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Flow underlying coupled surface and
internal waves

David Henry Gabriele Villari

Abstract

In this article we investigate the underlying fluid motion induced by
internal water waves, coupled with surface waves, in a two fluid layer
model. We employ a phase-plane approach to achieve a detailed Eu-
lerian description of the underlying wave-field kinematics for linear
travelling waves. Additionally, the qualitative motion of individual
fluid particles is established by way of a Lagrangian analysis of the
appropriate nonlinear dynamical systems.

Keywords: Internal waves; Surface waves; Particle trajectories; Phase por-
traits.
AMS Subject Classification (2020): P35Q35, 76B15, 37N10, 70K05.

1 Introduction

Internal water waves are particularly interesting, and challenging, from both
the mathematical and physical viewpoints. They arise where there is a jump
in density between fluid layers, which may occur in an oceanographical con-
text due to variations in temperature, salinity, or other fluctuations in the
equations of state. The density structure of the ocean can, in many instances,
be represented by two fluid-layer models, in which case the dividing interface
is called a pycnocline (also known as a thermocline if the density difference is
primarily due to temperature variations). Internal waves may be generated
by tidal forces, the action of a wind, or pressure fluctuation. At a localised
level, ships may cause internal waves if there is a shallow, brackish upper
layer (as is prevalent in glacial coastal regions and fjords) leading to the
so-called ‘dead water’ phenomenon. Overviews, surveys and references per-
taining to recent research into internal wave motion (ranging from applied
to purely theoretical considerations) can be found in [10, 13, 18, 20, 32, 41].
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Internal waves play a fundamental role in any meaningful description
of large-scale ocean dynamics [10, 19, 43]. However, by their nature and
location, they are inherently difficult to observe and measure [18, 20, 32].
This difficulty in obtaining experimental and field data further amplifies the
relevance of pursuing theoretical investigations into their motion. Of course,
accommodating wave motion at both an internal interface, coupled with the
free surface, significantly magnifies the complexity of an already intractable
mathematical problem: we do not adopt the classical ‘rigid-lid’, or infinite
fluid domain, approximations that are commonly employed when modelling
internal waves.

Determining the underlying fluid motion generated by a wave propagat-
ing on an interface is an intriguing area of mathematical research which
has important practical implications in the broad field of fluid mechanics.
From a theoretical perspective, water waves are a subject of immense dif-
ficulty and complexity due to the intractability of the governing equations
to mathematical analysis. However, recent mathematical advances have en-
abled researchers to make substantial progress in this field (cf. the discus-
sions and references in [4, 6, 33]). In the past decade or so, fine properties
of the underlying flow for periodic travelling surface water waves have been
determined using various techniques from mathematical analysis and differ-
ential equations. It has been proven, both in the approximate linear regime
[7, 12, 17, 22, 23, 27, 28, 29, 36, 37], and for exact solutions of the fully nonlin-
ear governing equations [3, 5, 8, 21, 24, 25, 35, 40], that fluid particle paths are
uniformly non-closed throughout the fluid domain. These results have con-
clusively disproved the long-held supposition that fluid particles follow closed
trajectories for linear (small-amplitude) surface wave motion [4, 31, 34]. This
example offers a prime illustration of how a careful theoretical treatment can
definitively, and conclusively, reveal the intricate detail of physical processes
which evade other more applied research approaches.

It is quite remarkable, given the physical importance of such flows, that
apparently no analogous investigations have, to this point, been undertaken
for internal wave motion. Of course, there has been substantial progress
in the mathematical analysis of different aspects of internal wave motion in
past years, particularly for nonlinear waves (cf. [2, 11, 9, 10, 13, 14, 15],
and the references therein). The aim of this article is to investigate the fluid
motion induced by internal water waves, coupled with surface waves, in the
setting of two irrotational fluid layers, in the process achieving a detailed
description of the underlying wave-field kinematics. It is assumed in this
article that waves are periodic, travelling and linear, and furthermore that
the coupled waves possess uniform wavelengths and frequency. Although
they arise from a linearisation of the governing equations, the dynamical
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systems which prescribe the fluid motion are themselves nonlinear, and so an
intricate phase-plane analysis is required in order to comprehensively describe
qualitative properties of the underlying fluid motion. Phase-plane approaches
have previously proven successful in revealing the underlying flow-structure
of surface water waves (cf. [7, 12, 16, 17, 22, 23]. Although these previous
investigations are relevant to our description of fluid motion in the lower layer,
the description of fluid motion in the upper layer requires a novel formulation
and entails a new approach. In return, the flow patterns revealed in the
upper fluid layer are particularly fascinating: phase-plane analysis exposes,
and documents, a structure to the system that would otherwise be difficult to
elucidate. For instance, phase-plane analysis furnishes us with an elegant and
explicit visualisation of the transition process from in-phase, to out-of-phase,
internal–surface wave coupling.

Along with an Eulerian characterisation of the wave-field kinematics for
coupled internal and surface water waves, we pursue a Lagrangian description
of fluid particle motion, in the process revealing some complex, and surpris-
ing, fluid particle trajectories. It has commonly been assumed (cf. [1]) that
fluid particles undertake an orbital motion, which is greatest at the pycno-
cline: we establish that this is not always the case. We prove that no fluid
particle fulfils closed trajectories in either of the fluid layers: indeed, every
fluid particle undergoes a forward drift. The uniformity of this result is quite
surprising given the range of possible motions exhibited by the various fluid
particles. Furthermore, we establish monotonicity properties for the forward
drift for a wide-range of possible physical scenarios. Regarding particle drift,
it bears remarking that the Stokes’ drift phenomenon (whereby fluid parti-
cles experience a mean net drift velocity in the direction of wave motion) is
intrinsically nonlinear (cf. [26, 44]): the existence of a forward drift induced
by linear internal waves for all fluid particles is apparently new.

1.1 Outline of article

The outline of this paper is as follows. In Section 2 the physical problem is
introduced, and in Section 2.1 the equations of motion, together with bound-
ary conditions, are systematically linearised in both fluid layers by way of
suitable nondimensionalisation and scaling procedures. Adopting the stan-
dard Ansatz for linear travelling water waves, in Section 3 the governing
equations are solved for coupled surface and internal waves with uniform
wavelengths k and frequencies ω (equivalently, wavespeeds c = ω/k). By
considering compatibility conditions at both the internal and surface inter-
faces, dispersion relations are derived in the form of quadratic equations for
c2 or, alternatively, the nondimensional ‘amplitude parameter’ A = g/kc2.
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Dispersion relations for small-amplitude waves detail how the speed of the
wave c propagating on an interface varies with respect to certain parameters,
such as: the mean-depth of the fluid layers, the wavelength and, in the
setting of internal waves, factors relating to the fluid stratification and the
ratio of the magnitude of the internal/surface wave amplitudes. While the
dispersion relation for the wavespeed in terms of c2 is classical (cf. [31, 41]),
its reformulation in terms of the nondimensional parameter A appears to offer
a new insight into coupled wave motion. In particular, we show that there
exists two possible solutions for A, which in turn represent two qualitatively
distinct physical scenarios: for one solution the wave-crests of the internal
wave coincides with the wave-crests of the surface wave (in-phase coupling),
while for the other solution wave-crests of the internal wave coincide with
wave-troughs of the surface wave (out-of-phase coupling). These relations
are analysed and discussed in some detail in Section 3.3.

In Section 4 we analyse the dynamical systems which prescribe the un-
derlying fluid motion for coupled surface and internal waves in the lower,
and upper, fluid layers separately. Although they arise from a linearisation
of the governing equations, the resulting dynamical systems themselves com-
prise nonlinear ordinary differential equations, and so a phase-plane analysis
is employed in order to comprehensively ascertain qualitative features of the
underlying fluid motion. Motion in the lower fluid layer is qualitatively sim-
ilar to that induced by a linear surface wave propagating on a single fluid
layer, however motion in the upper layer is significantly more convoluted and
involved. It turns out that the dynamical system determining fluid motion
in the upper layer generates three qualitatively different fluid motions, de-
pending on whether the wave amplitude parameter A takes the values A < 1,
A = 1, and A > 1, respectively. Accordingly, each case is treated separately.

Finally, in Section 5 the velocity field is subjected to a Lagrangian anal-
ysis which reveals that fluid particle trajectories are not closed, in general,
for coupled internal and surface waves: each particle experiences a forward
drift. We establish the monotonicity of particle drifts in the lower fluid layer,
with partial monotonicity results presented for the upper layer. A complete
qualitative description of particle paths in both fluid layers is obtained, with
results in the upper layer being again contingent on the value of A. Fluid
particle motion in the upper layer exhibits some complex and surprising
characteristics.
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2 Governing equations

We consider the two-dimensional motion of a stratified fluid, denoting hori-
zontal and vertical coordinates by x and y, respectively. The fluid is assumed
inviscid and incompressible, with an external restoration force due to gravity.

y = h1 + η1

y = η

y = h1

y = 0

y = −h

Density ρ

Density ρ(1 + r)

u

v

u1

v1

Ωu

Ωl

Figure 1: Schematic of the coupled surface-internal water wave problem.

The physical regime consists of two vertically stratified fluid layers of dif-
fering (but constant) densities separated by a sharp internal interface denoted
by y = η(x, t), which fluctuates about the mean water level y = 0: hence∫
R η(x, t)dx = 0. The lower-fluid layer, which we denote by Ωl, lies in the

region −h < y < η(x, t), where y = −h is the location of the impermeable
flat bed, and the velocity field is expressed as (u, v). The upper-fluid layer,
denoted by Ωu, lies in the region η(x, t) ≤ y ≤ h1 + η1(x, t), where the a
priori unknown free-surface boundary η1 represents fluctuations around the
undisturbed surface water level y = h1, that is

∫
R η1(x, t)dx = 0. The veloc-

ity field in the upper layer Ωu is denoted (u1, v1). Here h, h1 > 0 are physical
constants which determine the mean-depths of the lower, and upper, layers
respectively. We assume that η and η1 are such that max |η(x, t)| < h, and
max |η(x, t)| + max |η1(x, t)| < h1, which precludes any intersection of the
surface and internal wave interfaces. We assume stable stratification, with
the upper layer being less dense than the lower layer, in which case we denote
the density of the upper layer by ρ and the lower layer by (1 + r)ρ, where
r > 0 is constant. In practice r � 1: for instance, in an oceanographical
context, the value r = O(10−3) may be taken as reasonable [10, 30].

The equations of motion for an inviscid and incompressible fluid are the
Euler equation, which is expressed in the lower layer Ωl by The equations of
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motion for an inviscid and incompressible fluid are the Euler equation, which
is expressed in the lower layer Ωl by

ut + uux + vuy = − Px
ρ(1 + r)

,

vt + uvx + vvy = − Py
ρ(1 + r)

− g, (1a)

together with the equation of continuity

ux + vy = 0. (1b)

The scalar function P (x, y, t) represents the internal fluid pressure, and g
denotes the gravitational acceleration constant. In the upper-fluid layer Ωu

u1,t + u1u1,x + v1u1,y = −P1,x

ρ
,

v1,t + u1v1,x + v1v1,y = −P1,y

ρ
− g, (2a)

u1,x + v1,y = 0. (2b)

The kinematic boundary condition in the lower layer Ωl at the impermeable
flat bed is

v = 0 on y = −h. (3a)

The dynamic and kinematic boundary conditions at the internal interface
take the form

P = P1 at y = η(x, t).

v1 = ηt + u1ηx on y = η(x, t),

v = ηt + uηx on y = η(x, t),

(3b)

(3c)

(3d)

The dynamic boundary condition (3b) ensures that the pressure is always
continuous throughout a fluid. The kinematic boundary conditions (3c) and
(3d) ensure that the the normal components of the respective velocity fields
match, and are continuous, at the interface. For inviscid fluid motion this
need not be true for the tangential velocity components. Finally, at the free-
surface, the governing equations (2) in the upper layer Ωu have the associated
dynamic and kinematic boundary conditions

P1 = Patm on y = h1 + η1(x, t),

v1 = η1,t + u1η1,x on y = h1 + η1(x, t).

