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Abstract. Electromagnetic tracking (EMT) is a core platform technol-
ogy in the navigation and visualisation of image-guided procedures. The
technology provides high tracking accuracy in non-line-of-sight environ-
ments, allowing instrument navigation in locations where optical tracking
is not feasible. Integration of EMT in complex procedures, often coupled
with multi-modal imaging, is on the rise, yet the lack of flexibility in the
available hardware platforms has been noted by many researchers and
system designers. Advances in the field of EMT include novel methods of
improving tracking system accuracy, precision and error compensation
capabilities, though such system-level improvements cannot be readily
incorporated in current therapy applications due to the ‘blackbox’ nature
of commercial tracking solving algorithms. This paper defines a software
framework to allow novel EMT designs and improvements become part
of the global design process for image-guided interventions. In an effort
to standardise EMT development, we define a generalised cross-platform
software framework in terms of the four system functions common to all
EMT systems; acquisition, filtering, modelling and solving. The interfaces
between each software component are defined in terms of their input and
output data structures. An exemplary framework is implemented in the
Python programming language and demonstrated with the open-source
Anser EMT system. Performance metrics are gathered from both Mat-
lab and Python implementations of Anser EMT considering the host
operating system, hardware configuration and acquisition settings used.
Results show indicative system latencies of 5 ms can be achieved using
the framework on a Windows operating system, with decreased system
performance observed on UNIX-like platforms.

1 Introduction

The development of new image guided therapies relies heavily on intelligently
combining data from multiple hardware sources. New techniques combining ul-
trasound and electromagnetic tracking (EMT) [1, 2] are among techniques which
combine multiple data sources to enhance the safety and accuracy of procedures.
Progress in these areas is made possible by the standardised open protocols [3, 4]
that govern how hardware and software should interact with one another. Fig. 1
shows the generalised design flow of many image guided interventions (IGI). IGI



applications interact with hardware through vendor authored application pro-
gramming interfaces (APIs) or interface toolkits such as PLUS and IGSTK[5].
Such toolkits provide standardised methods through which IGI applications and
hardware can interact. From a software perspective, this standardised approach
enables developers to prototype and apply their work in a manner that can be
distributed and replicated. That said, IGI application development typically falls
short of incorporating custom innovations in tracking hardware. Electromagnetic
tracking systems in particular are very much considered ‘blackboxes’ from the
perspective of IGI research.
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Application
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Fig. 1. A standard approach for developing cross-platform IGI applications. (a) Pro-
prietary hardware is interfaced using an API or open communications interface (b). (c)
Guided therapy applications use this interface to ensure cross-platform compatibility.

This paper outlines a framework to encourage integration of new electromag-
netic tracking hardware into the current IGI design flow. The resulting frame-
work was implemented in the Python programming language and applied to the
open-source Anser EMT system [6] shown in Fig. 2. Preliminary cross-platform
functionality of the framework is demonstrated with important performance met-
rics reported.

2 Framework Design

Electromagnetic tracking systems are complex electronic systems that incorpo-
rate advanced analog circuit design, signal processing and optimisation tech-
niques. While the precise topology of such systems will vary depending on the
core design and manufacturer, all EMT systems can be distinguished by four
common processing steps outlined in Fig. 3: acquisition, filtering, modelling, and
solving. Each of these processing steps can be treated as a discrete, indepen-
dent stage in the tracking system software pipeline. The designed framework is
structured according to these stages.
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Fig. 2. (a) The Anser EMT system v1.0. (b) Field generator enclosure.

Fig. 3. The basic components which comprise all electromagnetic tracking systems
are shown. The 5 degree-of-freedom sensor coordinate [x, y, z, θ, ϕ] is the most basic
case for a symmetrical sensor coil, where θ and ϕ correspond to yaw and pitch angles
respectively.

(i) Acquisition. The most fundamental step in any measurement system is data
acquisition. It is the process by which physical signals are digitised into forms
suitable for computation. In the case of EMT systems, the signals being measured
are typically electric voltages. Such signals are induced on a tracking sensor
coil when it is placed in the tracking volume of an EMT system. Acquisition
hardware in the form of an analogue-to-digital converter (ADC) converts the
electrical signal into a digital data stream by sampling at fixed periodic intervals.
Manufacturers of acquisition systems include National Instruments (Austin, TX,
U.S.A.) and Measurement Computing Corp. (Norton, MA, U.S.A).

