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Abstract 

In this paper we show that the economic crisis commencing in 2007 had different impacts 

across US Metropolitan Statistical Areas (MSAs), and seek to understand why differences 

occurred.  The hypothesis of interest is that differences in industrial structure are a cause of 

variations in response to the crisis. Our approach uses a state-of-the art dynamic spatial panel 

model (DSPM) to obtain counterfactual predictions of MSA employment levels from 2008 to 

2014.  The counterfactual employment series are compared with actual employment paths in 

order to obtain MSA-specific measures of crisis impact, which then are analysed with a view 

to testing the hypothesis that resilience to the crisis was dependent on MSA industrial structure.  
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1. Introduction 

 

This paper builds on the work of Fingleton et al. (2012), Martin (2012), Fingleton et al. (2015), 

and Martin et al. (2016), who analyse the impact of recessionary shocks to UK or EU regions, 

by applying a dynamic spatial panel model (DSPM) estimator, following Baltagi et al. (2014). 

This allows us to construct a counterfactual employment series for Metropolitan Statistical 

Areas (MSAs) of the United States, which then provides a yardstick for assessing the depth of 

the MSA-specific shock impact and the extent of subsequent recovery in each MSA.  The 

underlying theoretical basis for the DSPM specification is Verdoorn’s law  (Verdoorn, 1949), 

which is a cornerstone of Kaldorian and post-Keynesian economics, and which has been 

applied to enhance the understanding of persistent regional and national economic disparities 

(Dixon and Thirlwall, 1975; León-Ledesma, 1999; León-Ledesma, 2000; McCombie and 

Roberts, 2007).  In the DSPM specification, the level of employment in each MSA depends on 

MSA-specific output levels. In addition, employment depends on its temporal and spatial lags. 

The temporal lag can be thought of as an outcome of market failure, whereby there is non-

instantaneous adjustment to economic change, so that the level of employment in an MSA 

partially depends on the level in the previous period, the assumption being that the economy 

has some form of memory. The Spatial lag follows from earlier extensions of Verdoorn’s law 

which also consider contemporaneous spatial spillovers across locations to be important 

(Bernat, 1996; Fingleton and McCombie, 1998; Pons-Novell and Viladecans-Marsal, 1999). 

The level of employment also undoubtedly depends on unobserved factors, and important 

among these is inter-MSA heterogeneity. These we attempt to capture by the presence of 

(spatially interdependent) individual-specific random effects in the model.    
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The DSPM specification leads to a prediction equation which generates counterfactual 

employment series based on an assumption that output growth across all MSAs is equal to 

national output growth. Using this, we measure the resilience of each MSA by comparing its 

predicted employment with the actual level over the post-shock period from 2008 to 2014.  

These resilience measures are treated as the dependent variable in regression models which are 

used to test the hypothesis of interest, that MSA resilience depends on the industrial structure 

of the MSA.  

 

The hypothesis that resilience to economic shocks is shaped by, and shapes, industrial structure, 

broadly defined, has been considered elsewhere in the literature (Quigley, 1998; Combes, 2000; 

Glaeser, 2005; Martin, 2012; Fingleton and Palombi, 2013; Doran and Fingleton, 2014; Glaeser 

et al., 2014; Holm and Østergaard, 2015). For example Capasso et al. (2014) highlight the 

importance of industry structure in explaining the evolution of regions’ growth paths over time, 

while Holm and Østergaard (2015) emphasise the importance of regional industrial structure 

in explaining a region’s susceptibility to shocks and its ability to better recover following 

shocks.  Likewise the differentiated impact of industry structure on resilience has been 

discussed by Martin et al. (2016) as a possible explanatory factor for regional divergence, with 

a region’s ability to resist and recover from shocks impacting its long run growth path. 

 

There are some novel aspects to our paper that we would like to highlight. First, our modelling 

approach, involving both dynamic and spatial interaction, is relatively unusual and a clear 

advance on static spatial panel approaches which do not take account of time-dependency in 

spatio-temporal series. Secondly, and somewhat unusually, our DSPM estimation takes 

account of the potential endogeneity of the regressor, output, with respect to employment. 

Thirdly, our focus is essentially on city-region (i.e. MSA) resilience, in contrast to the more 
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usual region- or country-specific estimates of resilience found in the literature.  Fourthly, we 

seek to avoid omitted variables bias by introducing covariates, and allow for endogeneity in 

our regression analysis, in an attempt to obtain consistent causal effects of industrial structure 

on resilience.    

 

The remainder of this paper is structured as follows.  Section 2 provides an overview of our 

industrial structure hypothesis and how this relates to regional resilience.  The data used are 

discussed in Section 3.  The Verdoorn’s law model and estimation strategy is outlined in 

Section 4.  Section 5 gives our estimates.  The prediction methodology utilised is discussed in 

Section 6.  Section 7 describes our resilience indices.  Section 8 gives the regression analysis 

and interpretation.  The final section concludes.     

 

2. Resilience and the industrial structure hypothesis  

Martin et al. (2016) note that in economic geography the concept of resilience describes 

regions’ reactions to, and recovery from, negative economic shocks.  This concept has been 

widely used in the engineering and ecological sciences and has been increasingly adopted in 

economic geography [see Grinfeld et al. (2009), Christopherson et al. (2010), Cross et al. 

(2010), Simmie and Martin (2010), Doran and Fingleton (2015), and Palaskas et al. (2015) 

among others].  Martin (2010) suggested three variations of resilience; (i) engineering, (ii) 

ecological, and (iii) adaptive resilience (our preferred conceptualisation).  Engineering 

resilience relates to  an economy’s ability to regain equilibrium after a shock (Martin, 2010; 

Fingleton et al., 2012), the assumption being the existence of  self-correcting forces typified by  

Friedman’s (1964; 1993) plucking model.  Ecological resilience differs in that it assumes that 

systems are characterised by multiple equilibria.  In ecological resilience, shocks push the 

system beyond its recovery threshold to a new domain rather than allowing it to return to the 
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same equilibrium path.  This is similar to the concept of hysteresis whereby a shock 

permanently affects the subsequent growth path of an economy (Romer, 2001).  Essentially the 

memory of the shock is left behind in the economy even after the shock has faded away. Finally, 

our preferred concept, adaptive resilience, relates to the capacity of a regional economy to adapt 

its structure in response to external shocks (Martin et al., 2016; Nyström, 2017). Martin et al. 

(2016) also identify four dimensions of resilience; risk, resistance, reorientation, and recovery,  

noting that these four dimensions  are influenced by a myriad of factors including, but not 

limited to, economic structure.  In this paper we focus on the effect on resistance and recovery 

of an MSA’s economic structure controlling for other factors.   