(3e)

(3f)
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The fluid is assumed to be irrotational in each fluid layer separately which,
in two-dimensions, corresponds to

uy = vx, u1,y = v1,x. (4)

Accordingly, define the velocity potentials ϕ(x, y, t) in the lower-fluid layer
Ωl, and ϕ1(x, y, t) in the upper-fluid layer Ωu, by

∇ϕ = (u, v), ∇ϕ1 = (u1, v1). (5)

It follows from the definition (5), coupled with the incompressibility equations
(1b) and (2b), that the velocity potentials are harmonic functions:

∆ϕ = ∆ϕ1 = 0. (6)

2.1 Linearisation procedure

The governing equations, and boundary conditions, can be linearised by in-
voking nondimensionalisation and scaling procedures as follows. Let λ be a
characteristic wavelength for the water waves being considered, and let h be
a characteristic depth scale such that h, h1 ∼ O(h). Let a be a characteristic
amplitude of the internal wave, with a1 a characteristic amplitude for the
surface wave. We define nondimensional variables and functions by mapping

x 7→ λx, y 7→ hy, t 7→ λ√
gh
t, η 7→ aη, η1 7→ a1η1,

(u, v) 7→
(
u
√
gh, v

h
√
gh

λ

)
, (u1, v1) 7→

(
u1

√
gh, v1

h
√
gh

λ

)
, (7)

where for example we replace x by λx, with x now being a nondimensionalised
variable, thus avoiding new notation. We express the pressure in terms of
the new nondimensional variables by{

P = Patm + gρhh̃1 − gρ(1 + r)hy + gρ(1 + r)hp, −h̃ < y < εη,

P1 = Patm + gρh(h̃1 − y) + gρhp1, εη ≤ y ≤ h̃1 + ε1η1,

where the nondimensional pressure functions p, p1 measure the deviation from
the hydrostatic pressure distribution. Here ε = a/h, ε1 = a1/h are nondi-
mensional parameters which measure the magnitude of the wave amplitudes
relative to the characteristic vertical depth scale, while h̃ = h/h, h̃1 = h1/h

7



are nondimensional parameters such that h̃, h̃1 ∼ O(1). The governing equa-
tions (1a), (1b) get transformed to

ut + uux + vuy = −px,
δ2 (vt + uvx + vvy) = −py,
ux + vy = 0,

(8a)

in the domain −h̃ < y < εη; the governing equations (2a) and (2b) get
transformed to 

u1,t + u1u1,x + v1u1,y = −p1,x,

δ2 (v1,t + u1v1,x + v1v1,y) = −p1,y,

u1,x + v1,y = 0,

(8b)

in the domain εη ≤ y ≤ h̃1 + ε1η1; while the boundary conditions (3a)–(3f)
become 

v = 0 on y = −h̃,
v = ε (ηt + uηx) on y = εη,

v1 = ε (ηt + u1ηx) on y = εη,

p1 = (1 + r)p− rεη at y = εη,

v1 = ε1 (η1,t + u1η1,x) on y = h̃1 + ε1η1.

p1 = ε1η1 on y = h̃1 + ε1η1.

(8c)

Here δ = h/λ is a nondimensional ‘shallowness’ parameter which measures
the magnitude of the characteristic vertical depth scale relative to the wave-
length. From (8c) it is clear that v, v1, p, p1 are essentially proportional to ε
when evaluated on y = εη, while v1, p1 are proportional to ε1 when evaluated
on y = h̃ + ε1η1. With this in mind, we scale the nondimensional variables
as follows:

(u, v) 7→ ε(u, v), p 7→ εp, (u1, v1) 7→ ε1(u1, v1), p1 7→ ε1p1, (9)

avoiding again the introduction of new variables. Now problem (8) becomes
ut + ε (uux + vuy) = −px,
δ2 (vt + ε (uvx + vvy)) = −py,
ux + vy = 0,

(10a)

in the domain −h̃ < y < εη;
u1,t + ε1 (u1u1,x + v1u1,y) = −p1,x,

δ2 (v1,t + ε1 (u1v1,x + v1v1,y)) = −p1,y,

u1,x + v1,y = 0,

(10b)
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in the domain εη ≤ y ≤ h̃1 + ε1η1;

v = 0 on y = −h̃,
v = ηt + εuηx on y = εη,

v1 = a (ηt + ε1u1ηx) on y = εη,

p1 = (1 + r)ap− raη at y = εη,

v1 = η1,t + ε1u1η1,x on y = h̃1 + ε1η1.

p1 = η1 on y = h̃1 + ε1η1.

(10c)

Here a = a/a1. The linearised problem is obtained by letting ε, ε1 → 0 in (10):
let us assume that the limiting procedure is such that a remains finite, if not
we simply re-express the relevant equations in (10c) in terms of the inverse
of a. The resulting nondimensionalised, scaled and linearised governing and
boundary equations for the two-dimensional motion of coupled internal and
surface water waves are then given by:{

ut = −px, δ2vt = −py,
ux + vy = 0,

in −h̃ < y < 0,{
u1,t = −p1,x, δ2v1,t = −p1,y,

u1,x + v1,y = 0,
in 0 ≤ y ≤ h̃1,

v = 0

v = ηt, v1 = aηt, p1 = (1 + r)ap− raη
v1 = η1,t, p1 = η1

on y = −h̃,
on y = 0,

on y = h̃1.

(11a)

(11b)

(11c)

Reversing the scaling (9) and nondimensionalisation (7) transformations we
obtain the linearised governing equations in terms of the physical variables:

ut = − Px
ρ(1 + r)

; vt = − Py
ρ(1 + r)

,

ux + vy = 0 in −h < y < 0,

(12a)

(12b)

u1,t = −P1,x

ρ
; v1,t = −P1,y

ρ
− g,

u1,x + v1,y = 0 in 0 ≤ y ≤ h1,

(13a)

(13b)

9




v = 0 on y = −h,
v = ηt; v1 = ηt; P1 = P − gρrη on y = 0,

v1 = η1,t; P1 = Patm + gρη1 on y = h1.

(14a)

(14b)

(14c)

We note that the linearisation process eliminates all product terms in the
governing equations (1), (2), and the boundary conditions (3), as expected.
Importantly, the boundary conditions are also now evaluated at the constant
mean levels y = 0, h1, as opposed to on the unknown interfaces: contrast (3)
with (14).

3 Travelling wave solutions

In the following we seek solutions that are periodic travelling waves. For
travelling waves there is a functional dependence on the x and t variables of
the form kx−ωt, where ω is the wave frequency, k = 2π/λ is the wavenumber,
and c = ω/k is the wave phasespeed. To construct solutions of the linearised
governing equations (??)–(??), in terms of the velocity potentials defined in
(5), the following Ansatz for linear travelling wave solutions is invoked:

η(x, t) = a cos(kx− ωt),
η1(x, t) = a1 cos(kx− ωt),

(15a)

(15b)

where a1 and a are the amplitudes of the free-surface, and interface, respec-
tively. The ansatz (15) assumes that waves coupled at the free-surface and
interface have identical wavelengths and periods: how this reconciles with
physical observations will be discussed in Section 3.3.2 below. Unless oth-
erwise stated, in the following we assume that a, a1 6= 0, thereby implying
a non-trivial coupling of wave motions at the free-surface and the interface.
Limiting processes which result in either wave amplitude vanishing (and the
associated ‘one free-interface’ models) are discussed in the context of disper-
sion relations in Section 3.3.3. We remark that the physical set-up in Figure
1 represents waves where the crests (and troughs) of the surface and internal
interfaces coincide, which corresponds to the ratio a/a1 > 0 in (15). The
ansatz (15) permits an alternative configuration, whereby the crests (respec-
tively, troughs) of the surface wave coincides with the troughs (respectively,
crests) of the internal wave. This scenario arises when a/a1 < 0, and is
represented in the following schematic:
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y = h1 + η1

y = η Density ρ

Density ρ(1 + r)
v

u

u1

v1

y = h1

y = 0

y = −h

Ωu

Ωl

Figure 2: Coupled surface-internal water waves for a/a1 < 0.

In the following, we refer to the coupled waves represented in Figure 1, with
a/a1 > 0, as being ‘in-phase’, whereas the coupled waves represented in
Figure 2, with a/a1 < 0, will be referred to as being ‘out-of-phase’. We note
that |a| + |a1| < h1 must hold for out-of-phase waves. In relation (36) we
establish, through analysis of dispersion relations, that there exists precisely
one set of coupled wave solutions which are in-phase, and one set which are
out-of-phase, for a given fixed wavelength (or, alternatively, fixed frequency).

3.1 Velocity potential

3.1.1 Lower-fluid layer

In Ωl the velocity potential ϕ must be harmonic (6), and should satisfy
the boundary conditions given by (14a) and the first equation in (14b), re-
expressed using the definition (5) and substituting the ansatz (15a). Hence,
ϕ must solve the Neumann boundary value problem

∆ϕ = 0 for − h < y < 0,

ϕy = akc sin(kx− ωt) on y = 0,

ϕy = 0 on y = −h.

This has the solution

ϕ(x, y, t) = ac
cosh k(y + h)

sinh kh
sin(kx− ωt) in − h < y < 0. (17)
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3.1.2 Upper-fluid layer

In Ωu the velocity potential ϕ1 must be harmonic (6) and must additionally
solve the boundary conditions given by the second equation in (14b) and the
first equation in (14c), re-expressed once more using (5) and ansatz (15).
Hence, ϕ1 must solve the Neumann boundary value problem

∆ϕ1 = 0 for 0 < y < h1,

ϕ1,y = a1kc sin(kx− ωt) on y = h1,

ϕ1,y = akc sin(kx− ωt) on y = 0.

This has the solution

ϕ1(x, y, t) = a1c sin(kx− ωt) {sinh k(y − h1) + A cosh k(y − h1)}
in 0 < y < h1, (19)

where the nondimensional parameter A is given by

A =

(
1− a

a1

sech (kh1)

)
coth(kh1). (20)

The value ofA is itself determined by two nondimensional parameters, namely:
the ratio of wave amplitudes a/a1; and the shallowness parameter kh1 =
2π · h1/λ. Note that the limiting case a1 → 0 (no surface wave) in the up-
per fluid layer corresponds to the classical ‘rigid lid’ model of internal wave
motion, with velocity potential

ϕ1(x, y, t) = −accosh k(y − h1)

sinh(kh1)
sin(kx− ωt) in 0 < y < h1. (21)

3.1.3 Continuity of normal velocities at internal interface

At the interface we have an additional constraint requiring the continuity of
normal velocities, as prescribed by the first two equations in (14b), which
can be expressed as

ϕ1,y = ϕy on y = 0. (22)

Substituting (17) and (19) leads to

a

a1

= cosh kh1 − A sinh kh1, (23)

an identity which is satisfied as a consequence of the definition of A in (20).
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3.2 Pressure distribution

3.2.1 Lower-fluid layer

Substituting solution (17) into the linearised Euler equation (12a) leads to
equations which can be solved to get the pressure distribution in Ωl as:

P

ρ
= P̃ + akc2(1 + r)

cos(kx− ωt)
sinh kh

cosh k(y + h)− gy(1 + r), (24)

for −h < y < 0, where P̃ is a constant.

3.2.2 Upper-fluid layer

Similarly, substituting (19) into (13a) gives the pressure distribution in Ωu

as:

P1

ρ
= P̃1 + a1c cos(kx− ωt) [ω sinh k(y − h1) + Aω cosh k(y − h1)]

−g(y − h1),

(25)

in 0 < y < h1, where P̃1 is a constant.

3.2.3 Pressure-matching at the free-surface

The pressure distribution (25) must satisfy the dynamic boundary condition
at the linearised free-surface y = h1 given by the second equation in (14c),
namely: P1 = Patm + gρη1 on y = h1. Setting y = h1 in (25), and using
(15b), we have

ρa1c cos(kx− ωt)Aω + ρP̃1 = Patm + gρa1 cos(kx− ωt),

which can only hold if P̃1 = Patm/ρ and if the coefficients of the cosine
function sum to zero resulting (using (20)) in the condition:

c2 =
g

k

1

A
=
g

k
tanh(kh1)

(
1− a

a1

sech (kh1)

)−1

. (26)

This is the dispersion relation at the free-surface. However it is important to
note that this is not a dispersion relation for the surface wave alone: there is
an intrinsic coupling between surface and internal wave parameters involved
in the ratio a/a1. An immediate consequence of (26) is that the parameter
A must be positive, which confers a bound on the internal wave amplitude
for in-phase waves, namely:

a < a1 cosh(kh1), when a/a1 > 0.
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3.2.4 Pressure-matching at the internal interface

The pressure distributions (24) and (25) must satisfy the dynamic boundary
condition given by the third condition in (14b) at the linearised internal
interface y = 0, that is: P1 = P − gρrη on y = 0. This condition ensures the
continuity of pressure between the upper and lower-fluid layers. Examining
(25) and (24) we conclude that this condition can hold only if P̃ = P̃1+gh1 =
Patm/ρ+ gh1, and additionally

a1kc [−c sinh kh1 + Ac cosh kh1] = ac(1 + r)
kc

tanh kh
− gar. (27)

This is the dispersion relation at the interface however, as remarked for equa-
tion (26), this is not the dispersion relation for the interface alone. This re-
lation features coupling between surface and internal waves by way of terms
involving the ratio of wave amplitudes.

