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Abstract 26 

In recent years various studies have demonstrated that the gut microbiota influences host 27 

metabolism. However, these studies were primarily focused on a single or a limited range of host 28 

species, thus preventing a full exploration of possible taxonomic and functional adaptations by gut 29 

microbiota members as a result of host-microbe co-evolution events. In the current study, the 30 

microbial taxonomic profiles of 250 fecal samples, corresponding to 77 host species that cover the 31 

mammalian branch of the tree of life, were reconstructed by 16S rRNA gene-based sequence 32 

analysis. Moreover, shotgun metagenomics was employed to investigate the metabolic potential of 33 

the fecal microbiomes of 24 mammals and subsequent statistical analyses were performed to assess 34 

the impact of host diet and corresponding physiology of the digestive system on gut microbiota 35 

composition and functionality. Functional data was confirmed and extended through 36 

metatranscriptome assessment of gut microbial populations of eight animals, thus providing insights 37 

into the transcriptional response of gut microbiota to specific dietary lifestyles. Therefore, the 38 

analyses performed in this study support the notion that the metabolic features of the mammalian 39 

gut microbiota have adopted to maximize energy extraction from the host’s diet.  40 

Importance  41 

Diet and host physiology have been recognized as main factors affecting both taxonomic 42 

composition and functional features of the mammalian gut microbiota. However, very few studies 43 

have investigated the bacterial biodiversity of mammals involving large sample numbers that 44 

correspond to multiple mammalian species, thus resulting in an incomplete understanding of the 45 

functional aspects of their microbiome. Therefore, we investigated the bacterial taxonomic 46 

composition of 250 fecal samples belonging to 77 host species distributed along the tree of life in 47 

order to assess how diet and host physiology impacts on the intestinal microbial community by 48 

selecting specific microbial players. Conversely, the application of shotgun metagenomics and 49 

metatranscriptomics approaches to a group of selected fecal samples allowed us to shed light on 50 
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both metabolic features and transcriptional responses of the intestinal bacterial community based on 51 

different diets.    52 
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Introduction 53 

The functional roles exerted by the mammalian gut microbiota have in recent years been scrutinized 54 

by a range of studies focusing on multiple aspects of host biology, including the immune, digestive 55 

and nervous systems (1-4). In this regard, gut microbiota composition has been shown to be 56 

influenced by host genetics (5-11) as well as environmental factors that are linked to host lifestyle 57 

and diet (7, 10, 12-14). Microbe-host interactions are the result of intricate adaptive occurrences, 58 

through a process known as host-microbe co-evolution, being responsible for the adaptation of 59 

mammals to new environmental niches and having contributed to their dispersal and current global 60 

distribution (5, 15). Among multiple factors, diet, host evolutionary history and host physiology are 61 

currently presumed to be the main drivers implicated in the modulation of the mammalian gut 62 

microbiota (5, 7, 12, 13, 16-18). In this context, several comparative analyses of mammalian gut 63 

microbial communities have revealed associations between the composition of the gut ecosystem 64 

and host diet, even among phylogenetically un-related hosts (5, 18), and supported the notion that 65 

diet contributes to the microbiome plasticity by selecting particular metabolic activities to allow 66 

degradation of specific components of the host diet (5, 18, 19). Specifically, while carnivorous 67 

communities were reported to be specialized in the degradation of proteins, herbivorous 68 

microbiomes harbour genes which encode enzymatic activities involved in the breakdown of 69 

complex plant-derived polysaccharides, and absent in the genetic repertoire of their host, and which 70 

synthesize amino acid building blocks to cope with protein deficiency typical of their diet (18, 20, 71 

21). In concert with diet, host phylogeny and physiology have been proposed as other crucial 72 

factors affecting the mammalian gut microbial community (5, 10, 16, 17). In recent years, the term 73 

‘phylosymbiosis’ has been proposed to define the eco-evolutionary pattern that associates host 74 

evolutionary changes with ecological modulations of their intestinal microbial community (22, 23). 75 

Indeed, despite the inter-individual fluctuations of gut microbiomes and the possible rapid changes 76 

in response to diet and environment, it has been demonstrated that the mammalian gut microbiota 77 
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composition diverges at a relatively constant rate across an evolutionary timescale (10, 24), 78 

suggesting that host traits that undergo changes across host phylogeny, including gut physiology, 79 

have an important role in shaping the intestinal microbial community across mammals (7). 80 

However, this conserved pattern of host-microbe phylosymbiosis seems to be restricted to 81 

mammals. Indeed, meta-analysis performed on fecal samples of various bird, fish, reptile or 82 

amphibian species failed to report the same strict correlation (7, 16). Altogether, these findings 83 

indicate that the gut microbiota plays a pivotal role in facilitating adaptation to dietary changes 84 

adopted by mammals as part of their evolution, revealing particular correlations between a given 85 

gut microbiota and their associated host diet and/or digestive system (5, 7, 9, 10). Nevertheless, 86 

despite many studies depicting the gut microbiota as a hidden organ that exerts key metabolic 87 

activities to support its host, the composition and especially the functional role of mammalian gut 88 

microbial populations has not been fully explored. Indeed, despite the extensive number of 89 

mammalian species involved, most of the available studies explored the mammalian gut microbiota 90 

composition exclusively through 16S rRNA microbial profiling, thus failing to provide a correlation 91 

between the composition of the mammalian gut microbiota and its (predicted) metabolic functions 92 

(5, 7, 10, 16, 25). Other studies, even though they were based on shotgun metagenomics, did not 93 

investigate transcriptional profiles of the collected samples. In this context, in order to expand our 94 

knowledge in this field, the specific taxonomic and functional traits associated with different diets 95 

and physiology of the host’s digestive system across the mammalian branch of the tree of life were 96 

assessed by means of metagenomics (16S rRNA microbial profiling and shotgun metagenomics) 97 

and metatranscriptomics approaches. Specifically, we collected fecal samples from 250 mammals, 98 

covering 77 species and representing a broad range of mammalian biodiversity. These samples were 99 

subjected to 16S rRNA gene microbial profiling in order to obtain an overview of the taxonomic 100 

composition of the gut microbiota among their mammalian hosts. Moreover, 24 key samples were 101 

subjected to shotgun metagenomic sequencing and reconstruction of their microbial metabolic 102 
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potential in order to identify features that allow adaptation to specific diets linked with various 103 

evolved physiologies of the mammalian gastrointestinal tract. These functional data were confirmed 104 

and integrated by data obtained by metatranscriptome analysis of eight animals, thereby providing 105 

insights into the transcriptional response of gut microbiota populations to specific diets.  106 

 on D
ecem

ber 11, 2020 at IR
IS

http://aem
.asm

.org/
D

ow
nloaded from

 

http://aem.asm.org/


 
7 

 

Results and discussion 107 

The gut microbiota biodiversity across the mammalian branch of the tree of life. We 108 

performed 16S rRNA gene-based microbial profiling of 250 fecal samples corresponding to 77 109 

mammalian species, together forming a broad coverage of the mammalian tree of life (Table S1) 110 

