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ABSTRACT 

Large-area synthesis is of great demand for the preparation of high-performance transition-

metal-dichalcogenides (TMD) devices, however there are only limited reports to date of 

device operation on large-area TMDs. In this work we fabricate MoS2 devices based on 

Thermal Assisted Conversion (TAC) of metal layers, and characterise the thin-films with 

material analysis combined with electrical device parameter extraction. Specifically we report 

on temperature dependent parameter extraction for Ti/Au contacts to MoS2 thin-films to 

determine sheet resistance (Rsh), resistivity (ρ), and the activation energy (EA) of on-state 

current flow. For undoped MoS2, ρ was determined to be 191 Ω.cm at 25 °C. The activation 

energy of the on-state current was found to be 0.18 eV, pointing to the presence of deep 

levels in MoS2. 
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INTRODUCTION 

Due to the performance and economic benefit obtained by scaling, future semiconductor 

electron devices for logic functions will progress toward ultra-thin-body channels and 2-

dimensional (2D) high carrier mobility materials. The significance is that small devices can 

be made to yield higher performance and greater energy-efficiency. To put this trend in 

perspective, fin-field-effect-transistor
1,2

 (FinFET) technology was a research topic 7-8 years 

ago, but is now at the heart of the microprocessor in high-end smartphones.
3
 While the 

positioning of TMDs in electronic products of the future is still unsure, perhaps they will be 

more suited to low power, it is still worthwhile to understand how a relatively undeveloped 

system can reach maturity in less than a decade. 

 Graphene is semi-metallic, which makes it difficult to switch off electron devices 

such as FETs. Bandgap engineering is required to open a bandgap of graphene, which is not 

an easy undertaking. This has motivated the scientific community to search for alternate 2D 

layer materials with semiconducting properties and better tuneability. Many TMDs are 

natural semiconductors with thicknesses on the nanometre scale. TMD semiconductors are 

now emerging as potentially useful materials, where more research is needed, in order to 

explore their properties and potential applications. 

 The properties of a single- and few-layer TMDs are very distinct from those of the 

bulk, such as a transition from indirect to direct semiconductor.
4,5,6,7

 Furthermore, as a result 

of both the reduced dimension and modified electronic structure these materials have great 

potential for applications in electronics, energy storage and conversion,
8
 as well as sensors.

9
 

TMD materials are comprised of single-atomic layers of transition metal atoms (e.g. Mo) 

sandwiched between layers of group-VI atoms (e.g. S). These repeated units are held together 

via van der Waals bonding. This combination of strong covalent intra-plane and weak inter-

plane bonding allows for 2D synthesis of TMDs.  



3 

  Due to being surface-dominated, the properties of TMDs vary considerably with the 

number of layers in a sheet, and surface termination can dramatically alter the material 

properties. In terms of optimum TMD thickness, Das et al. did a systematic study on MoS2 

flakes, fabricating back-gated n-type FET devices.
10

 Based on drive current and mobility, 

MoS2 thicknesses of ~6-12 nm appears to be optimum. Radisavljevic et al. reported top-gated 

MoS2 FETs, based on monolayer flakes with an Atomic Layer Deposition (ALD) 30 nm 

HfO2 gate dielectric, which produced a 10
8
 on-off current ratio at a gate length of 3 µm.

11
  

Using a dual-gate device architecture Liu et al. made MoS2 n-type FETs on flakes, and 

produced an over 10
8
 on-off current ratio.

12
 Note these were long channel devices with drive 

current outputs much lower than that of the state-of-the-art Si equivalent. It was concluded by 

the authors that device performance at small gate lengths is limited by contact resistance,
13

 

making it a key bottleneck for realisation of these devices in future technologies.  