3.3 Dispersion relations for the coupled waves

A dispersion relation is a formula which specifies the linear wavespeed c in
terms of various physical parameters. It is so-called since if the wavespeed c
varies with respect to some parameter then the waves are dispersive: waves
corresponding to different parameter values will travel at different speeds.
Assuming we know (either by measurement, or prescription) the mean depths
h, h1 of the fluid layers, equations (26) and (27) features three unknown
parameters, namely the wavenumber k = 2π/λ, the wavespeed c = ω/k (or,
alternatively, the frequency ω), and the ratio of wave amplitudes a/a1. Using
(23) we can re-express (26) as

a

a1

= cosh(kh1)− g

kc2
sinh(kh1), (28)

and (27) as a quadratic for c as:[
sech kh1 −

a

a1

{
1 + (1 + r)

tanh kh1

tanh kh

}]
kc2

g
+ r

a

a1

tanh kh1 = 0. (29)

These identities clearly express how the wavespeed c is contingent on the
ratio of wave-amplitudes, a/a1, and vice-versa. Together, equations (28) and
(29) constitute a system of dispersion relations prescribing the wavespeed c
of coupled internal and surface waves, and the ratio a/a1 of associated wave-
amplitudes, in terms of the wavenumber k. A useful initial approach when
examining dispersion relations is adopted by assuming that k is a ‘known’
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parameter, in the sense that the wavelength can either be prescribed, or
determined by measurement: in this scenario we consider the wavenumber k
to be fixed.

Substituting (28) into (29) leads to the classical dispersion relation [31, 41]
for the wavespeed:{

1 +
1 + r

tanh kh1 tanh kh

}
k2c4

g2
− (1 + r)

{
1

tanh kh1

+
1

tanh kh

}
kc2

g
+ r = 0.

(30)

The nondimensional parameter A plays a key role in our examination of
the underlying fluid motion induced by coupled waves in Section 4, and we
observe that it arises naturally in (30) by way of the term kc2/g = 1/A. It
is therefore propitious to reformulate relation (30) as

rA2 − (1 + r)

{
1

tanh kh1

+
1

tanh kh

}
A+

{
1 +

(1 + r)

tanh kh1 tanh kh

}
= 0.

(31)

This constitutes a dispersion relation for the ratio of wave amplitudes since,
given solutions of (31), the ratio of the corresponding wave-amplitudes a/a1

can be established directly from (23) (in terms of k). The roots, A1 and A2,
of the quadratic equation (31) are real, since the discriminant

∆ = (1 + r)2

{
1

tanh kh1

− 1

tanh kh

}2

+ 4r

{
1

tanh kh1 tanh kh
− 1

}
+

4

tanh kh1 tanh kh
> 0. (32)

Examining the coefficients of (31), we further conclude that both roots are
positive, A1, A2 > 0 (which is consistent with (26)), while relation (32) im-
plies that they are unequal. Indeed, direct computation gives

A1,2 =
1

2r

[
(1 + r)

{
1

tanh kh1

+
1

tanh kh

}
∓
√

∆

]
. (33)

Let us take A2 > A1. Denoting (31) as P(A) = 0, it follows by calculation
that

P
(

1

tanh kh1

)
= 1− 1

tanh2 kh1

< 0, P
(

1

tanh kh

)
= 1− 1

tanh2 kh1

< 0,

giving the relations (which we note are independent of the relative densities):

A1 <
1

tanh kh1

< A2, A1 <
1

tanh kh
< A2. (34)
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Furthermore if, for instance, r < 1, the quantity

P
(

1

tanh kh1

+
1

tanh kh1

)
= 1− 1

tanh2 kh1

− 1

tanh2 kh
+

r − 1

tanh kh tanh kh1

,

is negative. Typically r � 1 in an oceanographical context, with r = O(10−3)
constituting a reasonable value [10, 30]. In this case

A2 >
1

tanh kh1

+
1

tanh kh
. (35)

It can be concluded from (23) that

a

a1

< 0⇐⇒ A >
1

tanh kh1

,

and together with (34) we infer that

a

a1

> 0 for A = A1,
a

a1

< 0 for A = A2. (36)

Coupled wave motions at the interface and free-surface are in-phase for so-
lutions corresponding to the root A = A1, and out-of-phase for A = A2.

Remark 1 In relation to the phase-portrait analysis that we undertake in
Section 4.2, when examining fluid motion in the upper-fluid layer, we note
that a consequence of (34) is that one of the roots of (31), A2, is always
greater than one. In general, A1 may be greater than, less than, or equal to
one, depending on the physical parameters of the wave problem we consider.

Remark 2 A discontinuity in tangential fluid velocities always occurs at the
internal interface. This can be seen by comparing ϕx and ϕ1,x (which corre-
spond to the linearised tangential velocities in the respective layers) at y = 0.
By (17) and (19), these match only if a coth kh = a1 {− sin kh1 + A cosh kh1},
and, using (27), this holds only if kc2/g = 1/A = tanh kh. Relation (34)
shows that this equality can never hold. Hence, although the fluid is irro-
tational in each fluid layer separately, there is a vortex sheet located at the
internal interface. In practice, viscosity (which has been neglected in this
model) acts to blur the sheet into a vortex film.

3.3.1 Wavespeed solutions

The roots of (30), the dispersion relation for the wavespeeds, can be deter-
mined from (33) using c2 = g/kA to get

c2
1,2 =

g

k

tanh kh1 tanh kh

2(1 + r) + 2 tanh kh1 tanh kh

[
(1 + r)

{
1

tanh kh1

+
1

tanh kh

}
±
√

∆

]
.

(37)

16



Each root c2
i in (37) represents a given wavespeed, with the choice of sign

+ci (or −ci) corresponding to right-moving (or left-moving) coupled waves
respectively. It follows from (37) that c1 > c2 > 0, which accords with the
root ci being associated withAi. The nomenclature barotropic, and baroclinic,
has been applied to the wavespeeds c1, and c2, respectively, cf. [41]. Using
(26), relations (34) and (35) lead to

c2 <

√
g

k

tanh kh tanh kh1

tanh kh+ tanh kh1

, c1 > max

{√
g

k
tanh kh1,

√
g

k
tanh kh1

}
.

3.3.2 Physical interpretations

Typically, it is observed that internal waves are much slower than surface
waves, with significantly greater amplitudes. This is due to the restoring
force at the internal interface being substantially less than at the free surface.
Internal waves in the ocean can have periods ranging from tens of minutes
to several hours, with wavelengths ranging from hundreds of meters to tens
of kilometres, and their height can often exceed 50m (cf. [18, 20, 32, 41]).
In contrast, for ocean surface gravity waves the period ranges from 1 to 25
seconds, with ocean swell having a typical wavelength that is greater than
260m (up to a maximum of approximately 900m) with a period larger than
13s (up to a maximum of 24s) (cf. [42]).

We expect these properties to be reflected in the solutions of the linear
dispersion relations above. In particular, given the same wavelength, the
speed of propagation should be much smaller for internal wave solutions than
for surface waves. However, as stated previously, the dispersion relations (28)
and (29) govern the motion of coupled surface and internal waves. Hence,
given a solution corresponding to a specific wavelength and wavespeed, we
cannot take it to apply to either the surface, or internal, wave in isolation.
In the linear framework, wherever there is a surface wave travelling with a
particular wavelength and wavespeed there will be a corresponding internal
wave solution, and vice versa.

A resolution between this mathematical formulation, and physical ob-
servations, can be achieved (for fixed wavelengths) if we establish that the
amplitude of the internal wave a is more significant than that of the sur-
face wave a1 at slower wavespeeds. Indeed, the root corresponding to the
slower wavespeed, c2, pertains to out-of-phase waves and, from relation (26)
(with k fixed), we can infer that wavespeeds are minimised as a/a1 → −∞,
and maximised as a/a1 → 0. Hence, the slowest waves are those where
the internal wave amplitude is significantly larger than that of the surface
wave. For in-phase waves, which corresponds to the faster c1 root, relation
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(26) implies that the wavespeed is minimised as a/a1 → 0, and maximised as
a/a1 → cosh(kh1). In this case the presence of internal wave motion increases
the wavespeed of the coupled surface and internal waves.

Furthermore, considering variable wavelengths, based on physical obser-
vations we would expect the amplitude of (faster) surface waves to predom-
inate in the coupled system for smaller wavelengths (larger k), while for
longer wavelengths (smaller k) we expect the (slower) internal waves to pre-
vail. Establishing the change in behaviour of the wave solutions (namely, the
wavespeeds and amplitude ratios) with respect to the wavenumber is difficult
to elucidate in general, but insight can be gained by examining the limiting
cases k →∞, and k → 0.

For sufficiently large k (such that tanh(kh1), tanh(kh) ≈ 1) (37) becomes

c2
1 ≈

g

k
, c2

2 ≈
gr

k(2 + r)
=
g

k

ρ− ρ1

ρ+ ρ1

, (38)

and so c2 � c1 for r � 1. By (33), A1 = 1, A2 = (2+r)/r = (ρ− ρ1)/(ρ+ ρ1)
for large k. For the root A1 = 1, (23) gives a/a1 = e−kh1 → 0: the surface
and internal waves are in-phase for the fast wavespeed solution, with the
amplitude at the surface being far greater than that at the interface. For
A2 = (2 + r)/r, inserting directly into (23) gives a/a1 = −ekh1/r + (1 +
r)e−kh1/r → −ekh1/r: the surface and internal waves are out-of-phase for
the slow wavespeed solution, with the amplitude of the surface wave being
negligible compared to the internal wave. For sufficiently large k the terms
‘fast’ and ‘slow’ are relative, as c1,2 → 0 in the limiting case k → ∞. Of
course, when considering limiting procedures we must bear in mind that the
linear framework applies only for ε = a/λ, ε1 = a1/λ � 1, and so k → ∞
implies a, a1 →∞: there is no wave motion.

For sufficiently small k (such that sinh(kh1) ≈ kh1, sinh(kh) ≈ kh, and
cosh kh1, cosh kh ≈ 1) formula (37) becomes

c2
1,2 =

gh1h

2(1 + r)

[
(1 + r)

{
1

h1

+
1

h

}
± (1 + r)

{
1

h1

+
1

h

}
∓ 2r

h+ h1

+O(r3)

]
,

that is (neglecting terms of order O(r3)):

c2
1 = g(h1 + h)− rgh1h

(1 + r)(h+ h1)
, c2

2 =
rgh1h

(1 + r)(h+ h1)
. (39)

In this physical regime relation (28) takes the form

a

a1

= 1− gh1

c2
. (40)
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Inserting the slower wavespeed from (39), c2, into (40) gives

a

a1

= −1

r
−H

(
1 +

1

r

)
, (41)

where the nondimensional parameter H = h1/h gives the ratio of the mean-
depth of the upper and lower layers. For small r, this relation implies that
the surface and internal waves are out-of-phase, with the amplitude of the
surface wave being negligible compared to the internal wave. Inserting the
faster wavespeed in (39), c1, in (40) gives

a

a1

=
h(h+ h1) + rh2

(h+ h1)2 + r(h2
1 + hh1 + h2)

=
(1 +H) + r

(1 +H)2 + r(H2 +H + 1)
, (42)

and the surface wave amplitude is larger than the internal wave. Interestingly,
both (41) and (42) feature the depth-ratio parameter H.

Accordingly, investigations of the limiting cases above do suggest that
the amplitude of the internal wave predominates that of the surface wave at
slower wavespeeds, and for longer wavelengths whereas, converely, the am-
plitude of the surface wave prevails for faster wavespeeds, and shorter wave-
lengths, as prescribed by the dispersion relations (30), (31). Nevertheless, an
ineluctable consequence of our deliberations is that short, fast waves must
also exist at the internal interface, as do slow, long waves at the surface. Such
waves seemingly constitute aberrations from the observed physical properties
of surface and internal waves. However, these apparently anomalous wave
solutions may be indiscernible in practice given their relatively small am-
plitudes: wave solutions are simply added together in the linear regime to
which our considerations pertain, hence slow-surface/fast-internal waves may
be dwarfed by their fast-surface/slow-interface counterparts, respectively.

Of course, the linear framework enforces a number of inherent limita-
tions on the size of the wave: the linearisation procedure implemented in
Section 2.1 confers a priori restrictions on the wave amplitudes given by
a/λ, a1/λ � 1, while the phase-plane analysis of the next section details
further constraints due to the bounds (48), (54), (55) and (57). Evidently, a
thorough understanding of large amplitude waves requires nonlinear analysis.
Nevertheless, it is clear that a detailed analysis of the linear system is a first
step towards gaining rich insight into a range of complex physical properties
intrinsic to coupled surface and internal waves.

