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Synchronisation vs. Resonance: Isolated Resonances in Damped Nonlinear Oscillators

Arianna Marchionne and Peter Ditlevsen
Niels Bohr Institute, University of Copenhagen, Denmark

Sebastian Wieczorek
Department of Applied Mathematics, University College Cork, Ireland

(Dated: May 30, 2018)

We describe differences between synchronisation and resonance, and analyse different types of
nonlinear resonances in a weakly damped Duffing oscillator using bifurcation theory techniques. In
addition to previously reported (i) odd subharmonic resonances found on the primary branch of
symmetric periodic solutions with the forcing frequency and (ii) even subharmonic resonances due
to symmetry-broken periodic solutions that bifurcate off the primary branch and also oscillate at the
forcing frequency, we uncover (iii) novel resonance type due to isolas of periodic solutions that are
not connected to the primary branch. These occur between odd and even resonances, oscillate at a
fraction of the forcing frequency, and give rise to a complicated resonance ‘curve’ with disconnected
elements and high degree of multistability.

We use bifurcation continuation to compute resonance tongues in the plane of the forcing frequency
vs. the forcing amplitude for different but fixed values of the damping rate. Our analysis shows that
identified here isolated resonances explain the intriguing “intermingled tongues” that were observed
for weak damping and misinterpreted as (synchronisation) Arnold tongues in [Phys. Rev. E 57, 1554
(1998)]. What is more, isolated resonances link “intermingled tongues” to a seemingly unrelated
phenomenon of “bifurcation superstructure” described for moderate damping in [Phys. Lett. A
107, 351 (1985)].

INTRODUCTION

Many complex systems in the natural world and
technology show oscillatory behaviour, either as self-
sustained oscillations, or as response to external forcing.
Even though the description of the detailed dynamics
is often incomplete, such systems can be modelled and
understood in terms of low-dimensional nonlinear oscil-
lators that capture the dominating degrees of freedom.
Throughout the paper, we refer to two oscillator types:

• damped oscillators: linear or nonlinear dissipative
dynamical systems that exhibit oscillations whose
amplitude decays to zero over time (e.g. stable
equilibrium with a pair of complex conjugate eigen-
values), and

• dissipative self-sustained oscillators: nonlinear
dissipative dynamical systems that exhibit self-
sustained oscillations (e.g. a stable limit cycle).

When an oscillator is subject to external periodic forc-
ing, two widely studied phenomena are at play, depend-
ing on the behaviour of the unforced system. Firstly,
a linear (harmonic) damped oscillator exhibits increased
amplitude of oscillations when forced near its natural fre-
quency. The situation becomes surprisingly more com-
plex in ubiquitous nonlinear damped oscillators, which
exhibit increased amplitude of oscillations together with
bistability (or even multistability) near several subha-
monic forcing frequencies. This is the phenomenon of res-
onance [1, 2]. Secondly, when dissipative self-sustained
oscillators are subject to external periodic forcing, or cou-
pled to one another, they may lock their frequencies at

different ratios. This is the phenomenon of synchroni-
sation, which is even more complicated than nonlinear
resonances [2].

Resonance and synchronisation phenomena are ob-
served in a variety of natural systems, ranging from bi-
ology [3, 4] to glacial cycles [5, 6]. Also, various phys-
ical systems, such as lasers [7, 8], electronic circuits [9]
and mechanical pendulums [10] have been studied in this
framework. Though externally forced and coupled oscil-
lators have been studied extensively throughout the last
century, some confusion between resonance and synchro-
nisation exists in the literature [11].

Identifying the characteristic properties as well as dif-
ferences between the phenomenon of resonance and that
of synchronisation has several advantages to studying
nonlinear dynamics of oscillating complex systems. It
can be a valuable tool in construction of simplified mod-
els that capture the essential nonlinearities and are more
amenable to analysis, thus allowing for an understand-
ing of the underlying physical mechanisms. It can also
provide valuable guidance in the analysis of complex sys-
tems (e.g. climate) where the detailed dynamics is often
unknown and must be inferred from observations. Here,
it can help enlighten the underlying mechanisms behind,
say, a change in the observed oscillation frequency with-
out any change in the forcing. In situations where the
system cannot be separated from the forcing (e.g. cli-
mate paced by astronomical forcing) it can help answer
questions about the intrinsic dynamics of the unforced
system and the origin of oscillations. What is more, there
are systems (e.g. lasers) where damped oscillations oc-
cur on top of self-sustained oscillations (e.g. stable limit
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cycle with a pair of complex conjugate Floquet multipli-
ers). Such systems exhibit responses to external forcing
that are much more complex than nonlinear resonances
or synchronisation alone [7, 21]. Identifying the char-
acteristics of resonance, of synchronisation and of the
interplay between these two phenomena can provide a
valuable insight into nonlinear dynamics of such systems.