(Supplementary Excel File 1). Specifically, the enrolled mammalian species represent 66 111 

omnivores, 63 carnivores, 115 herbivores (encompassing different sub-classes accordingly to the 112 

physiology of their digestive tract) and 6 piscivores (Table 1). In this context, because of the 113 

difficulties in collecting multiple fecal samples from non-domesticated mammals, some of the fecal 114 

samples were collected from wild animals (i.e. wolves or boars) while others were retrieved from 115 

animals raised in captivity. Furthermore, difficulties in collecting fecal samples from aquatic 116 

mammals significantly restricted the number of piscivore members, being limited to two species of 117 

dolphins (three fecal samples per dolphin species) (Table S1). Illumina sequencing produced a total 118 

of 15,307,128 reads, with an average of 61,229 reads per sample. Evaluation of the alpha-diversity, 119 

i.e. the biodiversity of the bacterial population harboured by each sample, was performed through 120 

rarefaction curves representing the number of observed OTUs generated with 100 % identity cut-off 121 

and obtained for 10 sub-samplings of the total read pool. Average curves obtained for the 28 122 

mammalian taxonomic families included in this study revealed that some herbivorous mammalian 123 

species, i.e. Equidae, Camelidae, Macropodidae, Bovidae, Elephantidae and Giraffidae possess a 124 

higher gut bacterial biodiversity compared to that of other mammals, supported by Student’s t-test 125 

p-value of <0.001 (Figure 1a). This observation is confirmed by average diet-based rarefaction 126 

curves revealing a significantly higher biodiversity (Student’s t-test p-value of <0.001) of the gut 127 

microbiota of herbivores when compared to that of omnivores or carnivores (the latter including 128 

piscivores) (Figure S1a). These data indicate that the overall bacterial biodiversity harboured by the 129 

mammalian gut positively correlates with the abundance of plant-based foods in the diet (p-value < 130 

0.001), suggestive of a major metabolic role played by bacteria in the gastrointestinal tract of 131 
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herbivores. In this context, we also performed a sub-classification of the enrolled herbivores based 132 

on the physiology of their digestive system (Table S1) (Figure S1b). The average rarefaction curves 133 

that we obtained revealed that polygastric herbivores, including ruminants and pseudo-ruminants 134 

(Tylopoda), possess a significantly higher gut microbiota biodiversity (Figure S1b), reflecting the 135 

key role of foregut bacterial fermentation in herbivores with a multi-chambered stomach (26). The 136 

only exception was represented by hippopotamidae that showed lower biodiversity. Notably, this 137 

apparent inconsistency may reflect the peculiar physiology of the three-chambered stomach of these 138 

non-ruminant herbivores (26). In contrast, herbivores with single-chambered stomach showed 139 

significant variation in the number of observed OTUs based on their size (Figure S1b). In detail, 140 

‘lighter’ (<100 Kg of average body weight) monogastric herbivores (representing five mammalian 141 

species and an associated total of 18 fecal samples) were shown to exhibit lower biodiversity when 142 

compared to that of ‘heavier’ (>100 Kg of average body weight) monogastric herbivores 143 

(encompassing eight mammalian species and a total of 32 fecal samples). This finding may reflect 144 

the fact that small herbivores are cecum fermenters, while heavier herbivores are colon fermenters 145 

(26). For this purpose, cecum fermenters possess an enlarged cecum, which retains small food 146 

particles for fermentation while fibrous and less digestible particles pass rapidly through the large 147 

intestine. This peculiar physiology of the gastrointestinal tract supports a high-fiber diet without the 148 

encumbrance of a large hindgut, thus being advantageous for small animals with high ratio of food 149 

intake with respect to their size (26). In contrast, in colon fermenters the content of colon and 150 

cecum mix freely and act as a single fermentation site (26), possibly supporting the higher bacterial 151 

biodiversity observed in heavier monogastric herbivores (Figure S1b). 152 

 153 

Gut microbiota composition across the mammalian branch of the tree of life. Microbial 154 

taxonomic profiles obtained at genus level were used to perform a beta-diversity analysis using the 155 

Bray-Curtis distance matrix, and then represented by means of a PCoA plot (Figure 1b) (Figure 156 
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S2a). This analysis revealed clustering of samples based on taxonomic family, as expected, with 157 

overlap of families with a similar diet (Figure S2a). In fact, re-colouring of the samples based on 158 

dietary habits revealed that herbivores, omnivores and carnivores (including piscivores) clustered 159 

separately (Figure 1b), with herbivores forming sub-clusters, confirming previously published 160 

observations (18). In order to detail differences between herbivores, a specific Bray-Curtis PCoA 161 

was generated (Figure S2b). The latter revealed three major clusters constituted by i) polygastric 162 

ruminants and pseudo-ruminants (Tylopoda), ii) heavier monogastric herbivores, and iii) lighter 163 

monogastric herbivores and hippopotamidae (Figure S2b). These findings highlight that diet, as 164 

well as the physiology and anatomy of the herbivorous digestive system, not only impact on the 165 

overall bacterial biodiversity, i.e., number of different bacterial taxa, but also on the gastrointestinal 166 

microbiota composition. 167 

Furthermore, in depth analysis of the microbial taxonomic profiles reconstructed from 16S rRNA 168 

gene-based microbial profiling data evidenced similarities between taxonomic families of mammals 169 

with an analogous diet (Figure 2a). Details regarding key taxa correlated with specific diets or 170 

gastrointestinal physiologies are extensively discussed in the supplementary text. Amongst the most 171 

relevant findings, it is worth mentioning that carnivores and herbivores are characterized by a 172 

peculiarly high average abundance of the genus Fusobacterium and members of the 173 

Ruminococcaceae family, respectively (Figure 2b). In this context, it has previously been shown 174 

that the Fusobacterium genus is generally associated with a protein-rich diet (27), while a high 175 

abundance of members of the Ruminococcaceae family is related to a fibre-based diet, since the 176 

latter are degraders of a wide range of carbohydrates (28). Nevertheless, though our findings 177 

indicate that members of these two bacterial taxonomic groups play a defining metabolic role for 178 

their host, their sub-genus phylogeny and genetic potential are still poorly characterized. They 179 

therefore represent prime targets for further genomic and functional studies. In this regard, analysis 180 

of the herbivorous gut microbiota revealed that the in silico predicted genera UCG-005 and UCG-181 
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010 of family Ruminococcaceae together represent 18.49 % of the total gut microbial population of 182 

polygastric herbivores (Figure S3a-b). Moreover, the small monogastric class (<100 Kg-average 183 

body weight) is characterized by a higher number of class-specific taxa when compared to other 184 

herbivores (Figure S3b), suggesting that the peculiar gut microbiota composition of cecum 185 

fermenters may reflect their shorter transit time and specific energy extraction capabilities when 186 

compared to colon fermenters, i.e. heavier monogastric animals (>100 Kg-body average weight), 187 

and ruminants (26).  188 

 189 

Co-variance of gut colonizers across the mammalian tree of life. The composition and dynamics 190 

of the intestinal microbial community rely on an intricate cross-species network of interactions (29). 191 

In this context, previous studies have revealed the existence of both co-operative and competitive 192 

behaviours between members of the mammalian gut microbiota (29-31). In order to investigate such 193 

interactions that occur in the gut microbiota across all mammals, we performed a Kendall's tau 194 

coefficient co-variance analysis using all taxonomic profiles obtained in this study. Data collected 195 

were used to construct a force-driven network where attractive and repulsive forces between nodes 196 

correspond to positive and negative co-variances with a p-value of <0.05 between taxa for which a 197 

relative abundance of >5 % was observed in at least one sample (Figure 3a). In this context, 198 

colouring of the nodes based on modularity class analysis (resolution of 0.6) revealed the presence 199 

of three major clusters organised by co-occurring genera, a smaller cluster encompassing just four 200 

taxa and a single microbial genus that does not cluster with any of the other bacterial taxa (Figure 201 

