
Title Investigation of the role of interleukin-1 family members, IL-33
and IL-36, in the pathogenesis of colon cancer

Authors O'Donnell, Charlotte

Publication date 2016

Original Citation O'Donnell, C. 2016. Investigation of the role of interleukin-1 family
members, IL-33 and IL-36, in the pathogenesis of colon cancer.
PhD Thesis, University College Cork.

Type of publication Doctoral thesis

Rights © 2016, Charlotte O'Donnell. - http://creativecommons.org/
licenses/by-nc-nd/3.0/

Download date 2024-03-28 18:17:02

Item downloaded
from

https://hdl.handle.net/10468/3793

https://hdl.handle.net/10468/3793


    

 

Investigation of the Role of Interleukin-1 

family members, IL-33 and IL-36, in the 

pathogenesis of colon cancer 

 

 

Submitted to the National University of Ireland, Cork  

in fulfilment of the  

requirements for the degree of Doctorate of Philosophy.  

 
 

 

 

 

 

Thesis presented by 

Charlotte O’Donnell BSc, 

Department of Medicine 

 

Under the supervision of 

Dr Aileen Houston and Dr Elizabeth Brint 

 

 

 

  



ii 

 

 

Table of Contents 
Declaration .............................................................................................................................. vii 

List of publications ................................................................................................................ viii 

Abstract .................................................................................................................................... ix 

Acknowledgements .................................................................................................................. xi 

Abbreviations .......................................................................................................................... xii 

1.0 Introduction ..................................................................................................................... 1 

1.1 Cancer ................................................................................................................................. 1 

1.1.1 Colon cancer .................................................................................................................... 1 

1.1.2 Colon cancer development ............................................................................................... 3 

1.1.3 CRC Staging .................................................................................................................... 5 

1.1.4 CRC Treatment ................................................................................................................ 6 

1.2 Inflammation and cancer ..................................................................................................... 6 

1.2.1 The Inflammatory component of tumours ....................................................................... 7 

1.2.2 Tumour associated macrophages ..................................................................................... 9 

1.2.3 Tumour associated Neutrophils ..................................................................................... 11 

1.2.4 Myeloid-derived suppressor cells .................................................................................. 11 

1.2.5 Tumour infiltrating lymphocytes ................................................................................... 12 

1.2.6 Regulatory T cells .......................................................................................................... 12 

1.2.7 Natural killer cells .......................................................................................................... 13 

1.3 The IL-1 cytokine ............................................................................................................. 13 

1.3.1 IL-1 and IL-1R family members .................................................................................... 14 

1.3.2 IL-1R family signalling .................................................................................................. 16 

1.3.3 IL-1α, IL-1β and the IL-1R complex ............................................................................. 16 

1.3.4 The IL-18 subfamily ...................................................................................................... 18 

1.4 ST2, a member of the IL-1R subfamily ............................................................................ 19 

1.4.1 Regulation of ST2 expression ........................................................................................ 19 

1.4.2 Expression of ST2 .......................................................................................................... 22 

1.4.3 IL-33, the ligand of ST2L .............................................................................................. 22 

1.4.4 Processing of IL-33 ........................................................................................................ 22 

1.4.5 IL-33 expression ............................................................................................................ 23 

1.4.6 Nuclear IL-33 regulates gene expression ....................................................................... 24 

1.5 IL-33/ST2 signalling ......................................................................................................... 25 

1.5.1 Regulation of ST2L signalling ....................................................................................... 27 



iii 

 

1.6 A physiological role for IL-33 .......................................................................................... 29 

1.6.1 A role for IL-33 in barrier function and epithelial wound healing ................................. 29 

1.6.2 The role of IL-33/ST2 in immune cells ......................................................................... 30 

1.7 The Pathological functions of IL-33/ST2 ......................................................................... 32 

1.7.1 IL-33/ST2 in inflammatory bowel disease ..................................................................... 32 

1.8 ST2 as a positive prognostic indicator .............................................................................. 33 

1.9 IL-33/ST2 in cancer .......................................................................................................... 34 

1.10 The IL-36 subfamily ....................................................................................................... 36 

1.10.1 Expression and function of IL-36 family members ..................................................... 37 

1.10.2 IL-36 regulation ........................................................................................................... 37 

1.10.3 IL-36 signalling ............................................................................................................ 38 

1.11 Physiological functions of IL-36..................................................................................... 40 

1.12 Pathophysiological functions of IL-36 ............................................................................ 41 

1.12.1 IL-36 in IBD ................................................................................................................ 41 

1.12.2 IL-36 in cancer ............................................................................................................. 42 

1.13 Aims: ............................................................................................................................... 44 

2.0 Material and Methods ........................................................................................................ 56 

2.1 Materials ........................................................................................................................... 56 

2.1.1 Cell lines and tissue ....................................................................................................... 56 

2.1.2 Mice ............................................................................................................................... 56 

2.1.3 Reagents ......................................................................................................................... 56 

2.2 Methods............................................................................................................................. 58 

2.2.1 Cell culture ..................................................................................................................... 58 

2.2.1.2 Viability ...................................................................................................................... 58 

2.2.2 Western blotting ............................................................................................................. 58 

2.2.2.1 Preparation of whole cell lysates ................................................................................ 58 

2.2.2.2 Quantitation of total protein concentration ................................................................. 59 

2.2.2.3 Sodium dodecyl sulphate polyacrylamide gel electrophoresis and Western blotting . 59 

2.2.2.4 Immunoblotting ........................................................................................................... 60 

2.2.3 Quantitative real-time polymerase chain reaction (qRT-PCR) ...................................... 60 

2.2.3.1 RNA extraction ........................................................................................................... 60 

2.2.3.2 cDNA preparation ....................................................................................................... 61 

2.2.3.3 qRTPCR ...................................................................................................................... 61 

2.2.5 MTT assay ..................................................................................................................... 62 

2.2.6 BrdU Assay .................................................................................................................... 63 

2.2.7 Immunohistochemistry .................................................................................................. 63 



iv 

 

2.2.8 Enzyme Linked Immunoassay (ELISA) ........................................................................ 64 

2.2.9 Cell migration assay ....................................................................................................... 64 

2.2.10 RAW 264.7 migration assay ........................................................................................ 65 

2.2.11 Invasion Assay ............................................................................................................. 65 

2.2.12 Caspase 3 and 7 Assay ................................................................................................. 66 

2.2.13 Generation of ST2 knockdown cancer cells................................................................. 66 

2.3 In vivo studies ................................................................................................................... 67 

2.3.1 Treatment groups and ear marking ................................................................................ 68 

2.3.2 Monitoring body weight................................................................................................. 68 

2.3.4 Tumour sampling ........................................................................................................... 68 

2.3.5 Single cell suspension of tumour cells for flow cytometric analysis ............................. 69 

2.3.6 Flow cytometry .............................................................................................................. 69 

2.4 Statistical analysis ............................................................................................................. 70 

Chapter 3 ................................................................................................................................... 71 

Characterisation of IL-33 and ST2 expression, signalling and function in colon cancer cells 

in vitro. ........................................................................................................................................ 71 

3.1 Introduction ....................................................................................................................... 72 

3.2 Results ............................................................................................................................... 75 

3.2.1 LPS induces ST2L expression in a murine macrophage cell line .............................. 75 

3.2.2 Human colon cancer cell lines express both sST2 and ST2L. ................................... 75 

3.2.3 Murine colon cancer cells express both sST2 and ST2L. .......................................... 75 

3.2.4 Colon cancer cell lines and macrophages express IL-33 mRNA, the ligand for ST2L

 ............................................................................................................................................ 80 

3.2.5 IL-33 protein expression was not effected by pro-inflammatory stimuli in colon 

cancer cells. ......................................................................................................................... 80 

3.2.6 IL-33 inhibits proliferation of colon cancer cells ....................................................... 83 

3.2.7 IL-33 induces migration, but not invasion of colon cancer cells ............................... 87 

3.2.8 IL-33 induces limited expression of cytokines/chemokines in colon cancer cells. .... 90 

3.2.9 IL-33 activates MAPK, NFκB and AKT signalling pathways................................... 91 

3.3 Discussion: ........................................................................................................................ 98 

3.3.1 sST2 expression was increased in colon cancer cells compared to ST2L expression 98 

3.3.2 IL-33 suppressed cancer cell proliferation ................................................................. 99 

3.3.3 IL-33 increased migration of colon cancer cells ...................................................... 100 

3.3.4 IL-33 activated chemokine production by colon cancer cells .................................. 101 

3.3.5 IL-33 activates signalling pathways common to other IL-1 family members ......... 103 

Chapter 4 ................................................................................................................................. 107 



v 

 

The IL-33/ST2 axis modulates tumour growth and the tumour microenvironment in vivo

 107 

4.1 Introduction: .................................................................................................................... 108 

4.2 Results: ............................................................................................................................ 111 

4.2.1 Generation of stable cell lines with suppressed ST2 expression by stable transfection 

with short hairpin RNA (shRNA) encoding plasmids. ..................................................... 111 

 .......................................................................................................................................... 112 

4.2.2 Knocking down ST2 expression in CT26-derived tumours increases tumour 

formation and growth in vivo. ........................................................................................... 114 

4.2.3 Ki67 expression was unchanged in CT26
ST2 shRNA#1

 tumours compared to CT26
scr 

shRNA#1
 tumours. ................................................................................................................. 117 

4.2.4 Generation and functional assessment of additional ST2
-/- 

CT26 cells in vitro and in 

vivo. ................................................................................................................................... 117 

4.2.5 Suppression of ST2 expression does not alter colon cancer cell proliferation in vitro 

in response to pro-inflammatory stimuli. .......................................................................... 130 

4.2.6 Suppression of ST2 expression in tumour cells results in reduced macrophage and 

CD8
+
T cell recruitment in vivo. ........................................................................................ 130 

4.2.7 Migration of macrophages towards tumour cell supernatant is increased by IL-33 

stimulation of the tumour cells. ......................................................................................... 135 

4.2.8 Serum levels of IL-33 are slightly decreased in CRC patients compared to healthy 

controls, while sST2 levels are unchanged. ...................................................................... 139 

4.2.9 Expression of ST2L in CRC is lower compared to adjacent non-tumour tissue ...... 139 

4.3 Discussion ....................................................................................................................... 143 

4.3.1 A potential anti-tumorigenic role for IL-33 in cancer: ............................................. 143 

4.3.2 The role of TAMs in tumorigenesis: ........................................................................ 145 

4.3.3 Alternative pro-tumorigenic role for IL-33/ST2 axis:.............................................. 147 

Chapter 5 ................................................................................................................................. 153 

Characterisation of the role of IL-36 in colon cancer ............................................................ 153 

5.1 Introduction ..................................................................................................................... 154 

5.2 Results ............................................................................................................................. 157 

5.2.1 IL-36α and IL-36γ expression were increased in tumour tissue compared to adjacent 

tissue, while IL-36R expression was unchanged. ............................................................. 157 

5.2.2 Characterisation of IL-36R
+ 

cells in colonic tumours. ............................................. 168 

5.2.3 Colon cancer cells express the IL-36R in vitro. ....................................................... 170 

5.2.4 IL-36α, IL-36β and IL-36γ cytokines induce cellular proliferation in SW480 cells, 

whereas in HT29 cells only IL-36γ increases cellular proliferation. ................................ 172 

5.2.5 IL-36 cytokines did not induce apoptosis in HT29 cells. ......................................... 172 

5.2.6 IL-36 cytokines did not induce migration of HT29 colon cancer cells. ................... 176 



vi 

 

5.2.7 Chemokines CXCL-1, CCL2 and CCL20 were produced in response to IL-36α and 

IL-36γ stimulation in HT29 human colon cancer cell lines. ............................................. 176 

5.3 Discussion ....................................................................................................................... 181 

5.3.1 IL-36 cytokines are increased in colon cancer: ........................................................ 181 

5.3.2 IL-36R expression on tumour infiltrating immune cells: ......................................... 183 

5.3.3 IL-36 induces proliferation of colon cancer cells: ................................................... 184 

5.3.4 IL-36 induces chemokine and cytokine induction: .................................................. 186 

6.0 Final discussion and future perspectives: ....................................................................... 189 

Bibliography ............................................................................................................................ 196 

Appendix .................................................................................................................................. 214 

A. Table of Primers ............................................................................................................... 214 

B. Table of Antibodies 1 ....................................................................................................... 216 

C. Table of Antibodies 2 ....................................................................................................... 217 

D. Table of Reagents ............................................................................................................. 218 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



vii 

 

 

Declaration 

 

I hereby declare that this thesis is the result of my own work and has not been submitted 

in whole or in part elsewhere for any award. Any assistance and contribution by others 

in this work is duly acknowledged within the text. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-------------------------------------- 

Charlotte O’Donnell 

  



viii 

 

 

List of publications 
 

This work has been published in the following formats: 

Journal article 

Charlotte O’Donnell, Amr Mahmoud, Jonathan Keane, Carola Murphy, Declan White, 

Siobhan Carey, Micheal O'Riordain , Michael Bennett, Elizabeth Brint and Aileen 

Houston.   

An anti-tumorigenic role for the IL-33 receptor, ST2L, in colon cancer, British 

Journal of Cancer 2016 January doi: 10.1038/bjc.2015.433. Epub 2015 Dec 17. 

Oral Presentation 

New Horizons in Medicine, Cork, Ireland.  O’Donnell C., Mahmoud A., Murphy C, 

Brint E. and Houston A., (2014), The Potential Role of the ST2/IL-33 axis, in Colon 

Cancer.              

Irish Society of Immunology, Dublin, Ireland. O’Donnell C., Mahmoud A., Murphy 

C, Brint E. and Houston A., (2014), Characterisation of the Role of ST2/IL-33 in Colon 

Carcinogenesis. 

                

Poster Presentations 

Cell Symposia: Cancer, Inflammation and Immunity, Sitges, Spain. O’Donnell C, 

Mahmoud A, Murphy C, Brint E and Houston A, (2015) The Role of IL-33 and ST2 in 

Colon Cancer  

Irish Association of Cancer Research, Limerick, Ireland. O’Donnell C, Mahmoud A, 

Murphy C, Brint E and Houston A, (2015), The Potential Role of the IL-33/ST2 axis in 

Colon Cancer.                 

EMBO Symposium: Tumour microenvironment and signalling, O’Donnell C, 

Mahmoud A, Murphy C, Brint E and Houston A, (2014), Characterization of the Role of 

ST2 and its Ligand, IL-33, in Colon Cancer. 

Irish Association of Cancer Research, Galway Ireland. O’Donnell C, Mahmoud A, 

Murphy C, Brint E and Houston A, (2014), Investigation of the role of ST2 and its 

ligand, IL-33, in Colon Cancer. 

Irish Society of Immunology, Dublin, Ireland. O’Donnell C, Mahmoud A, Murphy C, 

Brint E and Houston A, (2014), The Potential Role of IL-33 and its Receptor ST2 in 

Colon Carcinogensis. 

  



ix 

 

 

Abstract 

 

The importance of inflammation in cancer is well established, with 

cytokines/chemokines playing an important role in carcinogenesis. IL-33 was recently 

identified as the ligand for ST2. ST2 is a member of the toll-like receptor/IL-1 receptor 

family. Three isoforms of ST2 exist: a trans-membrane receptor (ST2L), a secreted 

soluble form (sST2), and a variant form (ST2V). The IL-33/ST2 pathway has been 

implicated in inflammatory bowel disease, a major risk factor for colon cancer. The aim 

of the first part of my thesis was to investigate the role of IL-33 and ST2 in colon 

cancer. CT26 and HT29 colon cancer cells were found to express ST2 and IL-33 in 

vitro, with expression increased by inflammatory mediators (LPS, TNF-α and PGE2). 

Stimulation with IL-33 increased the migration, but not proliferation, of colon tumour 

cells. Functional analyses showed that stimulation with IL-33 induced the expression of 

CXCL-1 by CT26 and CCL2 expression by HT29 cells. To investigate the role of ST2 

in vivo, ST2 knockdown cells were generated using ST2-specific shRNA (CT26 

ST2shRNA
) and injected subcutaneously into BALB/C mice. Knockdown of ST2 in colon 

tumours resulted in enhanced tumour growth (2.3 fold increase compared to CT26 

scrshRNA
) in vivo. This was associated with alterations in immune cell infiltration, 

including an increase in macrophage infiltration. In contrast, characterisation of human 

colon tumours revealed that ST2L expression was increased in tumour cells relative to 

adjacent non-tumour cells, with no change in expression of total ST2. These results 

indicate that the IL-33/ST2 signalling axis may play an important role in colon 

carcinogenesis and merits further investigation.  

The role of the IL-36R, a second IL-1R family member, in colon cancer was 

investigated in the second part of my thesis. Characterization of human colon tumours 



x 

 

ex vivo showed significantly increased expression of the IL-36 ligands, IL-36α and IL-

36γ, compared to adjacent non-tumour tissue. In vitro colon cancer cell lines HT29 and 

SW480 were shown to express the IL-36R and IL-36 ligands. IL-36α and IL-36γ 

stimulation of HT29 cells also increased the expression of the chemokines CXCL-1, 

CCL2, CCL20, and IL-8. This suggests that IL-36 signalling may promote tumour-

derived immune cell recruitment. This field requires further study to determine if the 

recruitment of immune cells by IL-36 signalling could be utilised to break tolerance 

against tumour antigens. This thesis has laid the basis for further studies to explore the 

role of IL-36 signalling in colon cancer.  

  



xi 

 

 

Acknowledgements 

 

I would like to thank my supervisors Aileen and Beth for all of their insight, guidance and 

dedication throughout the course of my PhD studies. I am very grateful to you both for all of 

your advice, positivity and hard work. I would also like to thank all of the members of the 

department of medicine both past and present for making work more fun along the way and of 

course for all of the cake breaks. A special thanks to Amruta, Ciara, Philana, Caitriona, and 

Declan for all of your technical and social assistance. 

To my parents, none of this would have been possible without your love and support. I am very 

grateful to both of you. I know I can never repay all that you have sacrificed for me and I realise 

how lucky I am to have you both. A special thanks to Steve and Stef, you two are a constant 

motivation to me. 

Last but not least, to Bryan the love of my life, I know that I would not have succeeded without 

all of the encouragement and support that you have given me. Thank you for letting me follow 

my dreams. 

 

  



xii 

 

 

Abbreviations 

 

AOM   azoxymethane 

β-actin   beta-actin 

BSA   bovine serum albumin 

CAC   colitis associated cancer 

CCL   C-C chemokine ligand 

CCR   C-C chemokine receptor 

CD   Crohn’s disease 

cDNA   complementary DNA 

c-FLIP   cellular FLICE-like inhibitory protein 

CLR   C-type lectin receptor 

CNS   central nervous system 

COX   cyclooxygenase 

CRC   colorectal cancer 

CTL   cytotoxic T lymphocytes 

CXCL   C-X-C chemokine ligand 

CXCR   C-X-C chemokine receptor 

DAMP   danger associated molecular pattern 

DC   dendritic cells 

DISC  death inducing signalling complex 

DMEM  Dulbecco’s modified Eagles Medium 

DSS   dextran sodium sulphate 

EDTA   ethylenediaminetetraacetic acid 

ELISA   enzyme-linked immunosorbent assay 

ERK   extracellular signal-regulated kinases 

FCS   foetal calf serum 



xiii 

 

FSC   Forward Scatter 

GF   germ free 

H&E   haematoxylin and eosin 

HRP   horseradish peroxidase 

IBD   inflammatory bowel disease 

IEC   intestinal epithelial cell 

IFN   interferon 

IL   interleukin 

iNOS   inducible nitric oxide synthase 

IP   immunoprecipitation 

IRAKm   interleukin-1 receptor-associated kinase monocytes/macrophages 

JNK   c-Jun N-terminal kinases 

LBP   LPS binding protein 

LPS   Lipopolysaccharide 

mAB   monoclonal antibody 

MAP   mitogen activated protein 

M-CSF   monocyte macrophage colony stimulating factor 

MCP-1   monocyte chemoattractant protein-1 

MDSC   myeloid derived suppressor cells 

MMP   matrix metalloprotease 

mRNA   messenger RNA 

MyD88   myeloid differentiation primary response gene 

NF-κB   nuclear factor kappa b 

NGS   normal goat serum 

NK   natural killer 

ODN   oligodeoxynucleotide 

PAMP   pathogen associated molecular pattern 



xiv 

 

PBS   phosphate buffered saline 

PGE2   prostaglandin E2 

PMA   phorbol 12-myristate 13-acetate 

PMN   polymorphonuclear leukocytes 

PPAR-γ   peroxisome proliferator-activated receptor gamma 

PRR   pathogen recognition receptor 

RA   rheumatoid arthritis 

RIPA   radio-immunoprecipitation assay 

RNA   Ribonucleic acid 

ROS   reactive oxygen species 

RT   room temperature 

RT   enzyme reverse transcriptase 

s.c.   subcutaneous 

SDS-PAGE   Sodium dodecyl sulphate polyacrylamide gel electrophoresis 

SEM   standard error of the mean 

shRNA   short hairpin RNA 

SIGIRR   single Ig IL-1-related receptor 

TAM   tumour associated macrophage 

TAN   tumour associated neutrophil 

TBS   tris buffered saline 

Th   T helper 

TIR   Toll/interleukin-1 (IL-1) receptor domain 

TLR   toll-like receptor 

TNF-α   tumour necrosis factor alpha 

TOLLIP   toll interacting protein 

TRAIL   TNF-related apoptosis-inducing ligand 

Tregs   T regulatory cells 



xv 

 

UC   ulcerative colitis 

WT   wild type 



1 

 

1.0 Introduction 
 

1.1 Cancer  

Carcinogenesis is a multi-step process that develops through epigenetic changes and 

mutation of multiple genes, including loss of function of tumour suppressor genes 

and gain of function of oncogenes. These genetic changes in normal cells can each 

contribute a growth advantage, leading to the transformation of cells into cancer cells 

[1]. In 2000, Hanahan and Weinberg described a series of 6 biological capabilities or 

‘hallmarks’ acquired by most types of cancers during the multi-step development of 

cancer  (Figure 1). They are as follows; ‘sustaining proliferative signalling’, ‘evading 

growth suppressors’, ‘activating invasion and metastasis’, ‘inducing angiogenesis’, 

‘resisting cell death’ and ‘enabling replicative immortality’ [2]. 

In 2011, Hanahan and Weinberg went on to describe two additional ‘hallmarks’ of 

cancer. These were ‘deregulating cellular energetics’ and ‘avoiding immune 

destruction’ (Figure 1). Acquisition of these capabilities is enabled by genomic 

instability, that is important for the generation of the genetic diversity that promotes 

their acquisition [3]. As well as genetic instability, a second enabling characteristic is 

tumour-promoting inflammation, which refers to the ability of the tumour to harness 

the inflammatory response to promote tumorigenesis. 

 

1.1.1 Colon cancer 

 

Adenocarcinoma of the colon and rectum (colorectal cancer (CRC)) is the third most 

common cancer worldwide, with over 1.4 million people diagnosed each year [4]. 1 

in 5 CRCs have a familial or congenital gene mutation that compounds colon cancer  
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 Emerging Hallmarks of cancer 

 Enabling Characteristics 

Figure 1: The ‘hallmarks’ of cancer. The hallmarks of cancer are biological 

functions acquired during the development of tumours. They include; sustaining 

proliferative signalling, evading growth suppressors, resisting cell death, enabling 

replicative immortality, inducing angiogenesis and activating invasion and 

metastasis. The two most recently described hallmarks of cancer are reprogramming 

of energy metabolism and evading immune destruction. Enabling characteristics 

such as genomic instability allow cancer cells to generate mutations that enhance 

tumour progression. The immune response used to protect against pathogenic insult 

can facilitate tumour promotion by activating proliferation and metastasis. Figure 

adapted from D Hanahan and R. Weinberg, Hallmarks of cancer: the next 

generation, Cell 2011. 
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risk and these cancers usually become established at a young age. Hereditary non-

polyposis colorectal cancer (HNPCC) accounts for approximately 5% of these cases 

and familial adenomatous polyposis (FAP) accounts for ~1%. The genetic mutations 

responsible for these two conditions lie in the mismatch repair genes and in the 

adenomatous polyposis coli (APC) gene, respectively. The remaining ~80% are 

sporadic, with no clear genetic origin. They usually occur at an advanced age. This 

suggests that environmental factors may cause genetic mutations that accrue over 

time.  

The risk of developing cancer depends on many factors. Those with a parent, sibling 

or child with the disease have a 2-fold increased risk of developing the disease [5]. 

Other risk factors include family history, increasing age, the presence of colonic 

polyps, inflammatory bowel disease (IBD) and a previous history of colon, ovarian 

or breast cancer. Environmental factors such as smoking, alcohol, viral exposure, 

exogenous oestrogens, a low fibre diet and physical inactivity have also been 

identified as important risk factors for developing colon cancer.  

1.1.2 Colon cancer development 

Colon cancer development normally follows a measured gradient process, in which 

various genetic mutations gradually accumulate over time, inducing the 

transformation of healthy cells into cancerous cells. In the majority of cases, this 

malignant disease begins as a benign adenomatous polyp, which then develops into 

an advanced adenoma with high grade dysplasia. This is followed by progression to 

carcinoma and ultimately to metastasis (Figure 2). This process normally takes  
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Initially, small adenomas form. Once severe dysplasia occurs, this marks the progression 

from early to late adenoma. The next sequential step is the progression from late adenoma 

to malignant carcinoma. During this transition increased vascularization and recruitment of 

immune cell populations are observed. This is followed by metastasis. Common alterations 

in genes and pathways associated with each stage of the transformation of normal 

epithelium to carcinoma are illustrated.  
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decades (Figure 2) [6]. Different genetic mutations have been shown to be associated 

with the various stages of colon cancer development (Figure 2). One of the earliest 

changes associated with CRC development is inactivation of the adenomatous 

polyposis coli (APC) tumour suppressor gene. APC is inactivated in the majority of 

sporadic CRCs, and is the genetic mutation responsible for colon tumour 

development in FAP [7]. Silencing of APC drives genomic instability and promotes 

cell growth as the cells are no longer bound by normal cell cycle checkpoints [8]. In 

many cancers, the RAS-GTPase family proto-oncogene K-RAS also becomes 

activated. This is usually linked with the transition from early to intermediate 

adenoma. The gene called deleted in colon cancer (DCC) can also be lost. This 

commonly occurs in the transition from intermediate adenoma to late adenoma. 

Mutations of the tumour suppressor p53 are associated with the development of 

carcinoma. Loss of chromosome 8p is associated with carcinoma to metastasis 

transition [9]. Other genes or pathways that are frequently mutated in CRC include 

the cyclooxygenase (COX) signalling pathway, the signal transducer 

phosphatidylinositol 3-kinase (PI3K), the Wnt/beta-catenin signal transduction 

pathway and the transforming growth factor (TGF)-β-signalling pathway [10-12].  

1.1.3 CRC Staging 

 

Clinical staging of CRC is used to determine the extent of the cancer and involves 

the use of the Tumour/Node/Metastasis (TNM) staging system. The TNM system 

classifies the stages of colon cancer under the following headings: T-the degree of 

invasion of the intestinal wall; N-the degree of lymphatic node involvement; and M-

the degree of metastasis. Stage I refers to CRCs confined to the mucosa or indicates 

lymph node metastasis and stage IV cancers are those that have metastasized to 
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distant organs. The liver and the lung are the two most common sites of CRC 

metastasis [13].  

1.1.4 CRC Treatment 

 

 Surgery alone is used to treat individuals with stage I or stage II CRC. Radiation 

therapy or chemotherapy may be recommended in stage III post-surgery. Most 

commonly 5-Fluorouracil (5-FU), lucovorin and oxaliplatin combined, or 

cappecitabine and oxaliplatin combined chemotherapy regimens are employed. In 

stage IV disease, chemotherapy may be employed pre-surgery to shrink tumours and 

also post-surgery to remove any remaining cancer cells not removed by surgery. At 

this stage, targeted therapies may be employed alone or in combination with the 

previously mentioned chemotherapy regimens. Targeted therapies include 

Cetuximab and Regorafenib which target the EGFR and VEGFR respectively. 

Radiation therapy is also used in Stage IV to relieve symptoms [14]. The 5-year 

survival rate for patients with stage I colon cancer is approximately 92% and this 

drops dramatically to ~11% for patients with state IV or metastatic disease [15].  

1.2 Inflammation and cancer 

 

The link between inflammation and cancer is well established, with inflammation 

highlighted as one of the enabling characteristics in cancer development [3]. As early 

as 1863, Virchow indicated that cancer tended to occur at sites of chronic 

inflammation. Indeed many cancers are associated with chronic inflammation. 

Patients with chronic hepatitis caused by Hepatitis B and C infection are at increased 

risk of developing hepatocellular carcinoma [16], while infection with human 

papilloma virus (HPV) is linked to the development of cervical cancer [17, 18]. In 

the colon, inflammatory bowel disease (IBD)-associated inflammation increases the 
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risk of developing CRC [19]. Inflammatory bowel diseases (IBDs) are inflammatory 

disorders of the gastrointestinal tract that can be subdivided into two major 

disorders: ulcerative colitis (UC) and Crohn’s disease (CD). Indeed, the extent and 

the duration of UC was found to directly correlate with the risk of CRC development 

[20]. Mortality is also increased in patients who develop CRC following UC [21], 

suggesting that the inflammatory processes observed in this disease may result in a 

more aggressive tumour phenotype.  

1.2.1 The Inflammatory component of tumours 

 

Tumours are composed of both tumour cells and non-tumour cells, with the tumour 

microenvironment describing the non-cancerous cells present in the tumour. In this 

microenvironment tumour cells interact with surrounding cells, including cancer-

associated fibroblasts, endothelial cells, adipocytes and immune cells. Immune cells 

present in the tumour microenvironment have been shown to have wide ranging 

effects. They can influence cellular proliferation signals, angiogenesis and tissue 

remodelling in ways that can either promote or suppress tumour progression (Figure 

3) [22].  

Immune cells are recruited into the tumour microenvironment by soluble chemo-

attractants produced by cancer cells and stromal cells [23-25]. Chemokines are small 

(8-11 kDa), secreted proteins that regulate the number and the phenotype of immune 

cells recruited by tumours. However, chemokines can also be exploited by the 

tumour to promote tumour growth, survival, angiogenesis and tumour cell migration 

[26, 27]. For instance, the chemokine CXCL1 can function as both a growth factor  
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Figure 3: Tumour-infiltrating immune cells and tumorigenesis. Upon 

recruitment to tumours, immune cells are exposed to various tumour- or immune-

derived factors. These factors can skew the function of the immune cell towards an 

anti-tumour or pro-tumour response. Immune cells associated with pro-tumour 

activities include M2 macrophages, N2 neutrophils, myeloid-derived suppressor 

cells (MDSCs) and T-reg cells. Immune cells associated with tumour rejection 

include M1 macrophages and N1 neutrophils. Anti-tumour activity is also displayed 

by various lymphocyte subsets, such as NK cells, CD8
+ 

T cells, γδ1 T cells and Th1 

cells. These leukocytes are usually cytotoxic and produce cytokines that can 

promote tumour rejection. 
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for cancer cells and as an angiogenic factor that regulates angiogenesis, which is 

critical for tumour growth and progression [28, 29]. 

Cytokines are low molecular weight protein mediators that facilitate cell-to-cell 

communication. Multiple cell types in the tumour microenvironment express these 

inflammatory mediators, including immune cells and stromal cells such as 

fibroblasts and endothelial cells. Cytokines perform numerous functions including 

the regulation of cellular proliferation, migration and cell death as well as immune 

cell activation.  Depending on the tumour microenvironment, cytokines can promote 

a pro- or anti-tumour immune response. This is dependent on a number of factors, 

including the balance of pro- and anti-inflammatory cytokines, their comparative 

concentrations and cytokine receptor expression by the immune cells [30].  

