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Abstract

Prematurity is the leading cause of neonatal morbidity and mortality worldwide. Premature
infants often require extended hospital stays, with increased risk of developing infection
compared with term infants. A picture is emerging of wide-ranging deleterious
consequences resulting from innate immune system activation in the newborn infant. Those
who survive infection have been exposed to a stimulus that can impose long-lasting
alterations into later life. In this review, we discuss sepsis-driven alterations in integrated
neuroendocrine and metabolic pathways and highlight current knowledge gaps in respect of
neonatal sepsis. We review established biomarkers for sepsis and extend the discussion to
examine emerging findings from human and animal models of neonatal sepsis that propose
novel biomarkers for early identification of sepsis. Future research in this area is required to
establish a greater understanding of the distinct neonatal signature of early and late-stage
infection, to improve diagnosis, curtail inappropriate antibiotic use and promote precision
medicine through a biomarker-guided empirical and adjunctive treatment approach for
neonatal sepsis. There is an unmet clinical need to decrease sepsis-induced morbidity in

neonates, to limit and prevent adverse consequences in later life and decrease mortality.
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Immune activation and biological signalling
1. Preterm infants

Preterm birth is defined as delivery prior to 37 weeks of gestation, which can be further sub-
categorized to include extremely preterm (< 28 weeks), very preterm (28-32 weeks) and
moderate-to-late preterm (32-37 weeks) infants. Global data suggests more than one in ten
infants are born too soon resulting in an estimated 15 million preterm births annually (41).
Prematurity is the leading cause of neonatal mortality and morbidity. More than 35% of
infant deaths worldwide can be attributed directly to prematurity (30, 159). As a significant
amount of development occurs during the 3" trimester of gestation, birth before full-term,
disrupts the temporal physiological and anatomical development resulting in immature
endocrine and metabolic pathways, underdeveloped neuronal networks, as well as limited
energy stores (46, 202, 237, 250). Furthermore, preterm infants are separated from
maternal hormone supplies, such as melatonin (174, 282). In recent years, survival of
preterm infants has risen dramatically due to significant improvements in neonatal and
obstetric care including delivery in tertiary neonatal centres, increased use of antenatal
steroids, targeted oxygen saturation limits and vigorous hand washing (8, 34, 234).
However, reported outcome measures such as death and all-cause mortality does not
capture the wide range of short- and long-term morbidity caused by preterm birth and early
life interventions (30, 154, 155). Infants born preterm often require intensive care and
extended hospital stays, resulting in further challenges for the infant (175). Complications
associated with preterm birth include necrotising enterocolitis and sepsis and longer-term
challenges such as cerebral palsy, and visual, hearing and cognitive problems (31, 41, 175,
219). The unifying sequelae of many preterm complications are poor oxygenation, oxidative

stress and inflammation that alter the body’s normal developmental trajectories. More
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Immune activation and biological signalling

research on newborn care, as well as interventions to prevent and manage adverse

consequences are needed to reduce neonatal morbidity and mortality (41).

2. Neonatal sepsis

Neonatal sepsis is caused by bacteria, viruses or fungi that impinge on normal development
of newborn infants (245). Sepsis is a significant cause of morbidity and mortality worldwide
and is now recognized as one of the most common illnesses that patients, hospitals and
public health agencies encounter (139, 230). Over the past two decades, epidemiological
research and policies concerning infection control have intensified in an attempt to address
this on-going challenge. In 2018, a systematic review of studies from high- to middle-income
countries estimated that there are 3 million cases of neonatal sepsis annually, with a
mortality rate of 11-19%. Few studies are available from low-income countries and the lack
of standardized diagnostic criteria is an obstacle in the estimation of neonatal sepsis as a

global burden (87).

Depending on the infant’s age, neonatal sepsis can be sub-divided into early-onset infection
(EOI) and late-onset infection (LOI), which are defined as infections occurring in the first 48-
72 hours, and after 48-72 hours of life, respectively (246). Early onset infection is typically
caused by organisms transmitted from the mother to the infant in utero or at the time of
birth (266). Late onset infection is commonly caused by pathogens acquired from
interaction with the hospital/community environment including mechanical ventilation,
vascular catheters, indwelling lines or nosocomial infection during extended hospital stays
(265). Premature newborns have 3-10 times increased risk of developing sepsis compared
with term infants (116, 175). Recent evidence highlights that preterm birth after

hypertensive disorders and/or fetal growth restriction are associated with an increased risk
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of late onset sepsis in the infant (156). In the neonatal intensive care unit (NICU), the
majority of infection cases occur in premature infants (32, 154) with 70 % of LOIs occurring
in extremely premature infants (285). Moreover, males are more vulnerable to neonatal

infection compared with females (253, 267).

Late onset infection poses challenges for homeostatic control systems of major body
functions (245) and a number of physiological signs and clinical symptoms are evident in
neonates with LOI. These are used in clinical settings to instigate treatment for suspected
infection (98, 162, 218). It has been suggested by the World Health Organisation (WHO) that
neonatal sepsis should be confirmed by evidence from at least two laboratory tests and at
least two clinical symptoms in the case of suspected or proven infection (88). There is
worldwide consensus that clinical disturbances associated with LOI include hypotension,
temperature instability, apnea, respiratory distress, tachy/bradycardia and gastrointestinal
problems (218, 245). Laboratory criteria include high immature-to-total neutrophil ratio, low
platelet count, high/low white blood cell counts, hypoglycemia/hyperglycemia, metabolic
acidosis (base excess (< -10 mEg/L) or an elevated serum lactate (> 2mMol/L)) (162, 229).
Furthermore, acute phase proteins such as C reactive protein (CRP) and procalcitonin can be
elevated in response to neonatal infection and are often used to corroborate LOI (36, 162,
264). After infection, pro-inflammatory cytokines, specifically IL-6, enhance hepatic
synthesis of CRP in the late stages of neonatal sepsis i.e. serum CRP is usually increased 6-8
hours after the onset of symptoms (211). In infants with nosocomial infection, procalcitonin
concentrations usually begin to rise 2 hours after infection (84, 287). It is important to note
that these acute phase proteins are non-specific biomarkers and can be influenced by any
inflammatory condition, such as surgery or tissue injury (162). More reliable and specific

biomarkers for identification of LOI in term and preterm infants would improve our

5
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knowledge of the infectious epidemiology and advance precision medicine for empirical and
adjunctive treatment of neonatal sepsis within the NICU, which may in turn lead to a
reduction in antibiotic administration, with an associated decrease in morbidity and

mortality associated with LOI.

Currently, there are a number of international guidelines for empirical treatment of
suspected or proven LOI (162). Lancet Adolescent published additional guidelines for
managing pediatric sepsis early in 2020, which were devised by 49 international experts as a
part of the Surviving Sepsis Campaign. These guidelines are a combined initiative from the
European Society of Intensive Care Medicine and the Society of Critical Care Medicine.
Although significant advances have be made, these suggestions are only recommended for
infants >37 weeks of age to young adults of 18 years old (276). The use of intravenous and
oral antibiotics, such as vancomycin, ampicillin and gentamicin, are routine in clinical
settings to treat neonatal sepsis (88, 89, 147). There is a general consensus that an antibiotic
regimen should begin once neonatal sepsis is suspected, but substantial debate exists as to
when the treatment should be stopped (109, 189). Widespread and prolonged use of
antibiotic administration, including the use of antibiotic regimens in suspected, but not
confirmed cases of neonatal sepsis, is associated with the emergence of antibiotic-resistant
bacteria, which is detrimental for treatment success of neonatal sepsis (189, 245). For
example, a multidrug resistant Staphylococcus captitis clone has recently emerged as a
major pathogen among infants in the NICU (300). These worrisome developments call for an
urgent improvement in global standards for antibiotic treatment to prevent the emergence
of other multidrug resistant clones and highlight the importance of antibiotic stewardship
programs. Reliable and accurate biomarkers may have potential to determine antibiotic

initiation and duration i.e. biomarker-guided therapy, which in turn may decrease rates of
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morbidity and mortality associated with sepsis (189). Supportive and adjunctive therapies
are also mainstream treatments for neonatal sepsis and can be implemented as necessary.
These include, but are not limited to, mechanical ventilation, administration of vasoactive or

inotropic agents, as well as methods of glucose control (68).

