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Abstract 

Adding dilute concentrations of nitrogen (N) or bismuth (Bi) into conventional III-V 

semiconductor alloys causes a large energy bowing of the bandgap due to modification of the 

electronic band structure. This behaviour has attracted significant interest due to the resulting 

optical and electronic properties. Firstly, we present the theoretical band structure models for 

GaAs-based dilute nitride, dilute bismide and dilute bismide-nitride alloys and then use this 

within current continuity equations to develop the photovoltaic behaviour. To describe the band 

structures of  these highly mismatched III-V semiconductor alloys, we introduce a 10-, 12- and 14-

band k ∙ p  Hamiltonian for dilute nitride, dilute bismide and dilute bismide-nitride 

semiconductors, respectively [1]. We then use this approach to analyse GaBiAs multi-QW p-i-n 

structures for photovoltaic performance.  

Through our theoretical analysis we can: (i) elucidate important trends in the properties and 

photovoltaic performance of GaBiAs QW structures, and (ii) comment generally on the suitability 

of GaBiAs alloys and heterostructures for applications in Multi-junction Solar Cells. In particular, 

we identify and quantify the limitations associated with current GaBiAs solar cells, and describe 

the improvements in performance that can be expected pending further development of this 

emerging class of devices. 

1. Introduction 

The electronic structure of III-V semiconductor alloys have been studied for a long time. The 

simplest way to study such alloys is the virtual crystal approximation (VCA) [2], in which the 

electronic properties of the random alloys are offered by the linear interpolation between the 

end-point material properties. This approximation has been proved perfectly applicable to 

conventional III-V alloys [3]. Most of the understanding of semiconductor alloy systems only have 

small differences in properties at the end-point of semiconductor materials, they are called “well-

matched” alloys. However, we found that incorporating N and Bi at dilute concentrations causes 

distinctly effects on the material properties, these N- and Bi-contained material will have some 



impurity-like behaviour. As the atomic number of nitride (bismuth) is much smaller (larger) than 

other group V elements significant differences in size and electronegativity between them and 

the group-V atoms they replace occur. Hence, dilute nitride and dilute bismide alloys are 

considered to be “highly mismatched” alloys (HMAs).  

Nitrogen and Bismuth incorporation into III-V semiconductor alloys results in numerous effects: a 

strong bowing in the band structure, an increase in the electron and hole effective mass and a 

significant reduction of the electron and hole mobility. When the smaller but highly 

electronegative nitrogen atoms substitutes group V atoms in III-V compounds, it primarily affects 

the conduction band (CB) structure of the alloys into which it is incorporated. Bi incorporation 

mainly effects the valence band (VB) structure due to its significantly larger size and being more 

electropositive than the group V atoms in host material.  Substitution of As by Bi not only causes 

a strong reduction in the band gap (𝐸𝑔), like dilute nitrides does, but also brings a rapid increase 

in the spin-orbit-splitting energy (Δ𝑆𝑂) with increasing Bi composition 𝑥. 

 According to calculation, the strong N-induced decreasing in bandgap is about up to 180 meV 

per percentage N at low nitrogen composition [4][5], and 1% of Bi into GaAs reduces the 𝐸𝑔 by 

about 90 meV [6][7][8][9][10][11], as well as an increase of approximately 65 meV in the valence 

band spin-orbit splitting energy [10], all of which are characterised by strong, composition-

dependent bowing. The highly engineerable band structure of dilute nitride, dilute bismide and 

dilute bismide-nitride alloys has stimulated ongoing activity to explore and exploit their potential 

for a range of practical applications, including in GaAs-based long-wavelength semiconductor 

lasers, spintronics, and photovoltaics. 

The theoretical modelling of highly mismatched alloys is significantly complicated as the 

impurity-like behaviour of the N or Bi atoms when incorporating into host materials and causes a 

strong perturbation of the electronic band structure of the alloys. The band structures of these 

high mismatched alloys can be explained in terms of the Band Anti-Crossing (BAC) model [1] 

which was developed to describe the pressure and composition dependent bandgap behaviour 

of the HMAs. The band gap bowing in dilute nitride alloys has been well explained by a two-level 

BAC model. The anti-crossing interaction is between the highly localized state of the 

substitutional N atoms, and the extended CB edge states of the hose semiconductor matrix. 

