
Title Coastal iodine emissions. 1. Release of I2 by Laminaria digitata in
chamber experiments

Authors Ashu-Ayem, Enowmbi R.;Nitschke, Udo;Monahan, Ciaran;Chen,
Jun;Darby, Steven B.;Smith, Paul D.;O'Dowd, Colin D.;Stengel,
Dagmar B.;Venables, Dean S.

Publication date 2012

Original Citation ASHU-AYEM, E. R., NITSCHKE, U., MONAHAN, C., CHEN, J.,
DARBY, S. B., SMITH, P. D., O’DOWD, C. D., STENGEL, D. B. &
VENABLES, D. S. 2012. Coastal Iodine Emissions. 1. Release of
I2 by Laminaria digitata in Chamber Experiments. Environmental
Science & Technology, 46, 10413-10421. http://dx.doi.org/10.1021/
es204534v

Type of publication Article (peer-reviewed)

Link to publisher's
version

10.1021/es204534v

Rights Copyright © 2012 American Chemical Society. This document
is the Accepted Manuscript version of a Published Work that
appeared in final form in Environmental Science and Technology,
copyright © American Chemical Society after peer review and
technical editing by the publisher. To access the final edited
and published work see http://pubs.acs.org/doi/abs/10.1021/
es204534v

Download date 2024-04-24 20:13:15

Item downloaded
from

https://hdl.handle.net/10468/787

https://hdl.handle.net/10468/787


 

1 

Coastal iodine emissions: Part 1. Release of I2 by 

Laminaria digitata in chamber experiments 

Enowmbi R. Ashu-Ayem, Udo Nitschke, Ciaran Monahan, Jun Chen, Steven B. Darby, Paul D. Smith, 

Colin D. O’Dowd, Dagmar B. Stengel, Dean S. Venables* 

Department of Chemistry and Environmental Research Institute, University College Cork, Cork, Ireland 

School of Physics and Ryan Institute for Environmental, Marine and Energy Research, National 

University of Ireland, Galway, Galway, Ireland 

Botany and Plant Science, School of Natural Sciences and Ryan Institute for Environmental, Marine and 

Energy Research, National University of Ireland Galway, Galway, Ireland 

 

d.venables@ucc.ie 

RECEIVED DATE (to be automatically inserted after your manuscript is accepted if required 

according to the journal that you are submitting your paper to) 



 

2 

Abstract 

Tidally exposed macroalgae emit large amounts of I2 and iodocarbons that produce hotspots of iodine 

chemistry and intense particle nucleation events in the coastal marine boundary layer.  Current emission 

rates are poorly characterized, however, with reported emission rates varying by three orders of 

magnitude.  In this study, I2 emissions from 25 Laminaria digitata samples were investigated in a 

simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS). 

The chamber design allowed gradual extraction of seawater to simulate tidal emersion of algae. Samples 

were exposed to air with or without O3 and to varying irradiances. Emission of I2 occurred in four 

distinct stages: 1) moderate emissions from partially submerged samples; 2) a strong release by fully 

emerged samples; 3) slowing or stopping of I2 release; 4) later pulses of I2 were evident in some 

samples. Emission rates were highly variable and ranged from 7 to 616 pmol min-1 gFW-1 in ozone-free 

air, with a median value of 55 pmol min-1 gFW-1 for 20 samples.   
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Introduction 

The observation of iodine monoxide, IO, in the marine boundary layer (MBL) over a decade ago has 

stimulated a resurgence of interest in the sources and chemistry of atmospheric iodine (1, 2, 3).  In the 

atmosphere, atomic iodine produced via photolysis or chemical reaction reacts rapidly with ozone (O3) 

to form IO: 

I + O3 → IO + O2                                                                         (1) 

Iodine species subsequently influence the atmosphere’s oxidation capacity in several ways, including 

catalytic destruction of O3, and altering the OH/HO2 and NO2/NO ratios (4, 5). Studies have further 

shown the importance of IO in aerosol formation of iodine oxide particles in the marine atmosphere (6–

11).  