3a). Moreover, node colouring corresponding to taxa found to be associated with specific diets (p-202 

value <0.05) (Figure 2) (Figure 3b) revealed that genera more abundant in herbivores, carnivores 203 

and piscivores clustered together, thus suggesting the existence of putative co-operational 204 

behaviours between these taxa. In contrast, genera found to be more abundant in omnivores are 205 

located near clusters associated with herbivores or carnivores, reflecting the mixed diet followed by 206 
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omnivorous mammals. This finding may indicate that omnivores are not associated with specific 207 

bacterial genera (or vice versa), but, rather, possess a combination of bacterial taxa typical of 208 

herbivores and carnivores. This notion is in accordance with a previous observation that omnivores 209 

do not possess ‘generalist’ bacterial lineages able to digest both plant- and animal-derived 210 

compounds but rather a combination of herbivorous and carnivorous specialist bacterial groups 211 

(25). In this milieu, it seems that diet may play a major role in modulating the mammalian gut 212 

microbiota, resulting in efficient metabolism of dietary food components. 213 

To better detail differences between herbivores and carnivores, the nodes were also coloured to 214 

report genera showing higher relative abundance (p-value <0.05) in either of these two dietary 215 

groups (Table S2) (Figure 3c). Since the distance between nodes is weighted on statistically 216 

significant co-occurrence and co-exclusion interactions, this network analysis revealed that genera 217 

found to be more abundant in herbivores form a tighter cluster when compared to carnivore-specific 218 

taxa that are spread across the remaining area of the network (Figure 3c). On the basis of this 219 

finding, we speculate that bacterial genera involved in the metabolism of plant-derived 220 

carbohydrates need a higher level of co-operation to perform complete degradation of such complex 221 

carbohydrates, being abundant in the herbivorous diet, into simple sugars. This hypothesis is further 222 

supported by the higher average number of co-variances observed, as represented by node size, 223 

between herbivore-associated genera as compared to those corresponding to carnivores (Figure 3c). 224 

 225 

Functional characterization of the mammalian gut microbiota. The 16S rRNA gene-based 226 

microbial profiling analysis revealed substantial differences in the taxonomic composition of the 227 

250 collected fecal samples based on diet and physiology of the digestive system. For this reason, in 228 

order to trace potential differences in the functional repertoire of mammalian gut microbial 229 

populations, a shotgun metagenomic approach was performed for 24 fecal samples. Specifically, to 230 

obtain a balanced analysis, fecal samples were chosen in order to be equally divided per diet 231 
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category, with exclusion of omnivores due to their extreme complex and variable diet (Table S3). 232 

Furthermore, animals included in the same group were chosen randomly to cover multiple sampling 233 

sites in order to limit geographical biases. Data retrieved from shotgun sequencing comprised a total 234 

of 221,797,722 reads that were subjected to quality-filtering and removal of host-related sequences 235 

based on publicly available genomes of the sampled animals, resulting in a total of 205,386,184 236 

reads with an average of 8,557,758 reads per sample (Table S3). The obtained sequence datasets 237 

were then subjected to metabolic pathway prediction based on the MetaCyc database. Shotgun 238 

metagenomics data revealed that the gut microbiota of piscivores encode the highest number of 239 

pathways (constituting an average of >0.001 % reads of the datasets) and a higher number of 240 

pathways with lower abundance compared to both other diets (Figure 4), thus allowing to formulate 241 

the hypothesis that aquatic life and correlated diet induced extensive shift in the metabolic potential 242 

of the gut microbiota of these piscivores (further details related to data collected from piscivores 243 

(dolphins) and their relative functional assessment are reported in Supplementary Text). 244 

Furthermore, statistical analysis revealed that carnivores possess a lower number of pathways with 245 

differential (higher or lower) abundance when compared to other diets (Bonferroni post-hoc test p-246 

value <0.05) (Figure 4). In depth evaluation of degradative pathways showing higher abundance for 247 

a specific diet (Bonferroni post-hoc test p-value <0.05) (Figure 4) (Table S5) revealed, as expected, 248 

that the herbivore gut microbiome is enriched in carbohydrate degradation pathways when 249 

compared to that of carnivores and piscivores (Table S4). Particularly, most of the predicted 250 

pathways were related to the breakdown of typical plant carbohydrates, i.e. xylose, arabinose, 251 

sucrose, starch and maltose (32-34) (Table S5), predicting that the gut microbiome has a greater 252 

capacity to recover energy from a plant/vegetable-based diet. In contrast, the carnivore gut 253 

microbiome is characterized by a higher number of pathways related to choline degradation coupled 254 

with the super-pathway of trimethylamine degradation (Table S5). Notably, choline, a quaternary 255 

amine principally found in meats, is known as precursor of trimethylamine (35, 36). In this context, 256 
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the microbial intestinal community associated with carnivores seems to have developed activities 257 

capable of degrading meat components and its derived by-products, thus strengthening previous 258 

observations which suggested that the carnivore microbiome is specialized to derive energy from 259 

protein degradation (18). Collectively these findings support the notion that diet plays a role in 260 

modulating the taxonomic composition of the intestinal microbial community, with a consequent 261 

impact of the metabolic pathways encoded by these mammalian intestinal microbial communities.  262 

 263 

Differences between the gut glycobiome of carnivores and herbivores. Shotgun metagenomic 264 

data were also used to reconstruct the glycobiome, i.e. the genetic repertoire responsible for 265 

breakdown of complex carbohydrates. Details of the variations in the gut microbiota glycobiome 266 

based on diet (herbivore, carnivore and piscivore) are reported in the Supplementary Text. Focusing 267 

on the comparison between the glycobiome profiles of carnivores and herbivores, we performed a 268 

Student’s t-test statistical analysis. Results revealed that a large number of GH families possess 269 

differential abundance between the representatives of the two considered diets (Table S6). In this 270 

context, a marked commitment of carnivores was noticed towards the degradation of animal-271 

derived host glycans and their degradation products (GH20, GH33, GH92, GH101, GH123, GH125 272 

and GH129) as well as α(1→4) linked glucose polysaccharides (GH15, GH63 and GH126) such as 273 

the animal storage carbohydrate glycogen (Table S6). Moreover, carnivores showed higher 274 

abundance of GH families involved in the degradation of chitin, chitosan and chitobiose (GH19, 275 

GH23, GH84, GH85), probably due to the ingestion of chitinous structures (Table S6). In contrast, 276 

herbivore data extended the above observed specialization of their microbiota toward the 277 

metabolism of plant-related polysaccharides such as cellulose, xylans and galactans (GH9, GH10, 278 

GH11, GH12, GH16, GH26, GH31, GH39, GH42, GH43, GH44, GH51, GH53, GH67, GH74 and 279 

GH120) and highlighted also commitment toward degradation of fungal polysaccharides such as 280 

mycodextran (GH87) (Table S6). 281 

 on D
ecem

ber 11, 2020 at IR
IS

http://aem
.asm

.org/
D

ow
nloaded from

 

http://aem.asm.org/


 
14 

 