3. Innate immune system

Pathogen-host protection occurs through highly coordinated actions of the innate and
adaptive arms of the immune system (52, 177). At birth, the innate and adaptive
components of the immune system are not fully mature (104, 168). The memory and
specificity of the adaptive immune system develops in the infant’s early years (104).
Newborns rely heavily on the innate immune system as the first line of defence against
foreign invaders (168). Activation of cell surface receptors called pattern recognition
receptors (PRRs) by pattern associated molecular patterns (PAMPs; e.g. peptidoglycan
(PGN), lipoteichoic acid (LTA) and lipopolysaccharides (LPS)) or damage-associated
molecular patterns (DAMPs; e.g. heat shock proteins) increase immune surveillance for
antigens (2, 82, 143). The common structural patterns of PGN/LTA and LPS activate Toll-Like
receptors (TLR) -2 and -4, respectively (241). TLR activation initiates a complex series of
intracellular cascades that result in a variety of cellular responses including production of
pro-inflammatory cytokines (173). The immaturity of the preterm infant’s immune system is
more pronounced compared with term infants. Functional deficits of the preterm infant’s
innate immune system are evident; reduced cytokine production, impaired bacterial
clearance and decreased phagocytosis, increasing the susceptibility of the infant to infection
(177). Activation of the immune system in neonates and adults alters bidirectional

communication between intrinsic physiological systems including neuroendocrine and
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metabolic pathways in order to protect the host by different strategies as discussed by
Haberson et al., either enhancing host health or actively fighting the infection (105). We
review emerging findings in human infants and animal studies on how immune system
activation alters multiple endocrine and metabolic pathways. Figure 1. summarizes some of
the major alterations reported in preterm and term infants with infection in We also
examine proposed biomarkers for sepsis in the NICU, which may serve as viable targets for

precision medicine healthcare for the treatment of neonatal sepsis.

4. Immune-neuroendocrine crosstalk

Interactions between the neuroendocrine and immune systems were discovered in the
1930s (272). It is now well accepted that crosstalk between these systems plays a vital role
in controlling the duration and magnitude of the inflammatory response, as well as
homeostatic physiological functions of the body during infection (214). Bidirectional
communication occurs between the immune-neuroendocrine systems systemically at the
level of the hypothalamic-pituitary-adrenal (HPA) axis, hypothalamic-pituitary-gonadal
(HPG) axis and the hypothalamic-pituitary-thyroidal (HPT) axis. In addition to these classical
pathways, hormones that regulate feeding behaviour and the renin-angiotensin-aldosterone
system, amongst others, are modulated by immune activation and play a part in

immunological function.

4.1 Hypothalamic-pituitary-adrenal axis

It is now apparent that when TLRs and other PRRs recognize bacterial or viral molecular
patterns, early activation of the HPA axis occurs, which is proposed to be related to

prostaglandin E, signalling; pro-inflammatory cytokines in turn maintain the prolonged
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enhancement of the HPA axis (188, 310). Corticotropin-releasing hormone (CRH) is secreted
from neurons within the paraventricular nucleus of the hypothalamus into the hypophyseal
portal blood supply, which stimulates adrenocorticotropic hormone (ACTH) release from the
anterior pituitary gland. The adrenal gland in turn produces glucocorticoids in response to
ACTH stimulation. CRH secretion is upregulated by serotonin, noradrenaline, histamine and
dopamine and downregulated by y-aminobutyric acid and opiates as well as downstream
hormones such as glucocorticoids and ACTH, via negative feedback (39, 185). The HPA axis
plays a critical role in regulating inflammation in response to infection. Endogenous
glucocorticoids and catecholamines attenuate the production of pro-inflammatory (tumour
necrosis factor-a, interleukin (IL)-1, IL-6) and TH1-related (IL-2, 1L-12, granulocyte
macrophage colony-stimulating factor, interferon-y) cytokines, as well as inflammatory
mediators, such as nitric oxide and prostaglandin. In addition, they also enhance the

synthesis of anti-inflammatory cytokines (IL-4, IL-10) (185, 296).

4.1.1 Cortisol in preterm infants

In term neonates, a surge in cortisol concentration is normally observed during labor,
however during preterm birth this cortisol response is blunted (46). Under basal conditions,
serum cortisol, which is a glucocorticoid hormone, is usually bound to cortisol-binding
globulin or albumin and only about 5-10% is in its free form. Studies of preterm infants
reveal that both total and free cortisol concentrations are decreased in plasma and saliva,
respectively (24, 196). Although the extra-adrenal chromaffin tissue undergoes maturation
at 9-11 weeks of gestation (212), the human adrenal cortex does not synthesize cortisol de
novo until about 30 weeks of gestation; thus it is widely suggested that low free cortisol is

related to adrenal insufficiency in preterm infants (85). Others postulate that reduced
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cortisol in premature infants is due to blunted CRH production in the hypothalamus (103).
Although, the precise clinical consequences of reduced cortisol are currently unknown, it
has been suggested that low cortisol is associated with hypotension; hydrocortisone therapy
is sometimes used for the treatment of refractory hypotension or hemodynamic failure (24,
85, 220). Additionally, low cortisol in preterm infants might reflect insufficient stress
response which may be, in part, protective against catabolic cortisol levels (111). On the
other hand, HPA activity is associated with reductions in pro-inflammatory cytokines and
inflammatory mediators, as well as increased anti-inflammatory cytokines (185, 296). It is
interesting to speculate that low cortisol concentrations in preterm infants has the potential
to lead to uncontrolled inflammation, which might create a host environment optimal for
pathogen colonisation (209). Trials that have evaluated administration of steroids in
preterm infants report variable effects on inflammation. Large doses above the physiological
range provoke significant adverse side effects in the infant. Low dose steroid administration
displays anti-inflammatory properties, however, some infants appear to suffer adverse
effects, even with low doses, such as increased infection, poor weight gain and

hyperglycemia (23, 66, 67, 101, 203).

4.1.2 Neonatal sepsis and the HPA axis

Preterm and term infants with sepsis, including LOI, display increased serum cortisol
production compared with infants without laboratory signs or clinical symptoms of infection
(Figure 1) (58, 102, 277). At term birth, rodents are of similar developmental stage to that of
preterm human infants and are common models in neurodevelopmental research (47).
Similar to findings in preterm infants, endotoxin administration to rats on post-natal day

(PND) 3 and 5 resulted in elevated circulating corticosterone (200, 257, 290, 292), which

10

Downloaded from journals.physiology.org/journal/ajpendo at Univ Col Cork (143.239.102.069) on May 7, 2021.



226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

Immune activation and biological signalling

persisted for 24 and 4 hours post-injection on PND 3 and 5, respectively (292). Together
these findings illustrate  immune-associated increases in stress hormone,
cortisol/corticosterone, in both humans and rodent models, providing evidence of immune-
mediated alterations of this neuroendocrine system in early life (Figure 2). Noteworthy,
hypercortisolemia promotes significant disruptions to metabolism (Figure 2), affecting the
gluconeogenesis and glycogenolysis pathways as well as amino acid metabolism, and it also
plays a regulatory role in other neuroendocrine axes (134, 249). There is some further
discussion of these topics later in the review. Currently, there is no consensus regarding
testing methods or interpretation of cortisol concentrations in neonates (85). However,
more recently, researchers have established that free cortisol is a better indicator, and
assessment of plasma total cortisol and corticosteroid binding globulin may prevent
unnecessary use of glucocorticoid therapy in neonates (284). Furthermore, cortisol can
easily be quantified from hair follicles and saliva, which are samples that can be obtained
without the use of invasive methods. In preterm infants, it has been reported that salivary
(free) and plasma (total) cortisol concentrations correlate (38). Although cortisol assessment
is not routinely used in the identification of neonatal sepsis it should be explored as a
potential clinical biomarker of chronic stress and indeed neonatal sepsis. Alongside various
other routinely used biomarkers, it may lead to better prognosis and result in biomarker-

guided therapy for the treatment of neonatal sepsis.

4.1.3 Neonatal sepsis and the HPA axis in later life

Immunological challenges during critical windows of development can produce persistent
changes in HPA axis function. Shanks and colleagues were the first to provide evidence of

long-term adverse consequences in HPA axis activity in an animal model of neonatal LOI.