 The ITRS Roadmap
14

 has cited the Difficult Challenge in the 2018-2026 timeframe 

“Develop 2
nd

 generation new materials to replace silicon (or InGaAs, Ge) as an alternate 

channel and source/drain to increase the saturation velocity and to further reduce VDD and 

power dissipation in MOSFETs”. To date, MoS2 has been the testing ground for many TMD 

based experiments due to its relative stability in ambient conditions.  

 As the fabrication of high quality substrates is usually the starting point of any 

semiconductor activity, the reliable synthesis of 2D materials is an essential first step. Many 

experimental studies to date feature mechanical exfoliation
15,16,17

 of large crystals or “flakes”, 

or chemical solution-based exfoliation by dispersion in a solvent.
18,19

 Indeed many TMD 

device reports in the literature are based on flakes of material.
20,21,22,23,24,25,26,27,28  

 While this is an effective starting point, say in the screening process of candidate 

materials, this method is not compatible with production or manufacturing environment. 

Large-area synthesis is of great demand for the preparation of high-performance devices. To 
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that end, vapour deposition stands as an appealing and versatile approach to form synthetic 

TMD thin films. Recently MoS2 layers have been fabricated using Chemical Vapour 

Deposition (CVD) techniques.
29,30

 H. Liu et al. synthesised MoS2 top-gated n-type FET 

devices using CVD,
31

 and performed electrical analysis of ~100 devices. Gatensby et al. 

presented a route to the manufacture of devices from MoS2 and WS2, grown by thermally 

assisted conversion (TAC) of pre-deposited metal layers, producing sensors with a sensitivity 

to NH3 down to 400 ppb.
32

 Recently X. Liu et al. fabricated monolayer MoS2 by CVD under 

atmospheric pressure and characterised the peak field effect mobility in FET devices at 59 

cm
2
V

-1
s

-1
.
33

 

 To date experiments probing the electronic properties of these 2D materials remain at 

an early stage of development, particularly on large area films grown by TAC or ALD. In this 

work we perform parameter extraction for MoS2 thin-films formed by TAC of Mo in a 

sulphur vapour to determine sheet resistance (Rsh), resistivity (ρ), and activation energy (EA) 

of the on-state current flow. 

 

EXPERIMENTAL  

 MoS2 films were formed on 300 nm SiO2 on p
+ 

Si handle wafers. The sample sizes 

were approximately 1×1 cm
2
. Mo was deposited by evaporation, nominal thicknesses were in 

the range of 5-30 nm. Substrates were placed in a quartz tube furnace and heated (∼50 °C 

/min) to 500 °C under Ar flow (150 sccm, P ∼0.7 Torr). After a 5 min dwell at 500 °C, the 

samples were heated to 750 °C (25 °C /min) and annealed for 15 min. A second upstream hot 

zone was used to heat the S powder to 113 ± 1 °C, and thus introduce S vapour into the 

reaction zone. This hot zone consisted of an assembly of halogen bulbs coupled with a power 

supply. A k-type thermocouple, placed alongside the S supply, allowed for the temperature in 

the vicinity of the S powder to be monitored. Following TAC, the samples were held at 750 
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°C for a further 30 min, before the furnace was cooled. Upon removal from the furnace, 

samples were cleaned with acetone and then isopropanol to remove unreacted residue. 

Finally, samples were subsequently stored in N2 and shipped in vacuum packaging. 

 Thereafter MoS2 circular Transfer Length Method (C-TLM) structures were 

fabricated using a metal lift-off process. After resist processing and patterning, 10 nm of Ti 

and 90 of Au were deposited as contacts. The use of the lift-off process and a circular 

geometry for the TLM structures allowed the definition of devices without the requirement to 

etch the MoS2 film. 