 

 

The focus in this paper is on the question of whether the response of US MSAs to the 2007 

economic crisis can be affected, at least in part, by differences in industrial structure.  The 

adaptive resilience concept supposes that the relationship between shock-impact and industrial 

structure is complex and two-way, so that a shock-effect depends on industrial structure, but 

also industrial structure may change as a consequence of a shock. Given this potentially 

endogenous relationship, we attempt to tease out the causal effect of industrial structure  in the 

remainder of the paper.  

 

 

 

 

 

 

3. Data 
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Our analysis is based on data for 377 US MSAs1, as defined for use by Federal statistical 

agencies involved in collecting, tabulating, and publishing Federal statistics.  The MSAs 

considered are mapped in Appendix 1 and each contains a core urban area of 50,000 or more 

population plus  any adjacent counties with  a high degree of social and economic integration 

(as measured by commuting to work) with the urban core (United States Census Bureau, 2012).  

MSAs are by their nature not necessarily contiguous to other MSAs, with some clustered in 

relative geographic proximity to others and some relatively isolated.   

 

 Employment and GDP data for 2001 to 2014 come from the Bureau of Economic Analysis 

(BEA) regional economic accounts (Bureau of Economic Analysis, 2016); in our analysis MSA 

GDP  is the  market value of all final goods and services produced within an MSA  in each 

year.  The BEA MSA employment series we utilize comprises estimates of the number of jobs, 

both full time and part time, by place of work. 

 

When considering the determinants of resistance and recover in Section 8 we employ data from 

the American Community Survey on (i) the number of individuals employed in 12 broad 

sectors, (ii) the number of individuals over the age of 24 with a third level education, and (iii) 

the population density of each MSA.  The data are obtained through the American FactFinder 

service for the years 2005-2014 for MSAs. 

 

4. Model Specification 

4.1 Theoretical Framework 

The empirical analysis rests on a fundamental theoretical assumption, that of increasing returns 

to scale. Increasing returns has found much favour within regional economics and economic 

                                                           
1 These comprise the majority of MSAs in the US, and exclude Alaska and Hawaii. 
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geography as a basis for regional and urban disparities. From a post-Keynesian economics 

perspective increasing returns are embodied within the so-called Verdoorn Law (Verdoorn, 

1949) which, in its so-called dynamic form, gives the exponential growth of  labour 

productivity  ( p ) as a positive function of the exponential growth of output ( q ), thus 

 

 p a bq= +                                                              (1) 

 

This equation forms an integral part of Dixon and Thirlwall’s (1975; 1978) model of circular 

causation and is very much in the demand oriented tradition of economic growth analysis 

involving increasing returns to scale, with productivity growing in response to output growth, 

as implied by the typically estimated value of 0.5b ≈  (Fingleton and McCombie, 1998).  Taken 

as a stand-alone equation, defining labour productivity growth as output growth minus 

employment growth ( e ) presents a minor problem for OLS estimation, in that output growth 

occurs on both sides of the equation and imparts a degree of spurious correlation, but as pointed 

out by Kaldor (1975) this can easily be circumvented by re-specifying the equation as  

 

 (1 )e a b q= − + −                                                                   (2) 

 

which can be written in terms of log levels as ln (1 ) lnE a b Q= − + − , which is the static 

Verdoorn Law (McCombie, 1983). As originally specified, Verdoorn’s Law was applied to the 

manufacturing sector, but we retain the spirit of this model in our analysis which is in terms of 

the overall urban economy.  León-Ledesma (2000) observes that when considering sectors 

other than manufacturing increasing returns are observed. As noted by León-Ledesma (2000) 

‘in modern economies, it may be possible to identify some activities, especially in the services 

sector, that could also be subject to increasing returns. Activities intensive in technology and 



8 
 

information-intensive capital (such as hardware and software), can also be considered to be 

crucial’ (pg. 61). As well as manufacturing, ‘some degree of increasing returns can also be 

found for the service sector’ (León-Ledesma, 2000: pg. 67).   This is further supported by  

Dall’erba et al. (2009) who note that while ‘the law was originally designed for the analysis of 

productivity in the manufacturing sector, we believe that it is even more appropriate to apply 

it to the services industry. In the past decades, the share of service sectors across the economies 

has got larger and this has been contextual with rapid growth of economies’ (pg. 336). They 

also note that evidence of increasing returns in producer services in a Verdoorn type context is 

highlighted by Faini (1984).  Piras et al. (2012) test their specification of Verdoorn’s law using 

data on the whole economy and the service economy for a sample of EU regions.  Doran and 

Fingleton (2014) also use aggregate output and employment rather than the manufacturing 

sector alone, likewise McCombie et al. (2017).  

 

As shown by Thirlwall and McCombie (1994), Fingleton (2001a; 2001b), Dall’erba et al. 

(2009), Le Gallo and Páez (2013) and Britto and McCombie (2015), among others, various 

other specifications exist, and most relevant from the perspective of the current paper is the 

static Verdoorn Law written as a regression equation,  hence,   

  

 ln ln ;      1,...,t t ty x t Tα β ε= + + =                             (3) 

 

In equation (3), ty is an N  by 1 vector of employment levels in N MSAs at time t, ln denotes 

the natural log, and tx is an N  by 1 vector of output levels2 ,  α  is a constant term and β  is a 

scalar coefficient.  Other unobserved factors are captured by the error term tε , and some of 

                                                           
2 The potential endogeneity of output with respect to employment is allowed for in our estimation methodology. 
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these become explicit in our extended model. In the full model specification, described below, 

we propose that there is an element of memory in the system, so that the level of employment 

at time t is partly dependent on the level at t-1, in other words employment is not simply an 

instantaneous response to current levels of the drivers of employment. Other specifications 

introduce additional variables, for example Fingleton and McCombie (1998) include national 

dummy variables in their model of regional productivity growth across EU regions in order to 

capture international heterogeneity.  

 

4.2  Spatial and temporal  Lags 

Extending the model by including a contemporaneous spatial lag as well as a temporal lag of 

the dependent variable gives: 

 

1 1ln ln ln lnt N t t t ty W y y xα ρ γ β ε−= + + + +   (4) 

 

The temporal lag is denoted by the N  x 1 vector 1ln ty − and the spatial lag is an N  x 1  vector 

lnN tW y resulting from the matrix product of the N  x N  ‘connectivity’ matrix NW  and the N  

x 1 vector of log employment levels at time t  denoted by ln ty , with coefficients γ and 1ρ

respectively.  