3.3.3 Dispersion relations — limiting cases

Remark 3 Letting r → 0 simplifies the physical model, which now consists
of one homogeneous fluid layer of mean-depth h+ h1. Taking r → 0 in (37)
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leads to c2 = 0 and c2
1 = g tanh(k [h+ h1])/k: this is the classical dispersion

relation for a surface wave over fluid of finite depth h+ h1.

Remark 4 Taking r →∞ in (37) gives c2
1,2 = g tanh(kh)/k, g tanh(kh1)/k,

with the ordering determined by whichever of h, h1 is larger. These are
the dispersion relations for surface waves propagating on a fluid of depth h,
respectively h1. Physically, this limit corresponds to the lower-layer being
infinitely denser than the upper-layer which (as can be inferred from the
dispersion relations) essentially results in the decoupling of wave motions in
both layers. The extreme disparity in densities renders the wave motion in
either layer effectively independent of the other.

Remark 5 Setting a = 0 gives A = coth kh1 and c2 = g tanh kh1/k. This is
the classical dispersion relation for wave propagation on the surface of a single
fluid layer of depth h1 over a ‘flat bed’. In this case the undisturbed internal
interface constitutes a flat boundary. This value of A plays an important role
in the phase-plane analysis of the next section.

Remark 6 The ‘rigid-lid’ model describes wave motion at the interface sep-
arating two fluid layers which are bounded above, and below, by horizontal
rigid walls. If the mean thickness of the upper-layer is h1, and the lower-layer
h, the dispersion relationship takes the form [31]

c2 =
g

k

ρlower − ρupper

ρlower coth(kh) + ρupper coth(kh1)
. (43)

Relation (43) can be formally derived from (29) by letting a1 → 0 (a 6= 0).
Alternatively, it arises from requiring that condition (22) is satisfied by the
velocity potentials (17) and (21), thereby ensuring the continuity of normal
velocities at the interface.

Remark 7 When the depth of both fluid layers becomes very large (h, h1 →
∞) the influence of the upper and lower boundaries diminishes, and the
dispersion relation (43) for the interface becomes:

c2 =
g

k

ρlower − ρupper

ρlower + ρupper
.

This matches the wavespeed c2 obtained in (38) in the ‘short wave’ regime
kh, kh1 � 1, a physical regime consistent with the ‘deep-water’ limit.

Remark 8 Relations (39)–(42) pertain to the ‘long wave’ physical regime,
where k is sufficiently small that kh1, kh� 1. This regime is consistent with
the ‘shallow layer’ approximation, whereby h/λ, h1/λ � 1 with the depths
h, h1 now assumed to be small. Accordingly, the approximate dispersion
relations (39)–(42) are also applicable to the shallow layer regime.
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4 Dynamical systems formulation

From the definitions (5), and the solutions (17), (19) we can directly com-
pute expressions for velocity fields in the lower, and upper, fluid layers. If
(x(t), y(t)) is the path of a particle in the lower-fluid layer Ωl, then the motion
of the particle is described by the nonlinear dynamical system

dx

dt
= u = aω cos(kx− ωt)cosh k(y + h)

sinh kh
dy

dt
= v = aω sin(kx− ωt)sinh k(y + h)

sinh kh
, (44a)

for −h < y < 0, with initial data (x0, y0). In the upper-fluid layer Ωu, particle
trajectories (x(t), y(t)) are determined by the nonlinear dynamical system

dx

dt
= u1 = a1ω cos(kx− ωt) {sinh k(y − h1) + A cosh k(y − h1)}

dy

dt
= v1 = a1ω sin(kx− ωt) {cosh k(y − h1) + A sinh k(y − h1)} , (44b)

for 0 < y < h1, with initial data (x0, y0). The mean-level of the oscillating
internal wave interface y = η is located at y = 0, whereas the free-surface
y = h1 + η1 oscillates about the mean-level located at y = h1.

Remark 9 For a given coupled wave motion, the wavenumber k, the fre-
quency ω, and the nondimensional parameter A are fixed constants in the
dynamical systems (44a) and (44b). As outlined in some detail in Section 3.3,
these are not free-parameters but, rather, they must be determined through
solving dispersion relations. Nevertheless, for the illustrative purposes of
phase portrait analysis it is beneficial to consider k, ω as fixed constants,
while ‘allowing’ the parameter A to vary in system (44b).

The right-hand sides of the differential systems (44a) and (44b) are smooth,
therefore the existence of unique local smooth solutions for both (44a) and
(44b) is ensured by the Picard–Lindelöf theorem [38]. Furthermore, since y
is bounded, the right-hand sides of (44a) and (44b) are bounded, hence these
unique solutions are defined globally [38]. The right-hand sides of both (44a)
and (44b) are nonlinear, and thus such systems cannot be solved explicitly.
Rather than resorting to further approximations — for instance, through
linearising the dynamical systems (44a), (44b) (in the typical mathematical
sense [38], rather than the physical sense of Section 2.1) — we will use phase
plane analysis to directly establish qualitative features of the solutions. Since
the fluid layers are separated by an impermeable interface y = η(x, t), and the
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solutions (17) and (19) satisfy the matching conditions (14b) at this interface
by design, we can address the phase plane analysis of system (44a) in the
lower-fluid layer Ωl, and system (44b) in the upper-fluid layer Ωu, separately
in the first instance, and then piece together the information to get a picture
of the motion of the entire two-layer body.

4.1 Phase portrait analysis: lower-fluid layer

The velocity field for the lower-fluid layer (44a) is relatively simple in com-
parison to that of the upper layer (44b). This difference in complexity is
unsurprising given that the lower layer possesses just one moving boundary
(the internal wave), whereas the upper layer possesses two (the surface and
internal waves). From a mathematical viewpoint, system (44a) is qualita-
tively identical to that which describes fluid motion in a single homogenous
(uniform density) fluid layer whose upper interface separates the fluid from
a source of constant pressure (such as the atmosphere). The physical influ-
ence of the upper-fluid layer is conveyed implicitly to (44a) by way of the
dispersion relations (28) and (29). The motion underlying this type of sys-
tem was first examined by phase-plane analysis in [12] and, since it offers an
accessible illustration of the phase-portrait approach that we implement in
more convoluted circumstances in Section 4.2, we include it here.

As we are studying travelling waves, we can transform to a moving frame
where the motion is steady by way of the change of variables

X(t) = kx(t)− ωt, Y (t) = k(y(t) + h), (45)

where we recall that c = ω/k. This transforms system (44a) to the following
autonomous system 

dX

dt
= M cos(X) cosh(Y )− ω,

dY

dt
= M sin(X) sinh(Y ),

(46a)

(46b)

with (X(0), Y (0)) = (x0, y0), and where we denote

M :=
akω

sinh(kh)
=
a

h
· kh

sinh(kh)
· ω � ω, (47)

since s < sinh(s) for s > 0 and a/h ∼ O(ε) � 1 in the linear wave regime
(cf. Section 2.1). Since (46) is periodic in X we focus on the strip {X :
−π ≤ X ≤ π}, and the change of variables (45) transforms the lower-fluid
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layer to the region {Y : 0 ≤ Y ≤ kh+ e cos(X)}, where we denote by e = ak
the wave-steepness parameter for the internal interface. The autonomous
system (46) meets standard regularity assumptions for the uniqueness of the
Cauchy problem [38], therefore its trajectories do not intersect. We note that
the right-hand side of (46a) is an even function in both X and Y , while the
right-hand side of (46b) is an odd function of both X and Y : therefore the
trajectories of (46) have mirror symmetries with respect to both the X− and
Y−axes.

Remark 10 Without loss of generality, we choose a > 0 (hence M > 0)
throughout this subsection. From direct examination of the dynamical sys-
tem (46), we see that a change in the sign of M can be effectuated by simply
shifting the X variable by π: by From (15a), the difference between choice
of signs corresponds physically to choosing either the crest, or the trough, of
the internal wave to be located at X = 0, respectively.

The 0-isocline is defined to be the set where dY/dt = 0, and the ∞-isocline
is the set where dX/dt = 0. Therefore the 0-isocline is given by the lines
X = 0,±π, and the line segment Y = 0. The ∞-isocline is given in the
region X ∈

(
−π

2
, π

2

)
by the curve (X,α(X)), where α(X) ∈ [Y ∗,∞) for

cosh (Y ∗) = ω/M , and α is defined as follows: on
[
0, π

2

)
we set α to be

the inverse of the function Y 7→ arccos
(

ω
M cosh(Y )

)
defined on [Y ∗,∞), and

extend it by mirror symmetry to the interval
(
−π

2
, π

2

)
. Since ω

M cosh(Y )
≤ 1

for Y ≥ Y ∗, it follows that α is well-defined; furthermore the even function
α is smooth, it takes on its infimum Y ∗ at X = 0, and satisfies the limiting
condition limX→±∞ α(X) = ∞. The only singular point of the system (46)
for positive Y is Q = (0, Y ∗). To show this is a saddle point we express (46)
as a Hamiltonian system {

Ẋ = HY ,

Ẏ = −HX ,

with the Hamiltonian function H(X, Y ) ≡M sinh(Y ) cos(X)−ωY . If (X, Y )
is a solution of (46) then d

dt
H(X, Y ) = HXẊ+HY Ẏ = 0, and so H is constant

along the phase curves. Now Q is a critical point of H, and as the Hessian
of H at Q is (

−M sinh(Y ∗) 0
0 M sinh(Y ∗)

)
,

it follows that Q is a nondegenerate singular point. By Morse’s lemma [39]
in a neighbourhood of Q there exists a diffeomorphic change of coordinates
which sends the level lines of H to hyperbolas. Thus Q is a saddle point for
H. Away from the critical point Q the seperatrix H−1{H(Q)} = {(X, Y ) :
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H(X, Y ) = H(Q)} is a smooth curve, by the implicit function theorem, and
it intersects the vertical line X = π at the point (π, β) where β is implicitly
defined by the equation H(π, β) = −M sinh(β)−ωβ = H(Q). For X ∈ (π

2
, π)

we have dX/dt < 0, dY/dt > 0. If X ∈ (0, π
2
) then dX/dt < 0 below

the curve of α(X) and is positive above it, while dY/dt remains positive in
this region. The corresponding signs for X ∈ (−π, 0) are obtained using
symmetry with respect to the Y -axis. A phase portrait for the lower-fluid
layer is given in Figure 3.

X = 0 X = π
2

X = πX = −π
2X = −π

Y = 0

Separatrix

∞−isocline

(y = −h)

Q = (0, Y ∗)

Y = kh (y = 0)
Y = β

Figure 3: Phase portrait for the lower-fluid layer. The dotted grey line
represents the∞−isocline, with the dotted-dashed lines representing the
0−isoclines. The internal wave profile ( ) with mean-water level Y = kh
(corresponding to y = 0) is also illustrated.

To conclude our discussion of the phase plane diagram for the lower-
fluid layer we consider an additional restriction necessary to ensure that
the system (50), and the resulting phase portrait, are compatible with the
physical model. Namely, the streamline which represents the internal-wave
must lie beneath the separatrix. This is ensured if the wave-trough is located
beneath Y = β at X = π, that is, if k(h − a) < β. However, since β is not
prescribed explicitly, it is more expedient to instead examine the wave-crest
which, by (15a) and (45), is located at (X, Y ) = (0, k(h+ a)). Therefore we
require k(h+ a) < Y ∗ or, equivalently,

ε̃ · cosh (kh (1 + ε̃)) ≤ sinh(kh)

kh
. (48)

Here we denote the non-dimensional parameter ε̃ := a/h. Condition (48)
features an interplay between physical parameters such as the wavenumber
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k = 2π/λ, the mean-depth h of the lower-fluid layer Ωl, and the internal wave
amplitude a. In the limiting regime kh→ 0, which corresponds to a shallow
fluid-layer (or long wave) approximation, we have sinh(kh)/kh → 1. Hence
(48) holds if ε̃ cosh(kh(1 + ε̃)) ≈ ε̃ < 1: this condition is intrinsically satisfied
in the linear wave regime where ε̃ ∼ O(ε)� 1 (cf. Section 2.1). For kh→∞,
which corresponds to a deep fluid-layer (or short wave) approximation, we
have tanh(kh) → 1, hence relation (48) holds if e < 1. This condition holds
irrevocably for linear water waves since e = ε · δ � 1 (cf. Section 2.1). In
general, if condition (48) holds then ε̃ < tanh(kh)/kh which, for given values
of h and k, offers a quantifiable measure of how small the amplitude a must
be in order for linear wave solutions to exist, and be physically valid.