11
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Several independent studies have reported that rats administered endotoxin (Sa/monella
enteritidis) at PND 3 and 5, had greater corticosterone and ACTH concentrations at baseline
and in response to stress as juveniles and adults compared with controls (200, 247, 257).
Adult male rats exposed to Salmonella enteritidis as neonates had increased plasma CRH
and hypothalamic paraventricular nucleus CRH mRNA concentrations (247). Furthermore,
adult rats treated with LPS as neonates exhibited elevated plasma corticosterone and ACTH
in response to a second LPS immunological challenge in adulthood (119, 291).
Glucocorticoid receptor density was decreased in the forebrain in both sexes (247).
Glucocorticoid receptors have been shown to mediate inhibitory effects of glucocorticoids
on CRH synthesis in the hypothalamic paraventricular nucleus and ACTH release in response
to stress. It has been suggested that reduction of glucocorticoid receptors and thus
glucocorticoid sensitivity, due to neonatal endotoxin, in brain regions known to govern HPA
activity, could decrease inhibition of CRH synthesis, which would result in elevated ACTH

release in response to stress (247).

Rats administered LPS (Escherichia coli/Salmonella enteritidis) on PND 14, displayed
attenuated febrile response and reduced hypothalamic cyclooxygenase-2 after LPS
administration in adulthood (33). Intriguingly, these adult central nervous system immune
responses were only evident in rats exposed to LPS after PND 7 and before PND 28 (260).
Additionally, rats exposed to LPS on PND 14 and subsequently in adulthood, had elevated
corticosterone concentrations associated with decreased cytokine concentrations and
blunted febrile response (77). Experimental evidence shows that animals exposed to
neonatal immune activation on PND 14 had elevated hypothalamic CRH and pituitary
proopiomelanocortin mRNA. Furthermore, in these animals, plasma ACTH concentrations

were also increased after exposure to LPS as adults (188). As described above, decreased

12
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expression of glucocorticoid receptors is evident in neonatal rodents exposed to postnatal
infection, which is proposed to be associated with reduced negative feedback on CRH
production (247). In contrast to studies performed by Shank and colleagues, hippocampal,
pituitary and hypothalamic glucocorticoid receptor RNA and protein concentrations were
not different in adult rats exposed to LPS on PND 14. Therefore, altered negative feedback is
unlikely to account for increased HPA axis activity in adult rats neonatally exposed to LPS on
PND 14 (188). Furthermore, no difference in glucocorticoid receptor expression was evident
in the liver, spleen or adrenal gland (188). These observations suggest that distinct
mechanisms appear to be responsible for increased HPA axis activity in adult rats when

exposed to LPS on PND 14, compared with endotoxin exposure on PND 3 and 5 (188, 247).

There is a paucity of studies investigating the effects of neonatal sepsis on acute and long-
term HPA activity in humans. However, studies in rodents provide convincing evidence that
endotoxin exposure during a critical stage of physiological development leads to increased
HPA responsiveness in neonates and in response to stress, by whatever means, in adulthood
(33, 188, 247). Furthermore, a narrow critical early-life period may exist wherein innate
immune system activation results in profound alterations to HPA axis regulation in later life

(260).

4.2 Vasopressin

Vasopressin is a neurohypophysial hormone synthesized in the hypothalamus and released
from the posterior pituitary gland into the circulation. Vasopressin is an agonist of Via Vig
and V; receptors. The role of vasopressin in regulating the HPA axis remains a subject of
debate, but it is suggested that vasopressin activates the release of ACTH (99). Vasopressin

is important for maintaining osmotic gradients as well as many more divergent physiological

13
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actions including cardiovascular homeostasis, where it acts as an endogenous
vasoconstrictor agent (207), and its role as an antipyretic, whereby it suppresses the febrile

response (193, 214, 288).

A recent study in humans reported low plasma vasopressin concentrations in preterm
infants with sepsis; infants that progressed to septic shock had significantly lower
concentrations of vasopressin at the onset of the sepsis cascade (before laboratory/clinical
evidence of organ dysfunction) compared with those infants that did not deteriorate to
septic shock (9). Interestingly, subjects with plasma vasopressin levels <43.8 pg/ml had
significantly higher risk of progression to septic shock. Furthermore, the authors continued
this analysis to develop an in-depth equation that had an 89.5% predictive capacity for the
development of septic shock i.e. higher risk of mortality. Based on this equation every
100pm/ml elevation in plasma vasopressin levels resulted in a greater than two-fold
reduction in the likelihood of progression to septic shock (9). This study suggests that
vasopressin concentrations, in line with other criteria, may form the basis to predict chances

of severity of infection in infants and an opportunity for therapeutic intervention.

It is interesting to speculate that low vasopressin levels in preterm infants with sepsis may
be one of multiple contributors to hypotension (171, 228), although this must be posited
with considerable caution, as there is a scarcity of studies investigating vasopressin levels in
preterm and term infants with sepsis. Dopamine is the most common anti-hypotensive
medication used in preterm infants, however, the use of vasopressin is increasing (133).
Case studies and small trials both in neonates and adults showed that vasopressin elevated

arterial blood pressure in patients with sepsis (121, 207). The largest of these studies

14
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showed that vasopressin administration significantly increases blood pressure, cardiac
index, left-ventricular stroke work index and systemic vascular resistance index in
catecholamine-resistant vasodilator shock in adults (69). Although its use in neonatology is
somewhat restricted (180, 222, 228), with only 0.8% of hypotensive infants being prescribed
exogenous vasopressin (222), a recent pilot study in very low birth weight infants reported
that vasopressin was as efficacious as dopamine for the treatment of hypotension (221).
Vasopressin is an immune-modulator and it is also stimulated by cytokines such as IL-1a, IL-
1b, IL-6, in addition to prostaglandins and leukotrienes, potentially mediated by the Fos-Jun-
AP1 pathway (124, 169, 289, 306, 309). The complex role of vasopressin in sepsis has been
reviewed elsewhere, with actions on both innate and adaptive immunity (231).
Interestingly, Via receptors are expressed on astrocytes and stimulation of these receptors
attenuates the release of inflammatory mediators via a PKC pathway (311). Anti-
inflammatory actions of vasopressin would offer protection during infection. Although
vasopressin administration has potential benefits as evident by the small pilot study data,
exogenous vasopressin usage is not without side-effects. Adverse effects of vasopressin
administration in neonates with and without sepsis include transient thrombocytopenia,
liver necrosis and hyponatremia (1, 7, 123, 180). In animal models, myocardial ischemia and
varied splanchnic blood flow occur at high doses (252, 299). Dosage and timing of the use of
vasopressin as a therapeutic strategy to treat sepsis-induced hypotension is currently under

investigation (239).

4.3 Hypothalamic-pituitary-gonadal axis

15
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Gonadotrophin releasing hormone (GnRH) secretion from the hypothalamus stimulates
release of the gonadotropins, follicle stimulating hormone (FSH) and luteinizing hormone
(LH), in the anterior pituitary gland. Gonadotropins subsequently stimulate release of
estrogen and progesterone from ovary glands in females and testosterone from Leydig cells
in the male testes (49, 185). It is well known that progesterone and estrogen play a
neuroprotective role in postnatal development (19, 132, 153) and males are more
vulnerable to neonatal infection than females, a trend observed across many neonatal

conditions (253, 267).
4.3.1 Neonatal sepsis and the HPG axis

In recent years, studies have emerged suggesting neonatal infection reprograms the HPG
axis in a sex-specific manner (Figure 3) (248, 257, 290). Administration of LPS (Salmonella
enterica) to rats on PND 3 and 5 results in reduced testosterone in males and decreased LH
in both sexes immediately following neonatal LPS exposure (290). Morphological
assessment of neonatal rat testes revealed decreased gonocyte genesis following LPS
administration. However, there was no difference in seminiferous tubule number per mm?
suggesting that the number of interstitial Leydig cells was unchanged (290). In female rats,
LPS (Salmonella enterica) administration on PND 3 and 5 had direct effects on 712 genes in
the ovaries, which are implicated in inflammatory responses, reproductive system
development, and immune cell-signalling. Further analysis revealed that several canonical
pathways involved in immune regulation and inflammation were activated in the ovaries in
response to neonatal infection, including nuclear factor kappa B (NFkB) and mitogen-
activated stimulating protein kinase (MAPK) signalling. Protein expression analysis of

multiple components of the MAPK pathway revealed that TLR4 expression was increased in
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neonatal ovaries of LPS-treated rats (258). Elevated ovarian TLR4 expression has been
associated with blunted follicular growth and function in cows (113). Collectively, these
findings indicate that innate immune system activation, using LPS in neonatal rodents,
results in decreased steroid hormone and glycoprotein concentrations, as well as
impairments in ovarian and testicular development during a critical period of follicular
formation and gonocyte proliferation, respectively. These alterations indicate mechanistic

changes that could lead to decreased reproductive success in later life (113, 290).