 

With regard to the spatial lag, connectivity between MSAs is assumed to be a diminishing 

function of distance, so that  

 

 * 1
max( )

ij
Nij

d
W

d

π
 

= − 
 

                                                         (5) 
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In which ijd is the great circle distance between MSA i  and MSA j , max( )d  is the maximum 

great circle distance in the N  by N matrix of distances d   and 1π = . With 1π =  this is known 

as the Bartlett kernel (see Phillips et al. (2003)). The resulting matrix *
NW  is standardised 

following the approach of Ord (1975). Accordingly, with the diagonal matrix D  taking values 

equal to the row sums of *
NW  thus  

 

 *

1

N

Nij
j

D diag W
=

  
=      

∑  

 0.5 * 0.5
N NW D W D− −=                                                         (6) 

 

The matrix NW is symmetrical with Nij NjiW W= , which retains absolute rather than relative 

distance between MSAs as the basis of connectivity, with maximum eigenvalue equal to 1.0,  

which facilitates easy interpretation of 1ρ . The continuous range for which 1( )N NI Wρ−  is 

nonsingular is 11 min( ) 1 max( ) 1eig eigρ< < = , and 1ρ  falling within this range is one of the 

conditions necessary for a stable, stationary model. Given 1 0ρ ≠ , MSA employment levels are 

mutually and contemporaneously interdependent, with interdependence based on geographical 

distance.  

 

With regard to the dynamic element of the model, with  0γ ≠  there is memory in the system, 

so that the level of employment in an MSA is partly dependent on its level in the previous 

period. The mechanism operating here could be one in which the temporal lag is capturing the 

effect of omitted lagged values of our right hand side variables3.  It is possible to imagine these 

                                                           
3 Something similar to this can be seen in a general time-series context, namely the  Koyck transformation 
(Koyck, 1954; Watson, 2003).   
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omitted lagged effects reflecting market imperfections, with the effect of change being spread 

over more than one period.  

 

4.3 Spatially autoregressive Disturbances 

A second potential source of spatial interdependence involves the error term tε . For simplicity 

we again assume an autoregressive error process defined as   

2
1

1
2

2

2

( )

 an  x  matrix of known spatial weights (= )

~ (0, )  the individual-specific time-invariant effect 

~ (0, )  the remainder effect
cov(

N

it Nik kt it
k

t N t

it i it

N N

i

it

i

m u

I M u
u
M N N W

iid

iid
µ

ν

ε ρ ε

ε ρ
µ ν

µ σ

ν σ
µ

=

−

= +

= −
= +
=

∑

, ) 0itν =

 

 

 

(7) 

Notice here that the autoregressive error process is governed by 2ρ which has the same stability 

conditions as 1ρ , and by the weights matrix NM , which here is identical4 to, and thus has the 

same  properties as NW . If one assumes 2 0ρ = then there is no spillover involving the errors 

and it i itε µ ν= + , and the error term then depends solely on the two error components, one time-

invariant component iµ which is a set of independent draws from an 2(0, ) iid µσ distribution. 

This term captures unobserved sources of inter-MSA heterogeneity. The component ijν , which 

is assumed to be independent of iµ and distributed as 2(0, )iid νσ , picks up the remaining 

unobservable effects that vary across both MSA and across time.  

 

                                                           
4 This identity is not a requirement of the modelling approach.  
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5. Empirical Estimation 

5.1 GMM-SL-SAR-RE Estimation 

An estimation method for dynamic spatial panel data with random effects is given by Baltagi 

et al. (2014). The significant advantages of this estimator is that it allows us to incorporate a 

large number of regions in our analysis. In comparison, vector autoregressive (VAR) and vector 

error correction (VEC) modelling as applied by Papanyan (2010), Fingleton et al. (2012) and 

Doran and Fingleton (2014) becomes highly impractical once one extends beyond about a 

dozen regions and would certainly be prohibitive given  377 MSAs.  

 

This ‘Generalized Method of Moments-Spatial Lag-Spatial Autoregressive-Random Error’ or 

GMM-SL-SAR-RE estimator detailed in Baltagi et al. (2014) is  based on Arellano and Bond 

(1991), but contains additional moments to take full account of the spatial dimension of the 

model. It is important to mention one difference between the estimator in Baltagi et al. (2014) 

and the application here. In the former, the regressor(s) are assumed to be exogenous, with the 

exception of the endogenous lags. These then become instruments facilitating consistent 

estimation. However it is unclear whether output can realistically be treated as exogenous to 

employment, as is evident in the exchange between Kaldor (1975) and  Rowthorn (1975b; 

1975a). In this paper we assume that the regressor, ln x , is also an endogenous variable. Thus 

in our estimation, we treat ln x  symmetrically with regressand ln y . The standard approach 

with an endogenous variable as an instrument is that it should be lagged by two periods5 . The 

moments equations assume independence of the levels of the instruments and the differenced 

errors 1t t tν ν ν −∆ = − , and so with an endogenous instrument such as ln ty , assuming 

2( , ) 0it itE ν ν −∆ ∆ = , we have 2,cov(ln ) 0t ty ν− ∆ = .Therefore in the moments conditions in the 

                                                           
5 An accessible summary of this is given in Bond (2002). 
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estimator, while we maintain the spatial lags of the regressand and regressors as instruments, 

as in Baltagi et al. (2014), we also lag the regressor ln x  and its spatial lag in the same way as 

the endogenous regressand and its spatial lag, thus the instrument set for individual i and time 

t becomes 

 

 ( )1 2 1 2 1 2 1 2ln ,..., ln , ln ,..., ln , ln ,..., ln , ln ,..., lni it N i N it i it N i N ity y W y W y x x W x W x− − − −  

 

5.2 Estimates 

Applying the GMM-SL-SAR-RE estimator outlined above we obtain the estimates given in 

Table 1. The table shows that the coefficients are all significant and display the anticipated 

sign, with the values of 1ρ , 2ρ and γ  falling with the stable bounds given in  Baltagi et al. 

(2014)6. 

 

  

                                                           
6 The conditions for spatial stationarity are given as 1

max1
1

min
−− << ee ρ  and 1

max2
1

min
~~ −− << ee ρ  where e = a 

vector of real characteristic roots of W and e~ = a vector of real characteristic roots of M.  Dynamic stability is 
given by  1|| <γ , 0,1|| 1max1 >−< ρργ e  and 0,1|| 1min1 <−< ρργ e  where in this case e  does not 
exclude complex eigenvalues. 
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Table 1: Parameter Estimates  

VARIABLES PARAMATERS (4) 

1ln ty −  γ  0.4782*** 

  (0.0078) 

lnN tW y  1ρ  0.2731*** 

  (0.0124) 

ln tx  β  0.2167*** 

  (0.0058) 

 2ρ  0.4464 

 σ2
μ 1.5638 

 σ2
υ 0.2499 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

 

The estimated 1ρ  is highly significant7, with a one-tailed p-value less than 0.001. The estimated 

2ρ  is also significantly different from 0. For inference regarding 2ρ , the reference distribution 

is obtained as a result of 100 Monte Carlo simulations in which the residuals are sampled with 

replacement and thus randomly allocated spatially. This has a mean equal to               -0.0445 

and standard deviation equal to 0.2266, so the t-ratio is 2.17 with a two-tailed p-value equal to 

0.03, indicating that estimated falls outside the sampling distribution consistent with a null 

hypothesis that  2 0ρ = .  Also there is a considerable amount of individual (MSA) 

                                                           
7 Given our assumption of endogeneity, the estimates of standard errors we obtain are larger than  those obtained 
assuming exogeneity. In the latter case, the two-step spatial lag estimate of 0.214 is highly significant with 
standard error = 0.0079 . 
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heterogeneity as evident from the estimated variance 2ˆµσ  which is large relative to the variance 

of the remainder component 2ˆνσ . 