Meanwhile for dilute bismide alloys, the BAC model is a valence band anti-crossing model (VBAC) 

and the interaction occurs between the Bi-related impurity levels and the valence band edge 



states. We present a general formalism to deal with dilute nitride, dilute bismide and dilute 

bismide-nitride alloys. We then present a model to investigate the features of highly HMA 

systems which influence the absorption coefficient and internal quantum efficiency (IQE). The 

model is based on a general solution of the minority carrier equation [12]. IQE is an important 

parameter in the performance of the solar cells. An accurate IQE equation can illustrate the 

effects of diodes’ parameters to the performance of the solar cells. Our model can be used to 

predict the IQE for HMA quantum well solar cells. 

 We will present the details for a series of GaBiAs quantum well (QW) solar cells as GaBiAs is a 

candidate to provide a suitable 1 eV junction for the development of highly efficient multiple 

junction solar cells (MJSCs). GaBiAs QWs solar cells have the potential to overcome key 

limitations associated with current approaches [13][14].  

The paper’s layout is as follows: In Sec. 2, we present details of the theoretical band structure 

models used to describe the HMAs and their role in calculating the absorption and internal 

quantum efficiency model. Sec. 3 contains the theoretical modelling results applied to the dilute 

bismide QW system. Sec. 4 draws conclusions on the models for highly mismatched alloys and 

discusses the 𝑝-𝑖-𝑛 bismide QW photodiodes modelled showing the optimized structures. 

2. Theoretical Model  

2.1. Band Structure Model  

It is well known that traditional III-V semiconductor material’s band structure, like GaAs, can be 

well described by 8-band k ∙ p model. However, incorporating N or Bi will cause a strong 

composition-dependent band gap bowing. Hence the 8-band model is no longer suitable for the 

highly-mismatch alloys, we have to introduce a new k ∙ p model to describe the HMAs band 

structure which can well applicable to the simulation of the optical and electronic propertied of 

dilute nitride and dilute bismide materials. For dilute nitride alloys, as the incorporated N atoms 

mainly effects the CB of the host material, in the two levels conduction BAC model, the 

conduction band edge (CBE) energy of the N-contained alloys can be given by the lower 

eigenvalue of the 2-band Hamiltonian [1]:  

 
𝐻 =  [

𝐸𝑁 𝑉𝑁𝐶

𝑉𝑁𝐶 𝐸𝐶𝐵
] 



where 𝑉𝑁𝐶 describes the interaction between the extended CB egde states at energy 𝐸𝐶𝐵 of the 

host material and the highly localised N-related impurity states at energ 𝐸𝑁. The interaction is 

dependent on the N composition 𝑦 as  𝑉𝑁𝐶 = 𝛽𝑁√𝑦.  

As Bi atom is significantly larger than the host material atom (As), the Bi-related impurity levels 

usually lie below or close to the valence band (VB) edge in energy. Similar to the model of dilute 

nitride alloys, a valence band anticrossing (VBAC) interaction occurs between the impurity levels 

and the VB edge states. We can therefore derive a 12-band k ∙ p Hamiltonian, present in full in 

[1], describes conduction (CB), heavy and light-hole (HH & LH), spin-split-o (SO) bands and four 

additional degenerate Bi-related states at energy Ebi. We use 𝑉𝐵𝑖 to describe the interaction 

between the GaAs valence band edge (VBE) and the Bi-related impurity levels at energy 𝐸𝐵𝑖, and 

is taken to vary with Bi composition 𝑥 as  𝑉𝐵𝑖 = 𝛽𝐵𝑖√𝑥. In this method, we calculate the energy of 

the Bi-related states, 𝐸𝐵𝑖 = 〈𝜓𝐵𝑖|𝐻̂(𝑥)|𝜓𝐵𝑖〉, and the coupling strength 𝑉𝐵𝑖 premarily through the 

VBAC interaction between the impurity states and the host matrix valence band edge states. 

