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I. MODULATIONAL INSTABILITY IN THE DELAYED MODEL OF A RING

LASER

We consider stability of CW solution A(t) = A0e
iνt, G(t) = G0, where

|A0|2 =
g0 −G0

eG0 − 1
e

2dΓ
Γ2+(Ω+ν)2 , (1)

G0 = ln

[
γ2 + (w − ν)2

γ2κ
e

2dΓ
Γ2+(Ω+ν)2

]
, (2)

d = σL, and the frequencies ν of CW solutions satisfy a transcendental equation

tan

[
αG0

2
+ νT − d(ν + Ω)

Γ2 + (Ω + ν)2

]
=
w − ν
γ

. (3)

Then we can obtain the following characteristic equation for the eigenvalues λ describing

the stability of CW solutions:

a(λ)Y (λT )2 + b(λ)Y (λT ) + c(λ) = 0, (4)

where Y (λ) = e−λT ,

a(λ) = −γ2κe
G0− 2d(Γ+λ)

(Γ+λ)2+(ν+Ω)2

[
λ+γg

(
1 + |A0|2e

− 2dΓ
Γ2+(ν+Ω)2

)]
,

c(λ) = −
[
(γ + λ)2 + (w − ν)2

] [
λ+ γg

(
1 + |A0|2e

G0− 2dΓ
Γ2+(ν+Ω)2

)]
,

b(λ) = e
− d(Γ+λ)

(Γ+λ)2+(Ω+ν)2 {p(λ) cos [Ψ−Θ(λ)] + q(λ) sin [Ψ−Θ(λ)]} ,

p(λ) = γeG0/2
√
κ
{

2(γg + λ)(γ + λ) + γg|A0|2e
− 2dΓ

Γ2+(ν+Ω)2
[(
eG0 + 1

)
(λ+ γ) + α

(
eG0 − 1

)
(ν − w)

]}
,

q(λ) = γeG0/2
√
κ
{

2(γg + λ)(w − ν) + γg|A0|2e
− 2dΓ

Γ2+(ν+Ω)2
[(
eG0 + 1

)
(w − ν) + α

(
eG0 − 1

)
(γ + λ)

]}
,

and

Ψ =
αG0

2
+ νT, Θ(λ) =

d(ν + Ω)

(Γ + λ)2 + (ν + Ω)2
.

Finally, in the limit of large delay time T →∞ we can represent the eigenvalues belonging

to the pseudo-continuous spectrum in the form λ = iµ+ Λ
T

+O(1/T 2) with real µ [18]. Then,
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keeping only the single leading term iµ in a(λ),b(λ), c(λ) and two terms iµ + Λ
T

in Y (λT ),

we obtain two branches of pseudo-continuous spectrum Λ±(µ) given by

Λ±(µ) + iµT = − ln

[
−b(iµ)±

√
b(iµ)2 − 4a(iµ)c(iµ)

2a(iµ)

]
. (5)

As it can be seen from Fig. 3(b) in the letter, appearance of the modulational instability is

associated with the change of the sign of the curvature of one of the two eigenvalue branches

at the origin µ = 0 [16]. Therefore, we assume y(µ) = −Re ln Ŷ (µ), Ŷ (µ) = Y (iµ), hence

the modulational instability threshold can be found using the condition y′′(0) = 0. Since

y′′(0) = Re

[
Ŷ ′(0)2

Ŷ (0)2
−

ˆ̂Y ′′(0)

Y (0)

]
,

we can find Ŷ (0), Ŷ ′(0), Ŷ ′′(0) from (4), first and second derivative of (4) at µ = 0. One

can see that for the corresponding branch of eigenvalues Ŷ (0) = 1,

Ŷ ′(0) = i

[
γ − α(w − ν)

γ2 + (w − ν)2
+

d

Γ2 + (Ω + ν)2

(
1−

2Γ
(
Γ− α(Ω + ν)

)
Γ2 + (Ω + ν)2

)]
,

and, finally, we obtain the condition for modulational instability above the lasing threshold

−
(
γ − α(w − ν)

γ2 + (w − ν)2

)2

− αD2 + F (w, ν, d,Ω) > 0, (6)

where F = −rs + ru is almost independent of the chromatic dispersion above the lasing

threshold for |Ω| � 1: F (w, ν, d,Ω) ≈ F (w, ν, 0,Ω), and in the absence of dispersion this

term is responsible for the appearance of modulational instability at negative detunings

w < ν. Moreover,

D2 =
2d(Ω + ν)

(
−3Γ2 + (Ω + ν)2

)(
Γ2 + (Ω + ν)2

)3 ,

rs =
2dΓ

(
3(Ω + ν)2 − Γ2

)(
Γ2 + (Ω + ν)2

)3 > 0,

ru =
(
1 + α2

) [( w − ν
γ2 + (w − ν)2

)2

+

(
−1 +

2

r1

+
2

r2

)(
w − ν

γ2 + (w − ν)2
− 2dΓ(Ω + ν)

(Γ2 + (Ω + ν)2)2

)2]
.

Here, r1 and r2 are the parts of the CW field A0 =
√

r1κ
r2

, where

r2 =
γ2 + (w − ν)2

γ2
− κ exp

−2dΓ

Γ2 + (Ω + w)2
,
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r1 = g0 + lnκ+ ln
γ2

γ2 + (w − ν)2
− 2dΓ

Γ2 + (Ω + ν)2
.

One can see that the term rs > 0 increases MI threshold, however for Ω � 1 this term

is small (rs � 1). The term ru destabilizes the CW regime at w = ν for any type of

dispersion (normal or anomalous) in a small vicinity of the lasing threshold where 0 <

g0 + lnκ− 2dΓ/
(
Γ2 + (Ω + ν)2

)
� min(Γ, 1

Γ
) and y′′(0) > 0 (for Ω� 1 we have to assume

Γ� 1 in order to avoid unrealistically large losses at ν = w, hence this vicinity is negligibly

small). For larger g0 the term ru becomes sufficiently small and the CW regime gains

stability (y′′(0) < 0) till another modulational instability threshold is reached (y′′(0) > 0)

and the CW regime is destabilized once again.

We note that the examination of first two terms in (6) implies that for w > ν the

modulational instability threshold value of the dispersion strength is lower, and for some

0 < ν−w < αγ it is higher than for ν = w. This explains the asymmetry of the black curve

in Fig. 3(c) in the main paper with respect to w − ν = 0.
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