1.2.2 Tumour associated macrophages  

 

Macrophages are key components of the immune infiltrate found in tumours [31]. 

Two main macrophage phenotypes have been identified (Figure 4) [32]. Classically 

activated M1 macrophages are regarded as anti-tumorigenic, while M2 macrophages 

are pro-tumorigenic (Figure 4) [33, 34]. M1 macrophages can stimulate an anti-

tumour immune response via production of pro-inflammatory cytokines such as IL-

12, IL-23 and TNFα [35]. M2 macrophages promote an immunosuppressive 

microenvironment  by production of cytokines such as IL-10, can be 

immunosuppressive and inhibit the activity of Th1 cells and NK cells [36]. 

Moreover, this immune suppressed environment can be exploited by the tumour to 

invade surrounding tissue and metastasize to distant organs [37]. M1 and M2 

chemokine profiles can vary significantly, resulting in the recruitment of distinct 

immune cells. M1 macrophages are known to chiefly produce CXCL9 and CXCL10,  
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Figure 4: M1 versus M2 macrophages in tumorigenesis. Upon recruitment to the 

tumour, macrophages are exposed to factors derived from the tumour 

microenvironment that can skew their function. TAMs polarized towards an M1 

phenotype play a vital role in tumour rejection, while TAMs polarized towards an M2 

phenotype can drive tumour progression. M1 macrophages stimulate a tumour 

suppressing response via production of immunosuppressive cytokines, such as IL-1, 

IL-12 and TNFα. M2 macrophages activate a tumour promoting response by 

promoting angiogenesis, metastasis and invasion via a Th2 response. M2-polarized 

macrophages also produce potent pro-survival molecules. These molecules regulate 

gene expression in neoplastic cells by altering cell-cycle progression and increasing 

tumour cell survival. Together these processes circumvent immuno-surveillance and 

tumour-reactive immunity. 
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which are chemotactic factors for T-helper 1 (Th1) and cytotoxic T-cells (CTLs), 

while M2 macrophages mainly secrete CCL17 and CCL22, which recruit regulatory 

T cells (T-reg) and T-helper type (Th2) subsets [38, 39]. Studies have shown that 

tumour associate macrophages (TAMs) are phenotypically more like M2 

macrophages [40, 41]. M2 TAMs can contribute to tumorigenesis through several 

mechanisms, such as release of PGE2 and IL-10 which suppresses the anti-tumour 

immune response [42]. Alternatively activated TAMs facilitate tumour growth by 

secreting pro-angiogenic factors [43]. Although TAMs are predominantly associated 

with poor prognosis in many cancers, the role of TAMs in CRC still remains unclear. 

Indeed, numerous studies have shown that TAMs can positively influence CRC 

patient survival [44-46].  

1.2.3 Tumour associated Neutrophils 

 

Although not as well studied as TAMs, tumour associated neutrophils (TANs) can 

have either a pro-tumorigenic (N1) or an anti-tumorigenic (N2) phenotype.  N1 

neutrophils are cytotoxic to tumour cells and express increased levels of the pro-

inflammatory cytokines IL-12, VEGF, TNF-α, and IL-1β [199]. N1 TANS also 

produce tumouricidal factors such as proteases [47], while N2-neutrophils secrete 

arginase to suppress T cell effector functions, comparable to M2 like TAMs. N2 

TANS can also influence angiogenesis [48] through the production of mediators 

such as oncostatin M, which stimulate the production of  VEGF by malignant cells 

[49].  

1.2.4 Myeloid-derived suppressor cells 

 

Myeloid-derived suppressor cells (MDSCs) are CD11b
+
Gr1

+
 immature myeloid cells 

that have been shown to be capable of suppressing immune responses. In addition, 
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these cells become pathologically activated and can directly support tumour 

progression. MDSCs suppress immune function in a number of ways including the 

expression of arginase, inducible NOS (iNOS) and COX2 [50]. 

 

1.2.5 Tumour infiltrating lymphocytes  
 

Low numbers of lymphocytes are found in tumours, these cells predominantly 

localize to the invasive margin [51]. T cells can express either CD8 glycoprotein and 

are called CD8
+
 T cells (cytotoxic) or CD4 glycoprotein and are called CD4 cells, 

but are also known as T helper (Th) cells. The two main subsets of CD4
+
 cells are 

Th1 and Th2 cells. These cells differ in their cytokine secretion patterns and 

functions [52]. Th1 cells are involved in the maturation of B cells and the activation 

of macrophages. Th2 cells play a key role in immunological tolerance [53]. Although 

both CD4
+
 and CD8

+
 T cells can infiltrate tumours, CD4

+
 T-cells are unable to 

recognise cancer cells directly [54], as opposed to CD8
+
 T cells, which can directly 

kill cancer cells. Indeed, intraepithelial CD8
+
 TILs were found to be a positive 

predictor of survival in CRC [55, 56]. Similarly low CD8
+
 T cell infiltration is 

indicative of therapy resistance and poor prognosis in many human malignancies 

[57, 58].  

1.2.6 Regulatory T cells 
 

Regulatory T cells (T-regs) are CD4
+
CD25

+
Foxp3

+
 cells involved in maintaining 

self-tolerance [59]. One of the ways in which they promote immune suppression in 

CRC is through production of TGF-β and IL-10. [60]. TGF-β can directly suppress 

effector T cell signalling [61]. However, the role of T reg cells in CRC is 
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controversial as numerous studies have shown that increased T reg cells are 

indicative of an improved prognosis [60, 62]. 

1.2.7 Natural killer cells 
 

Natural killer (NK) cells are cytotoxic cells that target and kill both virally infected 

cells and cancer cells [63]. NK cells initiate the innate immune response [64] and can 

promote powerful anti-tumour cytotoxicity in vitro. Their cytotoxicity is dependent 

on the level of activation of the NK cells by the presence of surface markers, as 

tumours express both activating and inhibiting receptors [65]. Transformed cells may 

express reduced levels of MHC class I molecules in combination with other ligands. 

This enables them to evade being targeted by CD8
+
 T cells and CTLs. However, this 

makes them more vulnerable to attack by NK cells [66].  

1.3 The IL-1 cytokine 

 

The cytokine, IL-1, has been the subject of copious research since it was first 

identified. This pro-inflammatory cytokine is known to play a dichotomous role in 

disease by inducing pathogenesis of auto-inflammatory disorders, while 

simultaneously defending against invading pathogens [67]. IL-1 is implicated in the 

development of numerous inflammatory diseases including ulcerative colitis [68]. 

This has resulted in the mechanism behind IL-1 signalling becoming the subject of 

much interest. Likewise, novel members of both the IL-1 family of cytokines and the 

IL-1 receptor (IL-1R) family are also the focus of intense research in order to 

determine their involvement in the host response to disease. I will now discuss these 

cytokines and receptors in more detail, focusing specifically on the IL-33/ST2 and 

IL-36/ IL-36R pathways as these are the subject of this thesis.  



14 

 

1.3.1 IL-1 and IL-1R family members 

 

The IL-1R/ toll-like receptor (TLR) superfamily consists of two subgroups: the IL-

1R family whose members contain three extracellular immunoglobulin domains (Ig) 

and the Toll-like receptor subgroup whose members contain extracellular leucine-

rich repeats. All family members share a similar intracellular Toll-IL1R (TIR) 

domain, which is required for binding of adaptor proteins. The IL-1 family is divided 

into three subfamilies based on the length of the N-terminal domain (Table 1). The 

IL-1 subfamily consists of IL-1α, IL-1β, IL-1Ra and IL-33. The IL-18 subfamily is 

composed of IL-18 and IL-37, and finally the IL-36 subfamily contains IL-36α, IL-

36β, IL-36γ, IL-36RN and IL-38.   

The IL-1R family members are as follows; the type I IL-1 receptor (IL-1R1) [69], 

which binds IL-1α and IL-1β and was the first member of the family to be identified, 

the type II IL-1 receptor (IL-1R2) which is a decoy receptor [70], ST2 (IL-1RL1) 

which binds IL-33 [71-74], and the IL-1Rrp2 (IL-36R), which binds three agonistic 

ligands, IL-36α, IL-36β and IL-36γ (Figure 5) [75]. Other IL-1R family members 

include the IL-1 receptor accessory protein (IL-1RAcP) [76], which acts as a co-

receptor for IL-1R, ST2 and IL-36R, the IL-18 receptor (IL-18Rα) [77, 78] and its 

accessory protein (IL-18Rβ), and TIGIRR-2 (IL-1 receptor accessory protein like) 

[79, 80] and the three Ig domain-containing IL-1 receptor-related (TIGIRR-1) [79, 

81] . Single Ig-domain containing Il-1 receptor related (SIGIRR) [82] is also a family 

member although it only possesses one Ig-domain extracellularly, similar to the IL- 
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Previously 
 called 

Name Receptor/ 
coreceptor 

Property Synthesized as 
precursor 

Processing 
required 
for activity 

IL-1F1 IL-1α IL-1R1/ 
IL-1RAcP 

Proinflammatory Yes No 

IL-1F2 IL-1β IL-1R1/ 
IL-1RAcP 

Proinflammatory Yes Yes 

IL-1F3 IL-1Ra IL-1R1 Antagonist for IL-
1α,β 

No No 

IL-1F4 IL-18 IL-18α/ 
IL-18β 

Proinflammatory Yes Yes 

IL-1F5 IL-
36Ra 

IL-1Rrp2 Antagonist for IL-
36 

Yes Yes 

IL-1F6 IL-36α IL-1Rrp2/ 
IL-1RAcP 

Proinflammatory Yes Yes 

IL-1F7 IL-37 IL-18Rα,IL-
18BP 

Anti-inflammatory Yes Yes 

IL-1F8 IL-36β IL-1Rrp2/ 
IL-1RAcP 

Proinflammatory Yes Yes 

IL-1F9 IL-36γ IL-1Rrp2/ 
IL-1RAcP 

Proinflammatory Yes Yes 

IL-1F10 IL-38 IL-1Rrp2 ?Antagonist Yes ?No 

IL-1F11 IL-33 ST2/IL-
1RAcP 

Proinflammatory Yes No 

 

 

 

 

 

 

Table 1: IL-1 family ligands and receptors The IL-1 family is divided into three 

subfamilies based on the length of the N-terminal pro-pieces. The IL-1 subfamily 

shown in green consists of IL-1α, IL-1β, IL-1Ra and IL-33. The IL-18 subfamily is 

composed of IL-18 and IL-37 shown in blue, and finally the IL-36 subfamily contains 

IL-36α, IL-36β, IL-36γ, IL-36Ra and IL-38 (purple). The TIR domain of each 

receptor chain comes together and recruits MyD88. IL-36Ra binds to IL-1Rrp2 but 

fails to form a complex with IL-1RAcP. Thus, IL-36Ra prevents the binding of IL-

36α, IL-36β, or IL-36γ to IL-1Rrp2, and thus is the natural IL-36R antagonist. 
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18BP  [83]. SIGIRR is considered an orphan receptor, and it also has regulatory 

activity [84].The IL-1 family of cytokines share a core tetrahedron-like structure 

composed of 12 β-strands [85]. This family consists of 11 members, of which seven 

are agonistic (i.e. IL-1α, IL-1β, IL-18, IL-33, IL-36α, IL-36β, and IL-36γ) and four 

are antagonistic (IL1Ra, IL-36Ra, IL-37 and IL-38). The genes encoding the IL-1 

family cytokines cluster on human chromosome 2, with the exception of IL-33 and 

IL-18, which are located on chromosome 9 and 11, respectively [86]. IL-1 family 

members form heterodimeric transmembrane receptor complexes and trigger 

signalling pathways that include the adaptor molecule MYD88, IRAK kinase family 

members and the ubiquitin ligase TRAF6. 

1.3.2 IL-1R family signalling 
 

The receptor complex for each IL-1 family cytokine is a heterodimer with a specific 

receptor and a common subunit, usually the IL-1RAcP. Once the complex is formed, 

following interaction with its cognate ligand, the TIR domain of each receptor chain 

come together and recruit MyD88, followed by phosphorylation of IL-1R–associated 

kinases (IRAKs) and activation of TRAF6 (Figure 5). This pathway diverges to 

activate mitogen activated protein kinases (MAPKs) such as ERK, JNK and p38 or 

to activate TAK1, which subsequently results in the translocation of NF-κB to the 

nucleus. However, not all IL-1 family receptors activate these pathways; e.g. 

SIGIRR is an inhibitory receptor, inhibiting IL-1, IL-18 and IL-33 signalling [87].  

1.3.3 IL-1α, IL-1β and the IL-1R complex 
 

The IL-1R1 is the best characterised receptor in the IL-1R superfamily. This 80kDa 

glycoprotein binds the agonists IL-1α and IL-1β, which have similar biological 

properties. However, there are some differences between these cytokines. The IL-1α  
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Figure 5: IL-1R family signalling activates MAPK and NF-κB. The IL-1 

subfamily consists of IL-1α, IL-β, IL-1Ra, and IL-33. The IL-18 subfamily is 

composed of IL-18 and IL-37. While IL-36α, IL-36β, IL-36γ, IL-36Ra and IL-38 all 

belong to the IL-36 subfamily. The receptor for each IL-1 family cytokine is a 

heterodimer composed of a specific receptor and a common co-receptor. The TIR 

domain of each receptor chain align and recruit MyD88, followed by phosphorylation 

of IL-1R–associated kinases (IRAKs), activation of TRAF6, and this pathway 

activates mitogen activated protein kinases (MAPKs). TAK1 can also be activated 

this results in the translocation of NF-κB to the nucleus. However, not all IL-1R 

family members activate these pathways. SIGIRR contains an altered TIR domain 

and inhibits IL-18 signalling.  
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precursor is fully active and found in epithelial layers throughout the gastrointestinal 

tract. It is released upon necrotic cell death to function as a cellular “alarmin” [88, 

89]. IL-1α also contains a nuclear localization signal and localizes to the nucleus. In 

contrast, IL-1β is produced by haematopoietic cells such as macrophages and must 

be cleaved by caspase 1 to become active. Moreover, it has never been observed in 

the nucleus. In tumorigenesis another variation between IL-1α and IL-1β has been 

observed. IL-1β-deficient mice develop fewer tumours compared to IL-1α-deficient 

mice [90]. IL-1β has also been shown to induce angiogenesis and enhance metastatic 

spread [91]. The IL1R antagonist (IL-1Ra) functions to block both IL-1α and IL-1β 

activity. The type II IL-1 R contains a truncated cytoplasmic domain lacking the TIR 

domain and therefore is unable to transduce a signal upon IL-1 ligation. It functions 

as a decoy receptor to negatively regulate IL-1 signalling [92]. 

1.3.4 The IL-18 subfamily 

 

The cytokine IL-18 was first recognised in 1995 as a potent inducer of IFN-γ [93]. 

The receptor for this cytokine, the IL-18R, was identified as a member of the IL-1R 

family due to its homology to the IL-1R1, IL-1RAcP and ST2 [77]. The IL-18R 

shares the common conserved sequences found in all members of the IL-1R family. 

Similar to IL-1β, IL-18 is synthesized as an inactive precursor and requires 

activation by caspase-1 cleavage. The IL-18 precursor is constitutively expressed in 

most human and murine cells [94]. Once activated, IL-18 binds to the IL-18 α-chain 

(IL-18Rα) forming a signalling complex. The accessory protein IL-18R β-chain (IL-

18Rβ) then associates to form a heterodimeric complex. The IL-18 binding protein 

(IL-18BP) is located in the extracellular compartment and regulates IL-18 activity by 

binding to mature IL-18 and preventing it from activating the IL-18R. IL-37 is also a 



19 

 

member of the IL-18 family. The IL-18 precursor is structurally similar to the IL-37 

precursor and IL-37 also binds to the IL-18R to inhibit signalling. IL-37 is an anti-

inflammatory cytokines, similar to IL-10. IL-37 suppresses innate inflammation and 

immune responses in a number of ways, including by inhibiting DC activation at the 

cellular level [95].   

1.4 ST2, a member of the IL-1R subfamily 

 

ST2 is a member of the IL-1R subfamily and was identified in 1989 [72, 73, 96]. The 

ST2 gene is located on chromosome 2q12 in humans and contains 13 introns and 

spans 40 kilobases (kb) [97]. In humans three splice variants exist, ST2L, sST2 and 

ST2V (Figure 6a). ST2L is a transmembrane bound receptor and as such specifically 

belongs to the Toll/IL-1R (TIR) superfamily and shows homology to the intracellular 

domain of IL-1R1 [97-99].  sST2 is a soluble protein with no transmembrane 

sequence, it is excreted extracellularly and binds to IL-33. Both ST2L and sST2 

contain three identical Ig extracellular domains, although sST2 lacks the 

transmembrane sequence. Instead sST2 contains an additional 9 amino acids at the C 

terminus. sST2 is thought to act as a decoy receptor sequestering IL-33 away from 

the transmembrane bound receptor ST2L [100]. ST2V is a membrane-bound 

receptor that contains a hydrophobic tail [101]. It contains two Ig domains and is 

expressed in the gut [102]. The function of ST2V has not been fully elucidated [103].  

1.4.1 Regulation of ST2 expression 

 

All ST2 isoforms are produced from the IL-1RL1 gene as a result of alternative 

splicing under the control of two distinct promoters, the distal and the proximal 

promoter (Figure 6b) [104, 105]. Early ST2 expression studies were carried out on  
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Figure 6: There are three human ST2 isoforms- ST2L, sST2 and ST2V. ST2 

is encoded by the IL1RL1 gene. In humans three splice variants exist, ST2L, 

sST2 and ST2V. (a) ST2L is a transmembrane receptor that binds to IL-33. sST2 

is a soluble protein with no transmembrane sequence and can also bind to IL-33. 

ST2V is a membrane-bound receptor that contains two Ig domains and a 

hydrophobic tail. (b) All ST2 isoforms are produced from the IL-1RL1 gene as a 

result of alternative splicing under the control of two distinct promoters, i.e. the 

distal and the proximal promotor.  
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the rat ST2 gene, known as Fit1. The ST2 gene contains two discrete promoters. It 

was originally suggested that the sST2 and ST2L mRNA isoforms were transcribed 

from different promoters resulting in alternative splicing to generate two discrete 3’ 

coding sequences [106]. Further investigations demonstrated that both the human 

and murine ST2 genes similarly contain both promoters, a distal and a proximal 

promoter [104]. However, in contrast to the initial study, it was shown that the two 

isoforms can be transcribed from either promoter, with the choice of promoter 

governed by the cell type. For instance, the human leukaemic cell line, UT-7 can 

transcribe both ST2 isoforms using either the distal or proximal promoter, but 

predominantly use the distal promoter. In contrast, most ST2 expression in the 

human TM12 fibroblastic cell line is initiated from the proximal promoter [105]. 

Similarly, it was found that mast cells utilised the distal promoter, while fibroblasts 

employed the proximal promoter, suggesting that promoter usage is dependent on 

the cell type and is not transcript specific [104].  

The distal ST2 promoter contains two GATA consensus sites which enable binding 

of the transcription factors GATA1 and GATA2, both of which are involved in the 

regulation of ST2 gene expression. These transcription factors bind upstream of the 

transcription start site and regulate ST2 gene transcription. The ST2 promoter is 

transactivated by GATA-2 and repressed by GATA-1 in mast cells and basophils 

[107]. In mast cells and Th2 cells, ST2L expression is regulated by transcription 

factors GATA-3 and STAT5 [108, 109], while the transcription factor Gfi1 was 

found to upregulate surface expression of ST2L in innate lymphoid cells [110]. IL-

33, the ligand for ST2, has been found to downregulate sST2 and ST2L mRNA in 

pancreatic cancer cells [111]. 
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1.4.2 Expression of ST2 
 

The kidney, lung, placenta and stomach all express high levels of sST2 and ST2L. In 

addition, many endothelial cells from lung, bronchus, coronary artery and umbilical 

cord express both ST2L and sST2 mRNA [112]. The expression levels of the 

isoforms vary, with ST2L expression found to be higher in the spleen, heart, testis 

and colon than sST2, whilst sST2 expression levels are higher in the brain and liver 

[97]. sST2 is induced by serum. ST2L is also expressed on the surface of fibroblasts 

and hematopoietic cells such as T helper type 2 (Th2) lymphocytes and mast cells 

[113, 114], and has recently been found to be expressed by Th1 cells, CD8
+
T cells, 

NK cells and NKT cells [115-118]. 

1.4.3 IL-33, the ligand of ST2L 
 

IL-33 was originally named nuclear factor from high endothelial venules (NF-HEV), 

as it was first found to be expressed in the nucleus of quiescent endothelial cells 

[119-121]. Later, in 2005, IL-33 was identified as a member of the IL-1 family of 

cytokines and as the ligand for ST2L [122]. Unlike other IL-1 family members, 

which are located on chromosome 2, the IL-33 gene is located on chromosome 9 at 

9p24.1. It spans ~16 kb and contains seven exons and contains two alternative 

promoters. Human IL-33 comprises 270 amino acids (aa), while murine IL-33 

consists of 266 aa [85]. 

1.4.4 Processing of IL-33 
 

Different IL-33 splice variants have been observed in human tissues. IL-33 is 

generated as a full-length protein [123-127], and contains a caspase-1 cleavage site 

[122]. It was originally proposed that full-length IL-33 required cleavage by caspase-
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1 [123, 125], similar to IL-1β and IL-18, to generate the mature biologically active 

form of the cytokine [125-127]. However, further studies demonstrated that full-

length IL-33 does not require activation by caspase-1 to be active [128]. Although 

IL-33 is not activated by caspase-1, IL-33 can be processed by caspase-3 and 

caspase-7 to yield biologically inactive fragments [125-127].   

Processing by proteolytic enzymes may play a vital part in modulating IL-33 activity 

during inflammation. Un-cleaved full-length IL-33 is released from the nucleus of 

barrier tissue during necrosis and functions as a danger signal or ‘alarmin’. However, 

the alarmin signal can be amplified by cleavage of macrophage, neutrophil, or mast 

cell-derived proteases, such as elastase, which cleaves full-length IL-33 into the IL-

3395-270, IL-3399-270, and IL-33109-270 mature forms. These isoforms are between 18 

and 21 kDa in human and 20 kDa in mouse, i.e. IL-33102-266. These mature forms of 

IL-33 have up to 30-fold increased biological activity compared to the full length 

uncleaved, IL-33 [129]. In this way a small number of alarmin molecules can have a 

potent local effect upon proteolytic cleavage of the N-terminus. Bioactivity is lost 

upon cleavage of the core IL-1 family structure by chymase or other proteases 

secreted by mast cells, thus silencing the alarmin signal [130]. A second mechanism 

of silencing IL-33 has also been documented. This involves the formation of two 

disulphide bridges, which inhibits binding of IL-33 to ST2L, thus abrogating the 

ability of IL-33 to transduce a signal [131]. 

1.4.5 IL-33 expression 
 

IL-33 is expressed by a diverse range of cells in many organs, such as activated 

leukocytes, especially innate immune cells (e.g. mast cells, macrophages and DCs), 

endothelial cells, epithelial cells, keratinocytes, fibroblasts, fibrocytes and smooth 
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muscle cells [132]. IL-33 can be induced by immune stimuli. For instance, pro-

inflammatory stimuli or pathogen recognition receptor (PRRs), especially TLRs, 

induce IL-33 expression in immune cells [133]. Similarly, in human keratinocytes 

IL-33 expression is constitutively weak but is strongly induced during inflammation 

[134]. In contrast, although IL-33 is also constitutively expressed in mouse epithelial 

cells of various origins, expression is lost during acute inflammation [134]. 

However, this is thought to be due to its release to perform its alarmin function. 

IL-33 exhibits two diverse functions. IL-33 can function as a cytokine that binds to 

ST2L and regulates the immune response, epithelial repair and activates Th2 cells. 

IL-33 can also function as a nuclear factor involved in maintaining barrier function 

through gene regulation. However, once the barrier is breached, IL-33 is released 

and functions as an ‘alarmin’. The structure of IL-33 is vital to its multiple functions. 

IL-33 shares the IL-1 family C-terminal core tetrahedron structure, and similar to 

other IL-1 cytokine members, IL-1β and IL-18, IL-33 is translated without a signal 

sequence for secretion [135].  

1.4.6 Nuclear IL-33 regulates gene expression 
 

Under homeostatic conditions IL-33 predominantly localizes to the nucleus as it 

possesses a nuclear localization signal within its N terminus [136]. Here it functions 

as a nuclear factor, binding directly to chromatin in the nucleus. Chromatin 

interaction is enabled by a conserved homeodomain-like helix-turn-helix motif 

located in the N-terminal domain [136, 137]. Nuclear IL-33 regulates gene 

expression in numerous ways. IL-33 binds to the nucleosome acidic patch in histone 

H2A-H2B dimers and regulates chromatin structure and by default, gene expression 

[136-138].  IL-33 also activates histone deacetylase-3 (HDAC3) activity, indicating a 
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potential role for IL-33 in modulating epigenetic regulation [139]. IL-33 may also 

bind to the transcriptional repressor, histone methyltranserase SUV39H1 [136]. 

Additionally, nuclear IL-33 has been reported to directly bind to NF-κB, suppressing 

its activity [140]. IL-33 has been shown to alter expression of the p65 NF-κB subunit 

by binding to the p65 promoter [141]. 

1.5 IL-33/ST2 signalling  
 

IL-33 functions as a cytokine once it has been secreted into the extracellular 

environment. Similar to other IL-1 family members, it binds to its specific plasma 

membrane receptor, ST2L. Once IL-33 has bound to ST2L, the receptor undergoes a 

conformational change, recruiting the IL-1RAcP, thus bringing the two intracellular 

TIR domains together [85]. Signalling occurs as previously described in section 1.2 

(IL-1 family signalling). Similar to other IL-1 signalling pathways, IL-33 signal 

transduction may result in the phosphorylation of extracellular signal-regulated 

kinase (ERK) 1/2, p38 MAPK and  JNKs (Figure 7) [122]. IL-33 may therefore also 

activate the transcription factor AP-1 independently of NF-κB activation [142]. 

Indeed, although TRAF6 appears to be required for IL-33-mediated NF- B 

activation, IL-33-mediated ERK activation may be TRAF6-independent [143]. This 

indicates a level of variation between the IL-33/ST2 pathway and other IL-1R 

signalling pathways. 

In certain cells, such as mast cells, IL-33/ST2L signalling appear to be more 

complex as the IL-1RAcP has been shown to be complexed to c-Kit, a receptor 

tyrosine kinase (RTK). ST2L cross-activates c-Kit, and this RTK regulates IL-33 

signalling in mast cells [144]. c-Kit is activated by its ligand, stem cell factor (SCF). 

As well as mast cells, c-Kit is also expressed by haemopoiectic stem cells, progenitor  
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Figure 7: IL-33/ST2 signalling in immune cells. IL-33 binds to the ST2L receptor and 

once the IL-1RAcp is recruited, the TIR domain of IL-1RAcp aligns with the ST2L TIR 

domain. The heterodimeric complex acts as a scaffold for the recruitment of MyD88, 

IRAK-1 and IRAK4. This results in the phosphorylation of IκB which activates the 

transcription factor NF-𝜅�B. AP-1 has also been shown to be activated through 

phosphorylation of the MAPK signalling pathway. This activates a pro-inflammatory 

response via the induction of cytokines and chemokines such as IL-6, IL-1β, TNF and 

CCL5.  
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cells, innate lymphoid cells and neoplastic cells. It is unclear whether other RTKs 

associate with the IL-33/ST2L complex, and are involved in attenuating IL-33 

responses [145].  

Downstream of IL-33 signalling, activation of this pathway has been shown to have 

far reaching effects in many different cell types. The number of genes or proteins 

modified varies depending on the cell type being examined. In RAW 264.7 murine 

macrophages, IL-33 stimulation altered the expression of over 670 proteins [146]. In 

CCD-18Co, a subepithelial myofibroblast cell line, IL-33 upregulated 700 transcripts 

and downregulated 650 transcripts [147]. In human umbilical vein endothelial cells 

(HUVECs), IL-33 regulated over 300 genes [148]. Further research on the response 

of cells to stimulation with IL-33 alone and combined with other cytokines may 

provide an insight into the in vivo crosstalk which occurs during inflammation. 

1.5.1 Regulation of ST2L signalling 
 

Given the potent immune reactions that occur following IL-33-induced ST2 

signalling it is essential that this pathway is tightly regulated. Activation of ST2L by 

IL-33 results in activation of focal adhesion kinase (FAK) and glycogen synthase 

kinase-3β (GSK-3β) (Figure 8) [149]. Activated GSK-3β binds to ST2L at Ser446 

and phosphorylates it at Ser442. This results in the swift internalization of ST2L 

[150]. Transmembrane emp24 domain- containing (TMED1) is a protein involved in 

the vesicular trafficking of proteins. TMED1 co-precipitates with ST2L [151]. Once 

internalized, ST2L is polyubiquitinated by the E3 ubiquitin ligase FBXL19, [149], 

leading to  proteasomal degradation of ST2L. IL-33 and ST2L signalling can also be 

regulated in other ways. Unlike other IL-1 family members, there is no known  
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Figure 8: Degradation of the IL-33 signalling complex.. Internalization and 

degradation of the IL-33 signalling complex occurs through the activation of 

FAK, which in turn activates GSK-3β. GSK-3β phosphorylates ST2L and 

once labelled ST2L is rapidly internalized. The IL-33R complex is 

internalized and extracellular regions are digested. The cytoplasmic region of 

ST2L is polyubuitquitinated and sent for proteasomal degradation. This figure 

was adapted from N. Martin et al., IL- 33 is a guardian of barriers and a local 

alarmin, 2015. 
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antagonistic ligand for ST2L. However, SIGIRR is an IL-1R family member that 

associates with ST2L. It is known to negatively regulate IL-1R-mediated immune 

responses [152], and may interact with ST2L to inhibit IL-33/ST2L signalling. 

Evidence of this comes from SIGIRR-/- mice where IL-33 has been shown to induce 

a greater inflammatory response in the absence of SIGIRR [153, 154]. The 

heterodimer IL-1RAcP that makes up the IL-33/ST2 signalling complex is 

constitutively expressed at low levels and does not appear to be subject to notable 

modulation.  

1.6 A physiological role for IL-33 

 

1.6.1 A role for IL-33 in barrier function and epithelial wound healing   

 

IL-33 is constitutively expressed by cells involved in the maintenance of mechanical 

barriers, including keratinocytes, lung and gut epithelial cells, fibroblasts and smooth 

muscle cells [145]. In these cells IL-33 is localized to the nucleus and mediates gene 

transcription. IL-33 is believed to maintain a quiescent state as it is only produced in 

barrier cells when they are senescent. Indeed, downregulation of IL-33 has been 

linked to the initiation of cellular proliferation in barrier cells [145]. Once a barrier is 

breached, nuclear IL-33 is released and functions as an “alarmin” or damage 

associate molecular pattern (DAMP) [155]. This extracellular IL-33 binds to ST2L 

expressing cells, such as mast cells, DCs, macrophages or group 2 innate lymphoid 

cells to activate a primary acute immune response. Th2 and mast cells constitutively 

express ST2L on the surface and rapidly respond to IL-33 [156]. Mast cells secrete 

pro-inflammatory cytokines, typically resembling a Th2 response (i.e. IL-4 and IL-

5), thus promoting the migration of basophils and eosinophils to the site of the 

barrier breach. Proteases are also secreted which disrupt connective tissue to allow 
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the influx of immune cells. These enzymes cleave the full-length IL-33 alarmin into 

N-terminally truncated forms, which can amplify the bioactivity up to 30-fold [131, 

157, 158]. Activated mast cells also actively secrete IL-33, leading to high local 

levels of IL-33.  