The photolytic sources of atomic iodine in the coastal MBL were initially proposed to be photolabile 

iodocarbons, especially CH2I2 and CHIBr (12). These compounds are emitted by brown macroalgae 

following exposure to air at low tide and concentrations of iodocarbons and IO show a clear tidal 

signature (13). McFiggans et al. later suggested that I2 released by the brown macroalgae Saccharina 

latissima and Laminaria digitata is the major source of iodine in temperate coastal environments (14).  

Several field and laboratory studies have subsequently confirmed large emissions of I2 into the 

atmosphere from a variety of brown macroalgae (15–17), which are known to accumulate iodine in high 

concentrations (18). For instance, L. digitata contains iodine at up to 4.7% of their dry weight (19, 20), 

providing algae with an abundant and accessible source of labile iodine species for potential chemical 

defence mechanisms and anti-oxidative activities (21, 22).  Although macroalgal coastal emissions of I2 

are probably relatively minor contributors to the global budget of atmospheric iodine, they give rise to 

hotspots of iodine chemistry that can  alter the chemistry of the coastal MBL. 

Most studies of macroalgal emissions have focused on L. digitata because this species is probably the 

strongest iodine accumulator among living organisms (22, 23) and emits high levels of I2 when exposed 

to ambient air (15, 17, 24),  or to oxidative agents such as ozone, H2O2 or oligoguluronates (22, 25).  L. 
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digitata is common on exposed shores and inhabits the lower littoral regions. Dixneuf et al. observed 

that L. digitata emitted I2 in an intense burst over about 20 min, followed by successive smaller pulses 

of I2 (24). Recent studies reported a wide range of I2 emission rates from L. digitata – mean values 

ranged from 3 to 2500 pmol min-1 gFW-1 (15, 16, 25, 26) (where FW denotes the fresh weight of the 

sample) and were dependent on thallus parts (17).  The source strength of I2 from macroalgae is 

therefore a key uncertainty in the role of iodine in the coastal MBL (3), and an improved estimate of 

emissions is required to understand the contribution of macroalgal iodine emissions to local atmospheric 

processes. Two points should be noted in this regard. The first is that a large dataset of emission rates is 

necessary to account for the likely variation between individual algae. The second point is that, as tidal 

emersion of macroalgae is a gradual process in which different thallus parts are exposed to the 

atmosphere at different times, a more nuanced understanding of the I2 emission profile during emersion 

is desirable. 

The aim of this study was to investigate the time profile of I2 emissions from entire specimens of L. 

digitata during emersion. This is the first iodine emission study in which algal specimens were not 

abruptly exposed to air from the outset, but were exposed to a simulated outgoing tide under controlled 

conditions in an atmosphere simulation chamber. The overall work is divided into two parts. Part 1 (the 

present study) deals with iodine emission profiles of L. digitata following emersion.  Simultaneous, in-

situ measurements of I2, IO, and OIO were used to quantify the amount and rate of release of I2 from the 

air-exposed algae and to put an improved estimate on the emission rate of this important biogeochemical 

pump of iodine. The effects of irradiance and O3 on I2 emissions as well on the physiological response 

of L. digitata using the chlorophyll a fluorescence technique (17) were also studied.  Part 2, in the 

accompanying paper, describes the nucleation of iodine oxide particles above air-exposed macroalgae. 

 

Experimental Section 
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Simulation chamber  

Experiments were carried out in a 2.2 m3 (~10 m2 surface area) atmosphere simulation chamber 

(Figure 1a) comprising a cylindrical fluorinated ethylene propylene (FEP) bag housed inside a 2 m long 

enclosure.  The photolysis light source was an unfiltered 2 kW xenon lamp (Rige Lighting) that 

produced a collimated beam above the chamber.  Partial cross-sections of the beam were reflected 

upwards to the chamber ceiling by broadband scattering surfaces at intervals along the length of the 

chamber.  This configuration resulted in a radiation field inside the chamber with a spatial variation of 

less than 20%.  The lamp spectrum (400 to 850 nm, λmax = 550 nm) provided a good simulation of the 

visible solar spectrum.  The photolysis rate of I2 in the chamber (based on the initial loss rate of I2 in 

excess O3) was 0.0075±0.0010 s-1, corresponding to 6% of that at the earth’s surface for a cloud-free sky 

and an overhead sun (1100 W m-2) (27). The lamp was mounted externally to the chamber to reduce 

heating of the interior and temperature rises were modest (typically within 3°C) from the start to end of 