Based on our previous study, we also find that the effects of N and Bi on the electronic structure 

of host matrix are largely independent of each other, both is ordered and disordered crystals . In 

additional, the interaction between the subsititutional N and Bi atoms in the supercells is smaller 

than 1 eV [1], which means that the effects of N- and Bi-related impurity states on the electronic 

structure are decoupled. Therefore, the N- and B-related BAC interactions in the band structure of 

host matrix can be treated separately. Following this way, we can extend the 8-band basis set to 

14-band model by directly adding the two additional degenerate N-related and four additional 

degenerate Bi-related states at energy 𝐸𝑁 and 𝐸𝐵𝑖, respectively. In this manner, we are arrived at 

a 14-band k ∙ p model for like GaBixNyAs1-x-y dilute bismide-nitride alloys. In this model, the band 

structure of the N- and Bi-containing alloy also can be derived as the lower eigenvalue of the 7-

band Hamiltonian: 

 

𝐻 =  

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

𝐸𝑁 𝑉𝑁𝐶 0 0 0 0 0

𝑉𝑁𝐶 𝐸𝐶𝐵 0 √2𝑈 −𝑈 0 0
0 0 𝐸𝐻𝐻 0 0 𝑉𝐵𝑖 0

0 √2𝑈∗ 0 𝐸𝐿𝐻 𝑄 0 𝑉𝐵𝑖

0 −𝑈∗ 0 𝑄∗ 𝐸𝑆𝑂 0 0

0 0 𝑉𝐵𝑖
∗ 0 0 𝐸𝐵𝑖

𝐻𝐻 0

0 0 0 𝑉𝐵𝑖
∗ 0 0 𝐸𝐵𝑖

𝐿𝐻ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 



In this manner, all the incorporating N and Bi effects information have been taken into account, 

including the conduction and valence band energy shift due to the BAC, compressive or tensile 

strain due to the different size of N or Bi atoms and virtual crystal effects on the N or Bi 

composition dependence of the valence band edge energies.  

Additionally, the 12-band model (shows inside of the right low black box of the 14-band k ∙ p 

Hamiltonian) approach is capable of quantitatively describing the optical gain in GaBiAs/(Al)GaAs 

lasers structures and has already shown excellent agreement for those lasers structures  [15]. The 

parameters we used in this work, such as virtual crystal contributions to CB, VB and SO band edge 

energies and Bi-related localised states related to the host material VB edge and the VBAC 

coupling strength can also be found in that reference. Therefore, the 12-band model can produce 

an extremely accurate description of the GaBixAs1-x band structure by comparing the theoretical 

calculated results with a range of experimental results from the literature.  

2.2. Absorption and Internal Quantum Efficiency Model   

The basic structure of our model is a GaAs 𝑝-𝑖-𝑛 photodiode with a HMA QWs in the 𝑖-region. The 

layer diagram of the theoretical model here for the GaBixAs1-x/GaAs multiple quantum well solar 

cells is shown in Fig.1.  

 

When we implementate the k ∙ p model to QWs solar cells, we used a standard absorption 

calculation by directly using the calculated QW eigenstates to compute the optical matrix 

element with an assumption that neglects the excitonic effects. The calculation of the absorption 

in the solar cells is similar to a gain calculation, but assumes that the valence (conduction) band is 

free of holes (electrons), and is called “free-carrier” absorption.  We take this assumption 

 
Fig. 1: Structure diagram of the model, showing optional the cap/window layer, the 𝑝-type, undoped MQW 
system in the 𝑖-region and 𝑛-type layers with respective widths zp, zi and zn; wn and wp: depleted regions of the 
𝑝 and 𝑛 layers. 



because when we considerate the N- or Bi-related alloy disorder on the states at the conduction 

or valence band edge in calculating the origin of the broad band edge features in the alloys, we 

find that the inhomogeneous broadening is much larger in magnitude compared to that in the 

conventional semiconductor alloys. Therefore, in terms of the absorption model used for these 

solar cell calculations, the broadening of the optical transitions is an input to the calculations. 