  For analysis, cross-section samples were obtained by using FEI’s Dual Beam Quanta 

3D 200i. On top of the MoS2 three layers of protective material were used, namely electron 

beam TEOS, electron beam W, and ion beam Pt. Lamellas were thinned and polished at 30 

kV 100 pA and 5 kV 48 pA respectively on FEI Dual Beam Helios Nanolab 600i system 

using a Ga ion beam. Transmission Electron Microscopy (XTEM) imaging was carried out 

using a JEOL 2100 HRTEM operated at 200 kV in Bright Field mode using a Gatan Double  

Tilt holder. Electrical measurements were performed on-wafer in a microchamber probe 

station (Cascade, Summit 12971B) in a dry air, dark environment (dew point ≤203K). 

 

RESULTS AND DISCUSSION 

 Fig 1(a) shows a wide view of MoS2 on a SiO2/Si substrate for a sample with an 

initial Mo thickness of 10 nm. On the right-hand side the Ti/Au metal contact is visible. The 

MoS2 layer is continuous across the surface and the deposition and patterning of the metal 

contact has not made an obvious impact on the MoS2. The layered structure of MoS2 is visible 

in the higher resolution image in Fig. 1(b). The MoS2 is not perfectly layered but is poly-

crystalline in nature. From XTEM the MoS2 thickness was estimated to be 20 nm. 
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Fig. 1 : Representative images of the 10 nm Mo after TAC, forming approximately 20 nm of 

MoS2. (a) A wide view of MoS2 on a SiO2/Si substrate. On the right-hand side the Ti/Au metal 

contact is visible. The MoS2 layer is continuous across the surface. (b) The layered structure of 

MoS2 is visible in the higher resolution image. 

 

 For a TAC process it is important to sulphurise the entire Mo layer, otherwise it’s 

possible the MoS2 will lie on top of unreacted Mo, which would as act as a short circuit in an 

electron device. A check for this can be done by extracting the lattice d-spacing via the 

XTEM images. Lattice resolution images were first obtained to determine the d-spacings. 

Measured values were compared with database values 
34

 to identify whether the layers were 

Mo or MoS2. We performed Fast-Fourier-Transform (FFT) analysis of the XTEM image 

shown in Fig. 2(a) for a situation where some Mo was left unreacted. In that case the initial 

Mo thickness was 30 nm. The lattice d-spacings can be extracted from the FFT, and based on 

this the material can be identified. The lattice d-spacing was determined to be 2.3 Angstroms 

in the dark spots below the MoS2 which corresponds to the lattice spacing in Mo. The d-

spacing of 6.1 Angstroms confirms the layer marked “MoS2” is indeed MoS2. For 
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comparison the sample with an initial 10 nm Mo layer is shown in Fig. 2(b) post-TAC. Fig. 

2(c) schematically shows the lattice spacing in MoS2. 

S

Mo

6.15 

Ang.

SiO2

MoS2

Au

Ti

Mo 

(a)

(c)

50 nm SiO2

MoS2

Au

Ti

(b)

 

Fig. 2 : (a) Representative image of 30 nm Mo after TAC, forming MoS2 laying on top of 

unreacted Mo. (b) Representative image of 10 nm Mo after TAC, completely converted to 

MoS2. (c) A schematic shows the lattice spacing in MoS2. The lattice spacing of 6.15 

Angstrom allows us to identify the regions of MoS2. 
 

 The electrical data presented hereafter is for the completely-converted Mo film, as in 

Figs. 1 and 2(b). Fig. 3 shows the electrical current-voltage behaviour extracted from the C-

TLM structure. An optical image of the structure is shown in the inset. The individual curves 

represent different contact spacings. The current is ohmic in nature, it is linear with respect to 

voltage and goes through the origin. The current scales with contact spacing, as expected. For 

samples where the Mo is not totally converted, the current-voltage characteristics were non- 

linear, with no clear dependence on contact separation (not shown).  
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Fig. 3 : Representative measured current versus voltage characteristic in the MoS2 circular 

TLM structure as a function of contact spacing. The Mo thickness was 10 nm prior to TAC. 

The current is linear with respect to voltage and passes through the origin. The current 

increases with decreased contact spacing as expected. The inset shows an optical image of the 

circular TLM structure. 

