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by Tadhg Morgan

In this thesis I theoretically study quantum states of ultracold atoms. The majority

of the Chapters focus on engineering specific quantum states of single atoms with high

fidelity in experimentally realistic systems. In the sixth Chapter, I investigate the sta-

bility and dynamics of new multidimensional solitonic states that can be created in

inhomogeneous atomic Bose-Einstein condensates.

The Chapters in this thesis are the papers produced over the course of my Ph.D. In

the third Chapter of this thesis I present two papers in which I demonstrate how the

coherent tunnelling by adiabatic passage (CTAP) process can be implemented in an

experimentally realistic atom chip system, to coherently transfer the centre-of-mass of

a single atom between two spatially distinct magnetic waveguides. In these works I also

utilise GPU (Graphics Processing Unit) computing which offers a significant performance

increase in the numerical simulation of the Schrödinger equation.

In the fourth Chapter I investigate the CTAP process for a linear arrangement of radio

frequency traps where the centre-of-mass of both, single atoms and clouds of interacting

atoms, can be coherently controlled. In Chapter five I present a theoretical study of

adiabatic radio frequency potentials where I use Floquet theory to more accurately

model situations where frequencies are close and/or field amplitudes are large. I also

show how one can create highly versatile 2D adiabatic radio frequency potentials using

multiple radio frequency fields with arbitrary field orientation and demonstrate their

utility by simulating the creation of ring vortex solitons.

In the sixth Chapter I discuss the stability and dynamics of a family of multidimensional

solitonic states created in a harmonically confined Bose-Einstein condensate. I demon-

strate that these solitonic states have very interesting dynamical instabilities, where a

continuous collapse and revival of the initial state occurs. Through Bogoliubov analysis,

I determine the modes responsible for the observed instabilities of each solitonic state.

From each mode, I also extract information related to the time at which instability can

be observed.
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Chapter 1

Introduction

1.1 Background

The purpose of physics is to the describe the natural world. As such, the length scales

which physics covers ranges from the massive, with astronomical phenomena such as

black holes and supernovae, to the microscopic realm of single atoms and fundamental

particles. It is for the description of the amazing physics observed at these atomic and

sub-atomic length scales that quantum mechanics was initially developed.

Experimental progress in the observation of quantum phenomena was very difficult for

many decades and the only observable and controllable quantum effects were the ones

that manifested themselves on macroscopic scales, such as in solid state transistors or

superconductors. The realisation of systems where quantum effects of single particles

could be observed required a significant leap in experimental techniques with the pio-

neering combination of laser cooling and atomic trapping.

With the advent of laser cooling in laboratories around the world, atoms can be cooled

to very low temperatures where magnetic and optical potentials can then be used to

trap them so that single and few particle systems can be studied. Such techniques can

be applied to a dilute gas of bosons where, due to Bose-Einstein statistics, they begin

to macroscopically occupy the lowest single-particle state at finite temperature. This

effect is called Bose-Einstein condensation and the resulting state of matter is called a

Bose-Einstein condensate (BEC).

A BEC provides us with a system in which we can study quantum mechanics at meso-

scopic scales and was first observed in 1995 when a cloud of 87Rb atoms was laser cooled,

confined by magnetic fields and then evaporatively cooled [1]. In 2001, the Nobel Prize

for physics was award to E. Cornell, C. Wieman and W. Ketterle “For the achievement

1



Introduction 2

of Bose-Einstein condensation in dilute gases of alkali atoms, and for early fundamental

studies of the properties of the condensates”. By today, we have even extended our reach

to controlling the quantum states of single neutral atoms as demonstrated by the groups

of I. Bloch and M. Greiner, where they can actually image and address individual cold,

neutral atoms [2–4]. Similar progress has also been made in the area of cold ions [5].

Quantum mechanics is not only extending our understanding of the physical properties

of our world, but is also becoming increasingly important in many engineering fields,

where devices are fabricated on smaller and smaller length scales. This is most clearly

highlighted by Moore’s Law [6] which states that the number of transistors on integrated

circuits doubles every 18 months. This ongoing trend to continuously miniaturise and

integrate many technologies brings engineering closer and closer to the boundaries of

the quantum world. Today, consumer CPUs (central processing unit) are manufactured

using 22nm node technology, which means that half the distance between identical fea-

tures in an array is 22nm. It is predicted that by 2017, CPUs will be manufactured

using 10nm node technology where quantum effects will begin to play an important role

[7]. The ultimate limit of Moore’s Law is where a transistor will be made of a single

atom, a purely quantum device. Amazingly, such a device has already been created [8].

While initially it appears that engineering at these length scales would make things much

more complicated and harder to handle, working with such quantum devices will allow

us to exploit the laws of quantum mechanics to create many amazing new technologies.

Numerous such devices have already been proposed, the most famous of which is the

quantum computer which has the potential to revolutionise computing [9]. In fact, we

are already beginning to see the first signs of the shift to quantum technologies with

companies offering commercial quantum key distribution [10, 11] and quantum annealing

machines [12].

Cold atoms have been a precursor for many of these technologies as they provide clean,

controllable systems which can be used as testbeds for quantum engineering. In par-

ticular, the engineering of the internal degrees of freedom of cold atoms has been one

of the most successful fields of research, a fact highlighted by the awarding of the 2012

Nobel Prize for Physics to Serge Haroche and David J. Wineland “For ground-breaking

experimental methods that enable measuring and manipulation of individual quantum

systems”. Highlights of their work include: non-destructive measurements of quantum

states [13], good coupling between light and matter [14], long coherence times of trapped

quantum states [14] and the creation of a CNOT gate with trapped ions [15].

It is on this area of engineering quantum states that this thesis focuses. Through the

collections of works in this thesis, we aim to contribute to this field through three

distinct avenues of research: new techniques for coherent control of quantum states in
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realistic potentials, applications and improved theoretical descriptions of adiabatic radio

frequency potentials and the study of phase engineered BECs to create novel solitonic

states. In the following Sections of this Chapter, we will motivate each of these works

separately.

1.2 Coherent Tunnelling by Adiabatic Passage on Atom

Chips

As mentioned in the previous Section, the control of the internal degrees of freedom

of quantum states is an advanced field [16]. However, control over external degrees of

freedom has not received as much attention. As such, developing techniques to coher-

ently control the external degrees of freedom at the same level as the internal ones is

highly desirable. In particular, the development of techniques that would allow us to

engineer the centre-of-mass of quantum states with high fidelity would be a significant

advancement.

Implementing such techniques using cold atoms is a natural choice as trapping potentials

can be made deep enough so that one can confine atoms with very low energies. As such,

this already gives us good control over the stationary centre-of-mass. The challenge is

now to find techniques to coherently transport these stationary centre-of-mass states

with high fidelities. Many of the known techniques suffer drawbacks such as introducing

unwanted heating effects stemming from an increased kinetic energy when the atom

is moved through space. Other proposed techniques require direct coupling between

two trapped states which has advantages in terms of the tunnelling coupling being a

coherent process. However, tunnelling is exponentially sensitive to many of the system’s

parameters such as the position of the traps, strength of the trapping fields and the

timing of the process. This makes the fidelity of the centre-of-mass transport sensitive

to slight changes in the system parameters.

Both of these situations are far from ideal for many quantum operations one would like to

perform such as quantum computing [17]. An instructive example is quantum computing

with spatial qubits [18], where the computational basis states are defined by the presence

of a neutral atom in the ground state of one out of two trapping potentials. When

transferring an atom between the trapped states by direct tunnelling, slight variations

in the systems parameters would lead to incomplete transfer to the target state. For

spatial qubits, this would lead to errors and high computational overheads associated

with error correction schemes.



Introduction 4

Other suggestions for quantum computing architectures require the transport of atoms

that are initially spatially well separated, such that they can be made interact directly

with each other. In particular, in [19] it was suggested that optical tweezers could be

used to transport atoms confined in an optical lattice. However, such techniques add

unwanted heat to the system and again error correction must be performed to meet the

requirements for fault-tolerant, scalable quantum computing.

Ideally, we desire a technique that offers high fidelity, does not heat, and allows the

relaxation of many of the control requirements. One such family of techniques that can

achieve are the so called adiabatic techniques, which allow to follow a single eigenstate

throughout the process, thus avoiding influence from unwanted states. Therefore, adi-

abatic techniques can be extremely robust to experimental errors and noise. However,

there is a price to pay as adiabatic following usually requires the system to change very

slowly, which increases the overall time needed for the process. This increase has to be

weighed against the time and overhead needed for error correction to decide if the use

of adiabatic techniques to achieve a certain task is a viable option. However, the latter

is not of any concern for the work presented in this thesis, which deals only with the

questions of experimental observability.

In particular, a very promising adiabatic technique for controlling the quantised centre-

of-mass state is coherent tunnelling by adiabatic passage (CTAP) [20]. The motivation

behind CTAP is the removal of time dependence from the fidelity of transferring an atom

from one trap to another via tunnelling. This time dependence is seen if one considers an

atom confined to one of two traps which are initially well separated. By then decreasing

the distance between two traps, the tunnel coupling increases exponentially which causes

the atom to begin to tunnel from the initial trap to the target trap. However, as

soon as the atom tunnels to the target trap it begins to tunnel back to the initial

trap. This tunnelling dynamic, which will be detailed in Section 2.5.1, results in so-

called Rabi oscillations of the centre-of-mass of the atom between the two traps which

leads to the transfer fidelity being dependent on the total time of the process (the time

at which the oscillations stop). We will show in Section 2.5.2, that by introducing a

third, intermediate trap, the CTAP process provides us with a method of transitioning

between two trapped states without any unwanted Rabi oscillations. In this way, the

transfer fidelity to the target trap for CTAP is time-independent (provided the process

is adiabatic) and robust to variations in system parameters [21].

While the CTAP process has had extensive theoretical study [20–24], experimental im-

plementation of the scheme is not straightforward. In many realistic types of trapping

potentials, bringing individual traps together, which is essential for CTAP, causes them

to influence one another. This influence results in a modification to the overall geometry
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Figure 1.1: Schematic of the influence that previously resonant traps will have on
each other when the distance between them in decreased. The black dashed lines

represent the energy levels of the traps.

of the individual traps, which in turn changes their individual energy level structures.

A schematic of this influence is shown in Fig. 1.1. This is further complicated when

one considers that the positions of the traps are changed in a time-dependent fash-

ion, therefore producing a time-dependent energy level structure. This is one of the

largest problems facing the experimental realisation of the CTAP process as one of the

requirement of the process is that the traps be resonant at all points in time.

While this resonance condition is important, the CTAP process can be successfully

implemented with an approximate resonance, where high fidelity transfer can be assured

for small detunings between the traps by increasing the adiabaticity of the process [21].

However, if the traps of a system significantly influence each other, the modification to

the energy level structure will be too large to compensate for, and so violate the resonance

condition. Indeed in [21] it was suggested that a system of optical waveguides would be a
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good system for CTAP, but neighbouring optical waveguides have a significant effect on

each other leading to non-negligible modification of the trapping potential. It is for this

reason that almost all treatments assume unrealistic, piece-wise harmonic traps which

do not influence each other and therefore remain in resonance at all times.

In this thesis we present two experimentally realistic systems in which we can compensate

for the influence individual trapping potentials exert on each other and achieve approx-

imate resonance. We then show that this is sufficient for the observation of CTAP. The

two systems we suggest are atomic waveguides on atom chips and radio frequency traps.

Both are well known experimental tools and are widely used in many experimental labs

around the world today [25, 26].

In Chapter 3 we present two manuscripts in which we give a detailed treatment of an

atom chip as a good candidate for an experimental system in which to implement CTAP

with cold atoms. The focus of the first manuscript is the simulation of the atom chip

system in two dimensions (2D) where the dispersion along the atom chip is neglected.

In the second manuscript we then extend this work to simulating the CTAP process in a

three dimensional (3D) atom chip system. These simulations take the complete spatial

dynamics in all three dimensions into account.

1.3 Adiabatic Radio Frequency Potentials

Chapters 4 and 5 of this thesis focus on adiabatic radio frequency (rf) potentials as a

tool for engineering quantum states. Radio frequency traps can be made in conjunction

with atom chips and have recently become one of the most versatile tools for trapping

cold atoms [27, 28]. When used in combination with the static trapping fields created on

atom chips, they offer a way of changing the trapping geometry [26]. This makes them a

promising candidate for engineering quantum states and, as we show in Chapter 4, offer

another experimentally realistic system in which the CTAP process can be observed.

We also show that the described rf system can be adjusted to use the CTAP process to

coherently control a cloud of interacting atoms.

In dealing with an atom interacting with oscillating fields, such as an rf field, the theoret-

ical treatment often relies on approximations to obtain information about the quantum

state of the atom. In Chapter 4 we make three main approximations to obtain the

adiabatic rf potential for the atom. First, we consider a purely one dimensional system

by assuming the rf always oscillates in a direction orthogonal to the static (trapping)

field. Second, we move to a rotating frame and make the rotating wave approximation

by neglecting fast oscillating terms in the Hamiltonian. Finally, in order to deal with
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multiple frequencies, we make a local frequency approximation where the potential at

any point is governed by the frequency closest to resonance and the effect of all other

frequencies is summed up as an effective Stark shift [29].

While our theoretical approach is appropriate for the system we deal with in Chapter 4,

in Chapter 5 we extend the theory of adiabatic rf potentials past these approximations.

To do this we turn to Floquet theory. Floquet theory, developed by Gaston Floquet

[30], allows us to take a time-dependent, periodic, Hamiltonian and represent it as an

infinite matrix [31]. The eigenvalues of this matrix produce an eigenenergy spectrum,

from which the adiabatic rf potential can be extracted.

With this Floquet approach for generating adiabatic rf potentials, many new types of

systems can be described. We can accurately describe situations where frequencies are

very close together or have large Rabi frequencies, which are regimes where the piecewise

resonance model of Chapter 4 breaks down. We can also create 2D adiabatic potentials

using multiple rf fields with different frequencies and arbitrary field orientation. We

show that these 2D potentials are highly controllable as we can adjust the frequency

separation, amplitude and orientation of the rf fields independently from one another.

As a demonstration of their utility, we use our Floquet approach to examine a particular

type of 2D adiabatic rf potential that allows us to create and examine ring vortex solitons.

The stability of ring vortex solitons was investigated recently [32] but no suggestion was

made about how to create these states. We propose that our 2D adiabatic rf potential

would be a good candidate for an experimentally realistic system in which we can create

and study these states and we demonstrate this by carrying out numerical simulations.

1.4 Solitons

While up to now we have mainly concentrated on describing quantum states of single

particles, in Chapter 6 we discuss a phenomenon observable in a mesoscopic sample of

ultracold atoms. In particular, we focus on describing the stability properties of novel,

multidimensional solitonic states in a BEC.

BECs of neutral atoms provide very clean and controllable systems for studying many

physical effects. Due to the interactions between the atoms, these systems are inherently

non-linear, and the degree of this property can be experimentally controlled by using

Feshbach resonances. One interesting class of possible non-linear excitations in these

systems are so-called solitons. A soliton is a localised wavepacket that can propagate

without dispersion due to a balance between non-linear and dispersive effect and emerge

unchanged from a collision with another soliton (except for a phase shift).
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Solitons occur in many different physical systems [33]. In particular, they have been

widely studied in non-linear optics [34] and classical systems such as hydrodynamics

[35]. In contrast, matter wave solitons which are created in purely quantum systems,

are comparatively underdeveloped but have many possible applications such as interfer-

ometry [36], quantum entanglement [37] and quantum information processing [38].

Until now, much of the work done on matter wave solitons has concentrated on single

solitons and soliton-soliton collisions [39]. However, due to the known instabilities in

higher dimensions, such as the snake instability in 2D and ring vortex solitons in 3D,

much of this work has been limited to 1D and quasi 1D (ring) [40, 41].

In Chapter 6, we discuss matter wave structures that are inherently two-dimensional. In

this higher dimensionality, we can engineer the phase of BECs to create novel solitonic

states in which several solitons overlay and intersect each other at different angles. We

show that these multidimensional solitons exhibit interesting stability and dynamical

properties. By using the Bogoliubov-de Gennes equation, we uncover unstable modes

and demonstrate that they are responsible for the instability of our solitonic states and

also predict the time at which the instability occurs.



Chapter 2

Background Theory

In this Chapter, we will summarise the theory of a Bose gas at low temperature as it is

the common background system for all works presented in this thesis. After this we will

outline the core, theoretical, ideas of the papers contained in this thesis.

2.1 Bose-Einstein Condensates

To review the theory of an ideal Bose gas we will follow the treatment in [42] and [43].

This Section is by no means comprehensive, but instead gives a broad overview of the

formalism and relevant formulae.

Let us start by describing an ideal Bose gas in the grand canonical ensemble. The

average occupation number for each of the single-particle states is given by the Bose

distribution function and can be written as

n̄i =
1

eβ(εi−µ) − 1
, (2.1)

where µ is the chemical potential of the gas, the εi are the single-particle eigenenergies

and β = 1
kBT

, where kB is the Boltzmann constant and T is the temperature. The

inclusion of the chemical potential µ in this Bose distribution ensures that the total

number of particles N ,

N =
∑

n̄i , (2.2)

is conserved.

For a Bose gas, an important physical constraint is that the chemical potential µ, may

not exceed the lowest single particle eigenenergy ε0. If this were not the case, eq. (2.1)

9
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would give a negative value for the occupation of states with energy smaller than µ.

This is, of course, non-physical.

At high temperatures the chemical potential is much less than the eigenenergy of the

lowest occupied eigenstate, εmin. In this regime, the mean occupation of any state is

much less than 1. However, when µ → ε0, the occupation of the lowest energy state

N0 = 1
eβ(ε0−µ)−1

becomes very large and one can write the total number of particles as

the sum of the occupation of the lowest energy state N0 = 1
eβ(ε0−µ)−1

and the occupation

of all other states NT

N = N0 +NT , (2.3)

where NT =
∑

i 6=0 n̄i(T ) is referred to as the thermal component of the gas.

We can now define the critical temperature Tc as the temperature above which the

thermal component of the gas dominates and N0 is negligible,

NT (Tc) = N . (2.4)

Below this critical temperature the value of µ will approach ε0 in the thermodynamic

limit (large N). Therefore, for temperatures lower that Tc, N0 dominates and we get

macroscopic occupation of the lowest single particle state of eigenenergy ε0. This effect

is known as Bose-Einstein condensation.

To develop the mathematical formalism to describe the state of a Bose-Einstein Con-

densate (BEC), our approach is to write down the Hamiltonian of an ideal Bose gas

in terms of the field operators Ψ̂(r). First, suppose there are nα bosons in the single

particle eigenstate α. We choose to denote this state |nα〉 and define â†α and âα as the

creation and annihilation operators of a boson in the single particle eigenstate α,

â†α|n0, n1, n2, ..., nα, ...〉 =
√
nα + 1|n0, n1, n2, ..., nα + 1, ...〉 ,

âα|n0, n1, n2, ..., nα, ...〉 =
√
nα|n0, n1, n2, ..., nα − 1, ...〉 ,

(2.5)

such that they satisfy the bosonic commutation relations

[
âα, â

†
β

]
= δα,β

[
â†α, â

†
β

]
= [âα, âβ] = 0 .

(2.6)
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The operators â†α and âα are now used to define the field operators,

Ψ̂†(r) =
∑

α=0

Ψα(r)â†α ,

Ψ̂(r) =
∑

α=0

Ψα(r)âα ,
(2.7)

where Ψα(r) is the wave function of the single particle state α. With the use of eqs.

(2.6) it can be shown that these field operators satisfy the following commutation rules,

[
Ψ̂(r′), Ψ̂†(r)

]
= δ(r′ − r) ,

[
Ψ̂†(r′), Ψ̂†(r)

]
=
[
Ψ̂(r′), Ψ̂(r)

]
= 0 .

(2.8)

This allows one to write the Hamiltonian of an ideal Bose gas in terms of these field

operators as

Ĥ =

∫ (
~2

2m
∇Ψ̂†(r)∇Ψ̂(r) + Vext(r)Ψ̂†(r)Ψ̂(r)

)
dr , (2.9)

where m is the mass of the boson and Vext is the external potential.

The formalism thus far has dealt with an ideal Bose gas where the individual particles

of the gas do not interact. However, this idealised model is not sufficient for a real Bose

gas where interaction plays a vital role in its properties. As such, the Hamiltonian (2.9)

must be extended with an extra term which accounts for interaction between the bosons.

As the Bose gases we consider are dilute, the range of inter-atomic forces is much smaller

than the average distance between bosons therefore allowing us to safely neglect all but

two-body interactions. This leads to a Hamiltonian of the form

Ĥ =

∫
Ψ̂†(r)Ĥ0Ψ̂(r)dr +

1

2

∫
Ψ̂†(r)Ψ̂†(r′)Vint(r, r

′)Ψ̂(r)Ψ̂(r′)drdr′ , (2.10)

where Vint(r, r
′) is the two-body interaction potential and Ĥ0 = ~2/2m∇2 + Vext. Fur-

thermore, we can assume that the gas is sufficiently dilute and cold that the atomic

interactions are dominated by low energy, two-body, s-wave collisions. As such, the ex-

act form of the two-body interaction potential is not important to describe the macro-

scopic properties of the gas, but instead the scattering is characterised by the s-wave

scattering length, as. We therefore can replace the two body interaction potential with

a pseudo-potential,

Vint(r, r
′) = gδ(r′ − r) , (2.11)

where g = 4π~2as/m. A more detailed description and derivation of the pseudo-potential

approximation can be found in [43].
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Inserting (2.11) into the Hamiltonian (2.10) and integrating over r′ gives

Ĥ =

∫
Ψ̂†(r)Ĥ0Ψ̂(r)dr +

g

2

∫
Ψ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r)dr . (2.12)

In the Heisenberg picture the time evolution of the field operators is given by

i~
∂

∂t
Ψ̂(r′, t) =

[
Ψ̂(r′, t), Ĥ

]
= Ψ̂(r′, t)Ĥ −

∫
Ψ̂†(r, t)Ĥ0Ψ̂(r, t)Ψ̂(r′, t)

− g

2

∫
Ψ̂†(r, t)Ψ̂†(r, t)Ψ̂(r, t)Ψ̂(r, t)Ψ̂(r′, t) .

(2.13)

This equation can be rewritten using the bosonic commutation rules from eq. (2.8) as

i~
∂

∂t
Ψ̂(r′, t) =Ψ̂(r′, t)Ĥ −

∫ [
Ψ̂(r′, t)Ψ̂†(r, t)− δ(r′ − r)

]
Ĥ0Ψ̂(r, t)

− g

2

∫ [
Ψ̂(r′, t)Ψ̂†(r, t)− 2δ(r′ − r)

]
Ψ̂†(r, t)Ψ̂(r, t)Ψ̂(r, t)dr

=Ψ̂(r′, t)Ĥ −
∫

Ψ̂(r′, t)Ψ̂†(r, t)Ĥ0Ψ̂(r, t) +

∫
Ĥ0Ψ̂(r, t)δ(r′ − r)dr

− g

2

∫
Ψ̂(r′, t)Ψ̂†(r, t)Ψ̂†(r, t)Ψ̂(r, t)Ψ̂(r, t)dr

+ g

∫
Ψ̂†(r, t)Ψ̂(r, t)Ψ̂(r, t)δ(r′ − r)dr

=

∫
Ĥ0Ψ̂(r, t)δ(r′ − r)dr + g

∫
Ψ̂†(r, t)Ψ̂(r, t)Ψ̂(r, t)δ(r′ − r)dr

=
[
Ĥ0 + gΨ̂†(r′, t)Ψ̂(r′, t)

]
Ψ̂(r′, t) .

(2.14)

Considering the fact that in a BEC, the lowest single particle eigenstate is macroscop-

ically occupied we make the approximation n0 ± 1 ≈ n0 and from eq. (2.5) it follows

that

â†0 = â0 =
√
n0. (2.15)

The field operator can therefore be approximated using a classical field for the ground

state and keeping the quantised character of the (small) thermal and quantum fluctua-

tions around it as

Ψ̂(r′, t) =
√
n0ψ0(r′, t) + δψ̂(r′, t) . (2.16)

If we assume the limit of zero temperature, the majority of all the bosons are in the

lowest single particle eigenstate, n0 ≈ N . In this case the fluctuation term δψ̂(r′, t) can

be neglected such that Ψ̂(r′, t)→
√
Nψ0(r′, t) and equation (2.14) can be written as

i~
∂

∂t
ψ0(r, t) =

[
− ~2

2m
∇2 + Vext(r, t) + gN |ψ0(r, t)|2

]
ψ0(r, t) , (2.17)
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where the dash on the spatial variable has been dropped for ease of notation. This

is the time-dependent Gross-Pitaeskii equation (GPE) and has the basic form of the

Schrödinger equation, but with an added term that is non-linear and stems from the

interactions between the bosons of the BEC. This mean field equation is used extensively

in this thesis to study the dynamics of interacting BECs and we will make use of it in

Chapter 4 and Chapter 6 in particular.

A time-independent version of the GPE can be obtained by considering that, as the

wave function evolves in time, it acquires a phase of e−iµt/~, such that

ψ0(r, t) = ψ0(r)e−iµt/~ . (2.18)

Substituting this into the time-dependent GPE (2.17) gives,

µψ0(r) = − ~2

2m
∇2ψ0(r) + V (r)ψ0(r) + gN |ψ0(r)|2ψ0(r) . (2.19)

2.2 Small Scale Excitations: Bogoliubov-de Gennes Equa-

tions

In this section we will consider solutions to the GPE (2.17) which represent small am-

plitude oscillations around the equilibrium state of the system.

As discussed in the previous Section, the fact that at low temperatures, all atoms in

a BEC are condensed to the lowest single particle state allows us to replace the field

operator Ψ̂(r, t) with a classical field ψ0(r, t). To study small excitations about ψ0(r, t),

one can consider the state Ψ(r, t) which includes a small, linear perturbation δψ(r, t)

such that

Ψ(r, t) =
√
Nψ0(r, t) + δψ(r, t) , (2.20)

which, following (2.18), can be written as,

Ψ(r, t) = [
√
Nψ0(r) + δψ(r, t)]e−iµt/~ . (2.21)

As we are dealing with small amplitude oscillations, we expect that the excitations will

have the form of plane waves with frequency ωj , such that δψ(r, t) can be written as,

δΨ(r, t) =
∑

j

[uj(r)e−iωjt + v∗j (r)eiωjt] , (2.22)
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where the uj(r) and vj(r) are complex amplitude functions. To find the j-th solution,

we drop the sum from eq.(2.22) and combine with eq.(2.21) to give the following trial

wave function,

Ψ(r, t) = [
√
Nψ0(r) + uj(r)e−iωjt + v∗j (r)eiωjt]e−iµt/~ . (2.23)

Substituting this into the field operator representation of the GPE (2.17) we have,

i~
∂Ψ(r, t)

∂t
=e−iµt/~


µ
√
Nψ0(r) +

∑

j

[
(µ+ ~ωj)uj(r)e−iωjt + (µ− ~ωj)v∗j (r)eiωjt

]



=H0Ψ(r, t) + g|Ψ(r, t)|2Ψ(r, t) ,

(2.24)

where H0 = − ~2

2m∇2 + Vext(r, t). To evaluate this equation, we begin by expanding

the non-linear term of the right hand side of eq.(2.24) in terms of uj(r) and vj(r).

However, since most of the particles are in ground state by definition, we expect that

the excitations will be small and only terms linear in uj(r) and vj(r) are important;

|Ψ(r, t)|2Ψ(r, t) = e−iµt/~
{
N |ψ0(r)|2

[√
Nψ0(r) + 2uj(r)e−iωjt + 2v∗j (r)eiωjt

]
(2.25)

+Nψ2
0(r)

[
u∗j (r)eiωjt + vj(r)e−iωjt

] }
.

We now have both sides of the GPE expressed in terms of e−i(µ+nω)t/~ with n = [−1, 0, 1]

and so we equate the powers with equal values of n.