At the same time, recent data has shown IL-33 can trigger wound healing responses, 

to rapidly repair the damaged barrier by directly activating surrounding fibroblasts 

[159-161]. DCs are activated in this inflammatory environment and phagocytose 

pathogens. The pathogenic antigens are transported to nearby lymph nodes to 

activate naïve T helper cells, thus activating the appropriate immune response. 

Eventually, IL-33 bioactivity is extinguished upon destruction of the IL-1 family 

core structure, by chymase produced by activated mast cells [130, 158].  

Consistent with its role in maintaining barrier function, IL-33 is emerging as a 

significant mediator of colonic mucosal wound healing. Indeed, administration of IL-

33 was shown to promote wound healing in a surgical incision model by increasing 

re-epithelialisation and extracellular matrix (ECM) deposition [162]. Following 

damage to the intestinal barrier, an initial inflammatory phase occurs. IL-33 is 

significantly upregulated during this phase. The increased levels of IL-33 activate 

local innate immune cells. Subsequently, a proliferative phase occurs, during which 

collagen is laid down and angiogenesis occurs. This is followed by a remodelling 

stage. During this time, inflammation is reduced and intestinal homeostasis is re-

established. Finally, fibrosis takes place [163].  

1.6.2 The role of IL-33/ST2 in immune cells  
 

Given the high level of expression of ST2 on Th2 cells, a vast amount of literature 

has explored the role of IL-33/ST2 signalling in these cells and the effects of this 
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pathway on the cell populations. ST2L modulates effector functions in infectious, 

allergic and autoimmune disorders [164]. ST2L is expressed by polarized Th2 cells 

and can induce production of Th2 cytokines such as IL-4, IL-5 and IL-13 [122]. This 

is in contrast to Th1 cells, which produce mainly interferon (IFN)-γ, IL-2 or TNF-β 

[113]. Treatment of mice with recombinant IL-33 induced a Th2-mediated immune 

response. Increased IL-5, IgE and eosinophil recruitment was also observed, 

accompanied by goblet cell hyperplasia and increased mucus production [165].  

Recently innate lymphoid cell (ILC) populations have been shown to strongly 

express ST2 and as such, much recent focus concerns this pathway in ILC2s. 

Increased ILC populations are found at barrier surfaces such as the skin, lung and gut 

[166, 167]. ILCs are involved in regulating the immune response from initiation to 

resolution of inflammation. These cells produce many pro-inflammatory and 

immunoregulatory cytokines in response to cytokine or microbial stimuli [166-168]. 

This cell population can be divided into three groups depending on their expression 

of surface markers, transcription factors and cytokines [167]. Group 2 ILCs (ILC2s) 

respond to IL-33, as well as thymic stromal lymphopoietin (TSLP) and IL-25. In the 

lung, following damage to the epithelial barrier, the ‘alarmin’ IL-33 is released and 

ILC2s become activated [169]. Depletion of ILC2s in mice reduced repair of the 

airway epithelium in influenza infected mice. [169]. In an intestinal murine model, 

ILC2s were shown to support eosinophil development and survival in the intestine 

via IL-5 production. These cells also modulate tissue-resident eosinophils by 

secretion of IL-13 and subsequent eotaxin production [170]. As well as regulating 

innate immunity, ILCs have also been implicated in the regulation of adaptive 

immunity [166-168], as studies have suggested that ILC2s may be involved in 

crosstalk with other cells expressing ST2L, such as T-regs [171-173].  
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1.7 The Pathological functions of IL-33/ST2 

 

As IL-33/ST2 is such a potent inducer of inflammation, it is not surprising that 

dysregulation of the pathway has been linked to the pathogenesis of several 

autoimmune disorders. In asthma, IL-33 was shown to be a key driver of lung 

inflammation, as lymphocyte and eosinophil recruitment and general lung 

inflammation were reduced in the absence of IL-33. This suggests that  the IL-

33/ST2 axis could be a potential therapeutic target in asthma [174]. IL-33 is also 

implicated in rheumatic diseases. Indeed, IL-33 was detected in the serum of 

rheumatoid arthritis (RA) patients, while being completely absent in healthy controls 

[175]. The level of circulating IL-33 correlated with IgM and RA-related antibodies. 

Research to date also suggests that IL-33 has a pro-inflammatory effect in various 

rheumatological diseases, activating synovial fibroblasts and mast cells in the joints 

[153]. IL-33 was also increased in the skin lesions of patients with atopic dermatitis 

compared to non-inflamed skin [176], thus indicating a role for IL-33 in psoriatic 

pathology. 

1.7.1 IL-33/ST2 in inflammatory bowel disease 
 

IL-33 and ST2 are also implicated in the pathogenesis of inflammatory bowel 

disease (IBD). Both IL-33 mRNA and protein were found to be upregulated in 

inflamed ulcerative colitis (UC) and Crohn’s disease (CD) [177, 178]. It has been 

reported that IL-33 expression was increased in the epithelium of mild to moderate 

UC. As the intestinal epithelium becomes damaged and mucosal lesions form in 

severe UC, IL-33 becomes increased in myofibroblasts, where it functions as an 

alarmin [179, 180]. The expression pattern of ST2 was also altered in IBD. ST2 

expression becomes depleted in intestinal epithelial cells (IECs), and is prominent in 
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the lamina propria of IBD patients. The expression of ST2 isoforms is also altered in 

UC, ST2L becomes reduced [177], while sST2 is increased compared to CD and 

control tissue [177, 181]. Circulating levels of both IL-33 and sST2 were also 

increased in UC patients compared to controls [177]. Expression of IL-33 and ST2 

were found to be regulated by TNF, as anti-TNF therapy reduced IL-33 levels and 

increased sST2 expression in UC patients [177]. 

Mouse models of IBD have shown a complex role for IL-33 [177, 182] and ST2 

[183] in this disease. Loss of IL-33 or ST2 improved symptoms and reduced 

intestinal inflammation in the early stage of dextran sodium sulphate (DSS) induced 

colitis. Contrastingly, however, a further study reported delayed resolution of DSS 

dependent tissue damage in IL-33
-/- 

mice [174]. Consistent with this finding, 

treatment with exogenous IL-33 ameliorated chronic DSS colitis [184]. Therefore, 

IL-33 may have dual roles in intestinal pathology as well as in the maintenance of 

intestinal homeostasis.  

1.8 ST2 as a positive prognostic indicator 
 

ST2 has been investigated in many diseases including obesity, atherosclerosis, and 

cardiovascular disease. Studies to date indicate that sST2 may be useful as a possible 

prognostic biomarker in cardiovascular disease [185-187], as sST2 levels are 

associated with heart failure severity and poor outcome [185, 188]. Circulating levels 

of sST2 also appear to decline with improved prognosis in patients with heart failure 

[189, 190]. Thus, sST2 was recently included in current AHA guidelines for 

determining risk in acute and chronic heart failure patients [191]. However, concerns 

were raised regarding the specificity of sST2 as it is also increased in other disease 

types such as autoimmune disorders.  
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1.9 IL-33/ST2 in cancer 
 

A link between the IL-33/ST2 signalling axis and tumorigenesis has recently been 

identified. Immune infiltrates within tumours can positively or negatively influence 

patient mortality by altering angiogenesis, metastasis and response to therapeutics [3, 

192]. Therefore, it is vital to determine the effect of specific cytokines on 

tumorigenesis. Initially the link between IL-33/ST2 and cancer was identified in 

breast cancer and most research to date has focused on this cancer type. Early studies 

utilising ST2
-/-

 mice demonstrated that ST2 deletion inhibited breast cancer 

progression and increased the intra-tumoural accumulation of both innate i.e. NK 

cell and acquired immune cells i.e. CD8
+
 T-cells and Th1/Th17 cytokines [193], 

indicating a lack of IL-33 signalling through ST2L promotes a Th1 response. In 

addition, suppressing sST2 reduced ErbB2-induced cell motility in breast cancer 

cells. Moreover, breast cancer patients with metastatic disease showed increased 

levels of circulating sST2 compared to patients with primary tumours [194]. Further 

studies in breast cancer also showed significantly higher levels of both IL-33 and 

sST2 in the serum of patients with ER positive breast cancer relative to healthy 

controls [195]. Moreover, administration of IL-33 to breast cancer-bearing mice 

showed accelerated tumour growth and increased metastasis. The proposed 

mechanism responsible for the enhanced tumour growth was the increase in the 

number of infiltrating immunosuppressive immune cells and innate lymphoid cells, 

providing further evidence of the role of IL-33 in driving carcinogenesis [196].  

Since the link between IL-33/ST2 in carcinogenesis was first identified in breast 

cancer, this pathway has now been examined in numerous cancer types. Consistent 

with a role for IL-33 and ST2 in promoting tumour metastasis and invasion, 
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inhibition of IL-33 and ST2 in glioma cells resulted in reduced tumour growth and 

colony formation in vitro, and reduced tumour size in vivo [197]. In contrast, an anti-

tumorigenic role for IL-33 has been reported in other studies, with IL-33 reduced in 

the serum of non-small cell lung cancer patients relative to controls [198], and 

circulating IL-33 negatively correlating with tumour stage in multiple myeloma 

patients [199]. Over-expression of IL-33 in breast and melanoma tumour cells was 

also observed to result in reduced tumour growth in vivo. Moreover, IL-33 

overexpression induced recruitment of CD8
+ 

cells and NK cells to the site of the 

tumour [200]. Tumour metastasis was similarly attenuated in metastatic models of 

B16 melanoma and Lewis lung carcinoma cells transplanted into transgenic mice 

overexpressing IL-33. The mechanism proposed was through the activation of NF-

κB signalling, which induced the proliferation, activation and recruitment of CD8
+
 

cells and NK cells, which in turn attenuated pulmonary metastasis in melanoma and 

lung carcinoma models [201]. 

In relation to CRC, the IL-33/ST2 pathway has recently been investigated in a 

number of studies, with these studies being published during the course of my PhD 

studies. IL-33 was shown to be increased in the epithelium and stroma of CRC as 

compared to adjacent normal tissue and healthy volunteers [147, 202]. Expression of 

both IL-33 and ST2 was increased in intestinal adenomas. However, expression of 

both proteins was lower in the colon tumour cells compared to the intestinal 

adenoma cells [203]. A recent study by Mertz et al. demonstrated that IL-33 and ST2 

expression decreased with increasing tumour grade [202]. In vitro studies have 

demonstrated that IL-33 stimulation enhanced invasion of primary CRC cells [204]. 

Moreover, overexpression of ST2 followed by stimulation with IL-33 further 

increased invasion in a dose dependent manner. Correspondingly, reducing IL-33 and 
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ST2 expression using shRNA targeting both proteins inhibited the increased invasion 

observed upon IL-33 stimulation. Overexpression of IL-33 by SW620 cells in a nude 

mouse model reduced survival time. This was reversed using shRNA targeting IL-33 

[204]. Furthermore, ST2
-/-

 mice treated with AOM and DSS showed a reduced 

tumour load compared to WT mice. This is a model of colitis-associated cancer 

[202]. In an APC
Min 

mouse model IL-33, sST2 and ST2L were increased in polyps 

compared to normal intestinal mucosa of WT mice. Knocking out IL-33 in the APC 

Min model reduced polyp number [147]. Therefore, this data suggests that IL-33 

may be active during polyp development. The majority of studies to date in CRC 

point to a pro-tumorigenic role for IL-33/ST2 signalling in CRC. 

 

1.10 The IL-36 subfamily  

The genes of the IL-36 family members are located in a cluster on chromosome 2 

[205].  All three activating ligands, IL-36α, IL-36β and IL-36γ share the classic IL-1 

β-trefoil structure, and lack a signal peptide. IL-36α, IL-36β, and IL-36γ lack a 

signal sequence, and thus cannot be transported to the endoplasmic reticulum. 

Similar to IL-1β and IL-18, the N-terminus must be cleaved for full agonist or 

antagonist bioactivity of each of the IL-36 cytokines [206]. The protease responsible 

for this cleavage has not yet been elucidated. It is not thought to be a caspase as the 

site does not resemble a caspase cleavage site [207]. These three agonists induce 

proinflammatory cytokines, chemokines and other stimulatory molecules, thus 

promoting the infiltration of many immune cells such as DCs and neutrophils, 

activation of Th1 and IL-17-producing T cells, and keratinocyte proliferation [208, 

209]. 
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1.10.1 Expression and function of IL-36 family members 

 

IL-36R ligands are principally expressed by epithelial cells, keratinocytes, brain 

tissue and macrophages [210-212]. However, T cells have also been shown to 

express IL-36α and IL-36β [27]. Variation in cellular expression of the ligands has 

also been observed. For instance, IL-36α is constitutively expressed by keratinocytes 

while IL-36γ is induced upon stimulation with TNFα [213]. In vitro, monocytes were 

found to specifically express IL-36γ following LPS treatment [214]. IL-36α is 

secreted by BMDMs upon treatment with LPS, indicating that IL-36α can be 

externalized in response to a stimulus comparable to IL-1β [215]. 

IL-36 cytokines can regulate the immune response by influencing antigen presenting 

cells (APCs), such as macrophages and DCs. Indeed, the IL-36R is expressed by 

both monocyte and plasmacytoid derived DCs. Both of these APCs increase 

expression of CD83 in response to IL-36β and IL-36γ stimulation. In particular, IL-

36β can induce secretion of IL-12 and IL-18 production by monocyte derived DCs. 

These cytokines can then activate IFN-γ producing T-cells [216]. CD11
+
 cells 

stimulated with IL-36α produce TNFα, CD40, CXCL1 and CXCL2 which activate 

proliferation of CD4
+
 T cells. The IL-36R is also expressed on naïve T-cells, 

enabling IL-36 agonists to stimulate the proliferation of T-cells and induce IL-2 

secretion by naïve T cells [217]. Indeed, IL-36R signalling has also been shown to 

activate a Th1 and a Th17 response [209, 212].  

1.10.2 IL-36 regulation 
 

To date, few studies have investigated the regulation of IL-36 signalling. The IL-36R 

and the IL-1RAcP have been shown to be recycled in the absence of agonists. 
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However, in the presence of agonists both receptors accumulated in higher 

abundance in lysosomes [218]. Toll-interacting protein (Tollip) is a protein that is 

central to the regulation of Toll-like receptor (TLR) signalling pathways. Tollip also 

regulates IL-36 trafficking by elevating the levels of IL-36R and IL-1RAcP. In 

addition, Tollip has been shown to stabilise the IL-36R once the agonist has bound. 

This is unlike IL-1R signalling where Tollip has been shown to target the ligand-

bound IL-1R for degradation [218]. Proteases produced by immune cells such as 

lymphocytes and neutrophils have been found to enhance the bioactivity of IL-33 

and may also have similar effects on IL-36R agonists [129, 219]. 

Unlike IL-33, IL-36 cytokines require proteolytic processing to become activated. 

Proteases produced by immune cells such as lymphocytes and neutrophils increase 

the bioactivity of IL-36 cytokines. IL-36α, IL-36β, and IL-36γ are distinctively 

processed and activated by neutrophil granule-derived proteases cathepsin G, 

elastase, and proteinase-3 [220]. In this manner neutrophil-derived proteases can 

increase inflammation through the regulation of IL-36 cytokines. 

 

1.10.3 IL-36 signalling  

 

Few studies to date have investigated the role of the IL-36R signalling axis in the 

intestine. Similar to other IL-1R family members, the co-receptor IL-1RAcP is 

recruited to the IL-36R upon binding by one of the three agonistic ligands. This 

stabilizes ligand binding [207]. Conformational changes are induced in the TIR 

domains of both heterodimers. The IL-36R adaptor protein, MyD88, is subsequently 

recruited. Similar to other IL-1R family members, IL-36R signalling has been shown 

to activate MAPK, ERK1/2, JNK (Figure 9) [221]. Indeed, studies investigating IL-  
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Figure 9: The IL-36 family members and signal transduction. The IL-36R is a 

member of the IL-1R family. IL-36α, IL-36β and IL-36γ exert their actions by binding 

to the IL-36R. Ligand binding enables the recruitment of the IL-1RAcP. This leads to 

signal transduction through MYD88-dependent pathways, and activation of NF-κB and 

MAPKs. The IL-36R antagonist, IL-36Ra, also binds to the IL-36R, but fails to recruit 

the IL-1RAcp. Moreover, it also prevents other agonist ligands from binding to the 

receptor. IL-38 is also thought to act as an antagonist for this receptor. 
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36 signalling in both HT29 and Widr colon cancer cells have shown that stimulation 

with IL-36α and IL-36γ resulted in the recruitment of MyD88, TRAF6, IRAK1 and 

TAK1 adaptor proteins [222]. This adaptor complex induced the activation of NF-

κB, the phosphorylation of the MAPKs and AP-1 activation. Similar to IL-33, 

stimulation of the cells with IL-36 cytokines upregulated CXC chemokines (such as 

CXCL1, CXCL2, CXCL3) in intestinal epithelial cells [222]. Consistent with a role 

for the MAPK pathway and NF-B in IL-36R signalling, activation of the IL-36R by 

IL-36γ was reduced in the presence of MAPK inhibitors and siRNAs specific for 

NF-κB and AP-1 [223]. In addition to the induction of chemokines, IL-6 was 

strongly induced in response to IL-36R stimulation in colonic fibroblasts [224]. IL-6 

has a broad range of functions in the colon. This cytokine has been implicated in a 

pro-inflammatory response, but it is also thought to play a role in mucosal healing of 

mucosal lesions  [225]. The antagonist IL-36Ra shares homology with IL-1Ra. It 

binds to the IL-36R preventing the formation of the heterodimer with IL-1RAcP. 

However, IL-36Ra can induce IL-4 production in glial cells [207]. 

1.11 Physiological functions of IL-36 
 

Similar to IL-33, IL-36R ligands are involved in maintaining intestinal homeostasis. 

Analogous to IL-33, IL-36γ is localised to the nuclei of intestinal epithelial cells 

[226]. The presence of IL-36γ in the nucleus may be due to its role as an “alarmin”. 

In murine models of intestinal damage such as the DSS colitis model and also in 

mechanical mucosal injury model, IL-36γ was released by the intestinal epithelial 

cells and shown to enhance mucosal healing [224]. The effects of IL-36γ on colonic 

fibroblasts have been examined in a recent study [224]. It was demonstrated that IL-

36γ induced proliferation of murine fibroblasts to effect closure of wounds. IL-36γ 
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also promoted mechanical wound repair. This is a complex task in which numerous 

pathways participate including Wnt ligand signals, cytokines and growth factors 

[227-229].  

1.12 Pathophysiological functions of IL-36  
 

Studies to date have demonstrated a role for IL-36 in many diverse diseases with an 

inflammatory component. Given the high expression of these ligands and the 

receptor on keratinocytes, much early work focussed on the role of IL-36 cytokines 

on cutaneous diseases. IL-36 is known to play a pathogenic role in chronic psoriatic 

disorders [208, 217, 230]. IL-36 was demonstrated to mediate crosstalk between 

keratinocytes and DCs that was vital for controlling the IL-23/IL-17/IL-22 axis 

during psoriatic development [231]. IL-36α was also found to be increased in the 

joints of psoriatic and rheumatoid arthritis patients [232]. IL-36 has also been 

implicated in pulmonary diseases such as asthma and chronic obstructive pulmonary 

disease (COPD) [233]. Indeed, plasma from acute COPD patients had lower IL-36α 

and IL-36RN levels than healthy controls [234]. IL-36 may also play a role in joint 

disease, as IL-36β is expressed in human articular chondrocytes and stimulation with 

IL-36β induces proinflammatory cytokine production [235]. The IL-36 family have 

also been implicated in obesity [236]. IL-36α is present in adipose tissue resident 

macrophages, and both IL-36α and IL-36γ promote inflammatory gene expression in 

mature adipocytes [237]. Consistent with this, IL-36Ra was demonstrated to be 

downregulated in pre-adipocytes [236].  

1.12.1 IL-36 in IBD 
 

The role of IL-36 in IBD has recently been the focus of several studies. IL-36 is 

known to be dysregulated in psoriasis and these patients are at increased risk of 
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developing IBD and vice versa. Therefore, this suggests IL-36 dysregulation may act 

through a common mechanism in these diseases [238, 239].  Some studies suggest 

that IL-36 plays a pro-inflammatory role in IBD, while others have suggested that 

IL-36 promotes wound healing. Initial studies have shown that IL-36α and IL-36γ 

are upregulated in the colonic mucosa of UC patients [222, 240, 241]. IL-36RN was 

reduced in these patients, which may contribute to increased activation of IL-36 

signalling [240]. DSS-induced colitis models have shown delayed wound healing in 

IL-36
-/-

 mice. This was accompanied by a reduction in the barrier protective cytokine 

IL-22 and a reduction in the number of infiltrating neutrophils [241]. Interestingly, 

IL-36γ was found to be the most strongly upregulated gene on inflammatory 

macrophages that infiltrate the colon after DSS treatment [209]. As well as epithelial 

cells and macrophages, human colonic subepithelial myofibroblasts (SEMFs) were 

also shown to express IL-36γ in response to IL-1β [223]. Evidence in support of IL-

36 promoting wound healing was shown in an IL-36R
-/- 

mice, which demonstrated 

delayed wound healing in DSS-induced colitis. This was potentially due to a 

reduction in neutrophil recruitment [241]. This suggests there may be a very fine 

balance required in the level of neutrophils recruited. Low levels of neutrophil 

recruitment may lead to poor wound healing, while high levels of neutrophil 

recruitment may lead to prolonged inflammation and enhancement of IBD. 

1.12.2 IL-36 in cancer  
 

The link between IL-36 and cancer has only recently been investigated. To date two 

papers have investigated the role of IL-36 family members in cancer. IL-36α 

expression was found to correlate with mortality of hepatocellular carcinoma (HCC) 

patients [242]. These authors examined expression of IL-36α in a cohort of 345 
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patients by IHC and found IL-36α was expressed by nearly half of all HCC patients 

examined. IL-36α was found to be predominantly expressed in the cytoplasm of 

normal hepatocytes and well-differentiated HCC cells. Low expression of IL-36α 

was associated with increased tumour volume and increased TNM stage. Survival 

analysis showed that reduced expression of IL-36α was indicative of a poor 

prognosis for HCC patients, suggesting a possible anti-tumorigenic role for IL-36α 

in HCC. Cancers expressing high levels of IL-36α contained higher populations of 

intra-tumoral CD3
+ 

and CD8
+ 

tumour-infiltrating lymphocytes (TILs), but not CD4
+ 

TILs [242]. This suggests that IL-36α can attract CD3
+ 

and CD8
+
 TILs and promote 

an adaptive T-cell immune response, which can impact the prognosis of HCC 

patients. 

The second study injected B16 melanoma cells and 4T1 breast cancer cells 

overexpressing murine IL-36γ into WT mice and found tumour growth to be reduced 

in both models compared to vector controls. In the B16 melanoma model, the total 

number of CD8
+
 and CD4

+
 TILS and the percentage of NK and γδ T cells were 

increased in IL-36γ-expressing tumours compared to vector controls. Higher 

percentages of Foxp3
+
 CD4

+
 T cells, most likely T reg cells, were also detected in 

the IL-36γ-expressing tumours. Cells which have been shown to promote tumour 

growth such as type 1 lymphocytes and B cells were reduced in B16-IL-36γ 

compared to WT tumours [243, 244]. Overall these results suggest that a type 1 

immune response was activated in B16-IL-36γ. This may have been regulated by the 

increased numbers of T reg cells observed [245]. These studies have identified a link 

between IL-36 agonists and tumorigenesis. Further studies are required to determine 

the role of additional IL-36 family members in other cancer types.  
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1.13 Aims: 

 

Therefore the aims of this study were to; 

1. Characterise expression of IL-33 and ST2 in colon cancer cells in vitro and 

investigate the effect of IL-33 on colon cancer cells in vitro (Chapter 3). 

2. Evaluate the role of tumour cell-expressed ST2 in colon carcinogenesis in 

vivo (Chapter 4). 

3. Investigate the expression and function of IL-36 in colon cancer (Chapter 5). 
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2.0 Material and Methods 

2.1 Materials 

All reagents were stored and prepared according to the manufacturer’s guidelines. 

2.1.1 Cell lines and tissue 

CT26, HT29, HCT116, SW480, THP1s, U266B1, JJN3 and RAW 264.7 cells were 

obtained from the American Type Culture Collection (MD, USA).  

2.1.2 Mice 

Six week old female Balb/C mice were obtained from Harlan (Oxon, UK) and 

maintained in the animal facility of University College Cork. Standard housing and 

environmental conditions were maintained (temperature 21°C, 12 hrs light and 12 

hrs darkness with 50% humidity). Animals were fed a standard pellet diet and water 

ad libitum. Animal husbandry and experimental procedures were approved by the 

University College Cork Animal Experimentation Ethics Committee (AEEC). Prior 

to initiation of experiments, the mice were afforded an adaptation period of at least 7 

days. 

2.1.3 Reagents 

Anti-fade fluorescent mounting media GM-304 (Dako, Glostrup, Denmark) 

Bovine Serum Albumin (BSA) A9418 (Sigma Aldrich, Dublin, Ireland) 

BCA Protein Assay Reagents A and B 23223 and 23224 (Thermo Fisher Scientific, 

MA, USA) 

Dulbecco's Modified Eagle Medium D5796 (Sigma Aldrich) 

Collagenase dispase solution 10269638001 (Roche Diagnostics, Basel, Switzerland) 

Congo red C6277 (Sigma Aldrich) 

Crystal Violet Dye C3886 (Sigma Aldrich) 

Dimethyl sulphoxide D2650 (Sigma Aldrich) 

DPX mounting medium 44581 (Sigma Aldrich) 

Eosin 45260 (Sigma Aldrich) 
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Human recombinant epidermal growth factor 585506 (Biolegend) 

Murine recombinant epidermal growth factor PMG8044 (Thermo Fisher Scientific) 

Normal Goat serum X0907 (DAKO Diagnostics) 

Heat-inactivated foetal calf serum (FBS) F2442 (Sigma Aldrich) 

Haematoxylin 51260 (Sigma Aldrich) 

Human recombinant IL-33 CYT-655 (Prospec, NJ, USA) 

Murine recombinant IL-33 CYT-425 (Prospec) 

Human recombinant IL-36α 551602 (Biolegend) 

Human recombinant IL-36β CYT-159 (ProspecBio) 

Human recombinant IL-36γ 711602 (Biolegend)  

Immobilon Western Chemiluminiscent HRP substrate WBLUF0500 (Merck 

Millipore, MA, USA) 

Ultra-pure LPS tlrl-pb5lps (Invivogen, CA, USA) 

Matrigel® Basement Membrane Matrix 356234 (Corning, NY, USA) 

Thiazolyl blue tetrazolium bromide (MTT) sigma aldrich 

Penicillin/Streptomycin P4333 (Sigma Aldrich) 

Phorbol 12-myristate 13-acetate (PMA) P1585 (Sigma Aldrich) 

Phosphate Buffered Saline D8662 (Sigma Aldrich) 

Polyoxyethylene (20) sorbitan monolaurate (TWEEN) P1379 (Sigma Aldrich) 

Polybrene sc-134220 (Santa Cruz, Heidelberg, Germany) 

Prostaglandin E2 14010 (PGE2) (Cayman Chemical, MI, USA) 

Protease inhibitor cocktail I 539131 (Merck Millipore) 

Puromycin P8833 (Sigma Aldrich) 

Normal rabbit serum R9133 (Sigma Aldrich) 
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Red cell lysis buffer R7757 (Sigma Aldrich) 

Resazurin powder R7017 (Sigma Aldrich) 

RNAlater R0901 (Sigma Aldrich) 

RPMI-1640 R8758 (Sigma Aldrich) 

Tumour necrosis factor alpha 300-01A (PeproTech, NJ, USA) 

Triton X T8787 (Sigma Aldrich) 

2.2 Methods 

2.2.1 Cell culture 

Cells were cultured in 75cm
2
 flasks at 37°C in 5 % C02 in DMEM (Sigma Aldrich) 

supplemented with 10% FBS and 10,000 units/ml penicillin and 10mg/ml 

streptomycin. Cells were routinely grown to 70-80% confluence before being 

passaged three times per week. Passaging involved washing the cells with pre-

warmed PBS and subsequent incubation at 37°C with 3 ml of Trypsin to detach cells 

from the flask wall. 

2.2.1.2 Viability 

10μl of cell suspension was added to 90μl of Trypan Blue (Sigma aldrich) and mixed 

well by pipetting. 20μl was transferred to a haemocytometer. The number of stained 

cells was counted, in addition to the total number of cells and percentage viability 

assessed. 

2.2.2 Western blotting 

2.2.2.1 Preparation of whole cell lysates 

Cells were seeded at 1x10
5
 cells/ml into 6 well plates and then cultured until 70% 

confluent. Cells were then treated as specified in the figure legends. Following 

treatment cells were washed with ice-cold PBS and then lysed on ice for 1 hr with 

100 μl of lysis buffer containing 50 mM Tris-HCl (pH 8.0), supplemented with 1x 
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protease inhibitor cocktail (Merck Millipore). Samples being examined for 

expression of the heavily glycosylated ST2L were lysed in sample buffer containing 

50 mM Tris-HCl (pH 7.5), 150mM NaCl, 0.1% NP40, 0.05% 3-[(3-

Cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPs), 1 mM 

phenylmethylsulfonyl fluoride (PMSF) and 1x protease inhibitor cocktail (Merck 

Millipore). Cells were then scraped and transferred to a 1.5ml eppendorf. Lysates 

were centrifuged at 12000 rpm at 4°C for 15 min. The resulting pellet containing 

cellular debris was discarded and lysate was stored at -20°C. 

2.2.2.2 Quantitation of total protein concentration  

Protein standards were prepared using BSA (Thermo Fisher Scientific) (0, 2.5, 5, 

7.5, 10, 15, 20μg/ml) and added to a 96 well plate. 2μl of each sample was added to 

the plate followed by 38μl of distilled H20. Both standards and samples were 

analysed in triplicate. 160μl of BCA Protein Assay Reagent (Thermo Fisher 

Scientific) was added to each well, the plate agitated and then left at 37°C for 30 min 

before the absorbance was read at 560 nm on the Glomax multi-detection system 

(Promega, WI, USA).  

2.2.2.3 Sodium dodecyl sulphate polyacrylamide gel electrophoresis and 

Western blotting 

The appropriate amount of cell supernatant containing 50µg of protein was mixed 

with 4 x Polyacrylamide Gel Electrophoresis (PAGE) loading buffer (125mM Tris, 

2% SDS, 20% Glycerol, and 20 mM DTT) and lysis buffer containing 50 mM Tris-

HCl (pH 8.0) to a final volume of 20μl. Lysates were boiled for 5 min before loaded 

onto a separating and stacking SDS gel. A 19-180 kilo Dalton (kDa) molecular 

weight marker (Sigma Aldrich) was run alongside the samples. Proteins were 

separated by electrophoresis at 50 mA. Proteins were then transferred overnight onto 
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an Immobilon–P polyvinylidene diflouride membrane (Merck Millipore) at 40V and 

4°C using a wet transfer method. The following morning, membranes were stained 

with Ponceau to ensure even transfer of proteins. 

2.2.2.4 Immunoblotting 

Ponceau was removed with distilled water and Tris buffered Saline (TBS)-0.1% 

TWEEN (TBST) before membranes were blocked using 5 % (w/v) milk powder or 

BSA in TBST (henceforth referred to as blocking buffer) for 1 hr with rocking. 

Membranes were washed for 5 mins in TBST before the appropriate primary 

antibody was added diluted in blocking buffer and stored overnight at 4°C. 