Dissection and statistical analysis of glycobiome data revealed that the gut microbiomes of 282 

carnivores, piscivores and herbivores encode a specific repertoire of enzymes to allow energy 283 

extraction from dietary carbohydrates, suggesting that the bacterial populations harbored by the 284 

mammalian gut exert specific metabolic roles that are associated with the particular diet of their 285 

host. 286 

 287 

Metatranscriptomic analysis of Carnivores and Herbivores microbiomes. Metagenomics data 288 

provided interesting information regarding functional commitment of the gut microbiota of 289 

herbivores and carnivores towards metabolism of specific dietary components. In order to evaluate 290 

if transcriptional profiles of these microbiomes reflect such observations, we performed 291 

metatranscriptome analysis of fecal samples from four carnivores and four herbivores (Table S7), 292 

which were selected in order to represent various animal genera. Sequenced metatranscriptome 293 

datasets were processed for removal of host DNA through mapping against a custom database of 294 

host genomes resulting in a total of 38,921,420 reads with an average of 4,865,177 reads per sample 295 

and the latter were further subjected to prediction of the expressed glycobiome and repertoire of 296 

degradation pathways (Table S5, Table S6 and Figure 5). 297 

Inspection of transcriptional data revealed that the range of pathways involved in the breakdown of 298 

typical plant carbohydrates, i.e. xylose, arabinose and starch, found to be more abundant in 299 

herbivores based on shotgun metagenomic data (Table S5), are also more expressed in animals 300 

following this diet (Table S5). Similarly, analysis of the expressed glycobiomes focusing on GH 301 

families showing differential abundance in metagenomic data, evidenced that genetic members of 302 

the GH9, GH26, GH39, GH43, GH51, GH67 and GH74 glycosyl hydrolase families, predicted to 303 

be involved in the breakdown of plant-related carbohydrates, are more expressed in herbivores. In 304 

contrast, genes encoding GH20, GH33 and GH129 family enzymes, which are predicted to be 305 

involved in degradation of host-derived glycans, showed higher transcription levels in carnivores 306 
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(Table S6). Notably, these data further strengthen the assumption of an extensive specialization of 307 

the gut microbiota of mammals in facilitating the metabolism of specific dietary compounds in 308 

terms of the encoded genetic repertoire and being corroborated by their transcription patterns. 309 

To further explore possible differential expression of metabolic pathways and GHs showing 310 

comparable abundance in metagenomic data collected from herbivores and carnivores, statistical 311 

analyses were extended to include all profiled pathways and GHs (Figure 5a). These analyses of 312 

transcriptomics data revealed that, compared to carnivores, herbivores are characterized by 313 

increased transcription of genes encoding a range of GH families involved in plant glycan 314 

degradation (Figure 5a). Among the latter, members of GH5 encompass cellulases, of GH97 include 315 

α-glucosidases and α-galactosidases, and enzymes belonging to GH130 are known to be involved in 316 

the breakdown of β-mannosides such as β-1,4-mannobiose. Furthermore, a range of degradation 317 

pathways involved in the metabolism of pectin, including its metabolites 4-deoxy-L-threo-hex-4-318 

enopyranuronate, D-galacturonate and D-fructuronate, as well as the cell wall component L-319 

rhamnose showed higher expression in herbivores (Figure 5a), despite comparable abundance of 320 

their corresponding genes in metagenomic datasets of carnivores. In addition, the super-pathway of 321 

methanogenesis showed higher expression in herbivores (Figure 5b), possibly reflecting the major 322 

metabolic role exerted by methanogens in this class of mammals (37). 323 

Notably, metatranscriptome data allowed us to confirm functional data obtained from 324 

metagenomics approaches and provide insights into the transcriptional profiles of the gut microbial 325 

community of herbivores and carnivores in response to availability of specific dietary components. 326 

These findings may support the notion that intestinal microbial populations are able to differentially 327 

express genes in order to maximize food energy/nutrient extraction. 328 

 329 

Exploration of functional specialization of the gut microbiome in classes of herbivores. 330 

Mammalian fecal samples that had been assessed by shotgun metagenome sequencing were selected 331 
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to cover the four main classes of herbivores depicted by analysis of 16S rRNA gene microbial 332 

profiling data, i.e. polygastric ruminants, polygastric pseudo-ruminants (Tylopoda), heavier 333 

monogastric herbivores (>100 Kg of average body weight) and lighter monogastric herbivores 334 

(<100 Kg of average body weight). Notably, comparison of the gut microbiome of polygastric 335 

ruminants and pseudo-ruminants revealed very limited differences in terms of encoded pathways 336 

and predicted glycobiome (Table S8 and Table S9). In detail, only one metabolic pathway with 337 

relative abundance >0.001 % was found to show increased abundance in ruminants ±50 % when 338 

compared to pseudo-ruminants (Student’s t-test p-value <0.05), i.e. L-glutamate degradation IX 339 

(+72.89 %) (Table S8). Moreover, no degradation pathway classes showed statistically significant 340 

differential abundance. Notably, these data are consistent with the previously proposed notion that 341 

the gut microbiota of these two families of herbivores with a similar multi-chambered digestive 342 

system may exert comparable metabolic functions (26, 38). Indeed, comparison of the number of 343 

pathways with a statistically significant different abundance between the two groups of monogastric 344 

herbivores and ruminants or pseudo-ruminants revealed similar trends with the only exception of a 345 

slight decrease in the number of pathways with statistically significant higher abundance in the 346 

pseudo-ruminants when compared to monogastric herbivores (Table S10). For this reason, 347 

ruminants and pseudo-ruminants were considered as a single group for further comparison with 348 

heavier monogastric and lighter monogastric herbivores. Metabolic pathway prediction revealed 349 

that the total number of pathways with an abundance of >0.001 % and the number of degradative 350 

pathways with an abundance of >0.001 % is lower in polygastric animals when compared to 351 

monogastric herbivores. 352 

Furthermore, our collected data revealed that the gut microbiota of ruminants and pseudo-ruminants 353 

encode the highest number of pathways with significant lower abundance when compared to 354 

monogastric herbivores (Figure 6), with a similar trend observed for degradative pathways (Figure 355 

6). A possible explanation for these results is that the higher complexity of the digestive system of 356 
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polygastric herbivores requires less participation of gut microbiota in the associated catabolic 357 

processes when compared to the situation in monogastric mammals.  358 

In contrast, the analysis of shotgun metagenomics data showed that the gut microbiota of lighter 359 

monogastric mammals encoded a more extensive repertoire of metabolic pathways (Figure 6). At 360 

the same time, as indicated above, 16S rRNA gene-based microbial profiling data revealed that 361 

lighter monogastric herbivores possess the lowest gut biodiversity among herbivores (p-value < 362 

0.01)(Figure S1b), probably reflecting the limited colon size responsible for their specialization as 363 

cecum fermenters (26). On the basis of these two observations, it can be assumed that the intestinal 364 

bacterial community of lighter monogastric mammals compensates its reduced biodiversity by 365 

maximizing its metabolic potential when compared to heavy herbivores with a more complex 366 

digestive system. 367 

In order to further explore peculiar catabolic capabilities of the enrolled classes of herbivores, a 368 

detailed evaluation of degradative metabolic pathways enriched in a specific class (ANOVA post-369 

hoc Bonferroni p-value <0.05 when compared to either of the other groups) was performed (Table 370 

