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Abstract
This paper introduces an interactive framework to guide decision-makers in a multi-criteria
supplier selection process. State-of-the-art multi-criteria methods for supplier selection elicit
the decision-maker’s preferences among the criteria by processing pre-collected data from
different stakeholders. We propose a different approach where the preferences are elicited
through an active learning loop. At each step, the framework optimally solves a combinatorial
problem multiple times with different weights assigned to the objectives. Afterwards, a pair
of solutions among those computed is selected using a particular query selection strategy,
and the decision-maker expresses a preference between them. These two steps are repeated
until a specific stopping criterion is satisfied.We also introduce two novel fast query selection
strategies, and we compare them with a myopically optimal query selection strategy. Com-
putational experiments on a large set of randomly generated instances are used to examine
the performance of our query selection strategies, showing a better computation time and
similar performance in terms of the number of queries taken to achieve convergence. Our
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experimental results also show the usability of the framework for real-world problems with
respect to the execution time and the number of loops needed to achieve convergence.

Keywords Supplier selection · Preference elicitation · Incremental elicitation ·
Multi-attribute utility theory · Multi-objective optimization · Mathematical programming

1 Introduction

Supplier selection is the process of determining the best suppliers for acquiring the necessary
materials for the production activities of afirm.This is a key aspect ofOperationsManagement
(OM) for a firm of any size. Although decision-makers (DMs) still proceed manually in some
contexts, many automated methods and tools have been adopted to solve the problem. The
main benefits of using these instruments include the reduction of the decision process time
and the capability to take into account complex aspects arising when the business grows.
These frameworks do not merely select the least expensive suppliers. They can also consider
multiple criteria (such as lead time, product quality, resilience, suppliers’ reputation and
relationship, etc.) to sharpen the company’s competitiveness. The task of quantifying the
relative importance of such criteria in a specific decision process can be tricky, partly because
it involves a variety of factors and business goals. This is usually achieved by conducting
long interviews with multiple experts and stakeholders.

Multi-criteria supplier selection problems have beenwidely studied in the last fewdecades.
Numerous operations research approaches have been developed to address the different chal-
lenges. A common way to handle multiple criteria is to evaluate the different alternatives
through a utility function defined as the weighted sum of the criteria considered. In this
context, the problem can be decomposed into two major tasks:

– Determining the weights by eliciting the DM’s preferences on the criteria;
– Solving the problem given some fixed weights of the criteria.

Recent works on multi-criteria supplier selection follow this general structure. This eases
the development of hybrid approaches based on a pair of techniques, one for each of the
two tasks. The first task is generally covered by Multicriteria Decision Making (MCDM) (or
multi-criteria decision analysis) methods, such as the Analytic Hierarchy Process (AHP), the
Analytic Network Process (ANP) or fuzzy-based extensions taking into account incomplete
data (Ortiz Barrios et al. 2020; Chang 2019; Bodaghi et al. 2018; Ecer 2020; Shaw et al. 2012).
These methods are based on structural tables with elements of ambiguous stakeholder opin-
ions which can be synthesized to define the weights of the criteria. Alternatively, the weights
may be considered as given constants (Suprasongsin et al. 2019), or they may be converted
into a profit or cost measure (Ventura et al. 2020; Arampantzi et al. 2019; Andrade-Pineda
et al. 2017). The second task consisted of ranking a set of alternative suppliers or choosing a
certain supplier configuration. The latter involves solving a combinatorial optimization prob-
lem, usually employingMathematical Programming (MP) (Bodaghi et al. 2018; Ortiz Barrios
et al. 2020; Kaur and Singh 2019), or metaheuristic techniques (Hashim et al. 2017; Rezaei
and Davoodi 2011).

Our first research question is the following. How can we reduce the cognitive effort
required to learn the criteria weights of a multi-objective supplier selection problem? We
addressed this question by introducing an active learning approach to the supplier selection
problem. Active learning is an Artificial Intelligence (AI) technique where the learning algo-
rithm is allowed to choose the data from which it learns (Settles (2012)). We adopted this
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technique for an interactive preference elicitation process in order to iteratively reduce the
uncertainty of the DM’s preferences (see, e.g., Korhonen 2005; Benabbou et al. 2020). To
the best of our knowledge, this approach has never been used before for supplier selection.
Figure 1 shows the fundamental difference between the standard methods (Fig. 1a) and an
active learning approach (Fig. 1b). Briefly, our framework asks the DM to provide a prefer-
ence between two solutions at each iteration. The response is used to reduce the uncertainty
regarding the weighted vector representing the DM’s preferences. This is a more straightfor-
ward method to elicit the DM’s preferences, when compared with standard techniques such
as AHP that require a good understanding of the model itself to be set up properly (Whitaker
2007).

We also considered a second research question related to the query selection process of
our active learning loop. Our framework evaluated the quality of a solution by considering
the max regret of the utility function with respect to compatible preference models. A related
myopically optimal query selection strategy in terms of the value of information is the setwise
minimax regret criterion (Viappiani and Boutilier 2020). A key point for the usability of our
framework is the formulation of questions for the DMwith a high value of information since
this can reduce the number of interactions with the DM. However, the setwise minimax regret
criterion is expensive in terms of computational time, thus it can delay the interaction with
the DM during the learning process. How can we reduce the query computation time while
still generating high informative queries? We addressed this problem by proposing two very
fast novel methods for query selection based on a measure that we call discrepancy.

The main contribution of this paper is therefore the development of an approach to a
supplier selection problem based on interleaving elicitation and optimization, including two
novel methods for generating queries for the decision-maker. This enables the preferred
solutions to be found with the decision-maker having to answer only a fairly small number
of natural queries involving pairwise comparisons between solutions.

This paper is organized as follows. Section 2 provides a literature review of the approaches
developed for supplier selection (Sect. 2.1) and of general strategies for preference elicitation
(Sect. 2.2). Our studywas inspired by a real-world supplier selection problemwith evaluation
criteria, constraints and instance structure coming from a medium-size factory as part of a
manufacturing corporation. The assumptions made in relation to the problem definition are
discussed in Sect. 3. Some key mathematical notations used in the paper are presented in
Sect. 4. The structure of the framework is described in Sect. 5. The two main blocks of the
framework are:

– AMixed Integer Linear Programmingmodel used to solve the combinatorial optimization
problem (described in Sect. 5.1);

– Preference Elicitation strategies for computing the queries posed to the user (described
in Sect. 5.2).

Section 6 presents some of the computational results showing the performance of the frame-
work. We conclude with Sect. 7 discussing the framework, including the implications for
managers and decision-makers (Sect. 7.1), the implications for the theory (Sect. 7.2), and
potential future works (Sect. 7.3).
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(a) (b)

Fig. 1 Comparison of the decompositions used to solve multi-criteria supplier selection problems

2 Literature review

Thiswork fitswithin the scope of applyingAImethods to improve decisionmaking inmodern
factories. This is one of the pillars of the digital transformation brought about Industry 4.0.
Recently, Grover et al. (2020) provided a survey with guidelines to managers on applying AI
methods in different components of OM. AI methods aim at making decisions based on some
knowledge that is extracted from a source of data. This has been performed successfully in
many aspects of OM related to manufacturing, such as inventory optimization, the supply
chain, planning and scheduling, product design, etc. In this work, we focused on a multi-
criteria supplier selection, which is a fundamental aspect of OM (Verma and Pullman 1998;
Choi and Hartley 1996; Chou and Chang 2008). One of the challenges of this task was
determining the DM’s trade-offs among the evaluation criteria. One could consider historical
data for this purpose. However, the firm’s strategy may change dynamically and depend on
a number of intangible factors. We therefore adopted a preference learning technique based
on iterative online queries, whose answers allowed us to reduce the uncertainty of the DM’s
preferences. This approach is a technique that arose in the field of AI. Work on this topic
appears in leading AI journals and at some of the most prestigious AI conferences (see, e.g.,
Chajewska et al. (2000); Boutilier (2002); Braziunas and Boutilier (2007, 2008); Viappiani
and Boutilier (2020)). Our literature review focuses on the two main aspects of this paper.
The first is supplier selection, which is a class of problems that are traditionally tackled
using different MCDM, AI and optimization techniques. Section 2.1 reviews recent papers
related to this topic by discussing the proposed methodologies and the different constraints
and objectives included in the problem definition. The second aspect is related to AI methods
used for preference elicitation, which is at the core of the approach proposed in this work.
Section 2.2 provides an overview of previous work in this area.
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2.1 Approaches for supplier selection

The supplier selection literature is very rich with a wide variety of approaches that have
been developed and tailored to solve specific versions of the problem, with different con-
straints/objectives. See, for instance, the surveys (Weber et al. 1991; Aissaoui et al. 2007;
Ware et al. 2012; Zimmer et al. 2016) that provide a deep introduction to the quantitative
and qualitative methods used. Recent advances in supplier selection have been reviewed in
the pair of papers (Chai et al. 2013; Chai and Ngai 2020), with (Chai et al. 2013) analysing
123 papers published from 2008 to 2012, and Chai and Ngai (2020) considering 143 papers
from 2013 to 2018. This gives a sense of the number of works published in this area, which
makes a full review of these works beyond the scope of this section.

Industry 4.0 is leading to the introduction of new aspects in supplier selection, which
are included in recent studies. Sustainability was considered in Giannakis et al. (2020),
where the authors developed an Analytic Network Process (ANP) method and used real data
collected via extensive surveys from experts in the UK and France. In the last few years,
circular manufacturing has been emerging as a novel production paradigm with reduced
production waste due to reuse and recycling. A dynamic decision support system (DSS) for
sustainable supplier selection in circularmanufacturingwas proposed inBehrouz et al. (2021)
where machine learning is used to maintain the criteria scores after the supplier engagement.
Sustainable procurement was studied in Kaur and Singh (2019) which focuses on designing
a resilient supply chain with respect to material procurement. They formulated a problem
to minimize the overall cost including carbon buying/selling in a trading environment. The
suppliers’ flexibility was one of the objectives considered in Bodaghi et al. (2018).