Whereas recent research has focused on nonlinear os-
cillators forced by irregular external signals, there are
aspects of classical periodic forcing that have not been
fully explored. Here, we shall concentrate on a detailed
exploration of the paradigm of a damped nonlinear oscil-
lator with periodic forcing

d2x

dt2
+ γ(x)

dx

dt
+ x+ x3 = A cos(ωt), (1.1)

where γ(x) is the normalised damping rate, A is the
forcing strength, ω is the normalised external forcing
frequency, and the cubic nonlinearity x3 accounts for
strong dependence of the natural frequency on the os-
cillation amplitude. Much of the analysis focuses on the
damped Duffing oscillator, which is obtained by setting
γ(x) = γ > 0 in Eq. (1.1). In order to define synchronisa-
tion, we will also consider a generalisation of the damped
Duffing oscillator to the self-sustained Duffing-Van der
Pol oscillator with the sign-changing γ(x) = γ(x2 − 1),
which acts as a source of energy into the system when
|x| < 1.

In this paper, we relate resonance and synchronisa-
tion to the mathematical concept of bifurcations, and de-
scribe the main differences between characteristic prop-
erties of the two phenomena. Using bifurcation analy-
sis, we uncover a novel resonance type which forms the
backbone of the stability diagram but is unusual in the
sense that it has (i) some of the characteristic proper-
ties of synchronised oscillations, and (ii) other properties
that are unlike classical nonlinear resonances or synchro-
nisation. What is more, we reinterpret the “intermin-
gled tongues” defined from numerical simulations in [11],
and link them to seemingly unrelated results on instabil-
ities and chaos due to “bifurcation superstructure” in [1].
We obtain our main results for an intermediate damping
strength γ = 0.01, and use bifurcation continuation tech-
niques [12] to calculate the structure of resonance tongues
in the parameter plane of the the forcing frequency ω and
amplitude A.

Bifurcation Superstructure: Odd and Even
Resonances

Due to the nonlinear term x3, which gives rise to
amplitude-dependent natural frequency, Eq (1.1) with
γ(x) = γ > 0 exhibits many more resonances in addi-
tion to the main harmonic resonance near ω = 1. For
sufficiently small A and γ, these resonances occur near

ω = 1/k. They were first examined in detail by Par-
litz and Lauterborn [1] (PL85), who refer to a resonance
as odd (even) when k is odd (even). When A is in-
creased, the resonances shift away from ω = 1/k due to
the forcing-induced change in the oscillation amplitude
and the resulting shift in the corresponding natural fre-
quency. (PL85) focus on moderate damping rate γ = 0.2
and high forcing strength 0 < A < 50, and perform nu-
merical bifurcation analysis which reveals self-similar set
of bifurcations with regions of chaos in the (ω,A) param-
eter plane. They refer to the self-similar bifurcation set
as “bifurcation superstructure”, and associate it with the
alternating odd and even resonances.

Intermingled Tongues

Paar and Pavin [11] (PP98) discuss coexisting attrac-
tors in Eq. (1.1) with weak damping γ(x) = γ = 0.001
and moderate forcing strength 0 < A < 5, using nu-
merical simulations. This parameter range is devoid of
bifurcations giving rise to chaotic oscillations. Instead,
(PP98) demonstrate a high degree of multistability be-
tween periodic solutions and show an intriguing pattern
of intermingled tongues in the (ω,A) parameter plane.
This pattern is shown in Fig. 1 which was obtained in
the same way as [11, Fig.1] but for γ = 0.01, with differ-
ent colours denoting different integer ratios of the period
of periodic responses and the period 2π/ω of the forc-
ing. However, unlike the “bifurcation superstructure” in
(PL85), the pattern in (PP98) cannot be explained in
terms of even and odd resonances, and it is referred to
by (PP98) as “intermingled Arnold tongues”.

A comparison between (PL85) and (PP98) raises two
questions. Firstly, it is unclear how Arnold tongues–a
property of a dissipative self-sustained oscillator–can ap-
pear in a damped oscillator. Secondly, there is no in-
dication whatsoever of any links between the “bifurca-
tion superstructure” in (PL85) and “intermingled Arnold
tongues” in (PP98). In the following analysis we show
that the backbone of the intriguing pattern of intermin-
gled tongues from (PP98) is formed by resonance tongues
associated with the novel resonance type and not by
Arnold tongues. Furthermore, we continue the largest
resonance tongue of the novel type from γ = 0.01 to
γ = 0.2, and link it directly to an element of the “bifur-
cation superstructure” from (PL85).