Interestingly, cross talk between the HPG and the HPA axis influences the sex-specific
physiological response to infection (Figure 3). Shanks et al., (248) examined the influence of
gonadectomy on endotoxin (Salmonella enteritidis)-induced rise in plasma ACTH and
corticosterone at PND 3 in females compared with males. They found sex-specific outcomes
such that removal of gonads in male rats elevated plasma corticosterone, whereas
ovariectomy in female rats decreased plasma corticosterone. Interestingly, ACTH response
to endotoxin administration in female ovariectomized pups was reduced compared with
endotoxin-treated intact controls. This effect was not evident in males (248). It appears that
the gonadal secretions exert their influence at different levels of the HPA axis, which was
also apparent in response to LPS administration. The effect of gonadal hormones on HPA
regulation in males appears to occur only at the level of the adrenal gland or corticosterone
metabolism in response to LPS (248). As males are more vulnerable to infection and general
morbidity/mortality associated with infection, these HPA-axis related sex differences in
response to infection may in part contribute to increased risk of males developing an
infection. To our knowledge, this hypothesis has not been fully examined and further
research is required to tease apart the apparent sex-specific HPA axis effects in response to

infection.
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4.3.2 Neonatal sepsis and the HPG axis in later life

4.3.2.1 Neonatal sepsis, peripheral gonadotrophins and steroid

hormones in later life

Early life infection not only supresses the HPG axis activity in the short-term, but also causes
persistent long-term changes in homeostasis depending on the timing of early life exposure
(Figure 3). LH and FSH concentrations were depressed in female adolescent rats following
LPS administration on PND 3 and 5 (257, 290). The surge in LH concentrations during
mating, was significantly diminished in rats of both sexes, which had been injected with LPS
on PND 3 and 5 (290). Following an immunological challenge in female adult rats, the
suppression of the LH pulse interval was greater in those treated with LPS as neonates (PND
3 and 5), compared with those treated with saline (157). Intriguingly, LPS administration on
PND 10 protected male rats from LH suppression in response to a second immunological
challenge as adults. In contrast, a decrease in LH was observed in LPS-exposed adult male
rats, which were only treated with saline in early life (127). Male neonatal LPS-treated rats
had significantly blunted testosterone surge during mating and in response to a second LPS
exposure as adults, despite conserved circulating LH (127, 290). Female rats injected with
Salmonella enteritidis on PND 3 and 5 exhibited reduced circulating progesterone and had
higher circulating testosterone as adults (200). These studies indicate that neonatal immune
activation can greatly alter peripheral gonadotrophins and steroid hormones during
adolescence and later when mating, which may be detrimental to puberty as well as sexual
behavior and function (257, 290). Adult rats also display substantial changes in peripheral
hormone concentrations in response to single and dual immunological challenges (127,

290). Accumulating evidence reveals that low progesterone concentrations evident in
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female adult rats following exposure to LPS on PND 3 and 5 (200), is associated with
homeostatic imbalance, including decreased leptin secretion, insulin sensitivity and altered
lipid and glucose metabolism, resulting in reduced energy expenditure. The role of
progesterone in metabolism, fused with its established neuroprotective and anti-
inflammatory properties, further highlights the hormone’s beneficial function beyond sexual
behavior (35). Furthermore, high testosterone, evident in female adult rats following LPS
exposure during the neonatal period (200), increases risk of obesity and insulin sensitivity in
females (192, 233). In contrast, low testosterone concentrations, evident in male adult rats
exposed to neonatal LPS, predisposes males to metabolic syndrome, increased insulin
sensitivity, systemic inflammation and obesity (192). Long-term shifts in peripheral
gonadotrophins and steroid hormone concentrations as a result of an early life immune
challenge will disturb other integrated physiological homeostatic systems, resulting in

adverse consequences for whole-body health.

4.3.2.2 Neonatal sepsis, puberty and reproductive function in later

life

Immune activation early in life potentially alters the control of gonadotrophic hormone
release and therefore the onset of puberty and reproductive function (Figure 3). LPS
administration on PND 3 and 5 led to a shift in the first day of puberty in male and female
rats, which was either earlier or delayed (145, 257, 290, 304). Additionally, mature female
rats displayed longer estrogen cycles in response to repeated LPS administration, firstly on
PND 10 and again in adulthood (128). These changes were not evident when neonatal rats
received LPS injection on PND 7-9 and 14-16, indicating that a critical period during early life

may exist in which an immune challenge may cause persistent dysfunction in the
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reproductive system (128). Kisspeptin (Kiss1) has been identified as a fundamental signalling
protein that modulates the timing of reproductive development and gonadotropin secretion
(17). LPS administration on PND 3 and 5 resulted in reduced Kiss1 mRNA expression in the
medial preoptic area of female rats at the time of puberty (145), which may be associated
with the alteration in puberty timing and gonadotrophin secretion. LPS-induced Kissl
suppression is potentially mediated by TNF-a (236). Male rats exposed to LPS, at PND 10 and
in adulthood, did not develop changes in Kiss1 mRNA expression in the hypothalamus,
which may offer a mechanism for sex disparity observed in adult LH concentrations (127). In
addition to delayed onset of maturation, neonatal LPS exposure, on PND 3 and 5 resulted in
impaired sexual performance in male and female adult rats (290). Furthermore, in adult
female rats, the follicle reserve was reduced and the thickness of the theca interna and
expression of p75NGFR increased as a result of neonatal (PND 3 and 5) LPS-injection (304).
Sperm presence was significantly decreased, and disorganized seminiferous epithelium was
evident within the testes in adult rats, which were challenged as neonates with LPS on PND
3 and 5 (290). In summary, neonatal exposure to LPS in rats disrupts long-term HPG axis
regulation, resulting in structural deficits to reproductive organs and disturbed maturation.
Neonatal infection therefore results in profound and long-lasting implications for puberty as
well as sexual performance, which may lead to reduced fertility in rodents. Although
infection is more common in males, long-lasting disruptions to HPG regulation are evident

regardless of sex.

Despite the significant research advances in rodents, to our knowledge there are no human
studies investigating the effects of innate immune system activation on sexual development
and reproductive success. Recent literature describe that in preterm infants, an energy

conserving hypometabolic state is implemented to achieve a balance between disease
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tolerance and resistance that increases the chance of survival in the face of infection (93,
105, 242). This method of immunity leads to energy restrictions or competition of energy
between homeostatic physiological systems. Impaired HPG axis regulation may in part be a
result of shift in energy supply (93, 174), associated with elevated cortisol evident in rodent
models and preterm infants with LOI (58, 102, 277), which may disturb integrated whole-

body systems.

4.4. Hypothalamic-pituitary-thyroidal axis

Thyrotropin-releasing hormone (TRH) produced in the hypothalamus, stimulates the
anterior pituitary to release thyroid stimulating hormone (TSH). Thyroxine (T4) and
triiodothyronine (T3) are subsequently released from the thyroid gland in response to TSH.
T4 and T3 complete a negative feedback loop, acting on both hypothalamus and pituitary to
limit further secretion of TRH and TSH. After birth, the infant’s thyroid gland is responsible
for providing a sufficient supply of thyroid hormones to promote nervous, reproductive and
cardiovascular system development, immune system regulation as well as energy
metabolism, growth and thermogenesis (205). Maturations of the HPT axis begins around
20 weeks of gestation, but is only completely mature close to full-term gestation (216). As
such, preterm infants have an immature HPT axis and limited capacity to generate thyroid
hormones (178). Pharmacological intervention with dopamine in the treatment of
hypotension can further suppress T4 concentrations in preterm infants (198). A recent study
suggests that thyroid hypofunction is indicative of an at-risk baby, that may be susceptible
to development of LOI (122). Thyroid hormone concentrations are significantly lower in sick

babies as described below (58, 102, 149, 227, 251).
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Multiple studies report a reduction of serum T3, T4 and TSH concentrations in preterm and
term newborn infants with LOl compared with healthy controls (58, 102, 149, 227, 251).
Treating the primary infection with antibiotics normalizes serum thyroid hormone
concentrations and as such, the infant experiences only a transient suppression in thyroid
hormones concentrations in most cases (102, 149). Lower levels of T3, T4 and TSH were
evident in non-survivors of sepsis, predicting an adverse outcome in these newborns (149,
251, 308) and a significant negative correlation was apparent between CRP and T3/T4 (102,

251).