 

 The temperature dependence of the current was then evaluated. Representative data is 

shown in Fig. 4 for a contact spacing of 80 µm. The current versus voltage behaviour is still 

linear up to 100 °C, and the current increases with increasing temperature consistent with 

semiconductor behaviour. Fig. 5 shows I versus 1/kT which is used to extract the activation 

energy (EA) of the on-state current, which was found to be 0.18 eV. The bandgap of MoS2 in 

bulk form is 1.3 eV, increasing to 1.8 eV in monolayer form,
10

 as the nature of the band gap 

changes from indirect to direct.
35

 The value of activation energy obtained here agrees with 

the value determined by Kam-Keung, where a value of 0.1 eV activation energy of electrical 

resistivity was reported in 1982.
36

 An activation energy in this range is consistent with an 

unintentional deep dopant level in the MoS2. Recently Cavalho et al. reported Density 

Functional Theory calculations of various impurities in MoS2, such as substitutional 

halogens, where Cl and Br are found to introduce deep donor levels at 0.18 eV and 0.15 eV 

below the conduction band edge respectively.
37
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Fig. 4 : Measured current versus voltage characteristic in the MoS2 circular TLM 

structure for different temperatures. The Mo thickness was 10 nm prior to TAC. The 

temperature dependence is consistent with a semiconductor behaviour. 
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Fig. 5 : Measured current versus 1/kT (symbols) and Arrhenius fits (lines) for different 

voltages. At each voltage EA was determined to be 0.18 eV. 

 

 Total resistance (RT) was then calculated and plotted versus contact spacing. In 

accordance with C-TLM theory, RT must be corrected to account for the circular nature of the 

structures, before a linear fit is made. This linearisation of RT is performed according to the 

equations : 
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𝑅𝑇 =
𝑅𝑠ℎ

2𝜋𝐿
�𝑑 + 2𝐿𝑇 𝐶 

 

(1) 

𝐶 =
𝐿

𝑑
𝑙𝑛 �1 +

𝑑

𝐿
  

 

(2) 

where Rsh is sheet resistance, LT is the transfer length, L is the inner contact radius in the C-

TLM test structure, and d is the contact separation. C is a correction factor to account for the 

circular nature of the test structure. Once applied, we obtain the corrected total resistance;  

𝑅𝑇_𝐶𝑂𝑅 =
𝑅𝑠ℎ

2𝜋𝐿
�𝑑 + 2𝐿𝑇  

 

(3) 

The linear interpolation of RT_COR versus d (see Fig. 6) allows us to estimate Rsh and LT. 

From the knowledge of these parameters, we can evaluate the resistivity (ρ) and the specific 

contact resistivity (ρc) as follows: 

𝜌 =  𝑅𝑠ℎ . 𝑡 
 

(4) 

𝜌𝑐 =  𝑅𝑠ℎ . L𝑇
2 
 

(5) 

where t is the MoS2 thickness. 

 The dependence of the total resistance as a function of contact separation over the 

temperature range (25 °C to 100 °C) is shown in Figure 6. Note, both slope and intercept of 

this linear fit line changes with temperature, indicating a change in both contact resistance 

and bulk MoS2 resistivity with temperature. Rsh was estimated to be 95.8 MΩ/sq at 25 °C, 

dropping down to 20.3 MΩ/sq at 100 °C. Taking into account the MoS2 thickness of 20 nm in 

