et al., 

2020). As there are a large number of small headwaters across Ireland that are 

unmonitored, many pollution inputs may go unnoticed adding to the declining state of 

Ireland’s streams and rivers. 

 

1.9 Citizen science 

Despite years of freshwater improvement initiatives, water quality in Ireland is still 

deteriorating with 230 water bodies having declined in water quality in a 2020 report 

(Trodd and O’Boyle, 2021). To change this trend, it is important to utilize every 

resource as efficiently as possible. Citizen science is a resource that has shown to be 

underutilized and has significant potential to be improved in Ireland by focusing on the 

management of the programmes, communication between programmes and attraction 

and retention of participants (Donnelly et al., 2014, Krabbenhoft and Kashian, 2020). 

Biomonitoring citizen science projects present a wide range of advantages over 

environmental monitoring due to its effectiveness in monitoring the ongoing state of the 

environment, not just a current attribute (Toner et al., 2005). Citizen science projects 

involve non-experts called citizen scientists who contribute to scientific data voluntarily 

(Cavalier and Kennedy, 2016). The European Union has identified citizen science as a 

growing field of practice that is likely to yield significant outcomes for water quality 

and data capture (Introduction to the EU Water Framework Directive - Environment - 

European Commission, 2021). It was agreed in a study of professionals that citizen 
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science is not used to its full potential in regard to data capture and citizen engagement 

(Golumbic et al., 2017). 

In recent years, there has been a steady rise in nature-based citizen science projects that 

aim to build knowledge and awareness whilst also collecting useful data that help with 

conservation and maintenance. This has been aided by the availability of online 

submission of scientific data. Innovative technology, new handheld devices and 

widespread digital platforms that help to classify and collect species occurrence have 

also been a large factor in this growth (Feldman et al., 2021).  However, numerous 

operational and strategic challenges exist (Lee et al., 2020).  

Citizen science biomonitoring initiatives are useful but can be biased or inaccurate if 

not managed correctly (Feldman et al., 2021). There could be disparity in the quality of 

information gathered and where it is gathered, due to bias and/or lack of knowledge 

amongst volunteers. This disparity can happen for several different reasons. For 

example, a bias towards human population centres, areas that are easy to access, 

protected areas, or regions frequented by active observers (Reddy and Davalos, 2003, 

Botts et al., 2011, Martin et al., 2012). There may be geographically biased coverage 

toward well financed areas and more industrialised areas (Schmeller et al., 2009, Martin 

et al., 2012, El-Gabbas and Dormann, 2018). Observations and recordings could also 

be taxonomically biased as volunteers are attracted to large, common and brightly 

coloured species (Ward, 2014, Amano et al., 2016, Boakes et al., 2016, Newbold, 2010). 

A variation in expertise amongst a wide range of volunteers especially for species that 

are harder to identify could also lead to a disparity in results (Fitzpatrick, 2009, Cox et 

al., 2012, Kamp et al., 2016, Kelling et al., 2015). Bias from each of these four sources 
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can decrease the credibility and accuracy of a citizen science initiative and must be 

considered when developing a citizen science index (Feldman et al., 2021). 

Parsons highlighted the need for simple citizen science projects that collect less 

complicated data to prevent a reduction in participation and/or an increase in 

misidentification of species that could lead to poor data quality and poor engagement 

with the project. This trade-off between participation and data accuracy can be avoided 

by simplifying the data that are collected (Parsons et al., 2011). Current river 

biomonitoring protocols, even those targeted at non-experts, tend to require advanced 

levels of taxonomic expertise, which are likely to discourage citizens from engaging in 

the important issue of local stream water quality. 

A citizen science index should aim to reduce the variation between volunteers of all 

skill levels by only looking at indicator species that are easily found and identified. This 

reduces the need for intensive training and makes a citizen science index much more 

practical for volunteers. The literature suggests that a good indicator species should 

have characteristics such as taxonomic soundness meaning they are easily recognised 

by non-specialists, wide or cosmopolitan distribution, low mobility indicating local 

habitation, well-known ecological characteristics, numerical abundance, suitability for 

laboratory experiments, high sensitivity to environmental stressor(s) and the potential 

for quantification and standardisation (Füreder and Reynolds, 2003, Hilty and 

Merenlender, 2000, Rosenberg and Resh, 1993).  

Another effective way of engaging participants and collecting more general data, is the 

use of open-ended questions and comments sections. This has been shown in successful 

online citizen science initiatives like ‘EBird’ where participants from around the world 

describe the type of bird they see, rather than try to identify the species (Sullivan et al., 
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2009). On the other hand, bias could play a larger role in initiatives like EBird (Genet, 

2003). Several studies have emphasised the importance of avoiding estimates of 

subjective data such as group size, relative abundance or cover, when designing surveys 

for volunteers (Genet, 2003, Galloway et al., 2006, Lovell et al., 2009, Gollan et al., 

2012). A citizen science index for water quality should encourage users to record 

additional evidence such as excessive algae or fine sediment, farm animal access, 

surface foam, presence of trout/salmon… etc. This could possibly be done by the 

addition of an observations section along with the recording sheet.  

Krabbenhoft and Kashian carried out a study on the difference in volunteers’ accuracy 

at identifying benthic macroinvertebrates compared to that of experts. They found that 

with half a day’s training in macroinvertebrate identification and collection, the main 

differences in the data collected by experts and volunteers were largely due to rare taxa 

identification (Krabbenhoft and Kashian, 2020).  Krabbenhoft and Kashian also found 

that volunteers found it hard to differentiate between species that are in extremely low 

abundance and are missed due to random chance in sampling (false ‘zero’ abundance), 

and taxa which are truly absent (true ‘zero’ abundance) (Krabbenhoft and Kashian, 

2020). For this reason, a citizen science macroinvertebrate protocol should take multiple 

samples. Thus, if a volunteer misses a species in one sample, they could likely identify 

it in the next sample. Multiple samples would also allow a volunteer to sample a few 

different areas in a stream giving a better indication of the benthic macroinvertebrate 

community.  

There have been studies reviewing the most efficient ways to overcome these challenges 

in order to increase participant engagement in science whilst still providing meaningful 

data (Roche et al., 2021, Lee et al., 2020, Brossard et al., 2005). Additionally, 

international bodies such as the European Citizen Science Association and the EU-
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Citizen Science platform have been set up to advise and govern new programmes 

(Roche et al., 2021). Krabbenhoft and Kashian have shown that citizen science can have 

a dual purpose of collecting reliable data to supplement existing data whilst increasing 

public engagement (Krabbenhoft and Kashian, 2020).  

The reliability of citizen science initiatives is often questioned. A study by 

Lewandowski and Specht in 2015 carried out a systematic review of the literature on 

the quality of data that were collected by volunteers. They studied 71 papers, 63% of 

which examined systematic monitoring schemes, 31% considered opportunistic 

schemes and 6% examined both types. More than one third of the papers examined 

directly whether volunteers can collect data that are as good or comparable to that of 

professionals. They found that volunteer data was no less precise than professional data 

finding that on average only 4 in 7 professionally collected data sets were more accurate 

than that of volunteers, when using the same accuracy standard.  Furthermore, no 

studies conclusively showed that professional data were less variable (Lewandowski 

and Specht, 2015).  

In the Republic of Ireland, there are many organisations that provide citizen science 

programmes but few of them look at waterways specifically e.g., National Biodiversity 

Data Centre coordinates programmes such as: Nature Watch, Leaf Watch Phenology 

Trail, Butterfly Monitoring Scheme and Bumblebee Monitoring Scheme and Bioblitz 

and Countryside Bird Survey conduct independent citizen science programmes. The 

few initiatives that use citizen science to look at waterways monitor species distribution 

but not as an indication of ecological state, e.g., Waterways for Wildlife, Seashore 

Spotter, Rocky Shore Safari, National Frog Survey, Dragonfly Ireland etc… (Roche et 

al., 2021). With a simplified method of indicator macroinvertebrate identification and 

classification that could be used by experts and non-experts, more rivers could be 
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sampled. There is a clear need for such an index in Ireland to allow monitoring of more 

of Ireland’s streams and headwaters (Feeley et al., 2020).  

1.10 Citizen science freshwater biomonitoring 

initiatives 

Some existing citizen science biomonitoring initiatives in operation abroad include the 

Riverfly Partnership (UK), Virginia Save Our Streams Protocol (VASOS)(USA) and 

The Open-Air Laboratories (OPAL) water surveys (UK). The only index that can be 

used by non-experts currently in use in Ireland for water quality monitoring is the Small 

Stream Risk Score (SSRS) which requires a training course and a significant amount of 

time to carry out in the field (Ryan et al., 2015). 

1.10.1 The Riverfly Partnership 
 

The Riverfly partnership is a citizen science initiative set up in 2004 to assess river 

water quality and monitor macroinvertebrate populations in the UK. Since the 

beginning of the initiative, it has had huge success and as of 2019 has more than 2,000 

volunteers monitoring more than 1,600 rivers. It has been described as an exemplary 

citizen science initiative that enables people to protect and reconnect with their local 

rivers whilst also contributing to scientific research (Brooks et al., 2019).  The Riverfly 

Partnership uses a recording method called the Anglers Riverfly Monitoring Initiative 

(ARMI) which estimates the log10 abundance of 8 macroinvertebrate species with 

varying pollution tolerances in order to monitor changes in the population densities and 

water quality (www.riverflies.org). The ARMI protocol uses a three-minute kick 

sample and one minute collecting large stones and wiping them into the mouth of the 

net to collect macroinvertebrates. These taxa (cased Trichoptera (cased caddis), caseless 

Trichoptera (caseless caddis), Ephemeridae (mayfly), Ephemerellidae (blue-winged 

http://www.riverflies.org/
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olive), Baetidae (olives), Heptageniidae (flat-bodied mayfly), Plecoptera (stonefly), and 

Gammaridae (shrimp)) were chosen because they are easy to identify at this taxonomic 

resolution, cover a range of sensitivities to pollution, have national applicability, are 

present year-round (with the exception of Ephemerellidae), and are familiar to most 

anglers (Moolna et al., 2020). The Riverfly partnership asks volunteers to upload their 

findings to a portal on their website which automatically alerts the user if their if the 

report is below “trigger level” at which point the volunteer should reassess the river and 

if there is no change take further reporting actions(www.riverfly.org).  