RESONANCE VS. SYNCHRONISATION

In order to illustrate the main differences between the
phenomenon of resonance and the phenomenon of syn-
chronisation, we compare in Fig. 2 the structure of the so-
lutions to the damped and forced Duffing oscillator with
γ(x) = γ = 0.01 in panels (a) and (c), and the self-
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sustained and forced Duffing-Van der Pol oscillator (1.1)
with γ(x) = (x2−1)γ in panels (b) and (d). Following are
definitions and the listing of the characteristic properties
for the two phenomena.

Resonance

We define resonance phenomenon for a linear or non-
linear damped oscillator as a noticeably increased ampli-
tude of periodic oscillations near certain forcing frequen-
cies.

The phenomenon is best illustrated by fixing A and
plotting the resonance curve: the amplitude xmax of pe-
riodic solutions as a function of the forcing frequency ω.
Classical resonance in damped oscillators has the follow-
ing characteristic properties:

• (r1) In a damped linear (harmonic) oscillator, there
is only one resonance near the natural frequency.
In a damped nonlinear oscillator, depending on the
type of nonlinearity in the last term on the l.h.s. of
Eq (1.1), there will be additional subharmonic res-
onances when the forcing frequency approaches a
fraction or a multiple of the natural frequency [13].

• (r2) For low to moderate forcing strength, the fre-
quency of resonant response is the same as the forc-
ing frequency. However, for larger A, the resonant
response can be at a fraction of the forcing and
natural frequencies, as demonstrated in the next
Section. The frequency of periodic non-resonant
response is the same as the forcing frequency.

• (r3) An onset of resonance, that is an increase in
the amplitude of periodic oscillations as the forc-
ing parameters are varied, can be either quanti-
tative or qualitative. In some oscillators (e.g. in
a damped linear oscillator), the oscillation ampli-
tude may increase gradually without any bifur-
cations or bistability. However, the majority of
real-world oscillators have nonlinearities that give
rise to amplitude-dependent natural frequency. In
such oscillators, the onset of resonance will involve
bistability and qualitative changes in the dynam-
ics, namely saddle-node or pitchfork bifurcations
of periodic solutions.

For example, Fig. 2(a) shows the resonance curve for the
Duffing oscillator with A = 0.05 near the main reso-
nance. The resonance curve ‘leans over’ so that there is
a range of frequencies with two stable periodic solutions
(solid branches), one of which has a much larger ampli-
tude and corresponds to a resonant response; the two
solutions also have different phases. Which of these two
solutions the system settles to depends on initial condi-
tions. This bistable range is bounded by two saddle-node

bifurcations SN of periodic solutions [14], marked with
red diamonds in Fig. 2(a). By varying the amplitude and
the frequency of the forcing, we have:

• (r4) In the (ω,A) parameter plane, the correspond-
ing codimension-one saddle-node or pitchfork bifur-
cation curves form resonance tongues. A resonance
tongue has a tip for A small but nonzero and ω near
the natural frequency or near a fraction/multiple of
the natural frequency. Moreover, the tip of an odd
resonance tongue corresponds to a codimension-two
cusp bifurcation C [14], where the two branches of
the saddle-node bifurcation curve meet in a tan-
gency [Fig. 2(c)]. Subharmonic resonance tongues
appear for larger A than the harmonic resonance
tongue [1].

Resonance tongues occur for sufficiently large A in
damped nonlinear oscillators, where the system non-
linearities give rise to amplitude-dependent natural fre-
quency. As A increases, resonance tongues shift in fre-
quency, may overlap, develop additional cusp points, and
interact with other bifurcations via special codimension-
two bifurcation points, giving rise to complicated dynam-
ics [1]. Note that overlapping resonance tongues indicate
multistability. However, resonance is no longer defined
for non-periodic oscillations arising at very large A. On
the other hand, for values of A below the cusp point C,
the corresponding resonance in a damped nonlinear oscil-
lator does not show any bistability: locally, the resonance
curve closely resembles the resonance curve of a damped
linear (harmonic) oscillator.

Synchronisation

We define m:n synchronisation phenomenon for m,n ∈
N and a dissipative self-sustained oscillator as a stable
and fixed-in-time relationship between the phases of the
forcing φ(t) = ωt and of the oscillator ϕ(t):

0 < |mφ(t)− nϕ(t)| ≤ 2π ⇒ ω

Ω
=

n

m
,

where Ω is the frequency of synchronised oscillations.
Classical synchronisation to periodic forcing has the

following characteristic properties:

• (s1) A dissipative self-sustained oscillator can syn-
chronise or phase-lock to periodic external forcing
at various forcing frequencies provided that mω/n
is sufficiently close to the natural frequency. Phase-
locking is an important difference between the char-
acteristic properties of resonance and synchronisa-
tion. Whereas a dissipative self-sustained oscilla-
tor can be phase-locked to oscillate near its natural
frequency by forcing at a rational fraction of the
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natural frequency, a damped oscillator cannot os-
cillate near its natural frequency when forced at a
fraction of its natural frequency.