S10). Notably, the gut microbiota of the heavier monogastric herbivores revealed a specific 371 

commitment towards degradation of glycerol and a range of aromatic compounds including plant 372 

metabolites, such as 2, 3-dihydroxybenzoate, or environmental pollutants such as catechol, phenol 373 

and toluene (39-41) (Table S10). In contrast, the gut microbial population of lighter monogastric 374 

herbivores showed a specific abundance of pathways involved in the degradation of plant cell walls 375 

including hemicelluloses and their components, such as glucuronoarabinoxylan and galactans, 376 

pectin and rhamnogalacturonan along with reduction of the inorganic compound sulphate into 377 

hydrogen sulphide (Table S10). This observation may suggest that the higher biodiversity of heavier 378 

monogastric herbivores (Figure S1) supports specialization of gut commensals toward catabolism of 379 

a wider range of secondary plant-related compounds, while the less diverse gut microbial 380 

populations of lighter monogastric herbivores (Figure S1) appear more specialized to promote 381 
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efficient utilization of core plant saccharides. Furthermore, when considering polygastric 382 

herbivores, in addition to a higher abundance of pathways for degradation of simple sugars (mono- 383 

or di-saccharides) such as D- and L-arabinose, fucose, maltose, melibiose, trehalose and xylose, this 384 

herbivore class showed a higher abundance of a wide range of amino acid degradation pathways 385 

(Table S10). Notably, these results suggest that the mammalian gut microbiota plays a significant 386 

role in performing specific metabolic tasks not only dependent on host diet but also on the 387 

physiology of the corresponding digestive system.  388 

Further exploration of the metabolic potential of herbivores through analysis of their glycobiome 389 

revealed that the microbiome of lighter monogastric herbivores encode the highest number of GH 390 

families at a significantly higher abundance (Table 3). Furthermore, five of the six GH families 391 

enriched in fecal material of lighter monogastric herbivores are either predicted to represent 392 

chitinase activity (associated with GH19), which participate in the hydrolysis of (1→4)-β-linkages 393 

between N-acetyl-D-glucosamine residues in the chitin-derived chitodextrins (GH25 and GH73), 394 

induce breakdown of 1,3--glucans (GH81) or encode broad spectrum β-glucosidases and β-395 

mannosidases (GH1). In this context, all these predicted enzymatic activities may suggest a genetic 396 

specialization toward degradation of the main fungal cell wall components (42) (Table 3). 397 

Moreover, three of the four GH families enriched in heavier monogastric herbivores are involved in 398 

xylan degradation (GH54, GH116 and GH120) (Table 3).Therefore, these data may indicate that the 399 

gut microbiota of heavier monogastric herbivores has adapted to compensate for the reduced 400 

capability of these animals to metabolize complex plant saccharides when compared to polygastric 401 

ruminants. Furthermore, the abundance of GH family 79, which is enriched in polygastric 402 

herbivores (by 803 % and 3981 %) when compared to lighter and heavier monogastric herbivores, 403 

respectively (Table 3), is linked to the degradation of proteoglycans (such as arabinogalactan-linked 404 

proteins) (43, 44). Therefore, it seems that the gut microbiota of (pseudo)ruminants is involved in 405 
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maximizing energy extraction from food through improved breakdown of the extracellular matrix of 406 

plants. 407 

Altogether these data reveal the relevant role of physiology and anatomy of the mammalian 408 

digestive system in order to co-operatively achieve optimal energy extraction from their particular 409 

diet. 410 

 411 

Conclusions 412 

A wide range of studies has suggested that diet and host physiology exert a crucial role in the 413 

modulation of both the taxonomical composition and metabolic repertoire of the mammalian gut 414 

microbiota. However, these studies did focus on specific diets and included a limited number of 415 

host species. For this reason, a precise dissection of the peculiar features that characterize the gut 416 

microbiota functionality in animals with specific dietary habits and an associated digestive system 417 

has so far not been performed. In the current study, the gut microbiota composition of 250 fecal 418 

samples, corresponding to 77 mammalian species, which broadly cover the mammalian branch of 419 

the tree of life, were explored through metagenomic approaches, encompassing 16S rRNA gene 420 

microbial profiling and shotgun metagenomics. Our results demonstrate that diet not only affects 421 

the intestinal microbial biodiversity but also the gut microbiota composition. In detail, 16S rRNA 422 

gene microbial profiling underlined existence of diet-associated genera, suggesting extensive co-423 

evolution of gut bacteria with their hosts in order to promote selection of specific taxa. The finding 424 

that bacterial taxa typical of mammals following a specific diet co-occur in the gut environment 425 

supports this notion. Moreover, prediction of the metabolic potential of the gut microbial population 426 

of 24 mammals and metatranscriptome reconstruction of four carnivores and four herbivores 427 

revealed that the mammalian gut microbiome evolved to co-operate with its host digestive system 428 

from a functional point of view, strengthening the idea that the gut microbiota developed to 429 

optimize energy extraction from food. Indeed, among the herbivores, differences in the bacterial 430 
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biodiversity and taxonomical composition were observed when considering the physiology of their 431 

digestive system. These observations were further confirmed by comparison of the herbivore 432 

intestinal metabolic repertoire, showing that differences in the physiology of the digestive system 433 

correspond to diverse microbial metabolic capabilities. Altogether, these results suggest that 434 

mammalian gut microbiota has developed in order to achieve extensive metabolic interplay aimed 435 

at maximizing energy and nutrient extraction based on specific dietary habits. However, the 436 

difficulties in collecting a sufficient number of fecal samples to fully represent all the categories of 437 

diet and the anatomy of the digestive tract reported, affected the outcomes of the present study. In 438 

this context, the piscivore group is represented only by certain species of dolphins, thus limiting the 439 

acquired knowledge on the composition and metabolic repertoire of this group of animals. 440 

Furthermore, several samples were obtained from zoo animals whose microbial community may be 441 

affected by human influence and captivity. Therefore, further investigations aiming to retrieve fecal 442 

samples from a large cohort of piscivorous mammalian species as well as from mammals living in 443 

their natural environment are required to fully understand how the gut microbiota and its metabolic 444 

features co-evolved with the host. In addition, a follow-up study aimed at collecting fecal samples 445 

from different mammals at different time points may be useful to better assess whether the observed 446 

differences persist over time or if they are the results of transient shifts.   447 

 448 

Materials and Methods  449 

Ethics approval and consent to participate. All experimental procedures and protocols involving 450 

animals were approved by the Veterinarian Animal Care and Use Committee of Parma University, 451 

and conducted in accordance with the European Community Council Directives dated 22 September 452 

2010 (2010/63/UE). Human participants gave their informed written consent before enrollment. All 453 

investigations were carried out following the principles of the Declaration of Helsinki.    454 
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Sample collection. A total of 250 stool samples were collected through a collaboration with several 455 

Italian zoological parks and farms. In case of aquatic mammals, sample collection was performed 456 

during a routine veterinary examination through rectal swabs to avoid contamination (Table S1). 457 

Conversely, for all other Terrestrial mammals, fecal samples were collected immediately after 458 

defecation. To be included in the study, animals had to be healthy, not having undergone treatment 459 

with any probiotics or drugs, such as antibiotics, during the six previous months (Table S1). In all 460 

cases, an aliquot of each fecal sample was transferred into a fecal container with RNAlater. All 461 

samples were kept on ice and shipped to laboratory under frozen conditions where they were 462 

preserved at -80 °C, until they were processed. 463 

Bacterial DNA extraction, 16S rRNA gene PCR amplification and sequencing. Aliquots of 464 

fecal samples collected without RNAlater were subjected to bacterial DNA extraction using the 465 