Studies have been carried out on the effectiveness of this initiative and have found the 

ARMI scores are reliable and consistent throughout different water qualities or inter-

sampler difference (Cahill, 2019, Di Fiore, 2017).  Overall, this initiative is a great 

model for freshwater citizen science initiatives and should be followed by citizen 

science initiatives in Ireland.  

1.10.2 Virginia Save Our Streams Protocol (VASOS) 
 

A multi-metric biotic index commonly used in the USA by a volunteer biological 

monitoring programme was developed in Virginia and called the Virginia Save Our 

Streams (VASOS) protocol. The VASOS protocol requires identification and counting 

of all macroinvertebrates caught in a flat net after rubbing cobbles over the net for 

twenty seconds. The macroinvertebrates caught are then used to calculate six different 

metrics, they were: 

• Percentage Mayflies + Stoneflies + Most Caddisflies 

• Percentage Common Netspinners 

• Percentage Lunged Snails 

• Percentage Beetles 

http://www.riverfly.org/
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• Percentage Tolerant Species 

• Percentage Non-Insects.  

Using these metrics, a final Save Our Streams Multi-Metric Index Score is calculated. 

A score between 7 and 12 is an indication that the stream is of acceptable ecological 

condition and a score between 0 and 6 is an indication that the stream is of an 

unacceptable ecological condition.  

In a study done by Steven Christopher Haas, 127 people who discontinued participation 

in the VASOS were surveyed (Haas, 2000). When participants were asked to rate a 

number of possible reasons for discontinuing participation. The second highest answer 

was that the volunteers “did not have enough time” and the fourth highest answer was 

that “stream monitoring took too much time” (Haas, 2000). Although this programme 

was successful, participation could have been boosted by making the index less time 

consuming.  

1.10.3 The Open-Air Laboratories (OPAL) water surveys 
 

Another similar study in 2019, The Open-Air Laboratories (OPAL) water survey, was 

a citizen science project carried out by Imperial College London that involved over a 

million participants in the UK (Davies et al., 2011). This citizen science initiative was 

designed to study the ecological state of Sustainable Drainage Systems (SuDS) such as 

stormwater ponds, detention basins, swales, infiltration ditches and permeable 

pavements. The OPAL water survey used thirteen invertebrate taxa to determine the 

ecological state of SuDS (Rae et al., 2019). These taxa were collected using a number 

of different sampling techniques such as funnel trapping, egg searching, flash 

lighting/torching and dip netting. The total sampling time for each site was three-minute 

netting plus a further minute of shore visual searching following the UK National Pond 
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Survey protocol (Biggs et al., 1998, https://www.imperial.ac.uk/opal/). The thirteen 

freshwater invertebrate groups had different pollution or eutrophication tolerance 

ranges and were assigned the following values: Cased caddisfly larvae (10), Dragonfly 

larvae (10), Alderfly larvae (10), Damselfly larvae (10), Caseless caddisfly larvae (10), 

Mayfly/stonefly larvae (5), Water beetles and/or larvae (5), Water bugs (5), Pond 

skaters (5), Water shrimps (5), Water snails (1), Water slaters (1) and Worm-like 

animals (1). Their presence or absence were added up and resulted in a score between 

0 and 78; 0 being the worst and 78 being the best (Rae et al., 2019).  

The findings of Rae et al. 2019 show that the OPAL water survey was a robust tool for 

assessment of the ecological state of SuDS and could be used as a stand-alone method 

of assessment. Furthermore, this study showed that due to the elementary manner of 

sampling many participants intended to return to the sampling area to maintain and 

sample the SuDS again in the future. This project is a good demonstration of how a 

citizen science project can sustainably monitor a valuable resource for biodiversity and 

ecological state whilst still engaging the public. However, this resource is only for SuDS 

and takes significant training and time to carry out (Davies et al., 2011). 

1.10.4 Small Stream Risk Score (SSRS) 
 

The Small Stream Risk Score (SSRS) is a biotic index that requires the full analysis of 

a kick sample including species abundance in order to achieve a score. The SSRS is 

primarily used to detect if a river is at risk of pollution and can be used by experts and 

non-experts. The SSRS does this by splitting the taxa present in a kick sample into five 

groups. All Ephemeroptera, all Plecoptera and all Trichoptera are grouped as three 

intolerant groups, all Gastropoda, Oligochaeta and Diptera (GOlD) are grouped as one 

tolerant group and Asellus aquaticus is a stand-alone tolerant species that is treated as a 

https://www.imperial.ac.uk/opal/
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tolerant group and has its own calculations. The total number of taxa within each of the 

groups and their relative abundance are counted and applied to a flow chart to achieve 

an SSRS score. This score is then grouped into three categories: At Risk, Indeterminate 

or Not at Risk. The SSRS has been shown to give an accurate risk assessment on Irish 

streams and is already in use in some cases (Ryan et al., 2015). The aim of developing 

this score was to identify pollution inputs and the SSRS does so efficiently (McGarrigle, 

2014). Although this assessment system can be used by non-specialists after a training 

course, anecdotally, it is difficult for volunteers with little to no experience in 

macroinvertebrate identification to learn the skills necessary to carry out the SSRS 

accurately and efficiently. As discussed above, the main differences in the data collected 

by experts and volunteers were largely due to rare taxa identification (Krabbenhoft and 

Kashian, 2020, Lewandowski and Specht, 2015) and simple citizen science projects that 

collect less complicated data tend to have more consistent participation (Parsons et al., 

2011). These factors make the SSRS not ideal for a standalone citizen science index. 
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1.11 Aims 
 

Using contemporary and historical biological metrics, and the above research it is a 

clear that there is a need for a simplified macroinvertebrate biomonitoring protocol, 

based on a small number of commonly occurring, easily identifiable and distinct taxa 

that are strong indicators of polluted or non-polluted waters.   

In order to develop a simplified macroinvertebrate biomonitoring protocol this thesis 

aims to: 

1. Establish a small number of easily identifiable and common 

macroinvertebrates with narrow pollution tolerance that can be used to indicate 

water quality.  

2. Develop a Citizen Science Stream Index (CSSI) protocol using the presence or 

absence of these indicator macroinvertebrates. 

3. Validate the CSSI using Q-values as a reference standard. 

4. Compare the CSSI with contemporary metrics using multiple data sets with 

varying spatial distribution and water quality.  

5. Carry out a pilot study to test the quality, accuracy and feasibility of using the 

index in the field by citizen scientists. 
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CSSI ideal boundary selection 

1.12 Flow chart showing the development of the 

CSSI 
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2. Establishment of indicator 

macroinvertebrates.  
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Two different methods of ranking data were used to establish which macroinvertebrates 

were most useful as indicator taxa for a citizen science index both of which used a data 

set collected by Feeley et al from 2007 to 2012 and published in 2020 (Feeley et al., 

2020). The first was a principal component analysis of the data and the second was a 

Q-Value analysis. 

2.1 Principal component analysis and ranking of 

data 
 

To establish the indicator macroinvertebrates that would be most appropriate for a 

citizen science initiative, a data set collected by Feeley et al. from 1,277 rivers in Ireland 

was analysed using XLSTAT. In this data set macroinvertebrates were collected every 

year from June to September when the rivers were low enough to be waded. If the rivers 

were not low enough to be waded an extension pole and drag net were used but this was 

rare. The personnel collecting the samples also collected physical and chemical data at 

most sample points using various equipment (Feeley et al., 2020). This data set analysed 

ammonia, alkalinity, biological oxygen demand (BOD), conductivity, nitrate, pH, 

temperature, calcium, colour and turbidity of the river as well as the macroinvertebrates 

present and the Q-value rating (Feeley et al., 2020).  

Although 11 types of physical and chemical data accompanied the data set only 7 types 

were complete enough to create a PCA. Within the 7 types of data there were still 

various gaps in 55 sample sites, so they were excluded from the PCA. In total, the PCA 

was developed using 7 types of data on 1,222 sites. The data types analysed were 

ammonia, alkalinity, biological oxygen demand (BOD), conductivity, nitrate, pH and 

temperature. From this data a PCA was carried out using XLSTAT software. This PCA 

produced five possible axes. The axis with the highest contribution to the variables, F1 
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(37.72%) was used as a reference standard for water quality. Using existing knowledge 

of water quality stressors and the correlation circle of the PCA (Clabby et al., 2008), it 

was established that water quality had an inverse relationship with the F1 axis so sample 

sites with negative values on the F1 axis had good water quality relative to the data 

types included in the PCA and vice versa. 

Subsequently, using each sample site’s value on the F1 axis of the PCA, the sample 

sites were ranked from lowest to highest (best water quality to worst water quality). The 

sample sites were then banded into bands of F1 values which represented water quality 

i.e., less than -2, greater than or equal to -2 and less than -1, greater than or equal to -1 

and less than 0, greater than or equal to 0 less than 1, greater than or equal to 1 and less 

than 2 and finally greater than or equal to 2. These bands split the sample sites into 6 

bands of water quality. Within these bands the percentage frequency of each 

macroinvertebrate taxa was calculated and ranked from those which were present most 

in the lowest band to those which were present least in the lowest band. 

For the purposes of a citizen science index three families of easily identifiable and 

common macroinvertebrates with narrow pollution tolerances were grouped as follows. 

All snails (Gastropoda) were grouped as they all showed a strong negative correlation 

with water quality according to the PCA analysis, and they are particularly easy for non-

experts to identify. All stoneflies (Plecoptera) were grouped as they all showed a strong 

positive relationship with water quality and again were easily identified by their two 

tails and crawling movement. Finally, all leeches (Hirudinea) were grouped as they had 

a strong negative relationship with water quality and were easily identified by their 

anchoring movement and suckers on either end of their bodies. Additionally, species 

that were easily confused with other species were discounted as this could lead to 

misidentification by volunteers. For example, Sphaeriidae showed a strong negative 
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correlation with water and Ancylidae showed a strong positive correlation with water 

quality, but both of these are hard to discern and identify in the field. 

The most indicative and suitable macroinvertebrates were selected as the ones which 

had the strongest relationship with water quality/the F1 axis whilst still being easily 

identified by non- experts. These indicative taxa were compared to each other in a bar 

chart showing percentage frequency of each taxon in each band.  

