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Abstract—In precision circuits validating the performance in 

the presence of low-frequency noise is particularly challenging 

especially at transistor level, as long simulations are required to 

observe the low frequency performance. However, running such 

system-level simulations is rarely practical at transistor level as 

these simulations can take days to weeks to complete. This work 

presents a high-level model in Python for generating low-

frequency noise which can be used for validating the low-

frequency performance of a design in a timely manner. 

Simulation times can be reduced from days to minutes, enabling 

designers to achieve a high-level simulation coverage. With 

Python and NumPy this can be achieved using open-source 

software tools at no cost. 

Keywords—Python, System-Level Design, Behavioral 
Modeling, Flicker Noise, Switched-Capacitor Integrators 

I. INTRODUCTION  

In the design of precision switched capacitor circuits it is 
essential to simulate and verify the resultant performance in 
the presence of low-frequency noise sources such as flicker 
or 1/f noise. To accurately simulate low frequency noise in 
the kHz range requires simulations ms long, whereas to 
simulate low frequency in the 10’s Hz region requires 
simulations that run 100 ms. However, for circuits operating 
from a MHz clock this requires 100000 or more clock cycles 
and this increases with increasing clock frequency. While 
transistor-level simulations do provide the necessary 
accuracy and precision, running system simulations of these 
durations results in simulation times of days and weeks [1]. 
This makes it extremely difficult to achieve a reasonable level 
of simulation coverage in a reasonable timeframe. Hence, 
many designs are often sent for fabrication without having a 
satisfactory level of simulation coverage in relation to their 
performance in the presence of 1/f noise, which often results 
in unnecessary redesigns. To address this, MATLAB and 
Simulink have gained broad adoption at the system level [2]. 
The Schreier Toolbox [3] is widely adopted at the system 
level in the design and verification of Delta-Sigma Modulator 
architectures. However, MATLAB is a commercial tool, 
which means that not every designer has access to it, 
especially outside an academic environment. Python, which 
has recently become one of the most popular programming 
languages [4], is being widely adopted in the test and 
measurement space due its robustness and vast repository of 
packages [5]. This has seen it being adopted as the language 
of choice in the area of Analog IC Design, one such example 
is the Berkley Analog Generator [6]. The absence of any 
license fees is an important aspect in democratising analogue 
IC Design and enabling designers to undertake rapid low-cost 
system design and verification. 

This paper presents a high-level noise model for a 
Switched-Capacitor Integrator in Python, which enables the 
designer to accurately model low frequency 1/f noise for the 
first time in a timely manner. This paper is organized as 
follows. Section II presents an algorithmic analysis in Python 

of low-frequency noise modeling on a single-ended 
Switched-Capacitor Integrator, pointing out the main low-
frequency component, the flicker (1/f) noise. Section III 
introduces modeling in Python of a Delta-Sigma Modulator, 
example which contains Switched-Capacitor Integrators in 
the loop filter, where low-frequency noise is also present. 
Finally, Section IV summarizes the main points of this work. 

II. MODELING OF FLICKER NOISE CORNER IN SWITCHED-

CAPACITOR INTEGRATORS 

Switched-Capacitor Integrators, as illustrated in Fig. 1(a) 
below, are the key building block in many discrete time 
precision circuits and in particular Delta-Sigma ADCs. From 
a noise perspective, there are the wideband noise sources 
which include the sampled thermal noise and the amplifier 
thermal noise, as shown in Fig. 1(b). These are often lumped 

together and treated as √
𝑘𝑇

𝐶
 noise [7]. In addition, there is 

shaped flicker noise resulting from the trapping/detrapping 
phenomena with the MOS transistors, which also needs to be 
considered. However, to date, this is typically modelled as an 
offset within the operational amplifier at the system level. 

 

(a) 

 

(b) 

Figure 1: (a) Single-ended Switched-Capacitor Integrator (b) Noise 

equivalent circuit 

A. Thermal Gaussian Noise Generation 

The sampled thermal noise can be modelled using a 
random Gaussian (or normal) distribution, with a standard 

deviation of √
𝑘𝑇

𝐶𝑖𝑛
 and a mean of zero. The NumPy Python 

package  has such a function built in, normal(mean, std_dev, 
N) [8], which takes 3 parameters and returns an array of 
length N, with a mean of mean and a standard deviation of 
std_dev. Hence, a differential Switched-Capacitor Integrator 
can be modelled as having an input referred sampled thermal 
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noise standard deviation of 𝜎 = √
4𝑘𝑇

𝐶𝑖𝑛
 , where 𝐶𝑖𝑛 is the 

sampling capacitor. To build an equivalent single-ended 
model of the switched capacitor integrator in Python requires 
that the added thermal noise voltage is divided by 2 to 
maintain the same Signal to Noise Ratio as the differential 
circuit. Hence, the added thermal noise is now modelled as: 