4.2 Phase portrait analysis: upper-fluid layer

As in the previous section, we work in a moving frame by making the change
of variables

X(t) = kx(t)− ωt, Y1(t) = k(h1 − y(t)), (49)

which transforms system (44b) to the autonomous system
dX

dt
= F (X, Y1) := M1A cos(X) cosh(Y1)−M1 cos(X) sinh(Y1)− ω

dY1

dt
= G(X, Y1) := M1A sin(X) sinh(Y1)−M1 sin(X) cosh(Y1),

(50)

where we denote the parameter M1 = a1kω and A is given by (20). As (50)
is periodic in X we need only consider the strip {X : −π ≤ X ≤ π} and,
due to the definition of the Y1 in (49), the physically–relevant solutions of
(50) will be located in the region {Y1 : −e1 cos (X) ≤ Y1 ≤ kh1 − e cos (X)},
where we denote by e1 = a1k = 2π · a1/λ the wave-steepness parameter for
the surface. This non-dimensional parameter can be expressed e1 = 2π · δ · ε1
in terms of the wave-amplitude parameter ε1, and shallowness parameter δ:
accordingly e1 � 1 (cf. Section 2.1). We note that M1 � ω since M1/ω = e1.
The autonomous system (50) meets the standard regularity assumptions for
the uniqueness of the Cauchy problem [38], therefore its trajectories do not
intersect. Moreover, since F (X, Y1) is an even function, and G(X, Y1) an odd
function, with respect to X, any trajectory of system (50) is symmetric with
respect to the Y1-axis when viewed as a curve in the (X, Y1)−phase plane. It
is expedient to further re-express the right-hand sides of (50) as

F (X, Y1) = M1 cos(X)f(Y1)− ω, G(X, Y1) = M1 sin(X)g(Y1), (51a)
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where we define the functions

f(Y1) := A cosh(Y1)− sinh(Y1), g(Y1) := A sinh(Y1)− cosh(Y1). (51b)

Note that f ′(Y1) = g(Y1), and g′(Y1) = f(Y1), where (·)′ denotes differentia-
tion with respect to Y1. In order to investigate the phase portrait of system
(50) we must begin by investigating the 0-isocline (defined as the set of points
where the vector field is horizontal, Ẏ1 = 0, and so G(X, Y1) = 0 in (51a)) and
the ∞-isocline (defined as the set of points where the vector field is vertical,
Ẋ = 0, and so F (X, Y1) = 0 in (51a)).

Remark 11 The change of variables (49) reflects vertical coordinates through
the line y = h1 with the effect that, when represented in terms of the Y1 vari-
able, wave crests correspond to troughs, and troughs to crests. Additionally,
when expressed in terms of the Y1 variable, the streamline denoting the sur-
face wave lies beneath that of the internal wave.

Remark 12 The sign of the parameter M1 matches the sign of a1, the am-
plitude of the surface water wave. From (15b), whether a1 is positive, or neg-
ative, determines physically whether the crest, or the trough, of the surface
wave is located at X = 0, respectively. The sign of the ratio a/a1 ascertains
whether the surface and internal waves are coupled in-phase, or out-of-phase,
a key characteristic in determining the qualitative nature of system (50). The
value of the parameter A prescribes, by way of (23), the sign of this ratio.
Without loss of generality, we fix M1 > 0 (and hence a1 > 0) throughout
subsequent considerations, with the sign of a consequently matching that of
the ratio a/a1 as prescribed by A.

a
a1
> 0 a1

aΩu

Ωl

(a) In-phase waves can occur
for A < 1, A = 1, and A > 1.

a1

a

a
a1
< 0

Ωu

Ωl

(b) Out-of-phase waves occur
only for values A > 1.
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In Remark 1 we noted that for every linear coupled wave system of the form
(15) one of the roots of (31), A2, is always greater than one: this solution
constitutes an out-of-phase wave system. The other root, A1, represents
an in-phase wave system and, depending on the physical parameters of the
problem being considered, A1 may be greater than, less than, or equal to
one. It turns out that the dynamical system (50) potentially generates three
qualitatively different fluid motions, depending on whetherA < 1, A = 1, and
A > 1. This is due to the qualitatively different behaviour of the f(Y1), g(Y1)
functions defined in (51b) for these values of A. Accordingly, we treat each
case separately.

4.2.1 System (50) with A < 1:

Direct computation in (51b) shows that g(Y1) is negative, takes its maximum
at

Ȳ1 =
1

2
ln

(
A+ 1

1− A

)
, (52)

and limY1→+∞ g(Y1) = −∞. Hence G(X, Y1) < 0 for 0 < X < π and vanishes
at X = 0 and X = π: the 0−isocline for system (50) in [0, π] is composed of
the two vertical lines X = {0, π}.

To determine the∞−isocline we examine f(Y1) for A < 1. In this setting
it follows directly from (51b), and the fact f ′(Y1) = g(Y1), that f is monotone
decreasing, with f(0) = A, f(Ȳ1) = 0, and where limY1→−∞ f(Y1) = ∞,
limY1→+∞ f(Y1) = −∞; a schematic for f(Y1) is given as follows.

Y1

f (Y1)

Ȳ1

−e1

f (−e1) ≈ A + e1

Y ∗1

f (Y ∗1 ) = −1/e1

#2 : kh1 + e

f (kh1 + e)

f (kh1 + e)

#1 : kh1 + e

Figure 4: Schematic of f(Y1) for A < 1. f(0) = A = tanh(Ȳ1)

Remark 13 We note that the value Ȳ1 where f(Ȳ1) = 0, as determined by
(52), is well-defined for A < 1, and corresponds to A = tanh(Ȳ1): it follows
that A → 0 ⇔ Ȳ1 → 0, while A → 1 ⇔ Ȳ1 → ∞. Figure 4 displays two
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possible scenario for the location of the internal interface, namely: Case 1,
where kh1 +e ≤ Ȳ1; Case 2, where kh1 +e > Ȳ1. For illustrative purposes, we
note that Ȳ1 = 0.31 for A = 0.3; Ȳ1 = 0.69 for A = 0.6; Ȳ1 = 1.47 for A = 0.9;
Ȳ1 = 2.65 for A = 0.99; Ȳ1 = 3.8 for A = 0.999. While the phase portraits for
system (50) are qualitatively similar in either case, we will see in Section 5
that particle trajectories are distinctly different for the two different choices.

The ∞−isocline occurs in the region 0 ≤ X ≤ π
2

if f(Ỹ ∗1 ) = 1/e1 > 0

for some value of Ỹ ∗1 . The maximum positive value that f attains in the
upper-fluid layer (where −e1 ≤ Y1 ≤ kh1 + e) is f(−e1) ≈ A + e1 / 1 (cf.
Figure 4) which means, since 1/e1 � 1, that the∞−isocline (and associated
singular point Q̃) in this region will not have any influence on our physical
solution: nevertheless we include it in our picture for completeness. In the
region π

2
< X ≤ π, we observe that at X = π there exists Y1

∗ > Ȳ1 such that
f(Y1

∗) = −ω/M1 = −1/e1: Q1(π, Y1
∗) is a singular point and the∞-isocline,

which lies in the interval
(
π
2
, π
]
, takes its minimum at Q(π, Y1

∗) and tends
to +∞ when X → π

2
+. By symmetry, there is an ∞−isocline in the interval[

−π,−π
2

)
which takes its minimum at Q1 = (−π, Y ∗1 ), and which tends to

∞ as X → 3π
2

−
. To ascertain the nature of the singular point Q1 (and, by

periodicity, Q1) we observe that system (50) has a Hamiltonian structure,
for the Hamiltonian

H1(X, Y1) = M1A cos(X) sinh(Y1)− ωY1 −M1 cos(X) cosh(Y1). (53)

Since Q1 is a critical point of H1, and the Hessian at Q1 is given by(
M1A sinh(Y ∗1 )−M1 cosh(Y ∗1 ) 0

0 −(M1A sinh(Y ∗1 )−M1 cosh(Y ∗1 ))

)
,

it follows by Morse’s lemma [39] that Q1 is a saddle point which lies at the
intersection of four separatrices: two that reach Q1 in infinite time in the
future, and two that need infinite time backwards to reach the saddle point.
Given the 0− and ∞−isoclines, the signs of the vector field components
F (X, Y1) and G(X, Y1) for system (50) are easily determined, leading to the
phase portrait in Figure 5.

For the parameter value A < 1, considerations of Section 3.3 (specifically
relations (34) and (36)) dictate that the surface and interface waves should
be in-phase: this is indeed borne out by the phase-portrait in Figure 5. In
order that system (50) describes physically–relevant solutions, the singular
point Q1 (and its periodic image Q1) must lie beneath the internal wave
profile in terms of physical coordinates, or above the interface in terms of Y1

coordinates. Hence we require kh1 + e < Y ∗1 or, equivalently (cf. Figure 4)

f(kh1 + e) > −1/e1. (54)
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X = 0 X = π
2 X = πX = −π

2X = −π

Separatrix

∞−isocline

(y = 0)

Q1 = (π, Y ∗1 )

(y = h1)
(y = h1 + a1)

(y = h1 − a1)

(y = −a)

Q1 = (−π, Y ∗1 )

Y1 = 0
Y1 = −e1

Y1 = e1

Y1 = kh1

Y1 = kh1 + e

Q̃ = (0, Ỹ ∗1 )

Figure 5: Phase portrait of the upper-fluid layer when A < 1. The dotted
grey lines represent the ∞−isoclines, while the dotted-dashed lines
represent the 0−isoclines. The surface wave profile ( ) has mean-water
level Y1 = 0, corresponding to y = h1. The internal wave profile ( ) has
mean water level Y = kh1, corresponding to y = 0.

4.2.2 System (50) with A = 1:

For A = 1, the relations in (51b) reduce to f(Y1) = e−Y1 = −g(Y1). Ac-
cordingly, the phase portrait for positive values of Y1 rapidly converges to
a series of flat, horizontal lines as Y1 increases, since the velocity field con-
verges exponentially fast to the uniform system Ẋ ≡ −ω and Ẏ1 ≡ 0. We
have G(X, Y1) < 0 for 0 < X < π and vanishes at X = 0 and X = π,
hence these vertical lines comprise the 0−isocline for system (50) in [0, π].
The ∞−isocline consists of points Y1 where cos(X)e−Y1 = 1/e1, and for
X ∈

[
π
2
, π
]

there is no such solution. For each X ∈
[
0, π

2

)
there is a solu-

tion, and for X = 0 we have e−Y
∗
1 = 1/e1 for Y ∗1 = − ln (1/e1). The point

Q1 = (0, Y ∗1 ) is a singular point, and since the Hessian of the Hamiltonian
(53) is

M1

(
eY

∗
1 0

0 −eY ∗
1

)
,
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it follows immediately that Q1 is a saddle point which lies at the confluence
of four separatrices. The maximum value of the∞−isocline is located at Q1,
and it decreases monotonically to −∞ as X → π

2
. The phase portrait for

system (50) when A = 1 is given in Figure 6.

Separatrix

∞−isocline

(y = h1)

Q1 = (0, Y ∗1 )

Y1 = 0
(y = h1 + a1)Y1 = −e1

(y = 0)
(y = −a)

Y1 = kh1

Y1 = kh1 + e

X = 0 X = π
2 X = πX = −π

2
X = −π

Y1 = e1 (y = h1 − a1)

Figure 6: Phase portrait of the upper-fluid layer when A = 1. The dotted
grey line represents the ∞−isocline, while the dotted-dashed lines
represent the 0−isoclines. The surface wave profile ( ) has mean-water
level Y1 = 0, corresponding to y = h1. The internal wave profile ( ) has
mean water level Y = kh1, corresponding to y = 0.

For the parameter value A = 1, relations (34) and (36) imply that the
surface and interface waves should be in-phase. This is consistent with the
phase-portrait in Figure 6. We note that the the surface-wave streamline
must be located above the separatrix for physically–relevant solutions of (50),
and this is the case for −e1 > Y ∗1 , that is,

e1e
e1 < 1. (55)

4.2.3 System (50) with A > 1:

To ascertain the 0−isocline we must determine when G(X, Y1) = 0 in (51a).
Firstly, it is obvious from (51a) that this occurs when X = 0 and X = π.
From direct computation in (51b) we have g(0) = −1, while g′(Y1) > 0 and
limY1→+∞ g(Y1) = +∞ whenever A > 1. Hence, there exists a unique Ȳ1 such
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that g(Ȳ1) = 0, and we can calculate it directly to get

Ȳ1 =
1

2
ln

(
A+ 1

A− 1

)
. (56)

Hence, the 0−isocline is composed of the vertical half-lines X = 0, X = π,
and the horizontal line-segment Y1 = Ȳ1. The value for Ȳ1 as determined
by (56), which is well-defined for A > 1, corresponds to A = coth(Ȳ1);
it follows that A → 1 ⇔ Ȳ1 → ∞, while A → ∞ ⇔ Ȳ1 → 0. As we
elucidate below, and in Section 5 when characterising qualitative features of
the underlying fluid dynamics, the precise value of Ȳ1 plays a pivotal role in
physical considerations.