Other work has considered the “green” criterion to evaluate the suppliers, thus repre-
senting environmental impact. It includes many factors such as the type of packaging, the
reuse of materials and energy, the environmental management system, etc. An AHP-based
approach was proposed in Ecer (2020) and includes the evaluation of the suppliers accord-
ing to green aspects. The authors considered a home appliances manufacturing company as
their case study. Similarly, a green supplier evaluation system for a large chemical company
was proposed in Bai et al. (2019). Supplier selection has also been considered to reduce the
damage caused by natural disasters when relief items are urgently needed in large amounts.
The study conducted by Olanrewaju et al. (2020) proposes integrating the supplier selection
for the timely distribution of relief supplies. Similarly, another study (Balcik and Ak 2014)
tackled the problem from the perspective of organizations in humanitarian relief.

MCDM and mathematical programming methods for supplier selection have been refined
and improved in recent years from a methodological perspective. The general trend is to
manage incomplete/uncertain data in MCDM by taking into account fuzzy theory, usually
by integrating it into standard MCDM approaches. The study by Chang (2019) identifies
the best supplier in a supply chain by integrating the intuitionistic fuzzy weighted averaging
method and the soft set with imprecise data. A weighted fuzzy multi-objective model that
integrates supplier selection, order quantity allocation and scheduling problem was proposed
in Bodaghi et al. (2018). Fuzzy Analytic Hierarchy Process (FAHP) strategies were designed
in Ortiz Barrios et al. (2020), Kaur and Singh (2021) and Ecer (2020). A general weight-
consistent model for supplier selection and order allocation under uncertainty was proposed
in Suprasongsin et al. (2019), while a novel interval-valued intuitionistic fuzzy numbers-
based reference neighbourhood rough set approach, whose aim is to eliminate the poorest
supplier set, was defined in Bai et al. (2019).

The recent works onmathematical programming approaches have different researchmoti-
vations. A sustainable procurement combinatorial problem was modelled using a Mixed
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IntegerNon-Linear Program (MINLP) inKaur andSingh (2019).A stochasticmulti-objective
mathematical model for supplier selection in humanitarian relief was developed in Balcik and
Ak (2014). Some studies are devoted to strengthening the MILP formulations by exploiting
particular properties. As an example, model improvements to formulate non-linear discounts
in terms ofMILPwere discussed inAndrade-Pineda et al. (2017). Furthermore, aMILPmodel
with some specific valid inequalities and a MILP heuristic was developed for a multi-item
inventory lot-sizing problem with supplier selection in Cárdenas-Barrón et al. (2021). Goal
programming has also been used to handlemultiple objectives in supplier selection by solving
a mathematical program, such as in Taleizadeh et al. (2009) where the problem considered is
to be a multi-product, multi-constraint, bi-objective newsboy problem with discounts. A few
recent mathematical programming approaches manage data uncertainty by formulating the
problem in terms of stochastic programming. A p-robust supply chain network design with
uncertain demand and cost scenarios, where the supplier selection is integrated with the facil-
ity location and capacity problem,was studied inTian andYue (2014). The approach proposed
in Balcik and Ak (2014) for humanitarian relief is a stochastic programming approach based
on different scenarios and minimising the expected cost. Two stochastic models for optimal
order allocation, whose uncertainty lies in both the supply and the demand, were proposed in
Ray and Jenamani (2016). In He et al. (2009), the authors consider a multiobjective supplier
selection problem and convert it into a single objective, non-linear chance-constrained pro-
gramming problem. A multi-stage stochastic programming approach for supplier selection,
which models different types of natural disasters, was presented in Olanrewaju et al. (2020).

Exact approaches based on mathematical programming have a tendency not to be scalable
when the problem modelled is NP-hard. This often happens in supplier selection, and the
best supplier configuration is computed using means of metaheuristics approaches. Genetic
algorithms for supplier selection have been, for example, designed by Taleizadeh et al. (2009)
and He et al. (2009), while (Alejo-Reyes et al. 2021) proposed a Particle SwarmOptimisation
approach and a Differential Evolution approach.

Many recent supplier selection approaches are based on hybridising two or more tech-
niques. As an example, Shaw et al. (2012) hybridizes Fuzzy-AHP and FuzzyMulti-Objective
MILP. Mehdi (2017) mixes ANP, quality function deployment, and a Markov chain. As said
in the introduction, the main difference of our approach compared with the state-of-the-art
approaches for supplier selection is that the uncertainty of the DM’s utility function is itera-
tively reduced by asking a pairwise comparison of queries. Regarding the stochasticity of the
supplier selection problems, the current framework only takes into account a deterministic
problem. Future extensions may consider the inclusion of stochastic aspects in the MILP
model.

2.2 AI for preference elicitation

Preference elicitation is the process of assessing the preferences of a DM, which can be
used, for example, to recommend an alternative in a decision-making problem. Prefer-
ence elicitation procedures can be classified as content-based, collaborative filtering and
knowledge-based (Lu et al. 2015; Aggarwal et al. 2016). Content-based methods generate
recommendations based on their similarities with the past items liked by the same DM. Col-
laborative filtering recommends items to a DM by considering the preferences of similar
DMs. Knowledge-based recommendations are based on the relationships between the DM
and items such as constraints and preference relations. Here we adopted the latter approach
with a Multiattribute Utility Theory (MAUT) (Raiffa 1968) setting. MAUT is a branch of
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MCDM theory whose purpose is to support a DM in the process of selecting alternatives
evaluated using a fixed number of conflicting criteria. In this context, the DM is assumed
to be endowed with a real-valued utility function that evaluates multiattribute alternatives,
where an alternative s′ is preferred to another alternative s′′ if and only if s′ has a higher
value according to the DM’s utility function. This function can then be used for ranking or
recommending alternatives to the DM. In this context, preference elicitation is the process
of learning such a function. The goal of classical MAUT approaches (Fishburn 1967; Raiffa
1968; Farquhar 1984) is to precisely specify the DM’s utility function through a series of
questions to identify some key values of the utility function. However, experiments with real
users (Simon 1955; Tversky and Kahneman 1974; Pu et al. 2003) have shown that this pro-
cess can be a difficult and error-prone task. Furthermore, it is difficult to apply this approach
in a combinatorial domain since it can rapidly become expensive in terms of questions for
the DM.

From the 1980s onwards, artificial intelligence has beenwidely applied inMAUT contexts
to develop more robust preference elicitation systems. A major division in recent work on
preference elicitation is whether a Bayesian model is assumed over the parameters of the
utility function (e.g., the set of weights of the weighted sum value function), or if there is a
purely qualitative (logical) representation of the uncertainty. Bayesian approaches include,
for example, that shown in the work by Chajewska et al. (2000), Boutilier (2002), Viappiani
and Boutilier (2010) and Vendrov et al. (2020). Work involving a qualitative uncertainty rep-
resentation includes that byBoutilier et al. (2006), Braziunas andBoutilier (2007),Montazery
and Wilson (2016), Marinescu et al. (2013) and Toffano and Wilson (2020). In particular,
qualitative imprecise preference models based on the weighted sum utility function have
been considered in work such as that of Salo and Hämäläinen (2010), Marinescu et al. (2012)
and Kaddani et al. (2017). Bayesian methods have the advantage of being more robust with
respect to inconsistent input preferences at the expense of an increased computational burden.
Qualitative methods are in general faster but inconsistent query responses can compromise
the quality of the recommendation. This is because the DM’s inputs are translated into hard
constraints, reducing the space of the feasible parameters of the utility function. The wrong
answer by a DM could exclude the parameters corresponding to the real DM’s preferences. In
our framework, we adopted the latter approach since Bayesian methods would be practically
infeasible given the computational burden of our MILP model. In particular, we focused
on a qualitative approach based on the minimax regret criterion (Wang and Boutilier 2003;
Boutilier et al. 2006; Braziunas and Boutilier 2007, 2008). The max regret of an alternative
is the worst-case loss in terms of utility units, and the minimax regret criterion is used to
recommend an alternative that minimizes worst-case loss among the feasible set of param-
eters of the utility function. The practical effectiveness of the minimax regret criterion has
been proven in works such as that of Wang and Boutilier (2003), Boutilier et al. (2006) and
Braziunas (2012), and in particular during a study carried out with real users (Braziunas and
Boutilier 2010).

Different approaches have been explored to interact with the DM (see, e.g., Shin and
Ravindran 1991), but we have focused on pairwise comparisons of alternatives to simplify the
interaction with the DM. In the literature, there are several methods for query selection based
on geometric considerations on the feasible set of parameters of the utility function (Iyengar
et al. 2001; Ghosh and Kalagnanam 2003; Toubia et al. 2004; Teso et al. 2016). However,
these methods require a normalization of the objectives, which is not a straightforward task in
our context (see the discussion at the end of Sect. 5.1). A different approach was proposed in
Viappiani and Boutilier (2009) where the authors introduce the concept of setwise max regret
that can be used to evaluate the worst-case loss of a set of alternatives with respect to the
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feasible weights of the utility function. This measure can also be used to evaluate comparison
queries defined as a set of alternatives. In fact, the set of alternatives that minimizes the
setwise max regret is a myopically optimal query set with respect to the minimax regret
criterion (Viappiani and Boutilier 2020). This makes the use of this measure compelling in
our framework since we recommend alternatives with respect to the minimax regret criterion.
However, the computation of such a query is demanding. Therefore we propose two new
methods for query selection based on a novelmeasure thatwe call discrepancy. Thesemethods
are much faster than evaluating the setwise max regret of all possible query sets, and our
experimental results show a similar number of iterations with the DM that were used to
achieve convergence.

3 Problem requirements

The problem requirements for which our framework is designed come from a real-world
study. More specifically, we interacted with the supply chain management of a medium-
sized manufacturing factory by asking for information about their internal supplier selection
process. As a result of this interaction, we defined a deterministic combinatorial optimization
problemwith a set of supplier evaluation criteria and constraints. The instances considered in
Sect. 6 were artificially generated but they are aligned with the real-world scenario presented.

Given a certain time horizon, the problem consists of computing the quantities to be
ordered from each supplier to satisfy the demand for each required component. The upper
and lower limits on the number of suppliers per component are considered to be an input.
This relates to the fact that the DM may want to have a number of backup suppliers in case
of unexpected disruptions. A suppliers’ catalogue is provided as an input as well, including
the availability of each component for each supplier and the different prices.