QIAamp DNA Stool Mini Kit following the manufacturer’s extraction (Qiagen). Partial 16S rRNA 466 

gene sequences were amplified from extracted DNA using primer pair Probio_Uni/Probio_Rev. 467 

targeting the V3 region of the 16S rRNA gene sequence (45). Illumina adapter overhang nucleotide 468 

sequences were added to the partial 16S rRNA gene-specific amplicons, which were further 469 

processed involving the 16S Metagenomic Sequencing Library Preparation Protocol (Part 470 

#15044223 Rev. B – Illumina). Amplifications were carried out using a Verity Thermocycler 471 

(Applied Biosystems). The integrity of the PCR amplicons was analyzed by electrophoresis on a 472 

2200 TapeStation Instrument (Agilent Technologies, USA). DNA products obtained following 473 

PCR-mediated amplification of the 16S rRNA gene sequences were purified by a magnetic 474 

purification step employing the Agencourt AMPure XP DNA purification beads (Beckman Coulter 475 

Genomics GmbH, Bernried, Germany) in order to remove primer dimers. DNA concentration of the 476 

amplified sequence library was determined by a fluorometric Qubit quantification system (Life 477 

Technologies, USA). Amplicons were diluted to a concentration of 4 nM, and 5 µL quantities of 478 
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each diluted DNA amplicon sample were mixed to prepare the pooled final Library. Sequencing 479 

was performed using an Illumina MiSeq sequencer with MiSeq Reagent Kit v3 chemicals. 480 

16S rRNA microbial profiling analysis. The .fastq files were processed using a custom script 481 

based on the QIIME software suite (46). Paired-end reads pairs were assembled to reconstruct the 482 

complete Probio_Uni / Probio_Rev amplicons. Quality control retained sequences with a length 483 

between 140 and 400 bp and mean sequence quality score >20 while sequences with homopolymers 484 

>7 bp and mismatched primers were omitted. In order to calculate downstream diversity measures 485 

(alpha and beta diversity indices, Unifrac analysis), 16S rRNA Operational Taxonomic Units 486 

(OTUs) were defined at 100 % sequence homology using DADA2 (47); OTUs not encompassing at 487 

least 2 sequences of the same sample were removed. Notably, this approach allows highly 488 

distinctive taxonomic classification at single nucleotide accuracy (46). All reads were classified to 489 

the lowest possible taxonomic rank using QIIME2 (46, 48) and a reference dataset from the SILVA 490 

database v.132 (49). Biodiversity within a given sample (alpha-diversity) was calculated 491 

considering the observed OTUs for 10 sub-samplings of the total read pool. Similarities between 492 

samples (beta-diversity) were calculated by unweighted/weighted uniFrac and Bray-Curtis (50). 493 

The range of similarities is calculated between values 0 and 1. PCoA representations of beta-494 

diversity were performed using QIIME2 (46, 48).  495 

Shotgun metagenomics. The extracted DNA was prepared following the Illumina Nextera XT 496 

DNA Library Preparation Kit. Briefly, the DNA samples were enzymatically fragmented, barcoded 497 

and purified involving magnetic beads. Then, samples were quantified using fluorometric Qubit 498 

quantification system (Life Technologies, USA), loaded on a 2200 Tape Station Instrument (Agilent 499 

Technologies, USA) and normalized to 4nM. Sequencing was performed using an Illumina NextSeq 500 

500 sequencer with NextSeq High Output v2 Kit Chemicals 150 cycles.  501 

Analysis of metagenomic datasets. The obtained fastq files were filtered for reads with a quality of 502 

< 25, for reads > 80 bp and for sequences of the mammalian host DNA. Moreover, bases were 503 
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removed from the end of the reads unless the average quality score was > 25, in a window of 5 bp. 504 

Only paired data were used to further analysis with METAnnotatorX using default settings (51). 505 

Investigation of Glycosyl Hydrolase (GH) profiles together with the reconstruction of bacterial 506 

metabolic pathways and evaluation of their abundance in the shotgun metagenomics datasets were 507 

assessed using custom scripts based on RapSearch2 software (52) and the CAZy database or the 508 

MetaCyc database (53), respectively.  509 

RNA extraction. RNAlater-preserved stool samples were vortexed and homogenized after thawing 510 

for 10 min. Approximately 0.4 g of stool slurry was mixed with 1 mL of QIAzoL Lysis Reagent 511 

(Qiagen, UK) in a sterile tube containing glass beads (Merck, Germany). The cells were lysed 512 

alternating 2 minutes of stirring the mix on a Precellys 24 homogenizer (Bertin instruments, France) 513 

with 2 minutes of static cooling; this step was repeated three times. The lysed cells were centrifuged 514 

at 12,000 rpm for 15 min and the upper phase was recovered. The RNA samples were purified 515 

using the RNAesy Mini Kit (Qiagen, UK) following the manufacturer’s protocol. RNA 516 

concentration and purity were evaluated by a Picodrop microliter spectrophotometer (Picodrop, 517 

UK).  518 

RNAseq analysis performed by NextSeq Illumina. For RNA sequencing, 2.5 µg of total RNA 519 

was treated to remove ribosomal RNA by the Ribo-Zero Magnetic Kit (Illumina), followed by 520 

purification of the rRNA-depleted sample by ethanol precipitation. RNA was processed according 521 

to the manufacturer’s protocol. The yield of rRNA depletion was checked by a Tape station 2200 522 

(Agilent Technologies, USA). Then, a whole transcriptome library was constructed using the 523 

TruSeq Stranded RNA LT Kit (Illumina). Samples were loaded into a NextSeq High Output v2 Kit 524 

Chemicals 150 cycles (Illumina) as indicated by the technical support guide. The reads were 525 

depleted of adapters, quality filtered (with overall quality, quality window and length filters). 526 

Sequences corresponding to hosts’ genomes where removed through mapping with bwa software 527 

(54) against a custom database of hosts’ genomes. Retained reads were submitted to analysis with 528 
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METAnnotatorX tool (51). Investigation of Glycosyl Hydrolase (GH) profiles together with the 529 

reconstruction of bacterial metabolic pathways and evaluation of their abundance in the shotgun 530 

metagenomics datasets were assessed using custom scripts based on RapSearch2 software (Zhao et 531 

al 2012) and the CAZy database or the MetaCyc database (Caspi et al 2012), respectively.  532 

Statistical analysis. All statistical analyses, i.e. ANOVA, PERMANOVA, Student’s t-test as well 533 

as the Kendall tau rank co-variance analysis were performed with SPSS software v. 22 (IBM SPSS 534 

Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp.). The force-driven network was 535 

created using Gephi (https://gephi.org/) and modularity was defined with resolution of 0.6. 536 

Availability of data and materials. Raw sequences of 16S rRNA gene profiling data coupled with 537 

shotgun metagenomics and RNA sequencing data are accessible through SRA study accession 538 

number PRJNA545289 (https://www.ncbi.nlm.nih.gov/bioproject/545289) and PRJNA545214 539 

(https://www.ncbi.nlm.nih.gov/bioproject/545214). 540 
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Tables 705 

Table 1: list of mammals whose fecal samples were collected for this study, including the number 706 

of sampled individuals per mammalian species and their diets. 707 

Common name Species Family 

Number of 

sampled 

individuals 

Diet group 

African moufflon Ammotragus lervia Bovidae 2 

Herbivore 

(Polygastric 

Ruminant) 