Studies examining infection-induced changes in HPT axis are limited in animals. An immune
challenge in young pigs (1-28 days old) decreased serum TSH concentrations 3 hours post-
exposure (172). Lower T3 and T4 concentrations were also evident in full-term non-surviving
newborn foals with naturally occurring sepsis compared with foals that survived (117). In
rats, the pro-inflammatory cytokine, TNF-a, rapidly reduces TSH secretion from cultured rat
pituitary cells (295). These observations in human and animal studies suggest that LOI has
the capacity to further exacerbate decreased thyroid hormone concentrations and impair

HPT axis regulation in infants.

To our knowledge, thyroid hormone concentrations are not routinely used in the
assessment of sepsis in neonates within the NICU, although thyroid function assessment has
been suggested in critically ill newborns (135). Newborn thyroid hormone screening is
conducted using heel-prick blood sampling and filter paper cards. Infants presenting with
abnormal blood thyroid hormone concentrations are treated and monitored
weekly/monthly thereafter. Levothyroxine is one of the standard treatments for reduced

thyroid hormones in neonates (151). Low levels of thyroid hormones and high risk of
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neurodevelopment abnormalities in preterm infants supports the hypothesis that
neurodevelopmental problems in preterm infants are, at least in part, caused by low thyroid
hormones (11, 62). However, continuous debate exists regarding the effects of transient low
thyroid hormone concentrations on development. Other longitudinal studies display no
long-term adverse neurodevelopment outcomes in children or adults that suffered from

transient low thyroid hormones as newborns (65, 120).

Thyroid hormone deficiency results in reduced heart rate, prolonged systolic and diastolic
times and weakened inotropic function (283). Moreover, in adults with obstructive sleep
apnea, mean apnea duration significantly correlated with TSH; subjects with lower T3
showed longer mean apnea duration compared with those with higher T3 (273). Similarly,
an older study reported that severe hypothyroidism is associated with depressed ventilatory
drive during hypoxic and hypercapnic respiration (150). Adults with hypothyroidism often
suffer from disordered breathing (148). However, in patients with obstructive sleep apnea,
low thyroid hormones is not a common co-morbidity (137, 148). To our knowledge, there
are no studies assessing associations between thyroid hormones and cardiorespiratory
parameters in preterm or term infants with LOI. It would seem prudent to further extend
these investigations. Thyroid hormone concentrations may have the capacity to function as
biomarkers for neonatal sepsis diagnosis or at least stratify the patients at high risk. Large-
scale clinical studies assessing thyroid hormone concentrations in preterm and term infants
with sepsis could open avenues for diagnosis and lead to biomarker-guided adjunctive
therapy and precision medicine for treatment of clinical consequences of sepsis such as

pathophysiological cardiovascular control.

4.5 Sickness behavior and melatonin, leptin and ghrelin
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4.5.1 Neonatal sepsis and melatonin

Melatonin is an endogenous anti-inflammatory and antioxidant indolamine, produced in the
pineal gland during darkness following acetylation and then methylation of serotonin (91). It
has many physiological functions including a fundamental role in sleep, reproduction and
circadian rhythm (48). Preterm infants are melatonin deficient compared with full-term
infants (28, 179). Maternal melatonin concentrations progressively increase after 32 weeks
of gestation and babies’ levels likely rise in line with this (191, 274). Full-term infants usually
begin to produce melatonin around 3 months of age, resulting in a more regulated sleep
pattern. However, preterm babies may not produce melatonin until around 5-6 months,
depending on how early the infant was born (131, 140, 224). Although there is a paucity of
studies investigating the effects of LOl on endogenous melatonin concentrations in preterm
infants, one study reports melatonin was increased in full-term infants with LOI compared
with healthy control neonates (73). In septic and sedated adults in intensive care melatonin

is supressed (190, 206).

Interestingly, the magnitude of LPS-induced cachexia, lethargy, fever and anorexia (sickness
behaviours) are decreased in Siberian hamsters exposed to short-daylight compared with
long-daylight, presumably to conserve energy (298). LPS-induced fever was attenuated in
Siberian hamsters in response to 6 weeks of exogenous melatonin administration, which
also decreased body mass, exhibited gonadal regression and increased cortisol (27). It has
been suggested that melatonin influences components of sickness behaviour via complex
interactions with other endocrine hormones, such as glucocorticoids or sex steroid
hormones (27). Elevated melatonin during infection may be linked to energy conservation

in infants. Furthermore, increased melatonin in infants with sepsis may protect the host
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against oxidative stress-induced cell dysfunction. Melatonin scavenges reactive oxygen and
nitrogen species, enhances mitochondrial physiology and restores glutathione homeostasis.
It indirectly stimulates enzymes involved in glutathione production (106, 226). In addition to
its important role as an anti-oxidant, a recent study has illustrated the importance of
melatonin in glucose regulation, improving sepsis-induced hyperglycemia in an animal
model (43). Exogenous melatonin as adjunctive therapy for sepsis in preterm and term
infants has been associated with improvements in laboratory and clinical outcomes, due to
the leading role of oxidative stress in pathogenesis of preterm morbidity and sepsis (71, 72,
76, 79, 96, 112, 215). In support of its amelioration in sepsis, a recent clinical trial has
demonstrated improved patient outcomes when used as an adjunctive therapy in adult

sepsis (3).

4.5.2 Neonatal sepsis and leptin

Leptin is an adipocyte-derived hormone that has long been recognized to have a vital role in
metabolism, the neuroendocrine system and other physiological functions. Premature
delivery results in early separation from the placental and maternal leptin supplies,
predisposing preterm infants to postnatal leptin deficiency up to 36 weeks of postmenstrual
age (195, 261). This prolonged period of low leptin concentrations may preclude sufficient
adipose tissue or functional maturity (261). Circulating leptin concentrations are modulated
by infection; an increase in serum leptin was apparent in a mixed cohort of preterm and
term neonates with sepsis compared with age-matched control (74, 204). To our knowledge
there are no studies specifically investigating the effects of LOI on leptin concentrations in
preterm infants. Neonatal sepsis in term infants, treated with antimicrobial therapy for two

weeks, returned leptin concentrations to values similar to that of control infants (204).
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Normalization of leptin with antimicrobial treatment, suggests a short-term surge in leptin
concentrations in response to infection. Specifically, the elevated leptin state may be
associated with sickness behavior evident in sepsis. In adults, an increased leptin
concentration has been observed in patients with severe sepsis. Leptin was however
positively correlated with survival which could indicate the beneficial role of leptin in the
host defence mechanism against bacterial infection (13, 25, 129). In rodents, leptin anti-
serum treatment attenuated LPS-induced fever and anorexia (107, 232). Additionally, leptin
administration to rats results in increased body temperature, which can be abolished by an
IL-1 receptor antagonist (161), suggesting that pro-inflammatory cytokines released in

response to leptin mediate its actions on the hypothalamus.

4.5.3 Neonatal sepsis and ghrelin

Ghrelin is well known as a ‘hunger hormone’ and plays a role in insulin resistance, energy
homeostasis and heart disease (217). Furthermore, ghrelin also displays anti-bacterial and
anti-inflammatory activity and suppresses pro-inflammatory cytokine production (44, 303).
Ghrelin is decreased in plasma, but increased in cord blood in preterm newborns, compared
with term infants (26, 195). Ghrelin is suggested to originate from the maternal
compartments, secreted by the placenta or produced by fetal tissue, but the source of
ghrelin during fetal life is not well defined. As such, the underlying cause for difference in
ghrelin concentrations in preterm compared with term infants is unknown (54, 144).
However, it is plausible that disruption to synthesis or/and the clearance rate of ghrelin

occurs in preterm infants (237).