Based on the aforementioned band structure analysis, we found that in HMAs the 

inhomogeneous broadening of the optical transitions can be well described by using a hyperbolic 

secant lineshape function with an input linewidth. The large inhomogeneous broadening of the 

optical spectra is mainly caused by the N- or Bi-induced alloy disorder and the influence of 

clustering on the electronic stucture. In this work, the hyperbolic secant lineshape function for 

the inhomogeneous broadening is taken as:   

 

where 𝛿 is the inhomogeneous broadening linewidth.  

As we know, the internal quantum efficiency (IQE) spectrum reflects the cell design and the 

material quality. We calculate the model’s internal quantum efficiency by solving the carrier 

transport equations in the minority carrier and depletion approximations at room temperature 

[12]. The assumptions of uniform doping, low injection and non-abrupt absorption coefficient are 

justified for these dilute bismide materials and enable an analytic solution of the carrier transport 

equations. Our model for the IQE of HMA multiple QWs solar cells are based on a general solution 

of the one-dimensional continuous function at room temperature. In a uniform fieldness 𝑝-type 

(𝑛-type) layer, the excess electron (hole) concentration 𝑛(𝑧) (𝑝(𝑧)) at a point 𝑧 satisfies: 

 

where 𝑙𝑛 (𝑙𝑝) is the electron (hole) diffusion length and 𝐷𝑛 (𝐷𝑝) is the electron (hole) diffusion 

constant in 𝑝 (𝑛) region. And 𝐺(𝜆, 𝑧) is the electron-hole-pair generation rate at a depth z 

beneath the surface:  

 

where 𝐹(𝜆) is the flux function, R(𝜆) is the surface reflectivity, and 𝛼(𝜆, 𝑧) is the local absorption 

coefficient. Those equations above should follow the boundary conditions which the excess 

𝑆(ℏ𝜔) =
1

𝜋𝛿
𝑠𝑒𝑐ℎ (

𝐸0 − ℏ𝜔

𝛿
) 

𝐷𝑛,𝑝

𝑑2𝑛, 𝑝(𝑧)

𝑑𝑧2
−

𝐷𝑛,𝑝

𝑙𝑛,𝑝
2

𝑛, 𝑝(𝑧) + 𝐺(𝜆, 𝑧) = 0 

𝐺(𝜆, 𝑧) = 𝐹(𝜆)[1 − R(𝜆)]𝛼(𝜆, 𝑧)𝑒𝑥𝑝 (− ∑ 𝛼𝑖𝑧𝑖) exp(−𝛼𝑝𝑧)  



electron and hole densities vanish at the edges of the depletion zone and the surface 

recombination absorbs the current at front and back surfaces with surface recombination 

velocities 𝑆𝑛 and 𝑆𝑝, respectively. We calculate the diffusive photocurrent generated 𝐽𝑛,𝑝 from 

the 𝑝 and 𝑛 region at the edges of the depletion zone and the contribution from the carriers 

photogenerated in the depletion region 𝐽𝑑𝑟:  

 

 

We make some assumptions here: (i) neglecting the contributions to the photocurrent from the 

optional cap and window layers. Because the cap layer will only slightly passivate the surface and 

cannot make any contribute to the photocurrent. And when the window layer is thin enough, the 

enhanced photocurrent at short wavelength due to the window layer can be well approximated 

using a reduced surface recombination velocity; (ii) assuming that intrinsic region free of traps, 

the built-in electric field sweeps carriers quickly through the depletion region to deliver a 

photocurrent  (𝐽𝑛 + 𝐽𝑑𝑟 + 𝐽𝑝). Then we can get the internal quantum efficiency equation:   

 

where the constant coefficients are: 

 

𝐼𝑄𝐸(𝜆) = (𝐼𝑄𝐸𝑛 + 𝐼𝑄𝐸𝑑𝑟 + 𝐼𝑄𝐸𝑝) =
𝐽𝑠𝑐(𝜆)