Membranes were washed 3 times with TBST for 5 mins at a time, and then incubated 

for 1 hr at room temperature with the appropriate secondary antibody. Finally, 

membranes were washed 3 times with TBST for 5 mins at a time before detection 

using an Immobilon Western Chemiluminescent HRP substrate (Merck Millipore) 

according to manufacturer’s instructions. Protein bands were analysed using ImageJ 

(National Institutes of Health, Bethesda, MA, USA, http://imagej.nih.gov/ij/, 1997-

2012.). Changes in protein expression were determined after normalising the band 

intensity of each lane to that of β-actin. 

2.2.3 Quantitative real-time polymerase chain reaction (qRT-PCR) 

2.2.3.1 RNA extraction 

RNA was isolated from cultured cells using the GenElute total mRNA kit (Sigma 

Aldrich). Cells were lysed in 700 μl of RNA lysis buffer and RNA extracted and 

stored at -80
o
C. RNA concentration and quality was determined 

spectrophotometrically using the Nanodrop 1000 (Thermo Fisher Scientific). 
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2.2.3.2 cDNA preparation  

1 µg of total RNA was used as the template for cDNA synthesis using a 

commercially available cDNA synthesis kit according to the manufacturer’s 

instructions (Bioline, UK). This was added to 1μl of Oligo (Dt), and 1μl of 10Mm 

dNTP and heated to 65°C for 10 mins. Following 5 mins on ice, 4μl of 5x Reverse 

Transcriptase Buffer, 1μl of RNase inhibitor, 0.25μl of Reverse Transcriptase, and 

2.75μl of DEPC treated water was added to each sample before incubation at 37°C 

for 30 mins. The reaction was terminated by a final incubation at 70°C for 15 mins 

and chilling samples on ice.  

2.2.3.3 qRTPCR 

1 μl of cDNA template was amplified in a 25 μl total reaction volume as per Applied 

Biosystems standard PCR protocol using appropriate probes and TaqMan Gene 

Expression Master Mix (Applied Biosystems, UK). Thermal cycling was performed 

in a PCR machine (Applied Biosystems), with general conditions as follows: 50 °C 

for 2 mins; 95 °C for 10 mins; 60 cycles at 95 °C and 60 °C for 1 min.  

Other samples were run on the LightCycler® 480 (Roche) in a 10 μl total reaction 

volume. The reaction mix contained a final concentration of 400nM of each primer 

and 200nM of the appropriate Universal Probe Library probe (Roche) and 1x 

Sensifast Probe Lo-Rox kit (Bioline). Conditions for the LightCycler® 480 were 95 

°C for 10 mins; 45 cycles of 95 °C for 10 seconds, 60 °C for 30 seconds, followed by 

a final cooling at 40
o
c for 30 seconds. All results were analysed using the ΔΔ ct 

method and the gene of interest was normalized to the corresponding housekeeping 

gene results. Data were expressed as fold induction relative to untreated cells. In the 

case of human tumours versus adjacent tissue, a pool was generated of all samples 

and values were normalised to this pool. Data were expressed as fold induction 
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relative to the pool. Grubbs test was used to remove any outliers and the results 

achieved were then interpreted using GraphPad Prism software. 

2.2.4 Resazurin Assay 

Resazurin powder (Sigma Aldrich) was hydrated with PBS under sterile conditions 

to make a 10 x stock solution (440μM). The solution was filter sterilized using a 

0.22µm filter and stored in a foiled covered container at 4°C until use. The media 

was aspirated from the 6-well plates and each well was washed once with PBS. 2ml 

of prewarmed 1x Resazurin solution was added to each well before measuring 

fluorescence at 535-590nm on a GenIOS fluorometer. Fluorescence readings were 

taken at a variety of time points (5-55 mins) to create a standard curve of 

fluorescence against time. Readings were subsequently taken during the log phase of 

the reaction. 

2.2.5 MTT assay  

The MTT assay depends on the ability of viable cells to reduce MTT to a coloured 

formazan product. MTT was dissolved at a final concentration of 5mg/ml in 

complete culture medium. The solution was then filter sterilized using a 0.22µm 

filter and stored in a foiled covered container at 4°C until use. 100 μl of the MTT 

solution was added per well to a 96-well plate. Cells were incubated at 37
o
C, and 5% 

CO2 for 2 hours. Medium was aspirated and the MTT-formazan precipitate was 

dissolved with 100 μl of DMSO per well. The plate was further incubated for 15 min 

at room temperature and the optical density (OD) of the wells was determined at a 

wavelength of 560nm using the Glomax multi-detection system. Changes in MTT 

reduction were normalised relative to untreated cells. 
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2.2.6 BrdU Assay 

BrdU incorporation assay was performed using a Cell Proliferation ELISA System 

(Roche) according to the manufacturer’s instructions. 2,000 cells per well were 

seeded in a 96 well plate, and serum starved overnight in 0.5% serum. Cells were 

treated with 15, 30 or 60ng/ml IL-33 or 100 ng/ml of EGF for 24 h. Following 

incubation the cells were treated for with 10μM of BrdU labelling solution and re-

incubated in at 37
o
C for 2h. The cells were fixed and denatured in one step using the 

FixDenat solution. An anti-BrdU-POD antibody was then added for 90 mins at room 

temperature. Following three wash steps substrate solution was added for 30 mins at 

room temperature. Stop solution was then added and the BrdU incorporation was 

measured at 450nm using the Glomax multi-detection system (Promega).  

2.2.7 Immunohistochemistry 

Formalin fixed and paraffin embedded human and murine colonic sections were 

deparaffinised and rehydrated using Xylene and an ethanol gradient (100%, 95%, 

70% ethanol and then distilled water). The sections were then boiled with sodium 

citrate (pH 8) in order to induce epitope retrieval. Sections were washed in Tris 

Saline solution (1% Tris Saline (0.05M) and 0.001% Saponin), hereafter known as 

wash solution, and blocked in 3% hydrogen peroxide. Following a further wash in 

1% normal goat serum (NGS) or normal rabbit serum (NRS) Wash solution, a 

blocking step in 5% NGS Tris Saline and a final wash, sections were incubated with 

primary antibody in 1% NGS Tris Buffer over night at 4°C. The following morning, 

sections were washed with wash solution before incubation for 45 mins at room 

temperature with 0.5% biotinylated anti-Rabbit IgG or anti-goat IgG (Vector 

Laboratories, Inc CA, USA). A five minute wash step followed, after which the 

sections were incubated with ABC Elite complex (Vector Laboratories) for 45 mins 
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at room temperature. Sections were then washed and DAB substrate added (Vector 

Laboratories) according to manufacturer’s instructions. Finally sections were washed 

in tap water and counterstained with Mayer’s haematoxylin (Sigma Aldrich), then 

washed in tap water again before being mounted with crystal mount (Sigma 

Aldrich). The specificity of the reaction was proven by staining with a normal rabbit 

IgG or normal goat IgG isotype control. 

2.2.8 Enzyme Linked Immunoassay (ELISA) 

CXCL-1 levels in CT26 cell supernatant treated with IL-33 for 24h were quantified 

using the murine CXCL-1 Quantikine ELISA (R&D Systems (Minneapolis, MN) 

according to the manufacturers’ instructions. Three independent experiments were 

performed.  The concentration of IL-33 and ST2 in serum was determined using 

commercially available IL-33 (Biolegend Inc.,) and ST2 (R&D Systems) ELISAs 

according to the manufacturers’ instructions. All samples were analysed in duplicate.  

2.2.9 Cell migration assay  

HT29, SW480 or CT26 cells were plated in the top chambers of 8μm-pore transwells 

(Merck Millipore) in media containing 0.5% serum at a concentration of 1x10
5
 

cells/insert. Increasing concentrations of IL-33 as indicated in the figure legend were 

added to the cells. DMEM with 10% FCS was added to the lower chamber to serve 

as the chemoattractant. After 16 hrs of incubation, cells in the top chamber were 

removed, and cells at the bottom of the filter were fixed in 100% ice cold methanol 

for 5 min and stained with 0.5% crystal violet for 20 min. The dye was eluted from 

the membrane using 10% acetic acid, and crystal violet absorbance was measured at 

560 nm. Duplicate wells were used per condition in each experiment. A minimum of 

three independent experiments for each cell line was performed. The percentage 
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change in migration was assessed relative to migration of untreated cells towards 

DMEM with 10% serum. 

 

2.2.10 RAW 264.7 migration assay 

For the RAW 264.7 migration assay, 1.2 x 10
5
 cells were plated on the top of 5μm-

pore transwells in media containing 0.5% serum. Supernatant derived from CT26 

cells either untreated or treated with 15ng/ml IL-33 for 24h served as a 

chemoattractant. To block CCL2-induced migration, anti-CCL2 antibody (R&D 

Systems) was added to the lower chamber as indicated. The % change in migration 

was assessed relative to migration towards supernatant derived from untreated CT26 

cells.   

2.2.11 Invasion Assay 

The transwells were coated with 100 μl of Matrigel® (Corning) diluted in serum free 

media to a final concentration of 4mg/ml. The Matrigel® was incubated at 37
o
C for 

45 mins to set. Once the Matrigel® had set, CT26 and HT29 cells were then seeded 

in media containing 0.5% serum +/- IL-33 on top of the Matrigel® at a density of 

1x10
5
 cells/well into the upper chamber of an 8μm pore size transwell. 750μl of 

media containing 10% serum was added to the bottom chamber of the transwell and 

served as the chemoattractant. Following 48 h incubation at 37
o
C, the insert was 

washed twice in PBS and fixed in ice cold methanol for 5 mins. Inserts were then 

stained in 0.1% crystal violet in 0.1M borate pH 9.0 and 2% ethanol for 20 mins. 

Inserts were then washed twice in PBS and membranes removed from the transwell 

and placed into a 24 well plate containing 200μl of acetic acid to elute the stain. 

Absorbance was read at 560nm on the Glomax plate reader (Promega). 
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2.2.12 Caspase 3 and 7 Assay 

HT29 cells were plated in white 96 well plates at 2x10
4
 cells per well. The cells were 

then incubated with 100ng/ml of IL-36α, IL-36β and IL-36γ for 4.5 hours. 

Staurosporine (1μM) was used as the positive control to induce apoptosis (Sigma 

Aldrich). 100 μl of the Apo-One® Caspase 3/7 detection reagent (Promega) was 

added to a final volume of 200μl and the contents were gently mixed using a plate 

shaker. The plate was incubated at room temperature and readings were taken at 1, 2 

and 3 hours. Fluorescence was recorded using a BioTek Flx800 spectrofluorometer 

at an excitation wavelength of 485nm and an emission wavelength of 530nm. 

Background readings were determined from wells containing culture medium 

without cells. 

2.2.13 Generation of ST2 knockdown cancer cells 

Lentiviral particles were used to deliver shRNA encoding plasmids into the cells. 

The lentiviral particles enter the CT26 cells where the shRNA is transcribed. The 

shRNA is then cleaved by the Dicer enzyme into small interfering RNAs (siRNAs) 

which are short duplexes of 19-21 nucleotides, including hairpin, with two 

nucleotide 3’ overhangs on each strand. The siRNAs are then assembled into 

endoribonuclease containing complexes known as RNA induced silencing complexes 

(RISCS), unwinding in the process. Activated RISC’s subsequently bind to 

complementary transcripts by base pairing interactions between the siRNA anti-

sense strand and the complementary mRNA. The bound mRNA is cleaved and 

sequence specific degradation of mRNA results in gene silencing. Control shRNA 

lentiviral particles encode a scrambled shRNA sequence that does not lead to the 

specific degradation of any known cellular mRNA.  
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Prior to transfection with lentivirus, the optimal concentration of the transfection 

reagent polybrene and the selection antibiotic puromycin (Sigma Aldrich) was 

determined for CT26 cells. Polybrene is a polycation that neutralizes charge 

interactions to increase binding between the pseudoviral capsid and the cellular 

membrane. The optimum concentration of polybrene was determined to be 4μg/ml. 

To select for positive clones following transfection with shRNA particles, the 

antibiotic puromycin was used. The lowest concentration of puromycin that resulted 

in 100% cell death was determined to be 6 ng/ml. CT26 cells were seeded 24 hours 

prior to viral infection. Polybrene, at a final concentration of 6 μg/ml was added to 

the media. Cells were transfected with lentiviral particles containing target-specific 

shRNA against ST2 (sc-40036-V) or control lentiviral particles containing scrambled 

shRNA (sc-108080) (Santa Cruz Biotechnology), according to the manufacturers’ 

instructions. Cells were seeded in 12-well plates at a concentration of 7.5 x10
4
 

cells/ml. Cells were infected 24hrs later with lentiviral particles in the presence of 4 

µg/ml polybrene and cultured in selection medium containing 6-8 μg puromycin 

until resistant clones could be identified. Resistant clones were selected by limiting 

dilution. Knockdown of ST2 expression was determined by Western blotting and 

functional analysis. 

2.3 In vivo studies 

For tumour induction 2x10
5
 cells in 200ul of PBS was injected subcutaneously into 

the flank of the mice. For the initial in vivo study, female Balb/c mice were injected 

with either CT26
scrshRNA#

1 (n=4) or CT26
ST2shRNA#1 

cells (n=4) and tumour growth 

monitored over a period of 21 days. A separate control group were injected with PBS 

only (n=3). The subsequent investigation compared two CT26
ST2shRNA

 groups each 

with a control CT26
scrshRNA

 group and again another control group were injected with 
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PBS only (n=3). The viability of cells used for inoculation was more than 95% as 

determined by Trypan Blue Dye Exclusion. Following tumour establishment, the 

health parameters which can lead to the endpoints were carefully monitored three 

times per week: cachexia (acute weight loss), lack of activity and loss of appetite. 

Weight was measured and general behaviour as well as body condition was assessed. 

Tumour size was carefully monitored to ensure that it doesn’t exceed maximal 

allowed sized of 2 cm
3
. Tumour volume was measured using Vernier calipers and 

calculated according to the formula 1/2 (length x width
2
). At the end of the 

experiment animals were euthanized by CO2 inhalation. 

2.3.1 Treatment groups and ear marking 

Female mice weighing 18-25g and 6 weeks of age were randomly divided into 

experimental groups. Mice were ear clipped for identification purposes. 

2.3.2 Monitoring body weight 

Mice were weighed thrice weekly to monitor changes in body weight. 

2.3.3 Tumour formation 

Mice were subcutaneously injected into the right flank with CT26 cells suspended in 

200μl of PBS. Tumour formation was monitored thrice weekly by palpation at the 

site of injection. The width (w) and length (l) of the tumours was measured using 

Vernier calipers and the mean tumour volume calculated using the formula: 

½ (l x w
2
). 

2.3.4 Tumour sampling 

Following euthanasia by CO2 inhalation and cervical dislocation, tumours were 

excised from mice and dissected for subsequent analysis using the clock face 

dissection method. This method ensured that all stored tissue incorporated tumour 

tissue from the core to the leading tumour edge. Tissue was stored in liquid nitrogen, 

formalin and RNAlater (Sigma Aldrich). In addition, tissue was placed in an 
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eppendorf containing 1 ml of a working solution of collagenase/dispase (Roche) in 

PBS on ice. 

2.3.5 Single cell suspension of tumour cells for flow cytometric analysis 

Tumours in collagenase/dispase solution were incubated at 37
o
C for 1hr with 

shaking. Tumour tissue was placed into a petri dish, 10ml of serum free DMEM was 

added and cells were then passed through a cell strainer (Fisher). Cells were pelleted, 

washed in PBS and resuspended in 2ml of Red Cell Lysis Buffer. Following 

incubation at room temperature for 10 mins, 10% FCS DMEM media was added to 

stop the lysis reaction. Finally, a cell count was performed to obtain a final 

concentration of 1 x 10
6
 cells/ml. 

2.3.6 Flow cytometry 

Single cell suspensions from tumour tissue were prepared. 200,000 cells per tumour 

were re-suspended in 200μl of cell staining buffer and samples were incubated with 

antibodies to LY6G, CD4, CD8, CD25, CD49b, Siglecf or F4/80 for 30 minutes at 

4
o
C in the dark.  Cells were washed with cell staining buffer, centrifuged at 350 x g 

for 5 min and resuspended in 0.5ml of cell staining buffer. 2.5ug/ml of 

ViViD viability staining solution (Life Technologies) was added per million cells 

and samples were incubated on ice for 15 min in the dark. For each sample, 10,000 

to 20,000 events were recorded. The percentage of cells labelled with each antibody 

was calculated in comparison with cells stained with the isotype control antibody. 

Analysis gates for each antibody were set by using FMO (fluorescence minus one) 

controls with a threshold below 1%. The results represent the percentage of 

positively stained cells in the total cell population with a signal exceeding the 

background staining signal. Relative fluorescence intensities were measured using a 
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FACSLSRII 5 laser (UV/violet/blue/yellowgreen/red) cytometer and BD Diva 

software (Becton, Dickinson). 

2.4 Statistical analysis 

Experiments were performed a minimum of three times in triplicate. Results were 

statistically evaluated using One-way Anova with Tukeys post-test, or by students 

paired t test. Values of p < 0.001 are indicated by three asterisks (***). Values of p< 

0.01 are indicated by two asterisks (**). Values of p < 0.05 are indicated by one 

asterisk (*). Grubbs test was used to detect outliers.  
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Chapter 3 
 

 

Characterisation of IL-33 and ST2 

expression, signalling and function in colon 

cancer cells in vitro. 
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3.1 Introduction 

 

Expression of both IL-33 and ST2 has been examined in many cell types, both in 

vitro and in vivo. IL-33 is known to be robustly expressed by high endothelial 

venules in human tonsils, lymph nodes and Peyer’s patches [246]. Its ligand, ST2L, 

is expressed on the surface of macrophages, mast cells and Th2 cells [122, 247, 248], 

while sST2, in turn, is expressed by fibroblasts and both endothelial and epithelial 

cells [106, 249]. In terms of expression in the colon, in vivo studies have found both 

IL-33 and ST2L to be expressed by intestinal epithelial cells [177, 181], as well as 

macrophages and lymphocytes infiltrating the intestine [173, 177]. More specifically, 

IL-33 was shown to be localized to both the nucleus and cytoplasm of intestinal 

epithelial cells [177]. The decoy receptor, sST2, was found to be particularly 

strongly expressed in intestinal stromal cells and infiltrating regulatory T-cells [173, 

250]. Consistent with the in vivo findings demonstrating epithelial expression of IL-

33, HT29 colon cancer cells were shown to express IL-33 mRNA, although the 

transcript was not detected in CaCo2 colon cancer cells. Subepithelial 

myofibroblasts were also shown in in vitro studies to have low basal levels of IL-33, 

with expression enhanced by TNFα stimulation [178]. In contrast, few, if any studies 

have examined ST2 expression in intestinal cells in vitro. 

Studies investigating the physiological functions of the IL-33/ST2 signalling axis 

demonstrated that IL-33 plays a key role in maintaining the mucosal barrier in the 

gut. Under healthy conditions, constitutively produced, intracellular IL-33 

participates in maintaining barrier function by regulating gene expression as a 

nuclear factor. Upon damage to the barrier, for instance as a result of helminth 
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infection, nuclear IL-33 is released and functions as an “alarmin”, promoting the gut 

inflammatory response to induce parasitic clearance [251]. Once released, IL-33 has 

dual roles, initially functioning as a potent driver of Th2 immunity at the site of 

infection, and later as a T-cell-independent proinflammatory cytokine [252]. A 

second immune related pathology associated with the intestine that, in turn is also 

associated with increased IL-33 expression, is Inflammatory Bowel Disease (IBD). 

IBD encompasses two main disorders, ulcerative colitis (UC) and Crohn’s disease 

(CD). Studies examining expression of IL-33 and ST2 showed that IL-33 expression 

is upregulated in active UC and CD patients [177, 178]. In severe UC, as the 

epithelium becomes damaged and mucosal lesions form, IL-33 is secreted, and 

functions as an alarmin [179]. The pattern of ST2 expression is also altered in IBD. 

ST2 becomes depleted in intestinal epithelial cells, and is prominent in the lamina 

propria of IBD patients. Not only is the pattern of expression changed, but the 

expression of the ST2 isoforms is also modified in UC; ST2L is reduced [177], while 

sST2 is increased compared to CD and control tissue [177, 181]. The increased 

levels of IL-33 are thought to contribute to the sustained inflammatory state present 

in active IBD. SAMP1/YitFc (SAMP) mice are a murine model of CD used to 

investigate the pathogenesis of chronic intestinal inflammation. In SAMP mice IL-33 

expression was found to positively correlate with the severity of disease [177]. 

Inflammation has recently been described as an emerging hallmark of cancer. 

Consistent with this, individuals with IBD are at increased risk of developing 

colorectal cancer. This risk is specifically linked to the duration and extent of the 

inflammation [253]. However, whether IL-33 and ST2 signalling promotes 

inflammation and colon carcinogenesis is unclear.  
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Colon cancer represents the third most common cancer type worldwide, and is a 

major cause of morbidity and mortality. Thus, identifying factors that promote colon 

cancer is important. Whilst IL-33 and ST2 are known to be expressed by IECs, no 

studies to date have comprehensively investigated their pattern of expression in 

malignant IECs or colon cancer cells, nor have they characterised their cancer 

promoting abilities (e.g. capacity to induce migration and invasion), or factors that 

regulate or alter their expression in colon cancer cells. As there is an emerging focus 

on these proteins in cancer, with pro-tumorigenic roles for IL-33/ST2 reported in 

breast cancer in vivo [196], and IL-33 shown to promote migration and invasion of 

gastric cancer cells in vitro [254], the aim of this chapter is to investigate the 

potential role of IL-33 and ST2 in colon carcinogenesis. 
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3.2 Results 

3.2.1 LPS induces ST2L expression in a murine macrophage cell line  
 

Prior to investigating expression of the membrane bound form of ST2 (ST2L) in 

colon cancer, endogenous ST2L expression was examined in RAW 264.7, a murine 

macrophage cell line. This cell line was selected as a positive control, as 

macrophages are known to express high levels of ST2L in response to LPS 

stimulation [255]. Whilst ST2L expression was not observed at basal levels, it was 

seen to be upregulated upon stimulation with LPS (Figure 1). 

3.2.2 Human colon cancer cell lines express both sST2 and ST2L. 
 

As the ST2 antibody appeared to be able to detect ST2L, I subsequently examined 

expression levels of both the transmembrane (ST2L), and the soluble (sST2) forms 

of ST2 in human colon cancer cells. For this, the cell lines HT29 and SW480 were 

selected. These cells were stimulated with the pro-inflammatory stimuli LPS, TNFα 

and PGE2, for 24, 48 and 72 hours. Basal expression of ST2L was observed to be low 

in both cell lines examined, but was upregulated in response to pro-inflammatory 

stimuli, LPS, TNFα and PGE2 (Figure 2 and 3). In contrast, sST2 levels remain 

unchanged by pro-inflammatory stimuli in both of the human colon cancer cell lines 

(Figure 2 and 3).   

3.2.3 Murine colon cancer cells express both sST2 and ST2L. 
 

As I had shown that human colon cancer cells express both sST2 and ST2L (Figure 2 

and 3), protein levels of both of these ST2 variants was next examined in murine 

colon cancer cells. Similar to findings in human colon cancer cell lines, both ST2L 

and sST2 were detected in resting CT26 cells (Figure 4), with sST2 expression  
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Figure 1: Murine macrophage cell line RAW 264.7 express ST2L in response 

to LPS stimulation. Macrophages were treated for 24h with 100ng/ml LPS, prior 

to being lysed and probed with anti-ST2 antibody or anti-β-actin specific 

antibodies as indicated. Images shown are representative of three independent 

experiments. 
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Figure 2: ST2L expression was increased in HT29 colon cancer cells 

stimulated with pro-inflammatory stimuli. Colon cancer cell lines HT29 were 

stimulated with (a) LPS (100ng/ml), (b) TNFα (10ng/ml) and (c) PGE
2
 (1μM) 

for 24, 48 and 72h. Cell lysates were separated by SDS-PAGE and probed with 

anti-ST2 or anti-β actin specific antibodies as indicated. Images shown are 

representative of three independent experiments. 
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Figure 3: ST2L expression was increased in SW480 cells stimulated with 

pro-inflammatory stimuli. SW480 cells were stimulated with (a) LPS 

(100ng/ml), (b) TNFα (10ng/ml) and (c) PGE
2
 (1μM) for 24, 48 and 72h. Cell 

lysates were separated by SDS-PAGE on a 10% gel and probed with anti-ST2 or 

anti-β actin specific antibodies as indicated. Data shown are representative of 

three independent experiments.  
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Figure 4: ST2L expression was increased in CT26 cells stimulated with pro-

inflammatory stimuli. CT26 murine colon cancer cells were stimulated for 24, 48 

and 72 hours with (a) LPS (100 ng/ml), (b) TNFα (10ng/ml) and (c) PGE
2
 (1μM) 

for 24, 48 and 72h. Cell lysates were separated by SDS-PAGE and probed with 

anti-ST2 or anti-β actin specific antibodies as indicated. Data shown are 

representative of three independent experiments.  
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unchanged by stimulation with LPS, TNFα or PGE2 (Figure 4). Similarly murine 

ST2L was upregulated by LPS, TNFα or PGE2 (Figure 4). However, in murine cells 

the induction of ST2L expression by TNFα and PGE2 occurred slightly later (48h), 

than in the human colon cancer cell lines (24h) (Figure 3).  

3.2.4 Colon cancer cell lines and macrophages express IL-33 mRNA, the ligand 

for ST2L 
 

As both human and murine colon cancer cells were found to express the ST2L 

receptor, the expression of its ligand, IL-33, was subsequently investigated in these 

cell lines. Similar to experiments performed in 3.1, the murine macrophage cell line 

RAW 237.4 was initially used as a positive control for confirmation of detection of 

IL-33 expression (Figure 5a), as macrophages have previously been shown to 

produce IL-33 [256]. Expression of IL-33 mRNA was seen to be increased 5000-fold 

in RAW 264.7 cells, following LPS stimulation and 22-fold in RAW 264.7 cells 

following PGE2 stimulation (Figure 5a). IL-33 mRNA expression in both human 

colon cancer (HT29) and murine colon cancer (CT26) was also examined. Basal 

levels of IL-33 mRNA were detected in human and murine colon cancer cells. In 

HT29 cells, IL-33 expression was increased 2-fold in response to LPS and 1.5-fold 

by PGE2 stimulation (Figure 5b). In CT26 cells, IL-33 was upregulated 1.5-fold in 

response to LPS, and 1.8 fold upon stimulation with PGE2 (Figure 5c). Basal levels 

of IL-33 in all three cell lines were compared. Expression was similar in HT29 and 

RAW 237.4, while IL-33 expression in CT26 was higher ~10 fold (Figure 5d). 

3.2.5 IL-33 protein expression was not effected by pro-inflammatory stimuli in 

colon cancer cells.  
 

As IL-33 mRNA expression had been detected in colon cancer cells (Figure 5), with 

no significant changes observed upon stimulation of cells, the induction of IL-33  



81 

 

 

 

 

 

 

Figure 5:  Stimulation with pro-inflammatory stimuli induced the expression of  

IL-33 mRNA in colon cancer cells and macrophages.  IL-33 mRNA expression in 

(a) RAW 264.7, (b) HT29, and (c) CT26 cell lines (d) shows basal IL-33 expression 

levels in unstimulated cells. Colon cancer cells were stimulated for 4 hours with 

100ng/ml of LPS or PGE
2
 at 1μM.  Total RNA was extracted and IL-33 mRNA levels 

were measured by qPCR.  Data shown are the mean +/- SEM. Statistical analysis was 

carried out using a student t test, n=3.  
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Figure 6:  IL-33 expression was unchanged in colon cancer cells stimulated with 

pro-inflammatory stimuli. IL-33 expression was examined in (a) HT29, (b) 

SW480 and (c) CT26 cells by Western blotting analysis. Colon cancer cells were 

stimulated for 24, 48 and 72 hours with pro-inflammatory stimuli as indicated. Cell 

lysates were separated by SDS-PAGE and probed with anti-IL-33 or anti-β-actin 

specific antibodies.  Data shown are representative of three independent 

experiments.  
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protein was next determined by Western blot analysis. Western blotting for IL-33 

confirmed that HT29, SW480 and CT26 cells express basal levels of IL-33 (Figure 

6). These levels were unchanged by treatment with LPS, TNFα or PGE2, in all cell 

lines (Figure 6). 

3.2.6 IL-33 inhibits proliferation of colon cancer cells 
 

As I had demonstrated that colon cancer cells express sST2, ST2L and IL-33, I next 

wished to determine the functional role of these proteins in colon cancer cells. I 

initially investigated cellular proliferation, as sustained proliferative signalling is a 

key hallmark of cancer progression, which increases tumorigenicity [2]. Four colon 

cancer cell lines, HT29, SW480, HCT116 and CT26, were stimulated with 

increasing concentrations of IL-33 for 24, 48 hours, and changes in proliferation 

detected using the MTT assay. IL-33 was seen to suppress proliferation of all of 

these cells, with the exception of SW480 cells at 24h (Figure 7). As IL-33 did not 

increase cellular proliferation, cells were stimulated with epidermal growth factor 

(EGF), a growth factor known to increase tumour cell growth. Consistent with its 

ability to increase tumour cell growth, HT29 cells showed a 75% increase in 

proliferation when stimulated with EGF (Figure 8). SW480 cells showed a 30% 

increase in proliferation (Figure 8), while CT26 cells showed a 25% increase in 

cellular proliferation (Figure 8). This indicated that although the colon cancer cells 

did not proliferate in response to IL-33, they do proliferate in response to EGF.  

Although the MTT assay can be used as an indicator of proliferation, this assay 

specifically detects changes in the metabolic activity of the cell. Therefore, any 

impact on metabolism such as cytotoxicity, apoptosis or necrosis can also influence 

the assay. Thus, it can be difficult to distinguish between cell viability and  
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Figure 7: IL-33 suppressed proliferation of human colon cancer cells. 

Thiazolyl Blue Tetrazolium Bromide (MTT) analysis was used for evaluation of 

cell proliferation. (a) HT29, (b)  SW480 (c) HCT116 and (d) CT26 were stimulated 

with  increasing concentrations of IL-33 as indicated. After 24hr or 48hrs MTT 

solution was added to each well, 2hrs later, the media was removed, and dimethyl 

sulfoxide was added to each well to dissolve the MTT formazan crystals. Data 

shown are mean +/- SEM (n=3).  
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Figure 8: EGF induced proliferation of human colon cancer cells. Thiazolyl 

Blue Tetrazolium Bromide (MTT) analysis was used for evaluation of cell 

proliferation. HT29, SW480 and CT26 cells were stimulated with EGF 10 ng/ml as 

indicated, for 24 hrs. MTT solution was added to each well, 2hrs later, the media 

was removed, and dimethyl sulfoxide was added to each well to dissolve the MTT 

formazan crystals. Data shown are mean +/- SEM (n=3).  
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Figure 9: IL-33 does not induce proliferation of  colon cancer cells.  
Cellular proliferation was assessed by BrdU incorporation with EGF used as a 

positive control. (a) HT29, (b) SW480 and (c) CT26 cells were stimulated with 

varying  concentrations of IL-33 as indicated, and 24 hrs later the cells were labelled 

with BrdU after 2hrs of incubation, the media was removed and the cells were fixed 

and denatured, and absorbance was measured. Data shown are mean +/- SEM (n=3).  
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proliferation using this assay. To ensure that results I have observed using the MTT 

assay were truly a measurement of proliferation, I verified these results by doing a 

second specific proliferation assay, examining BrdU incorporation into cellular DNA 

during cell proliferation. The results were similar to those observed with the MTT 

assay. Incorporation of BrdU was seen to be suppressed by IL-33 stimulation in 

HT29 (Figure 9a), SW480 (Figure 9b) and CT26 (Figure 9c). Overall, the data 

suggests that IL-33 may suppress colon cancer cell proliferation.   