The study of the∞-isocline, where F (X, Y1) = 0 in (51a), can be achieved
through examining f(Y1) in (51b). We have f(Y1) > 0, f(0) = A, and
limY1→+∞ f(Y1) = +∞ since A > 1. It follows from f ′(Y1) = g(Y1) that
the function f has a minimum at Y1 = Ȳ1, which can be calculated to get
f(Ȳ1) = 1/ sinh(Ȳ1) < A. We note that when A → ∞ the minimum value
f(Ȳ1) tends to A, with both values becoming infinite; when A → 1 the
minimum of f tends to zero, which follows from (51b) since limA→1 f(Y1) =
e−Y1 . Furthermore, if Ŷ1 > Ȳ1 is the unique value such that f(Ŷ1) = A, then
the function f(Y1) is invertible on the set Y1 ∈ (Ŷ1,∞); a schematic for f(Y1)
is given in Figure 7.

Y1

f (Y1)

f (−e1) ≈ A + e1

Ȳ10−e1 Y ∗1Ỹ ∗1

1/e1 = f (Ỹ ∗1 ) = f (Y ∗1 )

#2 : kh1

f (kh1)

f (kh1)

#1 : kh1

Figure 7: Schematic of f(Y1) for A > 1, where f(0) = A, with A =
cosh(Ȳ1)/ sinh(Ȳ1), and the minimum value attained is f(Ȳ1) = 1/ sinh(Ȳ1).

For ≤ π
2
≤ X ≤ π , F (X, Y1) is strictly positive since M1 > 0, hence

there are no ∞-isocline or singular points in this region. In the region 0 ≤
X < π

2
, the ∞-isocline is given by points (X, Y1) where cos(X)f(Y1) =

ω/M1 = 1/e1, therefore, since the left-hand side is maximised at X = 0,
an ∞−isocline exists in this region if f(Y ∗1 ) = 1/e1 for some value of Y ∗1 .
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It follows from the schematic in Figure 7 that, if e1 < maxY1 1/f(Y1) =
sinh(Ȳ1), there exists a pair of values, Ỹ ∗1 , Y ∗1 with Ỹ ∗1 ≤ Y ∗1 , say, such
that f(Y ∗1 ) = f(Y ∗1 ) = 1/e1. We denote these singular points of the system
(50) by Q̃1 = (π, Ỹ ∗1 ), Q1 = (π, Y ∗1 ), and let us first examine the point Q1.
By virtue of the properties of f(Y1), the ∞-isocline is given in the interval
X ∈

[
0, π

2

)
by the curve (X,α1(X)), where α1(X) :

[
0, π

2

)
→ [Y1

∗,+∞) is
the inverse of the function f(Y1) restricted to the interval [Y1

∗,+∞). We
note that α1(0) = Y1

∗, limX→π
2
+ α1(X) = +∞ and, in the interval

[
0, π

2

)
, α1

is an increasing function. Given the Hamiltonian (53) for system (50), the
Hessian at Q1 is(

M1 cosh(Y ∗1 )−M1A sinh(Y ∗1 ) 0
0 −(M1 cosh(Y ∗1 )−M1A sinh(Y ∗1 ))

)
,

and arguments similar to those above involving Morse theory imply that
Q1 is a saddle point which lies at the intersection of four separatrices: two
that reach Q1 in infinite time in the future, and two that need infinite time
backwards to reach the saddle point. Analogous reasoning hows that the
singular point Q̃1 is also a saddle point, and the∞−isocline emanating from
Q̃1 is qualitatively similar to that described for Q1, except ’flipped’ vertically.
Having characterised the 0− and ∞−isoclines, we can easily determine the
signs of the two components F (X, Y1) and G(X, Y1) of the vector field given
by system (50), and employing symmetry properties of (50) we infer the
phase portrait behaviour in the region −π ≤ X ≤ 0. The complete phase
portrait of system (50) is given in Figure 8.

The surface wave profile has a mean-water level Y1 = 0, which corresponds
to y = h1, while the internal wave profile has a mean water level Y = kh1,
which corresponds to y = 0. From the phase portrait in Figure 8 we see that
there are two qualitatively different fluid motions possible in the upper-fluid
layer, which depends on the location of Y = kh1.

In Case 1, kh1 ≤ Ȳ1 and the internal wave profile is in-phase with the
surface wave: in this case, all streamlines have their crests located at X = 0.
If kh1 = Ȳ1 then we see from Figure 8 that the motion is restricted to a
horizontal line and the internal interface is flat: e = 0 in this scenario (this
also follows from (23) and (56), which imply that a = 0 for kh1 = Ȳ1). We
note that whenever kh1 ≤ Ȳ1 there is an additional bound on e, namely
e < kh1− Ȳ1. In Case 2, kh1 > Ȳ1 and the internal wave is now out-of-phase
with the surface wave. In this scenario, all streamlines beneath the line
Y1 = Ȳ1 have their crest located at X = 0, with the amplitudes diminishing
steadily until they vanish at the 0−isocline Y1 = Ȳ1. As we move above
Y1 = Ȳ1 the amplitude of the streamlines increase steadily, until the reach
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X = πX = −π
2

X = −π X = π
2

X = 0

Y1 = Ȳ1

Separatrix

∞−isocline

Y1 = 0

Q1 = (0, Y ∗1 )

Y1 = −e1 (y = h1 + a1)
(y = h1)

Y1 = e1 (y = h1 − a1)

Q̃1 = (0, Ỹ ∗1 )

#1: Y1 = kh1 ≤ Ȳ1

#2: Y1 = kh1 > Ȳ1

(y = 0)

(y = 0)

∞−isocline
Separatrix

Figure 8: Phase portrait for the upper-fluid layer when A > 1. The dotted
grey lines represent the ∞−isoclines, with the dotted-dashed lines
representing the 0−isoclines. The surface wave profile ( ) has mean-water
level Y1 = 0, corresponding to y = h1. The internal wave profile is illustrated
for two differing values of the mean water level Y = kh1, corresponding to
y = 0: kh1 ≤ Ȳ1 in Case 1 ( ), whereas kh1 > Ȳ1 for Case 2 ( ).

a maximum at Y1 = kh1, which corresponds to the internal wave profile.
However, the vertical velocity reverses direction as we pass Y1 = Ȳ1, and so
the line X = 0 now corresponds to the wave trough.

This phase-plane analysis is congruent with the deductions made in Sec-
tion 3.3 through the consideration of dispersion relations. For the parameter
value A > 1, relations (34) and (36)) permit the existence of both in-phase,
and out-of-phase, surface and interface waves: this is indeed borne out by
the phase-portrait in Figure 5. In particular, for Case 1, by (56) we have
A = coth(Ȳ1) ≤ coth(kh1), which implies, by (34), that A = A1 and so waves
must be in-phase by (36). Conversely, for Case 2, again by (56) we have
A = coth(Ȳ1) ≥ coth(kh1), which implies, by (34), that A = A2 and so these
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waves must be out-of-phase by (36).
In order for system (50) to describe physically–relevant solutions, the

singular points Q̃1 and Q1 must lie outside the upper-fluid layer, hence we
must have Ỹ ∗1 < −e1 and kh1 + e < Y ∗1 or, equivalently (cf. Figure 7),

max {f(−e1), f(kh1 + e)} < 1/e1. (57)

Since e1 � 1 in the linear regime, the only way this condition could break-
down is for A to be sufficiently large (and Ȳ1 to be correspondingly small),
cf. Figure 7 and the discussions. Since f(−e1) ≈ A + e1, if condition (57)
holds we must have

e2
1 + Ae1 ≈ Ae1 < 1,

Remark 14 Although not lying within the physical regime, we note that
in the limit 1/e1 → sinh(Ȳ1)+ the two singular points Q̃1 and Q1 coalesce,

with Ỹ1
∗ → Ȳ1

−
, Y1

∗ → Ȳ1
+

. In the process, the two singular points converge
at (0, Ȳ1), and when 1/e1 = sinh(Ȳ1) the respective horizontal separatrices
of these singular points merge to coincide with the line Y1 = Ȳ1, and the
∞−isoclines ‘intersect’. Hence (0, Ȳ1) is a bifurcation point when 1/e1 =
sinh(Ȳ1), and it is interesting from the mathematical point of view to discuss
this phenomenon as e1 increases. In this case 1/e1 < sinh(Ȳ1) and (0, Ȳ1)
is a degenerate saddle, with bifurcation occurring along the line Y1 = Ȳ1 as
two singular points are created from (0, Ȳ1): one moving in the decreasing
X−direction, as well as a dual one moving in the increasing X−direction (by
virtue of symmetry with respect to the Y1−axis). In summary, as e1 decreases
(1/e1 > sinh(Ȳ1)), bifurcation occurs at (0, Ȳ1) with singular points moving
along the Y1−axis; whereas when e1 increases (1/e1 < sinh(Ȳ1)) the singular
points bifurcate along the line Y1 = Ȳ1. Both lines are actually branches of
the 0−isocline, as is shown in Figure 8.

5 Particle trajectories

In this section we pursue a Lagrangian description of fluid motion, proving
results concerning particle trajectories expressed in terms of the physical co-
ordinates. Firstly, we prove that there does not exist any closed particle paths
in either the lower, or upper, fluid layers (equivalently, neither the system
(44a), nor (44b), prescribe any fluid particle trajectories (x(t), y(t)) which
are periodic). Indeed, we establish that all particles experience a forward
drift. Wave-induced mean-flows have been the focus of systematic investi-
gation since the observation of Stokes (1847) that fluid particles experience
a mean net drift velocity in the direction of wave motion for surface waves.
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However, the Stokes’ drift phenomenon is intrinsically nonlinear (cf. [26, 44])
since fluid drift occurs at order e2, where e relates to the wave steepness. In
this section we establish that all particles undergoing fluid motion induced by
linear coupled surface and internal waves experience a forward drift. Follow-
ing this, we provide a complete qualitative description of particle motion in
both fluid layers: our analysis reveal some complex, and surprising, particle
trajectory patterns in the upper fluid layer. It has commonly been assumed
(cf. [1]) that fluid particles undertake an orbital motion for internal waves,
which is greatest at the pycnocline, and we demonstrate that this is not al-
ways the case. Finally, we establish monotonicity properties for the forward
drift experienced by fluid particles for a range of possible physical scenarios.

In Section 4.1 we constructed phase portraits for systems (46) and (50),
which describe fluid motion in the lower- and upper-fluid layers, respectively.
The analysis is performed in terms of the (X, Y )− and (X, Y1)−variables,
which pertain to moving reference frames travelling horizontally with speed
c with respect to the original physical coordinates (x, y). From the phase por-
traits in Figures 3, 5, 6, 8 we have determined the physically-admissible fluid
trajectories in each fluid layer. In particular, if we suppose that (X(t), Y (t))
is a solution of (46) in the lower-fluid layer with initial value (X(0), Y (0)) =
(π, Y 0), then focus is restricted to Y 0 ∈ [0, k(h − a)]. Correspondingly, if
(X(t), Y1(t)) is a solution to (50) in the upper-fluid layer with (X(0), Y1(0)) =
(π, Y 0

1 ), then Y 0
1 ∈ [e1, kh1 + e] if a/a1 > 0, whereas Y 0

1 ∈ [e1, kh1 − e] if
a/a1 < 0. Furthermore, as motion is steady in the moving frames it fol-
lows that fluid particle trajectories coincide with the streamlines (note that
Ẋ < 0 uniformly along fluid streamlines in the moving frames) and a com-
plete qualitative picture of fluid motion may be ascertained. That a compre-
hensive description of the underlying fluid motion is achievable in this setting
is primarily due to (46) and (50) being autonomous systems.

When formulated in terms of the physical coordinates (x, y) in a fixed
reference frame, it is more difficult to elucidate the properties of the under-
lying fluid motion. This is hardly surprising since motion in the lower- and
upper-fluid layers is described now by nonautonomous systems, (44a) and
(44b), respectively. Nevertheless, we may use properties established during
the phase-portrait analysis of Section 4.1 to infer a physical description of
fluid motion by reversing the coordinate transformations (45), and (49), using

x(t) =
X(t)

k
+ ct, y(t) =

Y (t)

k
− h, (58)

in the lower-fluid layer, and

x(t) =
X(t)

k
+ ct, y(t) = h1 −

Y1(t)

k
. (59)
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in the upper-fluid layer, respectively. Note that the reflection term involved in
the vertical coordinate transformation in (59) reverses the vertical orientation
of fluid motion when expressed in terms of the physical coordinate y, as
opposed to the Y1 coordinate.

The next lemma is stated for motion in the lower fluid layer, but applies
similarly to fluid motion in the upper layer. Suppose (X(t), Y (t)) describes a
streamline in the lower-fluid layer such that (X(0), Y (0)) = (π, Y 0), and let
tY 0(−π) denote the time it takes for the particle to intersect the line X = −π.