𝑞𝐹(𝜆)
∙ 𝑃 =

𝐽𝑛(𝜆) + 𝐽𝑑𝑟(𝜆) + 𝐽𝑝(𝜆)

𝑞𝐹(𝜆)
∙ 𝑃 

𝐼𝑄𝐸𝑑𝑟 =  𝑃 ∙ [1 − R(𝜆)] ∙ 𝑒𝑥𝑝 (−𝛼𝑐𝑎𝑝𝑧𝑐𝑎𝑝 − 𝛼𝑝(𝑧𝑝 − 𝑤𝑝))

∙ (1 − 𝑒𝑥𝑝(−𝛼𝑝𝑤𝑝 − 𝛼𝑖𝑧𝑖 − 𝛼𝑛𝑤𝑛)) 

        𝐼𝑄𝐸𝑛 = −
𝑃 ∙ 𝛼(𝜆, 𝑧) ∙ [1 − 𝑅(𝜆)] ∙ 𝑙𝑛 ∙ 𝑒𝑥𝑝(−𝛼𝑐𝑎𝑝𝑧𝑐𝑎𝑝)

𝛼𝑝
2𝑙𝑛

2 − 1

∙ [
𝛼𝑝𝐷𝑛 + 𝑆𝑛

𝐵𝑛
−

𝑒𝑥𝑝 (−𝛼𝑝(𝑧𝑝 − 𝑤𝑝)) ∙ 𝑁𝑛

𝐵𝑛
− 𝑙𝑛 ∙ 𝛼𝑝 ∙ 𝑒𝑥𝑝 (−𝛼𝑝(𝑧𝑝 − 𝑤𝑝))] 

         𝐼𝑄𝐸𝑝 = −
𝑃 ∙ 𝛼(𝜆, 𝑧) ∙ [1 − 𝑅(𝜆)] ∙ 𝑙𝑝 ∙ 𝑒𝑥𝑝(−𝛼𝑐𝑎𝑝𝑧𝑐𝑎𝑝 − 𝛼𝑝𝑧𝑝 − 𝛼𝑖𝑧𝑖)

𝛼𝑛
2𝑙𝑝

2 − 1

∙ [
(𝛼𝑛𝐷𝑝 + 𝑆𝑝) ∙ 𝑒𝑥𝑝 (−𝛼𝑛(  𝑧𝑛 + 𝑧𝑖 + 𝑧𝑝))

𝐵𝑝
−

𝑒𝑥𝑝(−𝛼𝑛(  𝑧𝑛 + 𝑧𝑖 + 𝑤𝑛)) ∙ 𝑁𝑝

𝐵𝑝

− 𝑙𝑝 ∙ 𝛼𝑛 ∙ 𝑒𝑥𝑝(−𝛼𝑛(  𝑧𝑛 + 𝑧𝑖 + 𝑤𝑛))] 

 

 

𝐽𝑛,𝑝 = 𝑞𝐷𝑛,𝑝

𝑑𝑛, 𝑝

𝑑𝑧
 

 



 

Here, transport factor 𝑃 represents the mean probability of an electron or hole crossing the 

intrinsic region without recombining. The calculation required transport properties of the cell 

materials and material parameters can be found in related reported literature. 

3. Theoretical Results  

We present the results for a Bi containing highly HMA GaBiAs QW p-i-n solar cells and vary the Bi  

composition to analyse the trends of optical and electronic properties and also to compare with 

the recently published experimental results on such a range of samples [16]. We calculate the 