• (s2) The frequency of the periodic synchronised re-
sponse is Ω = mω/n, which by (s1) is close to
the natural frequency. However, unsynchronised
response is quasiperiodic or chaotic.

Fig. 2(b) shows a range of forcing frequencies where
the oscillator (1.1) synchronises in the ratio 1:1 to peri-
odic external forcing. The solid curve is a branch of sta-
ble periodic solutions corresponding to the synchronised
response, while the dashed curve is a branch of unstable
periodic solutions. The two branches meet and disappear
in a saddle-node bifurcation of periodic solutions at both
ends of the 1:1 synchronisation range [red diamonds in
Fig. 2(b)]. On each side of the 1:1 synchronisation range,
there are disconnected dots. In the dotted area, there
two types of solutions that are difficult do distinguish
in the diagram: unsynchronised quasiperiodic solutions
due to incommensurate ratio of the oscillator frequency
and the forcing frequency are interspersed with narrow
ranges of higher-period synchronised solutions. Although
resonances and synchronisation may involve the same bi-
furcation type, there are important differences between
these two nonlinear phenomena:

• (s3) A synchronisation-desynchronisation transi-
tion is always a qualitative phenomenon that corre-
sponds to saddle-node bifurcation SN of periodic
solutions [Fig. 2(b)]. What is more, there is no
bistability of periodic solutions at low to moder-
ate A, which is in stark contrast to nonlinear reso-
nances.

• (s4) In the (ω,A) parameter plane, the corre-
sponding saddle-node bifurcation curves form m:n
synchronisation tongues or Arnold tongues [15, 16];
see Fig. 2(d) for an example of a 1:1 synchro-
nisation tongue in the Duffing-Van der Pol
oscillator (1.1). In contrast to a resonance tongue,
a m:n synchronisation tongue has a tip at A = 0
and ω = nω0/m, where ω0 is the frequency of
the self-sustained oscillations. Another difference
from an odd resonance tongue is that the tip of an
Arnold tongue is not a cusp bifurcation.

The synchronisation phenomenon is captured in the
(ω,A) parameter plane by an infinite but countable num-
ber of Arnold tongues. Unlike resonance tongues, Arnold
tongues originate at A = 0 and ω = nω0/m, where
m,n ∈ N. As A is increased, the tongues widen and
may shift in frequency but they do not overlap until some
critical value of Ac > 0. Above Ac, overlapping tongues
indicate break-up of invariant tori through various mech-
anisms including homoclinic tangencies between stable

and unstable manifolds of saddle-type periodic solutions
like the one indicated with a dashed curve in Fig. 2(b),
giving rise to chaotic oscillations [17, 18]. The model
example of Arnold tongues is the circle map [15, 19].

The remainder of this paper focuses on a novel type of
a nonlinear resonance in the Duffing oscillator, which ex-
plains the pattern of intermingled tongues in (PP98) and
links it to the “bifurcation superstructure” in (PL85).

COMPLICATED RESONANCE CURVE: THREE
RESONANCE TYPES

To explain the high degree of multistability and the
structure of intermingled tongues observed in numeri-
cal simulations, we analyse the resonance structure in
Eq. (1.1) with γ(x) = γ = 0.01 using two differ-
ent techniques. On the one hand, bifurcation diagrams
are obtained using numerical continuation techniques
AUTO [12], which allow parameter continuation of sta-
ble and unstable periodic solutions and their bifurcations.
On the other hand, attractor diagrams are obtained by
direct time integration of Eq. (1.1).

Conventional Resonances

Besides the harmonic resonance depicted in Fig. 2(a),
there are subharmonic resonances in accordance with
property (r1). The resonance curve in Fig. 3 obtained
by continuation shows that subharmonic resonances oc-
cur for ω < 1 and become distinct only for larger A than
the one used in Fig. 2(a). In Fig.3, we use A = 3 and
adopt notation from (PL85) denoting a (subharmonic)
resonance occurring near ω = (natural frequency)/k with
Rk.

In Fig. 3(a) we zoom in on the subharmonic resonances.
Here it is seen that parts of the resonance curve are ‘punc-
tuated’ by intervals of unstable periodic solutions. There
are two types of punctuation. Firstly, in the odd reso-
nances (k > 1 and odd), the stable and unstable solu-
tions merge in saddle-node bifurcations SN (diamonds
in Fig. 3(a)). Secondly, the unstable solutions found be-
tween the odd resonances are bounded by pairs of pitch-
fork bifurcations P (squares in Fig. 3(a)). These bifur-
cations give rise to pairs of stable symmetry-broken pe-
riodic solutions, shown in red in Fig. 3(b), which appear
as mirror imaged orbits x ↔ −x in the (x, ẋ) plane [in-
sets in Fig. 3(b)] [1, 20]. These solutions correspond to
even subharmonic resonances (k > 1 and even) and be-
come distinct for A larger than the odd subharmonic res-
onances. What is more, they themselves undergo saddle-
node bifurcations giving rise to regions of multistability
of symmetry-broken periodic solutions.