For n = 0 we have

µψ0(r) = H0ψ0(r) + gN |ψ0(r)|2ψ0(r) . (2.26)

For n = 1 we have

(µ+ ~ωj)uj(r) =
[
H0 + 2gN |ψ0(r)|2

]
uj(r) + gNψ2

0(r)vj(r) . (2.27)

And finally, for n = −1 we have

(µ− ~ωj)v∗j (r) =
[
H0 + 2gN |ψ0(r)|2

]
v∗j (r) + gNψ2

0(r)u∗j (r) . (2.28)

Equations (2.27) and (2.28) can be rewritten,

[H0 + 2g|ψ0(r)| − µ]uj(r) + gNψ2
0(r)vj(r) = ~ωuj(r) , (2.29)

[H0 + 2g|ψ0(r)| − µ] vj(r) + gNψ∗20 (r)uj(r) = −~ωvj(r) , (2.30)
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and form the so-called Bogoliubov-de Gennes equations. It is convenient to combine

them using matrix notation,

(
L M

M∗ L

)(
uj(r)

vj(r)

)
= ~ωj

(
uj(r)

−vj(r)

)
, (2.31)

where L = H0 + 2gN |ψ0(r)| − µ and M = gψ2
0(r). By diagonalising this matrix one can

obtain the spectrum of eigenfrequencies ωj and corresponding eigenvectors uj(r) and

vj(r).

These eigenfrequencies and eigenvectors, which are the solutions of the Bogoliubov-de

Gennes equations, provide information on the stability properties of the state Ψ(r, t). A

small positive ωj with a positive norm nj =
∫

(|uj(r)|2−|vj(r)|2)dr corresponds to small

oscillations about the state and indicates that the state is stable. A negative ωj with a

positive norm nj is called an anomolous mode and indicates that the initial state will

continuously transform into a lower energy state. Finally, complex and purely imaginary

eigenfrequencies ωj with nj = 0 indicate the presence of a dynamical instability [43].

2.3 Trapping and Cooling

In this Section I will provide a brief overview of some of the experimental techniques

used to trap and cool neutral atoms, namely the Magneto-Optical Trap (MOT) and the

atom chip. A MOT is one of the most common experimental setups for trapping and

cooling atoms and is often used in conjunction with atom chips to prepare the atomic

cloud before it is loaded onto the atom chip. It relies on using a combination of laser

cooling and magnetic trapping, both of which we will review in this Section.

I will also cover, in more detail, the basics of atom chips which are very central to this

thesis. They are extremely powerful experimental devices that allow to trap, guide and

manipulate cold atoms with a very high degree of flexibility.

This Section is by no means an exhaustive discussion of the experimental techniques

involved and greater detail can be found in [44].

2.3.1 Optical Cooling

The main idea behind optical cooling of neutral atoms is the utilisation of the scattering

force the atom feels when irradiated by a laser. The force that radiation of intensity I

exerts on an area A is given by

Frad =
IA

c
. (2.32)
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It can have a large effect on an atom, as the peak absorption cross-section σ(ω0) is much

greater than the physical size of the atom and can be used to change the momentum

of atoms and slow them, i.e. cool them. A counter propagating laser beam will exert a

force of

Frad = −Iσ
c
, (2.33)

where the minus sign indicates a force in the opposite direction of the atom’s motion. If

this is thought of in terms of photons, the atom is absorbing a photon which results in

a momentum kick in the direction opposite to its motion. It then spontaneously emits a

photon in a random direction which also imparts momentum but in a random direction.

If this is averaged over many photons being absorbed and emitted, the net contribution

of momentum due to emission averages to zero. This leaves only the momentum kick

due to absorption which is opposite to the direction of the atom’s motion. In this way,

the average velocity of the atom, and therefore the kinetic energy of the atom, will be

reduced. As this loss in kinetic energy is related to temperature by the equipartition

theorem,
1

2
mv2 =

1

2
kBT , (2.34)

the net result of this process is cooling of the atom.

For this absorption process to happen, the frequency of the counter propagating laser

must be detuned to account for the Doppler shift in the absorption frequency of the

atom due to its motion relative to the laser. However, once the atom has been slowed,

its change in velocity causes it to be taken out of resonance with the laser once again.

There are many techniques for solving this problem but here, we focus on Zeeman cooling

which is common in many experimental labs.

Zeeman cooling makes use of the fact that a spatially varying magnetic field changes

the atomic energy levels, the Zeeman effect. This change in atomic energy levels in

turn changes the absorption frequency and so it can be made match the frequency of a

constant laser frequency.

To work out the form of the magnetic field which we must use to slow the atoms, let

us first consider the maximum deceleration amax the radiation force will produce. This

deceleration can be written in terms of the recoil velocity vr and the life time of the

excited state τ

amax =
vr
2τ

. (2.35)

The recoil velocity is the change in the atom’s velocity when a photon of wavelength Λ

is absorbed or emitted,

vr =
h

Λm
, (2.36)
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where m is the mass of the atom.

If we now define the z-axis as being parallel to the direction of the beam, assume a

constant deceleration a and an initial velocity v0 we have,

v0
2 − v2 = 2az . (2.37)

The deceleration is usually half the maximum value to ensure that atoms are not left

behind as a result of fluctuations of the optical force Frad about its average value, i.e.

a = amax/2. Therefore we can easily find that the stopping distance is

L0 =
v0

2

amax
. (2.38)

By combining equations (2.37) and (2.38) the atoms velocity v at a distance z from the

starting point is found to be

v = v0

(
1− z

L0

)
. (2.39)

To compensate for the Doppler shift as this velocity v decreases to v0, we now add a

spatially varying magnetic field along the z-axis, B(z). The frequency shift of the atomic

transition caused by the Zeeman field as a result of this magnetic field must obey the

following relation,

~ω0 + µBB(z) = ~ω + ~kv , (2.40)

where µB is the Bohr magneton, ω is the laser frequency and k is the wave number.

Combining eqs. (2.39) and (2.40) we find the required form of the magnetic field,

B(z) = B0

(
1− z

L0

)2

+Bb , (2.41)

where B0 = hv0
ΛµB

and Bb is an added bias field. The value of Bb sets the velocity of

the atoms at the end of the field. If µBBb ≈ ~ω − ~ω0 then the atoms will come to a

complete stop.

With Zeeman cooling, and other optical cooling techniques, there is a limit on the lowest

temperature achievable, the Doppler cooling limit. This limit arises because the atom

does not always absorb the same number of photons in a time period t and so the

absorption and emission times are not always the same. These fluctuations lead to the

atom performing a random walk of velocity along the laser beam. This increase in

the velocity spread vz for a single laser beam (along the z-axis) is characterised by the

equation,

v2
z = v2

rRscattt , (2.42)
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where Rscatt is the scattering rate. However, this velocity spread is different for other

laser configurations [44].

If we consider a six beam optical molasses setup the spread in velocity is again related

to the temperature T by the equipartition theorem,

1

2
m(v2

x + v2
y + v2

z) =
1

2
kBT . (2.43)

Once the velocity spread is calculated the minimum temperature TD can be found,

TD =
~Γ

2kB
, (2.44)

where Γ is the excited state decay rate. This is the Doppler cooling limit.

To progress past this limit other cooling techniques are needed. One such technique

is Sisyphus cooling which is based on the transfer of population between different sub-

levels in the Zeeman structure of alkali atoms. Within this richer potential landscape,

the kinetic energy of the atom is converted to potential energy and then lost through

spontaneous emission. This allows cooling beyond the Doppler limit [44].

2.3.2 Optical Trapping

When a neutral atom is subject to an external electric field it acquires an electric dipole

moment. When the electric field is spatially uniform on the scale of the atom, this

interaction between the atom and the electric field can be described by the dipole ap-

proximation,

H ′ = −µ̂ ·E , (2.45)

where µ̂ is the electrical dipole operator and E is the external electric field.

In the case of a static electric field, this leads to a shift in the ground state energy of

the atom which is given to second order by,

∆E = −1

2
α|E|2 , (2.46)

where α is the atomic polarisability.

To describe the interaction between an atom and a time-dependent electric field E(r,t)

of frequency ω, such as a laser, the energy shifts to the atom may be viewed as an

effective potential seen by the atom. This is the so-called dressed state picture. In this
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picture, the effective potential V (r) is given as,

V (r) = −1

2
α(ω)〈|E(r, t)|2〉 , (2.47)

where 〈|E(r, t)|2〉 is the time average of the electric field and α(ω) is the dynamical

polarisability. These shifts in the energy are sometimes referred to as the ac Stark shift,

as they are the same as the usual Stark effect, but for a time-dependent electric field.

One of the main advantages in optical trapping is that the effective potential the atoms

see is independent of their spin. As a result, multiple atoms from the same atomic

species, with different magnetic states, can be confined in the same trap. The highly

controllable nature of lasers also allows the creation of many different types of trap

geometries and, for example, the combination of two counter-propagating laser beams

can be used to create optical lattices. Optical traps also allow us to add magnetic fields

to the system so that we can adjust the strength of the interaction between the trapped

atoms via Feshbach resonances [45, 46] which occur when the energy of a bound state of

an inter-atomic potential is coupled to the open state associated with collisions between

the atoms. By applying an external magnetic field the energy of the different hyperfine

levels can be modified and so the strength of the coupling at the resonance point can be

controlled.

2.3.3 Magnetic Trapping

One of the most common and successful approaches to trapping and controlling atoms

is the use of magnetic fields. When an atom is placed in a static magnetic field B, it’s

energy levels are shifted, which is known as the Zeeman effect. This can be understood

if we examine the Hamiltonian of an atom in an static magnetic field,

H = H0 + Vmag , (2.48)

where H0 is the unperturbed Hamiltonian and Vmag is the perturbation due to the

magnetic field. We write Vmag as

Vmag = −µ̂ ·B . (2.49)

where µ̂ is the magnetic moment of the atom and work in a frame where the static

magnetic field is aligned along the ẑ direction, B = Bẑ.

The magnetic momentum of the atom has both electronic and nuclear components

µ̂ = −gJµBJ + gIµNI , (2.50)
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where gJ and gI are the electronic and nuclear g-factors, respectively, J = L + S is the

total electronic angular momentum (the sum of total orbital angular momentum and

total spin angular momentum) and I is the nuclear spin. We also have µB and µN , the

Bohr and nuclear magneton, respectively. These are defined as

µB =
e~

2me
,

µN =
e~

2mp
, (2.51)

where e is the elementary charge, me is the electron mass and mp is the proton mass.

However, since the mass of the proton is four orders of magnitude larger than that of

the electron we have µN � µB, and we can therefore approximate µ̂ ≈ −gJµBJ. It then

follows that

Vmag = gJµBJ ·B . (2.52)

We now define the total angular momentum of the atom F = I + J. In the case where

the external magnetic field is weaker than the hyperfine interaction (I ·J) the procession

of I and J around their resultant F is very rapid compared to the procession of F around

the magnetic field on the z-axis. Therefore the quantum numbers mI and mJ are not

good quantum numbers, but F and mF are. We now take a time average projection of

J onto F given by

Javg =
(J · F)

F (F + 1)
F . (2.53)

Replacing J with Javg in equation (2.52) gives

Vmag = gJµB
(J · F)

F (F + 1)
F ·B = gFµBF ·B = gFµBFzB , (2.54)

where

gF = gJJ · F . (2.55)

To evaluate this g-factor we need the two following inner products,

J · F = J · I + J2 , (2.56)

F · F = F 2 = 2J · I + J2 + I2 , (2.57)

which given when combined

J · F =
F 2 + J2 − I2

2
. (2.58)
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Given that F 2|F,mF 〉 = F (F + 1), J2|J,mJ〉 = J(J + 1) and I2|I,mI〉 = I(I + 1) we

find that equation (2.55) evaluates to,

gF =
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)
gJ . (2.59)

This is the so-called, Landé g-factor and the energy shift due to the external magnetic

field, the Zeeman energy, is therefore

Vmag = µBgFmFB . (2.60)

This energy shift is seen as a potential by the atom and can be used to trap the atom

if it is spatially inhomogeneous. We can see that depending on the sign of spin of the

atom mF , it can be trapped by either a local minimum (weak field seeking states) or a

local maximum (strong field seeking states). However, from the Earnshaw theorem [47]

it can be shown that a magnetic local maximum is forbidden in free space without the

source at the maximum and therefore high field seeking states cannot be trapped. It is

for this reason that we only trap weak field seeking states with magnetic fields.

2.4 Atom Chips

Atom chips are powerful devices that are quite common in many laboratories around

the world. In its simplest form, an atom chip is a series of current carrying micro/nano

wires mounted on a substrate to create magnetic potentials for trapping neutral atoms

above the surface of the atom chip. Due to their small size, these traps are referred to

as microtraps and they provide very strong magnetic confinement for very low values

of current. These low currents at which atom chips operate make them experimentally

easier to work with and also allow the microtraps to be quickly turned on and off.

Some of the early achievements with atom chips have been the guiding of neutral atoms

with a single wire [48], the creation BECs [49] and matter wave interferometry [28].

Today, multilayer atom chips exist [50] which provide even more possibilities for potential

shaping and control.

Another reason for the popularity of atom chips is that the use of chip technology allows

the integration of various other experimental tools on-chip. This gives atom chips a much

wider range of applications. For example, this has led to the creation of radio frequency

traps [28] and the integration of optical devices [51]. Other applications of atom chips

include quantum information processing [52], the study of disordered systems and atom

surface interactions [53], matter-wave interferometry [28] and quantum metrology [54].
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Figure 2.1: A schematic diagram the magnetic field created by a single straight wire
(shown in yellow) parallel to the z-axis, mounted on an atom chip substrate (shown
in green). The connected blue lines above the wire indicate the magnetic waveguide
which can be used to guide neutral atoms. The red arrows show the direction of both

the bias field Bb and the applied field Bip

In the remainder of this Section we will outline how we model the atom chip potentials

that we use extensively in this thesis. A more comprehensive overview of many aspects

of atom chips, both experimental and theoretical, from which our description follows

can be found in [25].

Atom chips rely on magnetic interaction to trap and control BECs and neutral atoms.

As discussed in Section 2.3.3, when a particle with total spin F and a magnetic moment

µ̂ is placed in an external magnetic field B, it experiences the potential

Vmag = −µ̂ ·B = −µBgFmFB . (2.61)

One of the main requirements for any from of magnetic trapping would be that the

atoms follow the magnetic field. For this to happen, atoms have to retain their spin

orientation relative to the magnetic field. This can be achieved by ensuring that the

Larmor precession frequency (ωL = µBB/~) of the magnetic moment is much faster than

the rate of change of the magnetic field. We can then say that the magnetic momentum

adiabatically follows the direction of the field.

From Ampere’s law, the magnetic field created by a straight wire carrying a current Iw

in the ẑ direction, as shown schematically in Fig. 2.1, is

B = − µ0Iwy

2π(x2 + y2)
x̂+

µ0Iwx

2π(x2 + y2)
ŷ . (2.62)
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In this field the magnetic field lines wrap around the wire with the minimum of the field

at x = y = 0, the centre of the wire. To trap neutral atoms in a weak field seeking

state (see Section 2.3.3) we need to lift this minimum away from the centre of the wire.

This can be achieved by adding a homogeneous bias field Bb orthogonal direction to the

wire (see Fig. 2.1). In the case where this bias field is added in the x̂ direction, (2.62)

becomes,

B =

[
Bb −

µ0Iwy

2π(x2 + y2)

]
x̂+

µ0Iwx

2π(x2 + y2)
ŷ , (2.63)

and one can see that there is a point at which this magnetic field is zero along x = 0

and a finite value of y given by,

y = r0 =
(µ0

2π

) Iw
Bb

. (2.64)

Inserting this into equation (2.63) one finds

B =
µ0Iw
2π

{(
1

r0
− y

(x2 + y2)

)
x̂+

x

(x2 + y2)
ŷ

}
. (2.65)

It is important to consider what physically happens to the atom around r0, where the

magnetic field and the bias field cancel. At and around this point, the Larmor precession

frequency becomes small near zeros of the trap. Physically this means that the spin of

the atom no longer follows the field and so the spin can freely precess and flip. These

spin flips lead to the atoms transitioning between trapped and untrapped states and

they can therefore fall out of the trap. Such losses near the zeros of magnetic fields are

referred to as Majorana losses [55].

To prevent such losses we remove the zero of the field by applying another homogeneous

magnetic field Bip parallel to the direction of the wire (ẑ direction, see Fig. 2.1) to lift

the zero. This type of potential is called an Ioffe-Pritchard trap [56].

With the extra applied field added along the ẑ direction, the overall field can be written

as

B =
µ0Iw
2π

{(
1

r0
− y

(x2 + y2)

)
x̂+

x

(x2 + y2)
ŷ

}
+Bipẑ . (2.66)

For the proceeding analysis it is convenient to rewrite (2.66) in cylindrical co-ordinates,

B =
µ0Iw
2π

[(
1

r0
− cos θ

r

)
x̂+

sin θ

r
ŷ

]
+Bipẑ , (2.67)
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but, as highlighted by (2.61), only the magnitude of the magnetic field is required to

find the potential Vmag,

|B| =
[(

µ0Iw
2π

)2 r2 + r2
0 − 2rr0 cos θ

r2r2
0

+B2
ip

]1/2

. (2.68)

If we now consider the magnetic field as we approach the trap minimum (r → r0), we

have r2r2
0 ≈ r4

0 and cos θ ≈ 1. Therefore, in this limit, (2.68) reduces to

|B| =
[(

µ0Iw
2π

)2 (r − r0)2

r4
0

+B2
ip

]1/2

= Bip

[
1 +

B2
b (r − r0)2

r2
0B

2
ip

]1/2

. (2.69)

Finally we take the second order Taylor expansion to find,

|B| = Bip +
B2
b (r − r0)2

2r2
0Bip

, (2.70)

and substitute this expression into (2.61) to produce the magnetic potential seen by the

atom,

Vmag = µBgFmFBip +
1

2

µBgFmFB
2
b

r2
0Bip

(r − r0)2 . (2.71)

As indicated by this expression, the potential close to the minimum can be viewed as

a harmonic oscillator offset by µBgFmFBip. We can write the trap frequency of this

harmonic oscillator as

ω =
Bb
r0

√
µBgFmF

mBip
, (2.72)

where m is the mass of the atom. From this expression we can see that we can control the

trapping frequency of the magnetic waveguide by adjusting either Bb or Bip. When also

considering the expression for r0 (2.64), the height of the waveguide above the surface

of the chip, the ability to adjust Iw, Bb and Bip separately from each other allows us to

easily modify the waveguide.

This covers the basics of what the magnetic trapping potentials on atoms chips look like

and how to treat them mathematically. We will make extensive use of these powerful

tools to study the CTAP process in Chapter 3, where more details on the atom chip

we consider are given. The values of various system parameters are closely related to

possible experiments.
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2.5 CTAP: Coherent Tunnelling by Adiabatic Passage

In this section we will give an overview of the CTAP process which is used extensively

in this thesis. The motivation behind the development of CTAP is that the fidelity of

direct tunnelling between traps is time-dependent (this is detailed in Section 2.5.1) and

therefore a controllable mechanism for transferring particles from one trap to another is

a difficult experimental task. As we will see in this section, CTAP provides a method

of transitioning between trapped states in a manner that is time-independent (provided

the process is adiabatic) and robust to variations in system parameters.

2.5.1 Two Level System: Direct Coupling

To understand our interest in the CTAP technique we first look at a system consisting

of two states |1〉 and |2〉.

In the absence of any driving field (coupling), our bare Hamiltonian is

Ĥ0 = ~

(
0 0

0 ω0

)
, (2.73)

where ω0 is the resonant transition frequency between |1〉 → |2〉. The energy eigenstates

of the Hamiltonian (2.73) are by construction the states |1〉 and |2〉, with eigenenergies

E1 = 0 amd E2 = ~ω0.

Let us now consider the time evolution of the state of the system |Ψ(t)〉 as described by

the Schrödinger equation,

i~
∂|Ψ(t)〉
∂t

= Ĥ0|Ψ(t)〉 . (2.74)

With a time-independent Hamiltonian we can write Ĥ0|Ψ(t)〉 = E|Ψ(t)〉, i.e. the energy

is conserved and so we have

i~
∂|Ψ(t)〉
∂t

= E|Ψ(t)〉 . (2.75)

Integration gives,

|Ψ(t)〉 = e−iEt/~|Ψ(0)〉 . (2.76)

As we can see from this expression, if the quantum state of the system |Ψ〉, begins in

an energy eigenstate, it only acquires a phase as it evolves in time. More explicitly if

|Ψ(0)〉 = |j〉, then |Ψ(t)〉 = e−iEjt/~|j〉 where j ∈ [1, 2].

We now introduce a driving field of the form Ω cos(ωt) which continuously perturbs the

system. Here, the amplitude of this perturbation Ω is called the Rabi frequency. This
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perturbation is represented by the operator,

Ĥint(t) = ~

(
0 Ω cos(ωt)

Ω∗ cos(ωt) 0

)
. (2.77)

The total Hamiltonian for our system is Ĥ = Ĥ0 + Ĥint(t),

Ĥ = ~

(
0 Ω cos(ωt)

Ω∗ cos(ωt) ω0

)
. (2.78)

With this time-dependent Hamiltonian, the energy eigenstates no longer just acquire a

phase as they evolve, Ĥ|j〉 6= A|j〉 where A is a constant, i.e. the driving field couples

the levels.

To derive the solutions to the Schrödinger equation as above we must remove the time

dependence from the Hamiltonian. The first step in doing so is moving to a frame which

rotates with the frequency ω, the frequency of the driving field. To move to a rotating

frame we must apply a unitary transformation Û of the form,

Û = exp

(
−iÂt
~

)
, (2.79)

where Â is a Hermitian operator. Applying this to a wavefunction |Ψ〉 and then inserting

it into the Schrödinger equation we get

i~
dÛ †|Ψ〉
dt

= i~Û †
∂|Ψ〉
∂t

+ i~
∂Û †

∂t
|Ψ〉

= Û †Ĥ|Ψ〉 − ÂÛ †|Ψ〉
= (Û †ĤÛ − Â)Û †|Ψ〉 .

(2.80)

Therefore the Hamiltonian in a rotating frame, Ĥ
′
, is

Ĥ
′

= Û †ĤÛ − Â . (2.81)

For our specific system we wish to move to a frame which rotates with the frequency ω.

The form of Â which is required is,

Â = ~

(
0 0

0 ω

)
. (2.82)
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With this operator, the Hamiltonian (2.78) under rotation becomes Ĥ
′
,

Ĥ
′

= e−iÂt/~Ĥe−iÂt/~ − Â . (2.83)

To evaluate this expression we use the identity cos(ωt) = eiωt+e−iωt
2 , so that (2.83)

becomes

Ĥ
′

=
~
2

(
1 0

0 eiωt

)(
0 Ω(eiωt + e−iωt)

Ω∗(eiωt + e−iωt) 2(ω0 − ω)

)(
1 0

0 e−iωt

)
. (2.84)

Multiplying this expression out leads to only exponentials with powers of −i2ωt being

left;

Ĥ
′

=
~
2

(
0 Ω(1 + e−i2ωt)

Ω∗(1 + e−i2ωt) −2∆

)
, (2.85)

where ∆ = ω − ω0.

In the case of ω ≈ ω0 (the driving field is near resonance) the complex exponential

terms are oscillating at twice the transition frequency and therefore, the oscillations will

quickly time average to zero. The rotating wave approximation (RWA) is the claim that

these terms may be neglected and the Hamiltonian (2.85)can be written as

ĤRWA =
~
2

(
0 Ω

Ω∗ −2∆

)
. (2.86)

At this point the state of this two level system at any point in time can be described as

|Ψ(t)〉 = c1(t)|1〉+ c2(t)|2〉 , (2.87)

where c1(t) and c2(t) are complex state amplitudes with the requirement that |c1(t)|2 +

|c2(t)|2 = 1. It follows that the probability of finding the system in the state |j〉 at time

t is |〈j|Ψ(t)〉|2 = |cj(t)|2.

To find the expression for how the state amplitudes c1(t) and c2(t) evolve in time we

solve the Schrödinger equation with this RWA Hamiltonian (2.86):

i~
d|Ψ(t)〉
dt

= ĤRWA|Ψ(t)〉 , (2.88)

which can be represented in matrix form as

i

(
ċ1(t)

ċ2(t)

)
=

1

2

(
0 Ω

Ω∗ −2∆

)(
c1(t)

c2(t)

)
. (2.89)
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By multiplying out this equation the following differential equations are obtained,

ċ1(t) = − i
2

Ωc2(t) ,

ċ2(t) = − i
2

Ω∗c1(t) + i∆c2(t) . (2.90)

To explicitly solve this set of differential equations we require initial conditions which

are obtained by considering that the system is initially in state |1〉. This implies that

c1(0) = 1 and c2(0) = 0 and so the total system of equations to solve is

ċ1(t) = − i
2

Ωc2(t)

ċ2(t) = − i
2

Ω∗c1(t) + i∆c2(t)

c1(0) = 1

c2(0) = 0 . (2.91)

If we now require that the phase of the field is zero, i.e. Ω∗ = Ω, the solution of (2.91)

can be written as,

(
c1(t)

c2(t)

)
= e

it∆
2


cos

(
ΩRt

2

)
− i ∆

ΩR
sin
(

ΩRt
2

)

−i Ω
ΩR

sin
(

ΩRt
2

)

 , (2.92)

where Ω2
R = Ω2 +∆2 and is referred to as the total Rabi frequency. Therefore, assuming

the system begins in state |1〉, the state amplitudes |c1(t)|2 and |c2(t)|2 evolve according

to

|c1(t)|2 =
Ω2

Ω2
R

sin2

(
ΩRt

2

)
, (2.93a)

|c2(t)|2 =
∆2

Ω2
R

+
Ω2

Ω2
R

cos2

(
ΩRt

2

)
. (2.93b)

From (2.93) we can see that the probability to be in state |1〉 or |2〉 oscillates with

frequency ΩR. These oscillations between the two levels of the system are the so-called

Rabi oscillations, and are at the core of the problem CTAP tries to solve.

More explicitly, this result shows that if one attempts to perform population transfer

between the two states of a two level system via direct coupling, the presence of Rabi

oscillations makes the population in the target state time-dependent. So while high

fidelity transport of the population from one state to the other is possible, it would
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require precise control over the timing of the process and the strength of the driving

field.

2.5.2 Three Level System

Now that we have illustrated how population transfer in a two level system by direct

coupling induces Rabi oscillations, we show how introducing a third, intermediate level

and using time-dependent Rabi frequencies, can remove these unwanted Rabi oscilla-

tions. This type of scheme was first suggested as a way of making coherent transitions

in internal atomic states where the motivation was to get rid of the spontaneous emis-

sions from the intermediate excited state. In this optical context it is referred to as

stimulated Raman adiabatic passage (STIRAP).

2.5.2.1 STIRAP

First consider two atomic hyperfine states which we label |1〉 and |3〉 with energies E1

and E3 respectively. Both of these atomic states will be taken to be stable, as one-photon

transitions between them are forbidden since a single photon would produce a change in

angular momentum of either +1 or −1. As such, to make a transition between |1〉 and

|3〉, a two-photon Raman process is required in order not to add angular momentum.

However, such a transition introduces a third intermediate excited state which we label

|2〉 with energy E2. When the atom occupies this excited state it has a chance to

spontaneously emit a photon and decay into a different state outside the defined three

level system. As such, using this two-photon Raman process will suffer from losses

because of this intermediate excited state. The purpose of the STIRAP process is to

prevent such losses from occurring.

We now introduce a pair of driving fields to couple the levels in the form of two laser

fields, pump field and Stokes field, with time-dependent Rabi frequencies ΩP (t) and

ΩS(t) respectively. The pump field with Rabi frequency ΩP couples |1〉 → |2〉 and a

Stokes pulse with Rabi frequency ΩS couples |2〉 → |3〉. Fig. 2.2 (a) gives a schematic

of the system.

The Hamiltonian of this system within the RWA is

Ĥ =
~
2




0 ΩP (t) 0

ΩP (t) 2∆P ΩS(t)

0 ΩS(t) 2(∆P −∆S)


 . (2.94)
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We write the detuning of the pump laser from resonance with the |1〉 → |2〉 transition

as ~∆P = (E2−E1)−~ωP and the detuning of the Stokes laser from resonance with the

|2〉 → |3〉 transition as ~∆S = (E2 − E3) − ~ωS . Diagonalizing the Hamiltonian (2.94)

leads to three eigenstates [57]

|a+〉 = sin θ sin Φ|1〉+ cos Φ|2〉+ cos θ sin Φ|3〉 ,
|a−〉 = sin θ cos Φ|1〉 − sin Φ|2〉+ cos θ sin Φ|3〉 ,
|d〉 = cos θ|1〉+ sin θ|3〉 , (2.95)

with corresponding eigenvalues

ω+ = ∆P +

√
∆P

2 + ΩP
2 + ΩS

2 ,

ω− = ∆P −
√

∆P
2 + ΩP

2 + ΩS
2 ,

ωd = 0 . (2.96)

Here the time varying mixing angle θ is defined by the ratios of the Rabi frequencies,

tan θ =
ΩP (t)

ΩS(t)
, (2.97)

and the second angle Φ is given as [57]

tan Φ =

[
ΩP (t)2 + ΩS(t)2

] 1
2

[
ΩP (t)2 + ΩS(t)2 + ∆P

2
] 1

2
+ ∆P

. (2.98)

For our purposes the most important of these eigenstates is |d〉, the so called dark state

as it does not occupy the excited state at any time and therefore does not include the

possibility of spontaneous emission. The utility of this state for population transfer

comes from how we change the mixing angle θ in time. It also has no dependence on Φ.