IQE by using the models above with a selection of structures with different design values to study 

the influence on IQE of the following factors: induced Bi composition 𝑥 (1% to 7% with 1% per 

step), the broadening linewidth 𝛿 (25 meV and 6.6 meV) and the number of QWs. The basic 

structure used here is the one illustrated schematically in Fig.1. In this example sample, light is 

coming through the optical cap (window) layer which is GaAs in this work, then we have a 600 

nm Al0.3Ga0.7As 𝑝-type layer and 620 nm undoped active layer with GaBixAs1-x/GaAs QWs, and 

then 200 nm Al0.3Ga0.7As 𝑛-type cladding layer and 200 nm 𝑛-type GaAs buffer layer, and GaAs 𝑛-

type substrates beneath. All other material parameters are nearly well known and can be found 

from previous experimental studies reported in the related literature. We use the 12-band 𝑘 ∙ 𝑝 

model to calculate the band structure of GaBixAs1-x QWs solar cell, and then compute the optical 

elements by directly using the calculated QW eigenstates before [15]. The absorption coefficient 

is shown in Fig.2, [16].  

𝐵𝑛 =
𝐷𝑛

𝑙𝑛
𝑐𝑜𝑠ℎ

𝑧𝑝 − 𝑤𝑝

𝑙𝑛
+ 𝑆𝑛𝑠𝑖𝑛ℎ

𝑧𝑝 − 𝑤𝑝

𝑙𝑛
 

𝑁𝑛 =
𝐷𝑛

𝑙𝑛
𝑠𝑖𝑛ℎ

𝑧𝑝 − 𝑤𝑝

𝑙𝑛
+ 𝑆𝑛𝑐𝑜𝑠ℎ

𝑧𝑝 − 𝑤𝑝

𝑙𝑛
 

𝐵𝑝 =
𝐷𝑝

𝑙𝑝
𝑐𝑜𝑠ℎ −

𝑧𝑛 − 𝑤𝑛

𝑙𝑝
+ 𝑆𝑝𝑠𝑖𝑛ℎ −

𝑧𝑛 − 𝑤𝑛

𝑙𝑝
 

𝑁𝑝 =
𝐷𝑝

𝑙𝑝
𝑠𝑖𝑛ℎ −

𝑧𝑛 − 𝑤𝑛

𝑙𝑝
+ 𝑆𝑝𝑐𝑜𝑠ℎ −

𝑧𝑛 − 𝑤𝑛

𝑙𝑝
 



 

It is clearly to see in Fig.2 that there is quite a broad spectrum in the quantum well part of the 

absorption coefficient compared to the conventional III-V semiconductor alloys. The large 

inhomogeneous broadening occurs due to the impact of Bi-related alloy disorder on the VBE 

states. It can be find that the inhomogeneous broadening is large in magnitude and relatively 

independent of Bi composition, at least up to 7%. A distinct sharp peak can be observed in the 

absorption spectrum at low Bi composition, but it disappeared when increasing the composition 

of incorporated Bi. So that the impurity-like Bi atoms can broaden off the abrupt absorption. 

Meanwhile, the broad band edge of the optical spectrum move towards to the longer 

wavelength (small energy) with the increasing Bi composition. The strong absorption showing by 

black starts at short wavelength is from GaAs barrier material.     

Then we used the calculated absorption coefficient as an input to the calculations of the IQE 

model with the design values of the example sample. We set the surface recombination velocity 

at 5 × 104 𝑚/𝑠, and pick the electron escape probability P at surface of unity. We model the IQE 

in two groups for comparison, one series with 5 quantum wells in the 𝑖-region and other series 

with 40 QWs, and both of their GaBixAs1-x QWs are evenly spaced, have nominally 8 nm thick, but 

with different corresponding GaAs barriers thickness in order to maintain the same total 

thickness of 𝑖-regions. In both case, the IQE spectrum is generated with: (i) two different 

broadening linewidth of 𝛿 = 25 𝑚𝑒𝑉, specially for Bi-contained alloys, and 𝛿 = 6.6 𝑚𝑒𝑉, usually 

for conventional III-V alloys; (ii) seven different Bi composition, from 1% to 7%. Fig.3 (a) and (b) 

show the effects of Bi on IQE in GaBixAs1-x.  