experiments. A wire mesh filter was inserted between the lamp and the chamber to attenuate the 

radiation field inside the chamber.  All experiments were carried out with the chamber illuminated.  The 

chamber was purged for several hours before the start of each experiment and was sufficient to reduce 

particle concentrations to below 1 cm-3 and mixing ratios of chamber gases (O3, I2, NO2, IO) to below 

the detection limit of chamber instrumentation.  The chamber was operated with a constant volume of 

chamber air in the experiments reported here.  Ozone was added in several experiments using an ozone 

generator (Ozone Lab model OL80W/FM).  A small fan in the chamber ensured complete mixing of 

chamber gases within 3 min, as determined by the time taken for the absorption of a short pulse of NO2 

to stabilize.  

 

Instrumentation 

An incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) system was the 

principle tool for analyzing the gas phase composition of the chamber (28, 29). The instrument in this 



 

6 

work (Figure 1b) comprised two optical cavities: a blue channel (420 to 460 nm) for IO and a green 

channel (520 to 560 nm) for I2 and iodine dioxide, OIO.  Both channels used plano-concave dielectric 

mirrors  separated by 199 cm.  Light from a 75 W xenon arc lamp was separated into two channels using 

a dichroic beamsplitter, bandpass filtered, and focused into the respective optical cavities. Transmitted 

light was recombined in a two-way fiber and coupled into a Shamrock SR163 spectrograph with a CCD 

detector (Andor DU420A-BU2) cooled to -40 ºC.  With a 1200-l/mm grating, the resolution of the 

spectrograph was 0.96 nm. Spectra were acquired over 30 s.  

The mirror reflectivity spectra, R(λ), of both channels were calibrated based on the absorption of 

known amounts of NO2 (from a container of known volume and NO2 partial pressure).  Maximum 

mirror reflectivities were 99.93% (440 nm) and 99.97% (540 nm).  The extinction coefficient, ε (λ), was 

calculated from the intensity transmitted when a sample was present, I(λ) (30): 

L
R

I
I )(11)( 0 λλε −







 −=                                           (2) 

The intensity transmitted through the clean chamber, Io(λ), was recorded before introducing the 

sample; L is the mirror separation of 199 cm.  A multivariate fit based on the differential optical 

absorption was used to quantify the number densities of molecular absorbers, and was similar to that 

described by Ball and Jones (31). A polynomial function  accounted for the smoothly-varying extinction 

associated with iodine oxide particles, which were formed in high numbers in some experiments. 

Reference spectra for IO and OIO were obtained from Spietz et al. and Bloss et al. respectively, and 

convoluted to our instrument function (32, 33).  The absorption spectrum of I2 was measured in the 

chamber and scaled to the literature absorption cross section of Saiz-Lopez et al. (27). The weak and 

constant O2 dimer and water absorption bands were also included in the fit. The blue channel was fitted 

from 425 to 448 nm (Figure 2a), while the green channel was fitted over the range 530 to 550 nm 

(Figure 2b).  Fitted spectra showed good agreement to the measured absorption spectra and accounted 

for all significant spectral features. 



 

7 

Ozone was monitored using a UV absorption monitor (2B Technologies model 202) with a sampling 

rate of 1 L min-1.  A nanoSMPS comprising a TSI Aerosol Neutralizer 3077A (Kr-85 source), a nano 

DMA (TSI Differential Mobility Analyzer 3085) and a condensation particle counter (TSI CPC 3025A), 

was used for continuous particle measurements during experiments. 

 

Algal material and experimental design 

Sporophytes of Laminaria digitata (Hudson) Lamouroux were harvested from Garrettstown (51° 

38.57’N, 008° 35.10’W) and Roches Point (51° 47.68’N, 008° 15.17’W), Co. Cork, Ireland, during 

daytime low tides at the end of October 2010.  Samples were similar in age, on average 1.2 m long, and 

free from visible epiphytes. Following sampling, algae were weighed (Table 1 and 2), labelled and 

stored at 12-15°C under an irradiance, EPAR, of 20-30 µmol photons m-2 s-1 (400 - 700 nm) in natural 

seawater from the sampling site. The light-dark cycle was 12 h:12 h. The seawater was continously 

aerated by diffusers and replaced daily by fresh seawater. All specimens were used within seven days of 

collection. 