𝑠𝑖𝑔𝑚𝑎_𝑁𝑡ℎ𝑒𝑟𝑚𝑎𝑙 =  √𝑁𝑡ℎ
2̅̅ ̅̅ ̅̅ = √

4𝑘𝑇

𝐶𝑖𝑛
 /2  ≃ √

𝑘𝑇

𝐶𝑖𝑛
          (1)                      

The first part of the proposed Python code, to generate 
an array of random white thermal noise, Nthermal, is shown 
in Fig. 2 below, for a 1 pF sampling capacitor: 

 

Figure 2 Proposed Python script (part 1): Thermal noise generation 

The resulting array of created thermal noise is plotted in 
Fig. 3(a). A histogram of the array of the generated values is 
shown in Fig. 3(b) confirming the normal distribution shape. 

 

 
                         (a)                                                        (b) 

Figure 3 (a) Gaussian thermal noise [Nth] (b) Histogram 

B. Shaped Low-Frequency Noise Generation 
As discussed in the previous section, the normal NumPy 

function produces a normal distribution which results in 
white noise, with a flat frequency spectrum. However, to 
approach the -10 dB/dec. of flicker noise roll-off, it is 
required that the added noise is shaped and that the Power 
Spectral Density (PSD) varies with frequency and is no 
longer flat. To achieve this, it’s necessary to filter the random 
noise, such that it’s shaped. One such filter to achieve this is 
the Low-Pass Filter proposed in [9] and given by: 

𝐻(𝑧) =
𝑎

𝑏−𝑐𝑧−1                              (2) 

which can be rewritten as: 

𝑁𝑟𝑎𝑛𝑑𝑜𝑚

𝑁𝑓𝑙𝑖𝑐𝑘𝑒𝑟
=  

𝑎

𝑏−𝑐𝑧−1                               (3) 

where Nrandom is the random white noise and Nflicker is 

the resultant shaped low-frequency noise. This can be further 

rewritten, in time domain, as:  

𝑁𝑓𝑙𝑖𝑐𝑘𝑒𝑟[𝑖] =
1

𝑏
(𝑎𝑁𝑟𝑎𝑛𝑑𝑜𝑚[𝑖] + 𝑐𝑁𝑓𝑙𝑖𝑐𝑘𝑒𝑟[𝑖 − 1])   (4)      

making it a lot easier to implement the filter in time 

domain in Python. The coefficients a, b and c and are all set 

to 1. However, the resultant magnitude of the noise is 

determined by the magnitude of the random input noise, 

Nrandom.  Sampled thermal noise is always expressed in terms 

of the total integrated noise in μV. Low-frequency flicker 

noise is typically expressed in terms of a noise corner, below 

which the shaped 1/f noise dominates and above which the 

white thermal noise dominates. Therefore, the standard 

deviation, sigma_Nrandom, of Nrandom, the unfiltered random 

noise used to realise the 1/f noise, is given by: 

𝑠𝑖𝑔𝑚𝑎_𝑁𝑟𝑎𝑛𝑑𝑜𝑚 =  
𝑠𝑖𝑔𝑚𝑎_𝑁𝑡ℎ𝑒𝑟𝑚𝑎𝑙

𝑠𝑐𝑎𝑙𝑖𝑛𝑔_𝑓𝑎𝑐𝑡𝑜𝑟
                   (5) 

The scaling_factor is used to scale sigma_Nthermal to 
achieve the desired corner frequency and can be shown as: 

𝑠𝑐𝑎𝑙𝑖𝑛𝑔_𝑓𝑎𝑐𝑡𝑜𝑟 =
𝐹𝑁𝑦𝑞

2∗𝐹𝑐𝑜𝑟𝑛𝑒𝑟
                       (6) 

where 𝐹𝑐𝑜𝑟𝑛𝑒𝑟  is the desired 1/f noise corner frequency and 

𝐹𝑁𝑦𝑞 is the Nyquist 
𝐹𝑠

2
 frequency. The denominator of 

equation (6) is formed in a way to further improve the 
normalization and the proper placing of the corner frequency. 
For instance, a selected 𝐹𝑁𝑦𝑞 of 10 MHz and Fcorner of 5 

kHz create a scaling factor equal to 10 MHz / 10 kHz, or 
equivalently, 1000. This, in turn, will divide the 
sigma_Nrandom  at a value equal to sigma_Nthermal/1000, 
or equivalently, from 64 μV to 64 nV, changing the spectral 
crossing point of both Nrandom and Nthermal FFTs to the 
desired one. The second part of Python code, to realize flicker 
noise, is shown in Fig. 4 below: 

 