Both bifurcation types, that is SN and P , indicate
qualitative changes in the solutions associated with (sub-
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harmonic) resonances in accordance with property (r3).
Interestingly, the odd and even resonances alone cannot
explain the intermingled tongue structure from Fig. 1.
This means that there must be additional nonlinear res-
onances due to periodic solutions that are not connected
to the primary branch (black curve in Fig. 3).

Isolated Resonances

Figure 4 shows a one-dimensional attractor diagram
obtained for the same initial conditions (x(0), ẋ(0)) =
(0, 0) for each value of ω.1 A comparison with the bi-
furcation diagram from Fig. 3(b) reveals stable periodic
solutions that belong to stable branches of the resonance
curve from Fig. 3(b), as well as additional stable peri-
odic solutions that are not present in Fig. 3(b). These
additional solutions are symmetric period-3 oscillations
shown in Fig. 5. What is more, parameter continua-
tion of these additional solutions reveals that they form
“isolas” disconnected from the primary branch of peri-
odic solutions (green branches are disconnected from the
black and red branches in Fig. 6).

We have now in Figs. 3 and 6 identified three different
resonance types. These include previously studied:
(i) odd resonances which occur on the (black) branch of
primary (symmetric) periodic solutions and oscillate at
the forcing frequency, and
(ii) even resonances due to (red) symmetry-broken pe-
riodic solutions which bifurcate off the primary branch
and also oscillate at the forcing frequency,
as well as uncovered here
(iii) isolated resonances due to (green) isolas of periodic
solutions with greatly increased amplitude of oscillations.

Isolated resonances are unusual for the following rea-
sons. Firstly, the frequency of oscillation is a fraction of
the forcing frequency, even though the forcing frequency
is a fraction of the natural frequency. Such response is
unlike odd and even resonances or synchronisation. Sec-
ondly, the periodic solutions involved are bounded by
saddle-node bifurcations in a way that is reminiscent of
characteristic properties of synchronisation in Fig. 2(b)
rather than characteristic properties of nonlinear reso-
nances in Fig. 2(a). As a consequence, cusp points at
low A are not expected in the corresponding resonance
tongues. Thirdly, isolated resonances give rise to a com-
plicated and unusual resonance curve in Fig. 6, consist-
ing of connected odd and even subharmonic resonances
as well as disconnected components, which give rise to
many regions of multistability.

1 It may appear from Figure 4 that there are different attracting
periodic orbits for the same value of ω despite fixed initial con-
ditions. This is not the case. Rather, the system sometimes
converges to different periodic solutions for neighbouring values
of ω.

The Onset and Termination of Resonances

We note that, as A is increased, the onset of odd res-
onances need not be clear-cut. More precisely, while the
cusp point seems to be a good indicator for the onset of an
odd resonance, there can be a noticeable uplift in the res-
onance curve already for values of A just below the cusp
point. On the other hand, the onset of even resonances
is a qualitative transition associated with appearance of
pairs of pitchfork bifurcations. Similar is true for iso-
lated resonances, whose onset is a qualitative transition
associated with appearance of pairs of saddle-node bifur-
cations. Hence, the onset of even and isolated resonances
is clear-cut and can be defined properly. Furthermore, as
parameters are varied, there can be other bifurcations,
past which all three types of nonlinear resonances may
become difficult to distinguish or even difficult to define
(e.g. non-periodic oscillations). For example, for suffi-
ciently large A, branches of periodic solutions belonging
to even and odd resonances may develop additional con-
nections, other than through the (black) branch of pri-
mary periodic solutions, so that one can no longer clearly
distinguish between the two types of resonances. Simi-
larly, it is possible for isolated resonances to connect to
other branches of periodic solutions and cease to be iso-
lated; see the next Section. However, such transitions
would require qualitative changes (bifurcations). Thus,
it should be possible to pin down termination points for
all three resonance types.