For iodine emission experiments, algae were placed in a 33 L tray filled with natural seawater and 

moved  to the center of the atmosphere simulation chamber via an inlet door located towards the bottom 

of the chamber. The tray was located 5 cm below the two optical cavities of the spectrometer. This 

transfer took less than 30 s. Samples were acclimated to experimental conditions for 10 min, i.e. to an 

air temperature of 22 ± 2 °C, and to 15, 100, or 235 µmol photons m-2 s-1 (light experiments), or to 15 

µmol photons m-2 s-1 without or with added O3 (O3 experiment).  Seawater in the tray was then gradually 

removed over a period of 5 – 10 min using a diaphragm pump and algae were exposed to air and a 

defined EPAR for a further 70 min after emersion.(15–17, 24) 

In vivo chlorophyll (chl) a fluorescence parameters of algal samples were determined after 70 min 

emersion  to estimate the extent of stress experienced during measurements (34).  

Measurement of variable chlorophyll a fluorescence  
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In vivo chl a fluorescence parameters were measured in ambient air using a PAM fluorometer 

(PAM-2000, Heinz Walz) (17). Algae were additionally exposed to ten increasing irradiance levels 

(between 0 and 1160 µmol photons m-2 s-1) provided by the internal halogen lamp of the PAM-2000. 

Each light level was applied for 2 min before non-photochemical quenching of chl a fluorescence (NPQ) 

was determined. 

The maximum photosystem II efficiency Fv/Fm (measured after 30 min dark acclimation) was 

calculated as follows: 

m

m

m

v

F
FF

F
F 0−

=         (3) 

where Fv is the variable chl a fluorescence, Fm is the maximal chl a fluorescence after dark acclimation, 

and F0 is the minimal chl a fluorescence.(17). Since differences in NPQ regulation after iodine 

measurements were only detected in NPQmax, i.e. the NPQ value determined at 

1160 µmol photons m-2 s-1, only NPQmax is presented in this study. NPQmax was calculated from: 

'

'

max
m

mm

F
FF

NPQ
−

=                                                                                  (4) 

where F'm is the maximal chl a fluorescence after acclimation to 1160 µmol photons m-2 s-1. 

Iodine emission studies under defined irradiances and different O3 levels were carried out in five 

independent replicates (n = 5). Results of photosynthetic performance, i.e. Fv/Fm and NPQmax, are shown 

as mean with standard deviation of n = 5 measurements on independent samples. Effects of irradiance 

on I2 emission characteristics were analysed using non-parametric Kruskal Wallis H test due to high 

variability in obtained data. Effects of O3 exposure on Fv/Fm and NPQmax were analysed using Student’s 

t-test. Effects of irradiance on Fv/Fm and NPQmax were analysed by using 1-way ANOVA. The Tukey 

test identified a posteriori homogeneous sub-groups that differed significantly on the level of P < 0.05. 

All photosynthesis data were normally distributed (Kolmogorov–Smirnov test) and variances were 

homogenous (Levene test).  
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Results and Discussion 

 

In vivo chlorophyll a fluorescence response 

Physiological responses of L. digitata during experiments were investigated by means of chl a 

fluorescence measurements. Chl a fluorescence parameters such as Fv/Fm and NPQ are widely used as 

“health” indicators of photosynthetic active organisms and are shown in Figure 3 (34).  Fv/Fm values of 

~0.75 are typical for unstressed brown macroalgae (35). With increasing irradiances, mean Fv/Fm 

decreased significantly from 0.753 (15 µmol photons m-2 s-1) to 0.705 (100 µmol photons m-2 s-1) and 

0.554 (235 µmol photons m-2 s-1, P < 0.001, Figure 3c) showing that experimental light conditions 

resulted in photoinhibition, i.e. a slightly increased extent of stress experienced by the alga during 

emersion. This was accompanied by a reduction in NPQmax from 2.735 (15 µmol photons m-2 s-1) to 

1.453 (235 µmol photons m-2 s-1, Figure 3d) which indicates that photoprotection capacities of L. 

digitata were reduced during experiments. However, NPQ was regulated in this alga even when exposed 

to higher irradiances.  