2.2 Macroinvertebrate analysis using Q-values  
 

The Q-value that was provided in the data set of 1,277 sample sites (Feeley et al., 2020) 

was used as another reference standard for water quality. In a similar way to the PCA 

analysis, the sample sites were ranked and split into bands accordingly. Although Q-

values range from Q1- Q5 it was found that very few sample sites had a Q1 or Q2 so 

having separate bands for very few sites would have led to an uneven distribution of 

sample sites across the analysis. To account for this, rivers with a Q-value of less than 

three (<Q3) were grouped together. The other bands were Q3, Q3-4, Q4, Q4-5 and Q5. 

The same taxa grouping, and discounting was applied as above and from the data of the 

percentage occurrence of macroinvertebrates within each band was made and ranked. 

The most indicative taxa were selected. A 100% stacked graph was developed to 

illustrate the likelihood of finding the each of these taxa in each band of Q-values.  

Using these two exploratory statistical methods, six indicator macroinvertebrate groups 

were selected for use in developing a protocol for a citizen science stream index. A 

standard protocol and methodology for sampling rivers was developed and adjusted to 

suit a citizen science index in accordance with the literature review above and the study 

of contemporary biotic indices. The name decided as appropriate for the index was The 

Citizen Science Stream Index (CSSI).  
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2.3 Results 

 

2.3.1 Principal component analysis and ranking of data 
 

Figure 2. shows the correlation circle of a PCA of physical and chemical data collected 

from 1,277 river sample sites (Feeley et al., 2020). The F1 and F2 axis are shown along 

with the river variables and their correlation to the axes.  Acute angles between variables 

depict closely linked variables, whereas right angles between variables depict unrelated 

variables. Vector length reflects representativeness in the selected plan.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Correlation circle of variables in the PCA of the physical and chemical analysis of 1,222 river 

sample sites analysed by Feeley et al. 2012 plotted on the F1 and F2 axis (Feeley et al., 2020).  
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The F1 axis of this PCA was used as a standard for water quality as it had the largest 

eigenvalue and therefore represented the most attributes on one axis. Each sample site 

in the data set can be represented on this graph according to the PCA results. Using the 

position of each sample site on the F1 axis, the river sample sites were ranked from 

lowest to highest. 6 arbitrary boundaries were then used to split the sample sites into 6 

bands. The macroinvertebrates were ranked according to their frequency of occurrence 

in the sample sites within each of the 6 bands of water quality. It was determined that 

values on the F1 axis were inversely related to water quality using existing data. This 

means the macroinvertebrates with high frequencies in the PCA band ‘<-2’ and low 

frequencies in the ‘>2’ are intolerant of polluted water and so indicate good water 

quality and vice versa. For example, Asellus aquaticus which is a documented indicator 

of poor water quality (Toner et al., 2005) should have a high frequency in the ‘>2’ and 

low frequency in the ‘<-2’ band. Macroinvertebrates with consistent relationships 

between the two extreme bands of PCA (‘<-2, and ‘>2) are considered indicative of 

water quality. The 6 taxa that were most indicative according to the PCA data were 

selected and shown in Table 1. 

Table 1. Table of frequency of 6 indicator macroinvertebrate taxa in 6 PCA bands of water quality (Feeley 

et al., 2020). 

Frequencies per PCA band <-2 >-2 <-1 >-1 <0 >0 <1 >1 <2 >2 
       

Rhyacophilidae (Green caddisfly) 74.12 63.89 71.37 58.37 49.41 41.35 

Heptageniidae (Flattened 

Mayflies) 

72.35 83.33 82.57 74.29 62.06 40.60 

Plecoptera (Stoneflies) 88.24 76.11 69.71 59.18 39.13 22.56 

Asellus (Waterlouse) 8.24 17.22 37.34 48.57 56.92 80.45 

Hirudinea (Leeches) 31.18 41.11 34.44 39.59 39.13 61.65 

Gastropods (Snails) 27.06 48.33 55.60 62.04 70.75 62.41 
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This information was then graphed in Figure 3A. All other macroinvertebrates in the 

data set were analysed in the same way for their correlation to water quality. Some 

showed a relationship with water quality but were either too common (Baetidae, 

Gammaridae), so presence/absence would not provide meaningful data, or too 

uncommon (Odonticeridae and Polycentropodidae), so their presence or absence would 

not provide data often enough to provide an outcome. These examples are shown in 

Figure 3B along with other macroinvertebrates such as Hydropsychidae and 

Ephermerellidae that are commonly used in freshwater biomonitoring initiatives. None 

of these have a significant enough correlation to water quality to be useful in a presence 

or absence type index like the CSSI. 

Figure 3A. Bar chart of frequency of 6 indicator macroinvertebrates over 6 PCA bands of water quality 

derived using Feeley et al. 2012 data set. 
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Figure 3B. Bar chart of frequency of 6 other macroinvertebrates over 6 bands of PCA water quality 

(Feeley et al., 2020). 
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graph (Figure 4). 

0

10

20

30

40

50

60

70

80

90

100

Baetidae Gammaridae Odontoceridae Polycentropodidae Hydropsychidae Ephermerellidae

F
re

q
u

en
cy

 %

<-2 >-2  <-1 >-1 <0 >0 <1 >1 <2 >2



40 

 

  

Figure 4. 100% stacked column graph of frequency of 6 indicator macroinvertebrates in 6 Q-Value bands 

(Feeley et al., 2020). 
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Figure 5A. Bar chart showing the frequency (%) that three water quality bands of the CSSI appears in 

three water quality bands of Q-values. The equivalent CSSI score was banded so that -3 and -2 were poor, 

-1, 0 and +1 were moderate and +2 and +3 were good (variation 1) (Feeley et al., 2020). 

 

Figure 5B. Bar chart showing the frequency (%) that three water quality bands of the CSSI appears in 

three water quality bands of Q-values. The equivalent CSSI scores were banded so that -3, -2 and -1 were 
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classified as poor water quality, 0 was classified as moderate water quality and +1, +2 and +3 were 

classified as good water quality (variation 2) (Feeley et al., 2020). 

 

Figure 5C. Bar chart showing the frequency (%) that three water quality bands of the CSSI appears in 

three water quality bands of Q-values. The equivalent CSSI scores were banded so that -3 was classified 

as poor water quality, -2, -1, 0, +1 and +2 were moderate water quality and +3 was classified as good 

water quality (variation 3) (Feeley et al., 2020). 

In variation 1 (Figure 5A) the score was banded so that -3 and -2 were poor -1, 0 and 

+1 were moderate and +2 and +3 were good. Using these boundaries, the Q-value bands 
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incorrectly classified in the moderate Q-value bands. There is also a high percentage of 

moderates in both good and poor water quality bands. Although neither are ideal, it is 

preferable that moderate water quality is over expressed rather than good or poor water 

quality, as over reporting a pollution area could lead to false claims being made against 

landowners, undermining the validity of the CSSI.  
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To test for the most suitable boundaries two more variations were assessed with 

narrower and broader boundaries for poor and good water quality. In variation 2 (Figure 

5B) the moderate boundary became narrower, although this resulted in a higher 

frequency of CSSI sample sites agreeing with good and poor water quality in the 

appropriate Q-value bands, there was an increased expression of poor CSSI sample sites 

incorrectly classified in the moderate Q-value band (43%) and good CSSI sample sites 

incorrectly classified in the moderate Q-value bands (34%).  

The opposite was true when the moderate boundary was broadened and the other two 

narrowed as in variation 3 (Figure 5C).  

 

 

 

 

 

 

 

 

 

 

 

 



44 

 

2.4 CSSI protocol  
 

Two completely different methods of analysis to classify indicative macroinvertebrates 

were selected to be used in the CSSI. In the field, the CSSI protocol consists of gathering 

three individual kick net samples. A standard D-frame net 250mm wide on the flat side 

of the D, with a mesh size of 500µm was used, as described by Feeley et al. in the EPA 

water quality reports (Feeley et al., 2020). Three thirty second kick samples are taken. 

The use of three short kick samples was chosen for a number of reasons. As there are 

only six macroinvertebrates the minimum and maximum scores per sample are -3 and 

+3. This range of results is too small for statistical analysis so a larger range must be 

achieved by taking multiple samples. The standard professional sample takes one 120 

second kick sample (Toner et al., 2021, Feeley et al. 2020). It was felt that the least 

amount of time spent by the citizen scientist taking the kick sample and analysing the 

tray of invertebrates would be preferable to increase engagement and accuracy. Three 

thirty second kick samples adding to 90 seconds in total was decided as acceptable for 

a coarser citizen science index. Lastly, three samples investigated separately should 

prevent false zero abundances i.e., missing species that are there in small abundances 

(Krabbenhoft and Kashian, 2020). In order to validate the efficacy of this method of 

sampling the author used the standard professional method in the field study for 

comparison of the volunteers CSSI scores that used the protocol. 

The rest of the protocol is derived from the methods generally used in the literature 

(Toner et al., 2021, Feeley et al., 2020). Briefly, the net is held in a fast-flowing gravel 

bedded or rocky area of the stream by the sampler before they disturb (kick) the rocks 

and debris in the area upstream of the net. This is done for five to ten seconds before 

stepping upstream and repeating these actions for a total of thirty seconds. The contents 
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of the net are then emptied into a white tray containing around 1cm of water. If the 

sample contains too much heavy debris, the sample should be elutriated. Elutriation 

involves swirling the contents of the tray before pouring the water carefully into the net. 

This pours all the neutrally buoyant material in the sample (macroinvertebrates, other 

biotic fauna and leaves) into the net, leaving just the stones behind in the tray. The tray 

is then filled with water again and the process is repeated as many times as necessary 

(usually six to eight times) to leave only stones in the sample. The stones are then poured 

out before the tray is refilled with water and the contents of the net added as per the 

video shown in appendix 1 and leaves are removed by hand if necessary. 

The CSSI protocol looks for the presence or absence of six indicator invertebrates. 

These six invertebrates were grouped into two groups, tolerant and intolerant species. 

As part of the protocol these two groups were simply labelled ‘The Good Guys’ and 

‘The Bad Guys’. Although this gives the impression that certain species are inherently 

'good' or 'bad', the reality is that all species have a valuable role to play in any ecosystem. 