Consider the case where both lasers are tuned to their respective transition frequencies,

∆S = ∆P = 0, and the population is initially in |1〉. Before the pulses are applied, all

three eigenvalues are degenerate. If we first apply the Stokes pulse Ωs(t) and then after

a time delay of τ , apply the pump pulse Ωp(t), this causes the mixing angle to move

through θ = 0→ π
2 . Moving the mixing angle in this way causes the population of |d〉 to

transfer from |1〉 → |3〉 without ever occupying the excited state |2〉. Fig. 2.2 (b) gives

a schematic of the counter-intuitive arrangement of pump and Stokes pulses.

If we wish to utilise state |d〉 for population transfer, our system needs to remain in state

|d〉 at all times during the process. This is done by ensuring that the process is adiabatic.
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Figure 2.2: Schematic of the STIRAP process. (a) The two stable states |1〉 and |3〉
are coupled to the excited state |2〉 by a pump (red arrow) and Stokes laser (blue arrow)
with time-dependent Rabi frequencies ΩP (t) and ΩS(t) respectively. The detunings of
the pump and Stokes lasers from the transition frequency are ∆P and ∆S , respectively.
(b) The counter-intuitive application of the laser pulses. Note the time delay τ in the

application of the pump pulse (red line) after the Stokes pulse (blue line).

We note from (2.96) that any pulse application lifts the degeneracy of the eigenvalues

with only ωd remaining unchanged at zero. Therefore if the system is prepared in state

|d〉, an adiabatic application of the counter-intuitive arrangement of pump and Stokes

pulses will prevent any energy change, forcing the system to remain in state |d〉, and

therefore transfer the population from |1〉 → |3〉. Non-adiabatic behaviour can lead to

transitions between the eigenstates (2.95).

The advantage of utilising the STIRAP technique in this more complicated three-level
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system, instead of direct coupling between consecutive levels in the three level system,

is that the Rabi oscillations between the directly coupled states are removed. In direct

coupling, the presence of Rabi oscillations mean that the population in the target state

is time-dependent, and so, if one wishes to achieve high fidelities one must have precise

control over the timing of the process. By using the STIRAP technique these Rabi

oscillations are eliminated and so, as long as the process is adiabatic, the population in

the target state is time-independent and high fidelity population transfer is achievable

in a robust manner.

2.5.2.2 CTAP

While the STIRAP process has been known and extensively used in the realm of optics, it

was only recently shown by Eckert et al. [20] that it has an atom optical analogue dubbed

Coherent Tunnelling by Adiabatic Passage (CTAP). The basic idea is that instead of

a three level optical system, one can consider a 1D system of three identical traps in a

linear arrangement, with an atom initially confined to the left-most trap as shown in

Fig. 2.3.

We describe the centre-of-mass state of the atom in this system using the ground state

of each of the traps as a basis labelled |L〉, |M〉 and |R〉 for the left, middle and right

trap respectively. For this to be valid our atom must have a well defined energy (no

thermal fluctuations) so that it can be considered to be in a linear combination of the

ground states of our traps at all times. This makes cold atoms an ideal candidate.

In this basis our state |Ψ〉 is given as

|Ψ〉 = cL|L〉+ cM |M〉+ cR|R〉 . (2.99)

In this system the time-dependent optical coupling of the pump and Stokes pulses is

replaced by the time-dependent tunnel coupling between the traps. Like the Rabi fre-

quencies ΩP (t) and ΩS(t) of our laser, we define JLM (t) as the tunnelling strength

between |L〉 and |M〉 while JMR(t) as the tunnelling strength between |M〉 and |R〉. As

the tunnelling strength depends exponentially on the distance between the states, the

linear arrangement of our traps means that there is no significant coupling between |L〉
and |R〉.

With three identical traps that are well separated, we can consider them to be in res-

onance to a high degree of accuracy. However, when the traps are then brought closer

together so that they begin to overlap, this resonance is no longer guaranteed. Solving

this issue is one of the central problems in this thesis and will be discussed in more
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Figure 2.3: Schematic of the CTAP process for an atom in the left trap |L〉. Changing
the distance between the middle and outer traps in time from a maximum value dmax to
a minimum value dmin as indicated by the solid black lines leads to the counter-intuitive
change in tunnelling strengths (JLM and JRM ) needed for CTAP. In this scheme we

have exaggerated the time delay (τ) in the movement of the traps.
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detail in the following Chapters. For now, to demonstrate the basic CTAP process, we

assume that the traps do not influence each other and we consider them to be piecewise

harmonic.

The Hamiltonian of this system is

Ĥ = ~




0 −JLM (t) 0

−JLM (t) 0 −JMR(t)

0 −JMR(t) 0


 , (2.100)

where we have scaled the ground state energy of each trap to be zero. We note that this

Hamiltonian is the same as the Hamiltonian for STIRAP (2.94) with no detuning (all

trapped states are resonant). Diagonalisation of this Hamiltonian results in the same

eigenstates and one can expect similar physics. In particular, diagonalising produces the

atom optical analogue of the dark state |d〉 as one of the eigenstates,

|d〉 = cos θ|L〉 − sin θ|R〉 , (2.101)

and its associated mixing angle

tan θ =
JLM (t)

JMR(t)
. (2.102)

As we can see, this dark state |d〉 has no contribution from |M〉, the middle trap.

Therefore if the state of the atom adiabatically follows |d〉, at no point in time will it

occupy the middle trap.

To perform population transfer from |L〉 to |R〉 by exploiting this dark state, we must

adjust the tunnel couplings JLM (t) and JMR(t) in order to control the mixing angle

θ. This is achieved by controlling the position of the traps in time and, like STIRAP,

must be done in a counter-intuitive fashion. First, we assume our atom is localised in

the left trap initially and that all traps are equidistant from each other at a distance of

dmax. We then bring the right trap close to the middle trap first and then, after a time

delay τ , bring the left trap close to the middle trap. Once the right trap has reached

the minimum distance from the middle trap dmin we then move it back to its starting

position. Finally the left trap is returned to its starting position, but again after a time

delay τ . A schematic of this process is shown in Fig. 2.3.

If this counter intuitive movement of the traps is done adiabatically we find that the

trap population moves from |L〉 → |R〉 without ever occupying |M〉. CTAP has the

same advantages over direct tunnelling that we highlighted in the STIRAP case. Direct

tunnelling between two traps will have Rabi oscillations between the traps. This again

makes the process time-dependent and we not only need good control over the timing of
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the process, we also must have good control over the positions on the traps. With CTAP

these restrictions are relaxed and we can achieve robust, high fidelity population transfer

as long the process is adiabatic and our traps are kept in resonance with each other.

However, for CTAP to be a viable option for a system in which we wish to transport

the centre-of-mass state of an atom, the process must be faster than the lifetime of the

atom.

2.6 Radio Frequency Trapping

In this Section we give an overview of the two approaches used in this thesis for describ-

ing adiabatic rf potentials. The first approach, which will be referred to as the piecewise

resonance model, uses a local frequency approximation to evaluate the adiabatic eigen-

values of the system. This is the method used in Chapter 4 of this thesis. The second

approach uses Floquet theory [30] to obtain the adiabatic eigenvalues, which is the focus

of Chapter 5.

Before each approach is described in detail, I will first derive the general Hamiltonian

for a magnetically trapped atom interacting with an rf field. The two approaches then

differ in their way of treating the time-dependence and will be discussed separately.

2.6.1 General Hamiltonian

Consider an atomic hyperfine ground state of an alkali atom interacting with a magnetic

field B(r, t). The Hamiltonian that describes its dynamics is given by

H(r, t) = µBgFB(r, t) · F . (2.103)

Here µB is the Bohr magneton, gF is the g-factor of the hyperfine level and F = J + I is

the total angular momentum operator where J is the total electronic angular momentum

operator and I is the nuclear spin operator. As discussed in Section 2.3.3, this expression

is valid as long as F remains a good quantum number, i.e the magnetic field is not too

strong. Otherwise only the components of J and I parallel to F are important.

Now consider the situation where the atom is confined in a static trapping field Bs(r)

and is irradiated with a linearly polarised radio frequency field Brf(r) cos(ωt). The total

B(r, t) then is

B(r, t) = Bs(r) + Brf(r) cos(ωt) . (2.104)

Note that the index indicating the radio frequency field has been replaced for ease of

notation here by the counter for the respective field.
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For the types of adiabatic rf potentials we wish to consider in this thesis, we require N

such linearly polarised radio frequency fields Bn(r) cos(ωnt) where n ∈ [1, N ] so that the

total B(r, t) becomes

B(r, t) = Bs(r) +
N∑

n=1

Bn(r) cos(ωnt) . (2.105)

Both the piecewise resonance and the Floquet approach deal with multiple frequencies

differently. For now, we continue with this generalised Hamiltonian and the next step

is to move to a frame where the static trapping field Bs(r) is always orientated along in

the z-direction. In such a frame the Hamiltonian becomes

H(r, t) = µBgF

{
Bs(r)Fz +

[
N∑

n=1

Bnx(r) cos(ωnt)

]
Fx

+

[
N∑

n=1

Bny(r) cos(ωnt)

]
Fy +

[
N∑

n=1

Bnz(r) cos(ωnt)

]
Fz

}
, (2.106)

where both F and Bn(r) have been decomposed into their contributions along each axis

in this frame.

The components of the rf fields that oscillate parallel to the static field, Bnz(r) cos(ωnt),

can be neglected if µBnz(r)� ~ωn. Physically this means that the Larmor frequency as-

sociated with the rf field component parallel to the static field, ωL =
√

(ωn − ωt)2 + Ωn
2

where ωt is the atomic transition frequency and Ωn the Rabi frequency of the rf field,

is small compared to the oscillation frequency of the rf field. Therefore this component

does not significantly modify the static field Larmor frequency and its contribution may

be time-averaged to zero [58]. As such, only the elements of the rf field perpendicular

to the static field, Bnx(r) cos(ωnt) and Bny(r) cos(ωnt), contribute to coupling between

the atomic levels [59] and (2.106) can be written as

H(r, t) = µBgF

{
Bs(r)Fz +

[
N∑

n=1

Bnx(r) cos(ωnt)

]
Fx

+

[
N∑

n=1

Bny(r) cos(ωnt)

]
Fy

}
. (2.107)

Diagonalising this Hamiltonian is not trivial due to the time-dependently oscillating

terms. Removing this time-dependence can be done in different ways and using different

approximations, which is the point at which the piecewise resonance model and the

Floquet model differ. We therefore present them separately, beginning with the piecewise

resonance model in the following Section.
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2.6.2 Piecewise Resonance Model

In this Section we present the detailed treatment of the piecewise resonance model we

use to obtain the adiabatic rf potentials used in Chapter 4 of this thesis. This method

was first used in [29] and is applicable in the limit where the different frequencies are

well separated and the Rabi frequencies of the fields are not too large.

As previously stated, the next step in obtaining the adiabatic rf potentials is the removal

of the time dependence from the Hamiltonian (2.107). Let us first discuss the procedure

for a Hamiltonian with a single rf field and then, in the next Section, detail how to

account for multiple rf fields.

For a single rf field, N = 1, the Hamiltonian (2.107) can be written as

H(r, t) = µBgFBs(r)Fz + µBgF [Brfx(r)Fx cos(ωt) +Brfy(r)Fy cos(ωt)] . (2.108)

where we have relabelled B1(r) cos(ω1t) as Brf(r) cos(ωt). To remove the time depen-

dence from this Hamiltonian, the first step is to move to a frame which rotates about

the z-axis with the frequency of the rf field ω. This procedure is equivalent to the one

described in Section 2.5.1, where one applies a unitary transformation U such that the

Hamiltonian becomes,

H ′(r, t) = U †H(r, t)U − Fz~ω , (2.109)

where

U = exp (−iFzωt) . (2.110)

Therefore, by applying this transformation to the Hamiltonian (2.108), one finds that

the transformed Hamiltonian H ′(r, t) is given as,

H ′(r, t) = µBgF

(
Bs(r)− ~ω

µBgF

)
Fz + µBgF

{
Brfx(r)

[
Fx cos2(ωt)− Fy cos(ωt) sin(ωt)

]

+Brfy(r)
[
Fx cos(ωt) sin(ωt) + Fy cos2(ωt)

] }
.

(2.111)

Using the identities cos2(ωt) = 1−cos(2ωt)
2 and cos(ωt) sin(ωt) = sin(2ωt)

2 , eq. (2.111) can

be rewritten as,

H ′(r, t) = µBgF

(
Bs(r)− ~ω

µBgF

)
Fz+µBgFBrfx(r)

[
Fx

(
1

2
− cos(2ωt)

2

)
− Fy

sin(2ωt)

2

]

+µBgFBrfy(r)

[
Fx

sin(2ωt)

2
+ Fy

(
1

2
− cos(2ωt)

2

)]
.

(2.112)
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This expression can be simplified by applying the so-called rotating wave approximation

(RWA) which leads to removing all terms in (2.112) that have fast oscillating components

(2ωt terms). The RWA Hamiltonian is

HRWA(r) = µBgF

(
Bs(r)− ~ω

µBgF

)
Fz + µBgf

[
Brfx(r)Fx +Brfy(r)Fy

2

]
. (2.113)

As one can see from this equation, the time dependence has been removed. The next

step in the procedure is to diagonalise the Hamiltonian, and hence obtain the adiabatic

rf potentials, given by the eigenvalues. For this, the first step is to write the Hamiltonian

in matrix form by using the basis vectors of F. In this thesis we consider systems with

total spin F = 1
2 , although this procedure can be generalised to multilevel systems with

F > 1
2 . For F = 1

2 the basis vectors are |12 , 1
2〉 and |12 ,−1

2〉 and therefore the components

of F in matrix form are

Fx =

(
0 1

2
1
2 0

)
, (2.114)

Fy =

(
0 − i

2
i
2 0

)
, (2.115)

Fz =

(
1
2 0

0 −1
2

)
. (2.116)

By using these expressions, the Hamiltonian (2.113) can be written in matrix form,

HRWA(r) = µBgF
1

2


 Bs(r)− ~ω Brfx (r)−iBrfy (r)

2
Brfx (r)+iBrfy (r)

2 −Bs(r) + ~ω


 . (2.117)

Since this is a simple 2x2 Hamiltonian, it can be analytically diagonalised and the

eigenvalues are given by

E±(r) =
±µBgF

2

√(
Bs(r)− ~ω

µBgF

)2

+
1

4

(
B2

rfx
(r) +B2

rfy
(r)
)
. (2.118)

To highlight the basic form of these eigenergies, in Fig. 2.4 we show a one dimensional

schematic of the bare trap eigenenergies of an atom confined to a linear static field, and

the eigenergies when it is irradiated with a single rf field. As can be seen from this figure,

the bare eigenstates are dressed by the rf field in such a way that an avoided crossing

is produced where the rf field is resonant, i.e. the position at which Bs(r) = ~ω
µBgF

. As

such, by adjusting the frequency of the rf field, it can be made to be resonant at any

position, i.e. the rf field couples with spatial resolution.
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Figure 2.4: The eigenenergies obtained from equation (2.118) for an atom in a linear
static field Bs(x) = x. The blue line shows the bare trap eigenenergies (no rf field)
and the red line shows the eigenergies when the atom is irradiated with a single rf field
of frequency ω = 2π × 10kHz with Brfx(x) = Brfy (x) = 5 × 10−8T. The dotted line

indicates the position the rf field is resonant with the bare eigenergies.

2.6.2.1 Multi-Frequency Potentials

To create multi-well potentials, as is required for the work in this thesis, it is necessary

to use several frequencies making the above analysis significantly more complicated. In

this Section we will detail the piecewise resonance approach to describing these multi-

frequency adiabatic rf potentials.

The situations we will be considering here are where the frequencies of the rf fields

are well separated and the Rabi frequencies are not too large. For such a situation, a

good approach is to calculate the eigenvalues (2.118) for each rf field of frequency ωn

separately. For numerical simplicity, we will concentrate on a one dimensional descrip-

tion of such a process where the atom interacts with an inhomogeneous magnetic field

Bs = B(x) and the other two dimensions are tightly confined by a magnetic trap which

the atom chip produces. We now define the Rabi frequency Ω(r),

Ω(r) =
µBgF

4~
(Brfx(r)− iBrfy(r)) , (2.119)

which allows us to rewrite (2.117) as

H(x) =
1

2

(
µBgFB(x)− ~ω ~Ω(x)

~Ω∗(x) −µBgFB(x) + ~ω

)
. (2.120)

The approach to dealing with multiple frequencies here is to assume that the individual

frequencies are spaced sufficiently far apart and have low Rabi frequencies with respect
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to the detuning. In this case one can approximate the dynamics locally by considering

only the nearest resonance frequency, ω(x) = ωn at any point in space [29]. Formally,

this is done by choosing n such that [µBgFB(x)− ~ωn] is minimized at any position x.

With this local frequency approximation the eigenvalues of Hamiltonian (2.120) can be

approximated by making a second order Taylor expansion;

E±(x) = ±1

2

√
~2Ω2(x) + [µBgFB(x)− ~ωn]2 (2.121)

≈ ±1

2
[µBgFB(x)− ~ωn]± ~2Ω2(x)

4[µBgFB(x)− ~ωn]
, (2.122)

where the second expression is valid far from the resonance, ~Ω(x)� [µBgfB(x)−~ωn].

The second term in the expression can be viewed as a Stark shift on the energy levels.

The effect of all other rf fields which are not closest to resonance can be approximated

by creating an effective Stark shift which is the sum of the Stark shifts of all rf fields of

frequency ωj with j 6= n [29]. The explicit form of this effective Stark shift is

Ln(x) =
∑

j 6=n

~2Ω2(x)

4[µBgFB(x)− ~ωj(x)]
. (2.123)

Combining 2.120 and 2.123 gives

H(x) =
1

2

(
µBgFB(x)− ~ωn(x) − Ln(x) ~Ω(x)

~Ω(x) −µBgFB(x) + ~ωn(x) + Ln(x)

)
, (2.124)

and diagonalising this new Hamiltonian gives the corrected eigenvalues

E±(x) = ±1

2

√
~2Ω2(x) + [µBgFB(x)− ~ω + 2Ln(x)]2 . (2.125)

From this, and considering that the Rabi frequencies are strong enough so that each rf

field flips the atoms spin where it is resonant, the resulting piecewise resonant, adiabatic

potential is given by

Vad,±(x) = (−1)n(x)

[
E±(x)∓

~ωn(x)

2

]
∓
n(x)−1∑

k=1

(−1)k~ωk . (2.126)

Note that this expression for our adiabatic rf potentials gives us spatial resolution due

to the spatial dependence of the magnetic field. We also see that we have two adiabatic

potentials to choose from depending on the sign of the atom’s spin Vad,+ and Vad,−.
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2.6.3 Floquet Model

In this Section we detail the Floquet approach used in Chapter 5 to obtain the adia-

batic eigenvalues of a system driven by multiple rf fields of different frequencies. Flo-

quet theory, developed by Gaston Floquet [30], provides a practical and powerful non-

perturbative method for studying the interaction of a quantum system with an oscillating

field such as ionization and multiphoton excitation processes. It allows one to find the

solutions of a Schrödinger equation with a temporally periodic Hamiltonian by repre-

senting it as an infinite matrix, the Floquet matrix. Therefore, one can utilise Flouqet

theory to remove the time dependence from the generalised rf Hamiltonian (2.107) de-

rived in Section 2.6.1.

The motivation for using Floquet theory for rf systems is that one is not required to

apply the RWA which discards higher order coupling terms as was done in the piecewise

resonance approach of the previous Section. In the RWA certain physical phenomena

are not accounted for, with one prominent example being the Bloch-Siegert shift [60]

which describes a shift in the resonance frequency due to the counter-rotating, fast

oscillating terms. In [31], Floquet theory was used to derive expressions for the higher-

order terms responsible for the Bloch-Siegert shift. Since we are interested in determining

the transition frequencies exactly, we will take all oscillating terms into account with a

Floquet approach and not make the RWA.

However, before we detail how to apply Floquet theory to the Hamiltonian (2.107), in

the next Section we give an overview of the Floquet approach for a general periodic

Hamiltonian.

2.6.3.1 Floquet Theory

In this Section we show how Floquet theory can be applied to a general Hamilto-

nian that is periodic in time. The Floquet theorem states that the time-dependent

Schrödinger equation has a complete set of quasi-periodic solutions. These solutions, or

quasi-eigenvalues, are found by diagonalising the Floquet matrix which can be thought

of as a matrix whose elements consist of the Fourier components of the Hamiltonian.

First consider the time-dependent Schrödinger equation

i~
∂Ψ(t)

∂t
= H(t)Ψ(t) , (2.127)
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where the Hamiltonian is periodic in time with frequency ω,

H(t) = H(t+ τ) = H

(
t+

2π

ω

)
. (2.128)

The strategy for removing the time dependence from this Hamiltonian is to decompose

it as a Fourier series,

H(t) =

∞∑

m=−∞
Hme

−imωt , (2.129)

and make the ansatz that the wave function can also be decomposed into a Fourier

series,

Ψ(t) =
∞∑

n=−∞
Φn(t)e−inωt . (2.130)

The next step is to obtain a Fourier representation of time-dependent Schrödinger equa-

tion. By inserting (2.130), into (2.127) one finds

i~
∞∑

n=−∞
[Φ̇n(t)− inωΦn(t)]e−inωt = H(t)

∞∑

n=−∞
Φn(t)e−inωt , (2.131)

and replacing H(t) with its Fourier representation (2.129) completes the Fourier decom-

position of the Schrödinger equation,

i~
∞∑

n=−∞
[Φ̇n(t)− inωΦn(t)]e−inωt =

∞∑

n,m=−∞
HmΦn(t)e−i(n+m)ωt . (2.132)

The next step of the procedure in obtaining the Floquet matrix is an exercise in rear-

ranging and relabelling indices. First, by introducing k = n+m, the infinite sum on the

right hand side of equation (2.132) can be rewritten as

∞∑

k,n=−∞
Hk−nΦn(t)e−ikωt , (2.133)

and relabelling the indices such that k → n and n→ m, the infinite sum (2.133) becomes,

∞∑

n,m=−∞
Hn−mΦm(t)e−inωt . (2.134)

Therefore, (2.132) can be written as

i~
∞∑

n=−∞
[Φ̇n(t)− inωΦn(t)]e−inωt =

∞∑

n,m=∞
Hn−mΦm(t)e−inωt . (2.135)
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This equation can now be simplified by cancelling the e−inωt terms on both sides

i~Φ̇n(t) + n~ωΦn(t) =
∞∑

m=−∞
Hn−mΦm(t) , (2.136)

and rearranging it into a form similar to the Schrödinger equation where the time-

dependent Hamiltonian has become an infinite dimensional static one

i~Φ̇n(t) =

∞∑

m=−∞
Hn−mΦm(t)− n~ωΦn(t) (2.137)

=
∞∑

m=−∞
[Hn−m − n~ωδnm]Φn(t) . (2.138)

As one can see from this expression, by carrying out this procedure the time-dependent

Hamiltonian can be represented by a time-independent, infinite dimensional matrix.

This is the so-called Floquet matrix HF ,

HF =

∞∑

m=−∞
[Hn−m − n~ωδnm] . (2.139)

The explicit form of the Floquet matrix is

HF =




.. .. .. .. .. .. ..

.. H0 + 2~ω1 H−1 H−2 H−3 H−4 ..

.. H1 H0 + ~ω1 H−1 H−2 H−3 ..

.. H2 H1 H0 H−1 H−2 ...

.. H3 H2 H1 H0 − ~ω1 H−1 ..

.. H4 H3 H2 H1 H0 − 2~ω1 ..

.. .. .. .. .. .. ..




, (2.140)

where each Floquet block Hn is found by using

Hn =
1

τ

∫ τ

0
H(t)einωt dt , (2.141)

and τ = 2π
ω is the period of the Hamiltonian [61]. By evaluating these integrals the

Floquet blocks can be found and used to construct the Floquet matrix HF (2.140). In

the next Section, we will detail how the Floquet matrix is built for a system driven by

a single rf field.
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2.6.3.2 Single Frequency Floquet Matrix

In this Section we apply Floquet theory to remove the time dependence from the Hamil-

tonian (2.107), in the case where only a single rf field of frequency ω1 is present. We do

this as the construction of the Floquet matrix is quite involved for multiple frequencies

and so dealing with a single rf field makes it easier to follow, while fully exemplifying

the procedure. In the following Section we will then describe the procedure for dealing

multiple rf fields.

For a single rf field of frequency ω1, the Hamiltonian (2.107) reduces to

H(r, t) = µBgF
{
Bs(r)Fz + [B1x(r) cos(ω1t)]Fx +

[
B1y(r) cos(ω1t)

]
Fy
}
. (2.142)

This Hamiltonian has a period of τ = 2π
ω1

and therefore can be mapped to a Floquet

matrix to remove the time dependence. The quasi-eigenenergies of the Floquet matrix

can then be used to construct the adiabatic rf potentials.

The first step in finding the Floquet matrix of the form (2.140) is to find each Floquet

block Hn by using equation (2.141). Applying this to the Hamiltonian (2.142) produces,

Hn =
µBgF
τ

∫ τ

0
Bs(r)ei(nωt)Fz dt+

µBgF
τ

∫ τ

0
Fx(B1x(r) cos(ω1t))e

i(nωt) dt+

µBgF
τ

∫ τ

0
Fy(B1y(r) cos(ω1t))e

i(nωt) dt . (2.143)

Using Euler’s formula (eiαt = cos(αt) + i sin(αt)), cos(ω1t) can be expressed in terms of

exponentials,

cos(ω1t) =
eiω1t + e−iω1t

2
, (2.144)

and with this expression, (2.143) can be written as

Hn =
µBgF
τ

∫ τ

0
Bs(r)ei(n−0)Fz dt+

µBgF
τ

∫ τ

0
B1x(r)Fx

ei(n−(−1))ω1t + ei(n−1)ω1t

2
dt+

µBgF
τ

∫ τ

0
B1y(r)Fy

ei(n−(−1))ω1t + ei(n−1)ω1t

2
dt . (2.145)

These integrals may be evaluated by using the following identity [61],

1

τ

∫ τ

0
ei(n−m)ωtdt = δnm , (2.146)
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so that the evaluated Floquet blocks follow as

H0 = µBgFBs(r)Fz , (2.147a)

H+1 =
µBgFB1x(r)Fx

2
+
µBgFB1y(r)Fy

2
, (2.147b)

H−1 =
µBgFB1x(r)Fx

2
+
µBgFB1y(r)Fy

2
, (2.147c)

and all other Hn blocks are zero. These Floquet blocks can be rewritten in matrix form

by using the basis vectors of F according to equations (2.114), (2.115) and (2.116) such

that

H0 =
µBgF

2

(
Bs(r) 0

0 −Bs(r)

)
, (2.148a)

H+1 =
µBgF

2

(
0

B1x(r)−iB1y(r)
2

B1x(r)+iB1y(r)
2 0

)
, (2.148b)

H−1 =
µBgF

2

(
0

B1x(r)−iB1y(r)
2

B1x(r)+iB1y(r)
2 0

)
. (2.148c)

By using the previously defined Rabi frequency Ω (2.119), the Floquet blocks reduce to

H0 =
µBgF

2

(
Bs(r) 0

0 −Bs(r)

)
, (2.149)

H+1 =

(
0 ~Ω∗(r)

~Ω(r) 0

)
, (2.150)

H−1 =

(
0 ~Ω∗(r)

~Ω(r) 0

)
. (2.151)

Now that all the Floquet blocks Hn have been obtained, the Floquet matrix HF can be

constructed according to equation (2.140). Here, we show the infinite HF matrix up to

order ~ω1

HF =




.. .. .. .. .. .. .. ..

.. kBs(r)+~ω1 0 0 ~Ω∗(r) 0 0 ..

.. 0 −kBs(r)+~ω1 ~Ω(r) 0 0 0 ..

.. 0 ~Ω∗(r) kBs(r) 0 0 ~Ω∗(r) ..

.. ~Ω(r) 0 0 −kBs(r) ~Ω(r) 0 ..

.. 0 0 0 ~Ω∗(r) kBs(r)−~ω1 0 ..