3.2.7 IL-33 induces migration, but not invasion of colon cancer cells 
 

As IL-33 had no effect on cellular proliferation, the ability of IL-33 to effect cellular 

migration, invasion was next investigated. Indeed the main cause of cancer death is 

due to metastasis of the primary tumour to a new site. Most commonly colon cancer 

metastasizes to the liver [257], and as such cellular migration is an important pro-

tumorigenic mechanism, required by cancer cells for sustained growth and 

progression. Cells were stimulated with increasing doses of IL-33 as indicated and 

changes in migration assessed using a modified Boyden chamber assay (Figure 10a). 

IL-33 significantly enhanced migration of HT29 cells, in a dose dependent manner, 

towards media containing 10% serum above migration observed by unstimulated 

cells, p value >0.01 (Figure 10b). IL-33 also increased migration of SW480 cells, but 

this was not significant (Figure 10c). Finally, migration was also significantly 

increased by IL-33 in CT26 cells, p-value >0.01 (Figure 10d).  

As IL-33 increased the migration of colon cancer cells towards 10% serum, in a dose 

dependent manner, the ability of IL-33 to induce invasion in colon cancer cells was 

next investigated. Invasion is an essential function underlying cancer cell metastasis. 

Invasive cells travel through basement membranes and extracellular matrices into  
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Figure 10:  IL-33 induced migration of colon cancer cells towards 10% serum 

at increasing doses. (a) Changes in cellular migration were assessed using a 

modified Boyden chamber assay. (b) HT29, (c) SW480 and (d) CT26 cells were 

stimulated with increasing doses of  IL-33 (0, 15, 30, 45 and 60 ng/ml). Data 

shown are mean +/- SEM (n=3). Statistical analysis were determined using a one-

way ANOVA 
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Figure 11:  IL-33 did not induce cellular invasion of colon cancer cells towards 

10% serum.  (a) HT29 and (b) CT26 cells were stimulated with 60ng/ml of IL-33. 

Changes in cellular invasion were assessed using a modified Boyden chamber 

coated with 100 μl of 4mg/ml Matrigel. The cells were incubated for 48 hours at 

37
o
C.  Data shown are mean +/- SEM (n=3).  
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neighbouring tissues in a complex process that involves adhesion, extracellular 

matrix degradation, proteolysis and migration. To assess the ability of IL-33 to 

induce cellular invasion, colon cancer cells were seeded on Matrigel coated 

transwells. As seen in Figure 13, IL-33 did not affect invasion of HT29 (Figure 11a) 

or CT26 cells (Figure 11b). 

3.2.8 IL-33 induces limited expression of cytokines/chemokines in colon cancer 

cells. 

The link between colon cancer and chronic inflammation is well established. 

Communication between the immune system and malignant cells can play an 

important role in tumorigenesis. This cell to cell interaction is usually via cytokines 

or chemokines, and can have far reaching effects, from recruiting immune cells that 

supply growth factors or pro-angiogenic factors, to increasing proliferative signalling 

and limiting cell death. To date, the effect of IL-33 stimulation on colon cancer cells, 

in terms of cytokine production, has not been comprehensively investigated. To 

address this, and to further our extensive characterisation of IL-33 and ST2 in colon 

cancer cells, a number of cells were stimulated with IL-33, and a panel of cytokines 

and chemokines examined (i.e. TGF-β, LTα, COX-2, IL-6, IL-8, IL-13, CXCL-8, 

VEGF, CCL2 and CXCL-1). This panel was selected for a number of reasons; TGF-

β expression is indicative of poor prognosis in CRC [258], while increased COX-2 

expression is associated with poor survival in CRC [259]. IL-6 is a key regulator in 

CRC development [260], while IL-8 is associated with migration and angiogenesis 

of colon cancer cells [261] and both have previously been shown to be activated by 

IL-33 [262, 263]. A number of chemokines were also selected (i.e. CXCL-1, CXCL-

8, IL-13 and CCL2), as IL-33 has been shown to recruit immune cells [264]. 
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In HT29 and SW480 cells, CCL2 was the only cytokine/chemokine to be induced. 

CCL2 was induced 7 fold in HT29 (Figure 12a), and 70 fold in SW480 (Figure 12b). 

Whilst several genes were not induced in the CT26 cells (i.e. IL-13, TGF-β and 

LTα), a slightly broader number of genes were found to be induced by IL-33 in these 

cells. IL-33 induced a 2 fold induction of VEGF, a 10 fold induction of CXCL1 and 

a 40 fold induction of CCL2 in CT26 cells (Figure 13). The CXCL-1 induction was 

further confirmed using increasing doses of IL-33, and was seen to occur in a dose 

dependent manner at both the mRNA (Figure 14a) and the protein level (Figure 14b).  

To ensure that the lack of changes in the transcription of the selected panel of 

cytokines and chemokines was due to the concentration of IL-33 used being too low, 

a dose response of 0 to 60 ng/ml was employed. TGF-β was selected as the output, 

as this had previously shown a lack of induction in response to IL-33 stimulation at 

15ng/ml in HT29 cells (Figure 12a). IL-33 did not increase transcription of TGF-β in 

HT29 (Figure 15a) or CT26 cells (Figure 15b) at any dose, indicating that the lack of 

transcription of the panel seen in (Figure 12 and 13) was unlikely due to the dose of 

IL-33 being too low.   

3.2.9 IL-33 activates MAPK, NFκB and AKT signalling pathways  

 

Whilst the majority of cytokines were not activated by IL-33 stimulation, CCL2 was 

activated in all cell lines. As such, I hypothesized that the activation of signalling 

pathways downstream of IL-33 may be responsible for the restricted cytokine 

induction observed. To examine this, I next investigated the ability of IL-33 to 

activate the canonical transcription factors and kinases, activated by other IL-

1R/TLR superfamily members in colon cancer cell lines, such as NF-κB and 

MAPKs. Phosphorylation of the AKT pathway was also examined, as AKT is  
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Figure 12: Stimulation of human colon cancer cells with IL-33 increased 

expression of CCL2. (a) HT29 and (b) SW480 cells were stimulated with 15ng/ml 

of  IL-33 for 4 hours . CCL2 was induced by IL-33 stimulation, while it had no 

effect on transcription of a panel of other factors (i.e. TGFβ, VEGF, LTα, COX-2, 

IL-6, IL-8, CXCL-8 or CXCL-1). Data shown are mean +/- SEM (n=3).  



93 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: IL-33 induces the expression of VEGF, CXCL-1 and CCL2 in 

murine cancer cells. CT26 cells were stimulated with 15ng/ml of IL-33 for 4 

hrs. RNA was extracted and changes in cytokine/chemokine expression were 

detected by qRT-PCR. RNA was extracted and changes in expression of VEGF, 

CXCL-1, and CCL2 were detected by qRT-PCR. Data shown are mean +/- 

SEM (n=3). 
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Figure 14: CT26 murine colon cancer cell produce CXCL-1 in response to IL-

33 in a dose dependent manner.  CT26 cells treated with IL-33 for 4 hours (a) 

and IL-33 mRNA expression was examined. CT26 cells were treated with IL-33 

for 24 hours, (b) supernatants were removed and examined for CXCL-1 expression 

by ELISA. Data shown are mean +/- SEM (n=3). Statistical analysis was 

performed by one way ANOVA. 
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Figure 15: Increasing doses of IL-33 did not increase expression of TGF-β 

expression. Cells were stimulated with increasing doses of IL-33 as indicated. 

TGF-β mRNA expression was examined in (a) HT29 and (b) CT26. Data shown 

are mean +/- SEM (n=3). 
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strongly activated in many human cancers [265]. To investigate whether IL-33 was 

able to induce activation of NF-κB, phosphorylation of the NF-κB subunit p65 was 

examined in HT29 cells. p65 phosphorylation was observed 30 minutes after IL-33 

stimulation, and this was sustained until the final time point of 60 minutes (Figure 

16a), with no change in total p65 observed. To investigate MAPK activation, 

phospho-specific antibodies to JNK, ERK and p38 were used, with IL-33 stimulation 

seen to phosphorylate all of these. Phospho-ERK was observed at all-time points, 

however, the greatest phosphorylation of ERK was observed between 30 and 60 

mins (Figure 16b). Maximal phosphorylation of p38 was observed between 30 and 

60 mins (Figure 16b). IL-33 stimulation caused phosphorylation of JNK between 5-

30 mins (Figure 16b). AKT phosphorylation in response to IL-33 treatment was 

observed at 45 and 60 min (Figure 16c). These results indicate that IL-33 can 

activate NFκB, MAPK and AKT subfamilies.  
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Figure 16: HT29 cells phosphorylate the NFκB p65 subunit p65 at 30 to 60 

minutes.  HT29 cells were treated for between 0-60 mins with IL-33. Cell lysates 

were separated by SDS-PAGE and probed with anti-Phospho-65 anti-p65, anti-

Phospho-ERK, anti-ERK, anti-Phospho p38, anti-p38, anti-phospho Jnk, anti-Jnk 

and anti Phospho-Akt or anti-Akt specific antibodies as indicated. Data shown are 

representative of three independent experiments. 
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3.3 Discussion: 

 

Here I have demonstrated that colon cancer cells express ST2L, sST2 and IL-33 in 

vitro. In terms of tumorigenic processes, stimulation with IL-33 suppressed cellular 

proliferation, increased migration, but did not affect invasion of colon cancer cells. 

IL-33 induced a very limited number of cytokines and chemokines in colon cancer 

cells, in particular only inducing expression of CCL2 in human cells, and CXCL-1, 

VEGF and CCL2 in murine cells. However, IL-33 activates multiple signalling 

pathways such as AKT, MAPK and NF-κB in colon cancer cells. 

3.3.1 sST2 expression was increased in colon cancer cells compared to ST2L 

expression 
 

In this chapter, I have comprehensively examined the expression of key components 

of the IL-33/ST2 axis in colon cancer cells. I have shown that colon cancer cells 

express both sST2 and ST2L isoforms. The basal level of sST2 was observed to be 

generally higher than that of ST2L in these cells. Both ST2 isoforms are transcribed 

from the same ST2 gene (IL1RL1). However, unlike ST2L, sST2 lacks the 

transmembrane and cytoplasmic domains [71, 72, 98]. ST2 gene expression is 

controlled by two discrete promoters, a distal and a proximal promoter [104]. 

Promoter usage is cell type specific, not transcript specific, as fibroblasts initiate 

transcription of ST2 (both sST2 and ST2L) at the proximal promoter, while acute 

myeloid leukemic cells are dependent on the distal promoter mainly for ST2L, with 

less sST2 transcribed [105].  Thus, the variation in the levels of ST2 isoforms that I 

have observed in colon cancer cells is unlikely to be due to differential promoter 

usage, with the exact mechanism responsible for variation between ST2L expression 

and sST2 expression being unclear. One possibility  is  that the different levels of 

ST2 isoforms detected are due to various regulatory processes, such as 
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transcriptional regulation [114]. In a study investigating the raised levels of sST2 

produced by cardiac cells following myocardial infarction, stress or stress-activated 

cytokine release were found to be responsible for the sST2 induction [266]. 

However, further studies are required to clarify the exact mechanism of regulation of 

ST2 isoforms in colon cancer cells. 

3.3.2 IL-33 suppressed cancer cell proliferation 

 

IL-33 is an important mediator of intestinal barrier homeostasis. IL-33 is thought to 

maintain a quiescent state in barrier cells, as it is only produced when cells are 

senescent. Downregulation of IL-33 has been linked to initiation of cell proliferation 

in intestinal epithelial cells [145]. Here, I have shown that IL-33 stimulation did not 

enhance cellular proliferation of colon cancer cells in vitro. Indeed, similar to the 

findings for IL-33 in the normal intestine, these data demonstrate that IL-33 may, in 

fact, play an inhibitory role in colon cancer cell proliferation and may be 

downregulated during cellular proliferation, although changes in IL-33 expression 

during proliferation were not examined. Differences in the ability of IL-33 to 

suppress proliferation were observed between the cell lines examined, with HCT116 

cells showing less suppression of proliferation by IL-33 than HT29 cells. HT29 cells 

are isolated from a stage II adenocarcinoma, while HCT116 are stage IV. This 

suggests that cancer cells may become less responsive to the anti-proliferative effects 

of IL-33, as they increase in cancer stage. Other studies investigating the ability of 

IL-33 to alter cell proliferation demonstrated that IL-33 played opposing roles in 

cellular proliferation depending on the confluency of the cells. When IL-33 was 

added to confluent murine embryonic fibroblast cells (NIH-3T3), proliferation of the 

cells was suppressed. Conversely, when IL-33 was added after the start of cellular 
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proliferation, it enhanced cellular growth [267]. The opposing effects observed may 

be due to the role that IL-33 plays in maintaining intestinal homeostasis. When cell 

density is low, IL-33 enhances cellular proliferation, while when cells are confluent 

IL-33 suppresses proliferation. The effect of IL-33 on cell proliferation has been 

examined in other cancer cell types. In pancreatic stellate cells, IL-33 stimulation did 

not induce proliferation  [268]. Although, in contrast to this, in ovarian cancer cells, 

IL-33 stimulation increased cellular proliferation in vitro, whilst in vivo IL-33 

expression positively correlated with Ki-67 expression [269]. The variation in IL-33-

induced-proliferation between cancer cells suggests that the function of IL-33 may 

vary depending on the cancer type [269].  

3.3.3 IL-33 increased migration of colon cancer cells 

 

In contrast to the inhibition of proliferation, IL-33 was seen to enhance cellular 

migration of colon cancer cells in vitro, in a dose dependent manner, in all three cell 

lines examined. This ability of IL-33 to induce cellular migration in vitro suggests 

that IL-33 may play a role in metastasis in vivo. However, we only observed robust 

migration of colon cancer cells at very high doses of IL-33, which may not be 

physiologically relevant, as IL-33 levels in the serum of cancer patients is typically 

in the low pg/ml concentration [270]. Similarly, IL-33 induced migration of gastric 

and ovarian cancer cells [254, 269]. Furthermore, migration of ovarian cancer cells 

was reduced in response to transfection with IL-33 siRNA [269]. Contrastingly, 

transgenic expression of IL-33 was shown to attenuate tumour metastasis in the B16 

melanoma and Lewis lung carcinoma metastatic models [201]. However, the amount 

of IL-33 produced by these cells was not quantified and therefore it is difficult to 

determine if the differences observed were due to large variations in IL-33 
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concentration. Therefore, this suggests, that similar to the differences we observed in 

the role of IL-33 in colon cancer cell proliferation, IL-33 may play a dichotomous 

role in cancer cell migration depending on the origin of the cancer.   

Distinct from migration, I found that IL-33 did not promote invasion of colon cancer 

cells in vitro. In contrast to our findings in colon cancer cells, IL-33 has previously 

been shown to enhance the invasion of gastric cancer cells [271]  and human CRC 

primary cells. Following transfection with either an IL-33 or an ST2 expression 

vector, human CRC primary cells extracted from surgical samples showing enhanced 

invasion compared to untransfected cells [204]. One explanation for the differences 

seen may be due to variations in the concentration of IL-33. Transgenic ST2 

expression may also have increased the responsiveness of the cells, which could also 

account for the increase in invasiveness observed in the primary cells. The overall 

contribution of IL-33 to tumour progression remains to be directly assessed, and the 

mechanisms by which IL-33 contributes to tumour initiation and progression remain 

unexplored. 

3.3.4 IL-33 activated chemokine production by colon cancer cells 

 

Cytokines allow the rapid dissemination of signals between cells. However, 

cytokines produced in the tumour microenvironment can influence tumour 

development and progression in a number of ways, one of which is through the 

recruitment of immune cells to the tumour site. Most tumour associated macrophages 

are derived from monocytes recruited from the blood by the chemokine CCL2 [272]. 

Of the cytokines and chemokines examined, CCL2 was the only one consistently 

induced across all cell lines by IL-33. CXCL-1, a neutrophil chemotactic factor, was 

also induced by IL-33 in murine colon cancer cells. It is well established that IL-33 
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has the ability to promote inflammation, through the recruitment of immune cells 

[264]. Thus, it was not surprising that IL-33 induced the production of two immune 

cell chemoattractants. This profile of chemokine induction has also been 

demonstrated in other disease models. In a murine model of mucositis, IL-33 

treatment combined with a chemotherapeutic agent (CPT-11), increased CCL2 and 

CXCL-1 expression in WT mice, above levels seen in ST2
-/-

 mice [273]. Similarly, in 

a fibrosis mouse model, ST2
-/-

 mice showed decreased levels of CXCL-1 and CCL2 

in lung tissue compared to WT mice [274]. CXCL-1 is a known neutrophil 

chemoattractant and indeed, mice treated with IL-33 displayed neutrophil and 

eosinophil infiltration in the colonic mucosa [153]. In primary lung endothelial cells, 

CCL2 was also produced in response to IL-33 stimulation, sustaining chronic 

inflammation of the asthmatic airway [112]. Therefore, the increased production of 

CCL2 by colon cancer cells in response to IL-33 may lead to increased recruitment 

of macrophages to the tumour site. Macrophage infiltration is generally considered to 

be a poor prognostic indicator in cancer, although this can vary widely depending on 

the cancer types. For instance, increased macrophage recruitment is indicative of a 

poor prognosis in breast cancer [275]. However, in colon cancer it is currently 

unclear whether high macrophage infiltration is beneficial to the patient, as some 

studies have reported that TAMs appear to have anti-tumour activity and are 

associated with improved disease free survival  [45], while other research has shown 

that increased macrophage infiltration positively correlates with tumour progression 

and aggressiveness of this disease [25, 276]. Similarly, neutrophils can also 

significantly influence the tumour microenvironment in a pro-tumorigenic manner, 

as they have been shown to induce angiogenesis and metastasis [277]. However 

other reports suggest an anti-tumour neutrophil phenotype can be generated in vivo 
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[278]. Therefore, further investigation is required to determine the downstream 

effects of increased chemokine production, activated in response to IL-33 

stimulation, in the tumour cells. 

3.3.5 IL-33 activates signalling pathways common to other IL-1 family members 

 

As I have shown that IL-33 activates CCL2 and CXCL-1, I next sought to determine 

how these chemokines were activated. The CCL2 promoter contains binding sites for 

multiple transcription factors such as NF-κB subunits, AP-1, Sp-1 and the STAT 

family [279]. The CXCL-1 promoter is also regulated by numerous factors, e.g. NF-

κB subunits, poly (ADP-ribose) polymerase (PARP) and  CCAAT displacement 

protein (CDP) [280].  While selecting which signalling pathways to examine, I 

considered that, as IL-33 is a member of the IL-1 receptor family, and common to 

other family members, IL-33 signalling occurs through dimerization of the TIR 

domain of the receptor (i.e. ST2L in this case) with the co-receptor IL1RAcP. 

MyD88 is then recruited and IRAK1/2 activates TNF receptor associated factor 6 

(TRAF6), leading to activation of the MAPK pathways [281]. Therefore, I examined 

the ability of IL-33 to activate the following pathways; the MAPK pathways, due to 

the IL-1 family connection; NF-κB, as this is known to activate both CCL2 and 

CXCL1; and the PI3K/AKT pathway, due to its increased activation in human 

cancer. I observed activation of multiple signalling pathways by IL-33 in colon 

cancer cells, including activation of the PI3K/AKT and MAPK pathways (JNK, 

ERK and p38). Similar to my findings, JNK was also found to be activated by IL-33 

in gastric cancer cells [271], while both ERK and JNK were activated in ovarian 

cancer cells. P13K/Akt signalling was not investigated in that study [271]. Although 

IL-33 has previously been shown to activate PI3K/AKT signalling in endothelial 
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cells [282], this has not been shown to date in cancer cells. I have also demonstrated 

that IL-33 activated the NF-κB subunit, p65. There have been contrasting findings in 

the literature regarding the ability of IL-33 to activate NF-κB, with some studies 

showing that IL-33 can drive NF-κB activation [283, 284], while others have shown 

that IL-33 dampens NF-κB activity. For instance, nuclear IL-33 was shown to 

sequester nuclear NF-κB and suppress NF-κB activity, thereby reducing pro-

inflammatory signalling [285]. NF-κB activation has previously been shown to 

mediate expression of CXCL1 and CCL2 in ovarian cancer cells [286, 287]. 

Similarly, CCL2 was upregulated via NF-κB and JNK pathways in prostate cancer 

cells [288]. Therefore, a combination of the pathways I examined may be responsible 

for activation of CXCL-1 and CCL2, i.e. MAPK, NF- κB and Akt/P13K.  

Interestingly, I found very few other cytokines were induced by IL-33. We 

investigated a panel of ten cytokines, of which only three were seen to be robustly 

induced by IL-33. A similar absence of cytokine induction by IL-33 was observed in 

pancreatic and cardiac cells. In particular there was a lack of IL-6, IL-8 or CCL2 

induction [249, 268]. Moreover, in a murine model of sepsis, treatment with IL-33 

lowered the levels of the  pro-inflammatory cytokines, TNF-α, IL-6 and CXCL2 in 

the blood, while no increase in IL-4, IL-10 or IL-13 was detected in lung tissue post 

IL-33 treatment [289]. In the intestine, IL-33 is a known regulator of barrier function 

and homeostasis. Under homeostatic conditions IL-33 is localized to the nucleus of 

epithelial cells and has been shown to suppress pro-inflammatory gene expression 

[285]. IL-33 is thought to maintain intestinal homeostasis by limiting inflammation 

[290]. However, upon cellular damage or necrosis IL-33 is released from the nucleus 

and functions as an alarmin, inducing a pro-inflammatory response. Therefore, IL-33 

can have both pro- and anti-inflammatory functions. Indeed, under the conditions 
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examined in this chapter IL-33 may be acting to limit inflammation and this may 

explain the lack of cytokine induction observed. Given the ability of IL-33 to 

activate the MAPK, AKT and NF-κB pathways in colon cancer cells, the lack of 

cytokine induction is unclear. One possible explanation is that IL-33 also activates 

the transcription of inhibitors, such as SIGGIR [291], which may in turn dampen IL-

33 signalling, reducing cytokine output. This is a potential mechanism whereby such 

limited cytokine expression may be accomplished, although such specificity being 

achieved through targeted inhibition has not been extensively reported. Another 

possible mechanism whereby limited cytokine expression could occur in colon 

cancer cells in response to IL-33 is through modification of the genes by epigenetic 

mechanisms. IL-33 expression is linked to histone deacetylase 3 (HDAC3) enzyme, 

which regulates gene expression [139]. IL-33 was also shown to be specifically 

regulated by HDAC inhibitors compared to other IL-1 members [139]. Epigenetic 

modification may explain why so few cytokines were produced in response to IL-33 

stimulation, especially as transcription factors and pathways examined (i.e. NF-κB, 

MAPK, and AKT), were activated by IL-33. Therefore, it seems likely that the level 

of repression of transcription in response to IL-33 may be occurring through direct 

modification at the epigenetic level of inflammatory genes.  

In conclusion, this chapter has characterised expression of IL-33 and ST2 in colon 

cancer cells, identifying an anti-proliferative role for IL-33/ST2 in colon cancer, and 

showing IL-33 enhanced migration while invasion was unaltered. Furthermore, this 

research has identified that colon cancer cells stimulated with IL-33 produce potent 

chemokines and angiogenic factors, which could recruit immune cells, specifically 

macrophages and neutrophils, which can influence the immune infiltrate in the 

tumour microenvironment and the vascularisation of the tumour. Therefore, further 
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studies are required to determine whether manipulation of this pathway represents a 

potential therapeutic target in colon cancer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



107 

 

Chapter 4 
 

The IL-33/ST2 axis modulates tumour growth and 

the tumour microenvironment in vivo 
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4.1 Introduction:  

Current research has primarily focused on the role of IL-33 and ST2 in 

chronic disorders, with IL-33 and ST2 playing a role in the pathogenesis of 

several human inflammatory diseases including IBD [177]. On commencing 

this thesis there were only two papers pertaining to the role of the IL-

33/ST2 axis in cancer, both of which examined this signalling axis in breast 

cancer [193, 194]. The first study utilised ST2
-/-

 mice and demonstrated that 

deletion of ST2 suppressed breast cancer progression and metastasis, and 

increased the number of activated natural killer (NK) cells. Furthermore, 

ST2 deletion increased the cytotoxic activity of NK cells and CD8
+ 

T cells 

and systemic Th1/Th7 cytokines [193]. A second study specifically 

implicated sST2 in metastasis, as knocking down sST2 reduced ErbB2-

induced cell motility in breast cancer cells, while cells from metastatic 

breast tumours secreted increased levels of sST2 relative to cells from 

primary tumours. Moreover, the authors demonstrated that patients with 

metastatic breast cancer had higher levels of serum sST2 compared to 

patients with primary tumours, leading to the conclusion that in breast 

cancer ST2 may serve as a biomarker of disease severity or progression 

[194].  Therefore, in breast cancer the IL-33/ST2 pathway appears play a 

pro-tumorigenic role. Subsequent studies in breast cancer also showed 

significantly higher levels of both IL-33 and sST2 in the serum of patients 

with ER positive breast cancer relative to healthy controls [195]. Moreover, 

administration of recombinant IL-33 to breast cancer-bearing mice resulted 

in accelerated tumour growth and enhanced metastasis. This was thought to 

be due to increased accumulation of immunosuppressive immune cells and 

innate lymphoid cells within the tumours, further supporting a role for IL-33 
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in promoting tumorigenesis [196]. More recently, the role of the IL-33/ST2 

signalling axis has been investigated in other cancer types. Consistent with a 

role for IL-33 and ST2 in promoting tumour cell invasion and metastasis, 

inhibition of IL-33 and ST2 in glioma cells resulted in reduced tumour 

growth, migration and colony formation in vitro, and smaller tumours in 

vivo [197].  

Other studies, however, have shown somewhat divergent effects, with IL-33 

reduced in the plasma of non-small cell lung cancer patients relative to 

controls [198], and IL-33 negatively correlating with tumour stage in 

multiple myeloma patients [199]. Furthermore, over-expression of IL-33 

potently inhibited tumour growth and metastasis in both B16 melanoma and 

4T1 breast cancer models. NK cells and CD8
+
 T cell numbers were 

increased [200]. Similarly, transgenic expression of IL-33 reduced tumour 

metastasis in a Lewis lung carcinoma and B16 melanoma model. Both the 

number and the cytotoxicity of CD8
+
 T cells and NK cells were increased in 

response to IL-33 expression [201]. 

In the previous chapter, I demonstrated that stimulation of colon cancer 

cells with IL-33 induced the expression of the chemokines CCL2 and 

CXCL-1. Thus, IL-33/ST2 signalling in colon cancer may contribute to the 

chronic inflammatory microenvironment thereby promoting tumorigenesis. 

CXCL-1 is a neutrophil chemotactic factor, while CCL2 is a macrophage 

chemotactic factor. Recruitment of such immune cells can have a potent 

influence on the tumorigenic process. For instance, depending on activating 

signals, macrophages can be polarised towards either an anti-tumorigenic 

M1 phenotype or a tumour-promoting M2 phenotype. Consistent with 
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tumour-associated macrophages (TAMs) being skewed towards an M2 

phenotype, increased numbers of macrophages can indicate a poor 

prognosis in certain cancers such as breast [292], gastric [293] and ovarian 

[293]. However, the role of TAMs in colon cancer seems to be more 

complex, with both tumour-suppressive and tumour-promoting effects being 

reported. Similarly, both pro- and anti-inflammatory effects have been 

described for tumour-associated neutrophils. Therefore, a cytokine such as 

IL-33 with the ability to influences immune cell recruitment may 

powerfully influence tumorigenesis.  

Given the variation in the expression levels of IL-33 and ST2 in CRC 

reported in the literature, combined with the IL-33 induced chemokine 

production we had observed in colon cancer cells, the aim of this chapter 

was to characterise IL-33 and ST2 expression in CRC. Furthermore, I 

wished to specifically examine expression of the different isoforms of ST2 

in human colon cancer tissue. 
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4.2 Results: 

4.2.1 Generation of stable cell lines with suppressed ST2 expression by 

stable transfection with short hairpin RNA (shRNA) encoding plasmids. 

In order to further investigate the role of ST2 in colon cancer, stable cell 

lines with suppressed ST2 expression were generated (Figure 1). CT26 

mouse colon cancer cells were selected as these cells grow in immune 

competent BALB/c mice. Moreover, I had previously shown that these cells 

express ST2L, sST2 and IL-33 (Chapter 3, figure 4 and 6). CT26 cells were 

transfected with lentivirus particles containing shRNA encoding plasmids 

designed to target the murine ST2 gene (Figure 2). In parallel, CT26 cells 

were transfected with lentiviral plasmids containing a scrambled sequence 

showing no homology to any known mammalian gene. As can be seen in 

Figure 2a, a CT26 clone transfected with shRNA against ST2, hereafter 

referred to as CT26
ST2 shRNA#1

 was generated that showed a significant 

reduction in ST2 expression (*** P < 0.001) relative to cells transfected 

with the scrambled control, CT26
scr shRNA#1

 cells, by Western blot. Although 

a number of clones were generated, this clone was selected as it showed the 

lowest expression of ST2 by Western blot. To further characterise knock 

down of ST2 expression, a functional assay was performed. In chapter 3, I 

showed that CXCL-1 is produced by CT26 cells in response to IL-33 

stimulation. Thus, CXCL-1 production in response to IL-33 stimulation was 

selected to confirm that the ST2 receptor was knocked down. IL-33 

stimulation led to a 27-fold increase in CXCL-1 production in CT26
scr 

shRNA#1 
cells (Figure 2b). In contrast, there was approximately a 4-fold 

reduction in CXCL-1 production by CT26
ST2 shRNA#1

 cells upon IL-33 

stimulation, relative to CT26
scr shRNA#1 

cells (Figure 2b). To determine  
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Figure 1: Experimental outline of the generation of CT26 stable cell lines with 

suppressed expression of ST2. CT26 cells were stably transfected with lentiviral 

particles containing either ST2-specific or scrambled control shRNA expressing 

plasmids. ST2 knockdown cells were characterised by Western blot and qRT-PCR. 
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Figure 2: Characterisation of stable cell lines generated following transfection of CT26 

cells with shRNA targeted against ST2 or scrambled control. CT26 cells were transfected 

with lentiviral particles containing either ST2-specific or scrambled control shRNA 

expressing plasmids in the presence of polybrene. Following puromycin selection, stable 

clones were generated and knockdown of ST2 expression was determined by (a) Western 

blotting with subsequent quantification by densitometry. (b) Changes in CXCL-1 production 

were determined by qRT-PCR. (c) Cell proliferation was measured by resazurin reduction. 

DMSO was added to ensure the assay could detect changes in proliferation. Values are plotted 

as Mean +/- S.E.M. n=3. *** P < 0.001. Results were statistically evaluated using One-way 

Anova with Tukeys post-test, or by students paired t test. 
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whether knocking down ST2 affected cellular proliferation, a resazurin 

reduction assay was utilised to examine the proliferation of the CT26 cell 

lines generated. Suppression of ST2 in CT26 cells (CT26
ST2 shRNA#1 

cells) did 

not alter the proliferation of these cells relative to control cells (CT26
ST2 scr 

shRNA#1 
) (Figure 2c). This indicated that reducing ST2 expression in murine 

colon cancer cells does not affect the proliferation of these cells in vitro. In 

contrast, when treated with DMSO, an amphipathic molecule, that is known 

to induce apoptosis [294], cell proliferation was substantially reduced 

(~75%), relative to untreated cells. 

4.2.2 Knocking down ST2 expression in CT26-derived tumours 

increases tumour formation and growth in vivo. 
 