 

The positive association between output and employment is consistent with the theoretical 

model presented previously, and indicates that, controlling for endogeneity, there exists a 

positive causal impact of output with regards to employment.  The positive spatial lag 

parameter ( 1ρ ) suggests that there are simultaneous positive spatial dependencies between 

MSA employment levels having controlled for significant positive temporal dependence as 

indicated by the estimated γ .  

 

The estimates in Table 1 suggest that the constant elasticity of employment with respect to 

output is quite small, as indicated by β̂ , when compared to the typical value of the Verdoorn 

coefficient 0.5b ≈ . However, the impact of output on employment as given by β̂  is quite 

misleading, for it fails to take account of the spatial and temporal interactions present in the 

model.  

 

It is now standard practice to acknowledge that the effect of a variable  should equal the true 

derivative of ln y  with respect to ln x , which in the presence of significant spatial lag and 

dynamic effects is not simply the estimate β̂ [Le Sage and Pace (2009) and Elhorst (2014)]. 

There are both short and long run effects. The short run effects at a specific point in time t are 

the derivatives 
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 ( )

1 1

1
1

1

1

1

1

ln ln
ln ln 0

ln ln 0
ln ln

N

N N

N N

N t

y y
x x

y y
x x

β
ρ

β

−

∂ ∂ … ∂ ∂ …    = −      ∂ ∂ …  …
 ∂ ∂ 

     I W                               (9) 

 

And the long run effects are given by  

 

 ( )( )

1 1

1
1

1

1

1

1

ln ln
ln ln 0

1
ln ln 0
ln ln

N

N N

N N

N

y y
x x

y y
x x

β
γ ρ

β

−

∂ ∂ … ∂ ∂ …    = − −      ∂ ∂ …  …
 ∂ ∂ 

     I W                  (10) 

 

The total short run effect is the effect on ln y  at time t  of a one unit change in ln x  (or 

equivalently a 1% change in x ) in each of N regions (cities)  at time t , inclusive of both direct 

and indirect effects. For the long run effect the derivatives give the total effect  on ln y  at time 

T  (asT goes to infinity) of a one unit change in ln x  in each of N  regions which remains 

through all times to T . Given the size of these matrices of derivatives, one takes the mean of 

the main diagonal of the matrix of partial derivatives for the direct effects, and the mean of the 

off-diagonal cells for the indirect effects. The sum of the two means is the total effect. Table 2 

gives the results. 

Table 2: Short and long run effects (two-step estimates) 

 Short run  Long run 
    
Direct 0.2169  0.4162 
Indirect 0.0797  0.4472 
Total 0.2966  0.8634 
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Table 2 indicates that the direct short run effect (0.2169) is slightly larger than ˆ 0.2168β = , 

because the direct effect also includes feedback effects due to effects passing through other 

MSAs and back to the original MSA8. The short run indirect effect comes from the off-diagonal 

cells of the matrices of derivatives, and thus captures the spillover effect on employment in an 

MSA of a change to output in other MSAs. Adding  the direct and indirect effects gives a total 

short run effect of 0.2966.  Interestingly, the short run total  effect is positive and less than one, 

not unlike  the traditional Verdoorn coefficient 0.5b ≈ , suggesting that productivity depends 

on output in line with the increasing returns hypothesis. The total long run effect resulting from 

a persistent increase in output and taking into account spillovers, is an elasticity9 of 0.8634. 

This is closer to the value 1.0 consonant with constant returns to scale, but nevertheless the 

evidence here is that in the very long run, there remains  some   overall productivity gain as 

output increases.      

 

6. Prediction and Generating a Counterfactual Employment Series 

6.1 Methodology 

The prediction methodology involves using the parameter estimates given in Table 1, which 

relate to the model set out as equation (4), in order to simulate counterfactual employment 

levels across the 377 MSAs. Equation (4) is repeated here, but as a recurrent equation in matrix 

format, as equation (11), 

 

 -1 -1
-1ln ln lnt N t t N ty G y x B uγ β = + +                                                                    (11) 

 

                                                           
8 See Elhorst (2014). 
9 This is equal to 0.8607 assuming exogeneity. 
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In which ( )1N N NG I Wρ= −  and ( )2N N NB I Mρ= − .  

 

Following Chamberlain (1984), Sevestre and Trognon (1996) and Baltagi et al. (2014), the 

linear predictor is given by equation (12). 

 

 [ ] [ ] [ ]( )1 1
1ln ln lnt N t t NE y G E y x B Eγ β µ− −
−= + +                                              (12) 

  

 ( )1 1
1

ˆ ˆ ˆˆˆ ˆ ˆln ln lnt N t t Ny G y x Bγ β µ− −
−= + +                                                        (13) 

Equation (12)  is the same as equation (11) but with expectations E[∙], and this leads to equation 

(13) which gives the estimated expectations of (log) employment ( ln ty ) based on 

counterfactual levels of (log) output  (ln )tx  and estimated parameters 1 2
ˆˆ ˆ ˆ( , , , )γ β ρ ρ  . The 

estimated expectations of the individual effects µ̂   are obtained from the residuals averaged 

over time, as described in Appendix 2.  

 

6.2 Generating  the Counterfactual Series 

Given equation (13), the counterfactual employment series ( ˆln ty ) depends on the 

counterfactual output series ( tx  ).  As we treat the 2008 economic crisis as a common shock 

across all MSAs (though each MSA will have reacted differently), the  counterfactual output 

series is based on the observed  national change in output over the period 2008 to 2014, an  

assumption that is consistent with Martin et al. (2016).  The underlying assumption made here 

is that output in a particular MSA would contract at the national rate during a recession and 

expand at the national rate during a recovery were it not for differences in industrial structure.  

This can be represented as: 
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𝑥𝑥�𝑖𝑖𝑖𝑖+1 = (1 + 𝑔𝑔𝑁𝑁𝑁𝑁+1)𝑥𝑥�𝑖𝑖𝑖𝑖 

 

Where 1itx +   denotes  counterfactual output  for period t+1 for MSA i, 𝑔𝑔𝑁𝑁𝑁𝑁+1 is the national 

growth rate of GDP from t to t+1, and itx  is the value of output  in time period t for region i.  

Note that 1itx +   depends on ( 2007)itx t = , the actual level of output in 2007. Subsequently, for 

all other 2007t >  1itx + depends on itx .  This gives a counterfactual level of output for each 

MSA assuming that the MSA output grew through the crisis at a rate identical to the national 

GDP growth rate.  This is similar to the approach used by Martin et al. (2016), but our approach 

differs in that here the counterfactual is used, not to generate resilience indices per se, but to 

instead feed into the employment prediction equation (13).   