What is 'good' or 'bad' is the impact (or lack of impact) that humans have on the 

environment which creates an imbalance in how these organisms interact and, therefore, 

their dominance and occurrence in any given situation. However, in order for the index 

to be universally user friendly for non-experts of all levels of education, the over-

simplified terms ‘good guys’ and ‘bad guys’ are used to maximise engagement and 

understanding (Parsons et al., 2011). The three ‘Good Guys’ which are associated with 

good water quality are: Heptageniidae (Flattened Mayfly), Plecoptera (Stonefly) and 

Rhyacophilidae (Green Caddisfly) and the three ‘Bad Guys’ which indicate bad water 

quality are: Hirudinea (Leeches), Gastropoda (Snails) and Asellus (Waterlouse). The 

citizen science volunteers are instructed on how to identify these 6 taxa by their common 
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name rather than their Latin scientific name. This training is ideally carried out in the 

field by an expert tutor and supported by an online video tutorial and leaflet. 

A single kick sample score is calculated by adding 1 to the sample score if any Stonefly, 

Flattened Mayfly or Green Caddisfly (Good Guy(s)) is/are present and subtracting 1 

from the sample score if any Snail, Leech or Waterlouse (Bad Guy(s)) is/are present.  

This produced a sample score with a maximum of 3 and minimum of -3 for each 

individual kick sample. Each of the three kick sample scores are added to give a total 

CSSI score between -9 and +9. This score indicates the water quality at that site. The 

boundaries for the water quality boundaries were initially arbitrarily assigned.  In order 

to find the most appropriate boundary of water quality within the CSSI scores three 

variations of equivalent CSSI scores were considered, as discussed in the statistical 

analysis section. If the score is between -9 and -4 inclusive, it is an indication that the 

water quality is poor; if the score is between -3 and +3 inclusive, it is an indication that 

the water quality is moderate and if the score is between +4 and +9 inclusive, it is an 

indication that the water quality is good. This allows the CSSI to be colour coded into 

a traffic light water quality system that can be used as to identify river water quality 

easily. 

The macroinvertebrates are identified using the CSSI leaflet provided (Figure 6A and 

Figure 6B). The leaflet and key were developed to be used in the field by a citizen 

scientist. After use of a few iterations by the author, and trials of similar leaflets, this 

design was decided as appropriate as seen in Figure 6A and 6B The initial iterations 

were either not simple enough, not fully explanatory or not aesthetically pleasing. The 

final leaflet allowed a citizen scientist to use the CSSI in a straightforward step wise 

manner without the need for expert advice. Ideally this two-page leaflet should be 
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printed on one double sided laminated sheet that can be taken to the sample site in any 

weather and filled in using a whiteboard marker before being uploaded online.  

The front side (Figure 6A) of the leaflet is a form that the citizen scientist should fill out 

streamside and includes space for the recorder’s name, the stream name, the date and 

the GPS/location. Under those is a small explanation of the CSSI that reads “The Citizen 

Science Stream Index (CSSI) is based on the presence or absence of six key aquatic 

invertebrates. Three pollution-sensitive invertebrates (‘good guys’) are commonly 

found in clean streams and three pollution-tolerant invertebrates (‘bad guys’) are 

commonly found in polluted streams. Citizens use a pond net to take three 30-second 

kick-samples (the three samples should be a few metres apart) from a shallow (<20cm), 

gravelly, fast-flowing part of the stream. The invertebrates captured in each sample are 

examined in a white tray on the bankside. The six key invertebrates are easily spotted 

amongst the many other species in the tray, by their characteristic shape, colour or 

movement. The citizen will score each sample depending on which, if any, of the six key 

invertebrates occur in the tray. The three ‘good guys’ have a score of +1 each and the 

three ‘bad guys’ have a score of -1 each. The score for each kick-sample can range 

from +3 (all three good guys and no bad guys) to -3 (all three bad guys and no good 

guys). When the scores from all three samples are added together, the CSSI ranges from 

+9 to -9.”. 

A user-friendly guide for calculating each sample’s score and the total CSSI score is 

also included. Alongside this is a reminder to photograph each sample for review and 

an explanation of the traffic light system that helps explain the good, moderate or poor 

indication of water quality that the CSSI can show. Finally at the bottom of the leaflet 

is a box for any extraordinary observations that allows citizen scientists to record 

anything they think may be important. 
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On the back of the leaflet (Figure 6B) is a key of the six macroinvertebrates; these act 

as references if the sampler is unsure if the macroinvertebrate they are looking at is one 

of the six key macroinvertebrates. Along the bottom are some other common 

macroinvertebrates that are not scored in the CSSI. 
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Figure 6A. The CSSI leaflet side A. The form.  
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Figure 6B. The CSSI leaflet side B. The key. 
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3. Validation of the CSSI 
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3.1 Desktop validation  
 

Two lines of validation for the CSSI protocol were planned: a desktop validation and a 

field study. The first line of validation was a desktop analysis of a large data set 

published by Feeley et al. in 2020 and two unpublished data sets, the ‘Rylane’ data set 

and the ‘Implant’ data set, collected by Harrison et al. in UCC. Three different biotic 

index scores, the BMWP, ASPT and SSRS, were calculated using these data sets and 

then correlated to an equivalent CSSI score, an actual CSSI score as calculated from a 

data set. This analysis outlines the CSSI’s efficacy over varying sample sizes, 

longitudinal distances and seasons. The published data sets used one two-minute kick 

sample per site whereas the CSSI is meant to be calculated with three thirty second kick 

samples. This means that the maximum and minimum CSSI scores that can be 

calculated from the published data sets is 3 and -3 respectively rather than 9 and -9. 

Although this is not ideal, using a large data set is necessary in order to see how the 6 

indicator macroinvertebrates indicate water quality over a wide range of Irish rivers and 

streams so an ‘equivalent CSSI’ between -3 and 3 was used as a proxy for the CSSI 

protocol. In data sets with triplicate readings per sample site, the BMWP, ASPT and 

SSRS were calculated using the average of the triplicate samples. As the ASPT is a 

function of the BMWP that is shown to be more accurate, the ASPT was compared 

rather than the BMWP (Roche et al., 2010, Armitage et al., 1983). The BMWP, the 

ASPT and the SSRS were derived for each kick sample in each data set using the 

following. 

• The BMWP score was calculated using Uherek and Pinto Gouveia., 2014 and 

Paisley et al. 2014 as sources.  



53 

 

• The ASPT was calculated by taking the BMWP score and dividing it by the total 

number of scoring taxa present in the sample as per Uherek and Pinto Gouveia., 

2014 and Paisley et al. 2014. 

• The SSRS requires a relative abundance of each invertebrate between 1 and 5, 

the published data sets used a 5-category qualitative scoring system single; few, 

common, numerous and dominant. These were directly substituted for 1 to 5 in 

order to calculate the SSRS (Kelly-Quinn, 2015). 

The Q-values were provided with the data set when used. 

3.1.1 Feeley et al. 2020 analysis 
 

The published data set used was Feeley et al. 2020. This data set collected chemical, 

physical and macroinvertebrate data at 10,995 sample sites. The data set was collected 

by the EPA Ireland who are responsible for monitoring and assessment of 37 

hydrometric areas covering 46 river catchments and over 13,000 km of river channels 

nationwide (Feeley et al., 2020). In this data set macroinvertebrates were collected every 

year from June to September when the rivers were low enough to be waded. If the rivers 

were not low enough to be waded an extension pole and drag net were used but this was 

rare. The macroinvertebrates were collected via a semi-quantitative two-minute 

macroinvertebrate kick-sample from the riverbed, preferably from the faster flowing 

riffle habitats setting, similar to the 2012 data set (Feeley et al., 2020).  The data 

collected at each site of the data set included chemical and physical data, the Q-values 

and the relative abundance of up to 100 different macroinvertebrates.  
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3.2 Unpublished data sets analysis 
 

Further desktop analysis was carried out using two unpublished data sets. The Implant 

data set and the Rylane data set were collected by Harrison et al in UCC from a smaller 

number of Irish river systems. These data sets were in triplicate form and can be used 

to calculate a CSSI score between -9 and +9 as per the protocol.  

3.2.1 Implant data set analysis 
 

The Implant data set was collected on tributaries of the river Lee in County Cork over 

three seasons in 2012. Again, three 1-minute kick samples were taken to collect 

macroinvertebrates. The data set recorded 64 different macroinvertebrates in the benthic 

community at 33 sites in a number of rivers. The mean of the three samples was used 

to calculate the SSRS, BMWP and ASPT. This data set was used to validate the efficacy 

of the CSSI through different seasons (Harrison et al., unpublished 2012). 
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3.2.2 Rylane data set analysis 
 

The Rylane data set was collected in 2018 on a tributary of the river Dripsey in County 

Cork. A few metres above the first sampling point there was an obvious input of 

pollution labelled “input” in Figure 7. This data set used three 1-minute kick samples to 

record 40 different macroinvertebrates at 18 sample sites from 100m downstream of the 

pollution input to 3300m downstream of the initial sample site. The mean of these three 

samples was then used to calculate the SSRS, BMWP and ASPT. This data set was used 

to validate the efficacy of the CSSI across an expected series of water quality in a small 

stream from poor water quality to progressively better water quality along the course of 

the river with distance from the point source pollution. (Harrison et al., unpublished 

2018) 

Figure 7. 

Satellite image 

of the tributary 

of Dripsey River 

used to make the 

Rylane data set 

with sample 

points labelled 1 

to 18 and 

pollution input 

source labelled 

“input”. 

 

 

input 
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3.3 Field study   
 

The second line of validation compared 40 CSSI scores, collected by 20 citizen science 

volunteers, to data that were collected by the author from the same sites and will be 

referred to as expert data set hereafter. The participants were given six months to sample 

the given sites and the author took a further 3 months to retest their sample sites. In total 

all sites were sampled within, at most, 9 months of initial testing, but some were retested 

in much less time. Three different biotic index scores, the BMWP, ASPT and SSRS, 

were calculated using the expert data set and correlated to CSSI scores submitted by the 

volunteers. The aim of this validation was to assess the quality, accuracy and feasibility 

of the CSSI when used in the field, independent of experts by citizen scientists with a 

small amount of initial training.   

The 40 sampling sites were collected as a part of the NoreVision volunteer programme. 

The NoreVision initiative was set up to improve the water quality of the Nore river ( 

http://www.norevision.ie/ ). The sampling sites are shown on Figure 8. Initially, the 20 

volunteers returned 67 CSSI scores in total, but 27 of the sites sampled by the volunteers 

could not be used for comparison with the expert collected data, either because the sites 

were unreachable due to high water levels, or they had been repeatedly sampled by one 

or more volunteers. In the case of repeat samples averages of volunteer CSSI scores 

were taken.  