Four different evaluation criteria were considered in the factory supplier selection process.
The first criterion considered was cost, including both the direct costs for all of the materials
and the activation cost of establishing business relationships with the suppliers. The price
breaks (Chaudhry et al. 1993) discount scheme was adopted, meaning that the unit cost is
defined depending on how many components of the same type are ordered from the same
supplier. This is the standard mechanism adopted by the factory’s suppliers to determine the
unit costs for a certain material enquiry. The second and third criteria were the supplier lead
time and lateness. They represent the time agreed with a supplier to provide the materials
and the lateness with respect to the due date, respectively. The last criterion was supplier
reputation. This is a score assigned by internal experts to each supplier upon by consider-
ing different aspects such as disruption risk, the relationship between the company and the
supplier, and the strategic vision of the firm.

The solutions were evaluated with a utility function defined as the weighted sum of the
four evaluation criteria, where the (unknown) weights define the DM’s preferences. Our
goal was to define a procedure to find a suitable solution with a low cognitive effort for the
DM. Instead of precisely computing the DM’s weights through elaborated interviews as in
standard MCDM techniques, we adopted an active learning loop to reduce the uncertainty
of the DM’s preferences by asking comparison queries until the max regret of a potential
recommendation is below a fixed threshold.
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4 Terminology and definitions

This section presents some of the key notations used in this paper. Let P be a combinatorial
maximization problem, and let S be the set of its feasible solutions. Let us defineW0 = {w ∈
IRn : ∑n

i=1 wi = 1, wi ≥ 0,∀i = 1, . . . , n} to be the initial user preferences state space,
i.e., the set of all the normalized non-negative weighted vectors w. Here, n is the number of
criteria, so that there is a weight wi for each criterion i . In our supplier selection framework,
we consider four criteria, so n = 4. We consider n functions, gi : S → IR ∀i ∈ {1, . . . , n}
over S and define the vector g(s) = (g1(s), . . . , gn(s)) as the utility vector of solution s ∈ S.
The scalar utility of s ∈ S with respect to w ∈ W0, i.e., the objective function of P , is given
asw · g(s) = ∑n

i=1 wi gi (s). For weighted vectorw ∈ W0, let sw ∈ S be an optimal solution
of P with respect to w, that is, a solution sw such that w · g(sw) ≥ w · g(s) for any s ∈ S.

A weighted vector w ∈ W0 identifies a specific set of trade-offs among the functions gi
to be optimized in P . Thus, given two solutions s′, s′′ ∈ S and a weighted vector w ∈ W0,
s′ is at least as good as s′′ with respect to w, if and only if w · g(s′) ≥ w · g(s′′), i.e.,
w · (g(s′) − g(s′′)) ≥ 0. This indicates that the scalar utility of the solution s′ with respect
to w is at least as good as the scalar utility of the solution s′′ with respect to w.

Let VΛ be a convex polyhedron in IRn defined using a set of non-strict linear inequalities
Λ; we define WΛ as the convex and closed (and thus compact) polytope WΛ = W0 ∩ VΛ.
The linear inequalities in Λ can arise from the input preferences of the form s′ is preferred
to s′′, leading to the constraint w · (g(s′) − g(s′′)) ≥ 0.

Let Ext(WΛ) be the set of extreme points of a user preference state space WΛ. For each
extreme point w we choose an optimal solution sw , and we define XΛ (abbreviated to X )
to be the set {sw : w ∈ Ext(WΛ)}. We say that X is a set of optimal solutions with respect
to Ext(WΛ) (given the constraints represented by Λ).

5 The structure of the framework

The main novelty of our supplier selection framework is the fact that the importance of
each criterion is defined using a series of interactions with the user, with an interleaving of
the elicitation and optimization. In this way, the user drives the solution process in order to
reduce the uncertainty with respect to the DM’s trade-offs among the objectives. We define
the combinatorial optimization problem P using the MILP model in Sect. 5.1 below. As in
the previous section, let S be the set of all the feasible solutions of P . The objective function
considered in P is a weighted sum of four functions f1(s), f2(s), f3(s), f4(s), associating
a measure of the cost, lateness, lead time and reputation with a feasible solution s ∈ S . The
analytic form of these functions is described in Sect. 5.1.

Theweighted sum used as the objective function ofP is−w1 f1(s)−w2 f2(s)−w3 f3(s)+
w4 f4(s), where wi ∈ [0, 1] (for each i ∈ {1, 2, 3, 4}) is the weight of the i th function. The
first three signs are negative because the first three functions have to be minimized, whereas
f4(s) has to be maximized. The parameters of the MILP model come from different sources.
Data like the tariffs and the components’ availability for each supplier comes from the supplier
catalogue. On the other hand, the demand for the components are given by an external demand
predictor which is not discussed in this paper. Finally, a lateness/lead time predictor is used
to predict supplier performances, providing coefficients to be used in f2(s) and f3(s). The
predictions are calculated from a database of component orders, containing a series of past
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Fig. 2 Structure of the proposed framework

orders. The predictor and database of the past orders used in the framework are described in
“Appendixs C” and “B”, respectively.

The aim of the learning loop described in Fig. 2 is (ideally) to compute an optimal solution
sw∗ to the combinatorial problem associated with the decision-maker’s unknown preferences,
indicated by the vector w∗ = (w∗

1, w
∗
2, w

∗
3, w

∗
4) ∈ W0. As an example, if a decision-maker

only cares about minimize the cost, then the associated weighted vector will be (1, 0, 0, 0).
In this case, it is easy to define w∗ a priori, but more typically, the trade-offs among the
objectives are harder to define. In general, the precise definition of the preference vector w

using standard MCDM methods is liable to be a difficult and error-prone task. As we said
in the introduction, the framework therefore uses an alternative approach based on reducing
the uncertainty of the DM’s preferences by iteratively asking simple pairwise comparison
queries.

Let us consider, as a queryQ, a subset of S, associated with a question of the form: which
solution do you prefer among the solutions in Q? In our framework, we used queries of the
form Q = {s′, s′′} to learn about w∗. This query amounts to do you prefer solution s′ or s′′?
The answer implies an inequality of the type w · g(s′) ≥ w · g(s′′) or w · g(s′) ≤ w · g(s′′),
depending on the DM’s preference between s′ and s′′. In each iteration of the framework,
Λ is the polyhedron defined as the set of inequalities derived from the user’s answer to the
queries presented. These inequalities reduce the user preference space state W0 to WΛ, as
indicated in Sect. 4. The set S will tend to be huge, so it will not be feasible to compute it
explicitly. The framework makes use of the set X of optimal solutions associated with the
extreme points of WΛ, as defined in the last section.

The following lines describe how the framework works in practice, referring to the block
diagram in Fig. 2 and the pseudocode depicted in Algorithm 1. The first step is to execute the
performance predictors in order to compute the lateness and lead time estimation for each
supplier (line 3 of Algorithm 1). The components’ cost and availability per supplier need to
be retrieved from the suppliers’ catalogue (line 4). These are input parameters for the MILP
model described below in Sect. 5.1.
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Algorithm 1 Supplier Selection Framework
1: procedure SupplierSelectionLearningLoop
2: Compute MILP parameters
3: Run performance predictors
4: Retrieve data from the suppliers’ catalogue
5: Λ ← ∅
6: WΛ ← W0
7: while true do
8: Update X by running the MILP model on the new vertexes ofWΛ

9: s ←SelectRecommendedSolution(WΛ,X )
10: if StopCriterion(WΛ,X ) then return s
11: if DM accepts s then return s
12: (s′, s′′) ← ComputeQuery(WΛ,X )
13: Question to the DM: Do you prefer s′ or s′′?
14: Update Λ according to the user’s answer

The next step is to initialize the set of constraints Λ to ∅ and thusWΛ toW0 (lines 5 and
6). The MILP model is then solved for each extreme weighted vector w ∈ Ext(WΛ) (line
8). When line 8 is executed for the first time, the combinatorial problem is solved four times
by optimizing it with respect to each single function fi (s), i = 1, . . . , 4; this is because the
extreme points ofW0 are (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and (0, 0, 0, 1). Recall X is the
set of solutions generated, following the definition in Sect. 4. A solution s ∈ X is selected
from those generated through the means of the function SelectRecommendedSolution
WΛ,X called at line 9. A stopping criterion is then checked by calling the function StopCri-
terionWΛ,X (line 10) which determines if WΛ allows one to recommend a solution with
a worst-case loss below a certain threshold. If the function returns true, the solution s is
provided as an output. Otherwise, we show to the DM the solution s (line 11). If the DM
accepts the solution, we stop the algorithm. If the DM is not happy with the solution pro-
posed, a pair of solutions s′, s′′ ∈ X is chosen using a user-preference elicitation strategy,
implemented by the function ComputeQuery WΛ,X (line 12). The DM then answers the
following question (line 13): Do you prefer solution s′ or solution s′′? The answer is used to
reduce the uncertainty of the DM’s preferences by updating Λ and recomputing WΛ (lines
13–14). In this stage, line 8 is executed again by considering the updated Λ and WΛ and
the MILP model will run on the extreme points of WΛ that have not been considered in the
previous iterations.

As shown in Fig. 2, the main blocks of the framework are the MILP model and the
query generation. Sections 5.1 and 5.2 describe these two blocks, with Sect. 5.2 also
including the description of the functions SelectRecommendedSolutionWΛ,X , Com-
puteQueryWΛ,X and StopCriterionWΛ,X .

5.1 Themixed integer linear programmingmodel

Let us consider a set of suppliers I and a set of components C. A set of components Ci is
defined for each supplier i ∈ I, consisting of all of the components j ∈ C that can be provided
by supplier i . The unit cost for a component from a supplier depends on the quantity bought,
so multiple unit costs are provided by each supplier. A unit cost is associated with a certain
quantity interval, meaning that the unit cost is the same for any quantity in the interval. The
set Ti, j is the set of all the disjoint quantity intervals for supplier i ∈ I and component
j ∈ Ci , whose union covers the setN of positive whole numbers. Let us define the parameter
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mi, j,t ∈ N as the minimum amount of component j ∈ Ci to be ordered from supplier i ∈ I

in the quantity interval t ∈ Ti, j . Consequently, Ti, j = (∪|Ti, j |−1
t=1 [mi, j,t ,mi, j,t+1 − 1]) ∪

[mi, j,|Ti, j |,+∞), wheremi, j,1 = 0. The unit cost associated with a quantity interval t ∈ Ti, j

defines a certain tariff and it is indicatedwith ci, j,t . The value ai ∈ R+ indicates the activation
cost of a supplier i ∈ I. Note that all the parameters mentioned so far, regarding components
cost and availability, come from the suppliers’ catalogue for the factory.