Figure 4 Proposed Python script (part 2): Flicker noise generation 

The code shown in Fig. 4, results in the Nflicker noise 
being generated from the converted input noise using the 
transfer function of (2) and it is illustrated in Fig. 5 below:  

 

Figure 5   Random input and generated flicker noise 

from numpy        import sqrt, log10, zeros 
from numpy        import pi, sin, round 
from numpy.random import normal 
from numpy.fft    import fft, fftfreq 

 
N = 2**21     # Αrray size and No. of frequency bins 
k = 1.38e-23  # Boltzmann’s constant 
T = 300       # Absolute Temperature (°K) 
C = 1e-12     # Sampling Capacitor 1 pF 

 
mean_Nthermal  = 0 
sigma_Nthermal = round(sqrt(k*T/C), 6) 
Nthermal = normal(mean_Nthermal, sigma_Nthermal, N) 

Nflicker        = zeros(N) 
Fs              = 20e6 
fft_freq        = fftfreq(N, 1/Fs) 
Fnyq            = max(fft_freq) 
Fcorner         = 5000 
scaling_factor  = round(Fnyq/(2*Fcorner)) 
sigma_Nrandom   = sigma_Nthermal/scaling_factor 
Nrandom         = normal(0.0, sigma_Nrandom, N) 
a               = 1 
b               = 1 
c               = 1 

 
for i in range(1, N): 

    Nflicker[i] = (a*Nrandom[i]+c*Nflicker[i-1])/b 

 



  

                      (a)                                            (b) 

Figure 6 (a) Input noise histogram (b) Generated flicker noise histogram  

Fig. 6 above clearly shows that the generated flicker noise is 
not Gaussian. 

Illustrated in Fig. 7 below are the FFTs of the thermal and 
flicker noise, on the same plot. The FFT of the random input 
noise which is converted to flicker is also plotted. The figure 
shows clearly that, firstly, the random input & thermal noise 
FFTs are flat across the range of frequencies as expected, and 
secondly, the desired flicker noise corner frequency (here in 
this example equal to 5 kHz) is modelled properly due to the 
equations  (5) and (6) that force the average of flicker noise 
FFT to cross the average of thermal noise FFT at this spectral 
point: 

 
Figure 7 FFTs of the generated thermal, input and flicker noise 

III. MODELING OF FLICKER NOISE CORNER IN DELTA-SIGMA 

MODULATORS 

To simulate the robustness of the proposed Python 

model, a Second-Order Delta-Sigma Modulator is modelled 

in Python based on the modulator structure that is proposed 

in [10], since Switched-Capacitor Integrators are broadly 

used to implement the loop filter. A single-bit version of the 

Delta-Sigma Modulator from [10], which is used in the 

present analysis, is illustrated in Fig. 8 below:  

 
Figure 8  Wideband Second-Order Delta-Sigma Modulator 

The architecture contains the loop filter coefficients 

𝑘1, 𝑘2 the feedforward coefficient 𝑘3, the quantizer gain 𝑘𝑞, 

and the dynamic range scaling methodology for proper loop 

stability is also shown. A Delta-Sigma Modulator like the one 

above can be transferred into a Python environment by using 

the differential equations that are forming it [11]. Starting 

from the Switched-Capacitor Integrators, their generic 

transfer function in z domain is illustrated on Fig. 1. In time 

domain, integrator 1 and 2 equations can be expressed from 

the modulator of Fig. 8 as follows: 

 

𝐼𝑛𝑡1[𝑛] = 𝐺𝐼𝑛𝑡1(𝑉𝑖𝑛[𝑛] − 𝑉𝑜𝑢𝑡[𝑛 − 1]) + 𝐼𝑛𝑡1[𝑛 − 1]  (7) 

 

𝐼𝑛𝑡2[𝑛] = 𝐺𝐼𝑛𝑡2(𝐼𝑛𝑡1[𝑛]) + 𝐼𝑛𝑡2[𝑛 − 1]          (8) 

 

A third important differential equation is the input of 

the ADC unit, the quantizer, which can be expressed below: 

 
𝑄[𝑖] =  𝑘𝑞 ∗ (𝑘1 ∗ 𝐼𝑛𝑡1[𝑖] +  𝑘2 ∗ 𝐼𝑛𝑡2[𝑖] +  𝑘3 ∗ 𝑉𝑖𝑛[𝑖])   (9) 

 

To implement the modulator in Python, the Python 

code of Fig. 9 below is added as a third part (after Fig. 4), 

injecting also the flicker and thermal noise quantities: 