The citizen scientists had received 30 minutes tutoring by an expert in freshwater 

science on how and where to kick sample and how to elutriate the samples as per the 

CSSI protocol. Additionally, they watched a ten-minute tutorial video on the CSSI as 

described below (https://youtu.be/HsDZ0siO6Ds). They were then provided with the 

http://www.norevision.ie/
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CSSI leaflet as shown in Figure 6A and 6B, a white tray and a D framed net as per the 

protocol.  

The volunteers were given 50 sample sites between them. Initially, sites were selected 

based on their Q-values which indicated the water quality of the river 

(gis.epa.ie/EPAMaps/, Figure 8). The sites given to the volunteers for sampling were 

chosen to give an evenly distributed range of ecological conditions, from sites with little 

apparent human impact and best attainable ecological conditions, to sites where human 

activities were obviously causing changes in the streams and ecological conditions were 

likely to be impaired. Other criteria for sites were decided by visual observation using 

Google.com/maps followed by onsite visits where necessary. At all sites there had to be 

a mostly gravel or rocky substrate. This substrate type is necessary for sufficient 

macroinvertebrates to be collected. A description of ideal kick sampling conditions is 

included in the tutorial video and in the in-person tutorial provided to the participants. 

For safety purposes, the sites selected had to be shallow enough to be waded and for 

ease of access were usually near bridges. Each volunteer took the GPS location of the 

area that they sampled to allow the expert sampler to consistently sample the same area 

of the stream when reassessed. The sampling took place from September 2020 to April 

2021. 

The ASPT, SSRS and an equivalent expert CSSI score were calculated and compared 

to the CSSI scores collected from volunteers in the NoreVision initiative. The 

equivalent expert CSSI was used to validate the feasibility of the CSSI in the field by 

citizen scientists independent of experts with a small amount of initial training.  
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Figure 8.  Q-Values from 

gis.epa.ie/EPAMaps/ used as a guide for 

selection of rivers for NoreVision volunteers. 

Where blue = Q5, green =Q4, yellow =Q3-4, 

orange = Q3 

 

 

 

 

 

 

 

3.3.1 Expert protocol for sampling and data analysis. 
 

After all volunteer samples were uploaded, samples were taken by the author in the 

same GPS location within 9 months of the volunteer sampling. The aim was to evaluate 

volunteer CSSI results compared to an expert macroinvertebrate analysis. The expert 

sample consisted of one two-minute kick sample similar to the standard expert sampling 

technique used in Feeley et al. 2020. In brief, the sampler held a net, of the same 

measurements as the volunteers, in a gravel bedded or rocky area of the stream. The net 

was placed on the bed of the river in a fast-flowing area of the stream by the sampler 

before they disturbed (kicked) the rocks and debris in the area upstream of the net. This 

is done for five to ten seconds before stepping upstream and repeating these action for 

a total two minutes. If the stretch of the river as defined by the GPS location was not 
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long enough for one continuous kick sample, multiple samples were taken nearby in 

other available ripples totalling two minutes of sampling. The contents of the net were 

then emptied into a white tray containing around 1cm of water and elutriated if 

necessary. After elutriation, the sample was preserved in a plastic bag containing 95% 

ethanol for laboratory analysis. 

In order to make the process more efficient subsampling was used. Subsampling reduces 

the effort required for the sorting and identification aspects of macroinvertebrate 

surveys and provides a more accurate estimate of time expenditure (Barbour and 

Gerritsen, 1996). The preserved samples were unbagged into a sieve and washed under 

water. Debris was removed, if possible, by hand.  The sample was then placed in a 15cm 

x 30cm gridded white tray containing roughly 1-2cm water. The tray was swirled to 

evenly distribute the macroinvertebrates present. A circular sub sampling device 10cm 

in diameter was randomly placed in the tray. The tray was 5.73 times the size of 

subsample. This is a modification on the subsampling used by Caton in 1991 (Caton, 

1991). Inside this 10cm diameter all macroinvertebrates were sorted and counted. This 

provided a representative sample of the macroinvertebrates in the kick sample. When 

multiplied by 5.73 we could estimate the relative abundance for each macroinvertebrate 

in the total. Furthermore, the remainder of the tray was inspected for any outlying 

species that were not found in the subsample. These were given the lowest relative 

abundance score of 1 as they were outliers. The SSRS and the ASPT were calculated 

from the expert sample for comparison with volunteer CSSI scores. A map was 

developed using QGIS software to compare the NoreVision volunteer CSSI scores to 

the existing Q-values maps that were used to select sample sites (Figure 18A and 18B). 
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3.3.2 Tutorial video 
 

The NoreVision volunteers were asked to view a ten-minute video tutorial on how to 

carry out the CSSI (https://youtu.be/HsDZ0siO6Ds). This tutorial was developed by the 

author and presented by Dr Simon Harrison for this project on how to perform a kick 

sample, elutriate a sample, identify the six indicator taxa and fill out the CSSI leaflet 

(Figure 6A and 6B). This resource was also available for continual to the volunteers for 

review on YouTube.com. Screenshots of the video at different sections are included in 

Appendix 1.   

3.3.3 CSSI online survey 
 

As part of the NoreVision initiative the volunteers used a link or QR code to take them 

to an online survey developed in conjunction with a software company (Veri.ie) to 

upload their findings online. This allowed the volunteers to upload their collected data 

that were recorded in the field using the leaflet (Figure 6A and 6B) online where it was 

accessible to the administrator for validation. The survey included text boxes for the 

name of the volunteer, GPS location, stream name and date. The survey also had tick 

box questions about the macroinvertebrates found in their sample. For example, “Was 

there a flattened mayfly in sample 1? Yes/No”. These types of questions are repeated 

for all 6 taxa and all three samples and end with a text box asking, “What is the sum 

total CSSI score for all three samples?”. Once filled in and submitted these data were 

available to the administrator as an excel sheet (Excel version, 2018).  Appendix 2 

shows some screenshots of the form used by the volunteers. The form is available at 

https://evaluation.veri.ie/submit/761. Screenshots of the online survey can be seen in 

Appendix 2. 

https://youtu.be/HsDZ0siO6Ds
https://evaluation.veri.ie/submit/761
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3.4 Desktop statistical validation 
 

3.4.1 CSSI boundary variations 
 

Feeley et al. 2020 data set was statistically analysed to test the correlation of the CSSI 

to existing indices. The CSSI analyses water quality in three bands as per a traffic light 

system (red-poor, orange-moderate, green-good). The Q-values was put into three 

similar bands in order to compare its results to that of the CSSI. These bands were the 

same as the bands used by Trodd and Boyle, 2018 (Trodd and Boyle, 2018). 

In order to find the most appropriate boundary for the bands of water quality within the 

CSSI scores, three variations of equivalent CSSI scores were considered. Initially the 

equivalent CSSI scores were banded so that scores of -3 and -2 were classified as poor 

water quality, -1, 0 and +1 were classified as moderate water quality and +2 and +3 

were classified as good water quality.  The equivalent CSSI scores were then banded so 

that -3, -2 and -1 were classified as poor water quality, 0 was classified as moderate 

water quality and +1, +2 and +3 were classified as good water quality. Finally, a third 

comparison as made where the equivalent CSSI scores were banded so that -3 was 

classified as poor water quality, -2, -1, 0, +1 and +2 were classified as moderate water 

quality and +3 was classified as good water quality. These three graphs were compared 

to find which boundary allocation found the optimal amount of correct water quality 

bands without over classifying any particular band of water quality. These variations 

were compared to the Q-value bands in a bar chart that showed the percentage frequency 

of each band of CSSI scores in the three bands of Q-values. 
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3.4.2 Existing metrics compared to Q-values  
 

Similarly, the SSRS and ASPT were compared with the Q-values reference standard. 

Boundaries for the ASPT  were the same that was used in Medupin, 2017 and Everall 

et al. 2017 and boundaries used for the SSRS was the same as is set out in the Kelly 

Quinn, 2015. These correlations were used to determine the CSSI’s accuracy and 

congruence with existing indices to outline its potential use for the nationwide water 

quality biomonitoring.  

3.4.3 Rylane data set analysis 
 

The ASPT, SSRS and CSSI were calculated and plotted in a line graph of scores over 

longitudinal distance.  

3.4.4 Implant data set analysis 
  

In the Implant data set, the three indices were calculated using the macroinvertebrate 

data. The average score for each index over each season was calculated and compared 

to see how the scores changed over the seasons and if the scores were consistent 

between the indices. Averaging the scores allowed for simpler manipulation of a large 

number of data sets. Rounded up averages (standard deviation (SD)) for each index and 

the water quality (as per the appropriate traffic light bands as set out above) was 

calculated and shown.   

3.4.5 Field study 
 

The ASPT and SSRS were put into three bands per the traffic light system (red-poor, 

orange-moderate, green-good), as defined in Everall et al. 2017 and Kelly Quinn, 2017, 
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and compared to the volunteers CSSI scores (VCS) which were banded as per the 

appropriate traffic light bands as set out above. This shows the CSSI’s usefulness when 

taken by a volunteer independent of an expert compared to the existing indices. 

Similarly, how often volunteers correctly identified the six indicator species was 

validated by comparing the volunteer CSSI to an equivalent expert CSSI sample. The 

equivalent expert CSSI score was banded so that -3 and -2 were poor -1, 0 and +1 were 

moderate and +2 and +3 were good. A frequency table was constructed to show how 

often the three bands of equivalent expert CSSI appear in the three bands of volunteer 

CSSI. This allowed the percentage frequency of agreement between the equivalent 

expert CSSI and volunteer CSSI to be calculated. 

Finally, a map of the Nore River catchment with the volunteers CSSI readings was 

developed using QGIS 3.16 software, illustrating the data points submitted by the 

NoreVision volunteers as red for poor water quality, orange for moderate water quality 

and green for good water quality. This was compared to the map available at 

https://gis.epa.ie/EPAMaps/ that was initially used to help select rivers for volunteers 

to sample. 