The parameters li, j,t ∈ R+ and δi, j,t ∈ R+ represent respectively the expected lead
time and the expected lateness of component j ∈ Ci ordered from i ∈ I in the quantity
interval t ∈ Ti, j . These parameters are computed by the lateness/lead time predictor. The
value r j ∈ {1, . . . , 100} is the reputation of supplier i ∈ I. This value is assigned by internal
experts, as mentioned in Sect. 3. The values λ j,min, λ j,max ∈ N are the bounds on the number
of suppliers for component j ∈ C. Finally, Dj ∈ N is the estimated demand of component
j ∈ C.

Our MILP model is based on the following integer decision variables:

– xi, j,t ∈ N is the number of components j ∈ Ci ordered from supplier i ∈ I in the quantity
interval t ∈ Ti, j ;

– yi, j,t ∈ {0, 1} is equal to 1 if a positive quantity of component j ∈ Ci is ordered from
i ∈ I in the quantity interval t ∈ Ti, j , and equals 0 otherwise;

– zi ∈ {0, 1} is equal to 1 if at least one component is ordered from the supplier i ∈ I, and
equals 0 otherwise;

– γ1, γ2, γ3, γ4 ∈ R+ are auxiliary variables used to model the min-max/max-min formu-
lations of the objectives.

Note that the variables xi, j,t and yi, j,t have three indexes in order to take into account the
different costs, lead time and lateness for each triple of supplier i , component j and quantity
interval t .

A feasible solution s ∈ S is determined by a feasible assignment to all these variables. The
four functions f1(s), f2(s), f3(s), f4(s) are defined as follows. First, the cost is computed
as:

f1(s) =
∑

i∈I, j∈C, t∈Ti, j
ci, j,t xi, j,t +

∑

i∈I
ai zi . (1)

Both direct costs and the suppliers’ activation costs are taken into account. The goal is to
minimize this quantity. The second and third objectives are:

f2(s) = max
i∈I, j∈Ci

∑

t∈Ti, j
li, j,t yi, j,t ; (2)

f3(s) = max
i∈I, j∈Ci

∑

t∈Ti, j
δi, j,t yi, j,t . (3)

They represent the maximum expected lead time and the maximum expected lateness related
to a certain component and supplier, which are considered to be measures of the quality of
service. We want to minimize these quantities. The fourth objective is

f4(s) = min
i∈I:zi=1

ri , (4)

which we want to maximize since it indicates the minimum reputation among the suppliers
considered in the solution.
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The complete MILP model is as follows:

max−w1γ1 − w2γ2 − w3γ3 + w4γ4 (5)
∑

i∈I

∑

t∈Ti, j
xi, j,t ≥ Dj ∀ j ∈ C (6)

xi, j,t ≥ mi, j,t yi, j,t ∀i ∈ I,∀ j ∈ C,∀t ∈ Ti, j (7)

xi, j,t ≤ M2yi, j,t ∀i ∈ I,∀ j ∈ C,∀t ∈ Ti, j (8)
∑

t∈Ti, j
yi, j,t ≤ 1 ∀ j ∈ C,∀i ∈ I (9)

∑

i∈I,t∈Ti, j
yi, j,t ≥ λ j,min ∀ j ∈ C (10)

∑

i∈I,t∈Ti, j
yi, j,t ≤ λ j,max ∀ j ∈ C (11)

γ1 =
∑

j∈C,i∈I,t∈Ti, j
ci, j,t xi, j,t +

∑

i∈I
ai zi (12)

γ2 ≥
∑

t∈Ti, j
li, j,t yi, j,t ∀ j ∈ C,∀i ∈ I (13)

γ3 ≥
∑

t∈Ti, j
δi, j,t yi, j,t ∀ j ∈ C,∀i ∈ I (14)

γ4 ≤ M2(1 − zi ) + ri zi ∀i ∈ I (15)
∑

j∈C,t∈Ti, j
yi, j,t ≤ M3zi ∀i ∈ I (16)

∑

j∈C,t∈Ti, j
yi, j,t ≥ zi ∀i ∈ I (17)

where M1, M2, M3 ∈ R+ are large enough (“big-M”) constants and the other vari-
ables/parameters are defined previously. The objective function (5) is the weighted sum
of the auxiliary variables γ1, γ2, γ3, γ4, where the signs are minus for the functions being
minimized and plus for the one being maximized. Constraint (6) imposes the condition that
the demand per part has to be satisfied. Constraints (7) and (8) are linking constraints between
xi, j,t and yi, j,t , which state that yi, j,t is active if and only if xi, j,t is greater than the min-
imum quantity mi, j,t to unlock the tariff. Constraint (9) forces it so then only one tariff is
used when we order a certain quantity from a supplier. Constraints (10) and (11) impose
the bounds on the number of suppliers to be selected for each component. Constraint (12)
links γ1 with the analytical expression of f1(s). Constraints (13) and (14) are used for the
min-max formulations, so then the auxiliary variables γ2, γ3 are linked to f2(s), f3(s) when
the model is solved. Similarly, constraint (15) is used for the max-min formulation regarding
f4(s). Expression M2(1− zi ) + ri zi is equal to ri in the case where the supplier is selected,
and equal to M2 otherwise, meaning that the constraint (15) is disabled in the latter case. This
expression is then linked to γ4. Finally, constraints (16) and (17) are the linking constraints
among yi, j,t and zi , imposing that a certain supplier is active if and only if one component
is ordered from it.

In standard interactive preference elicitation models, it is common to normalize the objec-
tives. In this case, this is not a straightforward operation since normalization requires the
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minimum and the maximum value of each objective, and we are dealing with a combinato-
rial problem. One could consider maximize and minimize each objective, but −γ2, −γ3 and
γ4 are not bounded from below with our problem formulation. Computing an upper bound
of the cost maximize γ1 does not make much sense since in our model, the quantity ordered
of each component is bounded from above by an arbitrary big number M2.

The normalization of the objectives can be useful to maintain a similar scale for the
weights representing the DM’s preferences with respect to the evaluation criteria. This is very
important for query selection strategies based on geometric consideration of the polytope
representing the user preferences such as Iyengar et al. (2001), Ghosh and Kalagnanam
(2003), Toubia et al. (2004) and Teso et al. (2016). In our framework, we adopted query
selection strategies based on the regret of the whole utility function, therefore such rescaling
is not essential.

5.2 User-preference elicitation approach

A key point for a good user experience is to reduce the number of interactions with the user
by asking informative queries. In this section, we define the different strategies used for the
query generation in order to study their impact on the number of iterations required by the
framework to converge towards a stopping criterion. Sections 5.2.1 and 5.2.2 introduce some
of the preliminary concepts. Section 5.2.3 presents the different query generation strategies,
each corresponding with a different implementation of the function ComputeQueryWΛ,X
mentioned in Algorithm 1. Section 5.2.4 defines the stopping criterion used in the framework,
which is the implementation of StopCriterionWΛ,X .

5.2.1 Maximum regret

Applying the standard definition, the maximum regret of a feasible solution s ∈ S with
respect to the user preference state space WΛ is given by:

MRWΛ(s,S) = max
s′∈S

max
w∈WΛ

w · (g(s′) − g(s)). (18)

Intuitively, MRWΛ(s,S) represents the worst-case loss due to recommending the solution s
with respect to the user preference state space WΛ and all of the possible recommendations
s′ ∈ S. Note thatMRWΛ(s,S) ≥ 0 since s ∈ S, and s′ = s gives w · (g(s′) − g(s)) = 0.

As mentioned earlier, computing the set S of feasible solutions is not practically feasible.
However, the following proposition (based on a well-known property of maximum regret,
see e.g., Timonin 2013) allows us to compute the maximum regret of a solution s ∈ S with
respect to any w ∈ WΛ and s′ ∈ S using just the set Ext(WΛ) of extreme points of WΛ and
the corresponding set X of optimal solutions.

Proposition 1 Let S be the set of all the feasible solutions with respect to WΛ, let s be
an element of S and let X be a set of optimal solutions with respect to Ext(WΛ). Then
MRWΛ(s,S) = MRExt(WΛ)(s,X )

Proof WΛ is a continuous space but since the scalar utility of a solution s ∈ S is a
linear function of w, the regret of s is maximized on an extreme point of WΛ, i.e.,
MRWΛ(s,S) = MRExt(WΛ)(s,S). Since X is a set of optimal solutions with respect
toExt(WΛ), thenMRExt(WΛ)(s,S)which equals maxs′∈S maxw∈Ext(WΛ) w ·(g(s′)−g(s)) =
maxs′∈X maxw∈Ext(WΛ) w · (g(s′) − g(s)) = MRExt(WΛ)(s,X ). ��
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The argument returned by SelectRecommendedSolutionWΛ,X (a method defined in
Algorithm 1) will be a solution s ∈ X that minimizes MRExt(WΛ)(s,X ).

The concept of maximum regret can be extended in a setwise sense in order to evaluate the
worst-case loss of a set of solutions (Viappiani and Boutilier 2009, 2011). Let ValS(w) be
maxs∈S w · g(s) (the maximum scalar utility we can get from solutions s ∈ S assuming that
the weighted vector is w ∈ WΛ). The setwize maximum regret (SMR) for a subset Q ⊆ S
with respect to the user preference state space WΛ is then defined as:

SMRWΛ(Q,S) = max
s′∈S

max
w∈WΛ

(w · g(s′) − max
s∈Q w · g(s))

= max
w∈WΛ

(ValS(w) − ValQ(w)).
(19)

Intuitively, the SMR of a setQ ⊆ S represents the worst-case loss ofQwith respect to the
user preference state space WΛ and the set of possible solutions S.