 
 

7. MSA Resilience to the 2007 Economic Crisis 

7.1 Measuring  Elements of Resilience 

 

We focus on two elements of resilience; resistance and recovery (Martin, 2010; Palaskas et al., 

2015; Martin et al., 2016).  Resistance is the ability of a regional economy to resist the initial 

impact of the crisis; recovery is  the ability  to recover following the shock (Han and Goetz, 

2013).  Following, broadly, Han and Goetz (2013) and Martin et al. (2016), resistance and 

recovery  are defined here  by  equations (14) and (15) respectively.    

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 = �Δy𝑖𝑖
𝑐𝑐�−�Δ𝑦𝑦�𝑖𝑖

𝑐𝑐�
E𝑖𝑖
2007              (14) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 = �Δy𝑖𝑖
𝑟𝑟�−�Δ𝑦𝑦�𝑖𝑖

𝑟𝑟�
E𝑖𝑖
2007    (15) 
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In (14), c
iy∆   is the change in employment in region i during the contraction period of the 

economic crisis, and in (15)   r
iy∆   is employment change in region i during the post-crisis 

recovery period. In contrast to these actual employment changes,  ˆ c
iy∆  is the counterfactual 

employment change  during  contraction, and ˆ r
iy∆   is the counterfactual  change  during   

recovery.  Differences between actual and counterfactual are scaled by 2007 employment level 

2007
iE . For both Resis  and Recov , a zero value indicates that  employment changed in line 

with the counterfactual (based on the national change), a  negative value shows relatively weak  

resistance/recovery and a positive value indicates  stronger  resistance/recovery relative to the 

national performance. 

 

8. Testing the industrial structure hypothesis  

To explain inter-MSA variation in Resis and Recov , we calculate three industry structure 

variables; a Krugman dissimilarity index (16), a Herfindal index (17), and a Lilien index (18) 

of structural change, each of which is based on MSA employment across 13 different sectors, 

data provided by  the American Community Survey10.   

 

𝐷𝐷𝑖𝑖,2007 = ∑ ��
𝑦𝑦𝑖𝑖𝑖𝑖,2007

𝑦𝑦𝑖𝑖,2007
� − �

𝑦𝑦𝑁𝑁𝑁𝑁,2007

𝑦𝑦𝑁𝑁,2007
��                                                      𝑗𝑗 (16) 

 

𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖,2007 = ∑ �
𝑦𝑦𝑖𝑖𝑖𝑖,2007

𝑦𝑦𝑖𝑖,2007
�𝑗𝑗

2

                                                        (17) 

 

                                                           
10 Data on employment in MSAs by sector are only available from 2005 to 2014 so when constructing our 
indices we are restricted to this time period.  Also, data are only available from the American Community 
Survey on sectoral employment for 340 of our 377 MSAs.  Therefore, the empirical analysis in this section is 
constrained to an analysis of these 340 MSAs. 
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𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡 = �∑ �
𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖
𝑦𝑦𝑖𝑖𝑖𝑖
� �Δ𝑙𝑙𝑙𝑙𝑙𝑙𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 − Δ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖 �

2
𝑗𝑗 �

1/2

                          (18) 

 

 

 

In equations (16), and (17) , i  refers to MSA i in 2007.  Also 𝑦𝑦𝑖𝑖𝑖𝑖,2007 is  MSA’s  industry j 

employment level, 𝑦𝑦𝑖𝑖,2007 is total employment, 𝑦𝑦𝑁𝑁𝑁𝑁,2007 is total industry j employment in all 

MSAs, and 𝑦𝑦𝑁𝑁,2007 is total employment in all MSAs. 

 

The Krugman  index 𝐷𝐷𝑖𝑖,2007 , measuring  industrial structure dissimilarity,  ranges  from zero 

to two, with zero indicating that MSA i’s industrial structure is identical to the national 

industrial structure and two indicating maximum dissimilarity (Goschin et al., 2009; Egeraat et 

al., 2016).  The Herfindal index ,2007iHer  measures concentration in a particular industry.  The 

higher the index, the more specialised is an MSA (Egeraat et al., 2016).  The  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡 index 

measures shifts in industrial employment over a given time period (Goschin et al., 2009; Martin 

et al., 2016).  For this we define two time periods, the recession (2008-2009) and the recovery 

(2009-2014).  

 

Given that the indices  𝐷𝐷𝑖𝑖,2007 and  𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖,2007  measure specialisation just prior to the onset of 

the crisis, the hypothesis is that an MSA’s specialization pre-crisis had an effect on its in-crisis 

resistance and post-crisis recovery.  For the 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 index, measured within-crisis (2007-2009) 

and post-crisis (2009-2014), we explore whether contemporaneous structural change had an 

effect on an MSA’s resistance and recovery.  

 



22 
 

Subsequent analysis treats Resis and Recov , referred to collectively as , 1,... .iR i n= , as the 

dependent variables in regression models in which the Krugman, Herfindal and Lilien indices 

are the causal variables of principal interest. However we also control for a number of 

covariates so as to eliminate omitted variable bias.  For the Krugman, and Herfindal indices, 

since they are based on 2007 data, we can reasonably assume they are exogenous, and thus 

cause subsequent changes in iR , in which case OLS estimation should give unbiased estimates. 

However, endogeneity is built in ab initio into the Lilien index since it is calculated using data 

from the within-crisis and post-crisis periods respectively, so there is a possibility of resistance 

and recovery both being affected by, and affecting, structural change. This two-way interaction 

between structure and employment response is to be anticipated given the earlier discussion of 

adaptive resilience. To allow for potential endogeneity we apply instrumental variables.  

 

 Four instrumental variables are employed.  Firstly, we use the spatial lag of 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡.  Secondly 

we employ Bartlett’s three group method. In this, given an endogenous variable of dimension 

n, its instrument is formed by dividing the variable into three categories. The n/3 smallest 

values are set to -1, the n/3 largest are set to 1 and the n/3 middle values are set to zero (Johnson, 

1984; Kennedy, 2008). The assumption is that while the resulting instrument will be correlated 

with the endogenous variable, it will be independent of the error term, as required for consistent 

estimation11.  A third instrument is provided by the spatial lag of Bartlett’s three groups.  The 

fourth instrument used is the synthetic instrument proposed by Le Gallo and Páez (2013).  This 

is based on a contiguity matrix, but since MSAs are on the whole non-contiguous, we treat an 

                                                           
11 The method was initially designed to address measurement error in a regressor but has been found useful, given 
the paucity of external instrumental variables, to control for other sources of endogeneity (Fingleton, 2003; Artis 
et al., 2012; Le Gallo and Páez, 2013; Doran and Fingleton, 2016).  However, as noted by Le Gallo and Páez 
(2013) ‘the properties of this type of instrument are investigated in Fingleton and Le Gallo (2008a; 2008b; 2009). 
By construction, this instrument is correlated with the endogenous variable’ (p.g. 2233).  Therefore, the use of 
Bartlett’s three group method does not remove our problem but reduces it. 
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MSA’s three nearest neighbours to be contiguous with the MSA.  We follow Le Gallo and Páez 

(2013) in creating a synthetic instrument for the Lilien index by first obtaining the eigenvectors 

of the contiguity matrix.  Then eignvectors are regressed on the the Lilien index and the 

significant eigenvectors are retained and summed to create an exogenous instrument (each 

significant eignvector is weighted according to the estimated regression coefficient).  Utilising 

these instruments means that we can treat the regression coefficient relating to the Lilien index, 

when estimated by IV, as estimates of the change in iR  caused by a unit change in this 

explanatory variable. 