European bison Bison bonasus Bovidae 2 

Banteng Bos javanicus Bovidae 1 

Auroch Bos primigenius Bovidae 1 

Cow Bos taurus Bovidae 16 

Goat Capra aegagrus hircus Bovidae 1 

Goat Capra hircus Bovidae 4 

Nile lechwe Kobus megaceros Bovidae 1 

Sheep Ovis aries Bovidae 4 

Mouflon Ovis musimon Bovidae 5 

Eland Taurotragus oryx Bovidae 1 

Deer Capreolus capreolus Cervidae 1 

Giraffe G. camelopardalis Giraffidae 2 

Camel Camelus bactrianus Camelidae 2 

Herbivore 

(Polygastric 

Tylopoda) 

Llama Lama glama Camelidae 1 

Guanaco Lama guanicoe Camelidae 3 

Alpaca Vicugna pacos Camelidae 7 

Vicuna Vicugna vicugna Camelidae 1 

Pygmy hippopotamus Hexaprotodon liberiensis Hippopotamidae 5 Herbivore 

(Polygastric Non-

Ruminant 3 

Stomach) 

Hippopotamus Hippopotamus amphibius Hippopotamidae 3 

Grey kangaroo Macropus giganteus Macropodidae 1 

Hare Lepus europaeus Leporidae 9 

Herbivore 

(Monogastric <100 

kg) 

European rabbit Oryctolagus cuniculus Leporidae 4 

European beaver Castor fiber Castoridae 2 

Patagonian mara Dolichotis patagonum Caviidae 1 

Capybara Hydrochoerus hydrochaeris Caviidae 2 

African wild donkey Equus africanus Equidae 4 

Herbivore 

(Monogastric >100 

kg) 

Donkey Equus africanus asinus Equidae 5 

Wild horse Equus ferus Equidae 3 

Horse Equus ferus caballus Equidae 10 

Grevy zebra Equus grevyi Equidae 2 

Zebra Equus quagga Equidae 2 

Asiatic tapir Tapirus indicus Tapiridae 1 

Sudamerican tapir Tapirus terrestris Tapiridae 3 

Asiatic elephant Elephas maximus Elephantidae 2 

Wolf Canis lupus Canidae 10 

Carnivore 

Dog Canis lupus familiaris Canidae 25 

African wild dog Lycaon pictus Canidae 1 

Wil cat Felis silvestris Felidae 2 

Cat Felis silvestris catus Felidae 4 

European lynx Lynx lynx Felidae 1 

Lion Panthera leo Felidae 2 

Asiatic lion Panthera leo persica Felidae 1 

Jaguar Panthera onca Felidae 1 
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Leopard Panthera pardus Felidae 1 

Tiger Panthera tigris Felidae 3 

Meerkat Suricata suricatta Herpestidae 1 

Fur seal Arctocephalus pussilus pussilus Otariidae 1 

Sudamerican sea lion Otaria flavescens Otariidae 1 

Grey seal Halichoerus grypus Phocidae 2 

Red coati Nasua nasua Procyonidae 1 

Brown bear Ursus arctos Ursidae 4 

Armadillo Chaetophractus villosus Dasypodidae 2 

Hedgehog Erinaceus europaeus Erinaceidae 1 

Wild boar Sus scrofa Suidae 8 

Omnivore 

Pig Sus scrofa domesticus Suidae 10 

Pygmy marmoset Callithrix pygmaea Cebidae 1 

Emperor tamarins Saguinus imperator Cebidae 1 

Cotton-top tamarin Saguinus oedipus Cebidae 1 

Saimiri Saimiri boliviensis peruviensis Cebidae 1 

Goeldi tamarin Callimico goeldii Cebidae 1 

Collared mangbey Cercocebus torquatus Cercopithecidae 1 

Green cercopithecus Chlorocebus pygerythrus Cercopithecidae 1 

Red-faced macaque Macaca fuscata Cercopithecidae 1 

Mandrill Mandrillue sphinx Cercopithecidae 1 

Human Homo Sapiens Hominidae 19 

Chimpanzee Pan troglodytes Hominidae 1 

Bornean orangutan Pongo pygmaeus Hominidae 1 

Macaque Eulemur macaco Lemuridae 1 

Lemur Lemur catta Lemuridae 2 

Red ruffed lemur Varecia rubra Lemuridae 1 

Black-and-white ruffed 

lemur 
Varecia variegata Lemuridae 1 

Wood mouse Apodemus sylvaticus Muridae 5 

Mouse Mus musculus Muridae 2 

Rat Rattus rattus Muridae 6 

Dolphin Delphinus delphis Delphinidae 3 
Piscivore 

Bottlenose dolphin Tursiops truncatus Delphinidae 3 
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Table 2: List of GH families with statistically significant higher or lower abundance based on diet. 719 

GH family Carnivores Piscivores Herbivores 

GH2 9.11% 1.98% 8.01% 

GH3 4.65% 1.35% 5.47% 

GH9 0.10% 0.25% 0.68% 

GH10 0.18% 0.10% 0.57% 

GH17 0.02% 0.59% 0.00% 

GH19 0.04% 0.30% 0.01% 

GH20 2.54% 1.04% 1.46% 

GH23 1.95% 13.36% 1.04% 

GH24 0.23% 0.05% 0.11% 

GH26 0.16% 0.00% 0.30% 

GH27 0.25% 0.05% 0.57% 

GH29 1.52% 0.57% 1.43% 

GH31 1.97% 0.80% 2.57% 

GH33 0.79% 0.62% 0.30% 

GH35 0.57% 0.09% 0.53% 

GH39 0.01% 0.00% 0.15% 

GH43 2.48% 0.48% 4.14% 

GH51 0.60% 0.30% 1.69% 

GH53 0.05% 0.08% 0.31% 

GH67 0.09% 0.00% 0.29% 

GH74 0.00% 0.00% 0.08% 

GH100 0.01% 0.00% 0.00% 

GH102 0.05% 0.29% 0.03% 

GH103 0.05% 0.42% 0.03% 

GH110 0.16% 5.66% 0.10% 

GH129 0.05% 0.00% 0.01% 

GH130 0.54% 0.00% 0.55% 

*percentages in bold indicate Bonferroni post-hoc test p-value <0.05 when compared to other 720 

groups.  721 
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Table 3: List of GH families with statistically significant higher or lower abundance based on 722 

digestive system’s physiology. 723 

GH family 
Heavier 

Monogastric 
Lighter Monogastric Polygastric 

GH1 0.0066% 0.0150% 0.0075% 

GH4 0.0056% 0.0038% 0.0146% 

GH19 0.0001% 0.0005% 0.0001% 

GH25 0.0041% 0.0082% 0.0048% 

GH32 0.0048% 0.0106% 0.0051% 

GH38 0.0051% 0.0039% 0.0103% 

GH50 0.0010% 0.0004% 0.0004% 

GH54 0.0010% 0.0000% 0.0001% 

GH73 0.0067% 0.0157% 0.0061% 

GH79 0.0001% 0.0003% 0.0026% 

GH81 0.0000% 0.0002% 0.0001% 

GH116 0.0032% 0.0007% 0.0008% 

GH120 0.0066% 0.0012% 0.0030% 

*percentages in bold indicate Bonferroni post-hoc test p-value <0.05 when compared to other 724 

groups.  725 
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Figure legends  726 