 

 

 

 

 

 

 

https://gis.epa.ie/EPAMaps/
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3.5 Results 
 

3.5.1 Feeley et al. 2020 analysis 
 

To validate the use of the selected six macroinvertebrates a large data set of 10,995 

samples sites collected by the EPA Ireland was analysed (Feeley et al., 2020). The data 

set was collected from rivers and streams around Ireland and had physical, chemical 

and Q-value analysis data as well as macroinvertebrate data. The Q-values provided in 

the data set were used as reference standards for water quality. From these the sample 

sites were ranked and put into bands as above. The frequency of the six indicator 

macroinvertebrates identified in sample sites withing the six bands of Q values are 

shown in Table 2. This table is illustrated in Figure 9A. 

Table 2. Table of frequency of 6 indicator macroinvertebrate taxa over 6 Q-value bands of water quality 

(Feeley et al., 2020). 

Frequencies per Q value Band Q<3 Q3 Q3-4 Q4 Q4-5 Q5 
       

Rhyacophilidae (Green caddisfly) 13.94 37.93 58.31 67.48 75.11 71.77 

Heptageniidae (Flattened Mayfly) 3.64 7.83 67.34 92.08 98.04 97.58 

Plecoptera (Stoneflies) 11.52 20.54 51.38 75.17 95.86 98.39 

Asellus aquaticus (Waterlouse) 58.18 51.77 46.35 26.63 12.08 8.06 

Hirudinea (leeches) 53.64 45.02 36.62 28.93 18.79 16.94 

Gastropod (Snails) 53.64 61.34 66.76 59.92 37.98 24.19 
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Figure 9A. Bar charts of frequency of 6 indicator macroinvertebrate in 6 Q-value bands of water quality 

(Feeley et al., 2020). 

The 6 selected indicator macroinvertebrates were shown to be more consistently 

indicative to Q-value water quality bands than the original two analyses showed. This 

further validates their selection for the CSSI. All other macroinvertebrates in the data 

set were analysed for their correlation to Q-values as shown in Figure 9B.  
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Figure 9B. Bar charts of frequency of 6 other macroinvertebrate in 6 Q-value bands of water quality 

(Feeley et al., 2020). 

Figure 9B shows that some of these invertebrates showed a stronger relationship to the 

Q-values than to the water chemistry analysed in the PCA. However, similar issues still 

existed. Baetidae, Gammaridae were too common and so presence/absence would not 

provide meaningful data. Odonticeridae and Polycentropodidae were or too uncommon 

so their presence or absence would not provide data often enough to provide an 

outcome. Hydropsychidae and Ephermerellidae showed a strong relationship to water 

quality but not as strong as the six indicator taxa. None of these have a significant 

enough correlation to water quality to be used in the CSSI. 
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3.5.2 Existing metrics compared to Q-values 
 

A similar comparison was made for the SSRS and ASPT, also using the Q-values for a 

reference standard. Boundaries for the ASPT  were the same that was used in Medupin, 

2017 and boundaries used for the SSRS was the same as is set out in the “Guidance on 

Application and Use of the SSRS in Enforcement of Urban Waste Water Discharge 

Authorisations in Ireland, 2017” (Medupin, 2017, “Guidance on Application and Use 

of the SSRS in Enforcement of Urban Waste Water Discharge Authorisations in Ireland, 

2017” ). The equivalent CSSI was considered poor water quality for -3 and -2, moderate 

for -1,0 and 1 and good for 2 and 3. Using Feeley et al. 2020 Figures 10 and 11 show 

three bands of the SSRS and ASPT respectively compared with the three bands of Q-

values . 

 

Figure 10. Bar chart showing the frequency (%) that each band of the SSRS appears in three simple bands 

of Q-value water quality (Feeley et al., 2020). 
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When compared to Q-values the SSRS identified poor water quality accurately, but 

over expressed poor rivers in the “indeterminate” and “probably not at risk” bands 

(Figure 10). Only 50% of good Q-values were classified as probably not at risk by the 

SSRS. 

 

Figure 11.Bar chart showing the frequency (%) that each band of the ASPT appears in three simple bands 

of Q-value water quality (Feeley et al., 2020). 

The ASPT comparison showed very similar results to the CSSI variation 1, but like 

variation 1, there was still poor ASPT sample sites incorrectly classified in the moderate 

Q-value band (22%) and good ASPT sample sites incorrectly classified in the moderate 

Q-value bands (23%) (Figure 11 and Figure 5A).  
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Figure 12. The frequency of the six possible CSSI scores in each band of Q values. (Feeley et al., 2020) 

It was found that for the extreme low Q-values i.e., the rivers with extremely poor water 

quality, the CSSI did not accurately represent the poor water quality (Figure 12). In the 

rivers with Q-values less than Q3, -2 was the most common score. In rivers with a Q1 

score the most common score was -1. 
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3.5.3 Implant data set analysis 
 

Table 3 shows the average score and standard deviation (SD) of the three indices, SSRS, 

CSSI and ASPT, calculated using the Implant data set that collected macroinvertebrate 

data over three seasons.  

Table 3. Table showing the average score (standard deviation) per season per index (Harrison et al., 

unpublished 2012). 

Average score per 

season (SD) 

Spring Summer Autumn 

SSRS 8.13 (1.08) 7.11 (1.03) 6.84 (1.69) 

CSSI 4 (3.06) 2 (2.94) 0 (2.75) 

ASPT 6.05 (0.44) 5.32 (0.57) 5.30 (0.61) 

As expected, the CSSI had a greater standard deviation due to a larger range of possible 

outputs, but deviation was relatively consistent throughout the seasons for all indices.  

Table 4 Shows the average score data converted to three water quality bands of each 

index using the traffic light system. 

Table 4. Table showing the average band per season per index (Harrison et al., unpublished 2012). 

Average band per 

season (traffic light 

colour) 

Spring Summer Autumn 

SSRS Good (green) Moderate (orange) Moderate (orange) 

CSSI Good (green) Moderate (orange) Moderate (orange) 

ASPT Good (green) Moderate (orange) Moderate (orange) 
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3.5.3 Rylane data set analysis 
 

Using the Rylane data set, Figure 13 compares the ASPT, SSRS and CSSI over a 

longitudinal distance.  

 

Figure 13. A line graph illustrating the changes in the scores attained from three metrics along the course 

of a river starting at the source (0m) and finishing at 3300m known as the Rylane data set. 

The CSSI initially produced a score of -3 (moderate/orange in the traffic light system). 

This does not correlate with the ASPT, SSRS or the expected poor water quality 

conditions. After the initial anomaly, all three biotic indices generally correlate with 

each other and expected water qualities.  
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3.5.4 Field study analysis 
 

Using the data collected by NoreVision volunteers in a field study and expertly collected 

Figure 14 compares the volunteer CSSI and expert ASPT and Figure 15 compares the 

volunteer CSSI and expert SSRS. 

Table 5. Percentage of agreement between expertly taken ASPT bands of pollution as defined in 

(Medupin, 2017) and the volunteer taken CSSI score as per protocol of the CSSI.  VCS stands for 

volunteer CSSI score. 

 
Poor ASPT  Moderate ASPT  Good ASPT  

Poor VCS 66.67 21.05 13.33 

Moderate VCS  33.33 63.16 40.00 

Good VCS  0.00 15.79 46.67 

 

 

Figure 14. The percentage frequency of each water quality band identified by volunteers using the CSSI 

compared to the bands of water quality set out by the ASPT (Medupin, 2017).  
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Figure 14 shows the VCS compared to the ASPT. The VCS compares favourably with 

the ASPT, correctly classifying 67% of poor streams 63% of moderate streams and 46% 

of good sample sites defined by the ASPT (Figure 14).  

Table 6. Percentage of correlation between expertly taken SSRS bands of pollution as defined in 

(McGarrigle, 2017) and the volunteer taken CSSI score as per protocol of the CSSI.   

 
Poor SSRS Moderate SSRS Good SSRS 

Poor VCS 41.67 0.00 0.00 

Moderate VCS  54.17 0.00 43.75 

Good VCS  4.17 0.00 56.25 

 

Figure 15. The percentage frequency of each water quality band identified by volunteers using the CSSI 

compared to the bands of water quality set out by the SSRS (McGarrigle, 2014)  

Figure 15 shows the VCS compared to the SSRS. The VCS agrees with the 

classification of the SSRS in 42% of the at risk (poor) and 56% of the probably not at 

risk (good) SSRS bands. However, there is a significant difference in the classification 

of moderate VCS to indeterminate SSRS, with all the moderate VCS being classified as 
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either at risk or probably not at risk and none being classified as indeterminate as 

defined by the SSRS. 

These two graphs show the agreement of the volunteers CSSI scores compared to 

existing indices. By comparing the volunteer CSSI to an equivalent CSSI sample taken 

by an expert we can see get an indication of how often volunteers correct found the 

correct indicator species. Using the field study Figure 16 compares the equivalent expert 

CSSI to the volunteer CSSI. 

Table 7. Percentage of correlation between bands of water quality on an equivalent CSSI taken expertly 

and the bands of water quality of the CSSI taken by a volunteer as per protocol of the CSSI.   

 
Poor Professional 
CSSI  

Moderate Professional 
CSSI  

Good Professional 
CSSI  

Poor VCS 80.00 9.09 0.00 

Moderate VCS  20.00 72.73 25.00 

Good VCS  0.00 18.18 75.00 

 

Figure 16. The percentage frequency of each water quality band identified by volunteers using the CSSI 

compared to the bands of water quality found by an expert using an equivalent CSSI  
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Table 8 shows how often the three bands of equivalent expert CSSI appear in the three 

bands of volunteer CSSI.  

Table 8. Correlation values for the expert CSSI scores and volunteer CSSI scores. From this table it was 

found that 75% of the equivalent expert CSSI and volunteer CSSI samples agreed.  

Figure 16 shows the VCS compared to the equivalent expert CSSI. This test validates 

how often volunteers correctly identified the six indicator species. There is excellent 

agreement between the VCS and equivalent expert CSSI, with 75% total agreement of 

raw data as shown in Table 8. This validates the feasibility of the CSSI in the field by 

citizen scientists independent of experts with a small amount of initial training. 