 
Figure 9 Proposed Python script (part 3): Second-Order Feed-Forward 

Delta-Sigma Modulator implementation 

ampl               = 0.7 
VrefP              = 1.2 
VrefN              =-1.2         
Ncycles            = 2**7 
BW                 = (Ncycles/N)*Fs 
Tin                = 1/BW                                                       
Ts                 = 1/Fs                                       
samples_per_period = round(Tin/Ts) 
Vin                = zeros(N) 
diff_in            = zeros(N) 
Int1               = zeros(N) 
Int2               = zeros(N) 
comp_in            = zeros(N) 
comp_out           = zeros(N) 
dac_out            = zeros(N) 

 
Gint1 = 1.0; Gint2 = 1.0  

 
k1 = 2/Gint1; k2 = 1/(Gint1*Gint2); k3 = 1; kq = 1/k3 

 
for i in range(N): 

 
  Vin[i] = ampl*sin(2*pi/samples_per_period*i) 

 
  if (i>=1):         
    diff_in[i] = Nthermal[i] + Nflicker[i] + Vin[i] - 

dac_out[i-1]        
    Int1[i]    = Gint1*diff_in[i] + Int1[i-1] 
    Int2[i]    = Gint2*Int1[i] + Int2[i-1]         
    comp_in[i] = kq*(k1*Int1[i] + k2*Int2[i] + 

k3*Vin[i])   

      
    if (comp_in[i]>0):         
      comp_out[i] = 1.0        
    else:       
      comp_out[i] =-1.0                        

             
    if (comp_out[i]==-1.0):         
      dac_out[i] = VrefN        
    else:        
      dac_out[i] = VrefP 

 
freq_Xaxis   = fft_freq[:N//2] 
comp_out_fft = fft(comp_out[:N])/N 
Nflicker_fft = fft(Nflicker[:N])/N 
Nthermal_fft = fft(Nthermal[:N])/N 

comp_out_dB  = 20*log10(abs((comp_out_fft[:N//2]))) 

Nflicker_dB  = 20*log10(abs((Nflicker_fft[:N//2]))) 

Nthermal_dB  = 20*log10(abs((Nthermal_fft[:N//2]))) 



 The first group of lines consist the initialization of the 

necessary parameters. The first step is the generation of an 

input sine wave of a 0.7 V amplitude and a frequency around 

the 1 kHz range, a band that is affected by the low-frequency 

flicker noise. The input signal is generated with a formula that 

places its frequency directly on a frequency bin to avoid 

spectral leakage on the FFT plot, and that is the following:  

 

𝐵𝑊 =  (
𝑁𝑐𝑦𝑐𝑙𝑒𝑠

𝑁
) ∗ 𝐹𝑠                          (10) 

 

where 𝑁𝑐𝑦𝑐𝑙𝑒𝑠 is the number of periods of the signal, N the 

total number of frequency bins and Fs the sampling 

frequency.  

A sampling frequency of 20 MHz is introduced (from 

Fig. 4) and a total number N of frequency bins equal to 221 is 

selected (from Fig. 2), a number that in transistor-level 

designs takes significant amount time to simulate. The code 

of Fig. 9 continues with the calculation of the input signal’s 

period Tin, the sampling period Ts, the number of samples 

that are taken per one input signal’s period and the 

initialization of the modulator’s main signal arrays. Finally, 

the Delta-Sigma Modulator’s closed-loop system is 

simulated with all the differential equations in a for loop 

which is executed for N times. 

Illustrated in Fig. 10 below is the FFT of the modulator 

output in the presence of both thermal and flicker, using a 20 

MHz clock. It is also showing the standard 40 dB/dec. noise 

shaping associated with a second order modulator. The 

presence of the thermal noise is clearly evident by the flat 

spectrum between 1 kHz to 30 kHz, whereas the 1/f  noise is 

clearly evident below 1 kHz, causing the rising noise floor. 

In total, three main regions of interest are shown on the output 

FFT, the 1/f noise, the flat thermal noise and the quantization 

noise shaping. The same flicker noise corner of 5 kHz is also 

simulated in this example: 

 

 
Figure 10  Modulator output FFT with FFTs of flicker and thermal noise 

IV. CONCLUSIONS 

The low-frequency nature of flicker noise requires that 

hundreds of thousands of clock cycles are required to observe 

the impact at low frequencies, which is rarely feasible at 

transistor level. The open-source nature of Python eliminates 

any license constraints associated with commercial tools, 

while also helping to democratizing the design of CMOS 

designs. This enables designers to add low-frequency noise 

to their design and ultimately observe how the noise 

propagates through the system. The approach of using 

equation (2) to shape the white noise, results in a 20 dB/dec. 

roll-off compared to the 10 dB/dec. resulting from flicker 

noise. This deviation is deemed acceptable, as it over-

estimates the impact of flicker noise at lower frequencies, 

ensuring that a systems robustness is fully tested and 

validated. This increases designers’ confidence that their 

design will achieve the system-level specifications. 
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