In order to assess the biological effect of reducing ST2 expression on 

tumour growth, we utilised the well-characterised murine model of CT26 

colon cancer cells subcutaneously injected into the right flank of BALB/c 

mice. I first performed a preliminary study, whereby immunocompetent 

female Balb/c mice were subcutaneously injected with either CT26
scr shRNA#1

 

cells (n=4) or CT26
ST2 shRNA#1

 cells (n=4), and tumour growth was 

monitored over a period of 20 days. A separate control group were injected 

with PBS only (n=3) (Figure 3a). To determine whether tumour cell 

injection or cancer growth impacted on feeding capability, body weight and 

food consumption were measured throughout the course of the experiment. 

No differences in food consumption were observed between the CT26
scr 

shRNA#1
 and CT26

ST2 shRNA#1
 groups (Figure 4a). Moreover, no significant 

differences in body weight were detected between the groups (Figure 4b).   
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Group name Number in 

group 
Cell type inoculated 

1 4 CT26
scr shRNA#1

 
2 4 CT26

ST2 shRNA#1

 
3 3 PBS 

a) 

Figure 3: Outline of preliminary in vivo study design and tumour 

dissection. (a) Balb/c immunocompetent female mice were 

subcutaneously (s.c.) injected with 4 x 10
4 

cells in 200μl of PBS in the 

right flank.  The control group were injected with 200μl of PBS only. (b) 

Animals were sacrificed after 20 days, and harvested tumours were 

dissected as illustrated. 
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Figure 4: Food consumption and body weight was monitored, with no differences 

observed between the groups. (a) Food consumption for each group was measured twice 

weekly post injection of tumour cells. Values are displayed as average food consumption 

per mouse. (b) The weight of each animal in the study groups was monitored three times 

per week. Values are plotted as Mean ± S.E.M. 
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Tumour development was monitored over the course of the investigation. By 

day 12, all eight mice injected with either CT26
ST2 shRNA#1 

or CT26
scr shRNA#1

 

cells had developed palpable tumours (Figure 5a). However, in contrast to the 

in vitro findings, whereby suppressing ST2 expression did not alter tumour 

growth (Figure 2c), in vivo tumour growth was increased when ST2 

expression was suppressed. The cancer cells with suppressed ST2 expression 

formed tumours that grew at a faster rate in mice, than those injected with 

CT26
scr shRNA#1

 cells. Once the tumours had reached the maximum size 

(2cm
3
), all mice were sacrificed. On the day of termination, the final tumour 

volume was increased by ~85% in tumours derived from CT26
ST2 shRNA#1

 

cells relative to those derived from CT26
scr shRNA#1

 cells (p=0.026) (Figure 

5b). 

4.2.3 Ki67 expression was unchanged in CT26
ST2 shRNA#1

 tumours 

compared to CT26
scr shRNA#1

 tumours. 
  

Tumour tissue was excised and dissected according to figure 3b. Formalin-

fixed paraffin-embedded tissue sections were stained using haematoxylin 

and eosin (Figure 6a). General tumour morphology was examined and no 

differences in tumour architecture were observed. As larger tumours 

resulted from CT26
ST2 shRNA#1 

cells, compared to CT26
scr shRNA#1

 cells, 

sections were also immunostained with a Ki67 antibody, a marker of 

cellular proliferation. Ki67 staining was unchanged in CT26
ST2 shRNA#1

 

compared to CT26
scr shRNA#1

 (Figure 6b). Therefore, from these results I can 

conclude that both groups contained actively proliferating tumour cells. 

4.2.4 Generation and functional assessment of additional ST2
-/- 

CT26 

cells in vitro and in vivo. 

In order to confirm the findings of the initial study and to power the study  
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Figure 5: Suppression of ST2 expression in colon cancer cells results in increased tumour 

growth in vivo. (a) Female Balb/c immune-competent mice were s.c. injected with 4 x 10
4
 

cells into the right flank. The appearance of palpable tumours was determined by monitoring 

tumour development. Tumour growth was monitored at least twice weekly by measurement of 

tumour length (a) and width (b) using Vernier calipers. Tumour volume was calculated as ½ 

(axb
2
). (b) 20 days after tumour injection, animals were sacrificed and the final tumour 

volume recorded. Values plotted as mean +/- S.E.M. n =4. * P < 0.5,  ** P < 0.01. Results 

were statistically evaluated using a students paired t test. 
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Figure 6: Ki67 expression was unchanged in CT26
ST2 shRNA 

tumours compared to 

CT26
scr shRNA 

tumours.  Tumour tissues were excised, formalin-fixed, paraffin-

embedded and stained with (a) haematoxylin and eosin or (b) Ki67 antibody for 

histochemical analysis. Scale bar = 100μm. Images shown are representative of the 

findings obtained. 
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Figure 7: Characterisation of ST2 suppressed stable cell lines generated following 

transfection of CT26 cells with shRNA targeted against ST2 or scrambled control. (a) 

CT26 cells were transfected with lentivirus containing plasmids encoding ST2 or scrambled 

control shRNA. Knockdown of ST2 expression was determined by Western blotting and 

quantified by densitometry. (b) Changes in CXCL-1 production were determined by qRT-

PCR. Values are plotted as Mean +/- S.E.M. n=3. *** P < 0.001. 
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sufficiently for statistical analysis, a second in vivo investigation using the 

same subcutaneous murine model of colon cancer was employed. To ensure 

the results observed in the preliminary in vivo study were not just a clonal 

effect, two new stable ST2 suppressing clones were generated (CT26
ST2 

shRNA#2
 and CT26

ST2 shRNA#3
) in parallel with CT26

scrshRNA#2 
cells. Similar to 

the preliminary study, ST2 knockdown clones were selected using 

puromycin. A number of clones were generated. CT26
ST2 shRNA#2 

and 

CT26
ST2 shRNA#3

 clones were selected as they showed a significant reduction 

in ST2 expression, as assessed by Western blot analysis (p<0.001), relative 

to CT26
scr shRNA#2

 cells (Figure 7a). Knock down of ST2 expression was 

further characterised by a functional assay. IL-33 treatment led to ~30-fold 

increase in CXCL-1 production in CT26
scr shRNA 

cells (Figure 7b). In 

contrast, IL-33 stimulation of CT26
ST2 shRNA#2

 and CT26
ST2 shRNA #3 

cells led 

to just a 2 and 4-fold increase in CXCL-1 production, respectively (Figure 

7b). 

As tumour growth of CT26 cells was enhanced following suppression of 

ST2 expression in vivo in the preliminary study, and IL-33 suppressed 

proliferation in vitro in colon cancer cells (Chapter 3, figure 9), basal 

cellular proliferation was examined in the freshly generated clones. BrdU 

incorporation was measured and no significant changes were observed in 

the basal level of proliferation between the CT26
scr shRNA#2

, CT26
ST2 shRNA#2 

and CT26
ST2 shRNA #3

 cells over a 48-hour period (Figure 8a). As I had 

previously shown that migration was enhanced by IL-33 stimulation of 

CT26 cells (Chapter 3, figure 10), migration of the freshly generated clones 

towards 10% serum was also examined. However, no significant changes in  
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Figure 8: Suppressing ST2 expression did not alter proliferation or migration of colon 

cancer cells in vitro. (a) Cell proliferation of CT26
scr shRNA#2

,
 CT26

ST2 shRNA#2
 and CT26

ST2 

shRNA#3
 cells was measured by BrdU assay. (b) Migration of stably transfected cells was 

measured using a modified Boyden Chamber assay. Values are plotted as Mean +/- S.E.M. 

n=3. Results were statistically evaluated using One-way Anova with Tukeys post-test. 
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basal migration were observed between the CT26
scr shRNA#2

, CT26
ST2 shRNA#2 

and
 
CT26

ST2 shRNA #3 
cells towards 10% serum (Figure 8b). 

In order to confirm the findings of the initial study, a second in vivo study 

using the same murine model of CRC was performed. Immunocompetent 

BALB/c mice were injected subcutaneously with CT26
ST2 shRNA#2

 CT26
ST2 

shRNA#3 
and CT26

scr shRNA#2
 cells. To sufficiently power the study for 

statistical analysis, a larger number of animals were required in each group, 

i.e. n=6, except for the PBS injected control group, which contained n=3 

(Figure 9a). To investigate if tumour cell injection and growth impacted on 

feeding capability, food consumption was measure twice weekly throughout 

the course of the experiment, and remained constant among all groups 

(Figure 10a). Each mouse was weighed twice per week and no significant 

difference in body weight was detected between the tumour cell injected 

groups and those animals injected with PBS alone (Figure 10b). Tumour 

development was monitored over the course of the investigation and by day 

13, palpable tumours began to appear in all groups (Figure 11a). CT26
ST2 

shRNA#3 
derived tumours grew at a fastest rate than the other two groups and 

resulted in the largest tumours. CT26
ST2 shRNA#2 

and CT26
scr shRNA#2

 showed 

similar growth rates up until day 20, at this point tumour growth continued 

to increase in CT26
ST2 shRNA#2 

tumours, while CT26
scr shRNA#2

 tumours 

remain static (Figure 11a). The final tumour volume was two-fold greater in 

tumours derived from CT26
ST2 shRNA#2 

cells and three-fold greater in 

CT26
ST2 shRNA#3 

(p=0.0425) derived tumours, relative to those derived from 

CT26
scr shRNA#1

 cells (Figure 11b). This second independent study using two 

newly generated clones was consistent with the findings of the preliminary  
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a) 

Figure 9: Outline of second in vivo study design. (a) Immunocompetent 

female Balb/c mice were s.c. injected with 4x10
4 

tumour cells in the right 

flank. The control group were injected with 200μl of PBS only. (b) 

Tumours were dissected using a “clock” dissection method for subsequent 

processing as indicated. 



125 

 

 

 

 

 

 

 

 

 

 

  

Figure 10: Food consumption and body weight was monitored, with 

no change observed between groups.
 

(a) Food consumption for each 

group was measured twice per week. (b) The weight of each animal in the 

study groups was also monitored twice per week. (a) Values are plotted as 

g per mouse. (b) Values are plotted as mean +/- SEM. 
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Figure 11: Suppression of ST2 expression in colon cancer cells results in increased 

tumour growth in vivo. (a) Female Balb/c immunocompetent mice were s.c. injected 

with 4 x10
4 

cells into the right flank. The appearance of palpable tumours was 

determined by monitoring tumour development. Tumour growth was monitored at least 

twice weekly by measurement of tumour length (a) and width (b) using Vernier 

calipers. Tumour volume was calculated as ½(axb
2
). (b) 24 days after tumour injection, 

animals were sacrificed and the final tumour volume recorded. Values plotted as mean 

+/- S.E.M. n =6. * p < 0.05. Results were statistically evaluated using One-way Anova 

with Tukeys post-test. 
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study, suggesting that a reduction in ST2 signalling leads to increased 

tumour growth in vivo. 

Upon completion of the study, the murine tumour tissue was excised, and 

dissected as indicated in Figure 9b. As the ST2 suppressed tumours were 

increased in size compared to the scrambled control, Ki67 expression was 

also examined. This was found to be unchanged in CT26
ST2 shRNA #2 

and
 

CT26
ST2 shRNA #3 

tumours 
 
compared to CT26

scr shRNA#2 
tumours (Figure 12a), 

indicating that all tumours contained cells that were actively proliferating. 

In addition, expression of IL-33 was examined in the murine tumours. IL-33 

was found to be markedly reduced in the CT26
 ST2 shRNA#2

 and CT26
 ST2 shRNA 

#3
 tumours compared to CT26

scr shRNA#2
 tumours (Figure 12b). While the 

underlying mechanism for this decrease in IL-33 expression in vivo is 

unclear, it may be caused by a lack of positive regulation of IL-33 by ST2L 

signalling. 

In the previous chapter I had observed that IL-33 stimulation can alter 

VEGF expression in CT26 cancer cells in vitro (Chapter 2, figure 13). 

Therefore, I wished to examine if differential expression of the pro-

angiogenic factor, VEGF, was responsible for the alterations observed in 

tumour growth following suppression of ST2 expression. Expression of the 

pro-angiogenic mediator VEGF was found to be increased in CT26
ST2 

shRNA#3
 cells both in vitro (Figure 13a) and in vivo (Figure 13b) as compared 

to CT26
scr shRNA #2

 cells. However, this was not significant. Moreover, 

although, CT26
ST2 shRNA#2

 cells also showed increased tumour growth VEGF 

expression was unchanged compared to CT26
scr shRNA #2 

cells.  This suggests 

that increased VEGF expression is not responsible for the increased tumour  
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Figure 12: IL-33 expression is reduced in colon cancer tumours with reduced 

ST2 expression, while Ki67 expression is unchanged by suppressing  ST2 

expression. Tumour tissues were excised, formalin fixed and paraffin embedded. 

Murine tumour sections were immunostained using (a) anti-Ki67 or (b) anti-IL-33. 

(c) Primary antibody was omitted in the negative control. Scale bar: 100 μm. Images 

shown are representative of the findings obtained. 
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Figure  13: VEGF expression is increased in CT26
ST2 shRNA #3

 cells in vitro and in 

vivo. (a) Total RNA was extracted from CT26
scr

 
 shRNA #2,

 CT26
ST2 shRNA #2

 and CT26
ST2 

shRNA #3
 cells and changes in VEGF were examined by qRT-PCR. Data shown are mean 

+/- SEM (n=3). (b) Total RNA was extracted from excised tumours and expression of 

VEGF was examined by qRT-PCR. Results were statistically evaluated using One-way 

Anova with Tukeys post-test. 
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growth seen following suppression of ST2 expression. 

4.2.5 Suppression of ST2 expression does not alter colon cancer cell 

proliferation in vitro in response to pro-inflammatory stimuli. 

 

Suppression of ST2 in colon cancer cells did not alter the proliferation of 

unstimulated cells in vitro (Figure 2c and 8a), but did result in increased 

tumour cell growth in vivo (Figure 5 and 11). To investigate if pro-

inflammatory factors in the tumour microenvironment may be driving 

proliferation of the ST2 suppressed cells, cells were stimulated with PGE2, a 

pro-inflammatory prostaglandin that is commonly upregulated in colon 

cancer (Figure 14a), and LPS (Figure 14b), a potent pro-inflammatory 

cytokine that has been shown to activate MAPK pathways, which in turn 

influences proliferation [295]. Changes in proliferation were assessed by 

BrdU incorporation. No significant differences were observed between the 

CT26
ST2

 
shRNA#2

 and CT26
ST2 shRNA#3

 cells and the CT26
scr

 
shRNA#2

 control 

cells, indicating that neither of the pro-inflammatory stimuli examined were 

responsible for the increase in proliferation observed in vivo. 

4.2.6 Suppression of ST2 expression in tumour cells results in reduced 

macrophage and CD8
+
T cell recruitment in vivo. 

 

As ST2 suppressed cells did not show an increase in proliferation in 

response to pro-inflammatory mediators in vitro. I next examined the 

immune infiltrate in ST2 suppressed tumours. Tumours were excised and 

immune cell infiltration analysed by flow cytometry. Representative dot 

plots for the FACS analysis are shown in Figure 15. A number of immune 

cell populations were examined, including macrophages, neutrophils,  
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Figure 14: Suppression of ST2 expression in colon cancer cells does 

not alter their proliferation in vitro in response to pro-inflammatory 

stimuli. Cells were stimulated with (a) PGE
2 

and (b) LPS as indicated 

and changes in proliferation assessed by BrdU incorporation. Data shown 

are mean +/- SEM (n=3). Results were statistically evaluated using One-

way Anova with Tukeys post-test. 
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LY6G F4/80 CD8 

LY6G F4/80 CD8 
CT26

scrshRNA#2

 b) 

a) 

c) 

d) 

CT26
ST2shRNA#2

 

CT26
ST2shRNA#3

 

Figure 15: Tumour cells were stained with fluorochrome-labelled mAb and 

analysed by flow cytometry. (a) Dotplots showing the fluorescence minus one 

controls, which were used to set the threshold gates for the data presented in (b-d). 

Representative dot plots showing the percentage of LY6G
+ 

neutrophils, F4/80
+
 

macrophages and CD8
+
 T cells in the viable tumour cell population from (b) CT26

scr 

shRNA#2
, (c) CT26

ST2 shRNA #2
, and (d) CT26

ST2shRNA #3 
derived  tumours. 20,000 to 

50,000 events were recorded,  
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Figure 16: F4/80
+

 cells and CD8
+

 cells were decreased in the CT26
ST2 shRNA#2 

and
 

CT26
ST2 shRNA#3

 tumours compared to the CT26
scr shRNA#2 

tumours, while 

the level of CD4
+

CD25
+

 cell infiltration is unchanged. Tumours were excised and 

digested by collagen/dispase. Single cell suspensions were isolated from each 

tumour and surface stained with antibodies against (a) F4/80, (b) CD8, (c) CD4 and 

CD25.  The percentages of each cell subset were assessed by gating on forward 

scatter (FSC) populations using an Accuri C6 Flow Cytometer, and analysis was 

carried out using CFlow software. Values are plotted as Mean ± S.E.M. Each point 

represents tumour cells isolated from a single mouse. * P < 0.05. Results were 

statistically evaluated using One-way Anova with Tukeys post-test. 



134 

 

 

 

 

 

  

Figure 17: Eosinophils are increased in CT26
ST2 shRNA#3 

tumours compared 

to the CT26
scrshRNA#2

, with no change seen in Ly-6G
+

 and CD49b
+

 cells. 

Tumours were excised and digested with collagen/dispase. Single cell 

suspensions were isolated from each tumour and surface stained with 

antibodies against (a) CD49b, (b) Ly-6G, (c) SiglecF. The percentages of each 

cell subset were assessed by gating on FSC populations using an Accuri C6 

Flow Cytometer, and analysis was carried out using CFlow software. Values 

are plotted as Mean ± S.E.M. Each point represents a single mouse. * P < 

0.05. Results were statistically evaluated using One-way Anova with Tukeys 

post-test. 
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eosinophils, CD8
+
 T cells and NK cells. Macrophage recruitment was 

reduced in CT26
ST2 shRNA#2 

and CT26
ST2 shRNA#3

 tumours compared to 

CT26
scr shRNA#2

 tumours, with a significant reduction seen in CT26
ST2 

shRNA#3
-derived tumours, p<0.05 (Figure 16a). Suppressing ST2 also led to a 

decrease in the recruitment of CD8
+
 T-cells (Figure 16b), while CD4

+
 

CD25
+
 cell infiltration was unchanged (Figure 16c). NK cell infiltration was 

also unchanged (Figure 17a). Although I had previously shown that IL-33 

stimulation increased the neutrophil chemokine CXCL-1 (Chapter 3, figure 

13) suppressing ST2 did not affect neutrophil recruitment (Figure 17b). In 

contrast, eosinophil infiltration was increased in tumours derived from 

CT26
ST2 shRNA#3 

cells, but not in CT26
ST2 shRNA#2

-derived
 
tumours, compared 

to the CT26
scr shRNA#2

 tumours (Figure 17c). 

4.2.7 Migration of macrophages towards tumour cell supernatant is 

increased by IL-33 stimulation of the tumour cells. 
 

Given the reduction in macrophage infiltration observed in tumours derived 

from CT26
 ST2 shRNA#2 

and
 
CT26

 ST2 shRNA#3
 cells, and the ability of IL-33 

stimulation to induce CCL2 production (Chapter 3, figure 13), I next 

investigated whether there was an increase in macrophage migration 

towards supernatant from IL-33-stimulated tumour cells, relative to 

untreated tumour cell supernatant. This experiment was performed using the 

modified Boyden chamber assay, as illustrated in figure 18a. There was 

~25% increase in migration of macrophages as compared to unstimulated 

CT26 cell supernatant (Figure 18b). Consistent with the induction of CCL2 

by IL-33, a blocking antibody to CCL2 reduced macrophage migration 

towards the supernatant of IL-33-stimulated CT26 cells (* P < 0.05) (Figure  
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Figure 18: Supernatant from IL-33-stimulated tumour cells enhances 

macrophage migration, relative to supernatant from unstimulated cells.  CT26 

colon cancer cells were stimulated for 24hrs with IL-33 (15ng/ml). (a) The 

supernatant was isolated from unstimulated or IL-33-stimulated CT26 cells and 

placed in the lower chamber of the modified Boyden chamber assay. (b) Migration of 

RAW 264.7 macrophages towards the cell culture supernatant was assessed. 

Neutralising CCL2 antibody was added to the supernatant as indicated. Data shown 

are mean +/- SEM (n=3). Results were statistically evaluated using One-way Anova 

with Tukeys post-test. 
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Table 1. CRC cohort 1 patient demographics. A cohort of 24 patients with 

CRC was recruited from the Mercy University Hospital Cork. The study 

protocol, including all procedures and study populations was approved by the 

University College Cork Clinical Research Ethics Committee of the Cork 

Teaching Hospitals (ECM (3) P 3/9/2013). All samples were collected with 

patients’ informed consent.  
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Figure 19: IL-33 serum levels were lower in CRC patients than in healthy 

controls, while sST2 was unchanged. Serum was obtained from healthy 

individuals and patients with CRC, and (a) IL-33 and (b) sST2 levels determined 

by ELISA. Statistical analysis was determined using a Students paired t test. * P < 

0.05. 
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18b).  

4.2.8 Serum levels of IL-33 are slightly decreased in CRC patients 

compared to healthy controls, while sST2 levels are unchanged. 

 

As a clear biological effect was observed by suppressing ST2 in murine 

tumours, I next wished to determine if there was a correlation between the 

murine findings and human patient samples. A cohort of 24 patients with 

CRC was recruited from the Mercy University Hospital Cork in 

collaboration with my clinical collaborators, Dr. Amr Mahmoud and Dr. 

Michael Bennett. The demographics pertaining to these patients are 

contained in Table 1. Eight of these patients had received chemotherapy 

prior to surgery. I first measured the level of IL-33 and sST2 in the serum of 

CRC patients (n=24) and healthy individuals (n=15) by ELISA. There was a 

slight reduction in the level of IL-33 in the serum of CRC patients 

compared to the controls, (* P=0.0252) (Figure 19a), with no alteration seen 

in the circulating sST2 levels (Figure 19b).  

4.2.9 Expression of ST2L in CRC is lower compared to adjacent non-

tumour tissue 

 

Although serum IL-33 and sST2 levels were not vastly altered in CRC 

patients, I next wished to examine expression of both IL-33 and its receptor 

ST2L in human CRC. Initially, I examined expression of IL-33 and ST2 by 

qRT-PCR. Similar to most previous reports examining expression levels of 

ST2 at the mRNA level, I initially utilised a qRT-PCR primer to the 

extracellular region of ST2, which detects both the soluble (sST2) and the 

transmembrane (ST2L) form of the receptor. There was no change in the 
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level of transcription of either IL-33 or total ST2 between CRC and paired 

adjacent non-tumour tissue (Figure 20a and b). I subsequently utilised a 

primer specific to the intracellular portion of ST2 to examine changes in 

expression of ST2L in colon cancer. The level of ST2L mRNA was 

significantly reduced (** P=0.0067) in CRC tissue as compared to adjacent 

non-tumour tissue (Figure 20c). Alterations in expression were confirmed at 

the protein level by IHC, using antibodies directed against IL-33 and both the 

extracellular portion of ST2 (total ST2) and the intracellular region (ST2L).  

ST2L was consistently decreased in the CRC tumours compared to the 

adjacent non-tumour (Figure 21c). There was no change in the levels of either 

IL-33 or total ST2 between CRC and adjacent non-tumour tissue (Figure 21a and b).  
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Figure 20: ST2L expression is lower in colorectal cancer tissue relative to 

adjacent non-tumour tissue. Total RNA was extracted and changes in (a) IL-33, (b) 

total ST2 and (c) ST2L were detected by qRT-PCR. Statistical analysis were 

determined using a Students paired t test. ** P < 0.01. 
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Figure 21: ST2L expression is lower in colorectal cancer tissue relative to adjacent 

non-tumour tissue, while IL-33 and total ST2 expression were unchanged. 

Immunohistochemical staining for (a) IL-33, (b) total ST2 and (c) ST2L was performed 

on paraffin-embedded tumour sections, (d) Primary antibody was omitted as a negative 

control. Original magnification: 20X. Images shown are representative of the findings 

obtained. 
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4.3 Discussion 

 

In this chapter, I have shown that suppressing ST2 expression in murine 

colon cancer cells resulted in significantly increased tumour growth in 

BALB/c mice in vivo. This was associated with alterations in immune cell 

infiltration, in particular a reduction in macrophage and CD8
+
 T cell 

infiltration. Furthermore, migration of macrophages towards tumour cell 

supernatant was increased by IL-33 stimulation of the tumour cells in vitro, 

while macrophage migration was reduced by antagonising CCL2 in vitro. 

These findings were consistent with the induction of CCL2 by IL-33 in 

colon cancer cells in vitro and the reduction in macrophage populations 

observed in ST2 suppressed tumours in vivo. In human CRC patient 

samples, ST2L expression by neoplastic cells was reduced in human colon 

tumours in vivo, as compared to adjacent non-tumour tissue. Working 

concurrently, my clinical collaborator Dr. Amr Mahmoud found that protein 

expression of ST2L was lower in human tumours relative to adjacent non-

tumour tissue, and that the higher the grade of the tumour, the lower the 

expression of ST2L. Taken together this data suggests an anti-tumorigenic 

role for the IL-33/ST2 axis in colon carcinogenesis.  

4.3.1 A potential anti-tumorigenic role for IL-33 in cancer: 

 

In line with findings in this chapter, numerous recent reports have revealed 

an anti-tumorigenic role for IL-33 and ST2. In these studies, IL-33 was 

shown to promote the recruitment of immune cells known to activate an 

anti-tumorigenic immune response, such as CD8
+
 T cells [118, 200, 201]. 

CD8
+ 

T cells mediate a vital role in the defence against cancer by targeting 
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cells compromised by oncogenic transformation, as well as targeting virally 

infected cells [296, 297]. IL-33 has been observed to be increased in 

response to viral infection and to be important for the eradication of a viral 

insult, as it can differentiate CTLs into anti-viral CD8
+
 T cells [298]. IL-33 

has also been shown to synergize with IL-12 to promote CD8
+ 

T cell 

effector function, thereby protecting the host [118]. Additional evidence 

supporting a pro-tumorigenic role for IL-33 has been shown utilising both 

the B16 melanoma and the 4T1 breast cancer models. In these models, 

overexpression of IL-33 potently inhibited tumour growth and metastasis 

through the recruitment of increased numbers of NK cells and tumour 

antigen specific CD8
+
 T cells. These NK and CD8

+
 T cells showed 

increased IFN-γ production [200]. IFN-γ and perforin were important in the 

anti-tumorigenic effect, as they were increased in B16 tumours 

overexpressing IL-33. In addition, when cells overexpressing IL-33 were 

transplanted into IFN-γ
-/-

 mice, growth inhibition was partially reversed 

[200]. In a further study utilising both lung and melanoma tumour models, 

both the number and the cytotoxicity of CD8
+
 T cells and NK cells were 

increased in response to transgenic IL-33 expression in both a Lewis lung 

carcinoma and a B16 melanoma model [201]. These authors again reported 

that the increased number of CD8
+
 T cells and NK cells was associated with 

reduced tumour metastasis [201]. Moreover, depletion of CD8
+
 T cells and 

NK cells reversed the suppression of metastasis that was observed in 

response to transgenic IL-33 expression [201]. Thus, an increase in IL-33 

either systemically, or directly in the tumour cells, resulted in decreased 

tumour growth and metastasis. Therefore, from these studies, it appears that 
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IL-33 influences tumour growth and metastasis by altering the tumour 

microenvironment, in particular by increasing CD8
+
 cell and NK cell 

infiltration. This is consistent with my findings in which I observed a 

reduction in CD8
+
 cell infiltration and increased tumour growth in ST2 

suppressed tumours. 

Similar to our findings, a recent publication demonstrated that both IL-33 

and ST2 expression were decreased with increasing tumour stage, in a large 

cohort of 713 CRC patients [202]. Other cancer types have shown similar 

patterns of circulating IL-33, as IL-33 was reduced in the plasma of non-

small cell lung cancer patients relative to controls [198], and IL-33 

negatively correlating with tumour stage in multiple myeloma patients 

[199]. Our data suggests that ST2 expression may be lost as colon cancer 

progresses. If ST2 plays an anti-tumorigenic role as the data suggests and 

promotes anti-tumour immunity, loss of ST2 as the tumour progresses may 

result in increased growth and tumorigenesis. 

4.3.2 The role of TAMs in tumorigenesis: 

 

Tumour associated macrophages (TAMs) have been shown to increase the 

proliferation of tumour cells through the secretion of growth factors and by 

promoting neovascularization [299]. In vitro findings presented here 

(Chapter 3) show that IL-33 induces CCL2 expression in colon tumour 

cells, which is a known macrophage chemotactic factor. We also 

demonstrated that suppressing ST2 expression by tumour cells results in 

decreased macrophage infiltration associated with a concomitant increase in 

tumour size. These findings suggest that a reduction in CCL2 production in 
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the ST2 suppressed cells could be responsible for the reduction in 

macrophage recruitment seen in vivo. To date three studies have reported on 

the impact of the IL-33/ST2 signalling axis on tumour-associated 

macrophage populations in tumour-bearing mice [196, 200, 300]. Similar to 

my findings, overexpression of IL-33 by fibrosarcoma cells resulted in an 

increase in F4/80
+
 TAMs in vivo. These TAMs were further classified and 

M2 subpopulations were significantly increased in IL-33 overexpressing 

tumours compared to cells containing the vector alone. Indeed, the same 

study went on to examine TAM polarization of IL-33 positive cells on an 

ST2
-/- 

background. Tumours from ST2
-/-

 mice showed reduced M2 markers 

compared to tumours grown in WT mice [300]. Although I attempted to I 

was unable to assess the phenotype of the TAMs in our studies, 

unfortunately this did not prove possible due to the low numbers of TAMs 

isolated from excised tumours. However, in contrast to our findings, two 

studies have reported that infiltration by TAMs was unchanged by 

manipulation of the IL-33 and ST2 pathway. The first study overexpressed 

IL-33 in melanoma cells and reported that TAM numbers were unaltered 

compared to WT [201]. In a breast cancer model, the number of TAMs was 

also unchanged by systemic IL-33 administration. However, these tumours 

had increased numbers of alternatively activated M2 macrophages [196]. 

This correlates with IL-33 being a known inducer of macrophage 

polarization, promoting the development of alternatively activated M2 

macrophages [301]. Unlike our study, which suppressed ST2, these studies 

either overexpressed IL-33 or administered exogenous IL-33. Therefore, the 

levels of IL-33 present could vary quite significantly. This may be an 
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important factor as other models examining immune responses induced by 

IL-33, particularly in hepatitis, have shown that higher doses of IL-33 

induced strong type 1 immune responses, while reduced IL-33 doses have 

led to immune tolerance [302, 303]. Therefore, the immune phenotype 

induced by IL-33 may be influenced by the dose or level of IL-33 present. 

Overall, these findings suggest that suppressing ST2 signalling alters the 

tumour environment through the loss of cells that promote tumour 

eradication, such as macrophages and CD8
+
 T cells. It has also been 

suggested that IL-33 could be potentially useful in immunotherapy, by 

initiating anti-tumorigenic inflammation at the tumour site to enhance the 

response rate of therapy in colon cancer by increasing the immunogenicity 

of the tumour [304]. 