 

 

 

 

 

 

 

 

 

 

 

 
Expert CSSI Poor Expert CSSI Moderate Expert CSSI Good 

Volunteer CSSI Poor 8 2 0 

Volunteer CSSI 

Moderate 

2 16 2 

Volunteer CSSI Good 0 4 6 
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Figure 17A (left). A map of the Nore River catchment developed using QGIS 3.16, illustrating the data 

points submitted by the NoreVision volunteers. Green dots represent sampling points rivers with a CSSI 

score greater than 4, the orange dots represent sampling points with CSSI scores between -4 and 4 and 

the red dots represent sampling points with CSSI scores less than -4. Figure 17B (right).  Q-Values from 

gis.epa.ie/EPAMaps/ used as a guide for selection of rivers for NoreVision volunteers. Where blue = Q5, 

green =Q4, yellow =Q3-4, orange = Q3 

Figures 17A and 17B show a visual display of traffic light and colour coded water 

quality bands in the same area of the river Nore catchment based on the CSSI and Q-

value respectively. 

Area 1  

Area 2  

Area 3  

N 
 



77 

 

In Area 1, in the Southeast of catchment, there is a tributary of the Nore River (R. 

Arrigle) with multiple good water quality sample sites along the length of the river. This 

is shown by the Q-values on the right and confirmed by the VCS samples on the left.  

In Area 2, Southwest of Kilkenny City near the town of Callan, there is an area of small 

tributaries with multiple poor water quality sample sites, as shown by the Q-values on 

the left and confirmed by the VCS on the right. This is an area of high intensity dairy 

farming which may be a factor in the river water quality. This is a common problem in 

Irish rivers (Hooda et al., 2000). 

Area 3, North of Kilkenny, there is a tributary of the Nore River (R. Dinin) with multiple 

good water quality sample sites along the length of the river. This is shown by the Q-

values on the right and confirmed by the VCS on the left. 
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4. Discussion 
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4.2 Establishment of the CSSI 

 
Two independent methods were used in this study to identify macroinvertebrates that 

fit the criteria as ideal indicators (Füreder and Reynolds, 2003, Hilty and Merenlender, 

2000, Rosenberg and Resh, 1993). The first method used was a PCA. In PCAs multiple 

variables are expressed mathematically as vectors. Numerous straight-line equations 

(principal components) can be calculated from the vectors such that projections of the 

original data on them have maximum variance. This allows the reduction of the 

dimensionality of large data sets, increasing interpretability but at the same time 

minimizing information loss.  (Jolliffe and Cadima, 2016, Krzanowski, 2000, Scullion, 

1989). 

The second method of analysis used the Q-values as a reference standard for water 

quality.  The Q-values have been used by the Irish Environmental Protection Agency 

(EPA) to assess river water quality since 1971 (Flanagan and Toner, 1972, Clabby et 

al., 1992, McGarrigle et al., 2002). The Q-value system has been shown to be a robust 

and sensitive measure of river water quality and has been linked with both chemical 

status and land-use pressures in catchments (Kelly et al., 2007). The Q-value is 

calculated primarily on the basis of macroinvertebrate communities in riffle areas, but 

also considers aquatic macrophytes, phytobenthos and hydromorphology (Flanagan and 

Toner, 1972; Clabby et al., 1992; McGarrigle et al., 2002). 

These two independent methods were consistent in identifying six macroinvertebrates 

that could define water quality and be suitable for indicator taxa for citizen science. This 

compares favourably with the Riverfly Partnership and the OPAL water surveys 

methodologies which use 8 and 13 freshwater invertebrate groups to measure water 

quality respectively (Moolna. et al., 2020, Rae et al., 2019). 



80 

 

Of the six macroinvertebrates that were selected in this thesis, Asellus aquaticus and 

Plecoptera had the best relationship with poor water quality and good water quality 

respectively. Asellus aquaticus occurred in only 8.24% of the best water quality bands 

(<-2) and in 80.45% of the worst water quality bands (>2). Conversely, Plecoptera 

occurred in 88.24% of the best water quality bands and 22.56% of the worst water 

quality bands. Hirudinea and Gastropods, the other bad water quality indicators 

macroinvertebrates, although less indicative, were frequently present in poor streams 

(61.65% and 62.41% respectively) and infrequently present in good streams (31.18% 

and 27.06% respectively). These taxa were also selected for their characteristic shape 

and movement making them amongst the easiest macroinvertebrates for non- experts to 

identify. The remaining two indicator macroinvertebrates Heptageniidae and 

Rhyacophilidae were less indicative of good water quality than Plecoptera but were still 

present in 72.35% and 74.12% of the best water quality bands respectively and 40.60% 

and 41.35% of the poor water quality bands respectively. But they were included since 

Heptageniidae are easily identified with their flattened heads, three tails and lurching 

movement and Rhyacophilidae are easily identified with their green bodies, spikey 

abdomen gills and sigmoidal movement  

In rivers with less than Q3 there is a 90% chance of finding the three bad water quality 

indicators and in the rivers with a Q5 there is an 85% chance of finding the three good 

water quality indicators.  This is likely due to the taxa on the left being intolerant of 

pollution and the taxa on the right being tolerant of and or thriving in polluted rivers.  

A protocol was developed that allowed identification and measurement of these 

invertebrates on the riverside by citizen scientists using a traffic light reporting system. 

The name of this index was chosen to be the Citizen Science Stream Index (CSSI). 
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4.2.1 CSSI boundary variations 
 

The outcome of the data depends on the relative grading of the score within the traffic 

light system. In this thesis three variations of boundary limits were used to find the 

optimal boundary for the CSSI traffic light protocol. Simple bar charts were chosen as 

a form of validation as they clearly showed the information that the CSSI is designed to 

investigate i.e., is the water quality poor, moderate or good?  

It was decided that somewhere between variation 1 and variation 3 would be ideal as 

this would minimise the frequency of poor and good CSSI water quality bands 

presenting in the moderate Q-value bands whilst still accurately reporting good and bad 

rivers sufficiently. As variation 1 would scale up in a triplicate CSSI score to a boundary 

of -6 and +6, and variation 3 would scale up to -3 and +3 it was decided that a triplicate 

score of -4 and +4 should be the boundaries of the traffic light system for a full reading 

of the CSSI protocol. 

4.3 Validation of the CSSI 

 
It is well recognised in the literature that the indices used to evaluate river water quality 

are very different and vary from country to country (Birk and Herring, 2006, Knoben et 

al., 1995, Tampo et al., 2021). Thus, compared to other scientific arenas there is a lack 

of gold standard or benchmark test that is recognised internationally to compare novel 

approaches to water quality testing (Nijboer et al., 2004). In the case of novel biotic 

indices, most are measured against the most acceptable local method when national 

studies are performed (Ghaini et al., 2018)  

In 2003 the EPA and relevant local authorities were appointed under European 

community regulations as the competent authorities for the implementation of the EU 
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WFD (Barr et al., 2004). As such, the EPA’s Q-Value system has local recognition as a 

measure with sufficient credibility to act as a good reference standard which was used 

in this study to evaluate the accuracy and validity of the CSSI. 

Variation in the performance of metrics has been highlighted by other studies conducted 

within Europe (Dahl et al., 2004, Lorenz et al., 2004). However, the biotic metrics are 

routinely applied in summer with the view to determine the ecological quality when 

organic impacts may be highest. 

4.3.1 Desktop validation 
 

4.3.1.1 Feeley et al. 2020 analysis 
 

When the protocol was checked using a much larger data set (Feeley et al., 2020) the 

distribution of the six invertebrate groups were found to be as expected. The first graph 

(Figure 9A) validated the findings in the larger Feeley et al. 2020 data set via a Q-value 

analysis. This analysis showed that the same six macroinvertebrates were capable of 

defining quality to an even greater extent as the relationship between the taxa and the 

water quality was more definite. Some variation in frequency was seen in the less 

indicative macroinvertebrates in the moderate water quality bands, this was similar to 

the variation found when the six macroinvertebrates were established as useful 

indicators using the Feeley et al 2012 data set. Overall, the tolerance of these 

macroinvertebrates agrees with the findings of other researchers (Uherek and Pinto 

Gouveia, 2014, Paisley et al., 2014). As such, this variation was considered acceptable. 

 

Gastropods which are one of the poor water quality indicators had a particularly weak 

relationship with water quality in this analysis where it was shown that they tend to live 
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in moderate (Q3-4 66% frequency) as well poor water quality (<Q3- 53.64%). Although 

this is not ideal, Gastropods are very easily identifiable to any level of citizen scientist, 

and they are still rarely found in rivers with good water quality.  

4.3.1.2 Existing metrics compared to Q-values  
 

The SSRS identified poor water quality accurately when compared to the reference 

standard Q-value band, but over expressed poor rivers in the “indeterminate” and 

“probably not at risk” bands. This could be detrimental as nearly 80% of moderate Q-

value sample sites are incorrectly classified as at risk and nearly 30% of rivers that are 

incorrectly classified as good Q-values will be reported as the opposite using the SSRS 

scoring system. 

The ASPT comparison showed very similar results to the CSSI variation 1, a variation 

that was rejected. There was a 22% of poor ASPT sample sites incorrectly classified in 

the moderate Q-value band and over 23% good ASPT sample sites incorrectly classified 

in the moderate Q-value bands.  

It was found that for the extreme low Q-values i.e., the rivers with extremely poor water 

quality, the CSSI did not accurately represent the poor water quality. In the rivers with 

Q-values less than Q3, -2 was the most common score. In rivers with a Q1 score the 

most common score was -1. This is likely due to the lack of poor indicator 

macroinvertebrates present in the sample. In other words, even the poor water quality 

indicators do not live in extremely poor streams. Furthermore, if the sampling in this 

data set was consistent and the CSSI protocol was carried out in triplicate a -2 would 

lead to a CSSI score of -6 over the three samples. Therefore, in Q-values less than Q3, 

the CSSI would still report a poor water quality band (red traffic light band) for the 

appropriate sample sites. Examination of the Feeley et al 2020 data set shows that sites 
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with water quality less than Q3 accounts for a small number of sites tested (338 of 

10,995 (3.07%)) and minimal number of sites tested with water quality of Q1(23 of 

10,995 (0.21%)). More work needs to be carried out on extremely poor water quality 

sites to clarify the relationships with macroinvertebrates. 

4.3.1.3 Implant data set analysis 
 

Many studies have been done reviewing the efficacy of biological monitoring indices 

over different seasons with varying results, but most studies have shown significant 

changes in water quality ratings between the spring and summer seasons. (Callanan et 

al., 2008, Outridge, 1988, Zhang et al., 2012). In a study of the effects of seasonal 

changes on the indices used in this thesis it was found that ASPT scores proved to be 

the most resilient between seasons, resulting in only 16% change between the spring 

and summer season. The various other metrics applied resulted in notable change in 

status assigned. The SSRS protocol was also relatively resilient with a 28% change in 

category during summer relative to spring. The other metrics were more variable 

between season, namely BMWP (63%) and Q-value (98%) (Callanan et al., 2008). 