After exposure to air with elevated O3, Fv/Fm values varied between 0.722 and 0.764 (Figure 3a) and 

were similar to values determined after exposure to O3-free air (0.730-0.769). NPQ reflects mechanisms 

of non-radiative energy dissipation of excessively absorbed light energy and such mechanisms have a 

protective role against photoinhibition, which can be measured e.g. as a reduction in Fv/Fm  (36). Brown 

macroalgae are known to exhibit high photoprotection capacities which are expressed in high NPQ 

values (37, 38). Mean NPQmax values (measured at 1160 µmol photons m-2 s-1) were 3.726 and 3.545 

after exposure to air without and with increased O3 (Figure 3b), respectively. The fact that neither Fv/Fm 

nor NPQmax were affected by O3 indicates that ambient experimental conditions were not stressful 

enough to substantially inhibit photosynthesis.  
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It should be noted that the experimental light intensities and O3 levels were within the normal range of 

conditions occuring in the natural habitat of L. digitata (39) but were not close to maximum natural light 

levels (of up to 2000 µmol photons m-2 s-1 for emerged macroalgae).  

 

Laminaria digitata emission profiles 

Typical emission profiles following emersion of L. digitata are presented in Figure 4 along with the 

smoothed instantaneous emission rates for I2, calculated from the I2 time profile. Mixing ratios of I2 

indicate the cumulative amount of I2 emitted into the volume of the chamber. Overall, I2 emissions from 

L. digitata were highly variable, ranging from 0.4 to 9.9 nmol gFW-1 for different specimens.  Losses to 

chamber walls and other surfaces were small; in light of the exceptionally high variability between 

algae, emitted amounts of I2 were not corrected for this minor loss and are therefore lower limits. 

Emissions of I2 took place in four characteristic stages.  In the first stage, modest amounts of I2 were 

released from the submerged and gradually emerging alga as water was removed from the sample 

container.  This was followed by a strong release of I2 in the second stage, which was characterized by a 

sharp onset when the sample was fully exposed.  This emission pulse lasted 15 to 20 min and accounted 

for over 80% of the emitted I2.  Emissions of I2 then slowed or stopped completely (third stage), except 

in some samples, when smaller pulses of I2 were observed after about 60 min (fourth stage). 

The irradiance level had no noticeable systematic effect on the emission profiles.  The irradiance was 

varied over an order of magnitude (15, 100 and 235 µmol photons m-2 s-1), but was much lower than 

maximum daytime levels.  In light of the absence of a light-induced response of I2 emissions, these 

emissions are grouped together with other experiments (EPAR = 15 µmol photons m-2 s-1) in the absence 

of ozone. 

No statistically significant effect was apparent between the mass of the alga and either the total 

amount of I2 emitted, or the amount emitted per unit mass (Table 1).   
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Effect of Ozone 

In separate experiments, 80 to 100 ppbv ozone was added to the chamber before introducing 

macroalgae.  IO was formed as the water level was lowered and was easily observed, even at very low I2 

mixing ratios, owing to its much greater absorption cross-section than that of I2 (Figure 5). The 

distinction between the stages of initial slow emission of I2, and the much stronger subsequent release, is 

especially apparent from the IO mixing ratio in this figure.  Strong secondary pulses of I2 (stage 4) were 

observed in some samples after the main release of I2.  

The mixing ratio of IO in the chamber was limited by the fast, second-order self-reaction of IO(40): 

  IO + IO → OIO + I                                                  (5a) 

→  I2 + O2                                                    (5b) 

→ 2I + O2                                        (5c) 

IO + IO + M → IOIO + M                                       (5d) 

Destruction of O3 in the chamber was rapid and prompt nucleation occurred of large numbers of 

iodine oxide particles (41). OIO was not detected, however.  This is a surprising finding, as OIO is a 

major reaction product of the IO self-reaction (5a) and is expected to be a central building block in 

iodine oxide particle formation (8, 10, 32, 42, 43). As the OIO detection limit of the spectrometer was 

estimated to be ca. 30 pptv (based on the fit uncertainty), rapid removal mechanisms must be operative, 

probably via the fast reactions of OIO with I atoms (k = 1.1×10-10 cm3 molecule-1 s-1)(44) and IO (k = 

1.2×10-10 cm3 molecule-1 s-1 (45). Both species were present in the chamber at much higher mixing 

ratios than expected in the MBL: at 100 pptv IO (Figure 5), the OIO lifetime would be only 3 s. 