.. 0 0 ~Ω(r) 0 0 −kBs(r)−~ω1 ..

.. .. .. .. .. .. .. ..


 , (2.152)

where k = µBgF
2 .

Before the eigenvalues and eigenvectors of HF can be found, the Floquet matrix must

be truncated to a finite size, and a consistent way of doing this is to fix the number of
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multiples of ~ω1 that are included. This corresponds to limiting the order of photonic

processes that can occur. For example, if the Floquet matrix is limited to include

terms up to ±2~ω1, maximally two photons can be absorbed and emitted in a single

process. As such, including higher orders leads to a more accurate description, but in

real experiments, processes involving multiple photons are rare events. To demonstrate

the effect, we choose to set ~ω1 as the highest multiple, which leads to

HF =




kBs(r)+~ω1 0 0 ~Ω∗(r) 0 0
0 −kBs(r)+~ω1 ~Ω(r) 0 0 0
0 ~Ω∗(r) kBs(r) 0 0 ~Ω∗(r)

~Ω(r) 0 0 −kBs(r) ~Ω(r) 0
0 0 0 ~Ω∗(r) kBs(r)−~ω1 0
0 0 ~Ω(r) 0 0 −kBs(r)−~ω1


 . (2.153)

Diagonalisation of this matrix leads to the quasi-energy spectrum, which in turn allows

the calculation the adiabatic rf potential. The manuscript presented in Chapter 5 details

this process further.

2.6.3.3 Multi Frequency Floquet Matrix

In this Section we will consider the Hamiltonian (2.107) when several rf fields are present.

This situation can be treated using Many Mode Floquet Theory (MMFT) and a detailed

explanation of it can be found in [62]. Here, we will explicitly demonstrate the procedure

for two different frequencies, ω1 and ω2, for which the Hamiltonian is given by

H(r, t) = µBgF

[
Bs(r)Fz + (B1x(r) cos(ω1t) +B2x(r) cos(ω2t))Fx

+
(
B1y(r) cos(ω1t) +B2y(r) cos(ω2t)

)
Fy

]
. (2.154)

As the explicit form of the multi-frequency Floquet matrix for a general periodic Hamil-

tonian is quite large and complicated, it will not be presented here, but can be found

in [62]. Instead, we show the particular form of the Floquet matrix for the Hamiltonian

(2.154). However, this multi-frequency Floquet matrix is still significantly more compli-

cated than the single frequency case, but can be made more manageable by considering

separate component matrices that are combined to make the full Floquet matrix. There

are two main component matrices which we label A, P . These matrices have their own

component matrices which we label Z, X (the components of A) and Y (the component
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of P ). With this labelling system the total Floquet matrix can be written as

H
(2)
F =




.. .. .. .. .. .. ..

.. A+ 2~ωrI P 0 0 0 ..

.. P T A+ ~ωrI P 0 0 ..

.. 0 P T A P 0 ..

.. 0 0 P T A− ωrI P ..

.. 0 0 0 P T A− 2~ωr ..

.. .. .. .. .. .. ..




, (2.155)

where ωr = ω1 + ω2 and I is the identity matrix. To understand why ωr is used instead

of ω2, consider the energy spectrum of the effective field created by the static field and

the first frequency ω1. When this first frequency is applied, the position of zero in the

energy spectrum is shifted from its position when just the static field is present. When

the second frequency is applied, it is applied to this effective field. Therefore the point

at which it couples is shifted to where ω1 + ω2 is resonant. This is the so-called dressed

state picture.

H
(2)
F can be thought of as a composite matrix of two single frequency Floquet matrices.

The ω1 frequency terms and the Rabi frequency of the first field Ω1(r) are contained

in matrix A, which is the same matrix as HF (2.152) in the previous Section. The off

diagonal elements P contain Ω2(r), the Rabi frequency associated with the second rf

field of frequency ω2.

We now present both A and P , starting with A whose components depend only on terms

from the first rf field of frequency ω1,

A =




.. .. .. . .. .. ..

.. Z + 2~ω1I X 0 0 0 ..

.. X Z + ~ω1I X 0 0 ..

.. 0 X Z X 0 ..

.. 0 0 X Z − ~ω1I X ..

.. 0 0 0 X Z − 2~ω1I ..

.. .. .. . .. .. ..




, (2.156)

where X and Z, the components of A, are defined as

Z =

(
kBs(r) 0

0 −kBs(r)

)
, (2.157)



Background Theory 48

X =

(
0 ~Ω∗1(r)

~Ω1(r) 0

)
, (2.158)

and Ω1(r) = µBgF
4~ (B1x(r) + iB1y(r)) is the Rabi frequency of the first rf field. We note

that matrix Z contains just the eigenvalues of the bare Hamiltonian (no rf field) and

corresponds to H0 from the previous Section. Similarly, the matrix X corresponds to

H±1, the off diagonal terms of the Floquet matrix from previous Section. With Z and

X now defined, matrix A can be written as

A =




.. .. .. .. .. .. ..

.. kBs(r)+2~ω1 0 0 ~Ω∗1(r) 0 ..

.. 0 −kBs(r)+2~ω1 ~Ω1(r) 0 0 ..

.. 0 ~Ω∗1(r) kBs(r)+~ω1 0 0 ..

.. ~Ω1(r) 0 0 −kBs(r)+~ω1 ~Ω1(r) ..

.. 0 0 0 ~Ω∗1(r) kBs(r) ..

.. 0 0 ~Ω1(r) 0 0 ..

.. .. .. .. .. .. ..




. (2.159)

The last component that is required in order to produce the multi-frequency Floquet

matrix H
(2)
F , is P which is defined as

P =




.. .. .. .. .. .. ..

.. 0 Y 0 0 0 ..

.. 0 0 Y 0 0 ..

.. 0 0 0 Y 0 ..

.. 0 0 0 0 Y ..

.. 0 0 0 0 0 ..

.. .. .. .. .. .. ..




, (2.160)

where the only non-zero component Y contains the coupling terms introduced by the rf

field with frequency ω2,

Y =

(
0 Ω∗2(r)

Ω2(r) 0

)
, (2.161)

and Ω2(r) = µBgF
4~ (B2x(r) + iB2y(r)) is the Rabi frequency of the second rf field. It is

now straightforward to write down the matrix P

P =




.. .. .. .. .. .. .. ..

.. 0 0 0 ~Ω∗2(r) 0 0 ..

.. 0 0 ~Ω2(r) 0 0 0 ..

.. 0 0 0 0 0 ~Ω∗2(r) ..

.. 0 0 0 0 ~Ω2(r) 0 ..

.. 0 0 0 0 0 0 ..

.. 0 0 0 0 0 0 ..

.. .. .. .. .. .. .. ..




. (2.162)
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By combining both A and P according to equation (2.155), one can produce the desired

Floquet matrix Hf . This matrix is very large so we only present a subsection of it here

to highlight its basic structure,

Hf =




.. .. .. .. .. .. .. ..

.. kBs(r)+~ω1+~ωr 0 0 ~Ω∗
1(r) 0 0 ..

.. 0 −kBs(r)+~ω1+~ωr ~Ω1(r) 0 0 0 ..

.. 0 ~Ω∗
1(r) kBs(r)+~ωr 0 0 ~Ω∗

1(r) ..

.. ~Ω1(r) 0 0 −kBs(r)+~ωr ~Ω1(r) 0 ..

.. 0 0 0 ~Ω∗
1(r) kBs(r)−~ω1+~ωr 0 ..

.. 0 0 ~Ω1(r) 0 0 −kBs(r)−~ω1+~ωr ..

.. 0 0 0 ~Ω∗
2(r) 0 0 ..

.. 0 0 ~Ω2(r) 0 0 0 ..

.. .. .. .. .. .. .. ..




. (2.163)

The key points about the structure of this Floquet matrix are that the bare trap eigenen-

ergies are given along the diagonal and each Floquet block differs by multiples of both

ω1 and ωr. The off-diagonal terms correspond to the coupling strengths and contain

terms for both Ω1(r) and Ω2(r), the Rabi frequency associated with the first and the

second frequency respectively. Like the single frequency Floquet matrix (2.153), trunca-

tion and diagonalisation of this Floquet matrix produces a quasi-eigenenergy spectrum

from which the adiabatic rf potential can be extracted. This procedure is detailed in

the manuscript presented in Chapter 5.

2.7 Solitons

In this Section we give a brief overview of solitons, the focus of Chapter 6. Solitons are

localised wavepackets that exist in many different areas of physics such as non-linear

optics [34] and hydrodynamics [35], where a non-linearity present in the system can

compensate for the dispersion of the wavepacket. As a result of this balance, solitons

have the property that they can propagate without dispersion. They also emerge from

collisions with other solitons unchanged (expect for a phase change). As the previously

derived time-dependent Gross-Pitaevskii equation (2.17) contains such a non-linear term,

soliton solutions can be found [63, 64].

Strictly speaking, proper mathematical and stable soliton solutions to the Gross-Pitaevskii

equation (GPE) exist only in 1D and in the case where it is completely integrable [43].

Physically, this means that the condensate is completely homogeneous and there is no

external potential. In such a situation, the GPE (2.17) reduces to

i~
dψ(z, t)

dt
=

[
− ~2

2m
∇2 + gN |ψ(z, t)|2

]
ψ(z, t) , (2.164)

where g = 4π~2as
m with m and as the mass and s-wave scattering length respectively.

Different kinds of soliton solutions exist depending on the sign of the interaction term
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g, i.e whether the interaction is repulsive or attractive. Here we will focus on repulsive

interactions (g > 0). The soliton solutions to the GPE were first derived in the 1970’s

[65] and give the general form of the wave function of a soliton with speed v on a

homogeneous background density n = |ψ|2 [43],

ψ(z − vt, t) =
√
ne−iµt/~

[√
1−

(v
c

)2
tanh

(√
1−

(v
c

)2 z − vt
ξ

)
+ i

v

c

]
, (2.165)

where c = ng/m is the Bogoliubov speed of sound, ξ = ~
2mgn is the healing length of the

condensate and µ is the chemical potential. The density of the soliton wave function

predicts a minimum for z = vt,

|ψ(0, t)|2 =
nv2

c2
. (2.166)

The wave function also undergoes a phase change ∆Θ as z varies from −∞ to +∞ of

∆Θ = 2 arccos
(v
c

)
. (2.167)

For a stationary soliton (v = 0), this equation predicts a phase change of ∆Θ = π and

equation (2.166) gives |ψ(0, t)|2 = 0, zero density at the centre of the soliton. This is the

so called dark soliton and the blue line in Fig. 2.5 shows its density and phase profile.

While a dark soliton is stationary and has a zero density depression, the velocity of a

non-stationary soliton is intrinsically linked to the depth of the minimum density such

that

v = c
√

1− nd/n , (2.168)

where nd is the depth of the density depression. From this expression one can see that,

as the velocity of the soliton increases towards the maximum value set by the Bogoliubov

speed of sound c, the depth of the density depression of the soliton decreases. Such a

filled in dark soliton is called a grey soliton and Fig. 2.5 (except the blue line) shows the

density and phase of grey solitons with various velocities.

Dark solitons created in an inhomogeneous background are stationary. However, in [40]

it was shown that dark solitons are not stable and possess a dynamical instability that

leads them to pick up velocity and turn grey. If the inhomogeneous background stems

from harmonic trapping, the soliton will oscillate back and forth in the trap with a

frequency given by

ωS =
ωH√

2
, (2.169)

where ωH is the frequency of the harmonic oscillator.
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Figure 2.5: Density (upper panel) and phase (lower panel) of solitons with increasing
velocity v.
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Figure 2.6: The density (a) and phase (b) of a dark soliton at t = 0. The density
(c) and phase (d) of the dark soliton once the snake instability has set in.

2.7.1 Solitons in Higher Dimensions

As previously stated, strict mathematical and stable soliton solutions for the GPE exist

only in one dimension and for no external trapping potential. However, solitons can be

embedded in 2D and 3D systems with or without external potentials where, unlike their

1D counterparts, one finds that they are no longer stable [66–68]. In Chapter 6 of this

thesis, we focus on a system of 2D dark solitons in a BEC which is confined in a tight

harmonic potential and study its instabilities. To numerically create a dark soliton in

such a system, we simply enforce a phase difference of π between two different spatial

regions of the wave function which allows us to numerically find the ground state with

the characteristic density in 2D. Figs. 2.6 (a) and (b) show the density and phase of a

single dark soliton that results from this process.

The basic instability of a single dark soliton in two dimensions is to eventually decay
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into a number of quantized vortices through what is called the snake instability [66, 69].

This instability causes the soliton to bend (or snake) along the direction of the density

minimum until the curvature is large enough to lead to a break up into vortex-antivortex

pairs. Figs. 2.6 (c) and (d) show an example of this process.

The instabilities of solitons may be studied by using the Bogoliubov-de Gennes equations

(2.31) as discussed in Section 2.2. The Bogoliubov spectrum of eigenvalues produced

by diagonalising (2.31) for the dark soliton shown in Figs. 2.6 (a) and (b) reveals the

existence of a single, purely imaginary eigenfrequency and an associated eigenvector.

This unstable mode is responsible for the snake instability.

In inhomogeneous systems however, the snake instability can be suppressed. In [66] the

authors examined the Bogoliubov spectrum of eigenfrequencies of a single dark soliton

of constant density confined to a square trap. They found that the Bogoliubov spectrum

could be made completely real when the dimensions of the trap were reduced in size.

At this point the soliton is completely stable, which can be intuitively understood by

considering that the transversal width of the soliton is made so short that it no-longer

supports even the lowest mode of the snake instability.

By working in this regime, in Chapter 6 we numerically create a family of multidimen-

sional solitons which exhibit interesting instabilities which cannot be related to the snake

instability.



Chapter 3

Coherent Tunnelling by Adiabatic

Passage in Atom Chip Systems

As mentioned in Chapter 2, Coherent Tunnelling by Adiabatic Passage (CTAP) is the

atom-optical analogue of the optical STIRAP technique and was first introduced in 2004

by Eckert et al. [20]. They showed that the CTAP process offers a way of coherently

transporting the centre-of-mass state of a single atom between two traps and also showed

how the fidelity of the process is affected by various system parameters. However, the

suggested trapping potential of three-line dipole traps was modelled as three piece-wise

harmonic potentials and the influence that each trap would have on each other was

neglected. As such, this treatment is not experimentally realistic. Many other studies

involving CTAP since then have made similar approximations [21, 24, 70].

In the two manuscripts presented in this Chapter, we theoretically show how the CTAP

technique can be used to coherently transport the centre-mass-state of a single cold

atom between two spatially distinct magnetic waveguides created on an atom chip for

experimentally realistic parameters. 1 The trapping potentials created by the current

carrying wires on the atom chip are treated realistically without any of the approxima-

tions made by previously mentioned works. As such, this system is a good candidate

for experimental verification of CTAP, which has up to now only been achieved in a

classical wave optics analogue [71].

CTAP has also found a large number of applications beyond that of the coherent trans-

port of atoms, for which it was originally suggested. Notable examples of such applica-

tions are filtering out unwanted vibrational states [70], atomtronics [72], electron transfer

1The work in the first manuscript was done in collaboration with Brian O’Sullivan and Padraic Mor-
rissey. Each author contributed to all areas of the manuscript. The work in the second manuscript was
done in collaboration with Lee O’Riordan, Neil Crowley and Brian O’Sullivan. Each author contributed
to all areas of the manuscript.
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in quantum dots [23, 73–75], CNOT gates [76], electron transport in triple donor systems

[77] and adiabatic passage of light [71, 78]. Recent work has also focused on speeding

up CTAP through optimal control techniques [79] and on performing interferometry of

BECs [80].

The atom chip system which we propose in this Chapter has been widely used by ex-

perimentalists around the world for some time and a general review of their uses and

properties can be found in [25]. Highlights of recent work with atom chips include

guiding neutral atoms [81], manipulation of BECs [82], matter-wave interferometry [28],

multi-state interferometry [83], studying correlations in isolated quantum systems [84],

quantum gates [85–87], suppressing roughness in atom chip potentials [88], creation of

adiabatic radio frequency potentials [89] and integration of optical elements [90].

In the second manuscript presented in this Chapter, we make use of graphics processing

unit (GPU) computing to numerically solve the Schrödinger equation in three dimen-

sions. The performance increase offered by GPU computing allows the simulations of

the atom chip system to be numerically tractable on a consumer desktop computer.

GPU computing is a relatively recent development in computational physics and there

has been significant progress in its general applications to numerical problems such as

the solving the Schrödinger [91–93], the Boltzmann equation [94] and to more specific

systems such as descriptions of electrical potentials in Hall devices [95] and spin systems

[96].
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Abstract
Adiabatic techniques are well-known tools in multi-level electron systems to transfer
population between different states with high fidelity. Recently, it has been realized that these
ideas can also be used in ultracold atom systems to achieve coherent manipulation of the
atomic centre-of-mass states. Here, we present an investigation into a realistic setup using
three atomic waveguides created on top of an atom chip and show that such systems hold great
potential for the observation of adiabatic phenomena in experiments.

PACS numbers: 03.67.−a, 03.67.Mn, 03.75.Lm

(Some figures in this article are in colour only in the electronic version.)

1. Introduction

Trapping and controlling small numbers of neutral atoms
has, in recent years, emerged as one of the most active and
productive areas in physics research [1–4]. Such systems
allow us to perform experiments to answer fundamental
questions in quantum mechanics [5, 6] and hold great
potential for use in quantum information processing [7–9].
Advances in the technology of optical lattices and micro-traps
have allowed for substantial progress in this area [10–14] and
various concepts have been developed to prepare and process
the states of single atoms. While techniques for controlling
and preparing the internal states of atoms using appropriate
electromagnetic fields are well developed, only a few concepts
exist for achieving the same control over the spatial part of
a wavefunction [8, 15–18]. Such control would complement
currently existing techniques and allow for the complete
engineering of a particle’s quantum state.

One area where control over the spatial part of the
wavefunction is important is the challenge of devising
techniques for the controlled movement of atoms between
different regions in space. In optical lattices this corresponds
to moving between discrete lattice sites, and in waveguide
settings this would allow transfer from one guide to another.
Direct tunnelling is a coherent process that can achieve this;
however, Rabi-type oscillations make it experimentally very
hard to reach high fidelities [19].

Recently, it was pointed out that systems consisting of
three separated centre-of-mass modes allow for the use of

STIRAP-like processes to achieve robust transfer of atoms
from one position to another with high fidelity [16, 17, 20].
The process of stimulated Raman adiabatic passage (STIRAP)
is well known in three-level-optics, where it refers to the
technique of applying a counter-intuitive sequence of laser
pulses to achieve a transition of an electron between the
two ground states in a 3-system [21, 22]. In the atom trap
scenario, the energy levels are replaced by spatially separated
trap ground states and the laser interaction is replaced by the
coherent tunnelling interaction.

One advantage of adiabatic techniques is their large
robustness against experimental uncertainties as long as
the whole process is carried out mostly adiabatically [23].
However, this also means that a resonance between the
asymptotic eigenstates has to exist, which is a condition that
for many realistic situations is hard to ensure. Suggestions for
and examinations of realistic systems in which the STIRAP
process could be observed for cold atomic gases are therefore
currently very rare.

In this work, we will focus on atom-chip systems and
investigate their suitability to observe this adiabatic process.
These micro-fabricated chips, on which surface-mounted,
current carrying wires provide guiding potentials for matter
waves, can be loaded with ultracold atom gases at low
densities. As opposed to traditional experimental setups,
these systems allow reaching smaller dimensions, and wire
geometry, and therefore waveguide geometry, can be chosen
almost at will [24].

0031-8949/10/014029+06$30.00 1 © 2010 The Royal Swedish Academy of Sciences Printed in the UK
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The first investigation into adiabatic techniques in
waveguides was presented by Eckert et al [17], who showed
that a CPT-like process that acts like a 50 : 50 beam splitter
could be realized with a large degree of fidelity. While
the initial state for a numerical evolution can be prepared
with a large degree of localization, one of the problems
following subsequent evolution inside the waveguide is that
the wavefunction disperses along the guide. This makes it
hard to exactly measure the final state of the system and put a
quantitative number on the efficiency of the adiabatic process.
Here we will introduce a simple harmonic potential along
the longitudinal direction of the trap, which will allow us to
perfectly measure the fidelity of the process. It is also worth
mentioning that STIRAP in optical waveguides with classical
light has been observed recently [25].

In the next section, we will first briefly review the
idea of STIRAP and its translation into the realm of
waveguides. After that, in section 3, we will examine a
model waveguide potential in which the resonance condition
is fulfilled throughout the whole process and show that the
dispersion of the wavefunction in the longitudinal direction
has no significant effect on the fidelity of the process. In
section 4, we describe a realistic situation by examining three
waveguides created on top of an atom chip. We show that even
though the resonance condition is not fulfilled at all times,
a counter-intuitive approach will lead to larger transfer and
can clearly be distinguished from a direct tunnelling approach.
Finally, we conclude.

2. STIRAP

In this section, we will briefly review the basic idea
of STIRAP, which is a technique originally developed
for transitions in optical λ-systems and makes use of a
two-photon Raman process. By applying the pump and the
Stokes pulse in a counter-intuitive time-ordered way, it leads
to population transfer directly from one of the ground states
to the other without any population ever being in the excited
transitional state. In optical systems, this inhibits spontaneous
emission and is therefore often referred to as a dark-state
technique.

The basic idea can be understood in the simple model of
a three-state system described by the Hamiltonian

H(t)= h̄

 0 −�P(t) 0

−�P(t) 0 −�S(t)

0 −�S(t) 0

 , (1)

where we have set the energies of the three asymptotic
eigenstates to zero and the Rabi frequencies of the pump and
the Stokes pulses are given by �P and �S, respectively. This
Hamiltonian can be diagonalized and the eigenstate that is of
interest to us here is the so-called dark state given by

|d〉 = cos θ |1〉 − sin θ |3〉 , (2)

where the mixing angle θ is given by tan θ =�P/�S. This
angle describes how the population is distributed between the
two states |1〉 and |3〉 and it can be chosen by varying the
strength of the pump and the Stokes pulse with respect to each

Figure 1. Waveguide structure near the point of closest approach.
The points where the upper and lower waveguides have a minimum
distance from the central waveguide are indicated by the arrows.
The wavepacket will originally travel in the lowest waveguide from
left to right.

other in time. In particular, if the intensity of the Stokes pulse
increases before that of the pump pulse (counter-intuitive
coupling scheme), one finds that all the initial population in
|1〉 will be transferred to |3〉.

The fact that this process can be observed for trapped
atoms was first pointed out by Eckert et al [16]. The
asymptotic eigenstates of the Hamiltonian (1) are then the
spatial modes the atoms occupy and the time-dependent
coupling is given by the tunnelling strength between these
modes. While the time dependence of the tunnelling strength
can be achieved by temporally changing the distance or the
barrier height between the individual states, an atom moving
in a waveguide can also experience this as a function of
travelled distance [17]. In the next section, we will examine
an example of this.

3. Model

The Schrödinger equation for the evolution of a wavepacket
in a two-dimensional (2D) waveguide structure is given by

iψ̇(x, y)= −
h̄2

2m
∇

2ψ(x, y)+ V (x, y)ψ(x, y), (3)

where m is the mass of the atom. As the third dimension does
not significantly contribute to the dynamics we are aiming
to observe, the restriction of the above Hamiltonian to two
dimensions is justified. In this section, we will first examine
the STIRAP process using an idealized potential in which
the condition of resonance between the individual waveguides
is fulfilled at any point. This will help us to illustrate the
basic process and in particular highlight the influence of the
longitudinal dimension. In section 4, we will compare these
results to realistic atom-chip scenarios in which we will have
to relax the resonance condition.

The assumption we make to guarantee that the ground
state energy in all three waveguides is the same everywhere is
that we can construct our potential V (x, y) by stitching three
independent waveguides together. In a realistic situation, the
potentials creating each guide would influence each other and
lead to non-symmetric situations between pairs. We assume
each guide to have the potential

Vs = A tanh[B(x − f (y))]2, (4)

where A determines the height, B the width and f (y)
the position of the minimum along the x-axis. The overall

2
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Figure 2. Time evolution of the wavepacket in a counter-intuitive arrangement of the waveguides at three different times for values of
A = 20 and B = 0.5. The shapes of the waveguides are indicated by the black lines and they are fully separated at the energy of the
wavepacket in the coupling zone (not visible).

potential is then assumed to be given by the minimum value of
each of the three potentials at any point in space. A schematic
view of the area in which the guides approach most closely is
shown in figure 1.

The eigenstates of matter waves propagating in 2D
waveguides at different distances have recently been explored
by Jääskeläinen and Stenholm [26]. They determined the
conditions under which the movement of a matter wave can
be considered adiabatic in a curved waveguide and developed
a formalism based on localized and de-localized basis states.
Here we will take a more straightforward approach and
present a numerical solution to the process, which will show
that despite the existence of velocity-dependent potentials due
to the curvature of the waveguides [26] the STIRAP process
can be observed with high fidelity.

Our simulations start with a well-localized wavepacket
far from the coupling area. In time, however, this packet will
disperse along the waveguide, making it hard to quantify the
success of the transfer process. To overcome this problem,
we introduce an additional harmonic potential of frequency
ωl along the y-axis, which will lead to a refocusing of the
wavepacket in the longitudinal direction after a time of ωl/2.
The initial state of our wavepacket is given by the ground
state of an isotropic trap of the transverse frequency of the
waveguide and its movement along the guide is induced by
the harmonic potential as well.

In figure 2 we show the evolution of the wavefunction at
different times throughout the process for a counter-intuitive
arrangement of the waveguides. Starting with the wavepacket
located in the lower guide, one can clearly see that a majority
of the probability is transferred into the upper guide. The
evolution of the same initial state in an intuitive arrangement
of waveguides (see figure 2) shows significantly less
transfer.

The amount of transfer varies as a function of several
parameters. The first one is the distance between the two
points of closest approach of the outer waveguides to the
middle one,1z. We show the amount transferred as a function
of this quantity in figure 4 on the left-hand side. The full line
(blue) represents the counter-intuitive case and a maximum at
a finite value of1z is visible. The broken line shows the same
quantity for the intuitive setting, clearly indicating that direct
tunnelling does not lead to high fidelities.

The second parameter that plays an important role is
the degree of adiabaticity of the process. For a waveguide
system, this translates into the velocity with which the atom
moves or alternatively the length of the coupling area. Here,
we keep the velocity effectively constant and show on the
right-hand side of figure 4 the variation of the maximum
amount transferred as a function of the overall length of
the coupling area. Making the overall structure longer also
corresponds to decreasing the curvature of the waveguides,
thereby reducing the velocity-dependent couplings introduced
by it [26]. As expected, we find that a more adiabatic process
leads to a larger transfer probability.

Two caveats have to be pointed out with respect to the
above simulations. While our calculations are carried out with
the atom in the ground state in the transversal direction, this
is not a necessary condition. In fact, the process will work for
any state for which three degenerate asymptotic states exist.
This in particular includes states of higher energy.

Secondly, our simulations are carried out only for the
linear case of a single atom. If one would like to carry out
the same process using, say, a Bose–Einstein condensate, one
has to take care of the nonlinearity that arises from the atomic
interactions. However, we believe that our simulations give a
very good approximation for low-density condensates or even
thermal clouds of atoms.

3
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Figure 3. Time evolution of the wavepacket in an intuitive arrangement of the waveguides for the same parameters as in figure 2.
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Figure 4. (Left) Probability transferred into the upper waveguide as a function of offset between the two outer guides. The full line shows
the results from the intuitive case and the broken line for the counter-intuitive one. (Right) Maximum probability transferred as a function of
the length of the interaction region.

4. Atom chips

While the above results clearly demonstrate the viability of the
process, it is currently not clear in which experimental system
it will be possible to observe it. One of the problems is that the
asymptotic eigenstates of the system have to be in resonance
at any point in time. This is hard to achieve in many realistic
systems as neighbouring trapping potentials usually strongly
influence each other when they are close enough to allow for
significant tunnelling rates.

Atom chips are well-developed experimental tools these
days and consist of an arrangement of current carrying wires
mounted on a surface [24]. A current, Iw, flowing through
a wire creates a magnetic field around it with the minimum
sitting on the wire. When applying a homogeneous bias
field, Bb, in the direction orthogonal to the wire, a 2D

field minimum above the wire can be created at a height
given by [24]

r0 =

(µ0

2π

) Iw

Bb
. (5)

To lift the energetic degeneracy between trapped and
untrapped spin states and thereby avoid spin flip losses at
the field minimum, it is necessary to apply a second small
B-field component, Bip, along the axis of the wire (z-axis).
This changes the potential at the minimum from linear to
harmonic [24]:

U (r, z)≈ Uz + 1
2 mω2

r (r − r0)
2, (6)

where Uz = mFgFµB|Bip| and the radial harmonic trap
frequency is

ωr =
µ0

2π

Iw

r2
0

√
mFgFµB

m Bip
. (7)

4
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Figure 5. Potentials above the three wires on an atom chip when all wires are separated at an equal distance (upper) and at the point where
the wire on the left is closest to the centre wire (lower).