Note that in this case we are evaluating a set rather than a single element. This means that
the setwise maximum regret cannot be computed by considering only the extreme points of
WΛ. In order to consider the whole user preference state spaceWΛ, the value SMRWΛ(Q,S)

can be computed as maxs′∈S SMRWΛ(Q, {s′}). Each sub-problem SMRWΛ(Q, {s′}) can be
computed, using a linear programming solver, as the maximum value of real variable α

subject to a constraint w · (g(s′) − g(s)) ≥ α for each s ∈ Q, where w is constrained to lie
in WΛ.

5.2.2 Discrepancy measure

Given v ∈ WΛ, recall from Sect. 4 that sv ∈ S is a corresponding optimal solution computed
from the discrete optimization problem, we define the discrepancy of s ∈ S with respect to v

as Dv(s) = v · (g(sv) − g(s)). This is a measure of how good the solution s is, assuming
that the user weighted vector is v. Note that Dv(s) ≥ 0 for any s′ ∈ S since sv is an optimal
solution with respect tov, i.e., v · g(sv) ≥ v · g(s) for any s ∈ S. We will use this measure
to select a query composed of a pair su, sv ∈ X of solutions with high values of Dv(su) and
Du(sv). The idea is to ask the user to express a preference between two optimal solutions
that are maximally different with respect to the corresponding weighted vectors, in order to
reduce as much as possible the uncertainty with respect to the DM’s preferences.

Because the computation of set S is impractical, we limited our approach to the computa-
tion of the set X of optimal solutions computed by a linear programming solver with respect
to the extreme points Ext(WΛ) of the user preference state space W . According to Propo-
sition 1, MRWΛ(s,S) = MRExt(WΛ)(s,X ) = maxv∈Ext(WΛ) maxs′∈X (v · (g(s′) − g(s))),
which can be written as maxv∈Ext(WΛ)(v · (g(sv) − g(s))). This shows that the maximum
regret of a solution can be expressed using the discrepancy function:

MRWΛ(s,S) = MRWΛ(s,X ) = max
v∈Ext(WΛ)

Dv(s). (20)

5.2.3 Query generation

Let Y be a non-empty subset of S. We say that a solution s′ ∈ Y is undominated in Y with
respect toWΛ if there does not exist s′′ ∈ Y such that (i)w ·g(s′′) ≥ w ·g(s′) for allw ∈ WΛ,
and (ii)w ·g(s′′) > w ·g(s′) for at least onew ∈ WΛ. We say that Y is equivalence-freewith
respect toWΛ if Y has no equivalent solutions in WΛ, i.e., there are no differing elements
s′, s′′ ∈ Y such that w · g(s′′) = w · g(s′) for all w ∈ WΛ. We say that a query Q = {s′, s′′}
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is informative if the corresponding cut generated by the user answer will reduce the user
preference state space, regardless of which answer is received, i.e., if there exists u, v ∈ WΛ

such that u · g(s′) > u · g(s′′) and v · g(s′′) > v · g(s′).

Proposition 2 If a set of solutions Y is equivalence-free and it contains only undominated
elements, then any query Q = {s′, s′′} with s′, s′′ ∈ Y and s′ �= s′′ is informative.

Proof Consider any query Q = {s′, s′′} with s′, s′′ ∈ Y and s′ �= s′′. Since Y only contains
undominated elements and is equivalence-free, we have that s′′ does not dominate s′ and is
not equivalent to it. So there exists u ∈ WΛ with u · g(s′) > u · g(s′′). Similarly, there exists
v ∈ WΛ with v · g(s′′) > v · g(s′), showing that Q = {s′, s′′} is an informative query. ��

For example, with Ext(WΛ) = {u = (1, 0, 0), v = (0.5, 0.5, 0), t = (0, 0, 1)} and
X = {su = (2, 0, 2), sv = (2, 2, 0), st = (0, 2, 2)}), if we select the query Q = {su, st }
and the user answer is su , then the cut w · g(su) ≥ w · g(st ) will not reduce the space WΛ.
The solution st is dominated by su since u · g(su) > u · g(st ), v · g(su) = v · g(st ) and
t · g(su) = t · g(st ). Therefore if we had first removed the dominated elements of X then the
query Q = {su, st } could not have been selected.

Let UDWΛ(X ) be the set of undominated solutions of X with respect toWΛ (which is
always non-empty). Note that UDWΛ(X ) = UDExt(WΛ)(X ) since the scalar utility of a
solution is a linear function with respect tow ∈ WΛ. We can compute UDWΛ(X ) and at the
same time make X equivalence-free as follows. If it is the case that w · (g(s′) − g(s′′)) = 0
for all w ∈ Ext(WΛ), then we remove either s′ or s′′. We then remove all s′′ ∈ X such that
there exists s′ ∈ X with w · g(s′′) ≤ w · g(s′) for all w ∈ Ext(WΛ).

Once we make X equivalence-free and devoid of dominated elements, we can proceed
with the query selection process.We considered the following three methods to select a query
Q = {su, sv} from X (with their relative performance being compared in Sect. 6):

1. Setwise min max regret (SMMR): select a query Q ⊆ X with |Q| = 2 that minimizes
SMRWΛ(Q,X ).

2. Max min discrepancy (MMD): select a query Q ⊆ X with |Q| = 2 that maximizes
MMD(Q) = min(Dv(su), Du(sv)).

3. Max discrepancy sum (MDS): select a query Q ⊆ X with |Q| = 2 that maximizes
MDS(Q) = Dv(su) + Du(sv) = (u − v) · (g(sv) − g(su)).

Each of thesemethods can be used to implementComputeQueryWΛ,X used inAlgorithm1.
SMMRcombines the quality of the solutionswith beingmaximally informative (Viappiani

and Boutilier 2009). This ensures a good diversity of solutions shown to the user. However,
computing a query that minimizes the setwise maximum regret is quite expensive since we
need to solve the O(n3) linear programming problems, where |X | = n. This is because
we have to evaluate the SMR of each possible query Q, and for each query Q we need to
solve O(n) linear programming problems (see Sect. 5.2.1). MDS and MMD are two simpler
methods that we developed that consider only the two weighted vectors associated with the
solutions composing the query rather than the whole user preference state space WΛ. The
aim is still to be maximally informative but with a lower complexity for the evaluation of
each query. In this case, the most expensive operation in the evaluation of a query is the
dot product. We can also store and reuse the value of a query for subsequent iterations in
cases where the corresponding extreme points are not removed by the preference elicitation
process.

A recent paper (Benabbou and Lust 2019) proposed a similar interactive preference elic-
itation procedure, i.e., the queries for the user are computed using the solutions associated
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with the extreme points of the polytope representing the preferences learned so far. From
the experimental results, it looks like the best method for query selection wasMax-Dist, i.e.,
computing the query as the pair of solutions that maximize the corresponding Euclidean dis-
tance. During the development of our framework, we considered this method but discarded
it since our initial experimental results indicated that it did not perform well compared to
the other methods we have presented in this paper. We believe that the poor efficacy of this
method applied in our context is due to its high sensitivity to the scales of the objectives of
the utility function to be optimized. In fact, this method is designed for an objective function
with normalized evaluation criteria, but such a normalization is not feasible for our problem
formulation (see the end of Sect. 5.1). Note that the idea behind our MDS method is some-
what similar, since we selected a pair of solutions that maximize (u − v) · (g(sv) − g(su)),
i.e., the dot product between (i) the difference between the corresponding weighted vectors,
and (ii) the difference of the utilities of the corresponding extreme points. It may well be that
MDS performs better in our context because it is much less sensitive to any changes in the
particular choice of utility scales.

5.2.4 Stopping criterion

Let NOWΛ(S) be the set of the necessarily optimal solutions of S with respect toWΛ, i.e.,
the set of solutions s′ ∈ S such that w · (g(s′) − g(s′′)) ≥ 0 for any s′′ ∈ S and for any
w ∈ WΛ. These are the solutions that are optimal with respect to every consistent weighted
vector. Note that usually there are no necessarily optimal solutions, unlessWΛ is a small set.
Also, if there is more than one necessarily optimal element, they are all equivalent. If there
exists a solution s′ ∈ S such that Dv(s′) = 0 for all v ∈ Ext(WΛ), sinceWΛ is a convex and
compact set, there is no solution better than s′ with respect tothe user preference state space
WΛ, i.e., s′ ∈ NOWΛ(S). As is well known (see e.g., Timonin 2013 or Bourdache and Perny
2019), s′ ∈ NOWΛ(S) if and only if MRWΛ(s′,S) = 0. These equivalences are expressed
more formally by the following proposition.

Proposition 3 Let s ∈ S be a feasible solution, then the following statements are equivalent:

(a) Dv(s) = 0 for all v ∈ Ext(WΛ);
(b) s ∈ NOWΛ(S);
(c) MRWΛ(s,S) = 0.

Proof (a)⇒(b): If Dv(s) = 0 for each v ∈ Ext(WΛ), then v · (g(sv) − g(s)) = 0 for each
v ∈ Ext(WΛ). Therefore, since sv is an optimal solution with respect tov, s is optimal for
all v ∈ Ext(WΛ), then w · (g(s) − g(s′)) ≥ 0 for each w ∈ Ext(WΛ) and for any s′ ∈ S.
Since WΛ is convex and compact, any w′ ∈ WΛ can be expressed as a convex combination
of extreme points in Ext(WΛ) = {w1, . . . , wn}, i.e., w′ = ∑n

i=1 λiwi for some λi ∈ [0, 1]
such that

∑n
i=1 λi = 1, then w′ · (g(s) − g(s′)) = ∑n

i=1 λiwi (g(s) − g(s′)) ≥ 0, and then
s is optimal for any w′ ∈ WΛ, i.e., s ∈ NOWΛ(S).

(b)⇒(c) If s ∈ NOWΛ(S), then w · (g(s′) − g(s)) ≤ 0 for any s′ ∈ S and for any
w ∈ WΛ. ThereforeMRWΛ(s,X ) = maxs′∈X maxw∈WΛ(w · (g(s′) − g(s))) ≤ 0, but since
MRWΛ(s,X ) ≥ 0, we haveMRWΛ(s,X ) = 0.