 727 

Figure 1. Alpha and Beta diversity of mammals included in this study. Panel a shows the average 728 

rarefaction curves obtained for each mammalian taxonomic family through evaluation of the 729 

number of observed OTUs up to 30,000 reads. Panel b reports the PCoA representation obtained 730 

using the Bray-Curtis index and the genus-level profiles. Samples were colored based on diet, i.e. 731 

carnivores, herbivores, piscivores and omnivores. 732 

 733 

Figure 2. Impact of diet on mammalian gut microbiota genus-level taxonomic composition. Panel a 734 

reports a bar plot of the average genus-level taxonomic composition obtained for each mammalian 735 

taxonomic family. Taxonomic families are grouped by diet. “U. m. of” stands for “Unclassified 736 

member of”. Panel b shows the bacterial genera with average relative abundance being 2X higher in 737 

mammals following a specific diet when compared to the other three considered diets. These taxa 738 

are highlighted in green. 739 

 740 

Figure 3. Co-variance force-driven network of genera profiled with relative abundance of >5 % in 741 

at least a sample. Nodes represent genera included in the analysis and attraction and repulsion 742 

forces are proportional to statistically significant co-variances and co-exclusions obtained using the 743 

Kendall’s tau correlation coefficient. Node size is proportional to the number of correlations. Panel 744 

a reports the network with nodes colored based on the predicted modularity class (using 0.6 745 

resolution). Panels b and c show the same network with nodes colored to highlight bacterial genera 746 

identified as more abundant in a specific diet through analysis of carnivores, herbivores, piscivores 747 

and omnivores as well as between only carnivores and herbivores, respectively. Figure numerical 748 

legend: Acinetobacter (1), Actinobacillus (2), Aeromonas (3), Akkermansia (4), Alistipes (5), 749 

Allobaculum (6), Alloprevotella (7), Anaerococcus (8), Asteroleplasma (9), Bacillus (10), 750 

Bacteroides (11), Barnesiella (12) Bifidobacterium (13), Blautia (14), Brevundimonas (15), CAG-751 
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352 (16), Carnobacterium (17), Catenibacterium (18), Catenisphaera (19), Cellulosilyticum (20), 752 

Cetobacterium (21), Christensenellaceae R-7 group (22), Clostridium sensu stricto 1 (23), 753 

Collinsella (24), Comamonas (25), Corynebacterium 1 (26), Cutibacterium (27), Dialister (28), 754 

Enterococcus (29), Epulopiscium (30), Erysipelotrichaceae UCG-002 (31), Erysipelotrichaceae 755 

UCG-004 (32), Escherichia-Shigella (33), Eubacterium coprostanligenes group (Ruminococcaceae 756 

family) (34), Faecalibacterium (35), Faecalibaculum (36), Family XIII AD3011 group 757 

(Clostridiales order) (37), Fibrobacter (38), Flavobacterium (39), Fusobacterium (40), 758 

Helicobacter (41), Ignatzschineria (42), Lachnospira (43), Lactobacillus (44), Lysinibacillus (45), 759 

Megamonas (46), Megasphaera (47), Myoides (48), Paenibacillus (49), Pedobacter (50), 760 

Peptoniphilus (51), Peptostreptococcus (52), Photobacterium (53), Prevotella 2 (54), Prevotella 7 761 

(55), Prevotella 9 (56), Prevotellaceae UCG-001 (57), Prevotellaceae UCG-003 (58), Pseudomonas 762 

(59), Psychrobacter (60), Rikenellaceae RC9 group (61), Ruminiclostridium 6 (62), 763 

Ruminococcaceae NK4A214 group (63), Ruminococcaceae UCG-002 (64), Ruminococcaceae 764 

UCG-005 (65), Ruminococcaceae UCG-010 (66), Ruminococcaceae UCG-013 (67), 765 

Ruminococcaceae UCG-014 (68), Ruminococcaceae V9D2013 group (69), Ruminococcus 1 (70), 766 

Saccharofermentans (71), Sarcina (72), Shuttleworthia (73), Solibacillus (74), Solobacterium (75), 767 

Sphaerochaeta (76), Staphylococcus (77), Streptococcus (78), Streptomyces (79), Subdoligranulum 768 

(80), Succinivibrio (81) Sutterella (82), Treponema 2 (83), Turicibacter (84), U. m. of Ricketsiales 769 

order (85), U. m. of WPS-2 phylum (86), U. m. of Bacteroidales BS11 gut group family (87), U. m. 770 

of Bacteroidales order (88), U. m. of Bacteroidales RF16 group family (89), U. m. of Bacteroidales 771 

UCG-001 family (90), U. m. of Bacteroidia class (91), U. m. of Burkholderiaceae family (92), U. 772 

m. of Caulobacteriaceae family (93), U. m. of Clostridiaceae 1 family (94), U. m. of Clostridiales 773 

vadinBB60 group family (96), U. m. of Coriobacteriales order (97), U. m. of Cyanobacteria phylum 774 

(98), U. m. of Enterobacteriaceae family (99), U. m. of Erysipelotrichaceae family (100), U. m. of 775 

Eukaryota kingdom (101), U. m. of F082 family (102), U. m. of  Firmicutes phylum (103), U. m. of 776 
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Flavobacteriaceae family (104), U. m. of Gammaproteobacteria class (105), U. m. of 777 

Lachnospiraceae family (106), U. m. of Lactobacillales order (107), U. m. of Moraxellaceae family 778 

(108), U. m. of Muribaculaceae family (109), U. m. of p-251-o5 family (110), U. m. of p-2534-779 

18B5 gut group family (111), U. m. of Pasteurellaceae family (112), U. m. of Peptostreptooccaceae 780 

family (113), U. m. of Planococcaceae family (114), U. m. of Prevotellaceae family (115), U. m. of 781 

Rhodospirillales order (116), U. m. of Ruminococcaceae family (117), U. m. of 782 

Sphingomonadaceae family (118), U. m. of Verrucomicrobiae class (119), U. m. of Weekellaceae 783 

family (120), Vibrio (121), Vitreoscilla (122) and Yersinia (123).  784 

 785 

Figure 4. Metabolic pathways prediction in Carnivores, Piscivores and Herbivores. Panel a shows 786 

the number of pathways detected with abundance >0.001 %. Panels b and c report the sum of the 787 

number of all pathways and degradative pathways, respectively, that showed a significantly higher 788 

abundance in a specific diet when compared to the other two considered diets observed through the 789 

application of an ANOVA post-hoc Bonferroni statistical analysis. Panels d and e display the sum 790 

of the number of all pathways and degradative pathways, respectively, with significantly lower 791 

abundance in a specific diet when compared to the other two. 792 

 793 

Figure 5. Metatranscriptome profiles of carnivores and herbivores. Panel a shows the 794 

transcriptional abundance (as a proportion of the total glycobiome) of GH genes with statistically 795 

different abundance in carnivores and herbivores. GHs in red show similar abundance in the 796 

metagenomes of carnivores and herbivores. Panel b reports the transcriptional abundance (as a 797 

proportion of all predicted metabolic pathways) of degradation pathways with statistically different 798 

abundance in carnivores and herbivores. Pathways in red displayed similar abundance in the 799 

metagenomes of carnivores and herbivores. 800 

 801 
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Figure 6. Metabolic pathways prediction in Lighter Monogastric, Heavier Monogastric and 802 

Polygastric herbivores. Panel a shows the sum of the number of pathways detected with an 803 

abundance of >0.001 %. Panels b and c report the sum of the number of all pathways and 804 

degradative pathways with significantly higher abundance in a specific class of herbivores. Panels d 805 

and e exhibit the sum of the number of all pathways and degradative pathways with significantly 806 

lower abundance in a specific class of herbivores. Statistically significant differences were defined 807 

by applying the ANOVA post-hoc Bonferroni statistical analysis.  808 
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