We simulate the STIRAP process by considering three such
wires separated by a distance of 9µm initially. The overall
length of the coupling zone is chosen such that in the intuitive
case several Rabi oscillations can be expected and the distance
between two wires at the point of closest approach is chosen as
4.5µm. The applied bias field has a magnitude of Bb = 100 G
and, because of the small curvature of the wires, can be
regarded as orthogonal at any point. Since a large ground state
is advantageous for tunnelling, the atomic species we consider
is 6Li.

In general, the central minimum is influenced by the
fields from the two outer wires and increasingly so as the
wires come closer. This will affect the resonance condition
and ultimately prevent the STIRAP process from working.
In order to minimize this behaviour, we make use of a trick
and adjust the current going through the middle wire to be
slightly lower than the ones going through the outer wires. In
our simulations, we choose Im = 700 mA for the middle wire
and Il,r = 1000 mA for the two outer wires.

Figure 5 shows the potential above the wires for the two
different situations of symmetric distance between all wires
(upper graph) and when the left wire is closer to the centre
one than the right wire (lower graph). While an asymmetry in
the second case is clearly visible, its effect on the potentials
is moderate.

A full 3D simulation of the STIRAP process in these
potentials is a numerically taxing task and beyond our current
capabilities. We have therefore simulated the process by using
the 2D potentials of the kind displayed in figure 5 and

changing the distance between the wires as a function of time.
In doing so, we neglect the dispersion of the wavefunction
along the longitudinal direction. However, since we have
shown in section 3 that the dispersion does not have any
significant effect on the transfer fidelity, our simulations can
be seen as a good approximation of the full situation.

In figure 6, we show the results of these simulations by
displaying the populations in the individual traps as a function
of time for the intuitive (right) and the counter-intuitive case
(left). Initially, all population is on the left-hand side and it
can be clearly seen that in the counter-intuitive situation there
is a smooth transition over to the right-hand side. While in the
perfect STIRAP setup no population should ever appear in the
central trap, the various imperfections of this realistic example
lead to a finite occupation during the process. However, at the
very end no population is left in the middle trap. Contrary
to this, the graph for the intuitive case shows Rabi oscillations
between neighbouring waveguides and a less than full transfer
of the wavefunction. These are two signs that would allow us
to distinguish adiabatic transfer from simple tunnelling.

The fact that we achieve higher transfer fidelities in
this non-perfect situation compared to the results presented
in section 3 is purely due to being able to evolve more
adiabatically in time than in space due to the limitations of
our computer hardware.

5. Conclusion

We have investigated the use of the STIRAP technique
to transfer atomic wavepackets between neighbouring
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Figure 6. Population in the individual waveguides as a function of time for the counter-intuitive (left) and intuitive (right) waveguide
arrangements. The population in the trap on the left is shown by the blue line, the middle one by the green line and the one on the right by
the red line.

waveguides. Using an idealized system, we have first shown
that the dispersion along the guide does not significantly
affect the transfer probability. This was done by introducing a
harmonic potential along the longitudinal axis, which allowed
us to refocus the wavepacket after half an oscillation period.
We have then simulated the STIRAP process using realistic
potentials created above current-carrying wires on atom chips
and have shown that by choosing a lower current for the
central wire the energetic resonance condition can be fulfilled
at any point to a very high degree. The results clearly showed
that adiabatic transfer in the counter-intuitive setup leads to
higher fidelity and can be clearly distinguished from direct
tunnelling in the intuitive setup by the absence of Rabi
oscillations.
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Adiabatic techniques offer some of the most promising tools for achieving high-fidelity control of the center-
of-mass degree of freedom of single atoms. Because the main requirement of these techniques is to follow
an eigenstate of the system, constraints on timing and field strength stability are usually low, especially for
trapped systems. In this paper we present a detailed example of a technique to adiabatically transport a single
atom between different waveguides on an atom chip. To ensure that all conditions are fulfilled, we carry out
fully three-dimensional simulations of the system, using experimentally realistic parameters. We also detail our
method for simulating the system in very reasonable time scales on a consumer desktop machine by leveraging
the power of graphics-processing-unit computing.
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I. INTRODUCTION

Recent experimental progress in trapping and controlling
all degrees of freedom of single atoms and ions has allowed
us to test and explore the fundamentals of quantum mechanics
at a completely new level [1,2]. In fact, progress has been so
dramatic that application of the laws of single- and few-particle
quantum mechanics to areas such as quantum information and
quantum metrology has come into experimental reach [3,4].

While control over the internal degrees of freedom of atoms
is a highly advanced field, significant progress in developing
techniques to coherently control the external degrees of
freedom to the same level has only recently been achieved. One
class of techniques that can offer high fidelities are adiabatic
processes, and recently a technique called coherent tunneling
by adiabatic passage (CTAP) was shown to be a very promising
tool for controlling the quantized center-of-mass state of a
single particle trapped in a microtrap [5]. CTAP is designed to
transfer populations between microtraps at high fidelities while
being robust to variations in the system parameters. Although
the physics of CTAP is well understood, the process has yet to
be observed experimentally and several realistic systems have
recently been proposed [6–8].

Coherent transport between microtraps can be facilitated
via tunneling and the tunneling rates can be controlled by
moving the centers of the individual traps relative to each other.
While this requires dynamical potentials, a similar system
with static potentials can be constructed by considering three
parallel running waveguides with spatially varying coupling
strength between them and an atom which travels along these
guides [6]. Recently, in our previous work, a realistic atom
chip system of this kind was considered [9]; however, the
simulations were limited to two dimensions.

While the transversal dynamics in a system of waveguides
can be well described in a two-dimensional model, effects
stemming from bending, longitudinal dispersion, and the lack
of stationary states in the z direction cannot be accounted
for. To overcome these limitations and understand the total
dynamics of a waveguide system, it is necessary to carry out a
fully three-dimensional simulation.

We therefore present here, an analysis of a system com-
posed of three waveguides by taking the full dynamics in

all three spatial directions into account and using realistic
experimental parameters. The latter is important as most
treatments of the problem in recent years have assumed
idealized trapping potentials that guarantee resonance between
the individual traps at any moment in time. By carrying out
three-dimensional simulations which account for all possible
dynamics, we show that CTAP is indeed a suitable technique
for use in waveguides on atom chips.

By today, fully three-dimensional simulations of the
Schrödinger equation in the context of atomic transport are
still rare [10]. The computational resources needed are very
large and have traditionally required the power of large
supercomputers. Recently it was shown that the emerging tech-
nique of graphics-processing-unit (GPU) computing allows
tremendous speedup of many numerical techniques including
the fast Fourier transform (FFT) [11], which is the main
numerical tool that we require. By making use of this, we
have been able to perform the simulations of this extensive
atomic system with one consumer desktop PC using the
CUDA programming model and numerical libraries, on very
reasonable time scales.

The structure of this paper is as follows. In Sec. II we
briefly review the CTAP process in waveguide systems and
in Sec. III we describe the atom chip potentials we are
simulating. In Sec. IV we discuss our implementation of
CUDA and MPI (message passing interface) codes and examine
the performance benefits in each case. Our results of the
three-dimensional simulations and the evidence that CTAP
can be observed will be presented and discussed in Sec. V.
Finally we conclude in Sec. VI.

II. COHERENT TUNNELING BY ADIABATIC PASSAGE

Let us first briefly review the CTAP process by considering
an atom trapped in a linear system of three identical, one-
dimensional microtraps [5]. Assuming that the atom is in its
center-of-mass ground state in the trap on the left-hand side
|L〉, it can reach the ground states of the other two traps |M〉
and |R〉 through coherent tunneling described by the strength
JLM for the transition |L〉 → |M〉 and JMR for |M〉 → |R〉. In

053618-11050-2947/2013/88(5)/053618(6) ©2013 American Physical Society
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this basis the Hamiltonian is given by

H (t) = h̄

⎛
⎜⎝

0 −JLM (t) 0

−JLM (t) 0 −JMR(t)

0 −JMR(t) 0

⎞
⎟⎠, (1)

where the energy of the trap ground states was renormalized
to zero. The tunneling strengths are assumed to be time
dependent, which can be achieved by increasing or decreasing
the distances between neighboring traps dLM (t) and dMR(t).
The eigenstates of the Hamiltonian (1) are well known [2] and
of particular interest for adiabatic transport is the so-called
dark state

|d〉 = cos θ |L〉 − sin θ |R〉, (2)

in which the mixing angle θ is given as a function of the
tunneling strengths as

tan θ = JLM/JMR. (3)

This state has a nondegenerate zero eigenvalue, and an
adiabatic evolution will therefore guarantee that the system,
once prepared in |d〉, will always stay in it. Note that the only
contribution of |M〉 to |d〉 is through the mixing angle and that
the system has zero probability to be found in |M〉 at any time.

The CTAP process can now be understood by considering
an atom initially in the state |L〉. Increasing and decreasing
JMR before JLM , which is counterintuitive to traditional
tunneling schemes, continuously decreases the population in
state |L〉 and increases the population in state |R〉, leading to
a 100% transfer at the end of the process.

Adapting this process to a system of waveguides is now
straightforward. The temporal dependence of the tunneling
strength in Eq. (1) can be replaced by a spatial one through
suitable adjustment of the distance between neighboring
waveguides as a function of the direction the particle travels
in (see Fig. 1 for a schematic view) [6].

There are, however, several conditions that both the mi-
crotrap and the waveguide system must fulfill for the CTAP
dynamics to occur. First, the process must be adiabatic with

FIG. 1. (Color online) Schematic of the suggested setup for
observing the CTAP process in a system of waveguides. Note that
the asymmetric approach of the outer wires to the middle wire is
exaggerated, so that the counterintuitive arrangement is visible. The
atom is initially located in the left guide and, due to the presence of
a harmonic oscillator potential Vz in the z direction, travels along the
direction indicated by the red solid arrow. We also show the expected
position of the atom at t = π/ωz in the right-hand-side guide and
indicate the orientation of the bias field, Bb, and the applied field, Bip

(purple dashed arrows).

respect to the other relevant energy scales in the system. For
the waveguide system this means the whole process has to be
slower than the inverse of the approximate transverse trapping
frequencies of the guides. As typical numbers for such guides
are in the kHz regime, this means that the time allowed for
the atom to travel along the chip can be much shorter than
a typical system’s lifetime. The second condition which has
to be fulfilled, as previously mentioned, is that all trapping
states are in resonance at any point in time, which is difficult
to achieve once the potentials of the individual guides start to
overlap. However, we will demonstrate in the next section how
a waveguide setup on an atom chip is a realistic experimental
system in which this resonance condition can be fulfilled to a
good approximation.

III. ATOM CHIPS

Atom chips are versatile experimental tools that are by
today used extensively in experiments with ultracold atoms
[12,13]. A small current flowing through nanofabricated wires
on the substrate produces a magnetic field gradient in such a
way that cold atoms can be trapped very close to the surface.
Because the layout of the nanowires can be chosen during the
chip’s production process, atom chips have been used in many
cold-atom experiments to produce microtraps, interferometers,
and waveguides [12,14–16]. Here we will take advantage
of this versatility to consider waveguides in the geometry
indicated in Fig. 1 and develop a procedure which will allow
us to observe high-fidelity transport based on CTAP.

Let us briefly review the basic description and properties
of atom chip trapping. The magnetic potential B at position
r generated by a typical nanowire on an atom chip can be
described by the Biot-Savart law

B = μ0I

4π

∮
dl × r̂

r2
, (4)

where I is the current in the wire, μ0 the vacuum permeability,
r̂ the unit vector in the direction of r, and dl the differential
length of the wire carrying current I . For this expression to be
valid, however, we have to assume that the thickness of the wire
is negligible, which is a good approximation as long as we are
using the properties of the field at a sufficient distance above
the chip’s surface. To achieve this and to lift the field minima
above the nanowires for the desired waveguide structure, a
homogeneous magnetic bias field Bb can be applied orthogonal
to the current flow. This raises the potential minimum to a
height above the wire given by

r0 = μ0

2π

I

Bb

. (5)

Finally, to lift the degeneracy of the spin states of the atoms and
avoid losses due to spin flips at the center of the waveguide a
further magnetic field Bip parallel to the direction of the wires
is usually applied.

An example of the waveguide potentials resulting from
this model for 6Li atoms and for experimentally realistic
parameters is shown in Fig. 2. If an atom is initially located
in the left waveguide and travels in the positive z direction,
these waveguides provide the desired counterintuitive tunnel
coupling needed for CTAP. To give the atom momentum to
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FIG. 2. (Color online) Isosurfaces of the waveguides created on
an atom chip with the direction of propagation indicated by the blue
solid arrow (for clarity Vz = 0 in this plot). The dimensions of the
interesting area on the chip we simulate are 20 μm ×1000 μm (x × z)
and we take a height (y direction) above the chip of 4 μm into account.
The three wires are initially equally separated by 7 μm and their
distance at the position of closest approach is 4.3 μm. The left wire
remains straight initially for a distance of 50 μm, which produces
an asymmetry in the point of closest approach of the left and right
wires to the middle wire as indicated by ξ . The bias and applied fields
(indicated by the green dashed arrows) are Bb = 140 × 10−4 T and
Bip = 300 × 10−4 T. In (a) the currents of the left, middle, and right
wires are IL = IM = IR = 0.1 A, respectively, and in (b) the currents
of the left and right wires are IL = IR = 0.1 A and the middle wire
current is reduced to IM = 0.07 A.

travel along the wires we add an additional harmonic oscillator
potential Vz of frequency ωz along the z direction, which is
centered at the middle of the chip (see Fig. 1). This will also
lead to a refocusing of the traveling wave packet at the classical
turning point on the other side of the chip and help to clearly
determine the position of the atom.

To ensure that the process is adiabatic and the atom remains
in the dark state of the system at all times, the total time for the
process has to be much larger than the inverse of the transverse
trapping frequencies of the individual waveguides. By approx-
imating the potentials to have a harmonic oscillator shape in
the transverse direction, we find the inverse of the relevant fre-
quency to be of the order of f −1

HO ≈ 0.2 ms, and by choosing the
trapping frequency of the harmonic oscillator in the z direction

to be ωz = 2π × 5 Hz, the total time taken for the process (half
an oscillation) is 0.1 s. This allows the adiabaticity condition
to be clearly fulfilled at any point during the evolution.

Finally, the bend in the wires will lead to a potential from
the currents in the z direction, which requires the atom to have
enough kinetic energy to overcome it and therefore sets an
upper bound to the adiabaticity that can be reached. However,
this effect can be reduced by increasing the length of the
atom chip (z direction) and therefore reducing the curvature
of the wires. From our simulations, we find that the kinetic
energy resulting from locating an atom initially at the edge of
a chip that is zmax = 1000 μm long allows us to successfully
propagate the atom though the waveguides using the harmonic
trap described above.

IV. MPI AND CUDA

To simulate the propagation of the atom along the
waveguide we solve the three-dimensional time-dependent
Schrödinger equation using the well known Fourier split-
operator method [17]. A typical numerical implementation
of this method requires the use of four Fourier transforms
followed by three complex multiplications for each time step.
The numerical library we make use of to perform the Fourier
transforms is the well known FFTW library, and its GPU
implementation CUFFT [18].

Performing three-dimensional Fourier transforms is the
most intensive part of our code with the length of time required
to perform one iteration of the split operator method depending
heavily upon the size of the numerical grid. As discussed in the
previous section, the atom chip has a relatively large extension
in the z direction (zmax = 1000 μm) compared to the other
dimensions. Since the maximum value of the momentum grid
is defined as pmax = πNz

zmax
we require a large number of points,

Nz, for our grid to be large enough to resolve the longitudinal
momentum stemming from the external harmonic oscillator
potential. This is the main reason that the computational
resources required to simulate the system are quite substantial.

A. GPU computing

To overcome the numerical barrier presented by this
system we turn to the relatively new computing paradigm
of GPU computing. Whereas traditional computers perform
computations using the central processing unit (CPU), GPU
computing allows some of the work to be off loaded to the
graphics processor. GPUs are inherently single-instruction,
multiple-data (SIMD) devices, designed for operating upon a
large data set at a given time with a single task, such as a two-
dimensional grid of pixels. Due to their parallel nature, GPUs
can perform better than CPUs for certain types of calculations.
One example where they offer large performance gains are
fast Fourier transformations and it was recently shown that
the Fourier split-operator method can be accelerated using
GPU computation [11]. This performance increase offers the
numerical power needed to simulate the above system and we
have implemented the algorithms for split-operator evolution
of the Schrödinger equation with C, CUDA, and Nvidia’s CUFFT

libraries for the Fourier transforms.
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TABLE I. Approximate times taken to simulate the propagation
of an atom through our atom chip system on both GPU and CPU.

Device No. devices Timing Rel. improvement

CPU (MPI) 8 ∼6 Hr 1.0×
16 ∼4 Hr 1.5×
32 ∼1.5 Hr 4.0×
64 ∼1 Hr 6.0×

GPU 1 ∼1 Hr 6.0×

B. Performance

To demonstrate the performance offered by GPU computing
we compare it to using FFTW with MPI, a more traditional CPU-
based method. The MPI implementation allows the code to be
run across multiple machines, benefiting from the parallelism
which may be offered by a supercomputing cluster. Although
MPI-enabled FFTW is fast and supports extremely large grid
sizes, it requires computer-cluster access of a significant size
to be a viable option.

To effectively simulate the CTAP process and accurately
resolve the momentum, our code requires a grid size of
256 × 64 × 1024 (x × y × z). For accurate time evolution,
a time step of �t = 1 × 10−6 s was found to be adequate.
For the GPU simulations, the test system was an Intel
Core i7 2600K CPU at stock frequency, 8 GB double data
rate type three (DDR3) memory operating at 1600 MHz,
7200 rpm hard disk drive (HDD), Nvidia GeForce GTX 580
with 3 GB of onboard memory running at 783 MHz GPU
core frequency, 1566 MHz shader processor frequency, and
2010 MHz memory frequency. For all simulations the desktop
was running the Ubuntu 11.10 64-bit operating system and
all calculations were performed in double precision (64-bit
floating point) where applicable. For the CPU simulations we
utilized the supercomputers at the Irish Centre of High-End
Computing (ICHEC).

Table I shows the approximate timings for the completion
of runs on GPU and CPU. As one can see, not only does
GPU computing offer a sixfold improvement over a single
CPU, it also allows us to achieve a performance level which
is comparable to a 64 core CPU. Such performance has
previously been restricted to high powered supercomputers.
Having such computational power available to a single user
on a desktop computer allows us to obtain a large volume
of simulated data on a much shorter time scale rather than
through the use of a shared resource CPU-based computer
cluster. Additionally, a second GPU card added to the system
allowed concurrent runs of the code, which effectively halved
the overall time required for a large number of simulations.
It is also worth mentioning that moving computations over
to the GPU of the system frees up the CPU and a large
part of the system memory to be used for other tasks
that would have previously been inhibited by CPU bound
computations.

V. 3D SIMULATIONS

In the following section we present a set of typical results
from the GPU-accelerated three-dimensional (3D) simulations
we carried out over a large range of experimentally controllable

FIG. 3. (Color online) Contour plot of the waveguides at 500 μm
along the -axis. Panel (a) shows the deformation of the waveguides
when all currents are equal, IL = IM = IR = 0.1 A, and panel (b)
shows how this effect can be mitigated by using a reduced middle-wire
current of IM = 0.07 A, while the current in the outer wires remain
at IL = IR = 0.1 A.

parameters and show that the atom chip allows the CTAP
process to take place. All parameters for our atom chip are the
same as in Fig. 2 unless otherwise stated.

Our simulations start out with a single 6Li atom which is
initially located in the left waveguide. Its transversal wave
function corresponds to the ground state of the potential
in the transversal direction (determined numerically) and
longitudinally we assume a Gaussian profile of similar width.
We then evolve this initial state in time, and due to the
longitudinal harmonic oscillator potential centered at the
middle of the atom chip (z = 500 μm), the atom starts to
propagate along the waveguide.

Initially the wires are far enough away from each other
for each waveguide to be approximately given by the current
of the wire closest to it and if all currents are identical, the
waveguides are in resonance. However, once the wires start
approaching each other, the respective magnetic fields add
and create waveguide potentials of unequal size [see Figs. 2(a)
and 3(a)]. This drives the transversal ground states of the guides
out of resonance and the conditions for observing the CTAP
process are no longer given.

However, atom chips offer an intriguingly straightforward
way to adjust for this, as the current in each wire can be
individually (and even time-dependently) controlled. This can
be used to compensate for effects stemming from the potentials
overlapping and ensure resonance between the waveguides [9].
While one can imagine a numerically optimized algorithm
that adjusts the currents in a time-dependent manner based
on the position of the center-of-mass of the atom, here we
will show that a much simpler approach, which maintains the
simplicity of all currents being constant in time, is already
sufficient. We suggest reducing the current in the middle
wire so that in the crucial coupling region, where the mag-
netic fields from neighboring waveguides have the strongest

053618-4



COHERENT TRANSPORT BY ADIABATIC PASSAGE ON . . . PHYSICAL REVIEW A 88, 053618 (2013)

(a)

(b)

FIG. 4. (Color online) The population in the left (blue dashed
line), middle (green dot-dash line) and right (red solid line) waveg-
uides as a function of time for (a) the counter-intuitive waveguide
arrangement and (b) the intuitive, direct tunneling one. The current
in the middle wire is reduced to IM = 0.07A.

influence on each other, the waveguides are approximately
resonant.

To demonstrate the effect of this adjustment we show in
Fig. 3 a transversal cut through the system at the middle of
the chip (z = 500 μm) for the case where (a) all three currents
are identical (I = 0.1 A) and (b) the current in the middle
wire is reduced (IM = 0.07 A). One can clearly see that the
transversal shape of the waveguides is very similar for the
case of the reduced center current, which indicates that this
approach can lead to enhanced resonance between the guides.

In the areas where the guides are farther away from each
other, however, the reduced current in the middle wire will have
the opposite effect and reduce the quality of the resonance.
This can clearly be seen from the iso-potential surface plot in
Fig. 2(b). Yet, since the tunneling in these areas is small, it has
only a negligible influence on the CTAP process and we will
in the following demonstrate that the near resonant setup of
Fig. 3(b) allows us to observe the CTAP process.

In Fig. 4 we show the population in each waveguide as
a function of time for an atom chip with reduced current
in the central wire. The results in Fig. 4(a) are obtained
for the situations where the wires are arranged such that
the counterintuitive tunneling sequence takes place and full
transfer from the initial guide into the final guide is clearly
visible. Only a small population in the central guide appears
halfway through the process, and while the ideal CTAP process

FIG. 5. (Color online) The density of the atomic state at t = 0.048
for (a) the counterintuitive setup and (b) the intuitive one. The current
in the middle wire is IM = 0.07 A in both cases.

does not allow for population in the central trap at any time,
the limited adiabaticity and resonance of the simulated setup
leads to this temporary deviation. However, it has no effect on
the final state.

In contrast to this, and confirming that the large fidelity
of the transport process above is due to CTAP, we show
in Fig. 4(b) the results for an intuitive arrangement of the
waveguides on the atom chip. As is clearly visible, this does
not produce high-fidelity population transfer to the guide on
the right-hand side, but rather leads to a split of the probability
between the middle and the right-hand-side wire.

While Fig. 4 only gives an indication of the ongoing process
as a function of time, the presence of the CTAP process for the
counterintuitively arranged wires can also be inferred from
looking at the atomic probability distribution in real space.
For this we show in Fig. 5 the density of the atomic state
in the x and z planes at t = 0.048 s integrated over the y

direction. At this time the atomic wave packet is in the region
where the tunneling interaction between all three waveguides
is large and clear differences between the two situations are
visible. Figure 5(a) shows the counterintuitive situation where
the wave packet can be seen to follow the dark state with only
a negligible population component in the middle waveguide.
In contrast, Fig. 5(b) shows the intuitive setup, in which the
population is distributed between all three waveguides and
clear signatures of Rabi oscillations due to the direct tunneling
are clearly visible.

It is exactly these Rabi oscillations in the intuitive process
that lead to the time dependence of the final population in each
waveguide and therefore a strong dependence of the outcome
on small changes in the system parameters. This can be seen
when examining Fig. 6, where we show the final population
in the right-hand-side waveguide as a function of the current
in the middle wire IM . For the intuitive process (blue dashed
line), the final population varies significantly with changing
IM , whereas the counterintuitive setup (red solid line) is very
robust to these changes, with the fidelity of population transfer
never dropping below 0.98. This is another indication that the
transfer is due to CTAP.

From Fig. 6 it is also clear that, while there are large
oscillations in the fidelity of the intuitive process, there is
an upward trend in the fidelity of the process towards unity
as the current in the middle wire increases. However, at these
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FIG. 6. (Color online) The final population in the target waveg-
uide for both the CTAP (red solid line) and intuitive (blue dashed
line) processes, for values of IM = 0.0672 A to IM = 0.0761 A in
steps of 0.001 A.

higher values of the middle-wire current, the waveguides are
no longer resonant at all times and one would expect that
neither the CTAP nor the intuitive processes would lead to
high-fidelity transfer. Nevertheless, the simulations show that
this is not the case.

We conjecture that in the regime of larger currents in
the middle wire the population transfer is due to Stark-shift-
chirped rapid-adiabatic passage (SCRAP) [19]. In this process
a time-dependent shift of the energy of the intermediate state
in the traditional three-level arrangement allows high-fidelity
population transfer between two states, independent of being
in the intuitive or counterintuitive situation. A translation of
this to the spatial realm is straightforward: the approach and
retreat of the outer wires from the middle one shift the energy
of the central waveguide in a spatially dependent manner. This
effect is the topic of a future investigation.

VI. CONCLUSIONS

We have performed fully three-dimensional simulations of
an experimentally realistic waveguide system on an atom chip,
where the arrangements of the wires produce spatial-dependent
tunnel couplings between the waveguides. These simulations
were done by implementing the CUFFT library provided by
Nvidia, which made this problem numerically tractable on a
desktop computer.

Using a simple method for controlling the resonance as the
waveguides are brought close together, we have demonstrated
that a counterintuitive approach of the outer wires to the middle
allows us to observe high fidelity and robust transfer between
the wires due to CTAP. In contrast, for intuitively coupled
waveguides, where direct tunneling between them is allowed
to occur, significant Rabi oscillations between all guides exist.
This makes the transfer process highly sensitive to the system
parameters. While a large number of theoretical works on
CTAP exist, the analysis presented offers a direct way for
experimental observation and confirmation of the effect.

Finally, we have also seen an indication that waveguide
systems might be natural systems for observing the SCRAP
protocol and a detailed investigation will be the topic of a
future work. While we have used the numerical methods
described here to perform three-dimensional simulations, they
can actually be used in any number of dimensions, where
they still offer large performance gains over standard CPU
approaches.
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Chapter 4

Coherent Adiabatic Transport of

Atoms in Radio Frequency Traps

In the manuscript presented in this Chapter, we investigate adiabatic radio frequency

(rf) potentials as another realistic system in which Coherent Tunnelling by Adiabatic

Passage (CTAP) can be observed 1.

Adiabatic rf potentials are typically made in conjunction with atom chips [89], but have

also been created in quadrupole traps [98] and were first used to created dressed states

of cold neutron [97]. More recently, adiabatic rf potentials have evolved into one of the

most versatile tools for trapping cold atoms[27, 28, 89]. The advantage of rf-systems over

other types of trapping potentials is that their physics is well known, they are relatively

benign systems to work with experimentally and are widely available today.

Experimental progress in more recent years has seen a shift from using rf radiation

to create standard trapping potentials [27], towards creating more complicated, non-

standard trapping geometries such as ring traps [99], toroidal traps [100], linear multi-

well potentials [29] and traps that can transition between ring shaped and double well

geometries [26]. As a result of this progress towards greater versatility, they have also

been used to control and manipulate matter waves in a time-dependent way [26, 28, 89].