Eqn. (4) ρ decreases from 191 Ω.cm at 25 °C to 41 Ω.cm at 100 °C (see Fig. 7). The 25 °C 

value of bulk resistivity is around one order of magnitude higher than the resistivity reported 

for natural crystal of MoS2 by Grant et al, which was found to be 18 Ω.cm with a 6×10
15

 cm
-3

 

n-type doping level.
38

 The values of transfer length obtained from the intercept of the y-axis 

are around 2.57 to 2.34 µm at 25 and 100 °C, yielding values of specific contact resistivity 

for the Au/Ti/MoS2 contacts of 6.3 to 1.1 Ω.cm
2 

respectively. These values of specific contact 
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resistivity are clearly too high for device applications, but this thin-film is not intentionally 

doped, and no attempt has been made in this work to reduce this value. Sheet resistance and 

specific contact resistivity can be modified by doping techniques. For example, Du et al. 

reported molecular doping of 4-5 nm thick MoS2 by polyethyleneimine.
39

 After doping the 

MoS2 Rsh was approximately 20 kΩ/sq, so according to Eqn. (4) ρ was reduced to 

approximately 10
-2

 Ω.cm. Chloride molecular doping also appears to hold promise.
40

 Rai et 

al. used amorphous titanium suboxide encapsulation to reduce monolayer MoS2 Rsh to 12.4 

kΩ/sq, which is an impressive ρ value of <10
-3

 Ω.cm.
41
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Fig. 6 : Linearised total resistance versus contact spacing as a function of temperature, 

which is used to extract sheet resistance and MoS2 resistivity.  The Mo thickness was 10 

nm prior to TAC. 
  

 It can also be considered whether changes with temperature in bulk or sheet resistivity 

could be decoupled from changes in the contact resistance. We see in Fig. 6 that both the 

slope and intercepts of the linear fit lines change, not just one changing with the other fixed. 

In other words we found that all resistivity parameters (Rsh, ρc) fall by approximately the 

same level, 80 %, in going from 25 to 100 °C.  
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 Finally, there have been a number reports in literature of MoS2 flake device 

performance in vacuum. W. Liu et al. presented improved device performance when TMD 

FETs were measured after 380 K 1 hr anneal to remove absorbed molecules at the surface, 

and measured under vacuum conditions.
42

 The electrical characteristics here were re-

measured over a period of weeks. Shown in Fig. 7 are MoS2 bulk resistivity values before and 

after air exposure for 1 month. At 25 °C there is a 13 % increase due to 1 month air exposure. 

It is noted that the MoS2 samples studied in this work were not passivated and the MoS2 

surface is exposed to air in the regions outside the Au/Ti contacts. For sensor applications one 

would have to consider reversibility, if the MoS2 converts to molybdenum-oxide of some 

form then this might not be easily reversible. For electronic applications care must be taken to 

properly encapsulate the MoS2. 

 It should be noted that this air sensitivity is not specific to TMDs formed by TAC. We 

have seen significant air sensitivity of mechanically exfoliated TMDs of various types. That 

work will be presented elsewhere.  
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Fig. 7 : Resistivity (ρ) changes with air exposure. Orange points correspond to the initial 

measurements while the white points correspond to after 1 month of air exposure. At 25 °C 

there is a 13 % increase due to 1 month air exposure. 
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CONCLUSIONS 

 In this work we structurally and electrically characterised large-area synthesised MoS2 

devices, formed by a thermally assisted conversion process. The bulk resistivity of the 

nominally undoped MoS2 was determined to be 191 Ω.cm at 25 °C, extracted from circular 

Transfer Length Method structures with Ti/Au contacts. The activation energy of the 

conduction current over the temperature range 25-100 °C was determined to be 0.18 eV, 

consistent with the presence of deep donor levels in the MoS2. The transfer length was around 

2.57 to 2.34 µm at 25 and 100 °C, yielding values of specific contact resistivity for the 

Au/Ti/MoS2 contacts of 6.3 to 1.1 Ω.cm
2 

respectively. This high resistivity values indicate the 

requirement for local source and drain doping of the MoS2 practical device applications. 

When exposed to air for 1 month the MoS2 resistivity was observed to increase by 13%, thus 

for certain applications care must be taken to properly passivate or encapsulate the TMD 

layers. 
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