(c)⇒(a) IfMRWΛ(s,X ) = 0, sinceMRWΛ(s,X ) = maxv∈Ext(WΛ) Dv(s) (seeSect. 5.2.2)
and Dv(s) ≥ 0 for any v ∈ WΛ, then Dv(s) = 0 for all v ∈ Ext(WΛ). ��

Because of Proposition 3, if we find a solution s ∈ X such that Dv(s) = 0 for each
v ∈ Ext(WΛ), we can stop the algorithm and recommend s to the user since it will be an
optimal solution with respect to any w ∈ WΛ.
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Our iterative procedure is possible to repeat until we find a necessarily optimal solution
in X . However, if there are a large set of solutions that are optimal with respect to similar
weighted vectors, we might need too engage in too many interactions with the user in order
to find a necessarily optimal solution, obtaining only small improvements in each iteration.
Because of this, we used, as a stopping criterion, the condition that the minimax regret is
small. The minimax regret is zero if and only if there is a necessarily optimal solution.
We therefore implemented the function StopCriterionWΛ,X defined in Algorithm 1 as
follows. At each iteration we checked the maximum regret of each solution s ∈ X and if
there is at least one solution with a maximum regret lower than a specific threshold ε, we
stop the algorithm and recommend the solution with a minimum max regret. Furthermore,
in each iteration, we show the solution s ∈ X minimize the max regret so then the DM can
stop the execution if the proposed solution is good enough.

6 Computational experiments

The aim of this section was to assess the computational effectiveness of the framework by
considering the three different preference elicitation strategies described in Sect. 5.2.3. Two
different performance measures were considered: the number of queries generated and the
overall computational time required to reach the stopping criterion. The number of queries
generated is equivalent to the number of interactions with the user, which is an important
measure of the framework usability. In contrast with the computational time, this performance
measure focuses on measuring the quality of the user preferences strategy adopted, and it
does not depend on the approach used to solve the combinatorial problem.

The computational experiments were performed on randomly generated instances that
represent realistic scenarios as described in Sect. 6.1. Section 6.2 presents the computational
results and discusses how the framework performs under different conditions.

6.1 Instances structure

Each instance considered was generated by considering, as an input, the number of suppliers
|I|, the number of components |C| and the density parameter ρ ∈ R, where the latter enforces
that the total number of pairs (i, j), (where supplier i ∈ I can provide component j ∈ C)
is equal to ρ · |I| · |C| rounded to the nearest integer. The component availability of each
supplier was randomly assigned such that the overall density ρ was enforced using the
procedure described in “Appendix A”.

The instances were structured in order to reflect a scenario in which the firm needs a
large number of low price components and a small number of expensive ones. Bearing this
in mind, the set of components C was partitioned into three categories: Cheap, Average and
Expensive, which included 75%, 20% and 5% of the overall number of components. The
demand Dj of each component j ∈ C depended on its category. It was sampled from a
Gaussian distribution with a mean μd

j and standard deviation σ d
j (discarding values that are

less than or equal to zero), using the values reported in Table 1.
The unit cost of each component depends on its category, the supplier and the quantity

ordered. An average cost μc
j per component j ∈ C was computed by considering a uniform

distribution over the interval associated with the component category, as defined in Table 2.
The unit cost of a component provided by a supplier i ∈ I was then sampled with a uni-
form distribution on the interval [0.9μc

j , 1.1μ
c
j ]. Finally, a random discount was considered
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Table 1 Mean and standard
deviations of the Gaussian
distribution used to sample the
demand of a component with
respect to each category

Cheap Average Expensive

μd
j 3000 600 90

σ d
j 750 150 22.5

Table 2 Intervals of the uniform
distributions used to sample the
mean cost of the components
with respect to each category

Cheap Average Expensive

[0.05, 3] [4, 30] [50, 200]

Table 3 Discount intervals per
component category and quantity
ordered

Quantity Discount

Cheap

1–750 0%

751–1000 [3,7]%

1001–1250 [8,12]%

>1251 [13,17]%

Average

1–150 0%

151–200 [3,7]%

201–250 [8,12]%

>251 [13,17]%

Expensive

1–20 0%

21–30 [3,7]%

31–40 [8,12]%

>41 [13,17]%

to compute the costs, by sampling uniformly on the intervals indicated in Table 3, which
depended on the quantity ordered. The lower limits on the quantities indicated in the table
represent the coefficients mi, j,t of Eq. 7. By following the steps described above, the unit
cost parameters ci, j,t were computed.

The activation costs ai (for i ∈ I) were defined such that the impact on the overall cost
function is of the same order of magnitude as the direct costs. The following steps were
followed in order to achieve this goal. Let μc

j,T OT = ∑
j∈C Dj ·μc

j be the average total cost

to satisfy the whole demand of all components. Assuming that we rely on only |I|
2 suppliers,

the average amount of direct costs per supplier is equal to
2μc

j,T OT
|I| . We then sampled each

activation cost ai from a uniform distribution on the interval [0.82μc
j,T OT
|I| , 1.2

2μc
j,T OT
|I| ).

The parameters λ j,min (Eq. 10) and λ j,max (Eq. 11) representing the bounds on the number
of components per supplier j were sampled using a discrete uniform distribution on the
set of integers {1, 2} and on {λ j,min, . . . , 5}, respectively. The parameters representing the
expected lead time li, j,t and expected delay δi, j,t in Eqs. 13 and 14 were computed using a
supplier performance predictor (see “Appendix C”) based on a database of past orders (see
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“Appendix B”). Finally, the reliability ri (Eq. 15) of each supplier i was defined by sampling
the discrete uniform distribution from the set {1, . . . , 100}.

6.2 Experimental results

The framework was implemented in Python 3.7 including the MILP model generation and
the different preference elicitation strategies. CPLEX 12.8 (ILOG 2017) was used as a MILP
and LP solver, while the Python library pycddlib (Troffaes 2018) was used to compute the
extreme points of the user-preference polytope. All of the experiments described below were
performed on an Intel(R) Xeon(R) E5620 2.40 GHz processor with 32 GB of RAM.

The instances consideredwere randomly generated as described in Sect. 6.1.We generated
20 instances for each triple (|I|, |C|, ρ), such that |I| ∈ {10, 20, 30}, |C| ∈ {30, 40, 50, 60}
and ρ ∈ {0.2, 0.3, 0.4, 0.5}. As a result, the overall set of instances has 20 · 3 · 4 · 4 = 960
elements.

Table 4 shows the performance of the different strategies SMMR, MMD and MDS with
respect to time and the number of queries. The first three columns of both tables contain
the values of the parameters |I|, |C| and ρ, while the fourth column gives the percentage α

of instances where the convergence to the stopping criterion was achieved within the time
limit of 2 hours. The remaining columns show the average μtime computational time and
the average μquery of the number of queries for each of the proposed strategies. The results
reported for the last six columns take into account only the instances where convergence was
achieved within the time limit.

We needed a common measure to compare the rows of Table 4 and summarize the perfor-
mance of the three methods; a simple mean for each column would strongly bias the results
towards the larger instances. Instead, for each result (i.e., average time or average number of
queries), we computed a score that we called the ratio with the best method (RWB), dividing
the result by the corresponding best result among the three methods in that row. For example,
the RWB value for the SMMR query time for the first row is equal to 1.12/0.81. We then
considered the mean of the values over all 48 rows. These values were recorded in the last
row of the table.

The 20 instances generated for each triple (|I|, |C|, ρ) have a different unknown user
preference vector that was generated randomly by the means of the procedure described
below. The first aspect to consider when defining this procedure is the different scales of the
four objective functions. For example, a user preference vectorwu = (0.25, 0.25, 0.25, 0.25)
does not necessarily describe a case in which the same importance is given to each of the four
objectives, since the choice of scales of the objectives can be somewhat arbitrary. Because
of the difference in scales, a vector of (0.25, 0.25, 0.25, 0.25) might implicitly give a much
higher importance to e.g., the first objective. For this reason, we chose not to sample wu with
a uniform distribution (which could lead to the first objective being the most important one
for almost all instances) and instead to use a distribution that gives a higher probability to
the more extreme vectors. More precisely, we used the following method:

1. We solved the MILP problem using the extreme points w1 = (1, 0, 0, 0), w2 =
(0, 1, 0, 0), w3 = (0, 0, 1, 0) and w4 = (0, 0, 0, 1) of the initial weighted vector state
space W0, and let s′

wi be the solution computed with the weighted vector wi where
i ∈ {1, . . . , 4}.

2. We computed the value ki = rnd[0,1)
s′wi (i)−min j∈{1,...,4}(s′w j (i))

for each i ∈ {1, . . . , 4}.
3. We set the weighted vector to wp = 1

∑4
j=1 k j

(k1, k2, k3, k4)
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Fig. 3 The number of
experiments in which the three
methods of query selection
achieved the best performances
with respect to the number of
queries and the CPLEX time

The idea is to try to define an approximation of the range of each objective in order to re-scale
a random vector with respect to the ranges of the objective functions.

The bar chart in Fig. 3 counts the number of times in which each of the three methods
used for query selection achieved the best average performance given a triple (|I|, |C|, ρ)

of Table 4, with respect to the number of queries and the total computational time. More
specifically, the frequency in this bar chart is based on the score given to each strategy. This
score is based on summing up 1 unit in the case the strategy is the only method achieving
the best performances, a half a unit in the case of a tie between two strategies, and a third of
a unit in the case of a three-way tie.

As we can see from Fig. 3 and the last row of Table 4, it looks like that MMD is on average
better than the other two methods in terms of the total time and (perhaps surprisingly) the
number of queries.

Figures 4 and 5 show the average CPLEX execution time per iteration and the average
query computation time per iteration for the three methods of query selection for the two
different experiment configurations, i.e., 10 suppliers, 30 components and 0.4 density, and 30
suppliers, 50 components and 0.4 density. The average CPLEX execution time per iteration
is computed as the sum of the total CPLEX time for each instance divided by the sum of the
number of iterations for each instance. The average query computation time per iteration is
computed as the sum of the total query time for each repetition divided by the sum of the total
number of queries for each instance. As we can see in Figs. 4 and 5, the query time is much
higher for the SMMRmethod. This is not surprising since SMMRhas a higher computational
burden than MMD and MDS. It is interesting to see that the choice of the query selection
method has a substantial impact on the total time for small instances (see Fig. 4). On the
contrary, the time taken by the query selection methods is negligible when the size of the
instances is large enough (see Fig. 5).