 

Additional regressors (see also Han and Goetz, 2013) are introduced to avoid omitted variable 

bias, bias which may come about if the industrial structure indices also capture the impact of 

correlated variables not included explicitly in a regression specification.  Consequently we 

control for population density, educational attainment, sectoral composition, and the Region12 

of the US in which the MSA is located to give the model   

 

𝑅𝑅𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝐷𝐷𝑖𝑖,2007 + 𝛽𝛽2𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖,2007 + 𝛽𝛽3𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝜀𝜀𝑖𝑖 

 (20) 

In (20),   𝑅𝑅𝑖𝑖 denotes either iResis or iRecov for MSA i, the 𝛽𝛽𝛽𝛽 are the regression coefficients, 

𝐷𝐷𝑖𝑖,2007 is the Krugman dissimilarity index for  2007, 𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖,2007 is the Herfindal concentration 

index, and 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖  denotes structural change for the time periods t =2007-2009 for iResis  and 

t = 2009-2014 for iRecov . The error term  iε  represents additional unobserved effects, 

distributed as 2(0, )iid σ  in which 2σ  denotes constant error variance. Equation (20) is 

                                                           
12  Regional dummies based on the US Census Bureau Regions and Divisions which indicate whether an MSA 
is in the broadly defined regions of New England, Middle Atlantic, East North Central, West North Central, 
South Atlantic, East South Central, West South Central, Mountain, or Pacific 



24 
 

estimated via instrumental variables (IV).  In contrast to 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 ,𝑝𝑝opulation density, 

educational attainment (the proportion of those aged over 24 with a third level degree), sectoral 

composition and region relate to the year 2007, and so are treated as exogenous. 

  

Table 3 gives the IV estimates of equation (20).  To save space we omit the parameter estimates 

of the 22 covariates  (see Appendix Tables A3.1 and A3.2 for these), which are of limited 

interest, but we do show the overall significance of the covariates by adding them sequentially 

in blocks, namely demographics (population density and educational attainment), sectors (12 

sector variables), and regions (8 region dummy variables), and find they are all jointly 

significant at the 95% level (at least) for both  iResis  and iRecov .  To support our inferences, 

we show instrument relevance (i.e.  the extent of correlation of the IVs with 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 ) and 

instrument exogeneity  (i.e.  their lack of correlation with the errors).  Following Stock et al. 

(2002)  instrument relevance is indicated via F statistics greater than  10.   Given 

overidentification, because we have four instruments, instrument exogeneity for the group is 

shown to exist using Hansen’s (1982) J statistic13.   In Appendix 3 we test each instrumental 

variable separately to identify individual relevance, to resistance (Table A3.1) and recovery 

(Table A3.2), showing that the most relevant instrument is Bartlett’s three group method 

followed by the Le Gallo and Páez (2013) synthetic instrument.  

 

Table 3 indicates that the Krugman index and the Herfindahl index both have a negative effect 

on resistance, indicating that specialization increases susceptibility to shocks. In contrast post-

crisis, specialisation appears to positively aid recoverability.  Also the significant positive 

                                                           
13 The null hypothesis of the test is that the instruments are uncorrelated with the error term, 
while the alternative is that at least one of the instruments is correlated with the error term.  In 
our case, as both p-values are greater than 0.1, we cannot reject the null hypothesis. 
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effect of the Lilien index suggests that shifts in industrial employment following a shock have 

a beneficial effect on   post-shock recovery.  This may reflect MSAs reorienting themselves 

away from impacted sectors to sectors which were not impacted by the crisis.   

 

With regard to the control variables, our estimates indicate that MSAs with a higher percentage 

of the population with Bachelor degrees, or higher, are better able to resist and recover 

following the crisis.  This points to the importance of an educated workforce, ceteris paribus, 

in improving an MSA’s resilience.    

 

MSAs with a higher proportion of their workforce in construction, manufacturing, finance and 

insurance or other services possess lower resistance indices ceteris paribus.  However, MSAs 

with a higher proportion of their workforce in educational services, arts, entertainment and 

recreational services or public administration exhibit poorer recovery post-shock.  This 

suggests that sectoral employment differences may aid in explaining the susceptibility of 

MSAs, hence regions, to shock and impact their speed of recovery post-shock. 

 

Having controlled for the above factors we still observe significant regional variations in our 

resistant and recovery indices.  Relative to New England (the reference category) MSAs in the 

Middle Atlantic, West North Central, and West South Central regions have higher resistance 

indices ceteris paribus.  When considering recovery New England and the Middle Atlantic are 

the regions where MSAs possess the lowest recovery indices while MSAs in the West South 

Central and East South Central exhibit the highest recovery indices.   

 

The robustness of the Table 3 inferences is predicated on error distribution assumptions.  Figure 

1 shows approximately normality for both  Resis  and Recov  regression residuals, but Figure 



26 
 

2 highlights potentially influential outliers, although when excluded, as in the Table 4 

estimates, the results are broadly consistent with Table 3.  Our key industrial structure variables 

remain significant and appropriately signed. 

 

To allow for the possible presence of error dependence among the residuals, we also estimate 

the model with the same specification as the Table 3 model but also with an additional spatial 

autoregressive error term. Following Arraiz et al. (2010) and Drukker et al. (2013), via the use 

of instrumental variables and GMM, we obtain  similar estimates to those of Table 3 and 4, 

with no evidence of significant residual autocorrelation. To save space they are omitted here.  

 

To summarize, the regression estimates show that a more specialised MSA is less resistant to 

shocks than a diverse MSA, and that, post-crisis, specialisation appears to positively impact an 

MSA’s recoverability.  Also, the significant positive impact of structural change suggests that 

the reorientation of industrial structure following a shock aids post-shock recoverability.   
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Table 3: Industry Structure Controls and Resistance and Recovery 

VARIABLES Resistance2 Recovery2 
   
Lilien 2007-09 -0.278  
 (0.325)  
Lilien 2009-14  0.495* 
  (0.278) 
Krugman D-Index -0.0770** 0.0865** 
 (0.0308) (0.0407) 
Herfindahl Index -0.00344** 0.00508*** 
 (0.00165) (0.00171) 

 
22 additional variables plus constant   l.i. l.i. 
   