Plasma ghrelin was significantly increased in full-term neonates with sepsis compared with

healthy controls. In this population, ghrelin values higher than 1.4ng/ml on admission
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accurately indicated infection with sensitivity and specificity between 70-75% (255).
Similarly, elevated ghrelin concentrations are also evident in adults with septic shock (199).
Interestingly, a significant association was evident between ghrelin concentrations and the
duration of fever in neonates i.e. ghrelin levels decreased in infants whose fever improved
within 36 hours and increased in infants who were febrile for more than 36 hours (255). This
association may be related to fever mediators such as cytokines, as it has been previously
reported in adults that ghrelin peaks 30 minutes after the peak in TNF-a (286). Additionally,
an anti-pyretic role of ghrelin cannot be discounted. In adult rats, LPS administration
combined with intraperitoneal injection of ghrelin reduced fever (259). Furthermore, ghrelin
was significantly higher in adult rats with septic shock, who were hypotensive and displayed
hypoglycemia and elevated lactate concentrations compared with control animals.
Interestingly exogenous administration of ghrelin in these rats resulted in elevated blood
pressure and plasma glucose, as well as a reduction in plasma lactate compared with septic
shock rats that did not receive treatment (40). To our knowledge there are no studies
investigating the effects of sepsis on ghrelin concentrations in preterm infants. Currently the
precise role of elevated ghrelin during sepsis is unknown, but with further research, ghrelin
has potential to serve as a diagnostic marker for the identification of infection. Although this
area of research is in its infancy melatonin, ghrelin and leptin concentrations in infants with

sepsis may offer therapeutic value for treatment of sickness behavior in sepsis.

5. Immunometabolism

Dramatic shifts in metabolism occur in response to immune activation (201). In turn, precise

changes in metabolic pathways alter the immune response (53) (Figure 4). Intracellular
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metabolic processes are vital for homeostatic function in whole-body health and disease.
Interconnected metabolic pathways, such as fatty acid synthesis and oxidation, glycolysis,
amino acid pathways and the Krebs cycle play a fundamental role in the production of
energy and multiple biosynthetic intermediates essential for the promotion of innate
immune cell survival, proliferation, function and sustained activation. Typically, activation of
immune cells through PRRs upregulates hypoxia-inducible factor 1a, resulting in a shift of
cellular energy metabolism from fatty acid oxidation and oxidative phosphorylation to
glycolysis, known as the ‘Warburg Effect’ (aerobic glycolysis)(208). This redistribution of
supply/demand is required to provide a rapid burst in energy (i.e. ATP) (53, 146).
Furthermore, glycolytic metabolism plays an essential role in providing metabolic
intermediates (e.g. glucose-6-phosphate) for interconnected pathways (e.g. pentose
phosphate pathway) to promote inflammatory responses (53). This shift to glycolytic activity

is an essential step of immune-metabolic crosstalk to minimize harm from pathogens (174).

5.1 Energy reserves in preterm infants

Energy availability is paramount for preterm infants as the basal energy requirements for
growth and development are significant. Metabolic pathways regulate the inflammatory
status with important implications for survival (105). Although sustaining an adequate
immune response requires high glycolytic activity, substantial fatty acid metabolic flux is
necessary in order to regulate inflammatory responses and provide sufficient energy to host
tissues (201, 208). Adults rely on protein and lipid stores to provide energy to protect the
host without diverting supplies necessary for critical physiological processes, at least until
late-stage infection. A 150% increase in resting energy is evident in adults during bacterial

infection, allowing the adult immune system to execute efficient infection resistance
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mechanisms (174, 282). Energy reserves are significantly lower in neonates compared with
adults. Many of these energy stores i.e. liver glycogen and lipid reserves develop only within
the 3" trimester of gestation, therefore preterm infants have very limited storage (105, 254,
282). Ideally, the ability to maintain homeostasis during infection is a balance between
inflammation and aerobic glycolysis (disease resistance) with fatty acid metabolism and
immunosuppression (disease tolerance) (Figure 4). When less excess energy exists, by varied
etiology e.g. limited energy reserves or prolonged energy expenditure due to infection, the
host relies more on disease tolerance in an effort to increase chance of survival (105). The
concept of integrated metabolic strategies utilized in a changing environment of supply and
demand, is reviewed by eloquently by Ye and Medzhitov (307). Evidence exists that in
preterm and term infants as well as neonatal rodent models, distinct metabolic shifts occur
in response to infection. In this context, we will discuss immune-mediated changes in

glucose, lactate and a selection of amino acids in the following subsections of the review.
5.2 Glucose

Glucose is a vital nutrient for physiological homeostasis and brain function. 20% of glucose-
derived energy is consumed by the brain, due to neuronal and non-neuronal cellular
maintenance requirements as well as production of neurotransmitters (78). Tight regulation
of glucose is crucial for whole-body homeostasis. In premature infants, hypoglycemia (low
blood glucose) and hyperglycemia (elevated blood glucose) often occur due to various
developmental or mechanistic deficits (e.g. diminished energy stores, increased energy
requirements of newborns, inability to utilize glucose, altered insulin resistance and
stressful situations) (61, 114, 250). The risk of dysregulated glucose metabolism increases in

response to infection (61).
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Associations between blood hyperglycemia and LOI are evident in very low body weight
infants of mean gestational age of 30 weeks (4, 136). Similarly, late preterm infants (32-37
weeks) with LOI have elevated urine glucose concentrations (glycosuria) and hyperglycemia
compared with age-matched preterm controls (83, 235). Elevated glucose levels are also
evident in serum samples collected from term infants with sepsis compared with healthy
term infants (182). Although, low blood glucose can also occur in preterm babies with LOI
(75), longitudinal studies reveal that hyperglycemia is more common than hypoglycemia in
preterm and very low body weight infants with LOI (29, 42). In rats, reduced plasma glucose
concentrations are evident at PND 10, 7.5 hours after injection with endotoxin (Salmonella
enteritidis) (86). Rats challenged with endotoxin (Salmonella enteritidis) on PND 3 and 5
display reduced glucose concentrations by 8 hours post-injection, which remains
significantly reduced until 8 hours post-injection on PND 5 (292). LPS and LTA in
combination with hypoxic ischemic injury to rats at PND 7 resulted in an initial increase in
glucose at 2 hours followed by hypoglycemia, which lasted for 24 hours (70). These studies
in rodents demonstrate a biphasic glucose response to LOI. Discrepancies between rodent
and human studies may be a result of timing of glucose assessment after the onset of sepsis.
Glucose supplementation after LPS-induced infection in the rat was associated with
decreased survival (293). Additional studies are required to determine if a biphasic glucose
response occurs in preterm infants with LOI and understand the neonatal survival strategies

underlying altered glucose.

Stress-induced hyperglycemia is a common clinical entity that occurs alongside an acute
illness (183). Elevated cortisol, which occurs in preterm infants with LOI, promotes hepatic
gluconeogenesis and glycogenolysis (134). These pathways utilize a variety of non-glucose

precursors such as lactate, glycerol and amino acids (alanine and glutamine) to form glucose
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(134, 142). Thus, it is plausible that elevations in blood glucose levels of preterm infants with
LOI develops due to increased production of stress hormones, in particular cortisol (183). In
the adult system, a feedback cycle occurs — high glucose levels induce a pro-inflammatory
state, including both cellular oxidative stress and inflammation (57). Glucose increases pro-
inflammatory transcription factors (early growth response, intranuclear NFKB binding and
activator protein-1) and reactive oxygen species abundance and reduces nitric oxide
availability. Furthermore, hyperglycemia alters the innate immune system causing
decreased neutrophil activity, which results in reduced chemotaxis, phagocytosis and
bacterial killing (18, 57, 279), reducing the efficacy of the host immune system in fighting
the infection (Figure 2). Heightened glucose utilisation (i.e. glycolysis) and/or reduced
glucose production alongside diminished energy reserves in preterm infants is likely
responsible for LOI-induced hypoglycemia in preterm infants (105). Of note, some studies in
adults suggest that either insulin therapy or lower glucose levels are anti-inflammatory (51).
Others report that in human adults acute hypoglycemia promotes platelet-monocyte
interactions, increases platelet reactivity and pro-inflammatory cytokines, and potentiates
responses to endotoxins (97, 125). It is likely that shifts in glucose homeostasis due to sepsis
further exacerbate the inflammatory status of the infant; treating glucose disturbances to
maintain adequate availability may be all-important for the host in order to improve the

ability to successfully recover from infection.

Hyperglycemia and hypoglycemia are independent risk factors for early mortality. Infants
will hypoglycemia and hyperglycemia are often subjected to extended hospital stays (6, 110,
243, 281). Untreated and/or persistent hyperglycemia is associated with intraventricular
haemorrhage, retinopathy of prematurity, as well as neurological and behavioural

development abnormalities (15, 95, 110, 281). Complications of neonatal hypoglycemia
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include visual impairment, cerebral palsy and other cognitive dysfunctions (12, 37, 110,

141).