4.3.3 Alternative pro-tumorigenic role for IL-33/ST2 axis: 

 

To date, most studies investigating the role of IL-33 in tumorigenesis have 

focused on breast cancer. In contrast to our findings in the colon, the IL-

33/ST2 signalling axis has been shown to promote breast cancer, as deletion 

of ST2 in BALB/c mice reduced tumour growth in a 4T1 breast cancer 

model [305]. Necrosis of the tumour was increased upon ST2 deletion and 

associated with a reduction in VEGF and was, therefore, proposed as the 

mechanism responsible for suppressing tumour growth. Necrosis may be 

associated with an increase in the anti-tumour immune response as necrotic 

cells facilitate maturation of antigen presenting cells. Consistent with this, 

administering IL-33 to mice accelerated the growth of 4T1 breast cancer 

cells by suppressing anti-tumour immunity and promoting angiogenesis 
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[193]. A pro-tumorigenic role for IL-33 was also recently reported in lung 

cancer. IL-33 was shown to enhance lung carcinogenesis by promoting cell 

death in low metastatic cells in vitro, thus, favouring the growth of more 

metastatic cells that did not express ST2L [304]. The differences between 

these findings and my results may potentially be explained through the 

different models employed, as these studies focused on IL-33 whereas our 

study did not look at IL-33 directly. Therefore, as IL-33 was not suppressed 

in my model and could still function as nuclear factor. It may be through 

this function as a nuclear factor that IL-33 exerted its pro-tumorigenic 

effect.   

The role of IL-33/ST2 in CRC is an area of ongoing research, which has 

resulted in several reports being published during the course of my PhD 

studies. Certain of these have yielded conflicting findings to our data, and 

have indicated a pro-tumorigenic role for this axis in the development of 

CRC [147, 202-204]. Some of the contrasting findings concern the 

expression levels of IL-33 and ST2 being reported in CRC. In our study, 

expression of total ST2 was unchanged compared to adjacent non-tumour 

tissue, while ST2L expression was significantly lower in human tumours 

P=0.01 (n=24). Cui et al. reported however, that total ST2 expression was 

shown to be higher in adenoma samples relative to normal control samples 

[203]. These levels then decreased from adenoma to tumour, as detected by 

both qRT-PCR and IHC. However, these authors investigated total ST2 

expression, and did not distinguish between the different ST2 variants 

[203]. Therefore, although we did not examine ST2 levels in adenoma 

patients, the CRC data presented by Cui et al. are in agreement with our 
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findings, whereby total ST2 expression was unaltered between normal 

adjacent tissue and CRC tissue. Also, similar to our findings, a second study 

showed no increase in total ST2 expression in CRC compared to normal 

tissue [147]. In contrast a third study, reported total ST2 to be increased in 

CRC samples relative to adjacent normal tissue [204]. The differences 

observed between this study and ours may be due to sample ethnicity or 

lack of discrimination between ST2 isoforms, as our observed decrease in 

ST2 expression was confined to the transmembrane bound signalling active 

L-isoform (ST2L). Indeed, to the best of my knowledge, no other study has 

distinctly examined the expression of ST2L in CRC. 

I found that the level of IL-33 expression was low in both CRC tissue and 

non-tumour tissue (n=24). Similarly, my clinical collaborator, Dr. Amr 

Mahmoud examined IL-33 expression in a cohort of 66 CRC patients and 

found IL-33 expression to be low in tumour and adjacent non-tumour tissue. 

In contrast, all of the CRC studies published to date have reported an 

increase in IL-33 levels in CRC as compared to adjacent normal tissue and 

healthy volunteers [147, 202-204]. However, between these publications 

there were variations in the level of IL-33 being reported in CRC. IL-33 

expression levels were low in two of the studies [203, 204], with any 

differences in IL-33 levels predominantly due to alterations in the level of 

IL-33 in the tumour stroma. In contrast to the low expression levels reported 

in the first two studies, further studies detected high levels of IL-33 

expression [147, 202]. It is worth noting that, one of these consisted of a 

cohort of patients that were receiving 5-FU-based chemotherapy [147]. IL-

33 is well known to be released upon cellular damage. It is possible that the 
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chemotherapeutic regimes directly affected the levels of IL-33 in these 

patients. Indeed, the low level of IL-33 seen in my study may be reflective 

of the lack of prior chemotherapy in our cohorts. A second study (n=713) 

found that IL-33 was highly expressed in low-grade tumours compared to 

high-grade tumours. Indeed, numerous studies have reported that IL-33 

expression is low in healthy colonic tissue [178, 306], consistent with its 

role as an alarmin IL-33 only induces robust inflammation when released by 

necrotic tissue [307].   

Using the AOM/DSS model of intestinal tumorigenesis, Mertz et al. 

reported that tumour growth was decreased in ST2
-/-

 mice compared to WT 

[202]. Tumour load, tumour grade and the number of tumours were also 

reduced in the absence of ST2. The combination of AOM with DSS is used 

as a model of colitis-associated cancer. DSS damages the intestinal 

monolayer inducing intestinal inflammation creating an inflammatory 

environment. This model examines the early development of adenoma 

through to carcinoma. The use of this highly inflammatory AOM/DSS 

model of colon cancer may account for some of the differences in these 

results, as our model shows much lower levels of inflammation by 

comparison. An additional study demonstrated that inhibition of the IL-

33/ST2 signalling pathway in the APC
Min/+

 mouse model of intestinal 

tumorigenesis inhibited tumour growth, induced apoptosis and suppressed 

angiogenesis in adenomatous polyps. Inhibition of the IL-33/ST2 axis 

reduced both tumour number, tumour size and mast cell infiltration into 

polyps and suppressed the expression of mast cell derived cytokines and 

proteases that promote polyposis. The authors propose that IL-33 derived 
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from the tumour epithelium promotes polyposis through the activation of 

stromal cells and the formation of a protumorigenic microenvironment 

[147]. The APC
MIN

 mouse develops polyps in the intestine and these benign 

growths transform and become malignant. These studies suggest that IL-33 

and ST2 may play a role during the initial oncogenic transformation of cells 

which would have been an event excluded from our choice of tumour 

model. An additional CRC study, in nude mice, demonstrated that 

overexpression of IL-33 in human CRC cells increased tumour growth, 

while reducing IL-33 expression inhibited growth [204]. However, as nude 

mice are unable to mount a T-cell mediated response, this suggests that T-

cells could be an important factor in our model to reduce tumour growth. T-

cells can be either tumour suppressive or tumour promoting, as determined 

by their effector functions [308]. Many factors can affect the polarization of 

Th1/Th2 cells, including the cytokine milieu in the local environment. Th1 

cells can directly kill tumour cells, while Th2 cells can promote tumour 

growth [309]. BALB/c mice are known to generate strong Th2, but weak 

Th1 responses [244]. Therefore, if a Th1 response induces the pro-

tumorigenic IL-33 response, but is absent in our model this could explain 

the variation observed between results. Other possible explanations for the 

disparity between results may be due to the specific levels of these proteins 

present in the microenvironment. In the current study, I suppressed ST2 

expression in cancer cells, while other studies employed knockout mice, but 

then introduced tumours cells expressing IL-33/ST2. IL-33 has been 

described as a double-edged sword; as it is known to have dual pro- and 

anti-inflammatory functions and therefore, at different levels it may drive 
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either pro- or anti-inflammatory immunity.  

Taken together, this chapter has shown a potential anti-tumorigenic role for 

the IL-33/ ST2 pathway in colon cancer. The data suggests that IL-33 

mediates tumour growth through the recruitment of immune cells into the 

tumour microenvironment, in particular through recruiting CD8
+
 T cells and 

macrophages. Therefore, targeting ST2L could provide potential therapeutic 

benefit for the treatment of colon cancer by priming the anti-tumour 

immune response. However, given that IL-33 and ST2 appear to have 

diverging and opposing effects, depending on the cancer type examined 

further research investigating the role of IL-33 and ST2 in cancer is 

required.  

 

 

 

 

 

 

 

 

 

 



153 

 

Chapter 5 
 

Characterisation of the role of IL-36 in colon cancer 
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5.1 Introduction 

 

The IL-36 cytokines are a recently described subset of the IL-1 family of cytokines. 

The three agonistic members of the IL-36 family, IL-36α, IL-36β and IL-36γ, all 

share a common receptor complex, which is composed of the IL-36 receptor 

(IL36R/IL1RRP2/IL1RL1) and the IL1 Receptor accessory protein (IL1RAcP). A 

biological inhibitor to this complex has also been identified, the IL-36R antagonist 

(IL-36RN). Similar to other IL-1 family members, IL-36 cytokines are important 

activators of the immune response. Recent emerging evidence has demonstrated a 

role for these cytokines in autoimmunity with dysregulated responses indicated in 

the pathogenesis of psoriasis [310], asthma [311] and obesity [236]. 

 

The function of IL-36 family members in intestinal pathogenesis was, until recently, 

largely unknown. However, it has lately become the focus of many studies and is 

currently an area of active research. Numerous studies have recently identified IL-36 

cytokines as being upregulated in IBD [222, 224, 240]. In particular, IL-36α and IL-

36γ have been highlighted as being increased in active IBD [222, 224, 240]. The 

expression pattern of these cytokines differed as IL-36γ was expressed in the nucleus 

of intestinal epithelial cells and IL-36α was expressed in the cytoplasm of CD14
+ 

macrophages [224]. The IL-36RN was also found to be decreased in UC patients 

compared to normal tissue [240]. Additional evidence for a novel role for IL-36 

family members in the intestine has been demonstrated in various murine models. In 

a DSS-induced model of acute colitis, IL-36R
-/-

 mice showed reduced disease 

severity and decreased innate inflammatory cell infiltration to the colonic lamina 

propria compared to WT mice [240]. In the absence of the IL-36R, however, 

bacterial colonization by the pathogenic strain Citrobacter rodentium was increased 
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and a reduced Th1 response was observed. This suggests that IL-36 signalling is 

required for protection against pathogenic invasion, but that this response may be 

skewed in intestinal pathogenesis such as IBD.  

Recent investigations have shown that the IL-36R exerts its effect in colonic 

fibroblasts by inducing cytokine and chemokine activation which regulates the 

recruitment of immune cells to the inflamed colon [224]. Consistent with a role in 

maintaining barrier function, an additional study demonstrated that DSS-treated IL-

36R
-/- 

mice showed diminished wound healing [224]. IL-22, the barrier protective 

cytokine, was also decreased in the colon of IL-36R
-/-

 mice. This was accompanied 

by a reduction in IL-22 producing colonic neutrophils at the wound site. This 

suggests that signalling through the IL-36R promotes wound healing of the intestinal 

mucosa via IL-22 production and neutrophil infiltration [241]. While some papers 

suggest that IL-36 plays a pro-inflammatory role in IBD as IL-36 ligands are 

increased in IBD, others suggest that IL-36 promotes wound healing, as IL-36R
-/- 

mice show delayed wound healing due to reduction in neutrophil recruitment. Thus, 

this normally protective response may be skewed in intestinal pathogenesis such as 

IBD, and therefore may also be implicated in colon carcinogenesis. 

Given the involvement of other IL-1 family members in the tumorigenic process, it is 

highly likely that these novel IL-36 cytokines also play a role in cancer. A recent 

study investigating the role of these proteins in cancer identified a potential anti-

tumorigenic role for IL-36γ in breast and melanoma tumorigenesis [244]. Tumoral 

expression of IL-36γ reduced tumour growth and metastasis in both a 4T1 breast 

cancer model and a B16 melanoma model. The proposed mechanism responsible for 

this anti-tumorigenic effect was through the activation of a potent type 1 immune 

response, as increased infiltration of CD8
+
 T-cells, NK cells, γδ T-cells and T-regs 
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cells were observed in the tumour microenvironment. Both IL-12 and IFN-γ were 

also greatly increased in the IL-36γ expressing tumours. Therefore, it was proposed 

that these cytokines worked in combination with IL-36γ to induce the anti-tumour 

response observed. Moreover, IL-36γ expression was shown to inversely correlate 

with the progression of melanoma. These authors, however, did not examine the 

involvement of the other IL-36 cytokines in tumorigenesis. A second study identified 

a positive correlation between IL-36α expression and the mortality of hepatocellular 

carcinoma patients (HCC) [242]. These authors demonstrated that low expression of 

IL-36α was associated with increased tumour volume and increased TNM stage. 

Survival analysis showed that reduced expression of IL-36α was indicative of a poor 

prognosis for HCC patients. Increased tumoral expression of IL-36α was associated 

with higher infiltration of CD3
+
 and CD8

+
 T cells [242]. Given the recent 

identification of a role for IL-36 in IBD, and the recently described link between IL-

36 agonists and cancer, the aim of this chapter is to investigate the role of the IL-36 

family in colon cancer.  
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5.2 Results 

5.2.1 IL-36α and IL-36γ expression were increased in tumour tissue compared 

to adjacent tissue, while IL-36R expression was unchanged.  

 

In order to investigate the role of the IL-36R in CRC, IL-36 mRNA expression was 

initially examined by qRT-PCR in the same cohort of CRC patients utilised in the 

previous chapter. The demographics pertaining to these patients (termed CRC cohort 

1) are contained in Chapter 4 Table 1. IL-36α expression was detected in 4 out of the 

24 adjacent non-tumour tissue samples, while 11 out of 24 CRC tumours expressed 

IL-36α. Of those samples that expressed IL-36α, expression was significantly higher 

in tumour tissue compared to adjacent non-tumour tissue (p=0.0112) (Figure 1a). 

Alterations in IL-36α expression was further validated using a second cohort of 46 

patients (Table 1). IL-36α expression was investigated at the protein level and was 

found to be low in adjacent healthy tissue, but was increased in the tumour cells of 

CRC (Figure 1b). IL-36α expression was further analysed in this second cohort 

(n=46) and samples were stratified according to cancer stage by IHC (Figure 2). 

Representative images are shown in Figure 2a. A scoring system was developed, 

with the staining intensity of IL-36α in tumour epithelium categorised as negative, 

weak, moderate or strong. No correlation was observed between IL-36α expression 

and tumour stage (Figure 2b).  

IL-36β expression was next investigated and quantitative qRT-PCR analysis showed 

that IL-36β was expressed in colon cancer tissues and normal adjacent tissue. IL-36β 

was also found to be significantly increased in tumour tissue compared to adjacent 

non-tumour tissue (p=0.0474) (Figure 3a). These changes in IL-36β mRNA 

expression were not replicated at the protein level as both adjacent non-tumour tissue  
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Table 1. CRC cohort 2 patient demographics. A cohort of 46 patients with CRC was 

recruited from the Mercy University Hospital Cork. The study protocol, including all 

procedures and study populations was approved by the University College Cork 

Clinical Research Ethics Committee of the Cork Teaching Hospitals (ECM (3) P 

3/9/2013). All samples were collected with patients’ informed consent.  
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Figure 1: IL-36α expression was significantly higher in human CRC, compared to 

adjacent non-tumour tissue. (a) IL-36α mRNA expression was higher in human CRC 

tumours compared to adjacent non-tumour tissue. Total RNA was extracted and 

changes in  expression were detected by qRT-PCR. Statistical analysis was carried out 

using a student t test. P=0.0034. (b) IL-36α protein expression was examined by 

immunohistochemistry. Immunohistochemical staining was performed on paraffin-

embedded human tumour sections. Primary antibody was omitted as a negative 

control. Scale bar = 100μm. Images shown are representative of the findings obtained. 
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Figure 2: No correlation between IL-36α expression and tumour stage was observed. 

(a) Stage I to IV paraffin-embedded human CRC tumours were examined for IL-36α 

expression by immunohistochemistry No correlation was observed between IL-36α protein 

expression and CRC stage. Primary antibody was omitted as a negative control. Scale bar = 

100μm. Images shown are representative of the findings obtained. (b) Table of IL-36α 

expression by CRC stage. Tumour sections were scored as negative, weak, moderate or 

strong, according to the intensity of IL-36α staining. No correlation was observed between 

IL-36α protein expression and CRC stage.  
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Figure 3: IL-36β mRNA expression was significantly higher in human CRC, compared 

to adjacent non-tumour tissue. However, IL-36β protein expression was unchanged. (a) 

IL-36β mRNA expression was higher in human CRC tumours compared to adjacent non-

tumour tissue. Total RNA was extracted and changes in expression were detected by qRT-

PCR. Statistical analysis was carried out using a student t test, P=0.0474. (b) IL-36β protein 

expression was examined by immunohistochemistry. Immunohistochemical staining  was 

performed on paraffin-embedded human tumour sections. Scale bar = 200μm. Images shown 

are representative of the findings obtained. Primary antibody was omitted as a negative 

control. (c) The majority of tumours were negative for IL-36β expression, however 2 tumours 

showed strong IL-36β expression in the epithelium and stromal cells. 
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and tumour tissue showed no positive staining (Figure 3b). There were some 

exceptions to this, as 2/46 tumours showed strong stromal expression and some 

epithelial expression of IL-36β (Figure 3c). However, there was no unifying link 

between these tumours as they were different stages, and one patient had received 

chemotherapy while the other had not.  

IL-36γ expression was also examined, with transcription of IL-36  significantly 

increased in CRC tumours compared to adjacent non-tumour tissue (p=0.0056) 

(Figure 4a). Alterations in expression were confirmed at the protein level by IHC, 

using an antibody directed against IL-36γ (Figure 4b). IL-36γ was found to be 

strongly expressed in the colonic tumour cells of CRC tumours compared to adjacent 

non-tumour tissue. We further analysed IL-36γ expression in relation to CRC stage 

in our second cohort of patient samples and did not observe any correlation between 

IL-36γ expression and CRC stage (Figure 5). Representative images are presented.  

We also investigated expression of the IL-36 receptor antagonist (IL-36RN), which 

showed significantly higher mRNA expression in tumour tissue compared to 

adjacent non-tumour tissue (p=0.0034) (Figure 6a). Similarly, the IL-1RAcP was 

also significantly increased in tumour tissue compared to adjacent non-tumour tissue 

(Figure 6b). However, it is worth noting that the IL-1RAcP is also an accessory 

protein for other members of the IL-1R family such as ST2L. I subsequently 

examined IL-36R mRNA expression. Transcription of the IL-36R was unchanged in 

tumour tissue compared to adjacent non-tumour tissue, as determined by qRT-PCR 

(Figure 7a). Consistent with the detection of expression of IL-36R mRNA, IL-36R 

protein was expressed in epithelial tumour tissue and expression was unchanged 

between tumour tissue and adjacent non-tumour tissue (Figure 7b). Similar to the  
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Figure 4: IL-36γ expression was significantly higher in human CRC, compared 

to adjacent non-tumour tissue. (a) IL-36γ mRNA expression was higher in human 

CRC tumours compared to adjacent non-tumour tissue. Total RNA was extracted and 

changes in expression were detected by qRT-PCR. Statistical analysis was carried 

out using a student t test p=0.0056. (b) IL-36γ protein expression was higher in 

tumour tissue compared to adjacent tissue. Paraffin-embedded human CRC sections 

were immunostained with anti-IL-36γ antibody. Primary antibody was omitted as a 

negative control.  
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Figure 5: IL-36γ expression was increased in tumour tissue compared to 

adjacent tissue, but did not correlate with tumour stage. (a) Paraffin-

embedded human CRC tumours, stage I to IV were immuno-stained with IL-36γ. 

No correlation between CRC grade and IL-36γ expression was observed. (b) 

Tumour sections were scored as negative, weak, moderate or strong, according to 

the intensity of IL-36γ staining. 
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Figure 6: IL-36Ra and IL-1RAcP mRNA expression was significantly higher 

in human CRC, compared to adjacent non-tumour tissue. (a) IL-36RN and 

(b) IL-1RAcP mRNA expression was significantly higher in human CRC 

tumours compared to adjacent non-tumour tissue p=0.0034 and p=0.0001 

respectively. Total RNA was extracted and changes in expression were detected 

by qRT-PCR. Statistical analysis was carried out using a student t test. 
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Figure 7: IL-36R expression was unchanged in human CRC tissue compared to adjacent 

tissue. (a) IL-36R mRNA expression was unchanged in human CRC tumours compared to 

adjacent non-tumour tissue. Total RNA was extracted and changes in expression were detected by 

qRT-PCR. Statistical analysis was carried out using a student t test. p=0.0474. (b) IL-36R protein 

expression was unchanged in CRC compared to adjacent tissue. Immunohistochemical staining 

for IL-36R, in human CRC was performed on paraffin-embedded tumour sections. Primary 

antibody was omitted as a negative control. Scale bar = 100μm. Images shown are representative 

of the findings obtained. 
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Figure 8: IL-36R expression was unchanged in tumour tissue compared to 

adjacent tissue. IL-36R expression did not correlate with changes in tumour 

grade (a) Paraffin-embedded human CRC tumours, stage I to IV were immuno-

stained with IL-36γ. No correlation between CRC grade and IL-36R expression was 

observed. (b) Tumour sections were scored as negative, weak, moderate or strong, 

according to the intensity of IL-36R staining. 
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findings obtained with IL-36α and IL-36γ, expression of the IL-36R did not alter 

with tumour stage when assessed in 46 patients (Figure 8). Collectively, these 

findings suggest that although the IL-36R is not increased in tumour tissue, two of its 

agonistic ligands (IL-36α and IL-36γ) and the IL-36RN are significantly upregulated 

in tumour tissue, indicating that the IL-36R pathway may be relevant in colon 

cancer. 

5.2.2 Characterisation of IL-36R
+ 

cells in colonic tumours.  

 

Unlike IL-36α and IL-36γ, which showed localization to the tumour cells in the 

tumour tissue, the IL-36R was also strongly expressed in other cells in the tumour 

microenvironment. To identify and characterise these cells that strongly expressed 

the IL-36R, consecutive tissue sections were stained initially for CD45 (a protein 

marker common to all immune cell subtypes) to determine whether these cells were 

of immune origin. Positivity for both CD45 and IL-36R expression was observed in 

overlapping areas of tissue (Figure 9a). This confirmed that the IL-36R positive cells 

in the tumour microenvironment were immune derived. Macrophages have been 

shown to express the IL-36R [312]. I next examined expression of CD68, a human 

macrophage marker (Figure 9b). Indeed, some overlap in staining patterns was 

observed, indicating that some of the IL-36R positive cells in the tumour were 

macrophages. However, some cells that were IL-36R positive did not stain positive 

for CD68 expression, indicating that these IL-36R positive cells were not just 

macrophages.  

I next investigated expression of CD4 and found a significant overlap between IL-

36R positive immune cells and CD4
+
 cells (Figure 9c). Although I had initially 

suspected macrophages to be the enlarged IL-36R positive cells present in the  
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Figure 9: IL-36R+ cells also stain positive forCD45, CD68 and CD4  

expression in human CRC tissue.  Consecutive CRC tissue sections were stained  

for the IL-36R and (a) CD45+, (b) CD68, (c) CD4, (d) CD20, (e) CD8 expression. 

Immunohistochemical staining was performed on paraffin-embedded human 

tumour sections. Areas of common staining are highlighted in red, areas of no co-

expression are labelled in yellow. Scale bar = 100μm. Images shown are 

representative of the findings obtained.  
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tumour microenvironment, T cells stimulated with IL-36γ have been shown to 

enlarge upon activation, which could explain the larger size of these immune cells 

[244]. To determine if the IL-36R positive cells were B lymphocytes, I next 

examined expression of CD20. Fewer CD20 positive cells were present in the 

tumours than either macrophages or CD4
+
 T cells, and those that were CD20 positive 

did not overlap with those cells that were IL-36R positive, indicating that B cells do 

not express IL-36R, at least in intestinal tissue (Figure 9d). As IL-36γ has been 

shown to activate CD8
+
 cells in a melanoma model, I next examined expression of 

CD8 and found very few CD8
+
 cells present in these tumours (Figure 9e). These data 

suggest that the strongly positive IL-36R cells in the lamina propria comprise both 

CD68
+
 macrophages and CD4

+
 T cells, but not B cell or CD8

+
 T cells. Dendritic 

cells have also been shown to express the IL-36R and may also be positive for IL-

36R expression. However markers for dendritic cells were not examined. 

5.2.3 Colon cancer cells express the IL-36R in vitro. 

 

As IL-36α and IL-36γ were found to be upregulated in CRC tumour tissue, I next 

wished to determine their role in tumorigenesis. Before further investigations were 

performed, I first wished to investigate if colon cancer cell lines expressed IL-36 

family members in vitro. HT29, SW480 and SW620 cells were all found to express 

the IL-36R (Figure 10a), albeit at different levels, while differential expression of IL-

36 cytokines was observed (Figure 10b-d). HT29 cells expressed all three agonistic 

cytokines. SW480 cells expressed IL-36β and IL-36γ, while none of the three 

agonistic IL-36 cytokines were detected in SW620 cells. Caco2 and HCT116 colon 

cancer cells were also examined for IL-36R mRNA expression. However, IL-36R  
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Figure 10: HT29, SW480 and SW620 express IL-36R mRNA,  IL-36α mRNA is 

expressed by HT29 cells , IL-36β and IL-36γ  mRNA is expressed by HT29 and 

SW480 cells.  (a) HT29, SW480 and SW620 cells all express IL-36R. (b) IL-36α mRNA
 

was only detected in HT29 cells. (c) IL-36β and (d) IL-36γ were detected in HT29 and 

SW480 cells. Total RNA was extracted and following cDNA synthesis, expression levels 

of IL-36 family members was determined by qRT-PCR. For comparison ΔCT values 

were normalised to expression in HT29 cells. Data shown are mean +/- SEM (n=3).  
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mRNA was not detected in these cell lines and they were excluded from further 

investigations.  

5.2.4 IL-36α, IL-36β and IL-36γ cytokines induce cellular proliferation in 

SW480 cells, whereas in HT29 cells only IL-36γ increases cellular proliferation. 

 

Once I had determined which colon cancer cell lines expressed the IL-36R, I next 

assessed the ability of IL-36 cytokines to induce cellular proliferation in colon cancer 

cell lines in vitro, using a BrdU incorporation assay. Stimulation with IL-36γ 

increased proliferation of HT29 cells above that seen in untreated cells, while 

stimulation with IL-36α and IL-36β had no effect (Figure 11a). In SW480 cell lines 

all three agonistic IL-36 cytokines strongly increased cellular proliferation in a dose-

dependent manner, with a ~50 fold increase in BrdU incorporation observed for each 

IL-36 cytokine (Figure 11b). SW620 cells are derived from the same patient as 

SW480 cells. SW480 cells are derived from the primary tumour, while SW620 cells 

are their lymph node metastatic derivatives. Unlike SW480 cells, stimulation with 

IL-36 cytokines did not induce an increase in cellular proliferation in the more 

metastatic SW620 cells (Figure 11c).  

5.2.5 IL-36 cytokines did not induce apoptosis in HT29 cells. 
 

As I had observed a reduction in proliferation in response to IL-36α and IL-36β in 

HT29 cells and a reduction in proliferation in SW620 by all three IL-36 cytokines, I 

wished to determine if stimulation with IL-36 cytokines induced apoptosis of cells 

which could account for the reduction in proliferation seen. Therefore, I next 

examined the ability of IL-36 cytokines to induce apoptosis. To this end, I 

investigated the ability of IL-36 cytokines to activate cysteine aspartic acid-specific 

protease (caspase) 3 and caspase 7 activity in HT29 cells. Caspases 3 and 7 play key  
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Figure 11: IL-36γ increased proliferation of HT29 cells. IL-36α, IL-36β and IL-36γ 

increased proliferation of SW480 cells in vitro. In SW480 cells IL-36α, IL-36β and IL-36γ 

did not increase proliferation. (a) Cellular proliferation was assessed by BrdU incorporation 

(a) HT29, (b) SW480 and (c) SW620 cells were stimulated with 25 to 150 ng/ml of IL-36α, IL-

36β or IL-36γ, 24h later the cells were labelled with BrdU. Following 16 hrs of incubation, the 

media was removed and the cells were fixed and denatured, and absorbance was measured. 

Data shown are mean +/- SEM (n=3).  
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Figure 12: Stimulation of HT29 cells with IL-36α, IL-36β and IL-36γ did not 

increase caspase 3 and 7 activity compared to untreated cells. (a) HT29 cells were 

stimulated with IL-36 ligands at 150ng/ml for 4.5 hours at 37
O
C. Staurosporine (1μM) 

was used as a positive control for apoptosis. Caspase activity was measured 

fluorescently and readings were taken at 1hr, 2hr and 3hr. IL-36 cytokines did not 

increase apoptosis of HT29 cells.  This data was obtained from two independent 

experiments. Data shown are mean +/- SEM (n=2).  
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Figure 13: Stimulation of cells with IL-36α, IL-36β and IL-36γ did not 

significantly increase migration of colon cancer cells towards 10% serum. 
Utilising a modified Boyden chamber assay, serum starved HT29 cells were seeded 

in the upper chamber and stimulated with IL-36α, IL-36β and IL-36γ at 150ng/ml for 

16 hours. Cells migrate towards the 8 μm membrane, attracted by the 10% serum 

enriched media. (b) Migration of cells towards 10% serum was utilised as a positive 

control. Data shown are mean +/- SEM (n=2).  
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effector roles in apoptosis in mammalian cell lines [313]. No increase in caspase 3/7 

activity was observed in response to IL-36 stimulation. Staurosporine was utilised as 

a positive control (Figure 12). This suggests that IL-36 does not influence colon 

cancer cell line growth through the induction of apoptosis. 

5.2.6 IL-36 cytokines did not induce migration of HT29 colon cancer cells. 

 

To investigate whether IL-36 cytokines have the ability to promote cell migration, a 

key step in tumour metastasis, I next performed a migration assay to determine 

whether IL-36 cytokines have the ability to promote the migration of colon cancer 

cells in vitro. HT29 colon cancer cells were stimulated with IL-36 cytokines as 

indicated and changes in migration were assessed using a modified Boyden chamber 

assay (Figure 13a). Migration towards 10% serum was examined as a positive 

control (Figure 13b). IL-36 cytokines did not enhance the migration of colon cancer 

cells (Figure 13c). Therefore, it appears IL-36 cytokines do not directly induce 

migration of colon cancer cells. 

5.2.7 Chemokines CXCL-1, CCL2 and CCL20 were produced in response to 

IL-36α and IL-36γ stimulation in HT29 human colon cancer cell lines. 

 

As the immune cells in the tumour microenvironment can be potent drivers of either 

pro-tumorigenic or anti-tumorigenic immune responses, which can either promote or 

inhibit tumour growth, I next wished to investigate whether IL-36 cytokines could 

alter the tumour microenvironment through the recruitment of immune cells. 

Therefore I investigated the ability of IL-36 cytokines to induce chemokine and 

cytokine production by colon cancer cells. As SW480, SW620 and HT29 cells been 

shown to express the IL-36R (Figure 10a), they were stimulated with IL-36α, IL-36β 

and IL-36γ at increasing doses and changes in transcription of cytokines and  
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Figure 14: Neither IL-36α, IL-36β or IL-36γ increased expression CXCL-1, CCL-

2, CCL-20 or IL-8 in SW480 cells. SW480 cells were stimulated with increasing 

doses of IL-36α, IL-36β and IL-36γ cytokines for 4h. Total mRNA was then extracted 

and following cDNA synthesis expression of the cytokines (a) CXCL-1, (b) CCL-2, 

(c) CCL20 and (d) IL-8 were examined. IL-36 cytokines did not induce CXCL-1, 

CCL2, CCL20 or IL-8 activation in SW480 cells. Data shown are mean +/- SEM 

(n=2).  