There have also been a number of interesting theoretical works in recent years such

as a study of non rotating wave approximation effects in adiabatic rf potentials [59],

geometric phase of atoms in adiabatic rf potentials [101] and a method for enhancing

on-site interactions of tunnelling atoms in optical potentials [102]

In this Chapter we will theoretically show that an rf system of six separate frequencies

can produce a triple well potential in which CTAP can be performed. Adiabatic rf

1The work in this manuscript was done in collaboration with Brian O’Sullivan. Each author con-
tributed to all areas of the manuscript.
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potentials can fulfil the requirements for CTAP to a very high degree in an experimentally

realistic setup and therefore produce the kind of robust, high fidelity transport the

scheme allows for. We will also show that the rf system allows the extension of the

CTAP process to coherently control a cloud of interacting atoms. This is beyond what

could be achieved with magnetic waveguides on atom chips in Chapters 3 and 4, where

we were limited to transporting single atoms.
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Coherent transport by adiabatic passage has recently been suggested as a high-fidelity technique to engineer the
center-of-mass state of single atoms in inhomogeneous environments. While the basic theory behind this process
is well understood, several conceptual challenges for its experimental observation have still to be addressed. One
of these is the difficulty that currently available optical or magnetic micro-trap systems have in adjusting the
tunneling rate time dependently while keeping resonance between the asymptotic trapping states at all times.
Here we suggest that both requirements can be fulfilled to a very high degree in an experimentally realistic
setup based on radio-frequency traps on atom chips. We show that operations with close to 100% fidelity can
be achieved and that these systems also allow significant improvements for performing adiabatic passage with
interacting atomic clouds.

DOI: 10.1103/PhysRevA.83.053620 PACS number(s): 03.75.−b, 05.60.Gg, 67.85.−d

I. INTRODUCTION

Going beyond nanotechnologies and engineering quantum
systems on the basis of single particles has in recent years
been one of the most exciting and active areas of physics [1].
Due to the fragile nature of single-particle quantum states,
quantum engineering techniques need to be fault tolerant
and lead to high fidelities on every application to avoid the
large and costly overhead that comes with error-correction
schemes [2]. Comprising one class of techniques that can
achieve this are so-called adiabatic techniques and their use
in optical systems has been widely investigated in the past.
In particular, stimulated Raman adiabatic passage (STIRAP)
is one adiabatic technique that allows the transfer of the
populations from one electronic state to another with 100%
fidelity [3]. It relies on the existence of a so-called dark state
in a three-level system and requires a counterintuitive pulse
sequence to coherently couple the individual levels.

Recently, it has been shown that similar techniques can, in
principle, be used to control the quantized center-of-mass state
of single particles [4–6]. This atom-optical analog has been
dubbed coherent transport by adiabatic passage (CTAP) and
while the possibility of observing this process has received sig-
nificant attention [7,8], the conditions that have to be fulfilled
for its observation are currently hard to achieve experimentally.
In particular, all states involved are required to be in resonance
during the whole process. However, since the strength of the
tunnel coupling is usually adjusted by changing the distance
between the microtraps, which leads to significant overlap of
the neighboring trapping potentials, the eigenstates become
time dependent. Several solutions to the problem have been
suggested, all involving significant experimental resources
or restrictions on the parameter space [4,6,7]. A similar
process coupling classical light between optical waveguides
has recently been experimentally demonstrated [9–11].

Here we propose a simple experimental setup that fulfills
all necessary conditions to observe CTAP for cold atoms. Our
proposal is based on radio-frequency (rf) traps, which have
recently become one of the most versatile tools for trapping
cold atoms [12,13]. The advantage of rf systems is that their
physics is well known, they are relatively benign systems to
work with experimentally, and they are widely available today.

They not only allow us to create standard trapping potentials
[12] but can also be used to coherently manipulate matter
waves [13,14] or create complicated, nonstandard trapping
geometries [15–17].

We will also show that our setup offers the possibility for
extending adiabatic techniques to clouds of interacting atoms.
The presence of interaction between the atoms introduces
nonlinearities into the system [18] which have been shown
to inhibit the effectiveness of CTAP in transporting atoms
[7]. Several strategies to adjust the process and to allow
transport in the presence of these nonlinear interactions have
been suggested, for example a fixed detuning between the
potential wells [19]. Here we will show that dynamically
controlling the detuning between the potentials provides a
marked improvement in the state transfer efficiency over both
regular and fixed detuning CTAP.

In the following we will first briefly review the idea of CTAP
for ultracold atoms. In Sec. III we will outline the theoretical
description of rf trapping and describe the system needed for
CTAP. In Sec. IV we demonstrate atomic transport in this
system and show that the process allows high-fidelity atomic
transport in contrast to the intuitive method, which fails. In
Sec. V we examine the transport of an interacting atomic
cloud and how the presence of nonlinear interaction can be
compensated for by dynamic detuning. Finally, in Sec. VI we
conclude.

II. COHERENT TRANSPORT ADIABATIC PASSAGE

To briefly review the process of adiabatic population
transfer let us consider a system of three ground states in
three identical microtraps, |0〉L,|0〉M , and |0〉R (see Fig. 1).
In a linear arrangement the only tunnel couplings that are
significant are JLM for the transition |0〉L → |0〉M and JMR

for |0〉M → |0〉R . By assuming that the three states are in
resonance when isolated, the Hamiltonian for such a system is
given by

H (t) = h̄

⎛
⎜⎝

0 −JLM (t) 0

−JLM (t) 0 −JMR(t)

0 −JMR(t) 0

⎞
⎟⎠ . (1)
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FIG. 1. (Color online) Schematic of the CTAP process for an
atom in the left trap. Reducing the distances between the traps leads
to an increase in the tunneling strengths.

and a smooth time dependence of the tunneling coupling
pulses can be achieved by continuously changing the distances
between the traps, dLM (t) and dMR(t). The eigenstates of this
Hamiltonian are very well known [3] and of particular interest
to our work here is the so-called dark state

|d〉 = cos θ |0〉L − sin θ |0〉R (2)

for which the mixing angle θ is given by

tan θ = JLM/JMR. (3)

This state has a nondegenerate zero eigenvalue and therefore
an adiabatic evolution will guarantee that the system, once
prepared in |d〉, will always stay in it. Note that, as the only
contribution to |d〉 from the state |0〉M comes through the
mixing angle, the system has zero probability of being found
in |0〉M at any time.

The CTAP process can now be understood by considering
an atom initially in the state |0〉L. Increasing and decreasing
JMR before JLM , which is counterintuitive to traditional
tunneling schemes, continuously decreases the population in
state |0〉L and increases the population in state |0〉R , leading to
a 100% transfer at the end of the process.

It is worth stressing again the conditions that have to be
fulfilled for the above dynamics to occur. First, the process
must be adiabatic with respect to the energy level splitting
in the harmonic oscillators, which means that the movement
of the traps has to be slow and the whole process must
take longer than ω−1

HO, where ωHO is the harmonic oscillator
frequency of the individual traps. As typical numbers of ωHO

for microtraps are in the kilohertz regime, this means that the
time required for this process is much shorter than lifetimes
of the trapped atoms, which makes this process a promising
tool for quantum information. The other condition we require,
as previously mentioned, is that all single trap states are in
resonance at any point in time, which is difficult to achieve
once the trapping potentials start to overlap.

In the next section we will demonstrate how the second
condition can be fulfilled in an experimentally realistic system
using radio-frequency potentials.

III. RADIO-FREQUENCY TRAPPING

Radio-frequency trapping relies on the process of coupling
magnetic sublevels in the presence of an inhomogeneous
magnetic field [12–15]. Consider a hyperfine atomic ground
state with total spin F = 1

2 . In the presence of a magnetic field
the two hyperfine sublevels mF = 1

2 and m′
F = − 1

2 are split by
an amount µBgF mF B, where gF is the atomic g factor of the

hyperfine level and µB is the Bohr magneton. Irradiating such
a system with a linearly polarized radio frequency, Brf cos(ωt),
couples the sublevels | 1

2 , 1
2 〉 ↔ | 1

2 , − 1
2 〉 with spatial resolution

due to the spatial dependence of the magnetic field. Here
we will concentrate on a one-dimensional (1D) description
of such a process, which is valid when the radio frequency
and magnetic field are orthogonal to each other. By assuming
the inhomogeneous magnetic field to be oriented in the x

direction, B = B(x), the Hamiltonian of the coupled system
can be written as

H (x) = 1

2

(
µBgF B(x) − h̄ω h̄�

h̄� −µBgF B(x) + h̄ω

)
, (4)

where the strength of the coupling is given by the Rabi
frequency [20]

� = µBgF

4h̄
|Brf × êB |

√
F (F + 1) − mF m

′
F , (5)

and where êB is the orientation of the local static magnetic
field. The eigenvalues of this Hamiltonian are [15]

E±(x) = ±1

2

√
h̄2�2 + [µBgF B(x) − h̄ω]2, (6)

≈ ±1

2
[µBgF B(x) − h̄ω] ± h̄2�2

4[µBgF B(x) − h̄ω]
, (7)

where the second expression is valid far from resonance, h̄� �
[µBgf B(x) − h̄ω]. The second term in the expression can be
viewed as a Stark shift on the energy levels.

To create a multiwell potential it is necessary to use several
frequencies and the above analysis will become significantly
more complicated. However, if we assume that the individual
frequencies are spaced sufficiently far apart and have low Rabi
frequencies with respect to the detuning, we can approximate
the dynamics locally by considering only the nearest resonance
frequency, ω(x) = ωn(x) [15]. Formally, this means that n is
chosen such that [µBgF B(x) − h̄ωn(x)] is minimized at any
position x. The effects of the combined Stark shifts, produced
by the frequencies not closest to resonance, can then be
summed as [15]

Ln(x) =
∑
j �=n

h̄2�2

4[µBgF B(x) − h̄ωj (x)]
, (8)

so that the eigenvalues are given by

E±(x) = ± 1
2

√
h̄2�2 + [µBgF B(x) − h̄ω + 2Ln(x)]2. (9)

From this, and by considering that the couplings are strong
enough to yield a Landau-Zener transition probability close to
unity, the resulting adiabatic potential is given by

Vad,±(x) = (−1)n(x)

[
E±(x) ∓ h̄ωn(x)

2

]
∓

n(x)−1∑
k=1

(−1)kh̄ωk.

(10)

To produce a radio-frequency potential with three minima
along the x direction we will need six different radio
frequencies. In the following we will assume that the 1D
linear magnetic field is given by B(x) = bx, where b is
the magnetic field gradient. For convenience we choose five
of the six radio frequencies to be equally spaced initially,
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FIG. 2. Trapping potential created by six radio frequencies
ω1 = 2π × 1000 kHz and ωn = 2πn × 10 000 kHz, n = 2 : 6. Their
resonance positions are marked by the broken vertical lines and the
range over which they are applied is indicated by the gray and white
zones. The magnetic field gradient has strength b = 160 G cm−1 and
gF = − 2

3 for the 87Rb ground state 2S 1
2
. The Rabi frequency is chosen

to be 2π × 50 kHz. The traps resemble harmonic oscillator potentials
close to each minima.

ωn = 2nπ × 10 000 kHz (n = 2 : 6), which produces three
equidistant minima. The first radio frequency ω1 does need to
have the same distance as the other frequencies, as its value
only controls the height of the first maximum (see Fig. 2) and
can therefore be adjusted without changing the trap geometry
in the area where tunneling takes place. For our potential we
set ω1 = 2π × 1000 kHz and in Fig. 2 we indicate the local
frequencies and show the resulting adiabatic potential in the
positive x direction.

IV. ADIABATIC PASSAGE

In this section we will apply the CTAP procedure to a
single atom trapped in a three-well rf potential. We will show
that the strong decay of the influence of the radio frequencies
away from their respective resonance points allows us to fulfill
the resonance condition between the asymptotic eigenstates
at all times during the process. While the Stark shift from
neighboring resonances cannot be neglected, it is small enough
to not destroy the process.

Movement of the traps is achieved by changing the
individual radio frequencies that are associated with each trap.
Traditionally for CTAP the middle trap is chosen to be at rest
and the two outer ones are moving inward and outward (see
also Fig. 1). Here we will choose a slightly different, but of
course completely analogous, route in that we keep the position
of the left trap fixed. This allows us to keep the values of the
minima equal, which is essential to satisfy the condition of
resonance between all traps.

In order to achieve CTAP when moving the traps in this
nontraditional manner the approach of the right trap toward the
middle must start earlier than the approach of the middle trap
to the left. One therefore initially only changes the frequencies

ω5 and ω6, which determine the shape and position of the
right-hand-side trap. After a delay τ , the two frequencies
ω3 and ω4 are changed as well, allowing the middle trap
to move toward the left. Due to the adiabatic nature of the
process the exact shape of this time-dependent frequency
adjustment, f (t), does not matter and we can formalize this
process as

ω1(t) = ω1(t0), (11a)

ω2(t) = ω2(t0), (11b)

ω3(t) = ω3(t0) − 1
2f (t − τ )θ (t − τ ), (11c)

ω4(t) = ω4(t0) − f (t − τ )θ (t − τ ), (11d)

ω5(t) = ω5(t0) − 1
2f (t) − f (t − τ )θ (t − τ ), (11e)

ω6(t) = ω6(t0) − f (t) − f (t − τ )θ (t − τ ), (11f)

where θ (t) is the Heaviside step function. In Fig. 3(a) these
changes are shown for the typical system considered here and
the resulting movements of the trap minima are displayed
in Fig. 3(b). As can been seen, the minimum of the left trap
remains stationary while the other traps are moving toward and
away from it. The resulting movement between neighboring
traps exactly fulfills the requirement of the CTAP process,
leading to the desired increase and decrease in the tunneling
strength between initially the middle and right traps before the
increase and decrease in tunneling strength between the left
and middle traps.

To demonstrate adiabatic passage for single atoms and for
typical experimentally realistic parameters, we will in the
following show the results of numerical simulations of the
full Schrödinger equation. We choose a single 87Rb atom to be
initially located in the center-of-mass ground state of the left
trap and start the process described in Sec. IV with an initial
separation between the radio frequencies of 2π × 10 000 kHz.
The minimum distance to which the frequencies approach each
other is 2π × 200 kHz, which ensures that we are always in the
regime of tunneling interaction, as the minimum barrier height

µm µm

FIG. 3. (Color online) (a) Radio frequencies, ωn, as a function of
time to achieve the counterintuitive positioning sequence. (b) Posi-
tions of the trap minima as a function of time. The left trap remains
stationary while the other two traps move toward it. The delay in
the movement of the middle trap in comparison to the right trap
(τ = 0.0055 s) is indicated by the broken line.
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µm

µm

FIG. 4. (Color online) (a) Probability density for a single atom
initially located in the trap on the left-hand side with respect to time
for counterintuitive trap movement. The inset shows the tunneling
area in greater detail. (b) Density of the final state in each of the three
traps.

between the individual traps is 5.3313 × 10−29 J at the point
of closest approach, compared to the ground-state energy of
1.3615 × 10−29 J. The form of the adjustment function f (t) is
taken to be a cosine and for numerical simplicity we restrict
ourselves to one spatial dimension.

In Fig. 4 we show the probability density function with
respect to time for the CTAP process. The overall time for
this process is chosen to be T = 0.11 s, which is large
compared to the approximate harmonic oscillator frequency of
the individual traps of ω−1

HO ≈ 4 × 10−6 s, and we are therefore
assured that the system is at all times in the dark eigenstate.
This can also be seen from the fact that the probability for
being in the middle trap at any time is zero. The process leads
to high-fidelity population transfer and an absence of Rabi
oscillations.

To compare the above situation to a process in which direct
tunneling between two neighboring traps plays an important
role, we show in Fig. 5 the results of the same process,
this time however using an intuitive trap movement. The
direct tunneling is clearly manifest in the appearance of Rabi
oscillations between the traps and the process therefore does
not deliver the required robust population transfer. In fact,
the final state becomes highly susceptible to variations of the
system parameters [21].

We have confirmed that these results are representative for
a large range of parameters, making rf traps ideal systems to
investigate general adiabatic processes.

µm

µm

FIG. 5. (Color online) (a) Probability density for a single atom
initially located in the trap on the left-hand side with respect to time
for intuitive trap movement. The inset shows the tunneling area in
greater detail, where Rabi oscillations between neighboring traps are
clearly visible. (b) Density of the final state in each of the three traps.

V. NONLINEAR SYSTEMS

The extension of adiabatic methods to nonlinear systems
is of great importance not only to describe experimental
situations but also for the understanding of the underlying
physical principles [18,19,22,23]. In this section we show
how CTAP can be used with time-dependent potentials to
coherently transport a cloud of interacting, Bose-condensed
atoms. For this, we treat the adiabatic process as a series
of stationary states which can be described by the time-
independent Gross-Pitaevskii equation

µ�(x) =
(

− h̄2

2m
∇2 + V (x) + g1D|�|2

)
�(x), (12)

where V (x) is the external potential and µ is the chemical
potential at each respective point in time. The one-dimensional
interaction strength between bosons with a three-dimensional
s-wave scattering length as is given by g1D = 4Nh̄2as

ma⊥
(a⊥ −

Cas)−1 [24]. The trap width in the radial direction is given
by a⊥ and C ≈ 1.4603. In the three-level approximation the
Hamiltonian can therefore be written as

H (t) = h̄

⎛
⎝ h̄ωL + µL −JLM (t) 0

−JLM (t) h̄ωM −JMR(t)
0 −JMR(t) h̄ωR + µR

⎞
⎠ , (13)

where µL and µR are the chemical potentials associated with
the atomic clouds in the left or right trap, respectively, and ωL,
ωM , and ωR are the harmonic oscillator frequencies associated
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Jm

FIG. 6. (Color online) Final population in left (vertical dashed
line, blue), middle (horizontal dashed line, green), and right (solid
line, red) traps with increasing interaction strength. The dotted black
line shows the total population not occupying the target (right) trap.
The maximum value of g1D corresponds to µ = 1.4318 × 10−29 J,
which is smaller than h̄ωL,M,R at all times.

with the individual traps. Note that this Hamiltonian has been
extensively investigated for constant couplings between the
traps [25,26]. As the particle number in each individual trap is a
function of time, the chemical potentials µi will change and de-
stroy the resonances between the traps. To compensate for this
we will in the following allow for the trapping frequencies to be
functions of time as well. Starting with a cloud of atoms in the
left trap, it is clear that the chemical potential µL will decrease
durning the process, while µR will increase. Adjusting the trap-
ping frequencies ωL and ωR can restore the resonance between
the uncoupled traps by ensuring that h̄ωi + µi ≈ constant at
all times. However, in order to be able to make the three-state
approximation, we need to make sure that µi < h̄ωi for all
values of µi and ωi . This means in practice that the process is
limited to cold atomic clouds with small nonlinearities.

Using the same radio-frequency potential as in the linear
case, we place a cloud of interacting 87Rb atoms in the ground
state of the left trap by determining the solution to the Gross-
Pitaevskii equation for an isolated trapping potential. To show
the influence of the nonlinear behavior, we first carry out the
same counterintuitive trap movements as in the linear section
without time-dependent change in the trapping frequencies. In
Fig. 6 we show the final populations in the individual traps
as a function of increasing values for g1D . It is immediately
obvious that even for weak interactions the nonlinear term
is disruptive to the process of CTAP. In fact, for g1D = 2 ×
10−37 J m the state transfer efficiency is reduced to 84%. By
choosing a typical radial trap width of 130 nm, this value of
g1D corresponds to N = 2 for 87Rb.

As outlined above, to restore resonance in the presence
of a changing chemical potential we must adjust the
trapping frequency so that at any point in time h̄ωL(t) +
µL(t) = h̄ωM = h̄ωR(t) + µR(t). However, determining the
required adjustments is not a simple exercise for at least two
reasons. First, the density dependence of the chemical potential
will prevent this change from simply being linear in time, and,
second, a conceptual difficulty in determining the individual

chemical potentials arises when the traps are close together.
While one could try to calculate the chemical potential, and
therefore the on-site energies, in all traps at all times to a good
approximation, this is certainly not experimentally possible.
In the following, we therefore suggest a simple functional
form for dynamically detuning the outer traps and we show
that it allows us to achieve significantly higher transfer than
possible without adjustments. A similar idea, however without
time dependence, was recently proposed by Graefe et al. [19],
who showed that by detuning the left and the right traps by
the same fixed amount throughout the process an improved
transfer of population can be achieved.

The outline of our scheme for dynamic detuning is as
follows. Initially the cloud is trapped in the left trap, which
we detune such that resonance with the eigenstates of the
other two traps is ensured (since the traps are far apart, it is
possible to determine the chemical potential µL). As we time
evolve the system, tunneling sets in and we begin to reduce the
detuning on the left trap to zero while increasing the detuning
of the right trap, as atoms enter it. This can be achieved by
adjusting the radio frequencies ω2 and ω6, associated with the
left- and right-hand-side traps, respectively. Here we suggest
that a good form of function for the adjustment related to the
left-hand-side trap is

�ω2(κ; t̃) = 1
2 [1 − tanh(κt̃)]�ω0, (14)

where the initial value for the change in ω2 is given by ω0.
The function runs between �ω0 and 0 and the steepness in
the crossover region is determined by κ . This gives us an
effective handle on both the time when the adjustment starts
and the duration of the adjustment (see inset of Fig. 7). Here
t̃ = t − T/2, with T being the overall duration of the process.
At the same time the frequency of the right-hand-side trap

FIG. 7. (Color online) Final population in left (horizontal dashed
blue line), middle (vertical dashed green line), and right (solid
red line) traps for nonlinear CTAP with increasing κ and �ω0 =
2π × 1.5 kHz. The dotted black line shows the total population
not occupying the target (right) trap. The insets show the shape of
�ω6(κ; t̃) for different values of κ . An increased value of κ increases
the time when the adjustment begins and decreases the adjustment
time.
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needs to be adjusted as well and it is easy to see that a mirror-
symmetric change in ω6 is the best choice:

�ω6(κ; t̃) = 1
2 [1 + tanh(κt̃)]�ω0, (15)

The dynamic adjustments of the radio-frequency equations
(IV) then become

ω1(t) = ω1(t0), (16a)

ω2(t) = ω2(t0) − �ω2(κ,t̃), (16b)

ω3(t) = ω3(t0) − 1
2f (t − τ )θ (t − τ ), (16c)

ω4(t) = ω4(t0) − f (t − τ )θ (t − τ ), (16d)

ω5(t) = ω5(t0) − 1
2f (t) − f (t − τ )θ (t − τ ), (16e)

ω6(t) = ω6(t0) − f (t) − f (t − τ )θ (t − τ ) + �ω6(κ,t̃).

(16f)

In Fig. 7 we show the final population transferred to the right
trap for increasing values of κ and for �ω0 = 2π × 1.5 kHz.
We can see that the dynamic adjustment of the detunings of the
outer traps allows us to achieve population transfer of >99%,
up from 84%. This is an improvement over both standard
CTAP and fixed detuning in the weak-interaction regime and,
in fact, returns to the transfer efficiency of single-particle
CTAP.

VI. CONCLUSIONS

We have shown that radio-frequency traps can be used as
microtraps for processes in which an adjustable tunneling
strength is required. Neighboring trapping potentials can
be overlapped without significantly changing the underlying
energy level structure. This property has allowed us to create a
triple-well radio-frequency potential in which coherent trans-
port using adiabatic passage can be demonstrated. For a single
atom, it was shown that complete transfer between the left and
right traps by utilizing the dark state of the system is possible,
maintaining the advantages of an absence of Rabi oscillations
and robustness against variation in system parameters.

For a cloud of weakly interacting atoms we have demon-
strated a technique that significantly improves the efficiency of
CTAP by dynamically detuning the outer traps. Our suggested
setup is close to experimental realities, avoids the large
overhead of other suggestions, and can easily be extended
to other adiabatic techniques.
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Chapter 5

Floquet Theory for Modelling

Adiabatic Radio Frequency

Potentials

As was discussed in Chapter 4, adiabatic radio frequency potentials have in recent years

become versatile experimental tools for trapping and controlling ultracold atoms [27, 28,

89]. They allow the creation of non-standard trapping potentials [26, 29, 99, 100] and can

also be time-dependent to allow dynamical manipulation of matter waves [26, 28, 89].

However, most of the previously mentioned studies only use a single rf field to create

the adiabatic rf potential, and only a few extensions to multiple rf fields of different

frequencies have been discussed. Such multi-frequency systems allow for more complex

potentials and higher control.

One example of a potential shape that can be created using a single rf is the annular

trap for studies of rotating BECs [103]. By adding additional rf fields one can, for exam-

ple, create potentials consisting of multiple concentric rings with frequency dependent

spacings, thus giving control over the tunnel coupling between neighbouring rings. In

such systems it is possible to study rotational fluxons (Josephson vortices) [104] or the

Kibble-Zurek mechanism [105].

However, while exact treatments exist for adiabatic rf potentials of a single frequency,

when multiple fields are present the removal of time dependence from the Hamiltonian

of the system becomes highly non-trivial and approximations such as the rotating wave

approximation (RWA) must be made. In the manuscript contained in this Chapter,

we show how Floquet theory can be used to remove the time-dependence from the

80
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Hamiltonian without having to perform the RWA 1. This in turn allows higher order

couplings of the atomic hyperfine states to be taken into account and we show that

the subsequently generated adiabatic rf potentials are significantly more accurate than

previously discussed approaches [29].

Floquet theory was developed by Gaston Floquet [30] but it was first shown by Shirley

that it could be used to describe interaction of a quantum system with an oscillating field

[31]. Subsequently, Ho et al. demonstrated that its application could be extended to

systems with multiple oscillating fields [62] including multi-photon processes for atoms

interacting with strong laser fields [106]. Since its development, Floquet theory has been

applied to a large number of systems such as nuclear magnetic resonance [107, 108],

adiabatic passage in optical systems [109] and intense frequency-comb laser fields [110].

A comprehensive overview of the application of Floquet theory to atomic and molecular

multiphoton processes in intense laser fields can be found in [61].

1The work in this manuscript was done in collaboration with Thomas Fernholz. Each author con-
tributed to all areas of the manuscript.
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Floquet Theory for modelling adiabatic radio frequency potentials
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Adiabatic radio frequency (RF) potentials are powerful tools for creating advanced trapping ge-
ometries for ultra-cold atoms. While the basic theory of RF trapping is well understood, studies
of more complicated setups involving multiple resonant frequencies in the limit where their effects
cannot be treated independently are rare. Here we present an approach based on Floquet theory
to describe the adiabatic potential experienced by an atom subjected to a RF field of multiple fre-
quencies. We show that the Floquet approach offers corrections to existing models and significant
accuracy enhancements when the frequencies are near degenerate. This model has no restrictions
on the dimension or number of frequencies and can also be used to describe RF fields of arbitrary
polarization. We show that these added degrees of freedom can, for example, be used to create a
potential in which ring vortex solitons can be observed.

I. INTRODUCTION

Using resonant RF radiation to address the spins of
atoms in inhomogeneous magnetic fields allows to locally
address clouds of ultracold atoms with high spatial reso-
lution. This technique is commonly used in combination
with atom chips, a pairing which offers huge flexibility in
the types of potentials that can be created [1, 2]. Being
able to make the RF fields time dependent is adding to
the versatility and has, for example, been used to split
Bose-Einstein condensates (BECs) [3]. By today signifi-
cant work has been done in the modelling of RF systems
to create highly non trivial trapping geometries [4, 5],
including annular traps [6], examine effects beyond the
rotating wave approximation [7] and investigating non-
linear Zeeman effects [8].

The use of multi-frequency fields has recently been sug-
gested to create multi-well or even periodic potentials
[9, 11]. These can be periodic and time dependent and
in [11] a method to coherently control the centre of mass
motion of both a single atom and a cloud of interact-
ing atoms was suggested. While this work highlighted
how versatile multi-frequency RF potentials are for ex-
perimentally realistic parameters, the theoretical model
used did not allow to investigate situations in which two
frequencies come so close that their effects can no longer
be treated independently.

The use of multi-frequency fields has recently been
suggested to create multi-well or even periodic poten-
tials [9, 11]. These can be periodic and time dependent
and in [11] a method to coherently control the centre
of mass motion of both a single atom and a cloud of
interacting atoms was suggested. While this work high-
lighted how versatile multi-frequency RF potentials are
for experimentally realistic parameters, the theoretical

∗ tmorgan@phys.ucc.ie

model used could only describe limited tunnel coupling
strengths between two potential wells, as it required all
radio frequencies to be well separated. For large tunnel
couplings, however, it is usually necessary to have poten-
tials where the curvature can be controlled over short dis-
tances, which, using rf technology, requires two frequen-
cies to be brought close. In such situations the effects
of both frequencies have to be considered simultaneously
and a more advanced model is necessary.