In the presence of O3, loss of iodine to particles via reaction (5) must be accounted for to quantify total 

iodine emissions.  As shown in Figure 5, I2 mixing ratios in the chamber actually decreased for a time 

when IO mixing ratios were high, but partly recovered once ozone was removed and IO production via 

reaction (1) terminated.  It was not possible to estimate the amount of iodine in the aerosol phase using 



 

12 

measured size distributions because particles rapidly grew larger than the maximum size bin (20 nm) of 

the nanoSMPS. To estimate losses of I2 to particles, the rate of reaction (5) was calculated from the 

measured IO concentrations.  Only reactions (5a) and (5d) were assumed to result in particle formation.  

There is good agreement in the literature concerning the overall rate coefficient of reaction (5) (40), but 

significant differences exist in the reported branching ratios.  We used the IUPAC recommended 

reaction rate (k5 = 9.9×10-11 cm3 molecule-1 s-1 at 298 K) and branching ratio of 0.38 for reaction (5a) at 

1 bar; as the latter value was from the Bloss et al. study, we also used their value of 0.46 for the 

branching ratio of reaction (5d) to estimate an I2 equivalent loss (i.e, loss of two iodine atoms to the 

particle phase) of (0.5k5a + k5d)/k5 = 0.65 (33). This value is also comparable to 0.78 obtained by 

Harwood et al., also at atmospheric pressure (46). The efficiency of iodine incorporation into particles is 

slightly reduced by photolysis of OIO and by thermal decomposition of I2O2, but this negative influence 

on the effective branching ratios is likely to be smaller than the uncertainty of the branching ratios, 

especially given the short lifetime of OIO and (presumably) of I2O2 (42–44, 47).  

Calculated total I2 mixing ratios are shown in Figure 5 for branching ratios (0.5k5a + k5d)/k5 of 0.5, 

0.65 and 0.75.  Branching ratios of greater than about 0.3 removed the dip in I2 mixing ratios and there 

were no abrupt changes in the slope of the I2 mixing ratio when losses via IO terminated.  Losses of 

iodine to particles were very large and accounted for about three quarters of the total I2 released.  

Median emission rates in the presence of ozone (Table 2) were 400 pmol min-1 gFW-1 and were greater 

than without O3 (65 pmol min-1 gFW-1). However, due to the high variability this difference was not 

statistically significant (P = 0.548).   

    

Comparison to previous emission rate measurements 

This work presents the I2 emission profiles of a comparatively large number of whole L. digitata 

displaying normal photosynthetic characteristics.  An important finding of this study is that L. digitata 

emission rates of I2 were highly variable (7 to 616 pmol min-1 gFW-1).  The range of emission rates 

found in this work encompasses most prior observations, and helps to reconcile the differences reported 
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in previous studies.  These include the lower emission rates reported by Ball et al. and Palmer et al., as 

well as the much higher values found by Bale et al. and Nitschke et al. (15–17, 25). For a single, whole 

alga, Ball et al. found a mean I2 release rate of 3.2 pmol min-1 gFW-1, while air-exposed samples of 

sections from the same alga emitted at 3.0 and 2.2 pmol min-1 gFW-1 (16). Palmer and co-workers  

reported similar hourly mean emission rates, ranging from below their detection limit to 9 pmol min-1 

gFW-1 (25).  As the bulk of I2 emissions from L. digitata occur on a shorter timescale than 1 h (15–17), 

the Palmer et al. estimates should be revised upwards by a factor of 2 to 4 for direct comparability with 

other studies (25). With the exception of the one whole alga in Ball et al., both studies most likely 

investigated samples of the thalli from the distal blade, which has been shown by Nitschke et al. to emit 

up to 17 times less iodine compared to the stipe (16, 17). Dramatically higher emission rates of ca. 2500 

pmol min-1 gFW-1 were observed by Bale et al. for a single, unstressed alga (15). Nitschke et al. also 

observed high emission rates, including median values between 20 and 629 pmol min-1 gFW-1  within 

the first 30 min of emersion (recalculated from Nitschke et al. where L. digitata samples were shown to 

contain 83% water) (17). These two studies used undivided specimens, which could partly explain the 

large variability in emission rates. 