As untreated hypoglycemia and hyperglycaemia have significant pathological implications,
routine glucose testing is necessary in preterm babies. Glucose screening is also
recommended in infants with sepsis or clinical signs of altered glucose concentrations (301).
Blood glucose is often measured very frequently (every 4hrs) when an infant has
hypoglycemia/hyperglycaemia. The implementation of continuous glucose monitoring
systems, which measure glucose concentration in interstitial fluid is currently being piloted
in some NICUs (55, 244). However, this technique is not widely used and several technical
issues need to be resolved before routine use in neonatal care (225). Implementation of
continuous glucose monitoring would offer the possibility of adjusting glucose
concentrations in real time while decreasing the number of blood tests required (92).
Although shifts in glucose concentrations appear detrimental to the infant, precise blood
glucose control in the NICU does not occur without significant challenges. Intravenous
insulin therapy is the best approach to control hyperglycemia in infants (183), but the
absence of evidence-based guidelines for safe insulin therapy leads to ongoing uncertainty
(202). There are many pharmacological agents used to treat neonatal hypoglycemia,
including continuous dextrose infusion and oral diazoxide administration (271), but further

research is required to investigate the optimal treatment approach.

5.3 Lactate and vitamin B complex

Like glucose, lactate is a ubiquitously produced and utilized metabolite, critical to many
energy-related metabolic pathways (94). It is the normal end-product of glycolysis and can

be formed from pyruvate. In late preterm infants (32-37 weeks of gestational age) with LOI,
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increased pyruvate (urine) and lactate (urine and blood) concentrations are reported (235).
Similarly, term infants with sepsis have elevated serum and urinary lactate concentrations
compared with control groups (83, 182). In rats at PND 7, LTA and LPS in combination with
hypoxic injury resulted in elevated serum lactate concentrations from 6 to 10 hours after
LPS administration (70). Elevated serum lactate concentrations, indicative of metabolic
acidosis is a laboratory sign of sepsis in neonates and adults (10, 60, 88, 269).
Hyperlactatemia is associated with poor prognosis for survival (213). Traditionally,
hyperlactatemia is related to anaerobic glycolysis induced by tissue hypoxia (90). More
recently, it has been proposed that increased lactate production is associated with
metabolic shifts i.e. decreased mitochondrial oxidative metabolism (oxidative

phosphorylation) or increased protein breakdown (94).

Interestingly, preterm infants with LOI had decreased urinary concentrations of vitamin B
complex including nicotinamide, thiamine and riboflavin compared with healthy controls.
These vitamins are precursors and coenzymes of several metabolic pathways (235).
Thiamine plays an important role in multiple enzymatic pathways involved in brain function
as well as myelin synthesis, nerve signal modulation and tissue repair. Thiamine is also
suggested to have anti-inflammatory effects, reducing activation of NFKB (165). It functions
as a cofactor for the multi-enzyme pyruvate dehydrogenase complex that converts pyruvate
to fuel oxidative phosphorylation. Therefore, reductions in thiamine coincide with
elevations in lactate concentrations; thiamine deficiency results in the conversion of
pyruvate to lactate and is a known cause of lactic acidosis (63). To our knowledge, vitamin B
complex levels are not routinely assessed in neonatal care. Nevertheless, recently several
human clinical studies have explored the effects of thiamine administration as an adjunctive

therapeutic agent in septic shock (187, 297, 302). Small pilot studies revealed that thiamine
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administration to adults and neonates with septic shock was associated with more rapid
lactate clearance and reduced mortality compared with controls (297, 302). Furthermore, a
randomized cross-over trial in adults revealed that thiamine administration reduced blood
pressure in hyperglycemic patients (5, 108). Additional investigators proposed that
glucocorticoids, vitamin C and thiamine have overlapping anti-inflammatory properties that
would restore dysregulated immune system activity, which may occur in prolonged adult
sepsis (167). Although, investigations assessing the role thiamine administration in lactate
clearance are at an early stage, this area of research may open future avenues for

adjunctive therapy as even high-doses of thiamine administration are considered safe (187).

5.4 Amino acids

Glutamate, the most abundant amino acid in the human body, plays an important role in
protein metabolism and lies at the crossroad of multiple metabolic pathways. Glutamate
functions as a powerful excitatory neurotransmitter, playing a prominent role in neural
circuits. Glutamine deamidation produces glutamate which can be converted into GABA, 2-
oxoglutarate, ornithine, glutathione or glucose (194). Functions of glutamate products are
well established, including antioxidant defence (glutathione) and inhibitory
neurotransmission (GABA). Glutathione metabolism was markedly altered in preterm
infants with early onset sepsis (166). Glutamate concentrations are increased and decreased
in urine and stool samples, respectively, in preterm infants with LOl (235, 263).
Discrepancies between studies may relate to the gut microbiota configuration as glutamate
is produced by several bacterial species. Colonisation of the gut with pathogens associated
with sepsis may create a host environment, which shifts the competitive determinants

deployed by a particular bacterial species (115). This may have potential to induce changes
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in the metabolomic profile. Additionally, antibiotic regimens/dosage administered to infants
with LOI can deplete the gut microbiota and shift overall metabolic function. Furthermore,
shifts in glutamate concentrations may be related to direct effects of glutamate dietary
intake in preterm babies, which may not be uniform across NICUs (20). Noteworthy, oral
glutamine supplementation (enteral including oral or nasogastric administration in
formula/breast milk and parenteral such as central venous catheter delivery) during sepsis
did not have any significant benefit in preterm infants with and without sepsis (186).
However, in the latter systematic review, the authors provided some limited evidence that
enteral glutamine supplementation decreases the time to reach full enteral nutrition and

rate of late-onset invasive infection in preterm infants (186).

The amino acids valine and phenylalanine are significantly elevated in urine samples of late
preterm infants with LOI (235), implying disturbed protein metabolism or protein catabolism
in LOI, which is closely related to activities of cytokines and inflammatory mediators (268).
Although changes in valine and phenylalanine along with many other amino acids are also
evident in adult patients with sepsis (118), this shift may be more detrimental to the
preterm infant given their limited protein reserves. Elevated cortisol, if prolonged, can
reduce the incorporation of amino acids into proteins resulting from cortisol-induced
inhibition of protein synthesis or increased protein breakdown (80, 256). In preterm infants
with LOI, elevated cortisol may cause an increase in urinary amino acid concentrations.
Furthermore, amino acids are precursors of gluconeogenesis (134); increased amino acid
concentration may in part contribute to stress-induced hyperglycemia evident in preterm

infants with LOI (83, 235) (Figure 2).
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Taurine and hypotaurine are significantly elevated in urine samples of late preterm infants
with LOI (235). Taurine can be synthesized endogenously from methionine and cysteine in
the presence of vitamin B complex, specifically pyridoxine, and/or can be obtained from the
diet. It is now well-established that taurine and its precursor hypotaurine have multiple
diverse physiological functions (Schaffer and Kim 2018). Taurine has long been recognized to
play a role in energy metabolism, gene expression, neuromodulation and osmoregulation
(238). In addition, taurine and its analogues have been observed to exert antioxidant and
anti-inflammatory properties, involving taurochloramine formation in neutrophils or
reduction of prostaglandin E2 (14, 223). Although taurine is not routinely monitored in
neonatal or adult sepsis, clinical studies in adults report taurine administration results in
decreased blood pressure and left ventricular end-diastolic volume along with improved
cardiac function (16, 130, 184). The precise mechanism of taurine inducing anti-
hypertensive effects is unknown, but studies in animals suggest that it may be related to
decreased oxidative stress, elevated hydrogen sulphide content, suppression of the
sympathetic nervous system and increased nitric oxide production (138, 270). Furthermore,
taurine has been shown to protect cardiomyocytes by activating ubiquitin-proteasome
system (305). Further studies are required in this area to investigate the role of increased

hypotaurine and taurine concentrations in preterm infants.

5.5 Fumaric acid, galactose metabolism and inosine

Other metabolites such as fumaric acid, galactose and inosine are also altered in preterm
and term infants in response to LOI, but studies assessing these metabolites are limited.
Fumaric acid is a naturally occurring metabolite of the Krebs cycle. Fumaric acid esters

(fumarate) are proposed to have immunomodulating, anti-oxidative and anti-inflammatory

36

Downloaded from journals.physiology.org/journal/ajpendo at Univ Col Cork (143.239.102.069) on May 7, 2021.