 
Fig. 2: The absorption spectrum used in the theoretical IQE. The absorption coefficient is consisted by two parts: 

(i) the GaBixAs1-x quantum well absorption efficiency is calculated using the 12-band 𝑘 ∙ 𝑝 method with different 

Bi composition: from 1% to 7% per % per step, and broadening linewidth 6.6 meV and 25 meV (showing by solid 

and dashed lines, respectively); (ii) the GaAs bulk absorption efficiency (showing by black starts). 

 



As a test of our model and a comparison of our investigation about dilute bismide alloys. We also 

calculate the internal quantum efficiency of the conventional material InGaAs/GaAs QWs solar 

cells with the same design values of our Bi example sample. We choose the band gap of the test 

sample InGaAs/GaAs equal to that of Bi-contained sample with 4% Bi incorporated. So that the 

calculations have done on an 8 nm thick InGaAs QW and the same designed values as GaBixAs1-x 

to have a 1.15 eV band gap. And we also broaden the IQE of InGaAs/GaAs QWs with two 

broadening linewidth which is shown in Fig.3 (c). 

 

The spectra clearly show that: (i) the inhomogeneous caused by the Bi-related atoms is large in 

magnitude compared to the IQE spectra in conventional semiconductor alloys such as InGaAs; 

and (ii) that the magnitude of the inhomogeneous broadening is relatively independent of Bi 

composition; (iii) more QWs means higher IQE in the longer wavelength, but we can see a small 

drop at the short wavelength which is because of less absorption by the substrate material when 

more photons are absorbed in the QWs region; (iv) the smaller broadening linewidth gives a 

much sharper band edges than the larger one. By comparing these calculations to experiment we 

found the broadening linewidth of 25 meV can well describe broad band edge features in GaBiAs 

alloys to the impact of Bi-induced alloy disorder [17]; (v) increasing the Bi composition will not 

affect the magnitude of IQE but shift the IQE towards to the longer wavelength.  

When comparing IQE of the dilute bismide alloy GaBixAsq-x with the conventional material 

InGaAs/GaAs, we can easily find that the IQE is lower in this new material system. As we know, 

the magnitude of the internal quantum efficiency is directly corresponded to the magnitude of 

 
Fig. 3: The internal quantum efficiency spectrum of the example sample. (a) shows the results of sample 1 with 5 

QWs in the model, (b) includes 40 QWs in the 𝑖-region. Dashed lines: 𝛿 = 25 𝑚𝑒𝑉, and Solid lines: 𝛿 = 6.6 𝑚𝑒𝑉. 

IQE spectrums calculated with Bi composition varied from 1% to 7% are shown with red, blue, green, purple, pink, 

wine and orange lines, respectively. (c) shows the IQE of InGaAs/GaAs QWs solar cells with 6.6 meV and 25 meV 

broadening linewidth, and 5 and 40 QWs for comparison. 

 



the absorption coefficient at a given wavelength. And as we mentioned before, we calculate the 

absorption coefficient by directly using the eigenstates generated from the 12-band model. The 

12-band 𝑘 ∙ 𝑝 Hamiltonian includes the BAC interaction due to Bi incorporation which reduces 

the magnitude of the absorption spectrum [18]. 

4. Conclusion  

We have introduced 10-, 12- and 14-band 𝑘 ∙ 𝑝  models for the band structures of dilute nitride, 

bismide and bismide-nitride alloys, respectively. We have used this approach to model a dilute 

bismide QW alloy system in detail. The results of the band structure of dilute bismide alloys can 

be well described by using the BAC interaction between the highly localized Bi-related impurity-

like resonant states and the extended GaAs VBE states.  

We have also developed a general IQE approach to investigate using these HMA systems for 

photovoltaic applications and have used this model to study GaBiAs/GaAs QWs solar cells.  We 

found that the GaBiAs/GaAs QW alloy system is a promising candidate to provide a suitable 1 eV 

junction for the development of highly efficient MJSCs. Our calculation suggests that we need a 

large number of QWs to have sufficiently high absorption and IQE at energies below the GaAs 

band gap. Therefore, we propose and are investigating the properties of some strain-balanced 

structures which will allow the growth of large numbers of QWs without suffering from strain-

thickness limitations.  
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