The time dependence of the main I2 release from fully exposed algae reported here is consistent with 

prior studies, with most emission occurring over a period of about 20-40 min.  Smaller amounts of I2 

were released during the gradual emersion of the alga.  Based on the extremely large differences 

between emission rates from stipes and those for distal blades, the small initial emission (stage one) is 

probably from the distal blades and meristematic area, which are expected to be exposed first.  The 

strong emission in the second stage probably arises from the subsequent emergence of the stipe.  Further 

pulses of I2 were also observed to follow the main release event in several instances, displaying the same 

sporadic behavior seen by Dixneuf and co-workers over several hours, and also by Ball et al. in some 

samples (16, 24). Our results are also consistent with the observations of Nitschke et al. that relatively 

low light intensities had no significant effect on the emissions (Table 1) (17). 
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The rate and duration of emission of I2 appeared to increase markedly when algae were exposed to 

approximately 100 ppbv O3 (median emission rate of 400 pmol min-1 gFW-1).  However, the sample size 

for O3 experiments was insufficient to determine whether or not this result was significant.  Similar 

observations have been reported in other studies which showed increased emissions of I2 in the presence 

of O3 or other stress factors (16, 20, 25).  For instance, Ball et al. found emission rates of up to 386 pmol 

min-1 gFW-1, and Palmer et al. measured rates of 130 pmol min-1 gFW-1 averaged over 1 h (16, 25). The 

effect was more modest here, possibly owing to the larger data set and relatively low levels of oxidant, 

consistent with the correlation between O3 and I2 mixing ratios near Mace Head found by Huang and co-

workers (48).  If this correlation is robust, emission rates in the MBL would be somewhat lower than our 

observations.   

Finally, the findings of this study can be related to the release of I2 during the gradual emergence of L. 

digitata during low tide. During tidal retreat, the distal blades would emerge first, with increasingly 

longer sections floating at the surface.  Small amounts of I2 would be likely owing to the relatively lower 

emissions associated with the blades and because the blades would still be significantly covered by 

seawater, corresponding to the first emission stage observed in this work.  As the stipe gradually 

emerged with the receding tide (in some cases held proud of the sea surface), much stronger release of I2 

would be expected  This release is likely to extend over the duration of the progressive exposure of the 

stipe.  Agitation from wave action could also stimulate greater release of I2, as Bale et al. found (15).  

Clearly, I2 emissions from L. digitata depend strongly on the particular population density and 

distribution of these macroalgae at a given location.  For example, younger plantlets were shown to 

retain iodine in higher concentrations than older speciments which may result in a higher emission rate. 

It should be noted that our study did not address the influence of the season, temperature, age, or health 

on I2 emissions by L. digitata.  As the irradiance levels had no noticeable impact on the emitted amount 

or rate of I2, we calculate a combined (n=20) median emission rate of 55 pmol min-1 gFW-1 and a 

median amount emitted of 3.0 nmol gFW-1. 
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Figure 1. Schematic diagram of the simulation chamber. TOP: side view of the chamber showing the 

location of the sample; BOTTOM: view from above showing the two-channel IBBCEAS system. 
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Figure 2. The measured absorption in the chamber (black) and fit of the reference spectra (red) for (a) 

IO and (b) I2.  The fit residual is shown below each spectrum. 



 

18 

 

Table 1. Molecular iodine (I2) emission characteristics of L. digitata exposed to ambient air at 22 ± 2°C 

and defined irradiances EPAR of 15, 100, and 235 µmol photons m-2 s-1. Each experiment was carried out 

in five replicates (n=5). Significant effects of EPAR on I2 emission characteristics were analysed using the 

non-parametric Kruskal-Wallis test; P values are given. FW: fresh weight. DW: dry weight 

Replicate 
FW (DW) 

[g] 
Total I2 emitted 

[nmol] 

Amount I2 
emitted 

[nmol gFW-1] 

Duration of 
emission 

[min] 

Average 
emission rate 
[pmol min-1 

gFW-1] 

Maximum 
emission rate 
[nmol min-1] 