Generally speaking, the results show that the strategies SMMR and MMD look better
than MDS in terms of the number of queries generated. A possible explanation is that the
discrepancy sum computed in MDS, which drives the query generation process, can be high
even if one of the two solutions in the selected pair (su, sv) has a discrepancy value that is
close to zero. In such a scenario, it may happen that the region of the polytopeWΛ in which
w · (g(sv) − g(su)) ≥ 0 holds is very small. Therefore, if the user prefers su to sv , the cut
induced by the user answer is not highly informative and does not reduce the region WΛ

significantly. Min-max based methods such as SMMR and MMD may be achieving a better
performance level because they aim to computing queries that are informative whatever the
user answer is.
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Fig. 4 Average CPLEX time per
iteration and the average query
computation time for the three
methods of query selection. The
graph shows an average of 20
instances where |I| = 10,
|C| = 30 and ρ = 0.4

Fig. 5 Average CPLEX time per
iteration and query computation
time for the three methods for
query selection. The graph shows
an average of 20 instances where
|I| = 30, |C| = 50 and ρ = 0.4

It has been proven that the SMMR method generates the most informative query (Viap-
piani and Boutilier 2011) with respect to WΛ if we consider all of the optimal solutions
associated with WΛ. For each iteration of our framework, we considered only the solutions
associated with the extreme points Ext(WΛ) of WΛ. The query computed by SMMR is the
most informative only with respect tothe user preferences Ext(WΛ). We therefore cannot
guarantee the optimality of the whole sequence of queries since different greedy methods
(such asMMD)might generate a different set of extreme points fromwhich we might extract
more informative queries.

With MMD, we evaluated the minimum worst-case loss of a pair of solutions su and sv ,
composing a query only on the corresponding extreme points u, v ∈ WΛ. On the other hand,
with SMMR, we evaluated the worst-case loss of the query rather than the same of the single
solutions composing the query, and with respect to the whole set of extreme points Ext(WΛ).
It is then interesting to see that in our experimental results, MMD was on average better in
terms of the number of queries.

The presented computational results clearly show that the framework is very scalable with
respect to the number of queries computed to achieve convergence. This measure grows fairly
slowly with the size of the instance (see Table 4). This suggests the practical usability of the
framework designed in the context of supplier selection.
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Table 4 Experimental results

|I| |C| ρ α (%) SMMR MMD MDS SMMR MMD MDS
μtime μtime μtime μquery μquery μquery

10 30 0.2 100.0 1.12 0.81 0.96 3.5 4.0 4.0

10 30 0.3 100.0 3.79 2.74 2.84 4.2 4.4 4.4

10 30 0.4 100.0 19.28 8.19 6.48 7.2 7.0 6.5

10 30 0.5 100.0 37.72 27.9 36.41 7.2 8.0 10.5

10 40 0.2 100.0 0.97 0.67 0.85 2.4 2.4 3.1

10 40 0.3 100.0 7.12 2.1 2.45 4.9 4.7 5.1

10 40 0.4 100.0 15.13 12.66 17.52 5.9 6.4 7.8

10 40 0.5 100.0 42.31 23.27 35.59 7.7 7.5 8.9

10 50 0.2 100.0 3.98 1.54 2.36 4.2 4.9 5.3

10 50 0.3 100.0 3.77 2.51 2.56 3.7 3.8 4.0

10 50 0.4 100.0 24.86 17.83 16.79 6.9 7.0 7.1

10 50 0.5 100.0 127.23 85.34 63.99 11.1 10.6 10.1

10 60 0.2 100.0 2.9 2.02 2.64 4.1 4.2 4.4

10 60 0.3 100.0 2.21 1.89 2.04 3.0 3.2 4.0

10 60 0.4 100.0 59.37 26.79 28.15 7.8 7.3 8.0

10 60 0.5 100.0 62.45 57.57 52.67 8.0 8.4 8.6

20 30 0.2 100.0 87.09 14.28 17.9 10.0 7.7 9.1

20 30 0.3 100.0 118.3 77.04 96.23 10.4 9.5 12.1

20 30 0.4 100.0 305.89 177.45 200.36 11.8 10.8 11.5

20 30 0.5 100.0 350.1 372.71 291.88 11.4 11.1 10.6

20 40 0.2 100.0 51.09 18.59 17.92 8.3 7.0 7.0

20 40 0.3 100.0 204.49 132.89 122.73 10.3 9.5 10.0

20 40 0.4 100.0 305.93 222.69 370.6 11.4 10.1 12.3

20 40 0.5 100.0 672.57 249.04 313.46 10.8 9.3 12.1

20 50 0.2 100.0 62.95 23.35 20.63 8.4 7.3 6.4

20 50 0.3 100.0 326.81 171.18 162.94 11.4 10.5 11.0

20 50 0.4 100.0 297.36 168.03 325.06 10.3 9.6 11.1

20 50 0.5 100.0 486.29 571.8 552.89 9.8 11.7 12.7

20 60 0.2 90.0 21.79 11.62 21.1 5.22 5.22 5.89

20 60 0.3 100.0 171.13 122.38 93.18 9.5 10.2 10.1

20 60 0.4 100.0 601.68 642.37 742.42 9.6 10.9 11.4

20 60 0.5 90.0 574.19 413.71 1012.93 10.56 9.89 12.78

30 30 0.2 100.0 220.25 39.43 245.72 9.9 7.1 9.4

30 30 0.3 100.0 783.39 289.54 332.52 11.9 10.9 12.2

30 30 0.4 100.0 1390.38 405.88 393.69 11.9 10.0 11.3

30 30 0.5 100.0 469.37 329.37 252.18 9.7 10.0 10.2

30 40 0.2 100.0 663.05 345.26 144.93 11.1 10.5 10.6

30 40 0.3 100.0 372.97 505.3 621.16 9.6 10.9 12.3

30 40 0.4 80.0 1279.45 827.41 879.14 14.25 12.5 13.62

30 40 0.5 50.0 1236.04 1017.44 711.69 9.6 9.4 10.2

30 50 0.2 100.0 471.24 167.48 211.95 11.7 9.5 10.6
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Table 4 continued

|I| |C| ρ α (%) SMMR MMD MDS SMMR MMD MDS
μtime μtime μtime μquery μquery μquery

30 50 0.3 100.0 1301.86 1565.44 609.45 13.1 14.1 12.5

30 50 0.4 90.0 701.8 893.49 321.11 9.22 9.44 10.22

30 50 0.5 100.0 1086.3 1349.17 948.75 10.5 10.6 11.4

30 60 0.2 100.0 560.84 302.85 310.38 12.3 10.6 12.2

30 60 0.3 100.0 1383.75 733.28 991.63 11.9 11.2 10.8

30 60 0.4 80.0 1340.93 550.73 1418.09 11.12 10.38 13.25

30 60 0.5 70.0 1159.35 1130.19 958.08 11.71 10.29 13.57

Average values 2.079 1.174 1.34 1.076 1.038 1.144

The bold values represent the best result among the three methods in that row, with respect to the time (for the
first set of three columns) and the number of queries (for the second set of three columns)

7 Discussion

This paper presents a general framework for guiding decision makers via a query generation
mechanism in a multi-criteria supplier selection process inspired by a real-world scenario.
We assumed a preference model based on a weighted sum utility function, with the criteria
evaluating the alternatives being cost, lateness, lead time and reputation.

This work lies between two research areas: supplier selection, a relevant topic in OM,
and preference learning, a research area belonging to AI. On the one hand, it provides an
alternative perspective to the solution of supplier selection problems. On the other hand, it
presents an interactive preference elicitation approach using novel query selection strategies.
Briefly, our procedure can be summarized as follows:

1. We solved a MILP problem with different weights to find a set of alternative solutions for
the DM.

2. We asked the DM to express a preference between two solutions selected using a query
selection strategy.

3. We used the DM’s response to reduce the uncertainty concerning the DM’s preference.
4. If we found an alternative with a max regret lower than a certain threshold, we recom-

mended it.

The computational experimentation assessed the performance of our framework using
three preference elicitation strategies to generate the queries, where two of the three were
novel. We compared our novel query selection strategies with a myopically optimal query
selection strategy based on setwise max regret. This had a similar number of interactions
with the DM but with a much lower computational time.

In Sect. 7.1, we discuss the implications of the proposed framework for DMs. Section 7.2
is related to the implications of theory of the novel query selection strategies for the purpose
of preference elicitation. We conclude with Sect. 7.3 suggesting some extensions that may
be considered for future research.

7.1 Implications for managers and decision-makers

The main advantage of our framework is the low cognitive effort required by the DM with
respect to the standard MCDM approaches adopted in the supplier selection literature. These
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approaches, including AHP and ANP, are based on complex interviews to precisely define
the weights representing the DM’s preferences. This is where the DM has to know details
about the approach itself. Our framework is much simpler from a DM’s point of view since
it is based on a series of queries, each asking the DM to express a preference between
two solutions. For example, it may be implemented along with a graphical user interface
showing the alternative solutions composing the query for each iteration while highlighting
the differences and similarities to ease the decision. Our experiments show that the average
number of queries that we need to achieve convergence is less than 15 in all of the groups
of instances considered. This means that 15 binary queries replace complex interviews,
achieving a considerable speeding up of the process and much less cognitive effort. On the
other hand, our preference elicitation method assumes the orrect answers with respect to the
preference model representing the DM’s preferences. This is a potential weak point of our
framework, since a wrong answer could exclude the weighted vector corresponding to the
DM’s real preferences, hence the corresponding optimal solution.

Although we tackled a specific problem, our framework can be applied to other optimiza-
tion problems based on the user preferences. In fact, the preference elicitation module is
independent of the specific problem that we have to solve. The supplier selection problem
presented in Sect. 3 can be replaced by any other optimization problem so long as the objective
function is a weighted sum of a fixed number of criteria, and the weighted vector represents
the user preferences with respect to these criteria. Some examples of the domains of appli-
cation include chemical process engineering (Rangaiah et al. 2020), flow shop scheduling
(Murata et al. 1996), inventory control (Tsai and Chen 2017) and maintenance planning
(Allah Bukhsh et al. 2019).