Observations 341 341 
R-squared 0.338 0.398 
F-test (Demographics) 5.99** 10.95*** 
F-test (Industry) 32.45*** 91.44*** 
F-test (Region) 57.41*** 31.49*** 
Hansen's J Statistic (p-value) 0.7751 0.1226 
F Statistics of First Stage IVs 73.5939 48.9425 

l.i. denotes of limited interest 
Note 1: Robust standard errors in parentheses 
Note 2: *** p<0.01, ** p<0.05, * p<0.1 
Note 3: Hansen's (1982) J statistic chi-squared test is reported.  A statistically significant test 
statistic always indicates that the instruments may not be valid. 
Note 4: Following Stock et al. (2002)  instrument relevance is indicated via F statistics 
greater than  10. 
 

 

Figure 1: Residuals of IV Regression Model  
 
 Resistance Recovery 

  
 
 
Figure 2: Box Plot of residuals to identify outliers 
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 Resistance Recovery  

  
 
 

Table 4: IV Regression of Resistance and Recovery (with outliers trimmed) 

VARIABLES Resistance Recovery 
   
Lilien 2007-09 -0.383  
 (0.314)  
Lilien 2009-14  0.474* 
  (0.255) 
Krugman D-Index -0.0650** 0.0960** 
 (0.0297) (0.0400) 
Herfindahl Index -0.00388** 0.00444*** 
 (0.00161) (0.00162) 
22 additional variables plus constant  l.i. l.i. 
   
Observations 336 331 
R-squared 0.3504 0.4102 
F-test (Demographics) 8.93** 17.64*** 
F-test (Industry) 34.25*** 111.80*** 
F-test (Region) 58.27*** 42.08*** 
Hansen's J Statistic (p-value) 0.9203 0.1483 
F Statistics of First Stage IVs 72.2237 47.1242 

l.i. denotes of limited interest 
Note 1: Robust standard errors in parentheses 
Note 2: *** p<0.01, ** p<0.05, * p<0.1 
Note 3: Hansen's (1982) J statistic chi-squared test is reported.  A statistically significant test 
statistic always indicates that the instruments may not be valid. 
Note 4: Following Stock et al. (2002)  instrument relevance is indicated via F statistics 
greater than  10. 
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9. Conclusions 

This paper studies the effect of economic structure on the resilience of US MSAs to the 2007 

economic crisis, and in doing so is one of a growing but small number of papers which  analyses  

of resilience at a city, rather than country or regional, level [for an example of a city levels 

analysis see Wrigley and Dolega (2011)].   Our key findings are that MSAs which were more 

specialised were more adversely affected by the crisis and less able to resist it. But during the 

recovery phase post-crisis we find evidence that being specialised positively affected recovery. 

In addition, structural change during the recovery period also had a positive effect on recovery.   

We also find that MSA’s sectoral composition affects resistance and recovery, but this by itself 

does not explain the significant regional effects. Thus, controlling for sectoral effects, the 

region in which an MSA is located still has an effect on resistance and recovery, although at 

this juncture we do not speculate about the underlying cause of the regional effects.  

 

These interpretations are however provisional and are open to revision as longer series become 

available for analysis. In addition it would be useful to look retrospectively at earlier recessions 

to see if more evidence could be gained regarding the determinants of resilience, taking account 

also of the type, strength and duration of that shock. In the past, we have seen major events 

such as the 1861–63 Cotton Famine, which had a major adverse impact on the towns of the 

Lancashire cotton district, the great stock market crash of 1929, and indeed the two World wars 

of 1914 and 1939, each having its own particular consequences for local, regional, national and 

global economies.   
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Appendix 1: Map of MSAs 
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Appendix 2 
 
In order to operationalise the prediction equation (13), estimates of the time-invariant 

individual effects µ  are required. The approach adopted, as suggested by Fingleton (2014), is 

based on the residuals averaged over time, so that given  

 

 1 1ln l nln lnt t N t t ty y W y xγ ρ β ε−= + + +  

 

then 

 

 ( )1 1 lnln ln lnt t t N t ty y W y xε γ ρ β−= − + +  

                                                                                                          

Also since 1
t N tB uε −=   in which t tu µ ν= + , then  

 

 1
1 1ln ln ln lnN t t t N t tB u y y W y xγ ρ β−
−= − − −  

 

so that   

  

 ( )
1l ˆˆˆ ˆˆ ln n lnt

N N t t t tB G y y xµ γ β ν−
 = − − −                                           (A5) 

 

Assuming that ( )2~ 0, ˆt N νν σ  and  drawing at random from this distribution, we take the mean 

over time of the ( )ˆ 't sµ  to give the time-invariant quantity µ̂ .  
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Appendix 3: Alternative IV Estimations 

Table A3.1: IV Estimation of Resistance 

 (1) (2) (3) (4) (5) 
 TGM W*l W*TGM LeGallo Full 
VARIABLES Resistance Resistance Resistance Resistance Resistance 
      