Lemma 5.1 If the particle trajectory prescribed by (x(t), y(t)) is a closed
path with period τ then, necessarily, we have τ = 2π

ω
. Conversely, suppose

tY 0(−π) = 2π
ω

, then the particle path prescribed by (x(t), y(t)) is closed.

Proof The proof follows from the periodicity of the system (46), or (50),
with respect to X, together with the definitions (58) and (59)— cf. [12] for
proof of a similar result.

5.1 Lower-fluid layer

The main result for motion in the lower-fluid layer is stated as follows.

Theorem 5.2 The system (44a) has no solutions (x(t), y(t)) which are peri-
odic. Accordingly, there are no closed particle paths in the lower-fluid layer,
instead all fluid particles experience a positive horizontal drift.

System (44a) is qualitatively similar to one which describes motion of a
surface wave propagating on a single homogeneous fluid layer of finite depth.
Accordingly, the proof of Theorem 5.2 runs along the lines of analysis first
performed in [12]. For the sake of completeness, and as a useful comparison
with the more complex motion of the upper-fluid layer, we present a proof.

Proof Bearing in mind Lemma 5.1, it suffices to show that tY 0(−π) > 2π
ω

in order to prove the theorem. We start with the case Y 0 = 0, where the
streamline is located on the flat bed and so Y (t) ≡ 0 and X(t) can be
explicitly obtained by solving Ẋ = M cos(X)−ω, with X(0) = π. It follows
that

t0(−π) =

∫ π

−π

ds

ω −M cos(s)
= 2π

√
1

ω2 −M2
>

2π

ω
, (60)

where we use the fact that M < ω (by (47)) and the integral∫ z

0

ds

ω −M cos(s)
= 2

√
1

ω2 −M2
arctan

(√
ω +M

ω −M
tan
(z

2

))
, z > 0.
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For Y 0 ∈ [0, kh− e], we have dY/dt > 0 for X ∈ (0, π), and dY/dt < 0 when
X ∈ (−π, 0). If this streamline intersects the line X = π

2
at the value Y = Y ,

then (X(t), Y (t)) lies below the line Y = Y for X(t) ∈ [−π,−π
2
)∪ (π

2
, π], and

lies above the line for X(t) ∈ (−π
2
, π

2
). Thus,

Ẋ = M cosh(Y ) cos(X)− ω ≥M cosh(Y) cos(X)− ω, t ≥ 0. (61)

Introducing the differential equation

Ẋ = M cosh(Y) cos(X)− ω,

with X(0) = π, it follows immediately from (61) and the fact that X(0) =
X(0) = π that X(t) ≥ X(t) for t ≥ 0. Therefore tY 0(−π) > t∗, where t∗ is
the time it takes for X(t∗) = −π. In a manner similar to solving (60), the
value of t∗ can be explicitly computed as being

t∗ = 2π

√
1

ω2 −M2 cosh2(Y)
>

2π

ω
,

and hence tY 0(−π) > 2π
ω

. This completes the proof.

The analysis of system (46) undertaken in Section 4.1, coupled with (58) and
Theorem 5.2, facilitates a qualitative description of physical particle motion
in the lower-fluid layer as prescribed by (44a). Assume a fluid particle is
initially at its greatest depth y(0) = y0: we label this position A. This
corresponds to X(0) = π, and since Ẋ < 0 along streamlines it follows that,
in the moving frame, the variable X(t) decreases continuously from π to
−π, and we have: ẋ < 0, ẏ > 0 for X(t) ∈ (π/2, π); ẋ > 0, ẏ > 0 for
X(t) ∈ (0, π/2); ẋ > 0, ẏ < 0 for X(t) ∈ (−π/2, 0); ẋ < 0, ẏ < 0 for
X(t) ∈ (−π,−π/2); . The particle returns to its lowest position in the fluid
layer (with depth y = y0) at time t = tY 0(−π) > 2π/ω, having experienced
a positive horizontal drift: we label this position B.
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A B C D

Figure 9: Schematic of a typical particle trajectory in the lower-fluid layer,
representing its location at time: t = 0 (A); t = tY0(−π) (B); t = 2tY0(−π)
(C); t = 3tY0(−π) (D).

Proposition 5.3 The horizontal drift experienced by a fluid particle in the
lower fluid layer over one wave period decreases strictly with depth.

Proof The horizontal drift experienced by a fluid particle over one wave
period is given by D(Y 0) = x(tY 0(−π)) − x(π) = (ωtY 0(−π) − 2π)/k > 0,
which can be expressed from (46a) as

D(Y 0) = 2

∫ π

0

M cosh(Y ) cos(X)dX

ω −M cosh(Y ) cos(X)

Let Y 1 < Y 0, with Ỹ = Ỹ (X) denoting the streamline for which Ỹ (π) = Y 1.

D(Y 0)−D(Y 1) = 2

∫ π

0

ωM
(

cosh(Y )− cosh(Ỹ )
)

cos(X)

(ω −M cosh(Y ) cos(X))
(
ω −M cosh(Ỹ ) cos(X)

)dX,
which, in the limit Y 1 → Y 0, has the same sign as

lim
Ỹ→Y

2

∫ π

0

ωM
(

cosh(Y )− cosh(Ỹ )
)

cos(X)

(ω −M cosh(Y ) cos(X))
(
ω −M cosh(Ỹ ) cos(X)

)
(Y − Ỹ )

dX

= 2

∫ π

0

ωM cosh(Y ) cos(X)

(ω −M cosh(Y ) cos(X))2dX > 2

∫ π

0

ωM cosh(Y ) cos(X)

ω2
dX

> 2

∫ π

0

M

ω
cosh(Y) cos(X)dX = 0.

Thus D(Y 0) > D(Y 1), and the particle drift is decreasing with depth.
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5.2 Upper-fluid layer

In the upper fluid layer the horizontal drift experienced by a fluid particle
over one wave period is given by D(Y 0

1 ) = x(tY 0
1

(−π))−x(π) = (ωtY 0
1

(−π)−
2π)/k > 0, which can be expressed from (50) as

D(Y 0
1 ) = 2

∫ π

0

M1f(Y1) cos(X)dX

ω −M1f(Y1) cos(X)
.

If Y 1
1 < Y 0

1 , where Ỹ1 = Ỹ1(X) denotes the streamline with Ỹ1(π) = Y 1
1 , then

D(Y 0
1 )−D(Y 1

1 ) = 2

∫ π

0

ωM1

(
f(Y1)− f(Ỹ )

)
cos(X)

(ω −M1f(Y1) cos(X))
(
ω −M1f(Ỹ ) cos(X)

)dX.
In the limit Y 1

1 → Y 0
1 , the drift D(Y 0

1 )−D(Y 1
1 ) has the same sign as

lim
Ỹ1→Y1

2

∫ π

0

ωM1

(
f(Y1)− f(Ỹ1)

)
cos(X)

(ω −M1f(Y1) cos(X))
(
ω −M1f(Ỹ1) cos(X)

)
(Y1 − Ỹ1)

dX

= 2

∫ π

0

ωM1f
′(Y1) cos(X)

(ω −M1f(Y1) cos(X))2dX=2

∫ π

0

ωM1g(Y1) cos(X)

(ω −M1f(Y1) cos(X))2dX. (62)

As with the phase-plane analysis of Section 4.2, the qualitative behaviour
of fluid particles in the upper-layer is markedly different depending on the
parameter values A < 1, A = 1, A > 1. We deal with these cases separately.

5.2.1 A > 1

Although streamline patterns in the moving frame are more varied for the
parameter value A > 1, it turns out that the behaviour of fluid particle
trajectories in this regime is the simplest to describe. We state our main
result as follows.

Theorem 5.4 Let A > 1. There are no closed particle paths in the upper-
fluid layer whose motion is governed by the system (44b). That is, the system
(44b) has no solutions (x(t), y(t)) which are periodic.

Proof With reference to Figure 8, streamlines of the upper-fluid layer are
restricted to the phase-portrait region for which Y 0

1 ∈ [e1, kh1 + e]. There is
a change in the qualitative behaviour of streamlines depending on whether
kh1 < Ȳ1 or kh1 > Ȳ1, where Ȳ1 is prescribed by (56), and so we address
these scenarios separately.
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Case 1: kh1 ≤ Ȳ1. In this setting the surface and internal wave are
in-phase. First assume that Y 0

1 < Ȳ1: along all such streamlines we have
dY1/dt < 0 for X ∈ (0, π), and dY1/dt > 0 when X ∈ (−π, 0). Fixing a
streamline, and supposing it intersects the line X = π

2
at Y1 = Y1, then we

deduce that (X(t), Y1(t)) lies below the line Y1 = Y1 for X(t) ∈ (−π
2
, π

2
),

and lies above the line for X(t) ∈ [−π,−π
2
)∪ (π

2
, π]. Using the monotonicity

properties of f(Y1) for Y1 ≤ Ȳ1 (cf. Figure 7) we infer that

Ẋ = M1f(Y1) cos(X)− ω ≥M1f(Y1) cos(X)− ω, t ≥ 0. (63)

Noting the similarities between inequalities (61) and (63), the subsequent
arguments used in the proof of Theorem 5.2 carry over here (applied now
to the differential equation Ẋ = M1f(Y1) cos(X) − ω) and we deduce that
tY 0

1
(−π) > t∗, with

t∗ = 2π

√
1

ω2 −M2
1 f

2(Y1)
>

2π

ω
.

For the case Y1 = Ȳ1, in which the streamline is the flat 0−isocline, we note
that f(Y1) ≡ f(Y1) ≡ f(Ȳ1) and the inequality in relation (63) becomes an
equality, leading to

tȲ1(−π) = t∗ = 2π

√
1

ω2 −M2
1 f

2
(
Ȳ1

) > 2π

ω
.

Case 2: kh1 > Ȳ1. In this setting the surface and internal waves are out-
of-phase, and the upper-fluid layer comprises two regions with qualitatively
disparate streamlines. The first region consists of streamlines where Y 0

1 ∈
[e1, Ȳ1) (and so includes the free-surface): the argumentation employed in
Case 1, above, is applicable to this region, and so tY 0

1
(−π) > 2π

ω
for these

streamlines. The second region is composed of streamlines for which Y 0
1 ∈

(Ȳ1, kh1 + e] (and includes the internal interface): these regions are separated
by the flat 0−isocline streamline Y = Ȳ1. Streamlines in the second region
are ‘out-of-phase’ from those in the first, in the sense that there is a reversal
in the vertical direction of motion, meaning that dY1/dt > 0 for X ∈ (0, π)
and dY1/dt < 0 for X ∈ (−π, 0). Once more we fix a streamline, and let
Y1 = Y1 denote the location where this streamline intersects X = π

2
. We

observe that the streamline now lies above Y1 = Y1 for X(t) ∈ (−π
2
, π

2
), and

lies below this line for X(t) ∈ [−π,−π
2
) ∪ (π

2
, π]. However, there is also a

reversal in the monotonicity properties of f(Y1) for Y1 > Ȳ1 (cf. Figure 7),
and so inequality (63) applies also to streamlines in this region. Repeating
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the subsequent arguments of Case 1, above, enables us to conclude that
tY 0

1
(−π) > t∗ > 2π

ω
in this second streamline region.

The qualitative nature of fluid particle trajectories in the upper-fluid layer
prescribed by (44b) when A > 1 can now be determined from the analysis of
system (50) performed in Section 4.2, coupled with transformation (59) and
Theorem 5.4. Note that, along streamlines in the moving frame, Ẋ(t) < 0 for
solutions of system (50): X(t) decreases continuously from X = π to reach
X = −π in time tY 0

1
(−π).

For the sake of generality, we assume that kh1 > Ȳ1: if the alternative
is true, simply restrict attention to streamlines with Y 0

1 ∈ [e1, Ȳ1) in this
discussion. For streamlines in this region (which corresponds physically to
the top section of the upper-fluid layer) we have: ẋ < 0, ẏ > 0 for X(t) ∈
(π/2, π); ẋ > 0, ẏ > 0 for X(t) ∈ (0, π/2); ẋ > 0, ẏ < 0 for X(t) ∈ (−π/2, 0);
ẋ < 0, ẏ < 0 for X(t) ∈ (−π,−π/2). Fluid particles in this region return to
their lowest position in the fluid layer, with depth y = y0, say, after the time
tY 0

1
(−π), having experienced a forward horizontal drift x(tY 0

1
(−π))− x(0) =(

tY 0
1

(−π)ω − 2π
)
/k > 0. This particle motion is captured in schematic (a)

of Figure 10.
At the 0−isocline Y = Ȳ1 the motion is given by ẋ < 0 for X(t) ∈

(π/2, π); ẋ > 0 for X(t) ∈ (0, π/2); ẋ > 0 for X(t) ∈ (−π/2, 0); ẋ < 0 for
X(t) ∈ (−π,−π/2). Fluid particles located on the 0−isocline experience a
forward horizontal drift x(tȲ1(−π)) − x(0) = (tȲ1(−π)ω − 2π) /k > 0. This
motion is represented by schematic (b) of Figure 10.