RESONANCE TONGUES

The three resonance types in the complicated reso-
nance curve from Fig. 6 can be characterised and stud-
ied in terms of saddle-node (diamonds) and pitchfork
(squares) bifurcation points. In the two-dimensional
(ω,A) parameter plane, these bifurcations can be con-
tinued with AUTO to obtain the corresponding bifurca-
tion curves which are referred to as resonance tongues
[property (r4)]. Fig. 7 shows the resonance tongues com-
puted for all three types of resonances. These include:
(black) saddle-node bifurcations of the primary branch of
periodic solutions which correspond to odd subharmonic
resonances, (red) pitchfork bifurcations on the primary
branch of periodic solutions which correspond to even
subharmonic resonances, (blue) saddle-node bifurcations
of the symmetry-broken periodic solutions which give rise
to multistability of even resonances, and (green) saddle-
node bifurcations bounding the isolas which correspond
to isolated resonances.
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Explaining the “intermingled tongue structure”

The structure of the resonance tongues bears strong re-
semblance to the “intermingled Arnold tongues” reported
by (PP98) (Fig. 1). We can now superimpose the peri-
odic solutions oscillating at various fractions of the forc-
ing frequency from Fig. 1 obtained by direct time integra-
tion over the resonance tongues from Fig. 7 obtained by
continuation. The resulting Fig. 8 reveals perfect match
between the (green) resonance tongues corresponding to
the isolated resonances and (red) regions with stable pe-
riodic solutions oscillating at a third of the forcing fre-
quency. Thus, the intriguing patchy tongue structure
found in (PP98) and shown in Fig. 1 can be identified
with the isolated resonances, which appear to form the
backbone of the structure. Furthermore, the patchiness
of the tongues is a result of multistability: there are mul-
tiple stable periodic solutions of different period for the
same parameter settings and, as the initial conditions are
fixed but the parameters ω and A are varied, the system
can settle to a different periodic solution.

There are additional isolated resonances with stable
periodic solutions oscillating at ω/n for n = 2, 4, 5, . . .,
whose resonance tongues match the remaining patchy
tongues from Fig. 1. For clarity, these additional isolated
resonance tongues are left out in Fig. 8.

Links to “bifurcation superstructure”

Our analysis of the intermediate damping rate γ = 0.01
and moderate forcing strength 0 < A < 6 reveals vari-
ous periodic solutions and their bifurcations. However,
we have not found any bifurcations, such as torus bifur-
cations or period-doubling cascades, that would eventu-
ally lead to irregular or chaotic oscillations. Rather, the
saddle-node and pitchfork bifurcations give rise to regions
of multistability of periodic solutions.

As the damping rate γ is decreased, the patchy tongues
become more abundant. This was demonstrated by
(PP98) for γ = 0.001. Hence, isolated resonances be-
come even more prominent at low damping, where they
appear at even lower A and give rise to a greater degree
of multistability of periodic solutions.

On the other hand, as the damping rate is increased,
isolated resonances seem to give way to the “bifurca-
tion superstructure” involving period-doubling cascades,
period-3 solutions and chaotic attractors, which were re-
ported for γ = 0.2 and 10 < A < 50 by (PL85).

An interesting question emerges whether isolated reso-
nances are purely a low-damping phenomenon or whether
the period-3 solutions associated with isolated resonances
(Fig. 5) are related to the “bifurcation superstructure”
from [1]. To address this question we continued the
largest isolated resonance tongue from Fig. 7 to higher
values of γ. The results of the continuation are shown in

Fig. 9. As γ is increased from γ = 0.01 [Fig. 9(a)], the iso-
lated resonance tongue moves to higher values of A and
develops another tip [Fig. 9(b-c)]. At γ = 0.2 the contin-
uation of the isolated resonance tongue matches exactly
an element of the “bifurcation superstructure” denoted
with R9,3 in [1, Fig.6]. Thus, in addition to explaining
“intermingled tongues”, isolated resonances: (i) provide
a link between “intermingled tongues” the “bifurcation
superstructure”, and (ii) give new insight into “bifurca-
tion superstructure” which now appears to be organised
by three rather than two different resonance types.

The key difference between the weak and moderate
damping is that periodic solutions involved in isolated
resonances at low γ may cease to be isolated as γ is
increased. The bifurcation diagram in Fig. 10(a) for
γ = 0.2, A = 25 and 1.15 ≤ ω ≤ 1.7, shows the pri-
mary branch of periodic solutions (black), the symmetry-
broken solutions bifurcating off the primary branch (red)
via pitchfork bifurcation (square), two potentially iso-
lated components of periodic solutions (green), and
symmetry-broken solutions (blue) bifurcating from the
left potentially isolated component via pitchfork bifurca-
tion (square). In Fig. 10(b), attractor diagram obtained
by starting on the stable branch of each (green) poten-
tially isolated component is superimposed over the bi-
furcation diagram from panel (a). The right-hand side
component turns out to be isolated. However, the larger
left-hand side component turns out to be connected to
other stable solutions. Starting at the stable periodic
solution of this component and decreasing ω, the so-
lution looses stability via symmetry-breaking pitchfork
bifurcation, then the symmetry-broken solution under-
goes period-doubling cascade to chaos, followed by an
inverse period-doubling cascade to (red) period-one so-
lution which, in turn, connects to (black) the primary
branch of periodic solutions via pitchfork bifurcation.