Low EPAR (15 µmol photons m-2 s-1) 
#1 400 (66.6) 1129 2.82 55 51.3 62.0 

#2 436 (79.8) 511 1.17 55 21.3 27.0 

#3 272 (44.2) 1158 4.26 63 67.6 107.8 

#4 374 (66.4) 1323 3.54 60 59.0 86.3 

#5 248 (40.4) 243 0.98 58 16.9 15.3 

Median  1129 2.82  51.3 62.0 

Medium EPAR (100 µmol photons m-2 s-1) 
#6 311 (48.2) 1366 4.39 60 73.2 138.4 

#7 380 (65.9) 1804 4.75 55 86.3 230.1 

#8 272 (42.6) 1743 6.41 55 116.5 231.0 

#9 253 (42.2) 97 0.38 55 7.0 7.2 

#10 303 (49.9) 233 0.77 55 14.0 30.6 

Median  1366 4.39  73.2 138.4 

High EPAR (235 µmol photons m-2 s-1) 
#11 360 (57.9) 1114 3.10 60 51.6 73.7 

#12 425 (62.2) 602 1.42 60 23.6 51.2 

#13 306 (43.6) 360 1.18 55 21.4 25.2 

#14 330 (54.7) 1681 5.09 60 84.9 185.1 

#15 335 (51.25) 3296 9.84 60 164 278.6 

Median  1114 3.10  51.6 73.7 

P value  0.811 0.613  0.651 0.619 
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Table 2. Molecular iodine (I2) emission characteristics of L. digitata exposed to ambient air without and 

with added O3 at 22 ± 2°C. Each experiment was carried out in five replicates (n=5). Significant effects 

of O3 on I2 emission characteristics were analysed using the non-parametric Kruskal-Wallis test; P 

values are given. FW: fresh weight. DW: dry weight. 

Replicate 
FW (DW) 

[g] 
Total I2 emitted 

[nmol] 

Amount I2 
emitted 

[nmol gFW-1] 

Duration of 
emission 

[min] 

Average 
emission rate 
[pmol min-1 

gFW-1] 

Maximum 
emission rate 
[nmol min-1] 

No O3 added 
#16 355 (78.7) 476 1.34 65 20.6 21.6 

#17 238 (45.7) 351 1.47 63 23.4 22.5 

#18 676 (153.9) 3065 4.53 70 64.8 273.2 

#19 229 (53.6) 1385 6.05 60 100.8 107.8 

#20 185 (49.8) 6832 36.93 60 616.0 422.4 

Median  1385 4.53  64.8 107.8 

O3 added 
#21 274 (53.7) 157 0.57 58 9.9 2.7 

#22 175 (34.6) 1681 9.60 65 147.7 57.5 

#23 213 (47.7) 7891 37.05 62 597.5 116.8 

#24 197 (43.6) 6210 31.52 70 450.3 192.3 

#25 171 (35.1) 5473 32.01 80 400.0 263.3 

Median  5473 31.52  400.0 116.8 

P value  0.548 0.421  0.548 0.841 
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Figure 3. Effect of varying ozone levels on (a) the maximum photosystem II efficiency Fv/Fm and (b) 

the maximum non-photochemical quenching of chl a fluorescence NPQmax (measured at 1160 µmol 

photons m-2 s-1) of Laminaria digitata during 70 min exposure to air.  The influence of defined 

irradiances EPAR on Fv/Fm and NPQmax are similarly presented in (c) and (d), respectively. Data are 

presented as mean and standard deviation (n=5). Significant effects of O3 on photosynthetic parameters 

were analysed by using Student’s t test; effects of EPAR were analysed by using 1-way ANOVA. P values 

are given. Letters above the bars indicate significant differences within groups (i.e. between each level 

of EPAR) as revealed by Tukey’s post hoc test. 
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Figure 4. Iodine emission profiles (black) and calculated rate of emission (blue) of two L. digitata. The 

four stages of the iodine emission profile are shown in the grey shaded area above the plot. The error 

bars are shown in red. 
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Figure 5. Time profiles of the mixing ratios of I2 (black dots), O3 (blue triangles) and IO (red dots, right 

axis) in the chamber following exposure of two specimens of L. digitata.   The calculated total I2 

emission is shown for three different branching ratios of the IO self-reaction (green lines) leading to 

formation of iodine oxide particles. 
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