178 

 

 

 

 

Figure 15: Neither IL-36α, IL-36β or IL-36γ increased production of CXCL-1, 

CCL2, CCL-20 or IL-8 in SW620 cells. SW620 cells were stimulated with increasing 

doses of IL-36α, IL-36β and IL-36γ cytokines for 4h. Total mRNA was then extracted and 

following cDNA synthesis expression of the cytokines (a) CXCL-1, (b) CCL-2, (c) 

CCL20 and (d) IL-8 were examined. IL-36 cytokines did not induce chemokines or IL-8 

activation in SW620 cells. Data shown are mean +/- SEM (n=2).  
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Figure 16: IL-36α and IL-36γ increased expression of CXCL-1, CCL2, CCL20 and 

IL-8 in HT29 cells in a dose dependent manner. HT29 cells were stimulated with 

increasing doses of IL-36α, IL-36β and IL-36γ cytokines for 4h. Total mRNA was then 

extracted and following cDNA synthesis expression of the cytokines (a) CXCL-1, (b) 

CCL-2, (c) CCL20 and (d) IL-8 were examined. Data shown are mean +/- SEM (n=2).  
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chemokines were examined by qRT-PCR. IL-36 cytokines failed to induce 

expression of CXCL1, CCL2, CCL20 or IL-8 mRNA in SW480 and SW620 cells 

(Figure 14a-d and 15a-d). In contrast, IL-36α and IL-36γ, but not IL-36β induced 

CXCL-1 (Figure 16a), CCL2 (Figure 16b), CCL20 (Figure 16c) and IL-8 (Figure 

16d) in HT29 cells. This is similar to findings recently published by Nishida et al. in 

which they found increased secretion of CXCL-1, CXCL-2, CXCL-3, CXCL-6 and 

CXCL-8 by HT29 cells in response to IL-36α and IL-36γ stimulation, but not by IL-

36β stimulation [314]. It is worth noting that although all three colon cancer cell 

lines expressed the IL-36R, SW480 and SW620 cells expressed the receptor at much 

lower levels compared to HT29. Indeed, SW480 cells expressed ~3-fold lower IL-

36R expression compared to HT29 cells, while SW620 cells expressed ~10-fold less 

IL-36R mRNA expression compared to HT29 (Figure 10a). 

Taken together, this data suggests that IL-36α and IL-36γ expression may be 

upregulated in colonic tumours. These ligands in turn may induce chemokine 

production by the tumour cells, thereby recruiting immune cells. This pro-

inflammatory response may alter the immune populations in the tumour 

microenvironment, either promoting or inhibiting tumour growth. 
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5.3 Discussion 

 

The current work was initiated after the recent surge in studies describing the role of 

IL-36 cytokines in IBD. Moreover, a study by Wang et al. has recently shown that 

IL-36γ expression by tumour cells reduces both melanoma and breast tumour growth 

[244]. As no studies to date have investigated the role of IL-36 in CRC, I first 

analysed human CRC tumour samples for expression of IL-36 cytokines. I found 

both mRNA and protein for IL-36α and IL-36γ were increased in CRC compared to 

adjacent normal tissue. In contrast, IL-36R expression was unchanged at both the 

protein and the mRNA level. IL-36R expression was shown to be strongly positive 

on infiltrating CD4
+
 and CD68

+ 
immune cells. To investigate whether IL-36 

cytokines influenced the growth of colon cancer cells, we examined in vitro cellular 

proliferation and found all three IL-36 cytokines increased proliferation of SW480 

cells. In addition, IL-36γ also strongly induced proliferation of HT29 colon cancer 

cells. Finally, we demonstrated that IL-36α and IL-36γ induced strong expression of 

CXCL-1, CCL2, CCL20 and IL-8 in HT29 cells in a dose dependent manner. Taken 

together, these data show that certain IL-36 cytokines are increased in colon cancer 

and that tumour cells may respond to IL-36 ligand stimulation in terms of an increase 

in proliferation and an induction of chemokines. 

5.3.1 IL-36 cytokines are increased in colon cancer: 
 

IL-36 cytokines and IL-36R are expressed by normal epithelial cell types such as 

keratinocytes and bronchial epithelial cells [231, 237, 315], however, they have not 

previously been investigated in colon cancer. Here we have demonstrated that IL-

36α and IL-36γ mRNA expression were increased in tumour tissue compared to 

adjacent non-tumour tissue. Indeed, protein expression of these cytokines was 
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similarly increased in CRC tissue by IHC. Other studies investigating the role of IL-

36α in cancer demonstrated that IL-36α is expressed in hepatocellular carcinoma 

(HCC), but also in normal hepatocytes (n=163). Poorly differentiated tumours 

showed lower IL-36α expression compared to well-differentiated tumours. 

Furthermore, IL-36α expression was shown to significantly correlate with tumour 

size and tumour stage. These authors suggest that decreased IL-36α expression may 

contribute to tumour progression [242]. However, we also examined IL-36α 

expression in relation to tumour stage, and no correlation was observed. The 

variations observed may be due to different tumour types, or the low numbers in our 

cohort.  

I also observed an increase in IL-36β mRNA expression in colon tumours compared 

to normal adjacent tissue. However, when I attempted to confirm the increase in IL-

36β by IHC, I failed to detect IL-36β expression in the majority of CRC tumours. 

There were some exceptions as 2/46 tumour samples which showed IL-36β 

expression in the epithelium and even stronger IL-36β expression was observed in 

surrounding stromal cells. These data confirmed that our antibody was working 

correctly and could detect IL-36β. Other studies have also reported that they were 

unable to detect IL-36β protein expression in colon tissue from IBD patients [224], 

although these studies were also unable to detect IL-36β mRNA [240]. Therefore, 

this data suggests that although IL-36β mRNA is expressed in CRC tumour tissue, it 

is not translated into protein. It is possible that IL-36β mRNA does get translated 

under inflammatory conditions, as a study by Boutet et al. detected IL-36β protein 

expression in patients with Crohn’s disease (CD) [214]. Similarly, elevated levels of 

IL-36β have been detected in mice treated with DSS [224]. However, our data 
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suggest that the low level of inflammation in CRC is not sufficient to induce 

translocation of IL-36β mRNA. 

We also showed that IL-36γ was expressed by the colonic tumour epithelium and 

was increased in tumour tissue compared to adjacent non-tumour tissue. Consistent 

with our findings, data available in online databases reported IL-36γ expression in 

the following cancer types; lung cancer, head and neck cancer, oesophageal cancer 

and CRC (Oncomine database) [244]. We also investigated if IL-36γ expression 

correlated with tumour progression and no association was observed (n=46). 

However, a recent study reported that IL-36γ expression was reduced in later stage 

lung cancer, compared to earlier stages of the disease [244]. Although our study was 

made up of primary tumours, expression of human IL-36γ available online from the 

NCBI GEO database was analysed by Wang et al. They reported that IL-36γ 

expression was lower in metastatic melanoma compared to primary tumours [244]. 

We may need to increase our study numbers and in particular examine IL-36γ 

expression in metastatic samples. However, this research did not compare IL-36γ 

expression levels in healthy tissue compared to tumour tissue as we did. Taken 

together, the two studies to date examining IL-36α and IL-36γ in cancer suggest that 

IL-36 cytokine expression is lost with tumour progression. This may suggest that IL-

36α and IL-36γ expression is important in the early stages tumorigenesis. Further 

studies are required to identify whether IL-36 cytokine expression is also altered in 

other tumour types.  

5.3.2 IL-36R expression on tumour infiltrating immune cells: 
 

Unlike IL-36α and IL-36γ which were predominantly localised to the tumour 

epithelium, the IL-36R was expressed by both tumours cells and immune cells in the 
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tumour microenvironment. This staining pattern was also observed by Russell et al. 

in IBD where they describe the IL-36R
+
 cells as lamina propria mononuclear cells 

(LPMCs) [240]. I wished to characterise these IL-36R
+
 cells, and demonstrated that 

these (CD45
+
) immune cells also expressed CD4

 
or CD68

 
markers, but not CD20 or 

CD8 protein markers. In support of our findings, Vigne et al. showed that the IL-36R 

was constitutively expressed in CD4
+
 T cells, and macrophages, but not CD8

+
 T 

cells or B cells [211]. Although we did not examine DCs they were also found to be 

positive for IL-36R expression in this study [211]. 

Current research has shown that murine CD4
+
 cells constitutively express the IL-

36R, and IL-36 cytokines have been shown to regulate CD4
+
 T helper responses in 

mice [208, 209].  Macrophages were also found to express the IL-36R [211]. This is 

consistent with current research which demonstrates that macrophages express the 

IL-36R [211]. IL-36 signalling can influence TAMs in different ways depending on 

their phenotype, IL-36R mRNA was higher in M2 than M1, indicating that M2 

polarized TAMs may be more responsive to IL-36 stimulation, with M2 

macrophages shown to produce IL-6, IL-8 and TNF-α in response to IL-36 

stimulation [312]. Our data suggests a subset of the IL-36R positive cells identified 

in our colon cancer sections are macrophages and CD4
+ 

T cells. Ideally to further 

investigate the phenotype of these IL-36R
+
 immune cells I would obtain fresh human 

CRC biopsies to identify the immune cells by flow cytometry. However, as we were 

unable to access fresh human CRC biopsies our only alternative was formalin-fixed 

tissue. Without further analysis it is difficult to determine the exact phenotype of 

these cells. Taken together, this data suggests that CD4
+
 T cells and macrophages in 

the colon tumour microenvironment express the IL-36R. 

5.3.3 IL-36 induces proliferation of colon cancer cells: 
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We showed that IL-36γ induced proliferation of HT29 and SW480 cells in vitro. 

Consistent with this finding IL-36γ has been shown to induce proliferation in other 

cell types including keratinocytes and immune cells such as Th1 cells [209, 316]. Of 

the cell lines examined, SW480 cells were the most responsive to IL-36 cytokines as 

they showed an increase in proliferation in response to all three IL-36 cytokines. 

SW620 cells were the least responsive as cellular proliferation was not increased in 

response to any of the three IL-36 cytokines. SW480 and SW620 cells are derived 

from the same patient; SW480 cells were cultured from the primary tumour, while 

SW620 cells were derived from a lymph node metastasis. Metastatic cells can 

become less reliant on outside influences to induce proliferation as they can make 

many of their own growth factors [3]. It is also possible that genetic mutations and 

other inherent changes from primary to metastatic tumour may be responsible for the 

inability of IL-36 cytokines to induce proliferation in the SW620s. Moreover, 

SW620 cells showed ~5-fold lower IL-36R expression compared to SW480 cells. 

This may also make them less responsive to stimulation with IL-36 cytokines.  

The effect of IL-36 cytokines on tumour proliferation in vivo was investigated in two 

recent studies [242, 244]. Tumours derived from hepatocellular carcinoma cells 

overexpressing IL-36α were shown to grow more slowly compared to controls in 

vivo [242]. Increased IL-36γ expression by both melanoma and breast cancer cells 

also reduced tumour growth in vivo [244]. The proposed mechanism responsible for 

this anti-tumorigenic effect was an increased inflammatory response. Increased 

infiltration of NK cells, γδ T cells, CD8
+ 

T cells and T-reg cells were observed, while 

the number of immunosuppressive MDSCs was reduced. In these studies, 

proliferation of IL-36γ expressing cells was measured in vitro and no alteration in 
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proliferation was observed compared to cells containing the vector alone. This is in 

contrast to our findings in which IL-36γ increased proliferation in two of the three 

colon cancer cell lines examined. Variations in results may be due to the different 

cancer types utilised. Similar to the B16-F10 melanoma cells, SW620 cells were not 

altered in response to stimulation with IL-36 cytokines. Both of these cell lines are 

highly metastatic and this may contribute to the lack of response observed. Our data 

combined with data from Wang et al. suggests that in vitro IL-36 cytokines do not 

directly suppress cellular proliferation [244]. However, in vivo IL-36 signalling may 

suppress tumour cell growth indirectly through the recruitment of anti-tumorigenic 

immune cells.  

5.3.4 IL-36 induces chemokine and cytokine induction: 
 

Studies have shown that IL-36R signalling promotes an inflammatory response 

through the recruitment of immune cells [244]. We showed that IL-36α and IL-36γ 

induced the production of cytokines and chemokines in HT29 colon cancer cells, 

with CXCL-1, CCL2, CCL20 and IL-8 being strongly induced in a dose dependent 

manner. Our findings were confirmed in a recent study by Nishida et al. who showed 

that HT29 secreted increased levels of CXCL-1, CXCL-2, CXCL-3, CXCL-6 and 

CXCL-8 in response to IL-36α and IL-36γ stimulation, but not IL-36β stimulation 

[314]. Stimulation of colonic subepithelial myofibroblasts (SEMFs) with IL-36α and 

IL-36γ also resulted in significantly increased CXCL-1 and CXCL-2 production 

[314]. These data suggest that it is not just tumour cells that respond to IL-36 

cytokines, surrounding tissue can also respond. Intestinal epithelial cells and colonic 

explants stimulated with IL-36γ also induced expression of CXCL-1 and CXCL-2 

neutrophil-recruiting chemokines [241]. This induction of neutrophil chemotactic 
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factors correlates with IL-36R
-/-

 mice showing reduced neutrophil recruitment in 

DSS induced wounds [241]. This is also consistent with an overall reduction in 

immune cells observed in IL-36R
-/-

 mice compared to WT mice [240].  

In the tumour microenvironment increased chemokine production can induce the 

recruitment of immune cells, such as neutrophils by CXCL1, macrophages by CCL2, 

and lymphocytes by CCL20. As IL-36α and IL-36γ expression is increased in the 

tumour epithelium, this may signal through an autocrine loop, resulting in increased 

chemokine production by the tumour cells and increased immune cell recruitment to 

the tumour. However, these infiltrating immune cells, such as macrophages, 

neutrophils and lymphocytes can have both pro-tumorigenic and anti-tumorigenic 

activity as determined by the tumour microenvironment. Thus, the increase in 

immune cell infiltration caused by an increase in chemokines in response to IL-36 

signalling could potentially be beneficial to the host and suppress tumour growth. 

Alternatively, in an immunosuppressive environment the anti-tumour activity of 

immune cells may be inhibited. This is consistent with loss of IL-36 cytokine 

expression as the tumour progresses [242, 244], thereby inhibiting recruitment of 

immune cells to the tumour microenvironment, contributing to an 

immunosuppressive phenotype. 

An in vivo experimental model is essential to further advance our knowledge in this 

field, as this could provide an insight into the role of the IL-36R in colon cancer to 

clearly define whether it has pro- or anti-tumorigenic effects in CRC. It would also 

determine whether IL-36 represents a novel target for therapeutic intervention. To 

investigate the role of IL-36 in the immune cells an AOM/DSS model in IL-36R
-/- 

murine model could be utilised to examine tumour growth in the absence of the IL-

36R. To investigate the role of tumour-expressed IL-36R in tumorigenesis, colon 
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cancer cells in which expression of the IL-36R has been silenced could be injected 

into WT mice and compared to growth of WT cells. These experiments could 

determine if tumour growth is affected by a reduction in systemic IL-36 signalling or 

if tumour mediated IL-36 expression influences tumorigenesis. Alternatively, an 

inducible model could be utilised to show the effects of inhibiting IL-36 signalling 

once the tumour has developed. This model would be more representative of a 

therapeutic intervention. Finally, to characterise the role of the individual IL-36 

cytokines in tumorigenesis, IL-36α, IL-36β and IL-36γ could be silenced 

individually in tumour cells and the growth of these tumour cells investigated. IL-

36α
-/-

, IL-36β
-/-

 and IL-36γ
-/-

 mice have all been generated and an AOM/DSS model 

in each of these mice could be utilised to identify the role of each of these cytokines 

on immune cell recruitment [317]. These experiments would help to definitively 

clarify the role of IL-36 in colon cancer.  
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6.0 Final discussion and Future Perspectives: 
 

6.1 Alternative roles of IL-1 family members in disease 

IL-1 family cytokines are key pro-inflammatory mediators involved in the activation 

of inflammation, which can eliminate infection and repair damaged tissue. However, 

if this inflammatory response becomes dysregulated, these cytokines can contribute 

to the pathogenesis of many diseases, such as IBD and rheumatoid arthritis [318-

320]. Various studies, however, support protective roles for several IL-1R family 

members in disease. Data presented in this thesis suggest that the cytokine IL-33, 

whilst normally pro-inflammatory and an important initiator of several inflammatory 

diseases, may play a protective role in colon cancer. Indeed, similar to data presented 

here, a divergent protective role for the normally highly pro-inflammatory cytokine 

IL-18 has also been shown in the intestine. IL-18 was shown to be upregulated in the 

intestine of patients with active Crohn’s disease and it was initially suggested that 

blocking IL-18 may be beneficial for intestinal inflammation [321]. However, IL-18 

was later found to be protective in intestinal epithelial cells and involved in 

maintaining epithelial integrity and protecting against bacterial translocation [322, 

323]. Consistent with this, mice deficient in IL-18 and caspase-1 subunits are at 

increased risk of developing colitis in a model of acute experimental colitis [322, 

323]. A protective role for IL-18 in the intestine was further demonstrated by the 

administration of IL-18, which rescued colitis in inflammasome-deficient mice 

[324]. Another IL-1 family member that has been found to display anti-inflammatory 

activity is IL-37. This cytokine has been shown to reduce inflammation associated 

with colitis [325]. This may have therapeutic implications for both IBD and CRC 

patients. In addition to activating an inflammatory response, protective roles for both 
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IL-33 and IL-36 have also been reported in intestinal epithelial repair, mucosal 

wound healing and intestinal homeostasis. IL-33 in particular has been shown to play 

a dual role in the gut, as it can polarize cells towards a Th2 immune response while 

also inducing Th1-mediated inflammation [326]. These studies highlight the 

divergent roles that IL-1 family members play in health and disease, with members 

appearing to mediate alternative functions depending on the system examined, and as 

such may explain why ST2 signalling mediated anti-tumorigenic effects in our colon 

tumour model. 

Another potential explanation as to why we saw an anti-tumorigenic role for ST2 in 

cancer may have been the fact that we examined the role of these proteins in colon 

cancer. Colon cancer differs to most other tumour types, as colon cancer develops in 

the presence of the intestinal microbiota. Indeed, the composition of the intestinal 

microbiome is known to be altered in colon cancer [327]. Whether these alterations 

pre-dispose to the development of colon cancer however is unclear. It was initially 

suspected that intestinal pathogens may play a potential role in colon carcinogenesis 

[328]. These findings were later confirmed in CRC-predisposed mice [329]. This is 

similar to other cancers, such as gastric cancer, which has been linked to exposure of 

the pathogen, Helicobacter pylori [330]. In CRC, dysbiosis of the microbiota may 

promote carcinogenesis through remodelling of the microbiome to become pro-

inflammatory, thereby promoting epithelial transformation and driving 

carcinogenesis [331]. A second theory proposes that intestinal ‘driver bacteria’ cause 

DNA damage and tumorigenesis, which enables the proliferation of ‘passenger 

bacteria’ in the tumour microenvironment [332, 333]. However, to date, it is not 

fully understood whether the dysbiosis observed in CRC is as a result of 

tumorigenesis or the cause of the CRC [331]. 
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Both IL-33 and IL-36 cytokines are expressed at barrier tissues and are important 

factors in regulating the anti-microbial defence in the gut. For instance, IL-33 has 

been shown to be  protective against the pathogen S. typhimurium [334]. This 

suggests that IL-33 and possibly IL-36 may play potential roles in regulating the 

epithelial immune response to specific microbes, thereby impacting on the 

composition of the intestinal microbiota. This could potentially favour the growth of 

specific bacteria that may be either pro- or anti-tumorigenic [335]. The gut 

microbiota in turn, has been implicated in regulating IL-36γ and IL-33 expression. 

Germ-free DSS-treated mice failed to express IL-36γ compared to conventionally-

housed DSS-treated mice [241]. Similarly, the intestinal microbiota is implicated in 

driving IL-33 expression, as IL-33 expression is reduced in germ-free mice 

[336].The role of the microbiota in CRC is becoming an area of intense research and 

in the future may present a novel therapeutic approach for patients with this disease. 

Therefore, the involvement of both IL-33 and IL-36 in the interaction between the 

microbiota and colon tumour cells merits further investigation to determine if their 

manipulation could be of therapeutic benefit to patients. It is possible, therefore that 

interactions between the IL-1 cytokine family and the microbiota may determine 

whether these proteins exert either a protective or an inflammatory response. 

6.2 Development of IL-1 family members as new therapeutic strategies in 

cancer 

The immune system is inextricably linked to the pathogenesis of CRC, as supported 

by the number of retrospective examinations carried out on the immune infiltrates of 

resected CRC tumours [337-339]. Cancer immunotherapy has recently shown great 

potential as a novel anti-cancer therapeutic approach. As IL-1 family cytokines are 

key pro-inflammatory mediators, several studies have investigated whether 
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manipulation of IL-1R family signalling is of therapeutic benefit in inflammatory 

diseases such as cancer. IL-1 has been associated with pro-tumorigenic effects when 

expressed by tumour cells or in the tumour microenvironment [340]. However, 

administration of recombinant IL-1α and IL-1β resulted in anti-tumorigenic effects 

in experimental models [341-343]. This anti-tumour response was observed when 

the recombinant IL-1 was administered during the initial stages of tumour 

development. Both IL-1α and IL-1β reduced metastasis and increased overall 

survival [344]. However, IL-1 treatment resulted in systemic toxic effects in vivo 

[344]. To overcome these side effects other therapeutic approaches have utilised 

encapsulated IL-1α, which forms microspheres which are slowly released. This 

resulted in reduced tumour growth and increased survival [345]. However, as it 

appears there is a short window in which IL-1 can be of therapeutic benefit, this may 

not be clinically relevant to patients presenting with tumours.  

Anti-tumour vaccines developed utilising irradiating tumour cells require an 

adjuvant to enhance a spontaneous anti-tumour response. IL-1α and IL-1β have also 

been investigated as to their efficacy to perform this function and were found to 

function as systemic adjuvants when injected within 10 days of the irradiated tumour 

cells. When IL-1 was administered following tumour cell vaccination, 70-100% of 

mice became tumour free, while mice that had received the vaccination alone were 

0-20% tumour free [346].  IL-18 has also been shown to enhance the activity of 

adjuvants such as IL-12 [347]. 

IL-33 and IL-36 may also prove to have therapeutic potential in the treatment of 

cancer. IL-33 has been shown to be strongly expressed in many tumour types such as 

breast [348], head and neck [349] and colon [350]. However, when further 

investigated, increased IL-33 expression was found to be localised to the tumour 
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stroma in cells such as cancer-associated fibroblasts. Indeed, the cancer cells showed 

lower IL-33 expression when compared to normal tissue [348-350]. However, IL-33 

is an ‘alarmin’, and thus a reduction in its expression in tumour tissue may be in part 

responsible for immune tolerance towards these tumour types [351]. This reduction 

could contribute to lower immunogenicity of cancer cells, while stromal cell 

expression of IL-33 may mediate immune suppression and tumour progression 

through the recruitment of MDSC and T reg cells [352]. This suggests that high 

doses of IL-33 could potentially reverse the immune-suppressive tumour 

microenvironment. This is consistent with our findings, which suggest that 

therapeutically administering IL-33 directly to the tumour cells would drive an anti-

tumorigenic effect. In many cancers, systemic IL-33 is also increased [353-355]. 

Therefore, alternatively, reducing systemic IL-33 levels using anti-IL-33 antibodies 

to reduce systemic IL-33 could also be investigated as an anti-cancer therapy. 

Therefore, the manipulation of IL-33 could potentially vary depending on its 

expression levels in the tumour or systemically.  

 Regarding IL-36, only two studies to date have investigated the role of IL-36 in 

cancer, with both showing that IL-36 promotes anti-tumour immunity. In this study I 

have demonstrated that IL-36α and IL-36γ expression is increased in colon cancer 

compared to adjacent non-tumour tissue. Furthermore, stimulation of colon cancer 

cells in vitro with IL-36α and IL-36γ increased expression of chemokines 

responsible for recruiting immune cells into the tumour microenvironment. Future 

studies examining the role of IL-36 in colon cancer will determine if IL-36 family 

members are targets for future cancer therapy due to their ability to activate an anti-

tumour immune response. As this receptor has three agonistic ligands, IL-36α, IL-

36β and IL-36γ, these individual ligands may have different functions. In particular 



194 

 

IL-36β did not induce chemokine expression in colon cancer cells and may have an 

alternate role to the other two IL-36 ligands. 

One of the findings of this thesis was the reduction in CD8
+
 T cell recruitment 

observed in vivo when we suppressed ST2 expression in tumour cells. Other studies 

have shown that overexpression of IL-36α in hepatocellular carcinoma and IL-36γ in 

melanoma resulted in increased numbers of CD8
+
 T cells recruited to the tumour site 

in vivo. T cells are central to anti-tumour immunity as they can recognize and target 

antigens expressed on the surface of tumour cells that have been altered due to 

genetic or epigenetic changes. In CRC tumours, CD8
+
 T cells are associated with a 

better prognosis [356]. Increased numbers of CD8
+
 T cells are strongly associated 

with decreased risk of recurrence of CRC and improved survival
 
[357, 358]. The 

presence of these effector T-cells is more important than naıve T-cells in reducing 

the risk of relapse and improving survival. The prognostic significance of CD8
+
 T 

cells and the ability of both IL-33 and IL-36 to alter the levels of these cells suggest 

that both of these proteins may have potential in future cancer immunotherapies. 

Existing immunotherapy regimens target checkpoint molecules such as PD-1 & 

CTLA4, but this requires a spontaneous anti-tumour immune response. Given the 

potential ability of IL-33 and IL-36 to modulate CD8
+
 T cell levels, they could be 

utilised to increase the immunogenicity of tumours to encourage the breaking of 

immune tolerance to tumour antigens. To do this IL-36γ could be delivered directly 

to the tumour site through antibody-cytokine fusion or the use of an oncolytic virus. 

IL-36γ could also be utilised as an adjuvant to enhance tumour vaccination. 

Therefore, both IL-36 and IL-33 cytokines may represent a mechanism to break 

immune tolerance, reversing the immune suppression observed in many tumour 

microenvironments, thus enabling the hosts’ immune response to target the cancer 
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cells. Further work in this field is necessary, however, to establish the therapeutic 

impact of IL-33 and IL-36. Studies such as these would enhance the findings of this 

thesis, which demonstrated that IL-33 may play a protective role in tumorigenesis 

and that both IL-33 and IL-36 signalling can increase chemokine production, which 

may have therapeutic implications for the treatment of colon cancer. 
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Appendix 
 

A. Table of Primers 

Gene Species Direction Sequence (5’ to 3’) 

β-actin Human F ATTGGCAATGAGCGGTTC 

R GGATGCCACAGGACTCCA 

β-actin Mouse F AAGGCCAACCGTGAAAAGAT 

R GTGGTACGACCAGAGGCATAC 

CCL2 Human F TCAAACTGAAGCTCGCACTCT 

R GTGACTGGGGCATTGATTG 

CCL2 Mouse F TCACTGAAGCCAGCTCTCTCT 

R GTGGGGCGTTAACTG 

COX2 Human F CTTCACGCATCAGTTTTTCAA 

R TCACCGTAAATATGATTTAAGTCC 

CXCL-1 Human F TCCTGCATCCCCCATAGTTA 

R CTTCAGGAACAGCCACCAGT 

CXCL-8 Human F GAGCACTCCATAAGGCAC 

R ATGGTTCCTTCCGGTGGT 

GAPDH Human F AGCCACATCGCTCAGACAC 

R GCCCAATACGACCAAATC 

IL-1RAcP Human F CCCTCTCAGCTTCCCAAGA 

R GGGCAAGAGTGAGGCTTCTA 

IL-6 Human F CAGGAGCCCAGCTATGAACT 

R AGCAGGCAACACCAGGAG 

IL-8 Human F AGACAGCAGAGCACACAAGC 

R ATGGTTCCTTCCGGTGGT 

IL-36RN Human F GAGGAACAGGCAGACTCCAC 

R CAATGCCGAGTCCTTCATTC 

IL-13 Mouse F CCTCTGACCCTTAAGGAGCTTAT 
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 R CGTTGCACAGGGGAGTCT 

IL-33 Human F AGCAAAGTGGAAGAACACAGC 

R CTTCTTTGGCCTTGTGTTGG 

IL-36β Human F TGAAGACATCATGAACCCACA 

R TGTCGAGAATCACGAATAGCA 

IL-36R Human F GCGTGTCAAGCCATACTGAC 

R CCTCCATATCCAGCTCTTTCTG 

IL-36γ Human F AAGTGACAGTGTGACCCCAGT 

R GGATTCTGGATTCCCAAATAAA 

LTα Human F CAGCCCCGACCTAGAACC 

R TTTATAGAGGAAGCGGCAGTG 

LTα Mouse F TTCGACTGAAACAGCAGCAT 

R GGTGGTGTCATGGGGAGA 

ST2 Human F TTGTCCTACCATTGACCTCTACAA 

R GATCCTTGAAGAGCCTGACAA 

ST2L Human F GGGAGAGATATGCTACCTGGAGA 

R CGCCTGCTCTTTCGTATG 

TGF-β Human F ACTACTACGCCAAGGAGGTCAC 

R TGCTTGAACTTGTCATAGATTTCG 

TGF-β Mouse F CTCCGCTGACTCTCTTGG 

R AGGTGGTCGCAAAAACGA 

TNFα Human F CGCTCCCCAAGAAGACAG 

R AGAGGCTGAGGAACAAGCAC 

VEGF Human F TTAAACGAACGTACTTGCAGATG 

R GAGAGATCTGGTTCCCGAAA 

VEGF Murine F AAAAACGAAAGCGCAAGAAA 

R TTTCTCCGCTCTGAACAAGG 
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B. Table of Antibodies 1 

 

 

 

 

 

 

 

 

 

 

 

 

Antibody 

against 

Supplier Cat no. Monoclonal/ 

polyclonal 

Clone Reacts 

with 

WB IHC Migration 

IL-33 Enzo Life Sciences 

(Farmingdale, NY.) 
ALX‐804‐840 M Nessy-1 Human, 

mouse 

1:500   

ST2L Novus (Littleton, CO), NBP1-85251 P  Human    

ST2 Abcam (Cambridge, UK), ab25877 P  Human 

Mouse 

1:500 1:400  

ST2V Millipore 06-1116 P  Human    

CCL2 R&D Systems (Minneapolis, 

MN). 

AF-479-NA P  Mouse   1.5 ng/ml 

Rabbit anti-

mouse Ig/HRP 

Dako Corp (Carpinteria, CA).   P0260 P  Mouse 1:10,000   

Goat anti-rabbit 

Ig/HRP 

Dako Corp (Carpinteria, CA).   P0448 P  Rabbit 1:10,000   

β-actin Sigma Aldrich (St Louis, MO) A5441 M AC-15 Human 

mouse 

1:10,000   

IL-36R Abcam ab180894 P  Human 

mouse, 

rat 

 1:2000  

IL-36α Abcam Ab180909 P  Human  1:2000  

IL-36β Novus NBP1-83892 P  Human  1:100  

IL-36γ LifeSpan BioSciences (Seattle) LS-C338023 M 2F4 Human  1:300  
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C. Table of Antibodies 2 

 

Pre-diluted antibodies 

Antibody targeting Supplier  Catalogue number Specificity 

CD4 (SP35) Ventana (Arizona, USA) 7904423 Human 

CD8 (SP57) Ventana 790-4460 Human 

CD20 (L26) Ventana 760-2531 Human 

CD45(RP2/18) Ventana 760-2505 Human 

CD68 (514H12) Leica (Newcastle Upon 

Tyne, UK) 

PA0273 Human 
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D. Table of Reagents  

Reagent Supplier Catalogue 

number 

Species Concentration 

WB Migration 

TNF-α PeproTech (Rocky Hill, 

NJ), 

300-01A Human 10ng/ml  

LPS Invivogen (San Diego, 

CA 

O111:B4 Human 100ng/ml  

PGE2 Cayman Company (Ann 

Arbor, MI 

14810  Human 1 μM/ml  

IL-33 ProSpec (East 

Brunswick, NJ). 

 

CYT-425 Human  15-60 ng/ml 

IL-33 ProSpec 

 

CYT-655 Mouse  15-60 ng/ml 

IL-36α Biolegend , Inc. (San 

Diego, CA). 

551602 Human 25 -150 ng/ml 100ng/ml 

IL-36β ProSpec CYT-159 Human 25 -150 ng/ml 100ng/ml 

IL-36γ Biolegend 711602 Human 25 -150 ng/ml 100mg/ml 

CCL2 Biolegend 576502 Mouse  40 ng/ml 

 