Lilien 2007-09 -0.270 2.895 4.919 -0.305 -0.270 
 (0.341) (4.519) (6.965) (1.780) (0.326) 
Krugman D-Index -0.0733** -0.210 -0.297 -0.0718 -0.0769** 
 (0.0324) (0.193) (0.303) (0.0766) (0.0308) 
Herfindahl Index -0.00324** 0.00333 0.00753 -0.00331 -0.00329** 
 (0.00162) (0.00980) (0.0148) (0.00406) (0.00162) 
Log of population density -0.00249 0.00112 0.00344 -0.00253 -0.00280 
 (0.00283) (0.00622) (0.00929) (0.00324) (0.00276) 
% Bachelor Degree 0.000844** 0.000711 0.000626 0.000845** 0.000869** 
 (0.000379) (0.000547) (0.000753) (0.000382) (0.000377) 
Construction -0.280* -0.504 -0.647 -0.277 -0.280* 
 (0.145) (0.368) (0.546) (0.185) (0.144) 
Manufacturing -0.304*** -0.281** -0.266 -0.304*** -0.308*** 
 (0.103) (0.137) (0.174) (0.102) (0.102) 
Wholesale trade -0.0732 0.388 0.684 -0.0783 -0.0870 
 (0.312) (0.751) (1.179) (0.424) (0.310) 
Retail trade -0.123 -0.197 -0.245 -0.123 -0.123 
 (0.129) (0.221) (0.328) (0.137) (0.128) 
Transportation etc. -0.0453 -0.0670 -0.0809 -0.0450 -0.0482 
 (0.131) (0.187) (0.258) (0.131) (0.130) 
Information etc. 0.0900 0.425 0.639 0.0862 0.0776 
 (0.317) (0.638) (0.915) (0.355) (0.315) 
Finance insurance -0.490*** -0.658** -0.765* -0.488*** -0.492*** 
 (0.136) (0.293) (0.450) (0.167) (0.136) 
Professional -0.235 -0.192 -0.165 -0.235 -0.237 
 (0.149) (0.226) (0.307) (0.151) (0.149) 
Educational -0.161 -0.0616 0.00228 -0.163 -0.171 
 (0.112) (0.212) (0.295) (0.122) (0.111) 
Arts entertainment -0.267** -0.109 -0.00851 -0.269** -0.271** 
 (0.110) (0.268) (0.407) (0.135) (0.109) 
Other services -0.457** -0.724 -0.894 -0.454 -0.474** 
 (0.229) (0.488) (0.740) (0.280) (0.227) 
Public administration -0.104 -0.0525 -0.0193 -0.105 -0.116 
 (0.120) (0.173) (0.231) (0.120) (0.118) 
Middle Atlantic 0.0172** 0.0171** 0.0171** 0.0172** 0.0168** 
 (0.00788) (0.00684) (0.00813) (0.00791) (0.00787) 
East North Central -0.00515 -0.00165 0.000583 -0.00519 -0.00487 
 (0.00853) (0.00926) (0.0121) (0.00885) (0.00851) 
West North Central 0.0198** 0.0303 0.0369 0.0197* 0.0193** 
 (0.00892) (0.0189) (0.0279) (0.0103) (0.00886) 
South Atlantic -0.000707 -0.00191 -0.00269 -0.000693 -0.000169 
 (0.00799) (0.00780) (0.00968) (0.00808) (0.00796) 
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East South Central 0.0107 0.0119 0.0127 0.0107 0.0103 
 (0.00905) (0.00973) (0.0120) (0.00910) (0.00899) 
West South Central 0.0293*** 0.0274** 0.0262* 0.0293*** 0.0295*** 
 (0.00863) (0.0110) (0.0154) (0.00880) (0.00859) 
Mountain -0.00315 -0.00649 -0.00863 -0.00311 -0.00377 
 (0.0103) (0.0128) (0.0171) (0.0107) (0.0102) 
Pacific -0.00967 -0.0192 -0.0254 -0.00957 -0.00958 
 (0.00880) (0.0167) (0.0255) (0.0111) (0.00870) 
Constant 0.171* 0.197* 0.213 0.171* 0.178* 
 (0.0917) (0.115) (0.151) (0.0938) (0.0909) 
      
Observations 341 341 341 341 341 
R-squared 0.339 0. 340 0. 340 0.339 0.339 
 296.631 1.38516 .868249 2.93688 73.4317 
      

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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Table A3.2: IV Estimation of Recovery 

 (1) (2) (3) (4) (5) 
 TGM W*l W*TGM LeGallo Full 
VARIABLES Recovery Recovery Recovery Recovery Recovery 
      
Lilien 2009-14 0.515* -106.1 -3.802 1.729 0.473* 
 (0.289) (1,259) (30.37) (1.291) (0.277) 
Krugman D-Index 0.103** 3.808 0.253 0.0606 0.0865** 
 (0.0414) (43.67) (1.054) (0.0602) (0.0405) 
Herfindahl Index 0.00435** -0.382 -0.0113 0.00875** 0.00472*** 
 (0.00197) (4.560) (0.111) (0.00438) (0.00169) 
Log of population density 0.00912** -0.129 0.00354 0.0107** 0.00725** 
 (0.00388) (1.609) (0.0388) (0.00472) (0.00345) 
% Bachelor Degree 0.00218*** -0.0109 0.00164 0.00232*** 0.00187*** 
 (0.000633) (0.155) (0.00380) (0.000757) (0.000586) 
Construction -0.117 -2.022 -0.194 -0.0956 0.139 
 (0.258) (25.05) (0.819) (0.227) (0.182) 
Manufacturing -0.443** -9.937 -0.828 -0.335* -0.250 
 (0.220) (113.3) (2.874) (0.174) (0.157) 
Wholesale trade -0.113 -0.940 -0.147 -0.104 0.0454 
 (0.411) (17.10) (0.791) (0.421) (0.377) 
Retail trade -0.167 -18.26 -0.900 0.0388 -0.0424 
 (0.235) (213.8) (5.326) (0.239) (0.191) 
Transportation etc. -0.379* -11.37 -0.824 -0.253 -0.206 
 (0.222) (131.1) (3.396) (0.204) (0.181) 
Information etc. -0.648 0.493 -0.602 -0.661 -0.333 
 (0.410) (22.93) (0.964) (0.480) (0.343) 
Finance insurance -0.163 -0.974 -0.196 -0.154 -0.00469 
 (0.237) (12.71) (0.528) (0.223) (0.193) 
Professional -0.442 -0.523 -0.446 -0.441 -0.267 
 (0.271) (9.579) (0.469) (0.294) (0.218) 
Educational -0.601** -7.069 -0.863 -0.528** -0.368** 
 (0.248) (78.08) (2.064) (0.206) (0.169) 
Arts entertainment -0.694*** -8.094 -0.994 -0.610*** -0.469*** 
 (0.225) (89.34) (2.291) (0.190) (0.160) 
Other services 0.127 8.552 0.468 0.0305 0.207 
 (0.317) (99.70) (2.497) (0.343) (0.317) 
Public administration -0.768*** -10.96 -1.181 -0.652*** -0.565*** 
 (0.244) (121.7) (3.111) (0.202) (0.181) 
Middle Atlantic 0.00772 0.271 0.0184 0.00472 0.00626 
 (0.00865) (3.137) (0.0781) (0.00956) (0.00836) 
East North Central 0.0232*** 0.133 0.0277 0.0220** 0.0229*** 
 (0.00884) (1.320) (0.0343) (0.00938) (0.00868) 
West North Central 0.0264*** -0.0965 0.0214 0.0278*** 0.0270*** 
 (0.00949) (1.456) (0.0382) (0.0101) (0.00936) 
South Atlantic 0.0256*** 0.247 0.0346 0.0231** 0.0250*** 
 (0.00890) (2.639) (0.0648) (0.0105) (0.00865) 
East South Central 0.0308*** 0.0961 0.0335 0.0301*** 0.0320*** 
 (0.0114) (0.823) (0.0254) (0.0115) (0.0111) 



35 
 

West South Central 0.0486*** 0.848 0.0810 0.0395*** 0.0449*** 
 (0.0113) (9.379) (0.229) (0.0136) (0.0107) 
Mountain 0.0210* 0.0856 0.0236 0.0202 0.0212* 
 (0.0122) (0.884) (0.0261) (0.0136) (0.0118) 
Pacific 0.0170 -0.0238 0.0154 0.0175 0.0218* 
 (0.0125) (0.573) (0.0229) (0.0129) (0.0112) 
Constant 0.285 4.067 0.438 0.242 0.120 
 (0.187) (45.98) (1.254) (0.158) (0.137) 
      
Observations 341 341 341 341 341 
R-squared 0.418 0.318 0.327 0.317 0.403 
 186.798 .006901 .03637 5.41231 49.2878 

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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