7.2 Implications for theory

Other methods for query selection are based on a geometric view of the polytope representing
the possibleDM’s preferenceswhere the intention is to generate queries that equally divide the
polytope. To be effective, these methods require a similar scale among the criteria evaluating
the alternative solutions, thus it is common to normalize the utility function. However, as we
discussed in Sect. 5.1, it is not at all clear how one should normalize with our formulation of
the problem, making the methods difficult to apply in our context.

In our framework, we adopted themax regret as a measure to evaluate alternative solutions
with uncertainty regarding theDM’s preferences. A relatedmeasure, used for query selection,
is the setwise max regret that evaluates the max regret of a set of solutions. In particular, the
query set with a minimum setwise regret is a myopically optimal query with respect to the
max regret criterion. This method is less sensitive to the change in scale since it evaluates the
maximum potential loss of the DM’s utility function and thus it is not based on geometric
considerations regarding the polytope representing the possible DM’s preferences. However,
this method is computationally expensive since we would need to evaluate the setwise max
regret of all possible query sets. For this reason, we have presented two novel query selection
strategies, MMD and MDS, based on a novel measure that we call discrepancy. Intuitively,
this measure evaluates the loss of a solution with respect to a specific weighted vector and
a corresponding optimal solution. The idea is to compute a set of solutions corresponding
to a discrete set of weighted vectors (the extreme points of the polytope representing the
possibleDM’s preferences in our specific case), and to select two solutions that aremaximally
different, i.e., that maximizes the mutual discrepancies with respect to the corresponding
associate weighted vectors. From our experimental results, it seems that MMD performs
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better on average than the setwise minimax regret in terms of execution time. Furthermore,
we also got a lower average number of queries to achieve convergence. MMD seems to
be a good alternative to the setwise max regret, especially when the computational time to
generate a query significantly affects the overall execution time.

7.3 Future research directions

Some of the recent developments in MCDM the purpose of supplier selection are related to
introducing fuzzy theory in order to manage data incompleteness/uncertainty with respect
to the DM’s response. This feature is not currently included in the proposed framework.
However, the possibility of allowing fuzzy answers to the queries may be an interesting
future research direction. Furthermore, the type of queries included in the framework may
be extended to allow the user to express preferences among a certain set of solutions. In
this case, the queries are less intuitive but could lead to a reduction in the overall number of
queries required.

Future researchmay also involve an extension of the combinatorial problem to a stochastic
casewhere aspects like the stochastic demands of the components are included in the problem
definition. This can be easily achieved by replacing the MILP model considered in Sect. 5.1
with a stochastic extension. In that case, the resulting model would be much more complex
and it would take a longer time to solve the problem optimally.

It would be interesting to extend our framework in amulti-agent context where the purpose
is to find a common solution between two conflicting agents. In this case, the weighted vector
corresponding to an optimal recommendation needs to consider the tradeoffs of the different
DMs, which may be conflicting.

Finally, another future research direction is related to adapting the framework to a case
where the combinatorial problem is solved using heuristic algorithms with no optimality or
quality guarantee. If we increase the size of the instances considered, the currentMILPmodel
would not scale well, and the high computing times would make the interaction with the DM
impractical.
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A Random catalogue generation

This appendix describes how to generate a suppliers’ catalogue by assigning to each supplier
a certain set of components, such that an overall density ρ was enforced. This is in addition
to a minimum number of components λ j,min = 2 being provided by each supplier. Each
component is provided by at least one supplier.

The suppliers’ catalogue is represented by a |I| × |C| matrix 9 where each element (i, j)
is equal to 1 if supplier i can provide component j , 0 otherwise. As previously indicated in
Sect. 5.1, Ci is the set of components supplied by supplier i . Similarly, let I j be the set of
suppliers providing component j . The following is the procedure used to randomly generate
the matrix 9:

1. Set each element (i, j) of 9 to 0
2. For each supplier i in I choose a random component j in C, add j to Ci , add i to I j and

set the (i, j)-th element of 9 to 1.
3. For each component j in C such that |I j | = 0 choose two different random suppliers i

and i ′, add j to Ci and Ci ′ , add {i, i ′} to I j , set the (i, j)-th and the (i ′, j)-th elements of
9 to 1.

4. For each component j in C such that |I j | = 1, let I j = {i ′}, choose random supplier
i �= i ′, add j to Ci , add i to I j , and set the (i, j)-th element of 9 to 1.

5. Let K be the value ρ · |C| · |I| rounded to the nearest integer.
6. Let Δ be the number of elements of 9 equal to 1.
7. Let k = K − Δ.
8. While k > 0, pick a random i ∈ I and j ∈ C. If the (i, j)-th component of 9 is equal to

0, then set this element to 1 and decrease k by 1 unit.

B Random database generator

This section describes how to compute a random database of past orders. This is used in
the framework to simulate the possibility of predicting the lead time li, j,t and lateness δi, j,t
parameters of the MILP model by means of real data. This is a function of the triple supplier
i , component j and tariff t . We assume that each entry of the database is a random order
ok represented by a tuple 〈i(ok), j(ok), q(ok), l(ok), δ(ok)〉, meaning that the supplier i(ok)
received an order of quantity q(ok) of component j(ok), and provided the components with
lead time l(ok) and lateness of δ(ok).

The number of orders generated for each component j ∈ C supplied by supplier i ∈ I is
sampled from a discrete uniform distribution in the set {5, . . . , 15}. The quantity of each order
ok related to component j(ok) is the nearest integer of a value sampled from the Gaussian
distribution (where negative and null values are discarded) whose parameters μq and σq are
shown in Table 5, depending on the category of j(ok).

Five different values RDi , RV 1i , RV 2i , RV 3i and RV 4i are assigned to each supplier
in order to model its ability to deliver on time and to compute the delay and lateness of its
orders. These values are computed as follows:
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Table 5 Gaussian distribution
parameters used to sample the
quantity of a component for an
order with respect of the
component categories

Cheap Average Expensive

μq 1000 200 30

σq 250 50 7.5

– RDi is sampled using a uniform distribution from the interval [0, 1);
– RV 1i and RV 2i are sampled using a discrete uniform distribution from the set

{10, . . . , 30};
– RV 3i and RV 4i are sampled using a discrete uniform distribution from the set

{1, . . . , 10}.
The lead time l(ok) of an order ok assigned to a supplier i(ok) with quantity q = q(ok) is

then computed by summing up two values sampled form the following distributions:

– A discrete uniform distribution from the set {2, . . . , 20};
– A Gamma distribution with mean RV 1i ·max(log10(10 · q), 1) and a standard deviation

σl(ok ) = RV 2i · max(log10(10 · q), 1)

and summing them.
The lateness δ(ok) of a random order ok supplied by supplier i(ok) and of quantity q =

q(ok) is 0 if the random number sampled between 0 and 1 is less than RDi . This models
the case where the order is not late. Otherwise, δ(ok) is computed as a sample of a Gamma
distribution with a mean of μδ(ok ) = RV 3i · max(log10(10 · q), 1) and a standard deviation
of σδ(ok ) = RV 4i ·max(log10(10 · q), 1). Please note that the term max(log10(10 · q), 1) is
used in the computation of both l(ok) and δ(ok) in order to increase the mean and standard
deviation for orders with high quantities involved.

C Lead-time and lateness predictor

This appendix describes a predictor to compute the expected lead time li, j,t (Eq. 13)
and expected delay δi, j,t (Eq. 14) of a triple supplier i , component j and quantity inter-
val t given a database of past orders. Let us first suppose that we have an objective
order o0 = 〈i(o0), j(o0), q(o0), l(o0), δ(o0)〉 where i(o0), j(o0) and q(o0) are known
and we want to estimate l(o0) and δ(o0). As in “Appendix B”, we indicate with ok =
〈i(ok), j(ok), q(ok), l(ok), δ(ok)〉 a past order, i.e., the k-th order of a database. The idea is
to compute l(o0) and δ(o0) as a weighted average of the lead times and delays of past orders
where each weight depends on the similarity of the corresponding past order ok with o0.

Two types of similarity measures are considered:

– The similarity between the quantities defined as Simq(q(ok), q(o0)) = min(q(ok ),q(o0))
max(q(ok ),q(o0))

;
– The similarity between the components Sim j ( j(ok), j(o0)), defined to be 1 if j(ok) =

j(o0), defined to be 0.5 if the category of j(ok) and j(o0) is the same, and
Sim j ( j(ok), j(o0)) = 0.1, otherwise.

These two similarity measures are used to compute two sub-weights for each past order ok :

wk
q = Simq(q(ok), q(o0))

∑n
p=1 Simq(q(op), q(o0))

and wk
j = Sim j ( j(ok), j(o0))

∑n
p=1 Sim j ( j(op), j(o0))

,

where p ∈ [1, n] are the indexes of all the past orders stored in the database. After computing
wk
q and wk

j for each past order ok , the lead time l(o0) and the delay δ(o0) of the objective
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order o0 are estimated as l(o0) = ∑n
k=1(0.5w

k
q + 0.5wk

j )l(ok) and δ(o0) = ∑n
k=1(0.6w

k
q +

0.4wk
j )δ(ok), where l(ok) and δ(ok) are delay and lead time of the past order ok . Theweight of

wk
q in the formula used to compute δ(o0) is set to 0.6 in order to give slightly more importance

to past orders with similar quantities rather than past orders with similar components.
Note that li, j,t and δi, j,t represent an expectation of lead time and delay given a specific

quantity interval, while the method described computes an estimated lead time and delay
given a specific quantity. We manage this issue by estimating the lead time and delay of two
objective orders o′

0 and o
′′
0, where the quantities q(o′

0) and q(o′′
0) are the lower and the upper

bounds of the range of quantities defining the quantity interval t (see Table 3 in Sect. 6.1).
The values of li, j,t and δi, j,t are then computed by averaging the values predicted for o′

0 and
o′′
0 as follows: li, j,t = (l(o′

0) + l(o′′
0))/2 and δi, j,t = (δ(o′

0) + δ(o′′
0))/2. Since the upper

bounds of the last quantity intervals in Table 3 are not defined, we consider these values to
be 1500, 300 and 50 for the categories cheap, average and expensive respectively.
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