CONCLUSION

We have investigated nonlinear resonances of a period-
ically forced Duffing oscillator. We have identified novel
isolated resonances in addition to already known odd and
even subharmonic resonances, and demonstrated a com-
plicated resonance ‘curve’ with isolas (isolated compo-
nents) of periodic solutions and high degree of multi-
stability. Most importantly, the identified here isolated
resonances in conjunction with numerical continuation
techniques allowed us to (i) explain and reinterpret the
intriguing structure of “intermingled tongues” observed
in stability diagrams for weak damping and (ii) link those
“intermingled tongues” to a seemingly unrelated phe-
nomenon of “bifurcation superstructure” found for mod-
erate damping.

Firstly, to avoid confusion between resonance and syn-
chronisation, we defined each phenomenon and gave a



7

short discussion of their characteristic properties and the
key differences. We also described how the two phenom-
ena exhibit themselves in the stability diagrams. In par-
ticular, we distinguished between resonance tongues and
synchronisation tongues, which are also known as Arnold
tongues, in the parameter plane of the forcing frequency
vs. the forcing amplitude. Secondly, we have shown
that resonance tongues associated with the isolated reso-
nances form the backbone of the intriguing pattern of
“intermingled tongues” at weak damping, which were
reported by Paar and Pavin and mistaken for Arnold
tongues [11]. Thirdly, we have demonstrated that, as the
damping rate increases, isolated resonances may bifur-
cate and cease to be isolated. As a result of such bi-
furcations, the corresponding resonance tongues become
particular elements of the “bifurcation superstructure”
reported by Parlitz and Lauterborn for moderate damp-
ing [1].

The new insight into nonlinear resonances in the simple
Duffing oscillator can be extended to more complicated
systems. One example are class-B lasers which exhibit
damped oscillations (relaxation oscillation onto the las-
ing solution) and self-sustained oscillations (the lasing
solution itself) at the same time. Stability diagrams for
lasers subject to external optical injection [21, Figs. 9-11]
show variety of coexisting tongues, which can be inter-
preted as a combination of a 1:1 synchronisation tongue
and different types of nonlinear resonance tongues.

The distinction between the phenomenon of resonance
and that of synchronisation is highly relevant in forced
complex systems (e.g. climate) where the detailed inter-
nal dynamics is unknown and inferences are made from
observations. The prime example in climate science is the
phenomenon of ice ages, that is, a series of glacial events
separated by interglacial events [22]. There is evidence
that ice age cycles are linked to variations in the Earth’s
orbit; however, the actual type of relationship between
the frequencies observed in the paleoclimatic records and
those present in the orbital forcing has not been identified
to date [5, 6].
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Figure 1: Two-dimensional attractor diagram in the (ω,A)
parameter plane indicating regions with stable periodic

orbits of the forced Duffing oscillator (Eq. (1.1) with
γ(x) = γ = 0.01) of frequency (blank) ω, (yellow) ω/2,

(red) ω/3, (green) ω/4, (cyan) ω/5, (magenta) ω/6, (blue)
ω/7, and (black) ω/n for n = 8, 9, . . .. We used fixed

initial conditions x(0) = ẋ(0) = 0.
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Figure 2: (a) One-dimensional bifurcation diagram showing the resonance curve near the primary resonance of the forced Duffing
oscillator (Eq. (1.1) with γ(x) = γ = 0.01). The black solid curves mark the stable solutions, the black dashed curve marks the

unstable solutions. Saddle-node bifurcations (SN ) are marked by the red diamonds. Fixed parameters and initial condition:
A = 0.05, γ = 0.01; x(0) = 0, ẋ(0) = 0. (b) Values of the maxima of x(t) as a function of ω showing periodic and quasi-periodic
oscillations of the Duffing-Van der Pol system (Eq (1.1) with γ(x) = γ(x2 − 1)). The black solid curve marks the stable periodic

solution, the black dashed curve marks the unstable periodic solution. Outside the 1:1 synchronisation region, regions of
quasiperiodic solutions are intermingled with narrow regions of higher-period periodic solutions (scattered black dots). Fixed

parameters and initial condition: A = 2.0, γ = 0.01; x(0) = ẋ(0) = 0. (c) Two parameter continuation (ω, A) of the saddle-node
bifurcations shown in panel (a). The cusp bifurcation C, where the two saddle-node bifurcations merge, is marked by the red
circle. Note that the cusp occurs for A > 0. (d) Two parameter continuation (ω,A) of the saddle-node bifurcations shown in

panel (b). Note that the tip of the tongue occurs for A = 0 and is not a cusp bifurcation.
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Figure 3: (a) Part of the resonance curve showing branches of periodic solutions as a function of the forcing frequency ω. On the
primary branch of symmetric periodic solutions (black curve), saddle-node bifurcations (diamonds) and pitchfork bifurcations