(ii) Filtering. The sampled sensor signal contains all the necessary physical
information required to resolve the sensor’s position in space. EMT systems typ-
ically operate using multiple transmitters operating at distinct frequencies, thus
the sampled sensor signal is a linear sum of the individual frequency compo-
nents generated by each transmitting coil, as well as noise from the surrounding
environment. The filter extracts the relevant signal content. A combination of
digital filtering and Fourier methods are typically employed.

(iii) Model. An accurate model of the tracking system’s generated magnetic
field is a necessary component in all system designs. Models are typically defined
as analytical expressions which define the spacial distribution of magnetic fields
in the volume around the field transmitter. Each constituent transmitting coil



can be characterised by a vector equation relating the magnetic flux density
vector B to a point in space, p:

B(p) = [Bp
x, B

p
y , B

p
z ] (1)

Commonly used models include variations of the magnetic dipole approximation
[7], Biot-Savart law [8, 9] and mutual inductance models [10]. Numerical models
may also be used in cases where no accurate closed-form solution for the magnetic
field exists.

(iv) Solver. Magnetic tracking systems resolve sensor positions through a pro-
cess of non-linear optimisation in which a cost function is minimised to yield the
best-fit solution for the position and orientation of the tracking sensor. The cost
function is generally formulated such that the squared difference between the
magnetic model of the sensor coil and acquired sensor measurements are min-
imised. Full formulations of the sensor model can be found in [8]. A non-linear
least-squares approach is usually required to yield accurate results. Examples of
general solving methods include the well known Levenburg-Marquard [11] and
trust-region algorithms [12]. The general form of the optimisation problem is
shown in (2):

minimise
p

∑
fi(p)2

subject to lb ≤ p ≤ ub, i = 1, . . . , n
(2)

where fi is the ith cost function relating a single frequency component of the
tracking sensor signal to the field model of the corresponding transmission coil,
lb and ub are upper and lower bound constraints for the solving algorithm (if ap-
plicable) and p is the vector argument representing the position and orientation
of the tracking sensor.

3 Framework Implementation

The proposed EMT framework is composed of four Python modules representing
each of the signal processing steps shown in Fig. 1. An expansion of this design
showing the data-flow between modules is shown in Fig. 4. The framework is
divided into four modules labelled (i) to (iv). Analog signals from the EMT
sensing electronics are acquired through a data acquisition module daq.py. This
module provides facilities to abstract the acquisition hardware’s specific API
into a standard interface. The acquired digital samples are fed into the filter
module filter.py where the frequency components of interest are conditioned and
extracted from the digital waveform. The filter module allows easy configuration
of filter parameters while providing routines for efficient matrix multiplications
required during filtering operations. The extracted signal information is then fed
to the solver module solver.py. Simultaneously the magnetic model of the system
model.py is compared with the extracted signal data to minimise the system
cost function. The solver module provides access to the tolerance and parameter



settings for the minimisation process. The resulting sensor coordinates from the
solver can be streamed to the user application using OpenIGTLink [4].

Fig. 4. (i) Analogue signals are sampled by the data acquisition module. (ii) The
samples are filtered in software with relevant frequency components extracted. (iii)-(iv)
A cost function utilises the component magnitudes to yield a position vector which can
be transmitted using OpenIGTLink as a 4x4 transformation matrix.

The proposed framework was applied to the Anser EMT project [6]. The
original open-source codebase, which was originally implemented in Matlab§,
was fully converted to Python in order to conform with the framework. The
PyDAQmx driver [13] was used to provide a cross-platform interface with the
NI-DAQmx driver acquisition system (National Instruments, Austin, Texas). Fil-
tering and solving operations were performed using NumPy and SciPy libraries
[14]. OpenIGTLink connectivity was achieved using PyIGTLink [15].

4 Experiments and Results

EMT framework’s performance and accuracy were tested relative to the original
Windows-only Matlab implementation. Testing of the framework was performed
on three operating systems: Windows 10, MacOS 10.13 and Cent-OS 7.0 Linux.
All reported metrics result from tests performed on a laptop PC configured with
an Intel i7 4810HQ 3.5GHz CPU and 16GB of RAM, utilising both a Windows
10 and CentOS 7.0 installation. Compatibility with the MacOS 10.13 operating
system was confirmed using a separate machine, but comparative results were
not possible due to significant differences in the laptop hardware configuration.
The variable sampling frequency of the acquisition system was set at 100kHz for
all experiments.