828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

Immune activation and biological signalling

effects (176). In urine samples of late preterm infants with LOI, metabolomic analysis
revealed that fumaric acid is significantly reduced (235), which may indicate defective
operation of the Krebs cycle. Galactose is derived from dietary sources and enters glycolysis
by converting to glucose-1 phosphate (50). Galactose metabolism was the most frequently
reduced pathway in stool samples of preterm infants with LOI; sucrose and raffinose were
the most frequent metabolites affected (263). Galactose metabolism was also altered in
urine samples as a result of LOI in preterm infants (235). Inosine is a naturally occurring
purine, formed from adenosine breakdown by adenosine deaminase. It has been shown
that inosine inhibits the release of pro-inflammatory cytokines and chemokines and has
anti-inflammatory effects (170). Urinary inosine was increased in premature babies with LOI
compounds (235). Interestingly, exogenous inosine administration reduced inflammation,
vascular dysfunction and organ damage, increasing survival in mice exposed to septic shock
(163, 164). Although, it should be postulated with caution, elevated inosine concentrations
may offer protection during LOI in premature babies (158). However, further research is
required in infants to identify and quantify changes of these specific metabolites and others.
This may be achieved using recent advances in high-throughput sequencing and multi-omic

approaches.

6. Multiomic approaches for identification of neonatal sepsis

Significant advances have been made to develop both laboratory and clinical diagnostic
criteria for identification of neonatal sepsis. However, the ability to promptly and accurately
diagnose neonatal sepsis using current laboratory and clinical criteria remains challenging.

Currently, there is no single diagnostic test that satisfies the criteria of an ideal biomarker.
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Advances in high-throughput molecular technologies, including metabolomics, proteomics
and transcriptomics seem promising methods to determine distinct metabolic and
proteomic biomarkers as well as transcriptional signatures that occur at on the onset of, or
during sepsis (64, 100, 197, 275). Metabolomics, a relatively new bioanalytical approach,
studies the complete set of low-to-intermediate molecular weight amino acids, lipids,
carbohydrates and other metabolites generated by interactions between the environment,
the gut microbiome and the host genome. This allows for the immediate identification of
endogenous and exogenous metabolites, which is useful to establish metabolic
perturbations that may occur during infection (64). A recent case-control study revealed a
distinct metabolic profile in infants at birth that were subsequently diagnosed with early
onset sepsis (166) highlighting its potential impact in early therapeutic intervention. There
are challenges with establishing consistent metabolomic profiles, however using large data
sets it is possible to improve the application of metabolomic technology to generate reliable
tools for diagnosis, prognosis and treatment (294). Although, proteins such as CRP are
currently used clinically to identify neonatal sepsis, this biomarker is not sufficiently
sensitive or specific for accurate diagnosis. Identification of additional proteins that are
altered due to sepsis may improve accuracy. Mass spectrometry proteomics has the ability
to screen thousands of proteins to establish abundance and post-translational
modifications. ldentification of specific changes in proteomics may lead to the development
of optimized and validated assays for bench-top mass spectrometers that can be used in the
clinical setting, including the NICU (160). Currently, there are several problems and
challenges that will need to be overcome before the introduction of mass spectrometry
proteomics to clinical settings. These include volume of data, testing and validation of

computational methods, as well as the complexity of algorithms rendering unbiased
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comparisons (240). The induction of powerful transcriptome tools including microarrays and
next-generation sequencing, in particular RNA-sequencing such as single-cell and micro
RNA-sequencing, has increased the ability to examine gene-expression during infection.
Although, there have been no studies using RNA-sequencing to identify transcriptional
signatures for diagnosis of neonatal infection, it has shown potential in adults (210).
Transcriptional profiling allows measurements of thousands of genes simultaneously, which
could lead to the identification of a cell-specific gene signature(s) for diagnosis of neonatal
sepsis (197). However, there are substantial challenges relating to downstream and
upstream processes of translating next-generation sequencing into a bedside clinical tool.
These challenges include extensive sample processing for nucleic acid extraction and library
preparation for sequencing, as well as large data storage requirements. Furthermore, RNA-
sequencing is limited by high cost and time, 16-48 hours are required for sample collection-
to-quantification compared with 2 hours using qRT-PCR. Future studies are required to
address challenges of integrating multi-omic data with current clinical and laboratory
markers to translate the knowledge used for diagnostics to precision medicine for treatment
of neonatal sepsis (275). A study by Langley et al. (152) integrated both clinical features with
seven metabolites into an algorithm that predicted survival in adults. This combined
approach may improve accuracy of potential algorithms employed. Employing machine
learning to available neonatal clinical data has the potential to reveal novel biosignatures
and distinct populations as already explored with adult patient data (312). Precision
medicine would provide tailored treatment and therapy to patients based on measurements
obtained at an individual level, using data retrieved from the population. This will allow for
accurate and personalized therapeutic interventions that would improve outcomes. For

precision medicine to be implemented it relies heavily on biomarker-driver approaches for

39

Downloaded from journals.physiology.org/journal/ajpendo at Univ Col Cork (143.239.102.069) on May 7, 2021.



899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

Immune activation and biological signalling

diagnosis. Fortunately, multi-omics appears to be leading in the race to clinical application in
paediatric health (22, 59, 262), which is a key driver in efforts to achieve precision medicine
healthcare, derived from personal data, contributing to the future of medical practice

(Figure 5).

7. Summary and conclusion

Several lines of enquiry converge to confirm that sepsis in preterm and term babies and
animal models of similar development stages induce significant disturbances to intertwined
neuroendocrine and metabolic pathways. The precise clinical consequences of these
changes are not fully elucidated. Furthermore, it appears that sepsis during critical early-life
periods, perhaps distinct in male and females, leads to an inescapable cycle that results in
long-lasting impairments in later life. Emerging findings of neonatal sepsis-associated
changes in metabolites and hormones described in this review may serve as biomarkers and
have potential to be instrumental in improving early diagnosis of sepsis in neonates.
Biomarker-guided therapy may offer a reduction in antibiotic use and present increased
opportunities for targeted empirical and adjunctive therapies to treat infection-induced
physiological derangements in infants or indeed provide an opportunity for early
stratification of infants at risk, which may reduce both morbidity and mortality within the
NICU. Furthermore, early diagnosis and biomarker-guided therapy may help reduce long-
lasting deficits that are apparent in later life. Much work, including large-scale controlled
clinical trials are required, to provide an evidenced-based platform for the study of
infectious epidemiology and sex-specific initiation and progression of neonatal sepsis. The

development of acute phase biomarkers would result in significant implications for
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development and application of empirical and supportive management of neonatal sepsis
within the NICU. Recent advances in high-throughput sequencing have significant potential
to provide major advances in the treatment of neonatal sepsis. Multi-omic technologies are
essential to efforts of effectively translating underlying biological knowledge into clinical

action tools, aiming for precision medicine as the future of medical practice within the NICU.
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Figure 1. Reported endocrine and metabolic changes in term and preterm infants with

sepsis. Novel bio-signatures, validated in term and preterm infants would guide improved
diagnosis, prognosis and therapeutic intervention. CRP- C Reactive Protein; TSH, Thyroid
Stimulating Hormone; T3, Triiodothyronine; T4, Thyroxine. Figure created with

BioRender.com

Figure 2. A summary schematic of evidence-based metabolic and neuroendocrine shifts

that occur as a result of neonatal infection and inflammation. ACTH, adrenocorticotropic
hormone; CRH, corticotropin-releasing hormone; HPA axis, hypothalamus-pituitary adrenal

axis; PRR, pattern recognition receptor.

Figure 3. Major effects of neonatal lipopolysaccharide (LPS)-induced infection on the

hypothalamus-pituitary-gonadal axis (HPG) and hypothalamus pituitary adrenal axis (HPA) in
male and female rats. Neonatal LPS was administered between postnatal days three and
ten. FSH, Follicle Stimulating Hormone; LH, Luteinising Hormone; ACTH, Adrenocorticotropic

hormone; TLR, Toll-Like Receptor. Figure created with BioRender.com

Figure. 4 There is a complex interplay between the immune, endocrine, and metabolic

systems during infection. Hormones regulate energy homeostasis in the body and are
modulated during infection. Reported inflammatory mediators that modulate respective
hormones are detailed above (21, 45, 56, 81, 126, 181, 278, 280, 311), but their roles need
to be further tested in neonatal animal models of infection. Energy is required for growth,
maintenance, and repair particularly in the infant, but significant energy is also required to
mount an inflammatory response, ultimately both the survival strategy and the subsequent

outcome will be influenced by energy balance.
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1764  Figure 5. Summary of current and potential future approaches for diagnosis and treatment

1765  of neonatal sepsis.
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