(squares) take place. Stable branches are marked by solid curves, unstable branches by dashed curves. Fixed parameters: A = 3,
γ = 0.01. The inserts show two solutions in the (t, x) plane. For ω = 0.4 the solution is on the R5 branch, where there are 5 local
maxima in one period, marked by the gray band. For ω = 0.7 the solution is on the R3 branch, where there are 3 local maxima
in one period. (b) Same as (a), now including (red) even resonances in addition to odd resonances. At pitchfork bifurcations,
pairs of stable symmetry-broken solutions appear. Inserts show stable periodic solutions in the (x, ẋ)-phase plane just before

(ω = 0.83), and just after the x→ −x symmetry breaking pitchfork bifurcation (ω = 1.0).
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Figure 4: One-dimensional attractor diagram of the forced
Duffing oscillator (Eq. (1.1) with γ(x) = γ = 0.01)

showing the maxima of x(t) plotted versus ω for γ = 0.01,
A = 3, x(0) = ẋ(0) = 0.
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Figure 5: Equation (1.1) with γ(x) = γ = 0.01 has been integrated over 1020 periods of the forcing. The additional attracting periodic
orbits of the Duffing oscillator are shown for the last 10 periods of the forcing in the (t, x) and (x, ẋ) planes. The solutions are

period-3 orbits indicated by the gray bands. Fixed parameters and initial condition: A = 3, γ = 0.01, x(0) = ẋ(0) = 0. (a)
Trajectory in the (t, x) plane, ω = 0.82. (b) Phase portrait in the (x, ẋ) phase plane, ω = 0.82. (c) Trajectory in the (t, x) plane,

ω = 0.2988. (d) Phase portrait in the (x, ẋ) phase plane, ω = 0.2988.
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Figure 6: Same resonance curve as in Figure 3, but now showing three different types of resonances: (black curve) odd resonances
occurring on the symmetric branch of periodic solutions, (red curves) even resonances occurring on the asymmetric branches of

periodic solutions, and (green curves) isolated resonances. Stable branches are marked by solid curves and unstable branches are
marked by dashed curves. Fixed parameters: A = 3, γ = 0.01.
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Figure 7: Two-dimensional bifurcation diagram in the (ω,A) parameter plane showing all three types of resonance tongues computed
as bifurcation curves. These include: (black) saddle-node bifurcations of the primary branch of periodic solutions which

correspond to odd subharmonic resonances, (red) pitchfork bifurcations on the primary branch of periodic solutions which
correspond to even subharmonic resonances, (blue) saddle-node bifurcations of the symmetry-broken periodic solutions which
give rise to multistability of even resonances, and (green) saddle- node bifurcations bounding the isolas which correspond to
isolated resonances. Using the notation adopted in (PL85), the resonance tongues computed for the resonance type (i) (odd

resonances) are denoted by R1,1, R3,1, R5,1, R7,1, R9,1, and the resonance tongues computed for the resonance type (ii) (even
resonances) are denoted by R2,1, R4,1, R6,1, R8,1. The first subscript indicates the winding number (here defined as the number
of maxima or minima of the periodic solution in one period) and the second subscript is the period in unit of the forcing period

2π/ω. Fixed parameter: γ = 0.01. The open circles indicate cusp bifurcations.
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Figure 8: Two-dimensional attractor diagram in the (ω,A) parameter plane showing regions with stable periodic solutions of period
nTF , n = 1, ..., 7 (same as Fig. 1) is superimposed over two-dimensional bifurcation diagram showing all three types of resonance

tongues (same as Fig. 7). The (red) regions with stable period-3 solutions and the (green) resonance tongues corresponding to
the isolated resonances match perfectly. The open circles indicate cusp bifurcations.
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Figure 9: Saddle-node bifurcation curve corresponding to the largest isolated resonance tongue for different values of the damping
parameter γ.
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Figure 10: (a) One-dimensional bifurcation diagram in the
range 1.15 < ω < 1.7 showing (black) the primary

branch of periodic solutions, (red) symmetry-broken
solutions bifurcating off the primary branch, (green)

isolas of periodic solutions, and (blue) symmetry-broken
solutions bifurcating from the left isola. (b)

One-dimensional attractor diagram (black dots) is
superimposed over the bifurcation diagram from panel

(a). The attractor diagram consists of four computation
runs: starting at the centre of the (green) stable right

and left isolas of periodic solutions, the control
parameter ω is increased and decreased.



 Forced nonlinear oscillators can exhibit unusual isolated resonances.
 Isolated resonances give rise to intricate resonance curves with isolated 

components.
 Isolated resonances provide a link between seemingly unrelated nonlinear 

phenomena.
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