To address the question of how to accurately deal with
near degenerate frequencies and take full advantage of all
degrees of freedom offered by RF fields, in this work we
investigate the use of Floquet theory and compare the
results to the models recently used [9]. Floquet theory
allows to describe the interaction between a periodically
oscillating field and a quantum system and its basic idea
is to replace the semiclassical time-dependent Hamilto-
nian with a time-independent Hamiltonian of infinite di-
mensions [12]. By using a Floquet approach to model
RF systems, we will show that highly accurate potentials
can be obtained.

Since its first application to single mode systems, Flo-
quet theory has been extended to many-mode systems
[13] and has been extensively used in studying multi-
photon processes for atoms in strong laser fields [14]. In
[15] Floquet theory was used to describe adiabatic po-
tentials produced by short laser pulses in order to stim-
ulate a STIRAP (Stimulated Raman Adiabatic Passage)
process. This was more recently extended to a many-
mode Floquet theorem allowing to study multiphoton
resonance dynamics driven by intense frequency-comb
laser fields [16]. A comprehensive overview of the appli-
cation of Floquet theory to atomic and molecular multi-
photon processes in intense laser fields can be found in
[17].

The layout of this paper is as follows. In Sec. II we
consider the general Hamiltonian of atom confined to a
static magnetic field which is irradiated with an RF field
of a single frequency and show how the exact eigenvalues
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can be obtained. In Sec. III we review the model devel-
oped in [9], which we refer to as the piecewise resonance
model, for adiabatic RF potentials created with multiple
RF fields and highlight how it breaks down when two
frequencies become too close. In Sec. IV we show how
Floquet theory can be used to obtain a more accurate de-
scription and in Sec. VI we compare the two approaches
and discuss the corrections and benefits of the Floquet
approach. To demonstrate the power of the approach, we
detail in Sec. VI B how an extension to higher dimensions
can be done and show how controlling the orientation of
the RF field can be used to produce non trivial trapping
geometries. As an example, we show how controlling the
tunnel coupling in multidimensional RF traps can allow
ring vortex solitons in Bose-Einstein condensates to be
created. Finally in Sec. VII we conclude.

II. RADIO-FREQUENCY DRESSED TRAPS

RF trapping is based on the idea of coupling magnetic
sublevels in the presence of an inhomogeneous magnetic
field. Consider a hyperfine atomic ground state man-
ifold with total spin F . In the presence of a static
magnetic field of modulus Bs, the Zeeman sublevels,
mF = −F, ..., F undergo a linear splitting according to
EmF

= mF gFµBBs, as long as the field strength is not
too large. Here, gF is the atomic g-factor and µB is the
Bohr magneton. Irradiating such a system with a radio
frequency BRF(ωt), which can excite atomic Larmor pre-
cession, will couple the sublevels |F,mF 〉 ↔ |F,mF ± 1〉
with spatial resolution due to the spatial dependence of
the magnetic field and varying Larmor frequency.

For simplicity, we first consider a one-dimensional sit-
uation with a static field pointing and increasing linearly
along the z-direction, i.e. Bs = Bs(z) = Gz where G
is the magnetic field gradient. Such a situation arises,
for example, when an atom travels along an axis of a
quadrupole field. It is convenient to express the oscillat-
ing field in complex spherical components (σ+, σ−, and
π-polarizations), such that

BRF(ωt) = Re






1√
2
(B+ +B−)

i√
2
(B+ −B−)

Bπ


 · e−iωt


 , (1)

and the total Hamiltonian for the magnetic interaction
can be written as

H(z, t) = µBgFF · (Bs(z) + BRF(ωt)) . (2)

Transforming to a frame rotating about the z-axis at fre-
quency ω using Hrot = ih̄U̇U−1 + UHU−1 with U =
eiFzωt leads to Hrot = µBgFF · Beff, where the effective
field in Cartesian coordinates is given by,

Beff =




1√
2
Re[B−e−i2ωt] + 1√

2
Re[B+]

1√
2
Im[B−e−i2ωt]− 1√

2
Im[B+]

Re[Bπe
−iωt] +Bs(z)− h̄ω

µBgF


 . (3)

Expressing the Hamiltonian in the spherical basis then
results in Hrot = µBgF (F+B

∗
++F−B∗−e

i2ωt+Fz(B
∗
πe
iωt+

Bs(z)− h̄ω
µBgF

)) + c.c.

If the RF field is purely σ+-polarized, the Hamilto-
nian becomes time-independent and the situation in the
rotating frame is fully equivalent to an atom moving in
an inhomogeneous field across a non-zero field minimum.
Conversely, the widely used Ioffe-Pritchard type trap,
where the field-zero of a 2D quadrupole field is lifted
with an orthogonal applied field BI , can be viewed as
a dressed state trap with zero coupling frequency. The
quasi-energies, i.e., the eigenvalues of the rotating frame
Hamiltonian can be obtained straightforwardly as

EmF
= mFµBgFBeff (4)

= mFµBgF

√(
Bs(z)−

h̄ω

µBgF

)2

+ |B+|2 ,

where the mF are eigenvalues of the spin component
aligned with the effective field.

If polarization components other than σ+ are present,
one can perform the rotating wave approximation (RWA)
and discard the fast oscillating terms as long as h̄ω �
gFµBBeff [18]. This however, leads to neglecting shifts in
the energy spectrum, which are known as Bloch-Siegert
shifts [10]. A second order correction is caused by a σ−

field component, which can be seen as equivalent to a
σ+ polarized field at negative frequency and cause off-
resonant coupling between states with ∆mF = ±1 (see
Fig. 1). Other higher order effects can also stem from π
polarised components.

III. PIECEWISE RESONANCE MODEL

More control and complexity can be introduced into
RF dressed potentials by using multiple frequencies ωn.
Using the method outlined above, one can in principle
apply an iterative procedure by performing consecutive
rotating wave approximations for each frequency. How-
ever, it is then necessary at each step to transform all
oscillating fields into the new rotating frame and deter-
mine new polarization components with respect to the
effective field of the previous step. This procedure will
lead to an accumulation of errors and can suffer from a
certain arbitrariness as the order of eliminating individ-
ual frequencies is not defined.

However, if the individual frequencies are spaced suf-
ficiently far apart and the coupling is small with respect
to the detuning, one can approximate the dynamics lo-
cally by considering only the nearest resonance frequency,
ω(z) = ωn [9]. Formally this means that n is chosen such
that [µBgFBs(z)− h̄ωn] is minimized at any position z.
In the language of the above consecutive approach, this
is equivalent to approximating the effective field by its z-
component before decomposing polarisation components
for the next step.
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FIG. 1. A schematic diagram of the eigenvalues of the Hamil-
tonian in the rotating frame for both, σ+ (green lines) and σ−
(red lines) polarised RF fields irradiating an atom in a linear
static field Bs(z) = Gz. The blue lines show the bare Hamil-
tonian eigenvalues E+mF and E−mF . The dashed black lines
indicate where z = 0 and E = 0.

With this local frequency approximation the Hamilto-
nian (2) for a system of total spin F = 1

2 after the RWA
has been applied is

H(z) =
1

2

(
µBgFBs(z)− h̄ωn h̄Ωn

h̄Ω∗n −µBgFBs(z) + h̄ωn

)
,

(5)
where Ωn = µBgF

4h̄

(
Bnx + iBny

)
is the Rabi frequency of

the nth RF field with Bnx
and Bny

the component of the
field along the x and y Cartesian directions, respectively.
Here we will restrict ourselves to considering linearly po-
larised RF fields orthogonal to the static field so that
Ω = µBgF

4h̄ Bnx
. The change to a Cartesian basis is done

so as to match the method outlined in [9].
For large detuning the eigenenergies of this Hamilto-

nian can be written as [9],

E±(z) = ±1

2

√
h̄2Ω2 + [µBgFBs(z)− h̄ωn]2

≈ ±1

2
[µBgFBs(z)− h̄ωn]± h̄2Ω2

4[µBgFBs(z)− h̄ωn]
,

(6)

where the second step is valid far from the resonance,
h̄Ω � [µBgFB(z) − h̄ωn] and the resulting second term
can be viewed as a Stark shift. The effect of all other RF
fields which are not closest to resonance can be approx-
imated by creating an effective Stark shift, which is the
sum of the Stark shifts of all RF fields of frequency ωj

(j 6= n) [9],

Ln(z) =
∑

j 6=n

h̄2Ω2

4[µBgFBs(z)− h̄ωj ]
. (7)

This leads to a correction of the eigenvalues, which are
now given by

E±(z) = ±1

2

√
h̄2Ω2 + [µBgFBs(z)− h̄ω + 2Ln(z)]2 .

(8)
From this, and considering that the couplings are strong
enough to yield a Landau-Zener transition probability
close to unity, the resulting adiabatic potential is given
by

Vad±(z) = (−1)n
[
E±(z)∓ h̄ωn

2

]
∓
n−1∑

k=1

(−1)kh̄ωk . (9)

In Fig. 2 we show the adiabatic RF potentials seen by
an atom trapped in a Ioffe-Pitchard (IP) trap irradiated
by a linearly polarised RF field with two frequencies, ω1

and ω2, for three different values of ∆ω = ω2−ω1. In all
work presented here we assume that the IP trap has the
form of

Bs(r) =
√
G2 × r2 +B2

I , (10)

with values for the magnetic field gradient G = 1Tm−1

and the applied field BI = 1µT in the typical range ap-
plicable to an atom chip.

While for well spaced frequencies the potential result-
ing from the above procedure is visually smooth (see
Fig. 2 (a)), a discontinuity appears for decreasing val-
ues of ∆ω, which grows as the frequencies approach each
other further. Treating the RF fields independently from
each other is therefore no longer appropriate and in or-
der to be able to describe these situations we will explore
the advantages a treatment using Floquet theory offers.
Situations in which this becomes important are, for ex-
ample, potentials in which the curvature changes on a
small spatial scale.

While for well spaced frequencies the potential result-
ing from the above procedure is visually smooth (see
Fig. 2 (a)), a discontinuity appears for decreasing val-
ues of ∆ω, which grows as the frequencies approach
each other further. Such discontinuities mean that the
piecewise resonance model cannot be applied to situa-
tions where control over the potential curvature on small
length-scales is necessary, as for example is the case when
trying to control a tunnelling strength. To treat the in-
fluence that several closely spaced RF have on each other,
we will in the following describe the advantages and lim-
its a treatment using Floquet theory offers.

IV. FLOQUET MODEL

Floquet theory provides a practical and powerful non-
perturbative method for studying the interaction of a
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FIG. 2. Adiabatic RF potentials for an atom trapped in a IP
trap irradiated by linearly polarised, two frequency RF fields
with different frequency separation ∆ω with ω1 = 1.5 × 105

Hz and Rabi frequencies Ω1 = Ω2 = 9.274×104 Hz. Note that
the axis for each plot changes so we can resolve the important
features of each potential. In all cases mF = 1

2
and gF = 1.

quantum system with an oscillating field such as ioniza-
tion and multiphoton excitation processes. It allows one
to find the solutions of a Schrödinger equation with a
temporally periodic Hamiltonian by representing it as an
infinite matrix [12].

By using a Floquet approach to describe a system con-
taining multiple RF fields we can ensure that higher-
order frequency shifts, which are neglected by the piece-
wise resonance model and other approaches which reply
on the RWA, are accounted for.

As in the previous section, we aim to describe the state
of an atom confined to a static magnetic field Bs(r) sub-
jected to a radio-frequency field BRF (ωt) with N differ-
ent frequencies. However, unlike the previous section, we
consider linearly polarised fields that can have arbitrary
orientation relative to the static field by defining the σ+

and σ− components of the RF field as

B+ =
α cos(θ)− iα sin(θ)√

2
, (11a)

B− =
α cos(θ) + iα sin(θ)√

2
, (11b)

and requiring the Bπ component to be real. According
to eq. (1), the nth RF field can then be written as

BRF (ωnt) = Bn cos(ωnt) , (12)

where Bn is the RF field vector and can be decom-
posed into its components along each Cartesian axis,
Bn = αn cos(θn)êx + αn sin(θn)êy +Bπn êz, and control-
ling the angle θ allows to chose orientation of the RF field.
Considering N such fields then leads to the Hamiltonian

H(r, t) = µBgFF ·
(
Bs(r) +

N∑

n=1

Bn cos(ωnt)

)
. (13)

We now move to a frame in which the direction of Bs(r)
always points along the z-axis by applying a rotation
matrix R to the Hamiltonian. While this can be done
for any static field, here we assume that it is of Ioffe-
Pitchard form (10). In this case, the rotation matrix R
can be written as,

R =




y
r

x
r 0

BIx
Bsr

BIy
Bsr

Gr
Bs

Gx
Bs

−Gy
Bs

BI

Bs


 , (14)

and we define B′n(r) as the rotated RF field vector such
that

B′n(r) =



B′nx

(r)
B′ny

(r)
B′nz

(r)


 = R ·Bn . (15)

In the limit |µBgFB′nz
(r)| � h̄ωn the component that

oscillates parallel to the static field, B′nz
(r), can be

neglected and only the orthogonal parts, B′nx
(r) and

B′ny
(r), contribute to coupling between the atomic levels

[7, 19]. The Hamiltonian (13) therefore becomes

H(r, t) = µBgF

[
Bs(r)Fz +

(
N∑

n=1

B′nx
(r) cos(ωnt)

)
Fx

+

(
N∑

n=1

B′ny
(r) cos(ωnt)

)
Fy

]
. (16)

A. Single Frequency Floquet Matrix

In this section we will demonstrate the Floquet ap-
proach by first explicitly considering the situation where
only a single frequency, ω1, is present. The Hamilto-
nian is then periodic in time with a period of τ = 2π

ω1
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and the Floquet theorem states that the time-dependent
Schrödinger equation has a complete set of quasi-periodic
solutions, which acquire a phase exp(−iεnτ) when t →
t+ τ . Here the εn are quasi-eigenenergies and the phase
factor defines εn mod ω1.

The first step towards finding the quasi-eigenenergies
is to remove the time dependence of the Hamiltonian by

replacing it with an infinite matrix of the form

HF =




.. .. .. .. .. .. ..

.. H0 + 2h̄ω1 H−1 H−2 H−3 H−4 ..

.. H1 H0 + h̄ω1 H−1 H−2 H−3 ..

.. H2 H1 H0 H−1 H−2 ..

.. H3 H2 H1 H0 − h̄ω1 H−1 ..

.. H4 H3 H2 H1 H0 − 2h̄ω1 ..

.. .. .. .. .. .. ..


 ,

(17)
where the Floquet blocks Hn (with n integer) are given
by

Hn(r) =
1

τ

∫ τ

0

H(r, t)einω1t dt . (18)

This procedure can be interpreted as an expansion
of the original Hamiltonian in terms of the Fourier
components of ω1. For the Hamiltonian (16) the Flo-
quet blocks can be calculated by using the identity
1
τ

∫ τ
0
ei(m−n)ωtdt = δnm, where δ is the Kronecker delta

[17]. This leads to

HF =




.. .. .. .. .. .. ..

.. kBs(r) + 2h̄ω1 0 0 h̄Ω∗1(r) 0 ..

.. 0 −kBs(r) + 2h̄ω1 h̄Ω1(r) 0 0 ..

.. 0 h̄Ω∗1(r) kBs(r) + h̄ω1 0 0 ..

.. h̄Ω1(r) 0 0 −kBs(r) + h̄ω1 h̄Ω1(r) ..

.. 0 0 0 h̄Ω∗1(r) kBs(r) ..

.. 0 0 h̄Ω1(r) 0 0 ..

.. .. .. .. .. .. ..




(19)

where the Rabi frequency is given by Ω1(r) = µBgF
4h̄

(
B′1x

(r) + iB′1y
(r)
)

and k = µBgF
2 .

In order to obtain the eigenvalues and eigenvectors of HF , it needs to be truncated to a finite size, and a consistent
way of doing this is to fix the number of multiples of h̄ω1 to include. This corresponds to limiting the order of the
photonic processes that can occur, i.e. if we limit the matrix to terms up to ±2h̄ω1, maximally two photons can be
absorbed and emitted. Including higher orders will give a more accurate description, but usually these terms are
quickly decreasing in magnitude. To first order, this leads to

HF =




kBs(r) + h̄ω1 0 0 h̄Ω∗1(r) 0 0
0 −kBs(r) + h̄ω1 h̄Ω1(r) 0 0 0
0 h̄Ω∗1(r) kBs(r) 0 0 h̄Ω∗1r

h̄Ω1(r) 0 0 −kBs(r) h̄Ω1r 0
0 0 0 h̄Ω∗1(r) kBs(r)− h̄ω1 0
0 0 h̄Ω1(r) 0 0 −kBs(r)− h̄ω1



, (20)

and diagonalising this matrix gives the quasi-energy spec-
trum, which in turn allows the adiabatic RF potential to
be calculated. This process will be detailed in Sec. VI.

V. MULTI FREQUENCY FLOQUET MATRIX

In this section we will describe the treatment of an
RF field containing several radio frequencies and use the
model of Many Mode Floquet Theory (MMFT) [13]. We

will carry out the calculations explicitly for two different
frequencies, ω1 and ω2, with the extension to any num-
ber being straightforward. The Hamiltonian follows from
(16) and is given by

H(r, t) = µBgFF·(Bs(r) + B1(r) cos(ω1t) + B2(r) cos(ω2t)) ,
(21)
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which leads to the basic form for the Floquet matrix

H
(2)
F =




.. .. .. .. .. .. ..

.. A+ 2h̄ωrI P 0 0 0 ..

.. PT A+ h̄ωrI P 0 0 ..

.. 0 PT A P 0 ..

.. 0 0 PT A− ωrI P ..

.. 0 0 0 PT A− 2h̄ωr ..

.. .. .. .. .. .. ..



.

(22)

Here I is the identity matrix and ωr = ω1+ω2 as we want
to work in the dressed state picture. The elements of the

H
(2)
F matrix are matrices themselves and so, H

(2)
F can be

thought of as a composite matrix of two single frequency
Floquet matrices. The ω1 frequency terms and the Ω1(r)
Rabi frequency terms are contained in matrix A, which
is the same matrix as HF in the previous section.

The off diagonal elements P contain the

Rabi frequency of the second field, Ω2(r) =
µBgF

4h̄

(
B′2x

(r) + iB′2y
(r)
)

, and are of the form

P =




.. .. .. .. .. .. ..

.. 0 Y 0 0 0 ..

.. 0 0 Y 0 0 ..

.. 0 0 0 Y 0 ..

.. 0 0 0 0 Y ..

.. 0 0 0 0 0 ..

.. .. .. .. .. .. ..




, (23)

where

Y =

(
0 h̄Ω∗2(r)

h̄Ω2(r) 0

)
. (24)

By following the method outlined above for the single frequency case, one can then evaluate each of these matrices.

However, the explicit form of H
(2)
F is too large to reproduce here and we only show a small excerpt of it below to

highlight the general structure. The key points of the structure are that the bare trap eigenenergies are given along
the diagonal and each Floquet block differs by multiples of both ω1 and ωr. The off-diagonal terms correspond to the
coupling strengths and contain terms for Ω1(r) and Ω2(r)

H
(2)
F =




kBs(r) + h̄ω1 + h̄ωr 0 0 ..
0 −kBs(r) + h̄ω1 + h̄ωr h̄Ω1(r) ..
0 h̄Ω∗1(r) kBs(r) + h̄ωr ..

h̄Ω1(r) 0 0 ..
0 0 0 ..
0 0 h̄Ω1(r) ..
0 0 0 ...
0 0 h̄Ω2(r) ..
0 h̄Ω∗2(r) 0 ..

h̄Ω2(r) 0 0 ..
0 0 0 ..
0 0 h̄Ω2(r) ..
.. .. .. ..




(25)

VI. ADIABATIC POTENTIAL GENERATION

In order to produce the adiabatic potential the trapped
atoms will follow we need to extract the eigenvalues, εizn ,

and eigenvectors, ψizn , from our Floquet matrix for every
position on the spatial numerical grid, zn. We do this
numerically as producing analytic expressions becomes
unfeasible at higher dimensions of the Floquet matrices.

A. 1D Potentials

The quasi-eigenenergies (the eigenvalues of HF ) gener-
ated when applying a two frequency, linearly polarised,
RF field orthogonal to the movement of an atom in a
one-dimensional IP trap are shown in Fig. 3. The spec-
trum has a periodic structure, which stems from the fact
that the quasi eigenenenergies are defined mod ω1 and

mod ωr, and shows the expected avoided crossings (see
Fig. 3(b)). It should be noted that the Rabi frequen-
cies Ω1 and Ω2 in this geometry are constant and can be
changed independently from each other, which allows to
control the size of the avoided crossings associated with
each frequency separately.

The potential seen by the atoms can now be found
by identifying the the energy eigenvalue in the centre
of the trap which is closest to the bare trap eigenenergy,
εAz0 (normally the smallest positive quasi-eigenvalue), and
following its evolution in space. To find the potential at
the next numerical grid point z1, we take the eigenvector
ψAz0 associated with the eigenvalue at εAz0 and calculate

ψAz0 ·ψiz1 , the dot-product between it and all eigenvectors

corresponding to the eigenvalues εiz1 . The index of the
eigenvector which maximises this inner product gives the
value of the potential at z1. Iterating this process allows
the construction of the potential along the whole length
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FIG. 3. (a) The spectrum of quasi eigenenergies for an atom
trapped in a IP trap irradiated by a two frequency, linearly
polarised, RF field. The red (bold) line is the adiabatic RF
potential produced from this spectrum. The inset (b) shows
a zoom of the highlighted area in (a) where the avoided cross-
ings can be seen (dotted circle). The RF fields have the fre-
quencies ω1 = 2π × 1.5 × 105Hz and ω2 = 2π × 4 × 105Hz
with Rabi frequencies Ω1 = Ω2 = 9.274 × 104Hz. mF = 1

2
and gF = 1 in all cases.

of the trap (see red line in Fig. 3).

Fig. 4 shows the adiabatic RF potentials generated us-
ing both the piecewise resonance and Floquet methods
for the same parameters as Fig. 2. One can see that the
Floquet approach produces the same potential for (a)
∆ω = 1.5 × 105Hz and avoids the discontinuity for (b)
∆ω = 0.4× 105Hz, which is a notable improvement over
the piecewise resonant model.

In the extreme case of ∆ω = 0.2 × 105Hz shown in
Fig. 4 (c) the Floquet model produces another pair of
avoided crossings on either side of the original avoided
crossings seen at larger frequency spacing. These ex-
tra avoided crossings are the result of the frequencies no
longer just coupling the local static field Bs(r), where
they are resonant. Instead, at this very close frequency
separation, each frequency is applied to the effective field
created by the static field and the other frequency, which
leads to a shift in the resonance position and results in
the additional avoided crossings. As one can also see from
Fig. 4 (c), these avoided crossings are not present in the
piecewise resonance model, since the rotating wave ap-
proximation eliminates the higher order coupling terms.

From this example it is clear that the Floquet approach
to modelling adiabatic RF potentials produces highly ac-
curate results with significant corrections to the piecewise
resonance approach. It is therefore well suited to ac-
curately describe multi-frequency RF potentials created
using closely spaced frequency. In the next section we
will show how the Floquet approach can be extend sys-
tems with multiple RF fields where the orientations of
the fields are not necessarily perpendicular to the static
field.

FIG. 4. Comparison between piecewise resonance model
(Dashed Red Line) and the Floquet model (Solid Blue Line).
All parameters are the same as for Fig 2. See text for discus-
sion.

B. 2D Potentials

The well known flexibility of RF potentials stems from
the large number of parameters (number of frequencies,
frequency spacing, field strength and orientation) that
can be controlled to modify the geometry of the poten-
tials. Additionally these parameters can also be time-
dependent, which allows to use the resulting potentials
to instigate adiabatic or non-adiabatic dynamics. In the
following we consider a multi-dimensional setup and use
the Floquet approach to describe some of the features
which appear when taking these additional parameters
into account.

The main change necessary to extend the model to
higher dimensions is to use a multi-dimensional static
trapping field Bs(r) which then leads to coupling terms
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Ω(r) of the same, higher dimension. This means that
the Floquet matrix contains elements that are multidi-
mensional, but it’s basic structure is unchanged from
the one-dimensional case. The added dimension how-
ever means that the numerical processing power needed
to diagonalise the Floquet matrix is significantly higher
compared to the one dimensional case.

In the following we will show an example of an inter-
esting potential that can be created using just two fre-
quencies. The numerical approach is similar to the one
detailed above, in that we construct the 2D potentials
by splitting them into 1D slices and combine them to
produce the full 2D potential. To ensure that our mini-
mum rotation method produces 1D slices which are con-
sistent with each other, we use the previously generated
1D slice for each consecutive 1D slice to define an initial
quasi-eigenvector and eigenvalue pair.

1. Two Frequency Potential

Two-dimensional RF potentials generated using one
frequency have already been demonstrated to study ro-
tating BECs in annular geometries [6]. One of the sim-
plest ways to create a more involved structure using two
frequencies is shown in Fig. 5 (a) where we consider a 2D
IP trap and constant a RF field vector which contains a
Bπ component only (α = 0). One can see that the ge-
ometry one can create consists of an outer ring and an
inner harmonic potential, which is actually simply the
result from the one-dimensional model of Sec. VI rotated
around the axis along z=0.

However, by controlling ω1 and ω2 one can easily
change the depth and radius of the inner harmonic well
and the outer ring, as well as the size and height of the
barrier between them. Performing such a change in a
time-dependent way one can easily engineer a situation
where the tunnel coupling between the ring and inner
harmonic can be increased or decreased with high accu-
racy.

Furthermore, having control over the orientation of the
RF fields allows one to break the rotational symmetry
and create potentials that are no longer isotropic. In
Fig. 5 (b) and (c) we show two examples of a 2D poten-
tial generated by using constant RF field vectors for (b)
α = 10µT, θ = 0, Bπ = 2µT and (c) α = 10µT, θ = π,
Bπ = 2µT. The resulting potentials display two minima
and two maxima on the rings of resonance, which can
be understood by considering that the orientation of the
Bnx

êx and Bny
êy components of the RF field with re-

spect to the static field is not constant in space, which
leads to the variable coupling. Furthermore, by control-
ling the angle θ, RF fields pointing in any direction allow
the creation of minima and maxima at any position and
they can even be rotated in a time dependent fashion.
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FIG. 5. The adiabatic potential of an atom trapped in an
IP trap irradiated by two RF fields with frequencies of ω1 =
3 × 105Hz and ω2 = 4.5 × 105Hz for (a) α = 0, Bπ = 8µT
(b) α = 10µT, θ = 0, Bπ = 2µT and (c) α = 10µT, θ = π,
Bπ = 2µT. In all cases mF = 1

2
and gF = 1 .

2. Ring Vortex Solitons

As an example of how useful the time-dependent con-
trol of the tunnelling interaction between the outer ring
and the inner harmonic trap can be, we demonstrate in
this section how a potential as discussed above can be
used to create so-called ring vortex solitions (RVSs) in
gaseous Bose-Einstein condensates. These states consist
of multiple concentric density-wave rings with a non-zero
winding number and they were recently extensively stud-
ied by Li et al. [20]. To create them in a laboratory, one
can consider starting out with a single-frequency RF field
in a two-dimensional setting, and creating a condensate
carrying a persistent current in the resulting annular po-
tential. Adding the second frequency would allow one to
create the central harmonic potential and by adjusting
all frequencies and intensities appropriately, the current
would start to tunnel into the inner harmonic potential.

To simulate the creation of RVSs in such a way, the po-
tential must allow large tunnelling strength and therefore
the model must be able to deal with situations where two
frequencies come close. This makes the Floquet approach
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FIG. 6. The creation of a RVS in our adiabatic RF potential.
The adiabatic RF potential is created by irradiating an IP
trap with two RF fields of frequency ω1 = 27 × 103Hz and
ω2 = 33 × 103Hz with Bπ = 0.4219µT for both fields. (a)
Shows the density of the BEC of winding number n=1 initially
confined to the outer ring and (b) is its corresponding phase
plot. (c) Shows the density of the BEC at t = 800µs and (d)
is corresponding phase plot.

the most suitable option.

In Fig. 6 we show a simulations of this tunnelling pro-
cess using a Gross-Pitaevskii model for the condensate
and a potential calculated using the Floquet approach
outlined above. The density and phase distribution for
the BEC initially confined to the outer ring with n = 1
can be seen in Figs. 6 (a) and (b), and the density and
phase after transfer into the harmonic trap is shown in
Figs. 6 (c) and (d). Clearly the resulting state can be
identified as a ring vortex soliton.