§Available at https://openemt.org



4.1 Performance benchmark

Performance testing measured the framework’s ability to stream position mea-
surements as quickly as possible with minimal latency over an OpenIGTLink
connection to CustusX and 3DSlicer. Acquisition latency, maximum update fre-
quency (with both a stationary and moving sensor) were recorded for multiple
acquisition frame sizes shown in Tab. 1 and 2. An acquisition frame constitutes
the number of samples gathered by the acquisition system per single resolved
position. A finite acquisition time for each frame puts a limit on the minimum
latency figure. Static refers to a slow moving sensor speeds of <5cm per second
while ‘Dynamic’ refers to speeds >50cm per second.

Table 1. Performance measurements using Matlab on Windows.

Matlab Frame size Acq. Latency (ms) Max. Static (Hz) Max. Dynamic (Hz)

- 250 2.5 72 64
- 500 5 70 61
- 1000 10 65 62
- 2000 20 50 50
- 5000 50 20 20

Table 2. Performance measurements using Python framework (Windows/Linux).

Python Frame size Acq. Latency (ms) Max. Static (Hz) Max. Dynamic (Hz)

- 250 2.5/5000+* 138/120 84/70
- 500 5/2000+ 142/115 95/83
- 1000 10/1000+ 102/80 66/62
- 2000 20/100 51/45 52/45
- 5000 50/50 20/21 20/20

* Due to operating system driver, see discussion.

4.2 Accuracy benchmark

Accuracy testing consisted of comparing errors between sensor positions ob-
tained from a 7x7 plane test x-y grid providing a total of 49 points. 150 position
acquisitions at a height of z = 70mm from the transmitter board (Fig. 2 (b))
were recorded per grid point from which the mean x, y and z coordinate of
each point was calculated. Measurements were obtained from both Matlab and
Python implementations. Maximum, minimum and root-mean-square (RMS) er-
rors were calculated between the two obtained point grids. The grid obtained
using the Matlab implementation was used as the reference since its performance
has already been characterised in [6]. Maximum and minimum grid errors were
measured as 3.1mm and 0.1mm respectively with an RMS error of 0.9mm with
a standard deviation of 0.75mm.

5 Discussion

Tab. 2 shows how performance of the Anser EMT system varies with acquisi-
tion sample size over Windows and Linux operating systems. Benchmark results



on Windows are clearly favourable to Linux particularly at low sample sizes.
The high latencies in Linux were found to be caused by a low-level buffer issue
caused by limitations in the NI-DAQmx Base kernel driver for Linux. Forcing
the acquisition time to be greater than the solving time prevents this latency
issue occurring. Empirically setting the acquisition frame to 2000 (i.e. a frame
acquisition time of 20ms) mitigates the issue, although this limits the maximum
effective position update rate.

It can also be seen that the update speeds vary significantly depending on
the movement speed of the sensor. This is due to the previous sensor position
being used as the initial condition for the solver during each position update. A
moving sensor causes previous sensor positions to lie further from the current
true sensor position, resulting in the solver requiring more iterations to converge
to the global minimum. Artificially forcing periodicity by limiting the update
rate of the system prevents this issue from occurring. This approach must be
implemented with care in order to avoid increasing the overall system latency.

The purpose of the accuracy benchmark is to showcase any significant differ-
ences between the two EMT software implementations. The benchmark is limited
since it uses the Matlab implementation results as the reference standard, since
no gold standard was available for the experiment. The reported mean error
value of 0.9mm falls within the mean error value of the Matlab implementation
of 1.14mm [6]. From this we can conclude that the Python implementation is of
similar accuracy to the original implementation. Characterisation of this system
according to the Hummel protocol [16, 17] is necessary in order to fully validate
the accuracy of the system under the new framework.

Conclusion

An open source framework for designing electromagnetic tracking systems has
been proposed. The framework was applied to a previously characterised tracking
system with performance results reported. It is hoped that this work will assist
in the translation of new EMT modules and platforms from research into the
clinical setting.
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