For streamlines with Y 0
1 ∈ (Ȳ1, kh1 + e] (which corresponds physically

to the bottom region of the upper-fluid layer) we get: ẋ < 0, ẏ < 0 for
X(t) ∈ (π/2, π); ẋ > 0, ẏ < 0 for X(t) ∈ (0, π/2); ẋ > 0, ẏ > 0 for
X(t) ∈ (−π/2, 0); ẋ < 0, ẏ > 0 for X(t) ∈ (−π,−π/2). Fluid particles
in this region return to their highest position in the fluid layer, with depth
y = y0, say, after the time tY 0

1
(−π), having experienced a forward horizontal

drift x(tY 0
1

(−π))− x(0) =
(
tY 0

1
(−π)ω − 2π

)
/k > 0. This particle motion is

depicted in schematic (c) of Figure 10.
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A B C D

A B C D

(a)

(b)

(c)

Figure 10: Schematics of typical trajectories for particles (a), (b), and (c) in
the upper-fluid layer, for A > 1 and assuming that kh1 > Ȳ1. Their loca-
tion at times t = 0, tY 0

1
(−π), 2tY 0

1
(−π), 3tY 0

1
(−π) are denoted by A,B,C,D,

respectively.

Proposition 5.5 Suppose A > 1. The horizontal drift experienced by a fluid
particle in the upper fluid layer over one wave period decreases with depth
for fluid motion of the type illustrated in schematic (a) of Figure 10, while it
increases with depth for fluid motion of the type illustrated in schematic (c)
of Figure 10. Accordingly, the minimum horizontal drift experienced by fluid
particles occurs at Y = Ȳ1, as illustrated in schematic (b) of Figure 10.

Proof In the setting A > 1, along streamlines for which Y 0
1 ∈ [e1, Ȳ1),

the function f(Y1) is positive and monotonically decreasing, while g(Y1) is
negative and monotonically increasing. Hence, from (62), the drift D(Y 0

1 )−
D(Y 1

1 ) has the same sign as

2

∫ π

0

ωM1g(Y1) cos(X)

(ω −M1f(Y1) cos(X))2dX < 2

∫ π

0

ωM1g(Y1) cos(X)

ω2
dX

< 2

∫ π

0

M1

ω
g(Y1) cos(X)dX = 0.
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Thus D(Y 0
1 ) > D(Y 1

1 ) and, in terms of physical variables, the particle drift is
decreasing with depth along these streamlines. Along streamlines for which
Y 0

1 ∈ (Ȳ1, kh1 + e], the function f(Y1) is positive and monotonically increas-
ing, while g(Y1) is positive and monotonically increasing. By (62), the drift
D(Y 0

1 )−D(Y 1
1 ) has the same sign as

2

∫ π

0

ωM1g(Y1) cos(X)

(ω −M1f(Y1) cos(X))2dX > 2

∫ π

0

ωM1g(Y1) cos(X)

ω2
dX

> 2

∫ π

0

M1

ω
g(Y1) cos(X)dX = 0.

Thus D(Y 0
1 ) < D(Y 1

1 ) and, in terms of physical variables, the particle drift is
increasing with depth along these streamlines. It follows that the minimum
horizontal drift experienced by fluid particles must occur at the 0−isocline
Y = Ȳ1.

5.2.2 A = 1

Due to the straightforward form that the functions f(Y1), g(Y1) assume in
the setting A = 1, a comprehensive qualitative description of fluid motion
can be achieved.

Theorem 5.6 Let A = 1. There are no closed particle paths in the upper-
fluid layer whose motion is governed by the system (44b).

Proof For A = 1 we have f(Y1) = e−Y1 = −g(Y1), and it can easily be
shown that the analogue of inequality (63) holds for streamlines in the region
Y 0

1 ∈ [e1, kh1 + e]. Consequently,

tY 0
1

(−π) > 2π

√
1

ω2 −M2
1 f

2(Y1)
>

2π

ω
.

It follows immediately that: ẋ < 0, ẏ > 0 for X(t) ∈ (π/2, π); ẋ > 0, ẏ > 0
for X(t) ∈ (0, π/2); ẋ > 0, ẏ < 0 for X(t) ∈ (−π/2, 0); ẋ < 0, ẏ < 0
for X(t) ∈ (−π,−π/2). Fluid particle motion matches that illustrated in
schematic (a) of Figure 10, with all fluid particles experiencing a forward
drift.

Proposition 5.7 Suppose A = 1. The horizontal drift experienced by a fluid
particle in the upper fluid layer over one wave period is decreasing with depth.

Proof In this setting f(Y1) is positive and monotonically decreasing, while
g(Y1) is negative and monotonically increasing. Thus, as in the first part of
the proof of Proposition 5.5 above, D(Y 0

1 ) > D(Y 1
1 ), and the particle drift is

decreasing with depth in terms of physical variables.
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5.2.3 A < 1

Although the phase-portrait for the streamlines appears more straightforward
whenA < 1, it turns out that particle motion is more convoluted and intricate
in this case than for A > 1.

Theorem 5.8 Let A < 1. There are no closed particle paths in the upper-
fluid layer whose motion is governed by the system (44b).

Proof In this setting, f(Y1) is monotonically decreasing (cf. Figure 4) and
along streamlines we have dY1/dt < 0 for X ∈ (0, π), and dY1/dt > 0 when
X ∈ (−π, 0) (cf. Figure 5). Fix a streamline by choosing Y 0

1 ∈ [e1, kh1 + e],
and suppose it intersects X = π

2
at Y1 = Y1, then it follows as before that

Ẋ = M1f(Y1) cos(X)− ω ≥M1f(Y1) cos(X)− ω, t ≥ 0.

As in the proof of Theorem 5.4, we deduce that tY 0
1

(−π) > t∗, with

t∗ = 2π

√
1

ω2 −M2
1 f

2(Y1)
>

2π

ω
.

For A < 1 there is a change in the qualitative behaviour of particle motion
associated with the change in sign of f(Y1) that potentially occurs at Y1 = Ȳ1,
as seen in Figure 4. We therefore consider separately the fluid motion for
two distinct cases.

Case 1: kh1 + e ≤ Ȳ1. In this regime, f(Y1) is positive and monotonically
decreasing (cf. Figure 4) and ẋ < 0, ẏ > 0 for X(t) ∈ (π/2, π); ẋ > 0,
ẏ > 0 for X(t) ∈ (0, π/2); ẋ > 0, ẏ < 0 for X(t) ∈ (−π/2, 0); ẋ < 0,
ẏ < 0 for X(t) ∈ (−π,−π/2). Fluid particles in this region return to their
lowest position in the fluid layer, with depth y = y0, say, after the time
tY 0

1
(−π), having experienced a forward horizontal drift x(tY 0

1
(−π))− x(0) =(

tY 0
1

(−π)ω − 2π
)
/k > 0. This particle motion is captured in schematic (a)

of Figure 11.
Case 2: kh1 + e > Ȳ1. In this case, along streamlines for which Y 0

1 ≤ Ȳ1,
fluid particles will possess the same qualitative motion as discussed in Case
1, above, and illustrated in schematic (a) of Figure 11. There is a change in
the sign of f(Y1) occurring when Y1 = Ȳ1.

Let us first suppose that Y 0
1 > Ȳ1 defines a streamline which intersects

Y1 = Ȳ1 at some value X̄ ∈ (π/2, π) (and, by symmetry, X̄ ∈ (−π,−π/2)).
Then we have the following motion: ẋ > 0, ẏ > 0 for X(t) ∈ (X̄, π); ẋ < 0,
ẏ > 0 for X(t) ∈ (π/2, X̄); ẋ > 0, ẏ > 0 for X(t) ∈ (0, π/2); ẋ > 0, ẏ < 0
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for X(t) ∈ (−π/2, 0); ẋ < 0, ẏ < 0 for X(t) ∈ (−X̄,−π/2); ẋ > 0, ẏ < 0 for
X(t) ∈ (−π,−X̄). Particle trajectories which exhibit such motion are given
in schematics (b) and (c) of Figure 11.

If Y 0
1 > Ȳ1 is such that the streamline intersects Y1 = Ȳ1 at X̄ = π/2 (and

X̄ = −π/2, by symmetry), then ẋ > 0 for X(t) ∈ (−π,−π/2) ∪ (−π/2, 0) ∪
(0, π/2)∪(π/2, π), and ẏ > 0 for X(t) ∈ (0, π), with ẏ < 0 for X(t) ∈ (−π, 0).
Such a particle trajectory is illustrated in schematic (d) of Figure 11.

Suppose now that Y 0
1 > Ȳ1 is such that the streamline intersects Y1 = Ȳ1

at X̄ ∈ (0, π/2) (and, by symmetry, X̄ ∈ (−π/2, 0)), then we have the
following motion: ẋ > 0, ẏ > 0 for X(t) ∈ (π/2, π); ẋ < 0, ẏ > 0 for
X(t) ∈ (X̄, π/2); ẋ > 0, ẏ > 0 for X(t) ∈ (0, X̄); ẋ > 0, ẏ < 0 for
X(t) ∈ (−X̄, 0); ẋ < 0, ẏ < 0 for X(t) ∈ (−π/2,−X̄); ẋ > 0, ẏ < 0
for X(t) ∈ (−π,−π/2). Examples of particle trajectories displaying such
qualitative behaviour are given in schematics (e) and (f) of Figure 11.

Finally, for streamlines prescribed by Y 0
1 > Ȳ1 which intersect Y1 = Ȳ1

at X̄ = 0, or which do not intersect Y1 = Ȳ1, the function f(Y1) is negative
and monotonically decreasing, giving us the motion: ẋ > 0, ẏ > 0 for X(t) ∈
(π/2, π); ẋ < 0, ẏ > 0 for X(t) ∈ (0, π/2); ẋ < 0, ẏ < 0 for X(t) ∈ (−π/2, 0);
ẋ > 0, ẏ < 0 for X(t) ∈ (−π,−π/2). A particle trajectory for this case is
given in schematic (g) of Figure 11.
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Figure 11: Schematics of typical trajectories for particles in the upper-fluid
layer for A < 1, assuming that kh1 + e > Ȳ1. Their location at times
t = 0, tY 0

1
(−π), 2tY 0

1
(−π), 3tY 0

1
(−π) are denoted by A,B,C,D, respectively.
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Proposition 5.9 Suppose A < 1. For fluid motion of the type illustrated in
schematic (a) in Figure 11, the horizontal drift experienced by a fluid particle
in the upper fluid layer over one wave period is decreasing with depth.For fluid
motion of the type illustrated in schematic (g) in Figure 11, the horizontal
drift experienced by a fluid particle over one wave period increases with depth.

Proof In the setting A < 1, along streamlines for which Y 0
1 ≤ Ȳ1 the function

f(Y1) is positive and monotonically decreasing, while g(Y1) is negative and
monotonically increasing. Hence, from (62), the drift D(Y 0

1 ) − D(Y 1
1 ) has

the same sign as

2

∫ π

0

ωM1g(Y1) cos(X)

(ω −M1f(Y1) cos(X))2dX < 2

∫ π

0

ωM1g(Y1) cos(X)

ω2
dX

< 2

∫ π

0

M1

ω
g(Y1) cos(X)dX = 0.

Thus D(Y 0
1 ) > D(Y 1

1 ) and, in terms of physical variables, the particle drift is
decreasing with depth along these streamlines. These are the only streamlines
which feature in the physical regime with kh1 + e ≤ Ȳ1.

The setting kh1 + e > Ȳ1 encompasses streamlines whereby Y 0
1 ≤ Ȳ1: the

above considerations apply directly to these streamlines. For the remaining
streamlines in this setting, whereby Y 0

1 > Ȳ1, consider either those which
do not intersect Y1 = Ȳ1, or which intersect Y1 = Ȳ1 at the point X̄ =
0. For these streamlines, the function f(Y1) is negative and monotonically
decreasing, as is the function g(Y1). Hence, by (62) the drift D(Y 0

1 )−D(Y 1
1 )

has the same sign as

2

∫ π

0

ωM1g(Y1) cos(X)

(ω −M1f(Y1) cos(X))2dX > 2

∫ π

0

ωM1g(Y1) cos(X)

ω2
dX

> 2

∫ π

0

M1

ω
g(Y1) cos(X)dX = 0.

Thus D(Y 0
1 ) < D(Y 1

1 ) and, in terms of physical variables, the particle drift
is increasing with depth along these streamlines.
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