This data set was used to validate the CSSI’s relative consistency through three seasons. 

In this data set there was no Q-values or water chemistry to compare with and the 

sampling was taken in triplicate. This closely resembles the data that citizen scientists 

will be able to produce themselves using the CSSI protocol. In this thesis the average 

scores and standard deviations of the SSRS, CSSI and ASPT were consistent with one 

another. It was expected that the CSSI’s standard deviation would be higher than the 

other scores as the CSSI score have a wider range of possible outputs. Furthermore, the 

water quality bands based on the traffic light scoring system were in 100% agreement. 

This validates the use of the CSSI through different seasons. 
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4.3.1.4 Rylane data set analysis 
 

This data set was selected as it can show how the CSSI reacts across a known set of 

water qualities i.e., initially polluted water and progressively less polluted samples. 

Using the macroinvertebrates that were collected the ASPT, SSRS and CSSI score were 

calculated. In this data set there was no Q-values or water chemistry to compare with 

and the sampling was taken in triplicate. This closely resembles the data that citizen 

scientists will be able to produce themselves using the CSSI protocol. Initially all three 

metrics showed low scores. The CSSI initially produced a score of -3 (moderate/orange 

in the traffic light system). This discrepancy could be explained by the lack of Asellus 

aquaticus in the entirety of the Rylane data set. Asellus aquaticus is one of the poor 

water quality indicator taxa in the CSSI. It has been shown that exposure of Asellus 

aquaticus to domestic and industrial effluents may cause sublethal biological effects 

and influence organism's ability to compete, grow, and reproduce (O’Neil, 2004). This 

could explain the lack of Asellus aquaticus in the river or this could simply not have a 

population of Asellus aquaticus present in this single river. 

Despite this, the overall scores of all three metrics along the course of the stream 

validated the CSSI since it matched the ability of the ASPT and SSRS to define water 

quality in a longitudinal study. 

4.4 Field study analysis 
 

In this data set there are two CSSI scores. One gained from carrying out an equivalent 

CSSI on the expert samples named “equivalent expert CSSI” and one uploaded by the 

volunteers themselves that was named “Volunteer CSSI” (VCS). The VCS compares 

favourably with the ASPT, correctly classifying 67% of poor streams 63% of moderate 

streams and 46% of good sample sites defined by the ASPT.  
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The VCS agrees with the classification of the SSRS in 42% of the at risk (poor) and 

56% of the probably not at risk (good) SSRS bands. However, there is a significant 

difference in the classification of moderate VCS to indeterminate SSRS, with all the 

moderate VCS being classified as either at risk or probably not at risk and none being 

classified as indeterminate as defined by the SSRS. This could be due to the small 

sample size of 40 sample sites, but it has already been indicated in Figure 12 that the 

SSRS often misclassifies moderates when compared to the reference standard Q-values. 

There is a lack of reviews of the SSRS in the literature making it hard to know if this is 

an anomaly with these results or is a common problem with the SSRS. As such, whereas 

the SSRS is a sensitive instrument that finds at risk waters easily the CSSI could be used 

as an economic, simple and rapid test in conjunction with the SSRS. 

The VCS was compared to the equivalent expert CSSI. This test validates how often 

volunteers correctly identified the six indicator species. There is excellent agreement 

between the VCS and equivalent expert CSSI, with 75% total agreement of raw data as 

shown in Table 8. This validates the feasibility of the CSSI in the field by citizen 

scientists independent of experts with a small amount of initial training.     

The NoreVision results were mapped to show a visual display of traffic light and colour 

coded water quality bands in the same area of the river Nore catchment based on the 

CSSI and Q-value respectively. 

In Area 1, in the Southeast of catchment, there is a tributary of the Nore River (R. 

Arrigle) with multiple good water quality sample sites along the length of the river. This 

is shown by the Q-values on the right and confirmed by the VCS samples on the left.  

In Area 2, Southwest of Kilkenny City near the town of Callan, there is an area of small 

tributaries with multiple poor water quality sample sites, as shown by the Q-values on 
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the left and confirmed by the VCS on the right. This is an area of high intensity dairy 

farming which may be a factor in the river water quality. This is a common problem in 

Irish rivers (Hooda et al., 2000) 

Area 3, North of Kilkenny, there is a tributary of the Nore River (R. Dinin) with multiple 

good water quality sample sites along the length of the river. This is shown by the Q-

values on the right and confirmed by the VCS on the left. This confirms the ability of 

the CSSI to identify and differentiate poor and good water quality areas. 

Variations in biomonitoring are inevitable due to seasonal influences of 

macroinvertebrate breeding and flooding or by random chance and for this reason 

biomonitoring can only be used as an indication of water quality and should not be an 

outright assessment of the full ecological state of a water body. Which would require 

chemical, physical and biological assays (Moog et al., 2018), however, this is not 

feasible for a large volume of smaller headwaters. 

In the field study, an online app was used by the volunteers to upload data collected, 

and by the administrator to analyse the data. Although the volunteers commented on the 

usefulness of the online app as a resource throughout the programme, especially during 

the Covid-19 pandemic when face to face meetings were not always possible, the online 

app did not allow additional observations to be made as was defined in the written 

protocol. This means that observations made by volunteers were potentially lost. In the 

future, an improved app would allow uploading of observations by the volunteers.   

In the leaflet it was suggested that volunteers send a photograph of the sample in the 

white tray with their sample readings. Although initially this was thought to be a good 

method of macroinvertebrate validation, it was found that photographic quality, glare 

and debris in the sample made identifying the macroinvertebrates in the photograph 
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difficult.  In the future, photographs of each indicator invertebrate could be sent with 

the sample readings for macroinvertebrate identification purposes.  

The CSSI allows many sites to be assessed at a coarse resolution within a catchment 

avoids and expertise-intensive multi-taxa techniques. Citizen scientists can take 

periodic samples upstream from a polluted area and determine the exact geographical 

location of pollution inputs within a catchment as opposed to just defining the extent of 

the problem at one point. 

To make a citizen science project operate smoothly this study found it was important 

to continue to motivate and communicate with the volunteers regularly through social 

media and group kick sampling session. Without this, volunteers can easily become 

disengaged. 

After engaging with the CSSI, it was noted through communication with the 

volunteers via WhatsApp that they went on to participate in other river improvement 

schemes such as litter picks and nationwide biodiversity citizen science initiatives 

which shows a dual purpose for the CSSI as a method of data capture and engagement 

of volunteers with their local environment. For this reason, the CSSI could be used as 

an introduction to biomonitoring and water quality for non-experts of all skill levels.  

This thesis shows that the CSSI tends to over express moderate water quality, in the 

future it may be sensible to rename the banding of the moderate to inconclusive. 
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In conclusion, in this study, six easily recognisable and common macroinvertebrates 

with narrow pollution tolerances, that can be used to indicate water quality were 

identified. These were incorporated in a Citizen Science Stream Index (CSSI) protocol 

which was validated using Q-values as a reference standard. The CSSI was found to 

be reasonably accurate and effective at allowing citizen scientists to differentiate good 

water quality and poor water quality independent of an expert.  

In comparison with contemporary indices, the CSSI proved to be as robust as the ASPT 

and SSRS and therefore can work in conjunction with established metrics in nationwide 

data capture. This thesis shows that in a pilot study the CSSI protocol is feasible for 

citizen scientists to learn and implement in a reliable way. Furthermore, multiple 

volunteers in the pilot study commented on how easy the CSSI was to learn and use. 

The CSSI is an efficient index that allows a spatially extensive analysis to be carried 

out at a course resolution.  

Defining water quality is a subjective undertaking as water quality can have different 

parameters for different uses. To accurately evaluate the overall health of a river in 

detail many different analyses must be carried out on the physical, chemical and 

biological aspects of the river. However, this is costly, time consuming and not practical 

for monitoring a large number of rivers especially smaller headwaters. Biomonitoring 

is a quick fix for water quality monitoring but is variable even when using established 

metrics like the ASPT, SSRS and Q-Values as shown in this study. As variability in 

scores exists among all biomonitoring indices regardless of the complexity of the 

methodology, a simple methodology such as the CSSI is preferable. 

The CSSI has started to be rolled out all over Ireland with data now being captured in 

real time via LAWPRO website for Citizen Science https://lawaters.ie/citizen-science/.  

https://lawaters.ie/citizen-science/
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Over the Covid 19 period over 700 volunteers have been trained in the use of the 

Citizen Science Index.  Approximately 20% also received kick nets and other 

equipment. This training took the format of blended learning with an online session 

and a field-based session to implement the training in Action. In the future the CSSI 

will be rolled out around more of Ireland enabling volunteers to participate in the 

nationwide biomonitoring of Irelands streams.  

iFigure 18. Infographic on the CSSI’s progress in training around Irelan 
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Picture 1. Opening picture of the CSSI tutorial 

  

Picture 2. Dr.Simon Harrison demonstrating a kick sample on the CSSI tutorial video 
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Picture 3. Underwater shot of kick sampling, demonstrating how stones must be turned over with the foot  

in the CSSI tutorial 

  

Picture 4. Dr. Simon Harrison demonstrating elutriation on the CSSI tutorial video. 



112 

 

 

  

Picture 5. An example of a stonefly, one of the six key indicators taxa shown and described in the 

identification section of the CSSI tutorial video.  

  

Picture 6. Explanation of the key attached to the CSSI leaflet on the CSSI tutorial video 
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Picture 7. Explanation of the leaflet used to calculate the CSSI score on the CSSI tutorial video 
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Picture 8. The top of the form that was used to upload the CSSI scores by the volunteers. The form 

contains the stream name, GPS/ Location, Recorder Name and Date. 

 

  

Picture 9. Checklist on the form used by volunteers to upload their CSSI scores. This checklist asks which 

of the six key indicator taxa were present in kick sample 1. 
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Picture 10. Checklist on the form used by volunteers to upload their CSSI scores. This checklist asks 

what was the CSSI score of the first kick sample.  

  

Picture 11. Checklist on the form used by volunteers to upload their CSSI scores. This checklist asks 

what was the sum total of the three kick samples taken otherwise known as the final CSSI score. 