3. Concentric Ring Potentials

While we have explicitly shown a 2D adiabatic RF po-
tential generated using two frequencies, this can easily be
extended to include more frequencies to create potentials
that consist of multiple concentric rings. As in the previ-
ous example of just two frequencies, control over the fre-
quency spacing would allow one to adjust the tunnelling
coupling between the individual rings and can be accu-
rately determined by using a Floquet approach. Such
systems are highly desirable as they offer experimentally
realistic systems in which one could observe rotational
fluxons (Josephson vortices) [21] or study the Kibble-
Zurek mechanism in BECs [22].

VII. CONCLUSION

We have shown that using a non-perturbative Flo-
quet approach to calculate radio-frequency potentials for
atoms on atom chips leads to good results for multi-
frequency situations in one and two dimensions. This
approach offers significant corrections to a piecewise-
resonant model and can be used to accurately describe
situations where two frequencies come close (for example
when trying to engineer large tunnel couplings). We have
also shown that a Floquet approach can deal with higher
dimensions and RF fields of arbitrary field orientation.
We have demonstrated the flexibility of the Floquet ap-
proach by considering the creation of ring vortex solitons
in a 2D adiabatic RF potential which requires that the
tunnelling dynamics be determined accurately. Such po-
tentials can be used in a variety of ways, and for example,
allow the creation of rotational fluxons and non standard
trapping potentials that can connect different topological
geometries. This will be the focus of future work.
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Chapter 6

Stability and Dynamics of Cross

Solitons in Harmonically

Confined Bose-Einstein

Condensates

Non-linear systems allow for a specific class of excitation known as solitons that are

characterised by their localisation properties. A soliton is a self-reinforcing wave, i.e. a

localised wavepacket that has the property of being able to propagate without dispersion

due to a balance between non-linear and dispersive effects. They can also emerge from

collisions with other solitons unchanged (except for a phase change). Solitons have been

studied extensively in classical fluids [111] and non-linear optics [34] but can also exist

in BECs due to the non-linear interaction between the condensed neutral atoms. These

are generally referred to as matter wave solitons.

While there has been considerable theoretical work done on the stability of both bright

and dark matter wave solitons [40, 112–118] and possible methods for their creation

[119–121], it was not until 1999 that the first experimental creation of dark matter wave

solitons was simultaneously carried out at the University of Hannover [122] and at NIST

in Gaithersburg [123]. Since then there have been a number of other notable experiments

including studies of soliton decay mechanisms such as vortex rings [67] and the snake

instability [124], the formation of bright solitons [125] and the observation of compound

structures comprising solitons and vortex rings [126].

More recent theoretical work on solitons in BECs has focused on solitons and soliton-

soliton collisions [127–130], soliton-sound interactions [131], interferometry [36], exact
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solutions to the Bogoliubov-de Gennes equations for gray-solitons [41], quantum entan-

glement [37] and quantum information processing [38].

Until now, the majority of theoretical studies of matter wave solitons have been re-

stricted to one dimension [40, 41, 113, 132–134], as matter wave solitons embedded in

2D and 3D systems are known to suffer from instabilities [66–69]. In the manuscript

presented in this Chapter, we extend the discussion of matter wave solitons to truly 2D

systems. In this higher dimensionality, we show that one can create arrangements in

which several solitons overlay and intersect each other at different angles [68, 135]. These

multidimensional solitons exhibit interesting stability and dynamical properties and we

analyse these instabilities using direct integration of the Gross-Pitaevskii equation and

Bogoliubov-de Gennes theory.
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We examine the stability and dynamics of a family of crossed dark solitons in a harmonically
confined Bose-Einstein condensate in two dimensions. Working in a regime where the fundamental
snake instability is suppressed we show the existence of an instability which leads to an interesting
collapse and revival of the initial state for the fundamental case of two-crossed solitons. The insta-
bility originates from the singular point where the solitons cross and we characterise it by examining
the Bogoliubov spectrum. Finally, we extend the treatment to systems of higher symmetry.

I. INTRODUCTION

Bose-Einstein condensates (BECs) of weakly interact-
ing, ultra-cold atomic gases provide highly controllable
systems in which one can explore non-linear properties of
matter waves [1]. One effect stemming from the balance
between non-linear and dispersive effects is the existence
of solitary matter waves, or solitons, and these have in re-
cent years been subject to extensive theoretical [2–5] and
experimental investigation [6–13]. Solitons can be both,
bright and dark, depending on the type of nonlinearity
in the system and their primary attribute is propagation
without dispersion.

Single solitons and soliton-soliton collisions in weakly
interacting condensates in harmonic traps have been
thoroughly examined in recent years [5, 14]. How-
ever, due to the known instabilities in higher dimensions
[15, 16], most work has concentrated on 1D and quasi 1D
(ring) geometries [2–5, 17, 18]. At the same time there
have been a number of studies of higher dimensional soli-
tons in dipolar condensates [19] and periodic potentials
[20, 21], where different stability properties can be found.
Here we extend the discussion of solitonic solutions in
weakly interacting BECs to multidimensional setups and
discuss the appearance of a new type of instability.

The two-dimensional soliton states which we examine
in this work are part of a family of so-called dark soli-
tons, which are characterised by a phase profile where
each area of distinct phase differs from all other neigh-
bouring areas by a difference of π. Such a profile produces
a density dip across each phase jump, which is stable as
long as the phase difference is maintained. The configu-
rations which we consider here are comprised of several
dark soliton lines in two-dimensions, which overlay and
intersect with each other at different angles. In particu-
lar, we focus on the arrangements shown in Fig. 1, which
represent the most fundamental and symmetric geome-

∗ tmorgan@phys.ucc.ie; http://groups.oist.jp/qsu

FIG. 1. (Color online) Density (left column) and phase (right
column) of the cross soliton [(a) and (b)], the double cross
soliton [(c) and (d)] and a star soliton [(e) and (f)]. For all
cases the interaction strength g̃ = 11 (see eq. 2).

tries [22, 23].
The basic instability of a single dark soliton in two

dimensions is to eventually decay into a number of quan-
tized vortices through what is called the snake instability
[15, 16]. This instability is due to the extension of the
soliton into the direction orthogonal to the phase jump
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and causes it to bend (or snake) until the curvature is
large enough to lead to a break up into vortex-antivortex
pairs. In inhomogeneous systems, however, the snake in-
stability can be suppressed by reducing the width of the
trap until the lowest mode of the snake instability is no
longer allowed [15].

This is the regime we work in here, as it will allow us
to clearly identify and describe possible new instabilities
originating from the singular points where the solitons
cross (see Figs. 1 (b), (d) and (f)). For this we numeri-
cally integrate the Gross-Pitaevskii equation of the sys-
tem and find an instability corresponding to distinct ar-
eas of equal phase connecting across the singular points.
Due to the finite size of our system, we also observe a dis-
connection and almost perfect revival of the initial state,
after which the process happens again. To further un-
derstand the nature of the instability we make use of the
well known Bogoliubov-de Gennes equations to obtain
the linear excitation spectrum of the system.

The layout of this paper is as follows. In Section II we
outline the nature and creation of the initial states of the
solitons shown in Fig. 1. In Section III we numerically
time evolve the initial state of the cross soliton to study
the dynamics arising from its instability and calculate
the Bogoliubov spectrum and the associated eigenfunc-
tions. We show that the Bogoliubov spectrum contains a
complex eigenfrequency, which can be connected to the
observed dynamical instability. In Section IV we discuss
the stability and dynamics of higher order solitons such
as the double cross soliton (see Figs. 1 (c) and (d)) and
the star soliton (see Figs. 1 (e) and (f)). Finally, in Sec-
tion V we conclude.

II. INITIAL STATES

In this section we briefly introduce and discuss the ini-
tial states of the solitonic systems we wish to study. As
we consider inhomogeneous Bose-Einstein condensates of
neutral, atomic gases, the condensate wave function, ψ,
will be described at any point in time by the time de-
pendent Gross Pitaevskii equation [1]. For numerical
tractability we restrict ourselves to a 2D BEC of N atoms
of mass m confined to a isotropic harmonic oscillator with
trapping frequency ωT and re-scale our co-ordinates to
make them dimensionless via [24]

t̃ = ωT t, x̃ =
x

a0
, ỹ =

y

a0
, (1)

where a0 =
√
h̄/ωTm is the length of the harmonic os-

cillator ground state and all energies are in units of h̄ωT .
For ease of notation, we will in the following drop the
tilde again. The dimensionless Gross-Pitaevskii equation
can then be written as

i
∂ψ

∂t
=

[
−1

2
∇2 +

1

2
(x2 + y2) + g̃|ψ|2

]
ψ, (2)

where the non-linear interaction strength is given by g̃ =
4πasN
a0

√
γz
2π . Here as is the s-wave scattering length of

the atomic species and γz = ωz/ωT with ωz the trapping
frequency in the z-direction. To numerically generate the
initial states shown in Fig. 1, we evolve an initial wave
function in imaginary time using the fft/split operator
method [25] under the condition that the desired phase
pattern is maintained. The fft/split operator method is
also used for real time evolution of the Gross-Pitaevskii
equation (2).

The fundamental example of a two-dimensional soliton
structure is given by the cross soliton, shown in Figs. 1
(a) and (b). It consists four symmetric lobes separated by
a density dip and the phases between neighbouring lobes
are arranged to differ by the required factor of π. While
the angle between the solitons can in principle take any
value, we concentrate here on the perpendicular setting
as it allows to clearly identify the nature of the instability.
Note that the dark soliton lines in this state are in the
radial direction and therefore are not subject to the well
known oscillation instability [3].

A higher order state of the family of crossed solitons is
the so-called double cross soliton, which is shown in Figs.
1 (c) and (d). It consists of two pairs of perpendicularly
crossed density dips, leading to nine separated density
areas with appropriate phases between them. Due to
the presence of the external, harmonic potential, not all
areas are equally populated and the dark soliton lines are
no longer radial lines. This leads to small oscillations of
the solitons in the potential [3], but we find them to not
influence the newly forming instabilities.

The final system we will investigate is the so-called star
soliton, shown in Figs. 1 (e) and (f). It is an extension
of the cross soliton described above, but instead of four
lobes the condensate is split into eight with appropriate
phases between them. All soliton lines connect in the
centre, which means that they are radial lines and no
extra oscillations are to be expected. Again, while in
principle all angles between the intersecting solitons can
be considered, we focus here on the symmetric setting
where all angles are chosen to be π/4.

III. DYNAMICAL INSTABILITY AND
BOGOLIUBOV ANALYSIS

In order to determine the stability of the states de-
scribed above, we will carry out a fully two-dimensional
integration of the Gross-Pitaevskii equation and examine
the eigenspectrum obtained from a Bogoliubov analysis.
For the latter one has to solve the Bogoliubov-de Gennes
equations [1, 26]

Luj − g̃ψ2vj = ωjuj, (3)

Lvj − g̃ψ∗2uj = −ωjvj, (4)

where L = − 1
2∇2 + 1

2 (x2 + y2) + 2g̃|ψ|2 − µ and µ is the
chemical potential. Examining the spectrum of eigenfre-
quencies ωj and corresponding eigenvectors uj and vj
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provides information about the stability properties of
the state ψ. A small positive ωj with a positive norm
nj =

∫
(|uj|2 − |vj|2)dr corresponds to small oscillations

about the state and indicates stability. A mode with neg-
ative ωj with a positive norm nj is called an anomalous
mode and indicates that the initial state will continuously
transform into a lower energy state. Finally, complex and
purely imaginary eigenfrequencies ωj with nj = 0 indi-
cate the presence of a dynamical instability [1].

To be able to identify potential instabilities cleanly, we
must work in a regime where the snake instability for line-
solitons is suppressed. As shown by Brand et al. [15], this
can be achieved by reducing the transverse width of the
soliton and for a condensate consisting of a large number
of repulsively interacting atoms the condensate width can
be determined in the Thomas-Fermi approximation as
[24]

R =
1√
2

(
15g̃γz

4π

)1/5

. (5)

One can see that the size of the condensate, and hence the
transversal width of an embedded soliton, can be reduced
by decreasing the non-linear interaction constant, g̃.

Calculating the Bogoliubov spectrum for a single dark
soliton we find that it becomes completely real and pos-
itive once g̃ ≤ 19, which corresponds to the point be-
yond which the snake instability is suppressed [27]. We
have confirmed this by direct numerical time evolution
and also checked that around this value the decay into
vortices is absent in the multi-soliton systems shown in
Fig. 1. To ensure that we are far from the snake insta-
bility regime for all cases we therefore choose g̃ = 11 in
all numerical simulations.

Although the snake instability is suppressed, real time
evolution of the cross soliton in this regime reveals the
existence of another dynamic instability. After a period
where the initial state is stationary, a series of repeating
collapse and revival events sets in, which are driven by
one of the pairs of lobes of equal phase connecting and
collapsing to the centre of the trap with the other pair of
lobes surrounding it (see Figs. 2 (a) and (b)) [28]. The
density and phase of the fully collapsed cross soliton are
shown in Figs. 2 (c) and (d) and the state has the form
of two curved line-solitons. In fact, by examining the low
density areas it can be seen that the two outer parts con-
nect to form a highly non-symmetric ring soliton. This
collapsed state is relatively short lived and evolves, due
to the finite size of the system, back into the initial state
seen before the collapse [29]. If we further evolve the
state in time we see another collapse and revival but this
time the other pair of lobes connects and collapses to the
centre.

In Fig. 3 we show the imaginary frequencies of the Bo-
goliubov spectrum for the cross soliton as a function of
the interaction strength g̃. These correspond to the in-
stability identified above (blue circle line) and the snake
instability (red diamond line). One can see that the snake
instability only sets in once the repulsive interaction has

FIG. 2. (Color online) The densities (left column) and phases
(right column) of the cross soliton as it begins to collapse at
t = 128 (upper row) and after full collapse at t = 138 (lower
row).

increased the size of the condensate beyond the critical
width and a finite region exists in which the instability
discussed above sets in before the snake instability. Note
that the line corresponding to the snake instability is ac-
tually doubly degenerate, corresponding to an instability
in each of the crossed solitons.

For reference we have also included the sole imaginary
Bogoliubov mode of the single dark soliton, which corre-
sponds to the snake instability (green dashed line). The
shift between this line and the one for the crossed soli-
ton indicates that the crossing point leads to a certain
increase in stability against snaking.

At the value of g̃ = 11 considered in our numerical
simulations, only one imaginary frequency mode with
ω1 = 0.2673i exists, the density and phase of which are
shown in Figs. 4 (a) and (b) respectively. To show that
this mode is indeed the mode responsible for the insta-
bility we observe, we examine the density and phase of
a state that is created by linearly combining the initial
cross soliton state, ψ, and the unstable mode,

Ψ = ψ + αuj. (6)

As the form of the Bogoliubov modes is given by uje
−iωjt,

over a short period of time, an imaginary frequency will
cause the amplitude of the mode to increase exponen-
tially before, due to interference from waves reflected on
the boundary of our system, it reduces again. By using
a non-zero α parameter in (6), we can therefore approx-
imate the influence of the mode on the initial state and,
as can be seen in Figs. 4 (c) and (d), for α = 25, the
density and phase of Ψ is very close to the one obtained
numerically at t = 132 (Figs. 2 (a) and (b)).

The time for the onset of the instability can be pre-
dicted from the eigenfrequency of the unstable mode as
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FIG. 3. (Color online) The imaginary modes of the Bogoli-
ubov spectrum of the cross soliton. The red diamond line
corresponds to the snake instability and the blue circle line
to the new cross soliton instability. The green dashed line is
included for reference and corresponds to the snake mode of
a single dark line soliton.

FIG. 4. (Color online) The density (a) and phase (b) of the
unstable Bogoliubov mode with eigenfrequency ω1 = 0.2673
for the cross soliton. The density (c) and phase (d) of Ψ for
α = 25. Note that the color scale of (a) and (b) are not equal.

T ≈ 2π
=(ω1)

. This can be seen in Fig. 5 (a) where we show

the density at the centre of the trap (the point of the sin-
gularity) as a function of time. Initially the system per-
forms small oscillations which, around the predicted time
of the instability T , turn into an exponential increase in
the density. This ultimately leads to the complete col-
lapse of the cross soliton.

60
-85

 -40

0

600

FIG. 5. (Color online) (a) Density at the trap centre as a
function of time for a condensate with g̃ = 11. The time
for the onset of the instability predicted by the Bogoliubov
analysis is indicated by the dashed line and by the change of
colour of the graph from blue to red. (b) Same as in (a) for
different non-linearities ranging from g̃ = 6 to g̃ = 15 in steps
of 1 from below. The individual curves are offset for clarity.

In Fig. 5 (b) we repeat this analysis over a wide range of
values for g̃. The time for the instability, T , is represented
by the change of the line colour from blue to red and
one can see that the effect is consistent over the whole
range. Furthermore, this data also shows that increasing
the strength of interaction leads to an earlier onset of
instability in the system.

IV. HIGHER ORDER SYMMETRY

In this section we will extend the discussion of stability
presented for the cross soliton to the higher order struc-
tures shown in Fig. 1. However, before we can do so,
we briefly need to address the stability of our numeri-
cal approach. One cause for concern for the validity of
the presented Bogoliubov analysis is the influence of the
square numerical grid used in the generation of the ini-
tial state. Any dark soliton line not on axis with the grid
can only be approximated and will suffer from spatial
aliasing, which in turn leads to a numerical effect on the
instability time-scales. We have investigated this issue
thoroughly and found that this problem is absent for a
dark soliton line at an angle of π/4 to the numerical grid,
by comparing the results obtained for a cross soliton at
an angle of π/4 with the ones obtained for the structure
lying along the grid axes.
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Therefore, the first higher order soliton we study is
the double cross soliton whose composite dark soliton
lines are on axis with the numerical grid. The second
soliton structure is the star soliton which contains two
dark soliton lines that are on axis with the numerical
grid and two at an angle of π/4 to the numerical grid.

A. Double Cross Soliton

For the double cross soliton, the density and phase are
shown in Fig 1 (c) and (d). Time evolution of this state
reveals that it is, much like the cross soliton, quasi-stable
for a certain period before the instability sets in. In this
period of quasi-stability however, the soliton lines are
subject to the oscillation instability in inhomogeneous
potentials [3], but the amplitudes gained are only small
and do not affect the onset of the collapse instability.

The nature of the collapse of the double cross soliton
is similar to that of the cross soliton, but of a higher
order. Like the cross soliton, lobes of equal phase con-
nect and fall into the centre as shown in Figs. 6 (a) and
(b). The density and phase distribution of the fully col-
lapsed double cross soliton is shown in Figs. 6 (c) and (d)
and one can see, that the result of the collapse leads to
four curved soliton lines. When taking the low density
regions into account and by looking at the phase distri-
bution, one can see that these lines connect to form two
concentric, non-symmetric ring solitons. Unlike the cross
soliton however, we do not observe a revival of the initial
state on the timescales we are able to simulate.

The Bogoliubov analysis of the double cross soliton re-
veals one unstable mode with a purely imaginary eigen-
frequency ω1 = 0.2591i, which is responsible for the ob-
served instability. As for the single soliton, we use the
linear combination of the initial state and the unstable
mode (see eqn. (6)), to confirm that this mode corre-
sponds to the observed instability and Figs. 6 (e) and (f)
show a good agreement with the state of the double cross
soliton at t = 119 for α = 30.

B. Star Soliton

Unlike the two previous cases, the Bogoliubov spec-
trum for the star soliton (see Figs. 1 (e) and (f)), reveals
two unstable modes with frequencies ω1 = 0.1211i and
ω2 = 0.0886i. However, due to the increased complexity
of the star soliton, producing accurate modes using the
Bogoliubov-de Gennes equations is difficult. Therefore,
to obtain information about the properties of these insta-
bilities we study the time evolution of the star soliton by
numerically integrating the Gross-Pitaevskii equation.

As indicated by its larger frequency, the influence of
the first mode is seen before the second mode during
time evolution, and corresponds to oscillations originat-
ing from lobes of equal phase connecting in the centre
(see Figs. 7 (a) and (b)). This is mode is similar to the

FIG. 6. (Color online) The density (a) and phase (b) of the
double cross soliton in the early stages of the collapse at t =
119 and for the fully collapsed state at t = 132, (c) and (d)
respectively. Panels (e) and (f) show the density and phase
of Ψ for α = 30.

one found for the cross soliton and generalises it to the
higher order of the star soliton. In contrast, however, we
find that the amplitude here is small and the overall star
pattern is maintained. Therefore, it is possible for the
second unstable mode to set in at a later time and after
the first instability has undergone a couple of oscillatory
cycles.

The second mode induces a transformation into a very
structured state that is reminiscent of the double cross
soliton, as can be seen in Figs. 7 (c) and (d). This state,
in turn, then decays in the same manner as discussed in
Subsec. IV A. The fact that this decay channel is found
here, suggests that even higher order structures might
possess even more complicated and interesting stability
properties.

V. CONCLUSION

We have presented an investigation into a new family
of two-dimensional solitons consisting of overlapping dark
soliton lines. In the regime where the snake instability
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FIG. 7. (Color online) The density (left colum) and phase
(right column) of the star soliton during time evolution. Pan-
els (a) and (b) correspond to t = 15, where the first unstable
mode of frequency ω1 = 0.1211i causes slight oscillations in
the density distribution between the lobes of the star soliton.
Panels (c) and (d) correspond to t = 35, where the influence
of the second unstable mode of frequency ω2 = 0.0886i can
be seen.

is absent a new instability stemming from the singular
point where the solitons cross can be identified and we
have discussed its behaviour for three fundamental struc-
tures: the cross soliton, the double cross soliton and the
star soliton. For the cross soliton this instability (com-
bined with the small system size) led to a collapse and
revival of the initial state where distinct areas of identical
phase connect and disconnect. The associated Bogoli-
ubov analysis showed that this mode was well described
by linear perturbation theory and that the time of its on-
set depends on the strength of the system’s non-linearity.
The higher order double cross soliton and the star soliton
were shown to also decay in a structured manner.

Our work shows that even though these two-
dimensional soliton structures are inherently unstable,
their decay process is highly structured and interesting.
An obvious extension of the presented work is the gener-
alisation to three dimensional systems, where instabilities
of a different nature could appear.
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Chapter 7

Conclusions and Outlook

In this thesis I have focused on two topics: the first dealt with developing realistic

techniques for engineering quantum states of ultracold atoms and the second described

the stability properties of a novel family of solitonic states. For the first topic, I presented

a comprehensive theoretical study of atom chip and adiabatic radio frequency potentials

and the second topic consisted of numerical integration of the Gross Pitaevskii equation

and an associated linear stability analysis using Bogoliubov theory. For completeness, I

briefly summarise the major results of each Chapter in the following and outline ideas

and directions for future work.

7.0.1 Coherent Tunnelling by Adiabatic Passage on Atomchips

In the first manuscript presented in Chapter 3, I presented 2D simulations of the coher-

ent tunnelling by adiabatic passage (CTAP) process between the magnetic waveguides

created with a counter-intuitive arrangement of wires on an atom chip. This was first

done with a model using idealised potentials (tanh shape), which closely approximated

the waveguides created by the current carrying wires of the atom chip. This allowed

me to determine the parameters which play an important role in the fidelity of the

population transferred.

I then simulated the CTAP process for the transport of a single atom using realistic

magnetic waveguides above current-carrying wires on atom chips, and showed that by

reducing the current of the central wire, an approximate resonance between the waveg-

uides can be achieved such that it allows for the successful implementation of CTAP.

The results of these 2D simulations clearly showed that adiabatic transfer in the counter-

intuitive setup can lead to high fidelity and can be clearly distinguished from direct

tunnelling in the intuitive setup through the absence of Rabi oscillations.
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In the second manuscript presented in Chapter 3, I extended this work to performing 3D

simulations of the CTAP process in an atom chip system. These simulations took the

complete spatial dynamics in all three dimensions into account, which is a numerically

intensive task. By using GPU computing, I was able to show that the performance

of numerically simulating the time-dependent Schrödinger equation can be significantly

increased, making the problem numerically tractable on a standard desktop computer.

While the three-dimensional setup involves solving a number of other problems as well,

I was again able to show that by reducing the current of the central wire a regime can

be found in which the high fidelity populations transfer due to CTAP is observable in

an experimentally realistic system. I also found that a range of values for the current

of the middle wire exists, for which both counter-intuitive and intuitive arrangement of

the wires produce high fidelity transfer to the target state. Considering that the energy

of the middle waveguide is shifted through the process, I conjectured that this was due

to Stark chirped rapid adiabatic passage (SCRAP).

Investigating the possibility to use the SCRAP process in an atom chip system to achieve

population transfer would be a fruitful road for a future investigation. I expect that the

transversal eigenspectrum of the atom chip system would contain a rich structure which,

for example, shows pairs of avoided crossings that allow the SCRAP process to occur.

7.0.2 Coherent Adiabatic Transport of Atoms in Radio-Frequency Traps

In Chapter 4 I discussed the possibility for observing the CTAP process in an adiabatic

rf potential. To create the three spatially distinct trapped states required for CTAP,

it was necessary to use six separate frequencies. The position of the traps could then

be controlled by simply changing the pairs of frequencies associated with each trap. I

found that neighbouring rf trapping potentials can be overlapped without significantly

altering their geometry. This is important, as one of the requirements of CTAP is that a

resonance between the trapped states exists at any point during the process. As such, my

simulations showed that a complete transfer between the left and right traps, by utilizing

the dark state, produces the expected high fidelity with an absence of unwanted Rabi

oscillations.

As the geometry of each trap is given by the frequency separation of the two frequencies

closest to resonance, one can control the depth of each trap independently from its

position. I showed that this ability allowed the use of the CTAP technique to transport a

cloud of weakly interacting atoms. By dynamically detuning the traps over the duration

of the process, I showed that one can compensate for the added interaction energy so as

to keep the traps in approximate resonance.
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Interesting future work on this topic would be to use the ability to independently detune

the traps to implement other adiabatic techniques such as SCRAP, which could be done

with either two or three rf traps. Extending the CTAP technique to higher dimensions

would also be of interest, where the orientation or polarisation of the rf field could

possibly be used to control the tunnel coupling rather than the frequency separation.

7.0.3 Floquet Theory for Modelling Adiabatic Radio Frequency Po-

tentials

In Chapter 5 I focused on using Floquet theory to model adiabatic radio frequency

potentials. This was motivated by the shortcomings of the piecewise resonance model

used in Chapter 4 which, while appropriate for the system I was studying, breaks down

when the frequencies are very close and for large Rabi frequencies. By mapping the

time-dependent Hamiltonian to an infinite Floquet matrix, I showed that a Floquet

approach can produce adiabatic rf potentials even in the extreme situations mentioned

above.

I then extended this Flouqet approach to consider 2D rf fields of arbitrary field orien-

tation. I showed that by controlling the orientation of the rf field, the geometry of the

potentials could be modified and that this could be done in a time-dependent fashion.

As a demonstration of the utility of such 2D potentials, I simulated a 2D potential in

which an outer ring is separated from an inner harmonic well. I showed that ring vortex

solitons can be created in such a potential and that they therefore offer an experimentally

realistic system to study complex rotational states.

There are many possibilities for future research in this area. One can easily envision

many different types of 2D adiabatic rf potentials that could be created. In particular,

studying anisotropic static fields with rf coupling would be of interest. There are also

many future applications of Floquet theory, such as describing rotational states of BECs

confined to rf traps as a super position of Floquet states. The simulations of tunnelling

in such systems could also be extended by including spin-orbital coupling.

7.0.4 Stability and Dynamics of Cross Solitons in a Harmonically Con-

fined Bose-Einstein Condensate

In Chapter 6 I studied the dynamical and stability properties of a novel family of soli-

tonic states. These structures consisted of several dark solitons which overlayed and

intersected each other at different angles.
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I showed that these multi-dimensional solitons exhibited interesting dynamical insta-

bilities, where a periodic collapse and revival of the initial state was seen during time

evolution. Using the Bogoliubov-de Gennes equations, I showed that these instabilities

could not be attributed to the normal snake instability associated with dark soliton

decay in 2D. Through an investigation of the Bogoliubov spectrum, I showed which

multi-dimensional unstable modes were responsible for the observed dynamic instability

for each of the solitonic states and also predicted the time scales in which they occur.

For future research into these solitonic states, I suggest that moving to higher dimensions

would reveal many more interesting properties. It is known that in three dimensions,

dark solitons decay into ring vortices. With this decay mechanism, the observed dynamic

instability could be significantly different in 3D. I also suggest moving to anisotropic

harmonic traps, where one could allow the snake instability to only exist along one

transversal degree of freedom. In this regime, it would be interesting to see what effect

the snake instability would have on the instabilities we have observed.
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